Sample records for system applied biosystems

  1. The NCBI BioSystems database.

    PubMed

    Geer, Lewis Y; Marchler-Bauer, Aron; Geer, Renata C; Han, Lianyi; He, Jane; He, Siqian; Liu, Chunlei; Shi, Wenyao; Bryant, Stephen H

    2010-01-01

    The NCBI BioSystems database, found at http://www.ncbi.nlm.nih.gov/biosystems/, centralizes and cross-links existing biological systems databases, increasing their utility and target audience by integrating their pathways and systems into NCBI resources. This integration allows users of NCBI's Entrez databases to quickly categorize proteins, genes and small molecules by metabolic pathway, disease state or other BioSystem type, without requiring time-consuming inference of biological relationships from the literature or multiple experimental datasets.

  2. The NCBI BioSystems database

    PubMed Central

    Geer, Lewis Y.; Marchler-Bauer, Aron; Geer, Renata C.; Han, Lianyi; He, Jane; He, Siqian; Liu, Chunlei; Shi, Wenyao; Bryant, Stephen H.

    2010-01-01

    The NCBI BioSystems database, found at http://www.ncbi.nlm.nih.gov/biosystems/, centralizes and cross-links existing biological systems databases, increasing their utility and target audience by integrating their pathways and systems into NCBI resources. This integration allows users of NCBI’s Entrez databases to quickly categorize proteins, genes and small molecules by metabolic pathway, disease state or other BioSystem type, without requiring time-consuming inference of biological relationships from the literature or multiple experimental datasets. PMID:19854944

  3. Nano-Enabled Approaches to Chemical Imaging in Biosystems

    DOE PAGES

    Retterer, Scott T.; Morrell-Falvey, Jennifer L.; Doktycz, Mitchel John

    2018-02-28

    Understanding and predicting how biosystems function require knowledge about the dynamic physicochemical environments with which they interact and alter by their presence. Yet, identifying specific components, tracking the dynamics of the system, and monitoring local environmental conditions without disrupting biosystem function present significant challenges for analytical measurements. Nanomaterials, by their very size and nature, can act as probes and interfaces to biosystems and offer solutions to some of these challenges. At the nanoscale, material properties emerge that can be exploited for localizing biomolecules and making chemical measurements at cellular and subcellular scales. Here, we review advances in chemical imaging enabledmore » by nanoscale structures, in the use of nanoparticles as chemical and environmental probes, and in the development of micro- and nanoscale fluidic devices to define and manipulate local environments and facilitate chemical measurements of complex biosystems. As a result, integration of these nano-enabled methods will lead to an unprecedented understanding of biosystem function.« less

  4. Nano-Enabled Approaches to Chemical Imaging in Biosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retterer, Scott T.; Morrell-Falvey, Jennifer L.; Doktycz, Mitchel John

    Understanding and predicting how biosystems function require knowledge about the dynamic physicochemical environments with which they interact and alter by their presence. Yet, identifying specific components, tracking the dynamics of the system, and monitoring local environmental conditions without disrupting biosystem function present significant challenges for analytical measurements. Nanomaterials, by their very size and nature, can act as probes and interfaces to biosystems and offer solutions to some of these challenges. At the nanoscale, material properties emerge that can be exploited for localizing biomolecules and making chemical measurements at cellular and subcellular scales. Here, we review advances in chemical imaging enabledmore » by nanoscale structures, in the use of nanoparticles as chemical and environmental probes, and in the development of micro- and nanoscale fluidic devices to define and manipulate local environments and facilitate chemical measurements of complex biosystems. As a result, integration of these nano-enabled methods will lead to an unprecedented understanding of biosystem function.« less

  5. Rapid Identification of Key Pathogens in Wound Infection by Molecular Means

    DTIC Science & Technology

    2006-01-01

    diagnosis and monitoring of infectious diseases [4]. Rapid diagnosis can be achieved by the direct detection of characteristic bacterial genes in clinical... System ABI PRISM® 7500 Sequence Detection System (Applied Biosystems, Foster City, Calif.) was purchased, set up and standardized. This system ...integrated system for real-time detection of PCR. The system includes a built-in thermal cycler, a laser to induce fluorescence, CCD (charge-coupled device

  6. Trans-algorithmic nature of learning in biological systems.

    PubMed

    Shimansky, Yury P

    2018-05-02

    Learning ability is a vitally important, distinctive property of biological systems, which provides dynamic stability in non-stationary environments. Although several different types of learning have been successfully modeled using a universal computer, in general, learning cannot be described by an algorithm. In other words, algorithmic approach to describing the functioning of biological systems is not sufficient for adequate grasping of what is life. Since biosystems are parts of the physical world, one might hope that adding some physical mechanisms and principles to the concept of algorithm could provide extra possibilities for describing learning in its full generality. However, a straightforward approach to that through the so-called physical hypercomputation so far has not been successful. Here an alternative approach is proposed. Biosystems are described as achieving enumeration of possible physical compositions though random incremental modifications inflicted on them by active operating resources (AORs) in the environment. Biosystems learn through algorithmic regulation of the intensity of the above modifications according to a specific optimality criterion. From the perspective of external observers, biosystems move in the space of different algorithms driven by random modifications imposed by the environmental AORs. A particular algorithm is only a snapshot of that motion, while the motion itself is essentially trans-algorithmic. In this conceptual framework, death of unfit members of a population, for example, is viewed as a trans-algorithmic modification made in the population as a biosystem by environmental AORs. Numerous examples of AOR utilization in biosystems of different complexity, from viruses to multicellular organisms, are provided.

  7. [Population data analysis of miniSTR loci: D10S1248, D14S1434 and D22S1045 in the Pomerania-Kujawy region of Poland].

    PubMed

    Kodroń, Agata; Rychlicka, Edyta; Milewska, Iwona; Woźniak, Marcin; Grzybowski, Tomasz

    2010-01-01

    This paper presents the allele frequencies and forensic parameters of the three miniSTR loci D10S1248, D14S1434 and D22S1045 in the Pomerania-Kujawy region of Poland. Genomic DNA was extracted by a standard phenol-chloroform extraction procedure. The three miniSTR loci D10S1248, D14S1434 and D22S1045 were amplified in a triplex polymerase chain reaction with the primer sets designed by Coble and Butler in a GeneAmp PCR System 9700 (Applied Biosystems). The amplified products were separated and detected by capillary electrophoresis on an ABI PRISM 3100 Genetic Analyzer (Applied Biosystems).The genotype frequency distributions showed no deviations from Hardy-Weinberg equilibrium expectations. The values of forensic parameters confirm that D10S1248 and D22S1045 are highly informative genetic markers, whereas D14S1434 is a moderately useful for forensic genetic identification purposes.

  8. FaSTR DNA: a new expert system for forensic DNA analysis.

    PubMed

    Power, Timothy; McCabe, Brendan; Harbison, Sally Ann

    2008-06-01

    The automation of DNA profile analysis of reference and crime samples continues to gain pace driven in part by a realisation by the criminal justice system of the positive impact DNA technology can have in aiding in the solution of crime and the apprehension of suspects. Expert systems to automate the profile analysis component of the process are beginning to be developed. In this paper, we report the validation of a new expert system FaSTR DNA, an expert system suitable for the analysis of DNA profiles from single source reference samples and from crime samples. We compare the performance of FaSTR DNA with that of other equivalent systems, GeneMapper ID v3.2 (Applied Biosystems, Foster City, CA) and FSS-i(3) v4 (The Forensic Science Service((R)) DNA expert System Suite FSS-i(3), Forensic Science Service, Birmingham, UK) with GeneScan Analysis v3.7/Genotyper v3.7 software (Applied Biosystems, Foster City, CA, USA) with manual review. We have shown that FaSTR DNA provides an alternative solution to automating DNA profile analysis and is appropriate for implementation into forensic laboratories. The FaSTR DNA system was demonstrated to be comparable in performance to that of GeneMapper ID v3.2 and superior to that of FSS-i(3) v4 for the analysis of DNA profiles from crime samples.

  9. AN ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PERFORMANCE TESTING OF THREE RAPID PCR TECHNOLOGIES FOR IDAHO TECHNOLOGY R.A.I.D.® SYSTEM, APPLIED BIOSYSTEMS TAQMAN® E. COLI 0157:H7 DETECTION SYSTEM, AND INVITROGEN CORPORATION PATHALERTTM DETECTION KITS

    EPA Science Inventory

    The Environmental Technology Verification (ETV) Program, beginning as an initiative of the U.S. Environmental Protection Agency (EPA) in 1995, verifies the performance of commercially available, innovative technologies that can be used to measure environmental quality. The ETV p...

  10. Validation of the Applied Biosystems RapidFinder Shiga Toxin-Producing E. coli (STEC) Detection Workflow.

    PubMed

    Cloke, Jonathan; Matheny, Sharon; Swimley, Michelle; Tebbs, Robert; Burrell, Angelia; Flannery, Jonathan; Bastin, Benjamin; Bird, Patrick; Benzinger, M Joseph; Crowley, Erin; Agin, James; Goins, David; Salfinger, Yvonne; Brodsky, Michael; Fernandez, Maria Cristina

    2016-11-01

    The Applied Biosystems™ RapidFinder™ STEC Detection Workflow (Thermo Fisher Scientific) is a complete protocol for the rapid qualitative detection of Escherichia coli (E. coli) O157:H7 and the "Big 6" non-O157 Shiga-like toxin-producing E. coli (STEC) serotypes (defined as serogroups: O26, O45, O103, O111, O121, and O145). The RapidFinder STEC Detection Workflow makes use of either the automated preparation of PCR-ready DNA using the Applied Biosystems PrepSEQ™ Nucleic Acid Extraction Kit in conjunction with the Applied Biosystems MagMAX™ Express 96-well magnetic particle processor or the Applied Biosystems PrepSEQ Rapid Spin kit for manual preparation of PCR-ready DNA. Two separate assays comprise the RapidFinder STEC Detection Workflow, the Applied Biosystems RapidFinder STEC Screening Assay and the Applied Biosystems RapidFinder STEC Confirmation Assay. The RapidFinder STEC Screening Assay includes primers and probes to detect the presence of stx1 (Shiga toxin 1), stx2 (Shiga toxin 2), eae (intimin), and E. coli O157 gene targets. The RapidFinder STEC Confirmation Assay includes primers and probes for the "Big 6" non-O157 STEC and E. coli O157:H7. The use of these two assays in tandem allows a user to detect accurately the presence of the "Big 6" STECs and E. coli O157:H7. The performance of the RapidFinder STEC Detection Workflow was evaluated in a method comparison study, in inclusivity and exclusivity studies, and in a robustness evaluation. The assays were compared to the U.S. Department of Agriculture (USDA), Food Safety and Inspection Service (FSIS) Microbiology Laboratory Guidebook (MLG) 5.09: Detection, Isolation and Identification of Escherichia coli O157:H7 from Meat Products and Carcass and Environmental Sponges for raw ground beef (73% lean) and USDA/FSIS-MLG 5B.05: Detection, Isolation and Identification of Escherichia coli non-O157:H7 from Meat Products and Carcass and Environmental Sponges for raw beef trim. No statistically significant differences were observed between the reference method and the individual or combined kits forming the candidate assay using either of the DNA preparation kits (manual or automated extraction). For the inclusivity and exclusivity evaluation, the RapidFinder STEC Detection Workflow, comprising both RapidFinder STEC screening and confirmation kits, correctly identified all 50 target organism isolates and correctly excluded all 30 nontarget strains for both of the assays evaluated. The results of these studies demonstrate the sensitivity and selectivity of the RapidFinder STEC Detection Workflow for the detection of E. coli O157:H7 and the "Big 6" STEC serotypes in both raw ground beef and beef trim. The robustness testing demonstrated that minor variations in the method parameters did not impact the accuracy of the assay and highlighted the importance of following the correct incubation temperatures.

  11. Industrial biosystems engineering and biorefinery systems.

    PubMed

    Chen, Shulin

    2008-06-01

    The concept of Industrial Biosystems Engineering (IBsE) was suggested as a new engineering branch to be developed for meeting the needs for science, technology and professionals by the upcoming bioeconomy. With emphasis on systems, IBsE builds upon the interfaces between systems biology, bioprocessing, and systems engineering. This paper discussed the background, the suggested definition, the theoretical framework and methodologies of this new discipline as well as its challenges and future development.

  12. Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.

  13. Development of a spreadsheet for SNPs typing using Microsoft EXCEL.

    PubMed

    Hashiyada, Masaki; Itakura, Yukio; Takahashi, Shirushi; Sakai, Jun; Funayama, Masato

    2009-04-01

    Single-nucleotide polymorphisms (SNPs) have some characteristics that make them very appropriate for forensic studies and applications. In our institute, SNPs typings were performed by the TaqMan SNP Genotyping Assays using the ABI PRISM 7500 FAST Real-Time PCR System (AppliedBiosystems) and Sequence Detection Software ver.1.4 (AppliedBiosystem). The TaqMan method was desired two positive control (Allele1 and 2) and one negative control to analyze each SNP locus. Therefore, it can be analyzed up to 24 loci of a person on a 96-well-plate at the same time. If SNPs analysis is expected to apply to biometrics authentication, 48 and over loci are required to identify a person. In this study, we designed a spreadsheet package using Microsoft EXCEL, and population data were used from our 120 SNPs population studies. On the spreadsheet, we defined SNP types using 'template files' instead of positive and negative controls. "Template files" consisted of the results of 94 unknown samples and two negative controls of each of 120 SNPs loci we had previously studied. By the use of the files, the spreadsheet could analyze 96 SNPs on a 96-wells-plate simultaneously.

  14. An intangible energy in the functioning biosystem. II: Useful parallels with circuit theory and with non-linear optics.

    PubMed

    Reid, B L

    1995-06-01

    The argument is developed that a structure and function already exists in selected inanimate systems for an intangible energy dissipating these systems and that, in so doing, this energy exhibits certain properties, readily recognised in the functioning biosystem. The central thesis is that, during dissipation, the structure of the biosystem affords opportunity for an enhanced display of these properties, so that this structure can be rationally recognised as obligatory in the transition, inanimate to animate matter. The systems chosen are those of reactance in linear circuit theory of electronics, and some recent developments in non-linear optics, both of which rely on imaginary or quantal force to display observable effects. Discussion occurs on the fashion which the development of a statistical formalism as a basis for the study of squeezed states of light in these non-linear systems, has, at the same time, overcome a long standing veto on the practical use of quantal energy associated with the Uncertainty Principle of Heisenberg. These ideas are used to vindicate the suggestion that a theoretical basis is presently available for an engineering type approach, toward an intangible force as it exists in the biosystem. The origins and properties of such a force continue to be considered by many as immersed in mysticism.

  15. Performance of Identifiler Direct and PowerPlex 16 HS on the Applied Biosystems 3730 DNA Analyzer for processing biological samples archived on FTA cards.

    PubMed

    Laurin, Nancy; DeMoors, Anick; Frégeau, Chantal

    2012-09-01

    Direct amplification of STR loci from biological samples collected on FTA cards without prior DNA purification was evaluated using Identifiler Direct and PowerPlex 16 HS in conjunction with the use of a high throughput Applied Biosystems 3730 DNA Analyzer. In order to reduce the overall sample processing cost, reduced PCR volumes combined with various FTA disk sizes were tested. Optimized STR profiles were obtained using a 0.53 mm disk size in 10 μL PCR volume for both STR systems. These protocols proved effective in generating high quality profiles on the 3730 DNA Analyzer from both blood and buccal FTA samples. Reproducibility, concordance, robustness, sample stability and profile quality were assessed using a collection of blood and buccal samples on FTA cards from volunteer donors as well as from convicted offenders. The new developed protocols offer enhanced throughput capability and cost effectiveness without compromising the robustness and quality of the STR profiles obtained. These results support the use of these protocols for processing convicted offender samples submitted to the National DNA Data Bank of Canada. Similar protocols could be applied to the processing of casework reference samples or in paternity or family relationship testing. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    2015-10-01

    We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D' Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.

  17. Preserved Organic Matter in the Alpine Tethyan Ocean Continental Transition (Totalp unit, Eastern Swiss Alps)

    NASA Astrophysics Data System (ADS)

    Mateeva, T.; Wolff, G. A.; Kusznir, N.; Wheeler, J.; Manatschal, G.

    2015-12-01

    Observations at hydrothermal systems in modern ocean settings suggest that methane produced by serpentinization can support methanotrophic bio-systems. An important question is whether such bio-systems are localised or are more pervasive in their association with serpentinized mantle in the subsurface. This has implications for the global importance of the hidden sub-surface bio-systems, the fate of methane and the carbon cycle. The Totalp unit, a remnant of a former Ocean Continent Transition (OCT) exposed in Alps of Eastern Switzerland, has been chosen to investigate the presence or absence of methanotrophic biosystems within serpentinized exhumed mantle in the Alpine Tethyan margin. The Totalp unit is made of serpentinized mantle and ophicalcites overlain by Upper Jurassic to Lower Cretaceous post-rift sediments. The Totalp unit has undergone little Alpine deformation and only a low-grade metamorphic overprint (<200°C). Totalp samples are characterized by total carbon contents of 0.02% to 12.90% and organic carbon contents of 1x10-4 % to 8%. This large range of values reflects the large lithological diversity of this area. The serpentinized peridotite, ophicalcite and post-rift sediments contain hydrocarbons in the form of n-alkanes in the range C20 - C40; isoprenoids, for example pristane and phytane are present in sediments. The organic biological marker distribution is consistent with the temperature history of the OCT (i.e.lower maximum temperature than 200°C). First results from Totalp show evidence for preservation of marine organic matter in the serpentinized mantle and overlying sediments, although there is no evidence that any organic matter is generated from methanotrophic bio-systems. Nevertheless, focussing on Tethyan hydrothermal systems and preserved hydrocarbons will be critical in understanding whether methanotrophic biomarkers can be preserved and if so whether the methane originated from serpentenization.

  18. Development and validation of an event-specific quantitative PCR method for genetically modified maize MIR162.

    PubMed

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2014-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize event, MIR162. We first prepared a standard plasmid for MIR162 quantification. The conversion factor (Cf) required to calculate the genetically modified organism (GMO) amount was empirically determined for two real-time PCR instruments, the Applied Biosystems 7900HT (ABI7900) and the Applied Biosystems 7500 (ABI7500) for which the determined Cf values were 0.697 and 0.635, respectively. To validate the developed method, a blind test was carried out in an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr). The determined biases were less than 25% and the RSDr values were less than 20% at all evaluated concentrations. These results suggested that the limit of quantitation of the method was 0.5%, and that the developed method would thus be suitable for practical analyses for the detection and quantification of MIR162.

  19. Evidence of organic matter in the Ocean-Continent Transition of Alpine Tethys from Totalp, Eastern Swiss Alps

    NASA Astrophysics Data System (ADS)

    Mateeva, Tsvetomila; Kusznir, Nick; Wolff, George; Wheeler, John; Manatschal, Gianreto

    2015-04-01

    Evidence from ocean ridge drilling and dredging and from the exhumed Tethyan continental margin in the Alps demonstrates that mantle serpentinization occurs at slow-spreading ocean ridges and magma-poor rifted continental margins. Observations at white smokers suggest that methane produced by serpentinization can support methanotrophic bio-systems which use methane as their only source of carbon. An important question is whether such biosystems are more generally pervasive in their association with serpentinized mantle in the subsurface. The answer to this question has important global implications for the importance of the hidden sub-surface bio-systems, the fate of methane and the carbon cycle. We examine whether serpentinized exhumed mantle at magma-poor rifted continental margins shows evidence for methanotrophy. Fieldwork sampling of km scale exposure of orogenically exhumed serpentinized mantle in the eastern Swiss Alps allows 3D mantle sampling not possible at ocean ridges and has the potential to answer the question regarding localized versus pervasive sub-surface methanotrophic biosystems. The Totalp massif in the eastern Swiss Alps has been chosen for an initial study to investigate the presence or absence of methanotrophic biosystem within serpentinized exhumed mantle in the Tethyan OCT. Totalp has little Alpine deformation and its metamorphism is no more than prehnite-pumpellyite grade. Hands specimens and cores have been taken from the Totalp area in order to sample serpentinization and its lithological diversity in the search for presence or absence of biomarkers. Thin sections analysis reveals multiple serpentinization events. XRD analysis shows complete serpentinization of the olivines and orthopyroxenes. The samples for bio-geochemical analysis were cut and ground to powder, processed by soxhlet extraction and then analysed by GC and GCMS in order to determine the full range of biomarkers. Total carbon and total organic carbon was also determined for the samples. Samples collected from the Totalp area show evidence of organic hydrocarbon in the form of alkanes. The majority of the samples contain n-alkanes in the range C20 - C32. Some samples contain isoprenoids in different concentrations dependent on their lithology, for example pristane and phytane are found in Totalp's sediments. The organic molecular distribution is consistent with the temperature history of the basin. Totalp samples are characterized by TC contents of 0.03% to 12.90% and TOC contents of 0.10% to 1.90%. This large range of values correlates with the large lithological diversity of this area. These first results from Totalp showing evidence for preserved organic matter and biosystems in the serpentinized mantle of the ancient Tethyan OCT are encouraging. Much more work is required to understand whether the organic matter is generated from methane-driven biosystems, and if so whether the methane originated from an organic or inorganic source?

  20. Inverted battery design as ion generator for interfacing with biosystems

    DOE PAGES

    Wang, Chengwei; Fu, Kun; Dai, Jiaqi; ...

    2017-07-24

    In a lithium-ion battery, electrons are released from the anode and go through an external electronic circuit to power devices, while ions simultaneously transfer through internal ionic media to meet with electrons at the cathode. Inspired by the fundamental electrochemistry of the lithium-ion battery, we envision a cell that can generate a current of ions instead of electrons, so that ions can be used for potential applications in biosystems. Based on this concept, we report an ‘electron battery’ configuration in which ions travel through an external circuit to interact with the intended biosystem whereas electrons are transported internally. As amore » proof-of-concept, we demonstrate the application of the electron battery by stimulating a monolayer of cultured cells, which fluoresces a calcium ion wave at a controlled ionic current. Electron batteries with the capability to generate a tunable ionic current could pave the way towards precise ion-system control in a broad range of biological applications« less

  1. Inverted battery design as ion generator for interfacing with biosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chengwei; Fu, Kun; Dai, Jiaqi

    In a lithium-ion battery, electrons are released from the anode and go through an external electronic circuit to power devices, while ions simultaneously transfer through internal ionic media to meet with electrons at the cathode. Inspired by the fundamental electrochemistry of the lithium-ion battery, we envision a cell that can generate a current of ions instead of electrons, so that ions can be used for potential applications in biosystems. Based on this concept, we report an ‘electron battery’ configuration in which ions travel through an external circuit to interact with the intended biosystem whereas electrons are transported internally. As amore » proof-of-concept, we demonstrate the application of the electron battery by stimulating a monolayer of cultured cells, which fluoresces a calcium ion wave at a controlled ionic current. Electron batteries with the capability to generate a tunable ionic current could pave the way towards precise ion-system control in a broad range of biological applications« less

  2. Inverted battery design as ion generator for interfacing with biosystems

    PubMed Central

    Wang, Chengwei; Fu, Kun (Kelvin); Dai, Jiaqi; Lacey, Steven D.; Yao, Yonggang; Pastel, Glenn; Xu, Lisha; Zhang, Jianhua; Hu, Liangbing

    2017-01-01

    In a lithium-ion battery, electrons are released from the anode and go through an external electronic circuit to power devices, while ions simultaneously transfer through internal ionic media to meet with electrons at the cathode. Inspired by the fundamental electrochemistry of the lithium-ion battery, we envision a cell that can generate a current of ions instead of electrons, so that ions can be used for potential applications in biosystems. Based on this concept, we report an ‘electron battery’ configuration in which ions travel through an external circuit to interact with the intended biosystem whereas electrons are transported internally. As a proof-of-concept, we demonstrate the application of the electron battery by stimulating a monolayer of cultured cells, which fluoresces a calcium ion wave at a controlled ionic current. Electron batteries with the capability to generate a tunable ionic current could pave the way towards precise ion-system control in a broad range of biological applications. PMID:28737174

  3. Conference on Correlations of Aging and Space Effects on Biosystems, Oct. 30-Nov. 1, 1989, Proceedings

    NASA Technical Reports Server (NTRS)

    Sprott, Richard L. (Editor); Combs, Carol A. (Editor)

    1991-01-01

    This volume includes papers on correlations between aging effects and space effects on biosystems, with particular attention given to the effects on the cardiovascular system, bone, sleep, cellular systems, immunological system, and genetics. Papers are presented on NASA and NIA plans and opportunities, the age effect on the posture and circulation, the cardiovascular physiology in space flight, and age-related bone changes. Attention is given to research on sleep, circulation rhythms, and aging and its applications to manned spaceflight; sleep and circadian rhythms; altered cell function in microgravity; and the heterogeneity of changes in lymphoproliferative ability with increasing age. Also included is a review of cellular immunosenescence, a paper on the immune response during space flight, and a paper on Caenorhabditis elegans as a model system for space biology studies.

  4. Building biological foundries for next-generation synthetic biology.

    PubMed

    Chao, Ran; Yuan, YongBo; Zhao, HuiMin

    2015-07-01

    Synthetic biology is an interdisciplinary field that takes top-down approaches to understand and engineer biological systems through design-build-test cycles. A number of advances in this relatively young field have greatly accelerated such engineering cycles. Specifically, various innovative tools were developed for in silico biosystems design, DNA de novo synthesis and assembly, construct verification, as well as metabolite analysis, which have laid a solid foundation for building biological foundries for rapid prototyping of improved or novel biosystems. This review summarizes the state-of-the-art technologies for synthetic biology and discusses the challenges to establish such biological foundries.

  5. Comparison of Enterococcus qPCR analysis results from fresh and marine water samples on two real-time instruments -

    EPA Science Inventory

    EPA is currently considering a quantitative polymerase chain reaction (qPCR) method, targeting Enterococcus spp., for beach monitoring. Improvements in the method’s cost-effectiveness may be realized by the use of newer instrumentation such as the Applied Biosystems StepOneTM a...

  6. Allele frequency distribution for 21 autosomal STR loci in Bhutan.

    PubMed

    Kraaijenbrink, Thirsa; van Driem, George L; Tshering of Gaselô, Karma; de Knijff, Peter

    2007-07-20

    We studied the allele frequency distribution of 21 autosomal STR loci contained in the AmpFlSTR Identifiler (Applied Biosystems), the Powerplex 16 (Promega) and the FFFL (Promega) multiplex PCR kits among 936 individuals from the Royal Kingdom of Bhutan. As such these are the first published autosomal DNA results from this country.

  7. New Generation Sequencing Technology Panel at SFAF-Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiske, Haley; Turner, Steve; Rhodes, Michael

    2009-05-27

    From left to right: Haley Fiske of Illumina Inc., Steve Turner of Pacific Biosciences, Michael Rhodes of Applied Biosystems, Patrice Milos of Helicos Biosciences and Tim Harkins of Roche Diagnostics answer questions in a forum moderated by Bob Fulton at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.

  8. New Generation Sequencing Technology Panel at SFAF-Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiske, Haley; Turner, Steve; Rhodes, Michael

    2009-05-27

    From left to right: Haley Fiske of Illumina Inc., Steve Turner of Pacific Biosciences, Michael Rhodes of Applied Biosystems, Patrice Milos of Helicos Biosciences and Tim Harkins of Roche Diagnostics answer questions in a forum moderated by Bob Fulton at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.

  9. An Ultra-High Discrimination Y Chromosome Short Tandem Repeat Multiplex DNA Typing System

    PubMed Central

    Hanson, Erin K.; Ballantyne, Jack

    2007-01-01

    In forensic casework, Y chromosome short tandem repeat markers (Y-STRs) are often used to identify a male donor DNA profile in the presence of excess quantities of female DNA, such as is found in many sexual assault investigations. Commercially available Y-STR multiplexes incorporating 12–17 loci are currently used in forensic casework (Promega's PowerPlex® Y and Applied Biosystems' AmpFlSTR® Yfiler®). Despite the robustness of these commercial multiplex Y-STR systems and the ability to discriminate two male individuals in most cases, the coincidence match probabilities between unrelated males are modest compared with the standard set of autosomal STR markers. Hence there is still a need to develop new multiplex systems to supplement these for those cases where additional discriminatory power is desired or where there is a coincidental Y-STR match between potential male participants. Over 400 Y-STR loci have been identified on the Y chromosome. While these have the potential to increase the discrimination potential afforded by the commercially available kits, many have not been well characterized. In the present work, 91 loci were tested for their relative ability to increase the discrimination potential of the commonly used ‘core’ Y-STR loci. The result of this extensive evaluation was the development of an ultra high discrimination (UHD) multiplex DNA typing system that allows for the robust co-amplification of 14 non-core Y-STR loci. Population studies with a mixed African American and American Caucasian sample set (n = 572) indicated that the overall discriminatory potential of the UHD multiplex was superior to all commercial kits tested. The combined use of the UHD multiplex and the Applied Biosystems' AmpFlSTR® Yfiler® kit resulted in 100% discrimination of all individuals within the sample set, which presages its potential to maximally augment currently available forensic casework markers. It could also find applications in human evolutionary genetics and genetic genealogy. PMID:17668066

  10. Single-tube, non-isotopic, multiplex PCR/OLA assay and sequence-coded separation for simultaneous screening of 31 cystic fibrosis mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinson, E.C.; Adriano, T.; Bloch, W.

    1994-09-01

    We have developed a rapid, single-tube, non-isotopic assay that screens a patient sample for the presence of 31 cystic fibrosis (CF) mutations. This assay can identify these mutations in a single reaction tube and a single electrophoresis run. Sample preparation is a simple, boil-and-go procedure, completed in less than an hour. The assay is composed of a 15-plex PCR, followed by a 61-plex oligonucleotide ligation assay (OLA), and incorporates a novel detection scheme, Sequence Coded Separation. Initially, the multiplex PCR amplifies 15 relevant segments of the CFTR gene, simultaneously. These PCR amplicons serve as templates for the multiplex OLA, whichmore » detects the normal or mutant allele at all loci, simultaneously. Each polymorphic site is interrogated by three oligonucleotide probes, a common probe and two allele-specific probes. Each common probe is tagged with a fluorescent dye, and the competing normal and mutant allelic probes incorporate different, non-nucleotide, mobility modifiers. These modifiers are composed of hexaethylene oxide (HEO) units, incorporated as HEO phosphoramidite monomers during automated DNA synthesis. The OLA is based on both probe hybridization and the ability of DNA ligase to discriminate single base mismatches at the junction between paired probes. Each single tube assay is electrophoresed in a single gel lane of a 4-color fluorescent DNA sequencer (Applied Biosystems, Model 373A). Each of the ligation products is identified by its unique combination of electrophoretic mobility and one of three colors. The fourth color is reserved for the in-lane size standard, used by GENESCAN{sup TM} software (Applied Biosystems) to size the OLA electrophoresis products. The Genotyper{sub TM} software (Applied Biosystems) decodes these Sequence-Coded-Separation data to create a patient summary report for all loci tested.« less

  11. Genetic Testing Registry

    MedlinePlus

    ... Splign Vector Alignment Search Tool (VAST) All Data & Software Resources... Domains & Structures BioSystems Cn3D Conserved Domain Database (CDD) Conserved Domain Search Service (CD Search) Structure (Molecular Modeling Database) Vector Alignment ...

  12. Science for Iowa Schools, Grades 4-6.

    ERIC Educational Resources Information Center

    Nice, Karl; And Others

    This guide includes four units for use in each of grades 4 through 6. The fourth grade units are entitled Measurement Systems, Classification Systems, Bio-Control Systems, and Hydrologic Systems; the fifth grade units are Chemical Systems, Force Systems, Bio-Systems, and Astro-Systems; and the sixth grade units are Equilibrium Systems,…

  13. Sequence-specific inhibition of microRNA-130a gene by CRISPR/Cas9 system in breast cancer cell line

    NASA Astrophysics Data System (ADS)

    Ainina Abdollah, Nur; Das Kumitaa, Theva; Yusof Narazah, Mohd; Razak, Siti Razila Abdul

    2017-05-01

    MicroRNAs (miRNAs) are short stranded noncoding RNA that play important roles in apoptosis, cell survival, development and cell proliferation. However, gene expression control via small regulatory RNA, particularly miRNA in breast cancer is still less explored. Therefore, this project aims to develop an approach to target microRNA-130a using the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 system in MCF7, breast cancer cell line. The 20 bp sequences target at stem loop, 3ʹ and 5ʹ end of miR130a were cloned into pSpCas9(BB)-2A-GFP (PX458) plasmid, and the positive clones were confirmed by sequencing. A total of 5 μg of PX458-miR130a was transfected to MCF7 using Lipofectamine® 3000 according to manufacturer’s protocol. The transfected cells were maintained in the incubator at 37 °C under humidified 5% CO2. After 48 hours, cells were harvested and total RNA was extracted using miRNeasy Mini Kit (Qiagen). cDNAs were synthesised specific to miR-130a using TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems). Then, qRT-PCR was carried out using TaqMan Universal Master Mix (Applied Biosystems) to quantify the knockdown level of mature miRNAs in the cells. Result showed that miR-130a-5p was significantly downregulated in MCF7 cell line. However, no significant changes were observed for sequences targeting miR-130a-3p and stem loop. Thus, this study showed that the expression of miR-130a-5p was successfully down-regulated using CRISPR silencing system. This technique may be useful to manipulate the level of miRNA in various cell types to answer clinical questions at the molecular level.

  14. Geoinformation modeling system for analysis of atmosphere pollution impact on vegetable biosystems using space images

    NASA Astrophysics Data System (ADS)

    Polichtchouk, Yuri; Ryukhko, Viatcheslav; Tokareva, Olga; Alexeeva, Mary

    2002-02-01

    Geoinformation modeling system structure for assessment of the environmental impact of atmospheric pollution on forest- swamp ecosystems of West Siberia is considered. Complex approach to the assessment of man-caused impact based on the combination of sanitary-hygienic and landscape-geochemical approaches is reported. Methodical problems of analysis of atmosphere pollution impact on vegetable biosystems using geoinformation systems and remote sensing data are developed. Landscape structure of oil production territories in southern part of West Siberia are determined on base of processing of space images from spaceborn Resource-O. Particularities of atmosphere pollution zones modeling caused by gas burning in torches in territories of oil fields are considered. For instance, a pollution zones were revealed modeling of contaminants dispersal in atmosphere by standard model. Polluted landscapes areas are calculated depending on oil production volume. It is shown calculated data is well approximated by polynomial models.

  15. National Center for Biotechnology Information

    MedlinePlus

    ... Splign Vector Alignment Search Tool (VAST) All Data & Software Resources... Domains & Structures BioSystems Cn3D Conserved Domain Database (CDD) Conserved Domain Search Service (CD Search) Structure (Molecular Modeling Database) Vector Alignment ...

  16. Third cycle university studies in Europe in the field of agricultural engineering and in the emerging discipline of biosystems engineering.

    PubMed

    Ayuga, F; Briassoulis, D; Aguado, P; Farkas, I; Griepentrog, H; Lorencowicz, E

    2010-01-01

    The main objectives of European Thematic Network entitled 'Education and Research in Agricultural for Biosystems Engineering in Europe (ERABEE-TN)' is to initiate and contribute to the structural development and the assurance of the quality assessment of the emerging discipline of Biosystems Engineering in Europe. ERABEE is co-financed by the European Community in the framework of the LLP Programme. The partnership consists of 35 participants from 27 Erasmus countries, out of which 33 are Higher Education Area Institutions (EDU) and 2 are Student Associations (ASS). 13 Erasmus participants (e.g. Thematic Networks, Professional Associations, and Institutions from Brazil, Croatia, Russia and Serbia) are also involved in the Thematic Network through synergies. To date, very few Biosystems Engineering programs exist in Europe and those that are initiated are at a very primitive stage of development. The innovative and novel goal of the Thematic Network is to promote this critical transition, which requires major restructuring in Europe, exploiting along this direction the outcomes accomplished by its predecessor; the USAEE-TN (University Studies in Agricultural Engineering in Europe). It also aims at enhancing the compatibility among the new programmes of Biosystems Engineering, aiding their recognition and accreditation at European and International level and facilitating greater mobility of skilled personnel, researchers and students. One of the technical objectives of ERABEE is dealing with mapping and promoting the third cycle studies (including European PhDs) and supporting the integration of research at the 1st and 2nd cycle regarding European Biosystems Engineering university studies. During the winter 2008 - spring 2009 period, members of ERABEE conducted a survey on the contemporary status of doctoral studies in Europe, and on a possible scheme for promotion of cooperation and synergies in the framework of the third cycle of studies and the European Doctorate in Biosystems Engineering in Europe. This paper presents the results of the survey. The legal regulations and their extent on the different countries concerning the third cycle are presented, along with the current structure of third cycle studies. The evolution and adaptation to the new EHEA in each country is also considered. Information was also gathered on the emerging topics of the Biosystems Engineering field and how these topics could be addressed by the new doctoral programmes at the European level.

  17. Preschool Inclusion in the United States: A Review of Research from an Ecological Systems Perspective

    ERIC Educational Resources Information Center

    Odom, Samuel L.; Vitztum, Joann; Wolery, Ruth; Lieber, Joan; Sandall, Susan; Hanson, Marci J.; Beckman, Paula; Schwartz, Ilene; Horn, Eva

    2004-01-01

    Using an ecological systems conceptual framework proposed by Bronfenbrenner, research on the inclusion of preschool children with disabilities in programs with typically developing children was reviewed. Drawing mainly from studies conducted in the United States, research on child characteristics (biosystem), classroom practices (microsystem),…

  18. Production of biofuels and biochemicals by in vitro synthetic biosystems: Opportunities and challenges.

    PubMed

    Zhang, Yi-Heng Percival

    2015-11-15

    The largest obstacle to the cost-competitive production of low-value and high-impact biofuels and biochemicals (called biocommodities) is high production costs catalyzed by microbes due to their inherent weaknesses, such as low product yield, slow reaction rate, high separation cost, intolerance to toxic products, and so on. This predominant whole-cell platform suffers from a mismatch between the primary goal of living microbes - cell proliferation and the desired biomanufacturing goal - desired products (not cell mass most times). In vitro synthetic biosystems consist of numerous enzymes as building bricks, enzyme complexes as building modules, and/or (biomimetic) coenzymes, which are assembled into synthetic enzymatic pathways for implementing complicated bioreactions. They emerge as an alternative solution for accomplishing a desired biotransformation without concerns of cell proliferation, complicated cellular regulation, and side-product formation. In addition to the most important advantage - high product yield, in vitro synthetic biosystems feature several other biomanufacturing advantages, such as fast reaction rate, easy product separation, open process control, broad reaction condition, tolerance to toxic substrates or products, and so on. In this perspective review, the general design rules of in vitro synthetic pathways are presented with eight supporting examples: hydrogen, n-butanol, isobutanol, electricity, starch, lactate,1,3-propanediol, and poly-3-hydroxylbutyrate. Also, a detailed economic analysis for enzymatic hydrogen production from carbohydrates is presented to illustrate some advantages of this system and the remaining challenges. Great market potentials will motivate worldwide efforts from multiple disciplines (i.e., chemistry, biology and engineering) to address the remaining obstacles pertaining to cost and stability of enzymes and coenzymes, standardized building parts and modules, biomimetic coenzymes, biosystem optimization, and scale-up, soon. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Gravitational dynamics of biosystems - Some speculations

    NASA Technical Reports Server (NTRS)

    Kessler, J. O.; Bier, M.

    1976-01-01

    The response of organisms to gravity is generally discussed in terms of hypotheses involving sedimentation and other static effects. This paper considers several complex, inhomogeneous fluid-containing systems that are intended to model some possible dynamic effects of gravity on biosystems. It is shown that the presence of gravity may result in modified long range transport, concentration oscillations, and broken symmetries. The magnitude of density-gradient-driven convective transport times, and their ratios to diffusive transport times, are calculated for cell dimensions of six different plant varieties. The results indicate that further investigation of gravitational convection effects may be realistic in some cases and is definitely not in others. The results of this paper should aid in the planning of 'zero-gravity' experiments concerning plant geotropism and bio-materials processing.

  20. Electro-Quasistatic Simulations in Bio-Systems Engineering and Medical Engineering

    NASA Astrophysics Data System (ADS)

    van Rienen, U.; Flehr, J.; Schreiber, U.; Schulze, S.; Gimsa, U.; Baumann, W.; Weiss, D. G.; Gimsa, J.; Benecke, R.; Pau, H.-W.

    2005-05-01

    Slowly varying electromagnetic fields play a key role in various applications in bio-systems and medical engineering. Examples are the electric activity of neurons on neurochips used as biosensors, the stimulating electric fields of implanted electrodes used for deep brain stimulation in patients with Morbus Parkinson and the stimulation of the auditory nerves in deaf patients, respectively. In order to simulate the neuronal activity on a chip it is necessary to couple Maxwell's and Hodgkin-Huxley's equations. First numerical results for a neuron coupling to a single electrode are presented. They show a promising qualitative agreement with the experimentally recorded signals. Further, simulations are presented on electrodes for deep brain stimulation in animal experiments where the question of electrode ageing and energy deposition in the surrounding tissue are of major interest. As a last example, electric simulations for a simple cochlea model are presented comparing the field in the skull bones for different electrode types and stimulations in different positions.

  1. Photonic homeostatics

    NASA Astrophysics Data System (ADS)

    Liu, Timon C.; Li, Fan-Hui

    2010-11-01

    Photonic homeostatics is a discipline to study the establishment, maintenance, decay, upgrading and representation of function-specific homoestasis (FSH) by using photonics. FSH is a negative-feedback response of a biosystem to maintain the function-specific fluctuations inside the biosystem so that the function is perfectly performed. A stress may increase sirtuin 1 (SIRT1) activities above FSH-specific SIRT1 activity to induce a function far from its FSH. On the one hand, low level laser irradiation or monochromatic light (LLL) can not modulate a function in its FSH or a stress in its stress-specific homeostasis (StSH), but modulate a function far from its FSH or a stress far from its StSH. On the other hand, the biophotons from a biosystem with its function in its FSH should be less than the one from the biosystem with its function far from its FSH. The non-resonant interaction of low intensity laser irradiation or monochromatic light (LIL) and a kind of membrane protein can be amplified by all the membrane proteins if the function is far from its FSH. This amplification might hold for biophoton emission of the membrane protein so that the photonic spectroscopy can be used to represent the function far from its FSH, which is called photonomics.

  2. Identification of BRCA1 and 2 Other Tumor Suppressor Genes on Chromosome 17 Through Positional Cloning

    DTIC Science & Technology

    2000-04-01

    Genes, LOH Mapping, Chromosome 17, Physical Mapping, Genetic Mapping, CDNA Screening, Humans, Anatomical 81 Samples, Mutation Detection, Breast Cancer...According to the established model for LOH involving tumor suppressor genes, the allele remaining in the tumor sample would harbor the deleterious mutation ...sequencing on an AB1373A sequencer (Applied Biosystems, Foster City, CA). As none of the samples we have sequenced have revealed any mutations , we have

  3. Microfluidics for food, agriculture and biosystems industries.

    PubMed

    Neethirajan, Suresh; Kobayashi, Isao; Nakajima, Mitsutoshi; Wu, Dan; Nandagopal, Saravanan; Lin, Francis

    2011-05-07

    Microfluidics, a rapidly emerging enabling technology has the potential to revolutionize food, agriculture and biosystems industries. Examples of potential applications of microfluidics in food industry include nano-particle encapsulation of fish oil, monitoring pathogens and toxins in food and water supplies, micro-nano-filtration for improving food quality, detection of antibiotics in dairy food products, and generation of novel food structures. In addition, microfluidics enables applications in agriculture and animal sciences such as nutrients monitoring and plant cells sorting for improving crop quality and production, effective delivery of biopesticides, simplified in vitro fertilization for animal breeding, animal health monitoring, vaccination and therapeutics. Lastly, microfluidics provides new approaches for bioenergy research. This paper synthesizes information of selected microfluidics-based applications for food, agriculture and biosystems industries. © The Royal Society of Chemistry 2011

  4. Review of incursive, hyperincursive and anticipatory systems-foundation of anticipation in electromagnetism

    NASA Astrophysics Data System (ADS)

    Dubois, Daniel M.

    2000-05-01

    The main purpose of this paper is to show that anticipation is not only a property of biosystems but is also a fundamental property of physical systems. In electromagnetism, the anticipation is related to the Lorentz transform. In this framework the anticipation is a strong anticipation because it is not based on a prediction from a model of the physical system but is embedded in the fundamental system. So, Robert Rosen's anticipatory systems deal with weak anticipation. Contrary to Robert Rosen's affirmation, anticipation is thus not a characteristic of living systems. Finality is implicitly embedded in any system and thus the final cause of Aristotle is implicitly embedded in any physical and biological systems, contrary to what Robert Rosen argued. This paper will review some incursive and hyperincursive systems giving rise to strong anticipation. Space-time incursive parabolic systems show non-local properties. Hyperincursive crisp systems are related to catastrophe theory. Finally it will be shown that incursive and hyperincursive anticipatory systems could model properties of biosystems like free will, game strategy, theorem creation, etc. Anticipation is not only related to predictions but to decisions: hyperincursive systems create multiple choices and a decision process selects one choice. So, anticipation is not a final goal, like in cybernetics and system science, but is a fundamental property of physical and biological systems.

  5. Simple scaling of cooperation in donor-recipient games.

    PubMed

    Berger, Ulrich

    2009-09-01

    We present a simple argument which proves a general version of the scaling phenomenon recently observed in donor-recipient games by Tanimoto [Tanimoto, J., 2009. A simple scaling of the effectiveness of supporting mutual cooperation in donor-recipient games by various reciprocity mechanisms. BioSystems 96, 29-34].

  6. Validation of the Applied Biosystems 7500 Fast Instrument for Detection of Listeria Species with the SureTect Listeria Species PCR Assay.

    PubMed

    Cloke, Jonathan; Arizanova, Julia; Crabtree, David; Simpson, Helen; Evans, Katharine; Vaahtoranta, Laura; Palomäki, Jukka-Pekka; Artimo, Paulus; Huang, Feng; Liikanen, Maria; Koskela, Suvi; Chen, Yi

    2016-01-01

    The Thermo Scientific™ SureTect™ Listeria species Real-Time PCR Assay was certified during 2013 by the AOAC Research Institute (RI) Performance Tested Methods(SM) program as a rapid method for the detection of Listeria species from a wide range of food matrixes and surface samples. A method modification study was conducted in 2015 to extend the matrix claims of the product to a wider range of food matrixes. This report details the method modification study undertaken to extend the use of this PCR kit to the Applied Biosystems™ 7500 Fast PCR Instrument and Applied Biosystems RapidFinder™ Express 2.0 software allowing use of the assay on a 96-well format PCR cycler in addition to the current workflow, using the 24-well Thermo Scientific PikoReal™ PCR Instrument and Thermo Scientific SureTect software. The method modification study presented in this report was assessed by the AOAC-RI as being a level 2 method modification study, necessitating a method developer study on a representative range of food matrixes covering raw ground turkey, 2% fat pasteurized milk, and bagged lettuce as well as stainless steel surface samples. All testing was conducted in comparison to the reference method detailed in International Organization for Standardization (ISO) 6579:2002. No significant difference by probability of detection statistical analysis was found between the SureTect Listeria species PCR Assay or the ISO reference method methods for any of the three food matrixes and the surface samples analyzed during the study.

  7. Different protein profile in amniotic fluid with nervous system malformations by surface-enhanced laser desorption-ionization/time-of-flight mass spectrometry (SELDI-TOF-MS) technology.

    PubMed

    Ma, Zhe; Liu, Cun; Deng, Biping; Dong, Shaogang; Tao, Guowei; Zhan, Xinfeng; Wang, Chuner; Liu, Shaoping; Qu, Xun

    2010-12-01

    To detect the distinct proteins in amniotic fluid (AF) between nervous system malformations fetuses and normal fetuses. Surface-enhanced laser desorption-ionization/time-of-flight mass spectrometry was used to characterize AF peptides in AF between nervous system malformations fetuses and normal fetuses. WCX2 protein chips were used to characterize AF peptides in AF. Protein chips were examined in a PBSIIC protein reader, the protein profiling was collected by ProteinChip software version 3.1 (Ciphergen Biosystems, Fremont, CA, USA) and analyzed by Biomarker Wizard software (Ciphergen Biosystems). Nine distinct proteins were identified in AF between nervous system malformations fetuses and normal fetuses. Compared with the control group, three proteins with m/z 4967.5 Da, 5258.0 Da, and 11,717.0 Da were down-regulated, and six proteins with m/z 2540.4 Da, 3107.1 Da, 3396.8 Da, 4590.965 Da, 5589.2 Da and 6429.4 Da up-regulated in nervous system malformations fetuses. The results suggest that there are distinct proteins in protein profiling of AF between nervous system malformations fetuses and normal fetuses. © 2010 The Authors. Journal of Obstetrics and Gynaecology Research © 2010 Japan Society of Obstetrics and Gynecology.

  8. Proceedings of the Antenna Applications Symposium (32nd) Held in Monticello, Illinois on 16-18 September 2008. Volume 2

    DTIC Science & Technology

    2008-12-20

    operational concepts. The adaptation or translations of these systems can provide an effective means of addressing many current and emerging challenges . The...providing stealth, cloaking, mimicry and other capabilities such as EM windowing to these platforms presents many challenges as their operational role...physical insight into a complex system or emerging technological challenges . A bio-system that shares synergistic goals with this complex system

  9. Landfill gas distribution at the base of passive methane oxidation biosystems: Transient state analysis of several configurations.

    PubMed

    Ahoughalandari, Bahar; Cabral, Alexandre R

    2017-11-01

    The design process of passive methane oxidation biosystems needs to include design criteria that account for the effect of unsaturated hydraulic behavior on landfill gas migration, in particular, restrictions to landfill gas flow due to the capillary barrier effect, which can greatly affect methane oxidation rates. This paper reports the results of numerical simulations performed to assess the landfill gas flow behavior of several passive methane oxidation biosystems. The concepts of these biosystems were inspired by selected configurations found in the technical literature. We adopted the length of unrestricted gas migration (LUGM) as the main design criterion in this assessment. LUGM is defined as the length along the interface between the methane oxidation and gas distribution layers, where the pores of the methane oxidation layer material can be considered blocked for all practical purposes. High values of LUGM indicate that landfill gas can flow easily across this interface. Low values of LUGM indicate greater chances of having preferential upward flow and, consequently, finding hotspots on the surface. Deficient designs may result in the occurrence of hotspots. One of the designs evaluated included an alternative to a concept recently proposed where the interface between the methane oxidation and gas distribution layers was jagged (in the form of a see-saw). The idea behind this ingenious concept is to prevent blockage of air-filled pores in the upper areas of the jagged segments. The results of the simulations revealed the extent of the capability of the different scenarios to provide unrestricted and conveniently distributed upward landfill gas flow. They also stress the importance of incorporating an appropriate design criterion in the selection of the methane oxidation layer materials and the geometrical form of passive biosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Decreased FOXP3 mRNA expression in children with atopic asthma and IgE-mediated food allergy.

    PubMed

    Krogulska, Aneta; Polakowska, Ewa; Wąsowska-Królikowska, Krystyna; Małachowska, Beata; Młynarski, Wojciech; Borowiec, Maciej

    2015-11-01

    The role of T regulatory lymphocytes has been investigated in various allergic diseases. However, the precise relation between the phenotype and severity of allergic diseases and the changes in FOXP3 mRNA expression are not fully understood. To compare the expression of FOXP3 mRNA in children with asthma with and without concomitant food allergy (FA) with healthy children and children with only FA. The study included 82 children: 15 with atopic asthma and IgE-dependent FA, 27 with atopic asthma without FA, 20 with IgE-dependent FA without asthma, and 20 healthy children without atopy. Reverse transcription was performed using a commercially available High Capacity cDNA Archive Kit (Applied Biosystems, Carlsbad, California). Analysis was carried out with a 7900HT real-time polymerase chain reaction system (Applied Biosystems). The average level of the FOXP3 gene expression in children with allergy was significantly lower compared with healthy children (2.2 ± 1.3 vs 4.2 ± 4.2; P = .014). The lowest mean level of FOXP3 mRNA expression (1.9 ± 1.6) was recorded in children with asthma and FA, and the highest level (4.2 ± 4.2) was recorded in healthy children without atopy (P = .036). A milder course of asthma or the degree of allergic reaction after a food challenge was associated with higher FOXP3 mRNA expression. Significantly lower levels of FOXP3 gene expression, observed more commonly in children with asthma and IgE-dependent FA than in healthy controls, were associated with a more severe clinical course. Therefore, FOXP3 expression could serve as an indicator of severe asthma with concomitant atopic conditions such as IgE-dependent FA. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. Electric Field-Mediated Processing of Biomaterials: Toward Nanostructured Biomimetic Systems. Appendix 3

    NASA Technical Reports Server (NTRS)

    Bowlin, Gary L.; Simpson, David G.; Lam, Philippe; Wnek, Gary E.

    2001-01-01

    Significant opportunities exist for the processing of synthetic and biological polymers using electric fields ('electroprocessing'). We review casting of multi-component films and the spinning of fibers in electric fields, and indicate opportunities for the creation of smart polymer systems using these approaches. Applications include 2-D substrates for cell growth and diagnostics, scaffolds for tissue engineering and repair, and electromechanically active biosystems.

  12. Experiences of Second-Class Citizenship Related to Continued Poor Academic Performance of Minority Xhosa Learners

    ERIC Educational Resources Information Center

    Dreyer, Lorna M.; Singh, Suzanne A. M.

    2016-01-01

    This article examines the subjective life experiences of racial minority Xhosa speakers and the factors that contribute to their continued poor academic performance in a previously Whites-only school in South Africa. Vygotskian sociocultural perspective in relation to creating a democratic educational system and Bronfenbrenner's biosystemic theory…

  13. Possible psycho-physiological consequences of human long-term space missions

    NASA Astrophysics Data System (ADS)

    Belisheva, N. K.; Lammer, H.; Biernat, H. K.; Kachanova, T. L.; Kalashnikova, I. V.

    Experiments carried out on the Earth s surface during different years and under contrast periods of solar activity have shown that the functional state of biosystems including the human organisms are controlled by global and local geocosmical agents Our finding have a close relation to space research because they demonstrate the reactions of biosystems on variations of global and local geocosmical agents and the mechanisms of modulations of biosystems state by geocosmical agents We revealed the role of variations of the geomagnetic field for the stimulation of immune systems functional state of peripheral blood human brain growth of microflora skin covers and pathogenic microorganisms The study of the psycho-physiological state of the human organism has demonstrated that an increase of the neutron intensity near the Earth s surface is associated with anxiety decrease of normal and increase of paradox reactions of examinees The analysis of the human brain functional state in dependent on the geomagnetic variation structure dose under exposure to the variations of geomagnetic field in a certain amplitude-frequency range and also the intensity of the nucleon component of secondary cosmic rays showed that the stable and unstable states of the human brain are determined by geomagnetic field variations and the intensity of the nucleon component The stable state of the brain manifested under the periodic oscillations of the geomagnetic field in a certain amplitude-frequency range The low level of geomagnetic activity associated with an

  14. Biological electric fields and rate equations for biophotons.

    PubMed

    Alvermann, M; Srivastava, Y N; Swain, J; Widom, A

    2015-04-01

    Biophoton intensities depend upon the squared modulus of the electric field. Hence, we first make some general estimates about the inherent electric fields within various biosystems. Generally, these intensities do not follow a simple exponential decay law. After a brief discussion on the inapplicability of a linear rate equation that leads to strict exponential decay, we study other, nonlinear rate equations that have been successfully used for biosystems along with their physical origins when available.

  15. Developmental validation of the PowerPlex(®) Fusion 6C System.

    PubMed

    Ensenberger, Martin G; Lenz, Kristy A; Matthies, Learden K; Hadinoto, Gregory M; Schienman, John E; Przech, Angela J; Morganti, Michael W; Renstrom, Daniel T; Baker, Victoria M; Gawrys, Kori M; Hoogendoorn, Marlijn; Steffen, Carolyn R; Martín, Pablo; Alonso, Antonio; Olson, Hope R; Sprecher, Cynthia J; Storts, Douglas R

    2016-03-01

    The PowerPlex(®) Fusion 6C System is a 27-locus, six-dye, multiplex that includes all markers in the expanded CODIS core loci and increases overlap with STR database standards throughout the world. Additionally, it contains two, rapidly mutating, Y-STRs and is capable of both casework and database workflows, including direct amplification. A multi-laboratory developmental validation study was performed on the PowerPlex(®) Fusion 6C System. Here, we report the results of that study which followed SWGDAM guidelines and includes data for: species specificity, sensitivity, stability, precision, reproducibility and repeatability, case-type samples, concordance, stutter, DNA mixtures, and PCR-based procedures. Where appropriate we report data from both extracted DNA samples and direct amplification samples from various substrates and collection devices. Samples from all studies were separated on both Applied Biosystems 3500 series and 6-dye capable 3130 series Genetic Analyzers and data is reported for each. Together, the data validate the design and demonstrate the performance of the PowerPlex(®) Fusion 6C System. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  16. The Chemo-Biological Outreach of Nano-Biomaterials: Implications for Tissue Engineering and Regenerative Medicine.

    PubMed

    Kumar, Pradeep; Choonara, Yahya E; Khan, Riaz A; Pillay, Viness

    2017-01-01

    Nanobiomaterials can be defined as materials interacting with and influencing the biological microenvironment at a nanointerface. Recently the basic as well as applied research related to nanobiomaterials - a conjugation of nano-, material- and life-sciences - has immensely evolved for therapeutics and related biotechnology areas. The current overview focused on the potential of nanobiomaterial-based substrates towards the generation of biocompatible surfaces, tissue engineering architectures, and regenerative medicine. Emphasis was given to chemomolecular functionalization of nanobiomaterials, nanobiomaterial composites, and morphomechanically modified nanoarchetypes and their inherent chemo-biological interaction with the biological microenvironment. Additionally, recent developments in nanobiomaterial substrate design and structure, chemo-biological interface related bio-systems uses and further evolving applications in health care, therapeutics and nanomedicine were discussed herein. Furthermore, a special emphasis was placed on the nano-chemo-biological interactions inherent to various nanobiomaterial substrates in close vicinity with biological systems. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. A comprehensive Y-STR portrait of Yousafzai's population.

    PubMed

    Tabassum, Sadia; Ilyas, Muhammad; Ullah, Inam; Israr, Muhammad; Ahmad, Habib

    2017-09-01

    In the current study, 17 Y-Chromosomal short tandem repeats (Y-STRs) included in theAmpFlSTR Y-Filer amplification kit (Applied Biosystems, Foster City, USA) were investigated in 146 unrelated Yousafzai males residing in the Khyber Pakhtunkhwa Province of Pakistan. A total of 94 (89.52%) unique haplotypes were observed. Discrimination capacity was 71.92%. Haplotype diversity ranged from 0.354 (DYS456) to 0.663 (DYS458). Both Rst pairwise analysis and multidimensional scaling plot showed that the genetic structure of the Yousafzais is significantly different from neighbouring populations.

  18. Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balke, Nina; Maksymovych, Petro; Jesse, Stephen

    Ferroelectricity in functional materials remains one of the most fascinating areas of modern science in the past several decades. In the last several years, the rapid development of piezoresponse force microscopy (PFM) and spectroscopy revealed the presence of electromechanical hysteresis loops and bias-induced remnant polar states in a broad variety of materials including many inorganic oxides, polymers, and biosystems. In many cases, this behavior was interpreted as the ample evidence for ferroelectric nature of the system. Here, we systematically analyze PFM responses on ferroelectric and nonferroelectric materials and demonstrate that mechanisms unrelated to ferroelectricity can induce ferroelectric-like characteristics through chargemore » injection and electrostatic forces on the tip. In this paper, we will focus on similarities and differences in various PFM measurement characteristics to provide an experimental guideline to differentiate between ferroelectric material properties and charge injection. In conclusion, we apply the developed measurement protocols to an unknown ferroelectric material.« less

  19. Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy

    DOE PAGES

    Balke, Nina; Maksymovych, Petro; Jesse, Stephen; ...

    2015-06-02

    Ferroelectricity in functional materials remains one of the most fascinating areas of modern science in the past several decades. In the last several years, the rapid development of piezoresponse force microscopy (PFM) and spectroscopy revealed the presence of electromechanical hysteresis loops and bias-induced remnant polar states in a broad variety of materials including many inorganic oxides, polymers, and biosystems. In many cases, this behavior was interpreted as the ample evidence for ferroelectric nature of the system. Here, we systematically analyze PFM responses on ferroelectric and nonferroelectric materials and demonstrate that mechanisms unrelated to ferroelectricity can induce ferroelectric-like characteristics through chargemore » injection and electrostatic forces on the tip. In this paper, we will focus on similarities and differences in various PFM measurement characteristics to provide an experimental guideline to differentiate between ferroelectric material properties and charge injection. In conclusion, we apply the developed measurement protocols to an unknown ferroelectric material.« less

  20. [Weighted gene co-expression network analysis in biomedicine research].

    PubMed

    Liu, Wei; Li, Li; Ye, Hua; Tu, Wei

    2017-11-25

    High-throughput biological technologies are now widely applied in biology and medicine, allowing scientists to monitor thousands of parameters simultaneously in a specific sample. However, it is still an enormous challenge to mine useful information from high-throughput data. The emergence of network biology provides deeper insights into complex bio-system and reveals the modularity in tissue/cellular networks. Correlation networks are increasingly used in bioinformatics applications. Weighted gene co-expression network analysis (WGCNA) tool can detect clusters of highly correlated genes. Therefore, we systematically reviewed the application of WGCNA in the study of disease diagnosis, pathogenesis and other related fields. First, we introduced principle, workflow, advantages and disadvantages of WGCNA. Second, we presented the application of WGCNA in disease, physiology, drug, evolution and genome annotation. Then, we indicated the application of WGCNA in newly developed high-throughput methods. We hope this review will help to promote the application of WGCNA in biomedicine research.

  1. Toxicity assessment of untreated/treated electroplating sludge using human and plant bioassay.

    PubMed

    Orescanin, Visnja; Durgo, Ksenija; Mikelic, Ivanka Lovrencic; Halkijevic, Ivan; Kuspilic, Marin

    2018-04-30

    The purpose of this work was to assess the risk to the environment arising from the electroplating sludge from both chemical and toxicological point of view. Both approaches were used for the assessment of the treatment efficiency which consisted of CaO based solidification followed by thermal treatment at 400°C. The elemental composition was determined in the bulk samples and the leachates of untreated sludge. The toxicity of the leachate was determined using two human colorectal adenocarcinoma cell lines (Caco-2 and SW 480) and Hordeum vulgare L. based plant bioassay. The same toxicity tests were employed to the leachate of the treated sludge. Untreated sludge showed extremely high cytotoxic effect to both human and plant bio-system in dose-dependent manner. The percentages higher than 0.5% and 0.05% of the leachate caused significant cytotoxic effect on Caco-2 and SW 480 cells, respectively. The percentages of the leachate higher than 0.05% also showed significant toxic effect to H. vulgare L. bio-system with complete arrest of seed germination following the treatment with 100% to 5% of the leachate. The leachate of the treated sludge showed no toxicity to any of the test systems confirming the efficiency and justification of the employed procedures for the detoxification of electroplating sludge.

  2. LINEBACKER: LINE-speed Bio-inspired Analysis and Characterization for Event Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oehmen, Christopher S.; Bruillard, Paul J.; Matzke, Brett D.

    2016-08-04

    The cyber world is a complex domain, with digital systems mediating a wide spectrum of human and machine behaviors. While this is enabling a revolution in the way humans interact with each other and data, it also is exposing previously unreachable infrastructure to a worldwide set of actors. Existing solutions for intrusion detection and prevention that are signature-focused typically seek to detect anomalous and/or malicious activity for the sake of preventing or mitigating negative impacts. But a growing interest in behavior-based detection is driving new forms of analysis that move the emphasis from static indicators (e.g. rule-based alarms or tripwires)more » to behavioral indicators that accommodate a wider contextual perspective. Similar to cyber systems, biosystems have always existed in resource-constrained hostile environments where behaviors are tuned by context. So we look to biosystems as an inspiration for addressing behavior-based cyber challenges. In this paper, we introduce LINEBACKER, a behavior-model based approach to recognizing anomalous events in network traffic and present the design of this approach of bio-inspired and statistical models working in tandem to produce individualized alerting for a collection of systems. Preliminary results of these models operating on historic data are presented along with a plugin to support real-world cyber operations.« less

  3. Development and evaluation of event-specific quantitative PCR method for genetically modified soybean A2704-12.

    PubMed

    Takabatake, Reona; Akiyama, Hiroshi; Sakata, Kozue; Onishi, Mari; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Teshima, Reiko; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) soybean event; A2704-12. During the plant transformation, DNA fragments derived from pUC19 plasmid were integrated in A2704-12, and the region was found to be A2704-12 specific. The pUC19-derived DNA sequences were used as primers for the specific detection of A2704-12. We first tried to construct a standard plasmid for A2704-12 quantification using pUC19. However, non-specific signals appeared with both qualitative and quantitative PCR analyses using the specific primers with pUC19 as a template, and we then constructed a plasmid using pBR322. The conversion factor (C(f)), which is required to calculate the amount of the genetically modified organism (GMO), was experimentally determined with two real-time PCR instruments, the Applied Biosystems 7900HT and the Applied Biosystems 7500. The determined C(f) values were both 0.98. The quantitative method was evaluated by means of blind tests in multi-laboratory trials using the two real-time PCR instruments. The limit of quantitation for the method was estimated to be 0.1%. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSD(R)), and the determined bias and RSD(R) values for the method were each less than 20%. These results suggest that the developed method would be suitable for practical analyses for the detection and quantification of A2704-12.

  4. Selection of Suitable DNA Extraction Methods for Genetically Modified Maize 3272, and Development and Evaluation of an Event-Specific Quantitative PCR Method for 3272.

    PubMed

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2016-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize, 3272. We first attempted to obtain genome DNA from this maize using a DNeasy Plant Maxi kit and a DNeasy Plant Mini kit, which have been widely utilized in our previous studies, but DNA extraction yields from 3272 were markedly lower than those from non-GM maize seeds. However, lowering of DNA extraction yields was not observed with GM quicker or Genomic-tip 20/G. We chose GM quicker for evaluation of the quantitative method. We prepared a standard plasmid for 3272 quantification. The conversion factor (Cf), which is required to calculate the amount of a genetically modified organism (GMO), was experimentally determined for two real-time PCR instruments, the Applied Biosystems 7900HT (the ABI 7900) and the Applied Biosystems 7500 (the ABI7500). The determined Cf values were 0.60 and 0.59 for the ABI 7900 and the ABI 7500, respectively. To evaluate the developed method, a blind test was conducted as part of an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSDr). The determined values were similar to those in our previous validation studies. The limit of quantitation for the method was estimated to be 0.5% or less, and we concluded that the developed method would be suitable and practical for detection and quantification of 3272.

  5. Reviews Book: The 4% Universe: Dark Matter, Dark Energy and the Race to Discover the Rest of Reality Book: Quantitative Understanding of Biosystems: An Introduction to Biophysics Book: Edison's Electric Light: The Art of Invention Book: The Edge of Physics: Dispatches from the Frontiers of Cosmology Equipment: Voicebox Equipment: Tracker 4 Books: Hands-On Introduction to NI LabVIEW with Vernier, and Engineering Projects with NI LabVIEW and Vernier Places to Visit: Discovery Museum Book: Philosophy of Science: A Very Short Introduction Web Watch

    NASA Astrophysics Data System (ADS)

    2011-11-01

    WE RECOMMEND Quantitative Understanding of Biosystems: An Introduction to Biophysics Text applies physics to biology concepts Edison's Electric Light: The Art of Invention Edison's light still shines brightly The Edge of Physics: Dispatches from the Frontiers of Cosmology Anecdotes explore cosmology Voicebox Voicebox kit discovers the physics and evolution of speech Tracker 4 Free software tracks motion analysis Hands-On Introduction to NI LabVIEW with Vernier, and Engineering Projects with NI LabVIEW and Vernier Books support the LabVIEW software Discovery Museum Newcastle museum offers science enjoyment for all Philosophy of Science: A Very Short Introduction Philosophy opens up science questions WORTH A LOOK The 4% Universe: Dark Matter, Dark Energy and the Race to Discover the Rest of Reality Book researches the universe WEB WATCH Superconductivity websites are popular

  6. Circadian rhythms in effects of hypnotics and sleep inducers.

    PubMed

    Reinberg, A

    1986-01-01

    Chronopharmacology involves the investigation of drug effects as a function of biological time and the investigation of drug effects on rhythm characteristics. Three new concepts must be considered: (a) the chronokinetics of a drug, embracing rhythmic (circadian) changes in drug bioavailability (or pharmacokinetics) and its excretion (urinary among others); (b) the chronaesthesia of a biosystem to a drug, i.e. circadian changes in the susceptibility of any biosystem to a drug (including organ systems, parasites, etc.); skin and bronchial chronaesthesia to various agents have been documented in man; and (c) the chronergy of a drug, taking into consideration its chronokinetics and the chronaesthesia of the involved organismic biosystems. The term chronergy includes rhythmic changes in the overall effects and in the effectiveness of some drugs. Clinical chronopharmacology is useful for solving problems of drug optimization, i.e. enhancing the desired efficiency of a drug and reducing its undesired effects. Circadian rhythms can be demonstrated in various effects of drugs on sleep, anaesthesia and related processes. For example, in the rat the duration of sleep induced by substances such as pentobarbital, hexobarbital, Althesin (alphaxadone and alphadoline in castor oil) is circadian system stage-dependent. Time-dependent changes of liver enzymes (e.g. hexobarbital oxidase) play a role in these circadian rhythms. The clinical chronopharmacokinetics of benzodiazepines have been documented in man. Chronopharmacologic methods can be used to study desired and undesired hypnotic effects of substances. Such is the case of new antihistamines (anti-H1), which do not induce sleepiness, in either acute or chronic administration. Pertinent also is the problem of intolerance to shift-work. Intolerant shift-workers are subject to internal desynchronization between at least two rhythms (e.g. activity-rest cycle and body temperature). Clinically these workers suffer from sleep disturbances, persistent fatigue and are regular users of sleeping pills, which is also a symptom of intolerance. However, over the long-term, these drugs are of no help to intolerant shift-workers.

  7. Preserved organic matter in the Serpentinized Ocean-Continent Transition of Alpine Tethys

    NASA Astrophysics Data System (ADS)

    Mateeva, T.; Wolff, G. A.; Kusznir, N.; Manatschal, G.; Wheeler, J.

    2017-12-01

    Serpentinization occurs at slow-spreading ocean ridges and magma-poor rifted continental margins. At modern hydrothermal vents, serpentinization has been observed to support hydrogen-driven microbial environments including methanotrophic biosystems. An important question is: "Are such bio-systems locally restricted to hydrothermal vents or are they more pervasive, being linked with the exhumation of serpentinized mantle at the seafloor?" Fieldwork sampling of km scale exposures of orogenically exhumed serpentinized mantle in the Alps allows 3D mantle sampling that is not possible at ocean ridges and provides an opportunity to investigate the organic matter in an ophiolite sequence relative to the seafloor. Samples from the fossil Tethyan OCT, exhumed during Alpine collisional orogeny, have been examined for the presence or absence of biomarkers typical of methanotrophy within serpentinized exhumed mantle. Samples from the Totalp unit, Tasna nappe and Platta unit of the Eastern Swiss Alps and Chenaillet in the Western Alps from the Tethyan magma-poor OCT were selected for analysis because they have little Alpine deformation and underwent only low-grade Alpine metamorphism. Hand specimens and cores taken from these locations have been analysed to search for the presence or absence of biomarkers in the serpentinite and its overlying lithologies. Thin sections of samples from these OCT locations reveal multiple serpentinization events and calcification phases. All the lithologies sampled show the presence of hydrocarbons such as n-alkanes, low molecular weight polynuclear aromatic hydrocarbons (PAHs, of mixed petrogenic and pyrogenic source), hopanes, steranes (of marine origin), and branched alkanes (pristane and phytane, non-specific marine origin). The identifiable biomarkers and the isotopic data are consistent with organic matter of a marine origin and do not provide any evidence for a methanotrophic bio-system. It is noteworthy that basement mantle rocks still contain marine organic matter 160My after their formation at a rifted margin despite having experienced Alpine obduction.

  8. Statistical Techniques Complement UML When Developing Domain Models of Complex Dynamical Biosystems.

    PubMed

    Williams, Richard A; Timmis, Jon; Qwarnstrom, Eva E

    2016-01-01

    Computational modelling and simulation is increasingly being used to complement traditional wet-lab techniques when investigating the mechanistic behaviours of complex biological systems. In order to ensure computational models are fit for purpose, it is essential that the abstracted view of biology captured in the computational model, is clearly and unambiguously defined within a conceptual model of the biological domain (a domain model), that acts to accurately represent the biological system and to document the functional requirements for the resultant computational model. We present a domain model of the IL-1 stimulated NF-κB signalling pathway, which unambiguously defines the spatial, temporal and stochastic requirements for our future computational model. Through the development of this model, we observe that, in isolation, UML is not sufficient for the purpose of creating a domain model, and that a number of descriptive and multivariate statistical techniques provide complementary perspectives, in particular when modelling the heterogeneity of dynamics at the single-cell level. We believe this approach of using UML to define the structure and interactions within a complex system, along with statistics to define the stochastic and dynamic nature of complex systems, is crucial for ensuring that conceptual models of complex dynamical biosystems, which are developed using UML, are fit for purpose, and unambiguously define the functional requirements for the resultant computational model.

  9. Statistical Techniques Complement UML When Developing Domain Models of Complex Dynamical Biosystems

    PubMed Central

    Timmis, Jon; Qwarnstrom, Eva E.

    2016-01-01

    Computational modelling and simulation is increasingly being used to complement traditional wet-lab techniques when investigating the mechanistic behaviours of complex biological systems. In order to ensure computational models are fit for purpose, it is essential that the abstracted view of biology captured in the computational model, is clearly and unambiguously defined within a conceptual model of the biological domain (a domain model), that acts to accurately represent the biological system and to document the functional requirements for the resultant computational model. We present a domain model of the IL-1 stimulated NF-κB signalling pathway, which unambiguously defines the spatial, temporal and stochastic requirements for our future computational model. Through the development of this model, we observe that, in isolation, UML is not sufficient for the purpose of creating a domain model, and that a number of descriptive and multivariate statistical techniques provide complementary perspectives, in particular when modelling the heterogeneity of dynamics at the single-cell level. We believe this approach of using UML to define the structure and interactions within a complex system, along with statistics to define the stochastic and dynamic nature of complex systems, is crucial for ensuring that conceptual models of complex dynamical biosystems, which are developed using UML, are fit for purpose, and unambiguously define the functional requirements for the resultant computational model. PMID:27571414

  10. PROTO-PLASM: parallel language for adaptive and scalable modelling of biosystems.

    PubMed

    Bajaj, Chandrajit; DiCarlo, Antonio; Paoluzzi, Alberto

    2008-09-13

    This paper discusses the design goals and the first developments of PROTO-PLASM, a novel computational environment to produce libraries of executable, combinable and customizable computer models of natural and synthetic biosystems, aiming to provide a supporting framework for predictive understanding of structure and behaviour through multiscale geometric modelling and multiphysics simulations. Admittedly, the PROTO-PLASM platform is still in its infancy. Its computational framework--language, model library, integrated development environment and parallel engine--intends to provide patient-specific computational modelling and simulation of organs and biosystem, exploiting novel functionalities resulting from the symbolic combination of parametrized models of parts at various scales. PROTO-PLASM may define the model equations, but it is currently focused on the symbolic description of model geometry and on the parallel support of simulations. Conversely, CellML and SBML could be viewed as defining the behavioural functions (the model equations) to be used within a PROTO-PLASM program. Here we exemplify the basic functionalities of PROTO-PLASM, by constructing a schematic heart model. We also discuss multiscale issues with reference to the geometric and physical modelling of neuromuscular junctions.

  11. Proto-Plasm: parallel language for adaptive and scalable modelling of biosystems

    PubMed Central

    Bajaj, Chandrajit; DiCarlo, Antonio; Paoluzzi, Alberto

    2008-01-01

    This paper discusses the design goals and the first developments of Proto-Plasm, a novel computational environment to produce libraries of executable, combinable and customizable computer models of natural and synthetic biosystems, aiming to provide a supporting framework for predictive understanding of structure and behaviour through multiscale geometric modelling and multiphysics simulations. Admittedly, the Proto-Plasm platform is still in its infancy. Its computational framework—language, model library, integrated development environment and parallel engine—intends to provide patient-specific computational modelling and simulation of organs and biosystem, exploiting novel functionalities resulting from the symbolic combination of parametrized models of parts at various scales. Proto-Plasm may define the model equations, but it is currently focused on the symbolic description of model geometry and on the parallel support of simulations. Conversely, CellML and SBML could be viewed as defining the behavioural functions (the model equations) to be used within a Proto-Plasm program. Here we exemplify the basic functionalities of Proto-Plasm, by constructing a schematic heart model. We also discuss multiscale issues with reference to the geometric and physical modelling of neuromuscular junctions. PMID:18559320

  12. High-speed event detector for embedded nanopore bio-systems.

    PubMed

    Huang, Yiyun; Magierowski, Sebastian; Ghafar-Zadeh, Ebrahim; Wang, Chengjie

    2015-08-01

    Biological measurements of microscopic phenomena often deal with discrete-event signals. The ability to automatically carry out such measurements at high-speed in a miniature embedded system is desirable but compromised by high-frequency noise along with practical constraints on filter quality and sampler resolution. This paper presents a real-time event-detection method in the context of nanopore sensing that helps to mitigate these drawbacks and allows accurate signal processing in an embedded system. Simulations show at least a 10× improvement over existing on-line detection methods.

  13. Application of Non-Kolmogorovian Probability and Quantum Adaptive Dynamics to Unconscious Inference in Visual Perception Process

    NASA Astrophysics Data System (ADS)

    Accardi, Luigi; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    2016-07-01

    Recently a novel quantum information formalism — quantum adaptive dynamics — was developed and applied to modelling of information processing by bio-systems including cognitive phenomena: from molecular biology (glucose-lactose metabolism for E.coli bacteria, epigenetic evolution) to cognition, psychology. From the foundational point of view quantum adaptive dynamics describes mutual adapting of the information states of two interacting systems (physical or biological) as well as adapting of co-observations performed by the systems. In this paper we apply this formalism to model unconscious inference: the process of transition from sensation to perception. The paper combines theory and experiment. Statistical data collected in an experimental study on recognition of a particular ambiguous figure, the Schröder stairs, support the viability of the quantum(-like) model of unconscious inference including modelling of biases generated by rotation-contexts. From the probabilistic point of view, we study (for concrete experimental data) the problem of contextuality of probability, its dependence on experimental contexts. Mathematically contextuality leads to non-Komogorovness: probability distributions generated by various rotation contexts cannot be treated in the Kolmogorovian framework. At the same time they can be embedded in a “big Kolmogorov space” as conditional probabilities. However, such a Kolmogorov space has too complex structure and the operational quantum formalism in the form of quantum adaptive dynamics simplifies the modelling essentially.

  14. Soft Lithography for Oligonucleotide Arrays Fabrication

    DTIC Science & Technology

    2001-10-25

    adenosine; Abbreviated T, C, G, A respectively), the other synthesis reagents and solvents except oxidation agent (seen in Table 1) were purchased...dried by cold blowing before hybridization. Oligonucleotide arrays were hybridized in 200 nM 3’-TCC TCC GAT TCA GAG AGT CC- HEX (PE Biosystems... citrate buffer), 0.1% SDS in 0.1xSSC respectively. The probe array was scanned on the Scanarray Microarray Systems (Packard Biochip Technologies, USA

  15. Performance testing of a semi-automatic card punch system, using direct STR profiling of DNA from blood samples on FTA™ cards.

    PubMed

    Ogden, Samantha J; Horton, Jeffrey K; Stubbs, Simon L; Tatnell, Peter J

    2015-01-01

    The 1.2 mm Electric Coring Tool (e-Core™) was developed to increase the throughput of FTA(™) sample collection cards used during forensic workflows and is similar to a 1.2 mm Harris manual micro-punch for sampling dried blood spots. Direct short tandem repeat (STR) DNA profiling was used to compare samples taken by the e-Core tool with those taken by the manual micro-punch. The performance of the e-Core device was evaluated using a commercially available PowerPlex™ 18D STR System. In addition, an analysis was performed that investigated the potential carryover of DNA via the e-Core punch from one FTA disc to another. This contamination study was carried out using Applied Biosystems AmpflSTR™ Identifiler™ Direct PCR Amplification kits. The e-Core instrument does not contaminate FTA discs when a cleaning punch is used following excision of discs containing samples and generates STR profiles that are comparable to those generated by the manual micro-punch. © 2014 American Academy of Forensic Sciences.

  16. An Outlook on Biothermodynamics: Needs, Problems, and New Developments. I. Stability and Hydration of Proteins

    NASA Astrophysics Data System (ADS)

    Keller, Jürgen U.

    2008-12-01

    The application of concepts, principles, and methods of thermodynamics of equilibria and processes to bioengineering systems has led to a new and growing field: engineering biothermodynamics. This article, which is meant as the first in a series, gives an outline of basic aspects, changes, and actual examples in this field. After a few introductory remarks, the basic concepts and laws of thermodynamics extended to systems with internal variables, which serve as models for biofluids and other biosystems, are given. The method of thermodynamics is then applied to the problem of thermal stability of aqueous protein solutions, especially to that of myoglobin solutions. After this, the phenomenon of hydration of proteins by adsorption and intrusion of water molecules is considered. Several other phenomena like the adsorption of proteins on solid surfaces or cell membranes and their temperature and pressure-related behavior represented by an equation of state, or the thermodynamics of bacterial solutions including chemical reactions like wine fermentation, etc., will be presented in Parts II and III of this article.

  17. A hybrid continuous-wave terahertz imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolganova, Irina N., E-mail: in.dolganova@gmail.com; Zaytsev, Kirill I., E-mail: kirzay@gmail.ru; Metelkina, Anna A.

    2015-11-15

    A hybrid (active-passive mode) terahertz (THz) imaging system and an algorithm for imaging synthesis are proposed to enhance the THz image quality. The concept of image contrast is used to compare active and passive THz imaging. Combining the measurement of the self-emitted radiation of the object with the back-scattered source radiation measurement, it becomes possible to use the THz image to retrieve maximum information about the object. The experimental results confirm the advantages of hybrid THz imaging systems, which can be generalized for a wide range of applications in the material sciences, chemical physics, bio-systems, etc.

  18. Controlled biological and biomimetic systems for landmine detection.

    PubMed

    Habib, Maki K

    2007-08-30

    Humanitarian demining requires to accurately detect, locate and deactivate every single landmine and other buried mine-like objects as safely and as quickly as possible, and in the most non-invasive manner. The quality of landmine detection affects directly the efficiency and safety of this process. Most of the available methods to detect explosives and landmines are limited by their sensitivity and/or operational complexities. All landmines leak with time small amounts of their explosives that can be found on surrounding ground and plant life. Hence, explosive signatures represent the robust primary indicator of landmines. Accordingly, developing innovative technologies and efficient techniques to identify in real-time explosives residue in mined areas represents an attractive and promising approach. Biological and biologically inspired detection technology has the potential to compete with or be used in conjunction with other artificial technology to complement performance strengths. Biological systems are sensitive to many different scents concurrently, a property that has proven difficult to replicate artificially. Understanding biological systems presents unique opportunities for developing new capabilities through direct use of trained bio-systems, integration of living and non-living components, or inspiring new design by mimicking biological capabilities. It is expected that controlled bio-systems, biotechnology and microbial techniques will contribute to the advancement of mine detection and other application domains. This paper provides directions, evaluation and analysis on the progress of controlled biological and biomimetic systems for landmine detection. It introduces and discusses different approaches developed, underlining their relative advantages and limitations, and highlighting trends, safety and ecology concern, and possible future directions.

  19. Ab initio O(N) elongation-counterpoise method for BSSE-corrected interaction energy analyses in biosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orimoto, Yuuichi; Xie, Peng; Liu, Kai

    2015-03-14

    An Elongation-counterpoise (ELG-CP) method was developed for performing accurate and efficient interaction energy analysis and correcting the basis set superposition error (BSSE) in biosystems. The method was achieved by combining our developed ab initio O(N) elongation method with the conventional counterpoise method proposed for solving the BSSE problem. As a test, the ELG-CP method was applied to the analysis of the DNAs’ inter-strands interaction energies with respect to the alkylation-induced base pair mismatch phenomenon that causes a transition from G⋯C to A⋯T. It was found that the ELG-CP method showed high efficiency (nearly linear-scaling) and high accuracy with a negligiblymore » small energy error in the total energy calculations (in the order of 10{sup −7}–10{sup −8} hartree/atom) as compared with the conventional method during the counterpoise treatment. Furthermore, the magnitude of the BSSE was found to be ca. −290 kcal/mol for the calculation of a DNA model with 21 base pairs. This emphasizes the importance of BSSE correction when a limited size basis set is used to study the DNA models and compare small energy differences between them. In this work, we quantitatively estimated the inter-strands interaction energy for each possible step in the transition process from G⋯C to A⋯T by the ELG-CP method. It was found that the base pair replacement in the process only affects the interaction energy for a limited area around the mismatch position with a few adjacent base pairs. From the interaction energy point of view, our results showed that a base pair sliding mechanism possibly occurs after the alkylation of guanine to gain the maximum possible number of hydrogen bonds between the bases. In addition, the steps leading to the A⋯T replacement accompanied with replications were found to be unfavorable processes corresponding to ca. 10 kcal/mol loss in stabilization energy. The present study indicated that the ELG-CP method is promising for performing effective interaction energy analyses in biosystems.« less

  20. The application of metabolomics in traditional Chinese medicine opens up a dialogue between Chinese and Western medicine.

    PubMed

    Cao, Hongxin; Zhang, Aihua; Zhang, Huamin; Sun, Hui; Wang, Xijun

    2015-02-01

    Metabolomics provides an opportunity to develop the systematic analysis of the metabolites and has been applied to discovering biomarkers and perturbed pathways which can clarify the action mechanism of traditional Chinese medicines (TCM). TCM is a comprehensive system of medical practice that has been used to diagnose, treat and prevent illnesses more than 3000 years. Metabolomics represents a powerful approach that provides a dynamic picture of the phenotype of biosystems through the study of endogenous metabolites, and its methods resemble those of TCM. Recently, metabolomics tools have been used for facilitating interactional effects of both Western medicine and TCM. We describe a protocol for investigating how metabolomics can be used to open up 'dialogue' between Chinese and Western medicine, and facilitate lead compound discovery and development from TCM. Metabolomics will bridge the cultural gap between TCM and Western medicine and improve development of integrative medicine, and maximally benefiting the human. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Polymorphisms of interleukin 6 in Down syndrome individuals: a case-control study.

    PubMed

    Mattos, M F; Uback, L; Biselli-Chicote, P M; Biselli, J M; Goloni-Bertollo, E M; Pavarino, E C

    2017-08-17

    Down syndrome (DS) individuals present impaired adaptive immune system. However, the etiology of the immunological deficiency in these individuals is not completely understood. This study investigated the frequency of interleukin 6 polymorphisms (rs1800795, rs1800796, and rs1800797) in individuals with DS and individuals without the syndrome. The study included 282 individuals, 94 with DS attended at the General Genetics Outpatient Service of Hospital de Base, São José do Rio Preto, SP, Brazil, and 188 individuals without DS attended at the Pediatric Service of Hospital de Base de São José do Rio Preto, SP, Brazil. Genotyping was performed by allelic discrimination technique by real-time polymerase chain reaction using TaqMan SNP Genotyping Assays (Applied Biosystems). There was no difference in the genotype frequency between individuals with and without DS for the evaluated polymorphisms (P > 0.05). The frequency of interleukin 6 polymorphisms did not differ significantly between individuals with and without DS in the casuistic analyzed.

  2. Interfacing Nanoparticles and Biology: New Strategies for Biomedicine

    PubMed Central

    Tonga, Gulen Yesilbag; Saha, Krishnendu; Rotello, Vincent M.

    2014-01-01

    The exterior surface of nanoparticles (NPs) dictates the behavior of these systems with the outside world. Understanding the interactions of NP surface functionality with biosystems enables the design and fabrication of effective platforms for therapeutics, diagnostics, and imaging agents. In this review, we highlight the role of chemistry in the engineering of nanomaterials, focusing on the fundamental role played by surface chemistry in controlling the interaction of NPs with proteins and cells. PMID:24105763

  3. Modeling Metabolism and Stage-Specific Growth of Plasmodium falciparum HB3 during the Intraerythrocytic Development Cycle

    DTIC Science & Technology

    2014-01-01

    of these bars represent the simulation results (blue) and experimental data (green). Paper Molecular BioSystems 2530 | Mol. BioSyst., 2014, 10, 2526...glycolysis pathway (including lactate production and secretion) were among the largest, consistent with the well-established fermentative glucose...metabolite i in biomass function j, Wi denotes the molecular weight of the metabolite, and the factor 1000 converts mol into mmol. Simulation environment

  4. An Ant Colony Optimization and Hybrid Metaheuristics Algorithm to Solve the Split Delivery Vehicle Routing Problem

    DTIC Science & Technology

    2015-01-01

    programming formulation of traveling salesman problems , Journal of the ACM, 7(4), 326-329. Montemanni, R., Gambardella, L. M., Rizzoli, A.E., Donati. A.V... salesman problem . BioSystem, 43(1), 73-81. Dror, M., Trudeau, P., 1989. Savings by split delivery routing. Transportation Science, 23, 141- 145. Dror, M...An Ant Colony Optimization and Hybrid Metaheuristics Algorithm to solve the Split Delivery Vehicle Routing Problem Authors: Gautham Rajappa

  5. Changing Conditions in the Arctic: An Analysis of 45 years of Tropospheric Ozone Measurements at Barrow Observatory

    NASA Astrophysics Data System (ADS)

    McClure-Begley, A.; Petropavlovskikh, I. V.; Crepinsek, S.; Jefferson, A.; Emmons, L. K.; Oltmans, S. J.

    2017-12-01

    In order to understand the impact of climate on local bio-systems, understanding the changes to the atmospheric composition and processes in the Arctic boundary layer and free troposphere is imperative. In the Arctic, many conditions influence tropospheric ozone variability such as: seasonal halogen caused depletion events, long range transport of pollutants from mid-northern latitudes, compounds released from wildfires, and different meteorological conditions. The Barrow station in Utqiagvik, Alaska has collected continuous measurements of ground-level ozone since 1973. This unique long-term time series allows for analysis of the influence of a rapidly changing climate on ozone conditions in this region. Specifically, this study analyzes the frequency of enhanced ozone episodes over time and provides in depth analysis of periods of positive deviations from the expected conditions. To discern the contribution of different pollutant sources to observed ozone variability, co-located measurements of aerosols, carbon monoxide, and meteorological conditions are used. In addition, the NCAR Mozart-4/MOPITT Chemical Forecast model and NOAA Hysplit back-trajectory analysis provide information on transport patterns to the Arctic and confirmation of the emission sources that influenced the observed conditions. These anthropogenic influences on ozone variability in and below the boundary layer are essential for developing an understanding of the interaction of climate change and the bio-systems in the Arctic.

  6. The effects of socioeconomic status, clinical factors, and genetic ancestry on pulmonary tuberculosis disease in northeastern Mexico.

    PubMed

    Young, Bonnie N; Rendón, Adrian; Rosas-Taraco, Adrian; Baker, Jack; Healy, Meghan; Gross, Jessica M; Long, Jeffrey; Burgos, Marcos; Hunley, Keith L

    2014-01-01

    Diverse socioeconomic and clinical factors influence susceptibility to tuberculosis (TB) disease in Mexico. The role of genetic factors, particularly those that differ between the parental groups that admixed in Mexico, is unclear. The objectives of this study are to identify the socioeconomic and clinical predictors of the transition from latent TB infection (LTBI) to pulmonary TB disease in an urban population in northeastern Mexico, and to examine whether genetic ancestry plays an independent role in this transition. We recruited 97 pulmonary TB disease patients and 97 LTBI individuals from a public hospital in Monterrey, Nuevo León. Socioeconomic and clinical variables were collected from interviews and medical records, and genetic ancestry was estimated for a subset of 142 study participants from 291,917 single nucleotide polymorphisms (SNPs). We examined crude associations between the variables and TB disease status. Significant predictors from crude association tests were analyzed using multivariable logistic regression. We also compared genetic ancestry between LTBI individuals and TB disease patients at 1,314 SNPs in 273 genes from the TB biosystem in the NCBI BioSystems database. In crude association tests, 12 socioeconomic and clinical variables were associated with TB disease. Multivariable logistic regression analyses indicated that marital status, diabetes, and smoking were independently associated with TB status. Genetic ancestry was not associated with TB disease in either crude or multivariable analyses. Separate analyses showed that LTBI individuals recruited from hospital staff had significantly higher European genetic ancestry than LTBI individuals recruited from the clinics and waiting rooms. Genetic ancestry differed between individuals with LTBI and TB disease at SNPs located in two genes in the TB biosystem. These results indicate that Monterrey may be structured with respect to genetic ancestry, and that genetic differences in TB susceptibility in parental populations may contribute to variation in disease susceptibility in the region.

  7. The Effects of Socioeconomic Status, Clinical Factors, and Genetic Ancestry on Pulmonary Tuberculosis Disease in Northeastern Mexico

    PubMed Central

    Young, Bonnie N.; Rendón, Adrian; Rosas-Taraco, Adrian; Baker, Jack; Healy, Meghan; Gross, Jessica M.; Long, Jeffrey; Burgos, Marcos; Hunley, Keith L.

    2014-01-01

    Diverse socioeconomic and clinical factors influence susceptibility to tuberculosis (TB) disease in Mexico. The role of genetic factors, particularly those that differ between the parental groups that admixed in Mexico, is unclear. The objectives of this study are to identify the socioeconomic and clinical predictors of the transition from latent TB infection (LTBI) to pulmonary TB disease in an urban population in northeastern Mexico, and to examine whether genetic ancestry plays an independent role in this transition. We recruited 97 pulmonary TB disease patients and 97 LTBI individuals from a public hospital in Monterrey, Nuevo León. Socioeconomic and clinical variables were collected from interviews and medical records, and genetic ancestry was estimated for a subset of 142 study participants from 291,917 single nucleotide polymorphisms (SNPs). We examined crude associations between the variables and TB disease status. Significant predictors from crude association tests were analyzed using multivariable logistic regression. We also compared genetic ancestry between LTBI individuals and TB disease patients at 1,314 SNPs in 273 genes from the TB biosystem in the NCBI BioSystems database. In crude association tests, 12 socioeconomic and clinical variables were associated with TB disease. Multivariable logistic regression analyses indicated that marital status, diabetes, and smoking were independently associated with TB status. Genetic ancestry was not associated with TB disease in either crude or multivariable analyses. Separate analyses showed that LTBI individuals recruited from hospital staff had significantly higher European genetic ancestry than LTBI individuals recruited from the clinics and waiting rooms. Genetic ancestry differed between individuals with LTBI and TB disease at SNPs located in two genes in the TB biosystem. These results indicate that Monterrey may be structured with respect to genetic ancestry, and that genetic differences in TB susceptibility in parental populations may contribute to variation in disease susceptibility in the region. PMID:24728409

  8. Laser homeostatics on delayed onset muscle soreness

    NASA Astrophysics Data System (ADS)

    Liu, T. C. Y.; Fu, D. R.; Liu, X. G.; Tian, Z. X.

    2011-01-01

    Delayed onset muscle soreness (DOMS) and its photobiomodulation were reviewed from the viewpoint of function-specific homeostasis (FSH) in this paper. FSH is a negative-feedback response of a biosystem to maintain the function-specific fluctuations inside the biosystem so that the function is perfectly performed. A stressor may destroy a FSH. A stress is a response of a biosystem to a stressor and may also be in stress-specific homeostasis (StSH). A low level light (LLL) is so defined that it has no effects on a function in its FSH or a stress in its StSH, but it modulate a function far from its FSH or a stress far from its StSH. For DOMS recovery, protein metabolism in the Z-line streaming muscular cell is the essential process, but the inflammation, pain and soreness are non-essential processes. For many DOMS phenomena, protein metabolism in the Z-line streaming muscular cell is in protein metabolism-specific homeostasis (PmSH) so that there are no effects of LLL although the inflammation can be inhibited and the pain can be relieved. An athlete or animal in the dysfunctional conditions such as blood flow restriction and exercise exhaustion is far from PmSH and the protein metabolism can be improved with LLL.

  9. "First generation" automated DNA sequencing technology.

    PubMed

    Slatko, Barton E; Kieleczawa, Jan; Ju, Jingyue; Gardner, Andrew F; Hendrickson, Cynthia L; Ausubel, Frederick M

    2011-10-01

    Beginning in the 1980s, automation of DNA sequencing has greatly increased throughput, reduced costs, and enabled large projects to be completed more easily. The development of automation technology paralleled the development of other aspects of DNA sequencing: better enzymes and chemistry, separation and imaging technology, sequencing protocols, robotics, and computational advancements (including base-calling algorithms with quality scores, database developments, and sequence analysis programs). Despite the emergence of high-throughput sequencing platforms, automated Sanger sequencing technology remains useful for many applications. This unit provides background and a description of the "First-Generation" automated DNA sequencing technology. It also includes protocols for using the current Applied Biosystems (ABI) automated DNA sequencing machines. © 2011 by John Wiley & Sons, Inc.

  10. Cancer: a profit-driven biosystem?

    PubMed

    Deisboeck, Thomas S

    2008-08-01

    The argument is made that solid malignant tumors behave as profit-driven biological systems in that they expand their nutrient-uptaking surface to increase energetic revenue, at a comparably low metabolic cost. Within this conceptual framework, cancer cell migration is a critical mechanism as it maximizes systemic surface expansion while minimizing diffusion distance. Treating these tumor systems with adjuvant anti-proliferative regimen only should increase the energetic net gain of the viable cancer cells left behind, hence would facilitate tumor recurrence. Therapeutic attempts to better control tumor (re)growth should therefore aim primarily at containing its surface expansion, thus reducing its energetic revenue, or increasing its metabolic costs or better yet, both.

  11. Cancer: A profit-driven biosystem ?

    PubMed Central

    Deisboeck, Thomas S.

    2008-01-01

    The argument is made that solid malignant tumors behave as profit-driven biological systems in that they expand their nutrient-uptaking surface to increase energetic revenue, at a comparably low metabolic cost. Within this conceptual framework, cancer cell migration is a critical mechanism as it maximizes systemic surface expansion while minimizing diffusion distance. Treating these tumor systems with adjuvant anti-proliferative regimen only should increase the energetic net gain of the viable cancer cells left behind, hence would facilitate tumor recurrence. Therapeutic attempts to better control tumor (re)growth should therefore aim primarily at containing its surface expansion, thus reducing its energetic revenue, or increasing its metabolic costs or better yet, both. PMID:18420354

  12. Multi-Scale Spatio-Temporal Modeling: Lifelines of Microorganisms in Bioreactors and Tracking Molecules in Cells

    NASA Astrophysics Data System (ADS)

    Lapin, Alexei; Klann, Michael; Reuss, Matthias

    Agent-based models are rigorous tools for simulating the interactions of individual entities, such as organisms or molecules within cells and assessing their effects on the dynamic behavior of the system as a whole. In context with bioprocess and biosystems engineering there are several interesting and important applications. This contribution aims at introducing this strategy with the aid of two examples characterized by striking distinctions in the scale of the individual entities and the mode of their interactions. In the first example a structured-segregated model is applied to travel along the lifelines of single cells in the environment of a three-dimensional turbulent field of a stirred bioreactor. The modeling approach is based on an Euler-Lagrange formulation of the system. The strategy permits one to account for the heterogeneity present in real reactors in both the fluid and cellular phases, respectively. The individual response of the cells to local variations in the extracellular concentrations is pictured by a dynamically structured model of the key reactions of the central metabolism. The approach permits analysis of the lifelines of individual cells in space and time.

  13. Multiscale agent-based cancer modeling.

    PubMed

    Zhang, Le; Wang, Zhihui; Sagotsky, Jonathan A; Deisboeck, Thomas S

    2009-04-01

    Agent-based modeling (ABM) is an in silico technique that is being used in a variety of research areas such as in social sciences, economics and increasingly in biomedicine as an interdisciplinary tool to study the dynamics of complex systems. Here, we describe its applicability to integrative tumor biology research by introducing a multi-scale tumor modeling platform that understands brain cancer as a complex dynamic biosystem. We summarize significant findings of this work, and discuss both challenges and future directions for ABM in the field of cancer research.

  14. Multiscale simulation of molecular processes in cellular environments.

    PubMed

    Chiricotto, Mara; Sterpone, Fabio; Derreumaux, Philippe; Melchionna, Simone

    2016-11-13

    We describe the recent advances in studying biological systems via multiscale simulations. Our scheme is based on a coarse-grained representation of the macromolecules and a mesoscopic description of the solvent. The dual technique handles particles, the aqueous solvent and their mutual exchange of forces resulting in a stable and accurate methodology allowing biosystems of unprecedented size to be simulated.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  15. WISB: Warwick Integrative Synthetic Biology Centre.

    PubMed

    McCarthy, John

    2016-06-15

    Synthetic biology promises to create high-impact solutions to challenges in the areas of biotechnology, human/animal health, the environment, energy, materials and food security. Equally, synthetic biologists create tools and strategies that have the potential to help us answer important fundamental questions in biology. Warwick Integrative Synthetic Biology (WISB) pursues both of these mutually complementary 'build to apply' and 'build to understand' approaches. This is reflected in our research structure, in which a core theme on predictive biosystems engineering develops underpinning understanding as well as next-generation experimental/theoretical tools, and these are then incorporated into three applied themes in which we engineer biosynthetic pathways, microbial communities and microbial effector systems in plants. WISB takes a comprehensive approach to training, education and outreach. For example, WISB is a partner in the EPSRC/BBSRC-funded U.K. Doctoral Training Centre in synthetic biology, we have developed a new undergraduate module in the subject, and we have established five WISB Research Career Development Fellowships to support young group leaders. Research in Ethical, Legal and Societal Aspects (ELSA) of synthetic biology is embedded in our centre activities. WISB has been highly proactive in building an international research and training network that includes partners in Barcelona, Boston, Copenhagen, Madrid, Marburg, São Paulo, Tartu and Valencia. © 2016 The Author(s).

  16. Spectroscopic and electrochemical characterization of cytochrome c encapsulated in a bio sol-gel matrix.

    PubMed

    Deriu, Daniela; Pagnotta, Sara Emanuela; Santucci, Roberto; Rosato, Nicola

    2008-08-01

    Sol-gel technique represents a remarkably versatile method for protein encapsulation. To enhance sol-gel biocompatibility, systems envisaging the presence of calcium and phosphates in the sol-gel composition were recently prepared and investigated. Unfortunately, the low pH at which solutions were prepared (pH < 2.5) dramatically limited their application to proteins, because the acidic environment induces protein denaturation. In this paper we apply a new protocol based on the introduction of calcium nitrate to the inorganic phase, with formation of a binary bioactive system. In this case protein encapsulation results versatile and secure, being achieved at a pH close to neutrality (pH 6.0); also, the presence of calcium is expected to enhance system biocompatibility. To determine the properties of the salt-doped sol-gel and the influence exerted on entrapped biosystems, the structural and functional properties of embedded cytochrome c have been investigated. Data obtained indicate that the salt-doped sol-gel induces no significant change in the structure and the redox properties of the embedded protein; also, the matrix increases protein stability. Interestingly, the presence of calcium nitrate appears determinant for refolding of the acid-denatured protein. This is of interest in the perspective of future applications in biosensoristic area.

  17. Global behavior analysis for stochastic system of 1,3-PD continuous fermentation

    NASA Astrophysics Data System (ADS)

    Zhu, Xi; Kliemann, Wolfgang; Li, Chunfa; Feng, Enmin; Xiu, Zhilong

    2017-12-01

    Global behavior for stochastic system of continuous fermentation in glycerol bio-dissimilation to 1,3-propanediol by Klebsiella pneumoniae is analyzed in this paper. This bioprocess cannot avoid the stochastic perturbation caused by internal and external disturbance which reflect on the growth rate. These negative factors can limit and degrade the achievable performance of controlled systems. Based on multiplicity phenomena, the equilibriums and bifurcations of the deterministic system are analyzed. Then, a stochastic model is presented by a bounded Markov diffusion process. In order to analyze the global behavior, we compute the control sets for the associated control system. The probability distributions of relative supports are also computed. The simulation results indicate that how the disturbed biosystem tend to stationary behavior globally.

  18. Microbial community dynamics in anaerobic bioreactors and algal tanks treating piggery wastewater.

    PubMed

    Patil, Sayali S; Kumar, Martin S; Ball, Andrew S

    2010-06-01

    Integrated biosystem is becoming a major aspect of wastewater management practice. Microbial communities in piggery wastewater sampled from anaerobic (thermophilic and mesophilic) and aerobic digesters (algal tanks) during waste remediation were analyzed by culture-independent techniques based on polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The use of Muyzer's 314F-GC, 518R bacterial primers, and archaeal A934F, 1309R primers followed by partial 16s rDNA sequence analysis of the main bands from DGGE revealed the presence of unknown and as yet uncultured microorganisms but also showed functional and ecologically significant denitrifying, acetogenic bacteria along with autotrophic, hydrogenotrophic, and acetoclastic methanogen archaea. Thermophilic digesters were dominated by gamma-Proteobacteria, Methanothermobacter sp., while mesophilic digesters showed dominance by Firmicutes, uncultured bacteria, Methanosarcina, and Methanoculleus genera. Under aerobic conditions within algal tanks, pH rose from 7.17 to 9.32, with a significant decrease in total ammonia nitrogen, chemical oxygen demand, and soluble phosphorus levels. PCR-DGGE proved a useful tool for investigating the dynamics of microbial community in the bio-processing of piggery wastewater. Knowledge of the microbial communities involved in digestion of piggery wastewater will allow optimization of integrated biosystem by removing the main pollutants like inorganic ammonium-nitrogen, phosphorus, and pathogens from intensive farming system.

  19. Quantum Mechanics/Molecular Mechanics Modeling of Enzymatic Processes: Caveats and Breakthroughs.

    PubMed

    Quesne, Matthew G; Borowski, Tomasz; de Visser, Sam P

    2016-02-18

    Nature has developed large groups of enzymatic catalysts with the aim to transfer substrates into useful products, which enables biosystems to perform all their natural functions. As such, all biochemical processes in our body (we drink, we eat, we breath, we sleep, etc.) are governed by enzymes. One of the problems associated with research on biocatalysts is that they react so fast that details of their reaction mechanisms cannot be obtained with experimental work. In recent years, major advances in computational hardware and software have been made and now large (bio)chemical systems can be studied using accurate computational techniques. One such technique is the quantum mechanics/molecular mechanics (QM/MM) technique, which has gained major momentum in recent years. Unfortunately, it is not a black-box method that is easily applied, but requires careful set-up procedures. In this work we give an overview on the technical difficulties and caveats of QM/MM and discuss work-protocols developed in our groups for running successful QM/MM calculations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Multiplex ligation-dependent probe amplification analysis on capillary electrophoresis instruments for a rapid gene copy number study.

    PubMed

    Jankowski, Stéphane; Currie-Fraser, Erica; Xu, Licen; Coffa, Jordy

    2008-09-01

    Annotated DNA samples that had been previously analyzed were tested using multiplex ligation-dependent probe amplification (MLPA) assays containing probes targeting BRCA1, BRCA2, and MMR (MLH1/MSH2 genes) and the 9p21 chromosomal region. MLPA polymerase chain reaction products were separated on a capillary electrophoresis platform, and the data were analyzed using GeneMapper v4.0 software (Applied Biosystems, Foster City, CA). After signal normalization, loci regions that had undergone deletions or duplications were identified using the GeneMapper Report Manager and verified using the DyeScale functionality. The results highlight an easy-to-use, optimal sample preparation and analysis workflow that can be used for both small- and large-scale studies.

  1. Cell Engineering and Molecular Pharming for Biopharmaceuticals

    PubMed Central

    Abdullah, M.A; Rahmah, Anisa ur; Sinskey, A.J; Rha, C.K

    2008-01-01

    Biopharmaceuticals are often produced by recombinant E. coli or mammalian cell lines. This is usually achieved by the introduction of a gene or cDNA coding for the protein of interest into a well-characterized strain of producer cells. Naturally, each recombinant production system has its own unique advantages and disadvantages. This paper examines the current practices, developments, and future trends in the production of biopharmaceuticals. Platform technologies for rapid screening and analyses of biosystems are reviewed. Strategies to improve productivity via metabolic and integrated engineering are also highlighted. PMID:19662143

  2. Development of a multiplex real-time PCR for the simultaneous detection of herpes simplex and varicella zoster viruses in cerebrospinal fluid and lesion swab specimens.

    PubMed

    Wong, Anita A; Pabbaraju, Kanti; Wong, Sallene; Tellier, Raymond

    2016-03-01

    Herpes simplex viruses (HSV) and varicella zoster virus (VZV) can have very similar and wide-ranging clinical presentations. Rapid identification is necessary for timely antiviral therapy, especially with infections involving the central nervous system, neonates, and immunocompromised individuals. Detection of HSV-1, HSV-2 and VZV was combined into one real-time PCR reaction utilizing hydrolysis probes. The assay was validated on the LightCycler(®) (Roche) and Applied Biosystems 7500 Real-Time PCR System (Thermo Fisher Scientific Inc.) to detect alphaherpesviruses in cerebral spinal fluid (CSF) and lesion swab specimens, respectively. Validation data on blood and tissue samples are also presented. The multiplex assay showed excellent sensitivity, specificity and reproducibility when compared to two singleplex real-time PCR assays for CSF samples and direct fluorescent antigen/culture for lesion swab samples. Implementation of the multiplex assay has facilitated improved sensitivity and accuracy as well as reduced turn-around-times and costs. The results from a large data set of 16,622 prospective samples tested between August 16, 2012 to February 1, 2014 at the Provincial Laboratory for Public Health (Alberta, Canada) are presented here. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Extracting Diffusion Constants from Echo-Time-Dependent PFG NMR Data Using Relaxation-Time Information

    NASA Astrophysics Data System (ADS)

    Vandusschoten, D.; Dejager, P. A.; Vanas, H.

    Heterogeneous (bio)systems are often characterized by several water-containing compartments that differ in relaxation time values and diffusion constants. Because of the relatively small differences among these diffusion constants, nonoptimal measuring conditions easily lead to the conclusion that a single diffusion constant suffices to describe the water mobility in a heterogeneous (bio)system. This paper demonstrates that the combination of a T2 measurement and diffusion measurements at various echo times (TE), based on the PFG MSE sequence, enables the accurate determination of diffusion constants which are less than a factor of 2 apart. This new method gives errors of the diffusion constant below 10% when two fractions are present, while the standard approach of a biexponential fit to the diffusion data in identical circumstances gives larger (>25%) errors. On application of this approach to water in apple parenchyma tissue, the diffusion constant of water in the vacuole of the cells ( D = 1.7 × 10 -9 m 2/s) can be distinguished from that of the cytoplasm ( D = 1.0 × 10 -9 m 2/s). Also, for mung bean seedlings, the cell size determined by PFG MSE measurements increased from 65 to 100 μm when the echo time increased from 150 to 900 ms, demonstrating that the interpretation of PFG SE data used to investigate cell sizes is strongly dependent on the T2 values of the fractions within the sample. Because relaxation times are used to discriminate the diffusion constants, we propose to name this approach diffusion analysis by relaxation- time- separated (DARTS) PFG NMR.

  4. BIOREMEDIATION OF HAZARDOUS WASTES

    EPA Science Inventory

    In 1987, the U.S. Environmental Protection Agency's (EPA) Office of Research and Development (ORD) initiated the Biosystems Technology Development Program to anticipate and address research needs in managing our nation's hazardous waste. The Agency believes that bioremediation of...

  5. Multiplex Ligation-Dependent Probe Amplification Analysis on Capillary Electrophoresis Instruments for a Rapid Gene Copy Number Study

    PubMed Central

    Jankowski, Stéphane; Currie-Fraser, Erica; Xu, Licen; Coffa, Jordy

    2008-01-01

    Annotated DNA samples that had been previously analyzed were tested using multiplex ligation-dependent probe amplification (MLPA) assays containing probes targeting BRCA1, BRCA2, and MMR (MLH1/MSH2 genes) and the 9p21 chromosomal region. MLPA polymerase chain reaction products were separated on a capillary electrophoresis platform, and the data were analyzed using GeneMapper v4.0 software (Applied Biosystems, Foster City, CA). After signal normalization, loci regions that had undergone deletions or duplications were identified using the GeneMapper Report Manager and verified using the DyeScale functionality. The results highlight an easy-to-use, optimal sample preparation and analysis workflow that can be used for both small- and large-scale studies. PMID:19137113

  6. Evolvable social agents for bacterial systems modeling.

    PubMed

    Paton, Ray; Gregory, Richard; Vlachos, Costas; Saunders, Jon; Wu, Henry

    2004-09-01

    We present two approaches to the individual-based modeling (IbM) of bacterial ecologies and evolution using computational tools. The IbM approach is introduced, and its important complementary role to biosystems modeling is discussed. A fine-grained model of bacterial evolution is then presented that is based on networks of interactivity between computational objects representing genes and proteins. This is followed by a coarser grained agent-based model, which is designed to explore the evolvability of adaptive behavioral strategies in artificial bacteria represented by learning classifier systems. The structure and implementation of the two proposed individual-based bacterial models are discussed, and some results from simulation experiments are presented, illustrating their adaptive properties.

  7. DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction

    NASA Astrophysics Data System (ADS)

    Ohta, Seiichi; Glancy, Dylan; Chan, Warren C. W.

    2016-02-01

    Precise control of biosystems requires development of materials that can dynamically change physicochemical properties. Inspired by the ability of proteins to alter their conformation to mediate function, we explored the use of DNA as molecular keys to assemble and transform colloidal nanoparticle systems. The systems consist of a core nanoparticle surrounded by small satellites, the conformation of which can be transformed in response to DNA via a toe-hold displacement mechanism. The conformational changes can alter the optical properties and biological interactions of the assembled nanosystem. Photoluminescent signal is altered by changes in fluorophore-modified particle distance, whereas cellular targeting efficiency is increased 2.5 times by changing the surface display of targeting ligands. These concepts provide strategies for engineering dynamic nanotechnology systems for navigating complex biological environments.

  8. Nutritional metabolomics: Progress in addressing complexity in diet and health

    PubMed Central

    Jones, Dean P.; Park, Youngja; Ziegler, Thomas R.

    2013-01-01

    Nutritional metabolomics is rapidly maturing to use small molecule chemical profiling to support integration of diet and nutrition in complex biosystems research. These developments are critical to facilitate transition of nutritional sciences from population-based to individual-based criteria for nutritional research, assessment and management. This review addresses progress in making these approaches manageable for nutrition research. Important concept developments concerning the exposome, predictive health and complex pathobiology, serve to emphasize the central role of diet and nutrition in integrated biosystems models of health and disease. Improved analytic tools and databases for targeted and non-targeted metabolic profiling, along with bioinformatics, pathway mapping and computational modeling, are now used for nutrition research on diet, metabolism, microbiome and health associations. These new developments enable metabolome-wide association studies (MWAS) and provide a foundation for nutritional metabolomics, along with genomics, epigenomics and health phenotyping, to support integrated models required for personalized diet and nutrition forecasting. PMID:22540256

  9. Time rescaling and pattern formation in biological evolution.

    PubMed

    Igamberdiev, Abir U

    2014-09-01

    Biological evolution is analyzed as a process of continuous measurement in which biosystems interpret themselves in the environment resulting in changes of both. This leads to rescaling of internal time (heterochrony) followed by spatial reconstructions of morphology (heterotopy). The logical precondition of evolution is the incompleteness of biosystem's internal description, while the physical precondition is the uncertainty of quantum measurement. The process of evolution is based on perpetual changes in interpretation of information in the changing world. In this interpretation the external biospheric gradients are used for establishment of new features of organization. It is concluded that biological evolution involves the anticipatory epigenetic changes in the interpretation of genetic symbolism which cannot generally be forecasted but can provide canalization of structural transformations defined by the existing organization and leading to predictable patterns of form generation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Genetic polymorphisms of 15 STR loci within Turkish student population living in Sarajevo, Bosnia and Herzegovina.

    PubMed

    Dogan, Serkan; Kovacević, Lejla; Marjanović, Damir

    2013-12-01

    Allele frequencies of 15 STRs included in the PowerPlex 16 System (D3S1358, TH01, D21S11, D18S51, Penta E, D5S818, D13S317, D7S820, D16S539, CSF1PO, Penta D, VWA, D8S1179, TPOX and FGA) were calculated from the referent sample of 100 unrelated individuals of both sexes from Turkish student population living in Sarajevo, Bosnia and Herzegovina. Buccal swab, as a source of DNA, was collected from the volunteers from whom the informed consent form was obtained. DNA extraction was performed using QIAamp DNA Micro kit by Qiagen. DNA template ranging from 0.5 to 2 ng was used to amplify 15 STR loci by PCR multiplex amplification which was performed by using the PowerPlex 16 kit (Promega Corp., Madison, WI, USA) according to the manufacturer's protocol. The amplifications were carried out in a PE Gene Amp PCR System thermal cycler (Applied Biosystems) and capillary electrophoresis was carried out in an ABI PRISM 310 Genetic Analyzer (Applied Biosystems) in accordance with the manufacturer's recommendations. The frequency of each locus was calculated from the numbers of each observed genotype. Deviation from Hardy-Weinberg equilibrium and observed heterozygosity were calculated. Data were analyzed by using Microsoft Excel workbook template--Powerstats V12 and the power of discrimination (PD), power of exclusion (PE), as well as other population genetic indices for the 15 STR loci were calculated. Obtained results contribute to existing Turkish DNA database, as well as insight of differences and similarities in comparison to population of Bosnia and Herzegovina. In addition, 13 autosomal STR loci frequencies (D3S1358, TH01, D21S11, D18S51, Penta E, D5S818, D13S317, D7S820, D16S539, CSFIPO, Penta D, VWA, D8S1 179, TPOX, and FGA) were studied in 15 different worldwide populations (Turkish, Bosnian, Croatian, Serbian, Montenegrin, Macedonian, Albanian, Kosovan, Greek, Russian, Japanese, Korean, Lithuanian, Iraqi, Belarusian). For the proof of corresponding data, two different Turkish population STR data obtained from previously published articles were compared with our data and this showed that our data correspond to these 2 previously published data. Further, STR allele frequency data for 13 loci for each population were obtained from previous scientific articles and the allele frequencies and genetic diversity among the 15 sample populations were compared. In addition, even though the populations are from different nationalities, the STR data are similar among the geographically close populations. The phylogenetic tree established among worldwide populations and genetic distance values show a great affinity among the 15populations. Our data is useful for anthropological and further comparative genetic studies of populations.

  11. Plant-centered biosystems in space environments: technological concepts for developing a plant genetic assessment and control system.

    PubMed

    Lomax, Terri L; Findlay, Kirk A; White, T J; Winner, William E

    2003-06-01

    Plants will play an essential role in providing life support for any long-term space exploration or habitation. We are evaluating the feasibility of an adaptable system for measuring the response of plants to any unique space condition and optimizing plant performance under those conditions. The proposed system is based on a unique combination of systems including the rapid advances in the field of plant genomics, microarray technology for measuring gene expression, bioinformatics, gene pathways and networks, physiological measurements in controlled environments, and advances in automation and robotics. The resulting flexible module for monitoring and optimizing plant responses will be able to be inserted as a cassette into a variety of platforms and missions for either experimental or life support purposes. The results from future plant functional genomics projects have great potential to be applied to those plant species most likely to be used in space environments. Eventually, it will be possible to use the plant genetic assessment and control system to optimize the performance of any plant in any space environment. In addition to allowing the effective control of environmental parameters for enhanced plant productivity and other life support functions, the proposed module will also allow the selection or engineering of plants to thrive in specific space environments. The proposed project will advance human exploration of space in the near- and mid-term future on the International Space Station and free-flying satellites and in the far-term for longer duration missions and eventual space habitation.

  12. [Current aspects of the physiopathology of the infectious process. II. Cybernetic elements in the pathogenetic structure of infectious diseases].

    PubMed

    Dragomirescu, M; Buzinschi, S

    1980-01-01

    The authors discuss the applicability of general cybernetic principles (the theory of systems and self-regulated mechanisms based on inversed connections) to the pathophysiologic structure of infections. With reference to concrete examples they outline the following elements: the appartenance of the infectious process to the notion of system (as conceived in the theory of systems), the previsible character of the functional potential of the structured system in the components of infection, and the sequental correspondence between system dynamics and the dynamics of the infectious process. Starting from the mechanism of action of the main microbial toxins, the aptitude of the latter to act upon the functional code of the macroorganism, altering the cellular and supracellular self-regulated biosystems, is demonstrated. Finally, the practical implications of assimilating cybernetic processes in the pathophysiology of infectious diseases are analyzed.

  13. Human Performance and Biosystems

    DTIC Science & Technology

    2013-03-08

    carbon nanotube binding peptides *A mutant laccase designed at UW self- assembles into active crystals Leucine βroll Linker (S) α-helix (H...cognitive functions, bio-molecular repair and bio- resiliency Bioenergy: • Portable H2 Fuel Generated from H2O or Cellulose : - Cheap, self

  14. BIOREMEDIATION OF HAZARDOUS WASTE SITES: PRACTICAL APPROACHES TO IMPLEMENTATION (EPA/625/K-96/001)

    EPA Science Inventory

    This document contains abstracts and slide hardcopy for the U.S. Environmental Protection Agency's (EPA's) "Seminar Series on Bioremediation of Hazardous Waste Sites: Practical Approaches to Implementation." This technology transfer seminar series, sponsored by EPA's Biosystems ...

  15. Contribution for an African autosomic STR database (AmpF/STR Identifiler and Powerplex 16 System) and a report on genotypic variations.

    PubMed

    Alves, Cíntia; Gusmão, Leonor; Damasceno, Albertino; Soares, Benilde; Amorim, António

    2004-01-28

    Allele frequencies, together with some parameters of forensic interest, for 17 STRs included in the AmpF/STR Identifiler (CSF1PO, D2S1338, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D19S433, D21S11, FGA, TH01, TPO and VWA) and Powerplex 16 System (CSF1PO, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, FGA, Penta D, Penta E, TH01, TPO and VWA) were estimated from a sample of 135-144 unrelated individuals from Mozambique. No deviations from Hardy-Weinberg equilibrium were observed with the exception of the FGA locus (using the Bonferroni correction for the number of loci analysed, the departure observed at this locus was not significant). Comparative analyses between our population data and other African databases, namely Promega's African-Americans, AB Applied Biosystems African-Americans and two other population samples from Mozambique and Guiné Bissau, are presented and discussed. Genotype inconsistencies between both commercial kits (for D16S539 and D8S1179) and other genotypic variations (three-banded allele patterns for TPO) are also reported.

  16. Quantitative Biology of Exercise-Induced Signal Transduction Pathways.

    PubMed

    Liu, Timon Cheng-Yi; Liu, Gang; Hu, Shao-Juan; Zhu, Ling; Yang, Xiang-Bo; Zhang, Quan-Guang

    2017-01-01

    Exercise is essential in regulating energy metabolism. Exercise activates cellular, molecular, and biochemical pathways with regulatory roles in training response adaptation. Among them, endurance/strength training of an individual has been shown to activate its respective signal transduction pathways in skeletal muscle. This was further studied from the viewpoint of quantitative difference (QD). For the mean values, [Formula: see text], of two sets of data, their QD is defined as [Formula: see text] ([Formula: see text]). The function-specific homeostasis (FSH) of a function of a biosystem is a negative-feedback response of the biosystem to maintain the function-specific conditions inside the biosystem so that the function is perfectly performed. A function in/far from its FSH is called a normal/dysfunctional function. A cellular normal function can resist the activation of other signal transduction pathways so that there are normal function-specific signal transduction pathways which full activation maintains the normal function. An acute endurance/strength training may be dysfunctional, but its regular training may be normal. The normal endurance/strength training of an individual may resist the activation of other signal transduction pathways in skeletal muscle so that there may be normal endurance/strength training-specific signal transduction pathways (NEPs/NSPs) in skeletal muscle. The endurance/strength training may activate NSPs/NEPs, but the QD from the control is smaller than 0.80. The simultaneous activation of both NSPs and NEPs may enhance their respective activation, and the QD from the control is larger than 0.80. The low level laser irradiation pretreatment of rats may promote the activation of NSPs in endurance training skeletal muscle. There may be NEPs/NSPs in skeletal muscle trained by normal endurance/strength training.

  17. Alternative to Ritt's pseudodivision for finding the input-output equations of multi-output models.

    PubMed

    Meshkat, Nicolette; Anderson, Chris; DiStefano, Joseph J

    2012-09-01

    Differential algebra approaches to structural identifiability analysis of a dynamic system model in many instances heavily depend upon Ritt's pseudodivision at an early step in analysis. The pseudodivision algorithm is used to find the characteristic set, of which a subset, the input-output equations, is used for identifiability analysis. A simpler algorithm is proposed for this step, using Gröbner Bases, along with a proof of the method that includes a reduced upper bound on derivative requirements. Efficacy of the new algorithm is illustrated with several biosystem model examples. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. An in vitro synthetic biosystem based on acetate for production of phloroglucinol.

    PubMed

    Zhang, Rubing; Liu, Wei; Cao, Yujin; Xu, Xin; Xian, Mo; Liu, Huizhou

    2017-08-08

    Phloroglucinol is an important chemical, and the biosynthesis processes which can convert glucose to phloroglucinol have been established. However, due to approximate 80% of the glucose being transformed into undesirable by-products and biomass, this biosynthesis process only shows a low yield with the highest value of about 0.20 g/g. The industrial applications are usually hindered by the low current productivity and yield and also by the high costs. Generally, several different aspects limit the development of phloroglucinol biosynthesis. The yield of phloroglucinol is one of the most important parameters for its bioconversion especially from economic and ecological points of view. The in vitro biosynthesis of bio-based chemicals, is a flexible alternative with potentially high-yield to in vivo biosynthetic technology. By comparing the activity of acetyl-CoA synthetase (ACS) from Escherichia coli and Acetobacter pasteurianus, the highly active ACS2 was identified in A. pasteurianus. Acetyl-CoA carboxylase (ACC) from Acinetobacter calcoaceticus and phloroglucinol synthase (PhlD) from Pseudomonas fluorescens pf-5 were expressed and purified. Acetate was successfully transformed into phloroglucinol by the combined activity of above-mentioned enzymes and required cofactor. After optimization of the in vitro reaction system, phloroglucinol was then produced with a yield of nearly 0.64 g phloroglucinol/g acetic acid, which was equal to 91.43% of the theoretically possible maximum. In this work, a novel in vitro synthetic system for a highly efficient production of phloroglucinol from acetate was demonstrated. The system's performance suggests that in vitro synthesis of phloroglucinol has some advantages and is potential to become a feasible industrial alternative. Based on the results presented herewith, it is believed that in vitro biosystem will provide a feasible option for production of important industrial chemicals from acetate, which could work as a versatile biosynthetic platform.

  19. BIOREMEDIATION OF HAZARDOUS WASTES - RESEARCH, DEVELOPMENT, AND FIELD EVALUATIONS - 1994

    EPA Science Inventory

    The proceedings of the 1994 Symposium on Bioremediation of Hazardous Wastes, hosted by the Office of Research and Development (ORD) of the EPA in San Francisco, California. The symposium was the seventh annual meeting for the presentation of research conducted by EPA's Biosystem...

  20. An intangible energy in the functioning biosystem. I: A search for its fate and a proposed method of delivery.

    PubMed

    Reid, B L

    1995-06-01

    This paper treats evidence for an increasing recognition of a force with intangible properties in biosystems with special reference to its ability to transport electrons at near 0 degree Kelvin. It is implied that such force, whose demonstration at these temperatures is an experimental contrivance to emphasise its strictly quantal status, can be operative at room temperature. A discussion is entered as to a mode for delivery of intangible energy from demonstrable non-local origins, locally to the cell to provide for structure and function. Extensive use is made of theory of the structure of the photon from de Broglie and others to accommodate a co-existence of real (electromagnetic) and quantal (intangible) fields within the photon and to discuss how such co-existence may have been copied or otherwise made manifest in a macroscopic structure such as the cell. Cell function is then viewed as concurrent real and intangible effects following stimuli derived from perturbation of the real or electromagnetic component.

  1. Mathematical approach to nonlocal interactions using a reaction-diffusion system.

    PubMed

    Tanaka, Yoshitaro; Yamamoto, Hiroko; Ninomiya, Hirokazu

    2017-06-01

    In recent years, spatial long range interactions during developmental processes have been introduced as a result of the integration of microscopic information, such as molecular events and signaling networks. They are often called nonlocal interactions. If the profile of a nonlocal interaction is determined by experiments, we can easily investigate how patterns generate by numerical simulations without detailed microscopic events. Thus, nonlocal interactions are useful tools to understand complex biosystems. However, nonlocal interactions are often inconvenient for observing specific mechanisms because of the integration of information. Accordingly, we proposed a new method that could convert nonlocal interactions into a reaction-diffusion system with auxiliary unknown variables. In this review, by introducing biological and mathematical studies related to nonlocal interactions, we will present the heuristic understanding of nonlocal interactions using a reaction-diffusion system. © 2017 Japanese Society of Developmental Biologists.

  2. BIOREMEDIATION OF HAZARDOUS WASTES - RESEARCH, DEVELOPMENT, AND FIELD EVALUATIONS - 1993

    EPA Science Inventory

    The proceedings of the 1993 Symposium on Bioremediation of Hazardous Wastes, hosted by the Office of Research and Development (ORD) of the EPA in Dallas, Texas The symposium was the sixth annual meeting for the presentation of research conducts (by EPA's Biosystems Technology Dev...

  3. BIOREMEDIATION OF HAZARDOUS WASTES - RESEARCH, DEVELOPMENT AND FIELD EVALUATIONS - 1995

    EPA Science Inventory

    The proceedings of the 1995 Symposium on Bioremediation of Hazardous Wastes, hosted by the Office of Research and Development (ORD) of the EPA in Rye Brook, New York. he symposium was the eighth annual meeting for the presentation of research conducted by EPA's Biosystems Technol...

  4. ORAC: a molecular dynamics simulation program to explore free energy surfaces in biomolecular systems at the atomistic level.

    PubMed

    Marsili, Simone; Signorini, Giorgio Federico; Chelli, Riccardo; Marchi, Massimo; Procacci, Piero

    2010-04-15

    We present the new release of the ORAC engine (Procacci et al., Comput Chem 1997, 18, 1834), a FORTRAN suite to simulate complex biosystems at the atomistic level. The previous release of the ORAC code included multiple time steps integration, smooth particle mesh Ewald method, constant pressure and constant temperature simulations. The present release has been supplemented with the most advanced techniques for enhanced sampling in atomistic systems including replica exchange with solute tempering, metadynamics and steered molecular dynamics. All these computational technologies have been implemented for parallel architectures using the standard MPI communication protocol. ORAC is an open-source program distributed free of charge under the GNU general public license (GPL) at http://www.chim.unifi.it/orac. 2009 Wiley Periodicals, Inc.

  5. High-throughput real-time quantitative reverse transcription PCR.

    PubMed

    Bookout, Angie L; Cummins, Carolyn L; Mangelsdorf, David J; Pesola, Jean M; Kramer, Martha F

    2006-02-01

    Extensive detail on the application of the real-time quantitative polymerase chain reaction (QPCR) for the analysis of gene expression is provided in this unit. The protocols are designed for high-throughput, 384-well-format instruments, such as the Applied Biosystems 7900HT, but may be modified to suit any real-time PCR instrument. QPCR primer and probe design and validation are discussed, and three relative quantitation methods are described: the standard curve method, the efficiency-corrected DeltaCt method, and the comparative cycle time, or DeltaDeltaCt method. In addition, a method is provided for absolute quantification of RNA in unknown samples. RNA standards are subjected to RT-PCR in the same manner as the experimental samples, thus accounting for the reaction efficiencies of both procedures. This protocol describes the production and quantitation of synthetic RNA molecules for real-time and non-real-time RT-PCR applications.

  6. Bio-activity of aminosulfonyl ureas in the light of nucleic acid bases and DNA base pair interaction.

    PubMed

    Mondal Roy, Sutapa

    2018-08-01

    The quantum chemical descriptors based on density functional theory (DFT) are applied to predict the biological activity (log IC 50 ) of one class of acyl-CoA: cholesterol O-acyltransferase (ACAT) inhibitors, viz. aminosulfonyl ureas. ACAT are very effective agents for reduction of triglyceride and cholesterol levels in human body. Successful two parameter quantitative structure-activity relationship (QSAR) models are developed with a combination of relevant global and local DFT based descriptors for prediction of biological activity of aminosulfonyl ureas. The global descriptors, electron affinity of the ACAT inhibitors (EA) and/or charge transfer (ΔN) between inhibitors and model biosystems (NA bases and DNA base pairs) along with the local group atomic charge on sulfonyl moiety (∑Q Sul ) of the inhibitors reveals more than 90% efficacy of the selected descriptors for predicting the experimental log (IC 50 ) values. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. SBROME: a scalable optimization and module matching framework for automated biosystems design.

    PubMed

    Huynh, Linh; Tsoukalas, Athanasios; Köppe, Matthias; Tagkopoulos, Ilias

    2013-05-17

    The development of a scalable framework for biodesign automation is a formidable challenge given the expected increase in part availability and the ever-growing complexity of synthetic circuits. To allow for (a) the use of previously constructed and characterized circuits or modules and (b) the implementation of designs that can scale up to hundreds of nodes, we here propose a divide-and-conquer Synthetic Biology Reusable Optimization Methodology (SBROME). An abstract user-defined circuit is first transformed and matched against a module database that incorporates circuits that have previously been experimentally characterized. Then the resulting circuit is decomposed to subcircuits that are populated with the set of parts that best approximate the desired function. Finally, all subcircuits are subsequently characterized and deposited back to the module database for future reuse. We successfully applied SBROME toward two alternative designs of a modular 3-input multiplexer that utilize pre-existing logic gates and characterized biological parts.

  8. Numerical modelling in biosciences using delay differential equations

    NASA Astrophysics Data System (ADS)

    Bocharov, Gennadii A.; Rihan, Fathalla A.

    2000-12-01

    Our principal purposes here are (i) to consider, from the perspective of applied mathematics, models of phenomena in the biosciences that are based on delay differential equations and for which numerical approaches are a major tool in understanding their dynamics, (ii) to review the application of numerical techniques to investigate these models. We show that there are prima facie reasons for using such models: (i) they have a richer mathematical framework (compared with ordinary differential equations) for the analysis of biosystem dynamics, (ii) they display better consistency with the nature of certain biological processes and predictive results. We analyze both the qualitative and quantitative role that delays play in basic time-lag models proposed in population dynamics, epidemiology, physiology, immunology, neural networks and cell kinetics. We then indicate suitable computational techniques for the numerical treatment of mathematical problems emerging in the biosciences, comparing them with those implemented by the bio-modellers.

  9. Discovering the Power of Individual-Based Modelling in Teaching and Learning: The Study of a Predator-Prey System

    NASA Astrophysics Data System (ADS)

    Ginovart, Marta

    2014-08-01

    The general aim is to promote the use of individual-based models (biological agent-based models) in teaching and learning contexts in life sciences and to make their progressive incorporation into academic curricula easier, complementing other existing modelling strategies more frequently used in the classroom. Modelling activities for the study of a predator-prey system for a mathematics classroom in the first year of an undergraduate program in biosystems engineering have been designed and implemented. These activities were designed to put two modelling approaches side by side, an individual-based model and a set of ordinary differential equations. In order to organize and display this, a system with wolves and sheep in a confined domain was considered and studied. With the teaching material elaborated and a computer to perform the numerical resolutions involved and the corresponding individual-based simulations, the students answered questions and completed exercises to achieve the learning goals set. Students' responses regarding the modelling of biological systems and these two distinct methodologies applied to the study of a predator-prey system were collected via questionnaires, open-ended queries and face-to-face dialogues. Taking into account the positive responses of the students when they were doing these activities, it was clear that using a discrete individual-based model to deal with a predator-prey system jointly with a set of ordinary differential equations enriches the understanding of the modelling process, adds new insights and opens novel perspectives of what can be done with computational models versus other models. The complementary views given by the two modelling approaches were very well assessed by students.

  10. PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities.

    PubMed

    Troshin, Peter V; Postis, Vincent Lg; Ashworth, Denise; Baldwin, Stephen A; McPherson, Michael J; Barton, Geoffrey J

    2011-03-07

    Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS) that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/.

  11. Evolutionary Models for Simple Biosystems

    NASA Astrophysics Data System (ADS)

    Bagnoli, Franco

    The concept of evolutionary development of structures constituted a real revolution in biology: it was possible to understand how the very complex structures of life can arise in an out-of-equilibrium system. The investigation of such systems has shown that indeed, systems under a flux of energy or matter can self-organize into complex patterns, think for instance to Rayleigh-Bernard convection, Liesegang rings, patterns formed by granular systems under shear. Following this line, one could characterize life as a state of matter, characterized by the slow, continuous process that we call evolution. In this paper we try to identify the organizational level of life, that spans several orders of magnitude from the elementary constituents to whole ecosystems. Although similar structures can be found in other contexts like ideas (memes) in neural systems and self-replicating elements (computer viruses, worms, etc.) in computer systems, we shall concentrate on biological evolutionary structure, and try to put into evidence the role and the emergence of network structure in such systems.

  12. Joseph Rollin | NREL

    Science.gov Websites

    , during which time he co-founded two start-up companies, Gate Fuels Inc. and Cell-Free Bioinnovations Inc (2015) New biotechnology paradigm: Cell-free biosystems for biomanufacturing. Green Chem. (2013 ). High-yield production of dihydrogen from xylose by using a synthetic enzyme cascase in a cell-free

  13. SYMPOSIUM OF NATURAL ATTENUATION OF GROUND WATER (EPA/600/R-94/162)

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA's) Biosystems Technology Development Program and the U.S. Geological Survey (USGS), with sponsorship from the U.S. Air Force (USAF), coordinated a meeting on the Natural Attenuation of Ground Water at the Hyatt Regency in Denver, CO...

  14. In silico analysis of 16S ribosomal RNA gene sequencing‐based methods for identification of medically important anaerobic bacteria

    PubMed Central

    Woo, Patrick C Y; Chung, Liliane M W; Teng, Jade L L; Tse, Herman; Pang, Sherby S Y; Lau, Veronica Y T; Wong, Vanessa W K; Kam, Kwok‐ling; Lau, Susanna K P; Yuen, Kwok‐Yung

    2007-01-01

    This study is the first study that provides useful guidelines to clinical microbiologists and technicians on the usefulness of full 16S rRNA sequencing, 5′‐end 527‐bp 16S rRNA sequencing and the existing MicroSeq full and 500 16S rDNA bacterial identification system (MicroSeq, Perkin‐Elmer Applied Biosystems Division, Foster City, California, USA) databases for the identification of all existing medically important anaerobic bacteria. Full and 527‐bp 16S rRNA sequencing are able to identify 52–63% of 130 Gram‐positive anaerobic rods, 72–73% of 86 Gram‐negative anaerobic rods and 78% of 23 anaerobic cocci. The existing MicroSeq databases are able to identify only 19–25% of 130 Gram‐positive anaerobic rods, 38% of 86 Gram‐negative anaerobic rods and 39% of 23 anaerobic cocci. These represent only 45–46% of those that should be confidently identified by full and 527‐bp 16S rRNA sequencing. To improve the usefulness of MicroSeq, bacterial species that should be confidently identified by full and/or 527‐bp 16S rRNA sequencing but not included in the existing MicroSeq databases should be included. PMID:17046845

  15. Data series embedding and scale invariant statistics.

    PubMed

    Michieli, I; Medved, B; Ristov, S

    2010-06-01

    Data sequences acquired from bio-systems such as human gait data, heart rate interbeat data, or DNA sequences exhibit complex dynamics that is frequently described by a long-memory or power-law decay of autocorrelation function. One way of characterizing that dynamics is through scale invariant statistics or "fractal-like" behavior. For quantifying scale invariant parameters of physiological signals several methods have been proposed. Among them the most common are detrended fluctuation analysis, sample mean variance analyses, power spectral density analysis, R/S analysis, and recently in the realm of the multifractal approach, wavelet analysis. In this paper it is demonstrated that embedding the time series data in the high-dimensional pseudo-phase space reveals scale invariant statistics in the simple fashion. The procedure is applied on different stride interval data sets from human gait measurements time series (Physio-Bank data library). Results show that introduced mapping adequately separates long-memory from random behavior. Smaller gait data sets were analyzed and scale-free trends for limited scale intervals were successfully detected. The method was verified on artificially produced time series with known scaling behavior and with the varying content of noise. The possibility for the method to falsely detect long-range dependence in the artificially generated short range dependence series was investigated. (c) 2009 Elsevier B.V. All rights reserved.

  16. WISB: Warwick Integrative Synthetic Biology Centre

    PubMed Central

    McCarthy, John

    2016-01-01

    Synthetic biology promises to create high-impact solutions to challenges in the areas of biotechnology, human/animal health, the environment, energy, materials and food security. Equally, synthetic biologists create tools and strategies that have the potential to help us answer important fundamental questions in biology. Warwick Integrative Synthetic Biology (WISB) pursues both of these mutually complementary ‘build to apply’ and ‘build to understand’ approaches. This is reflected in our research structure, in which a core theme on predictive biosystems engineering develops underpinning understanding as well as next-generation experimental/theoretical tools, and these are then incorporated into three applied themes in which we engineer biosynthetic pathways, microbial communities and microbial effector systems in plants. WISB takes a comprehensive approach to training, education and outreach. For example, WISB is a partner in the EPSRC/BBSRC-funded U.K. Doctoral Training Centre in synthetic biology, we have developed a new undergraduate module in the subject, and we have established five WISB Research Career Development Fellowships to support young group leaders. Research in Ethical, Legal and Societal Aspects (ELSA) of synthetic biology is embedded in our centre activities. WISB has been highly proactive in building an international research and training network that includes partners in Barcelona, Boston, Copenhagen, Madrid, Marburg, São Paulo, Tartu and Valencia. PMID:27284024

  17. Comparative analytical evaluation of the respiratory TaqMan Array Card with real-time PCR and commercial multi-pathogen assays.

    PubMed

    Harvey, John J; Chester, Stephanie; Burke, Stephen A; Ansbro, Marisela; Aden, Tricia; Gose, Remedios; Sciulli, Rebecca; Bai, Jing; DesJardin, Lucy; Benfer, Jeffrey L; Hall, Joshua; Smole, Sandra; Doan, Kimberly; Popowich, Michael D; St George, Kirsten; Quinlan, Tammy; Halse, Tanya A; Li, Zhen; Pérez-Osorio, Ailyn C; Glover, William A; Russell, Denny; Reisdorf, Erik; Whyte, Thomas; Whitaker, Brett; Hatcher, Cynthia; Srinivasan, Velusamy; Tatti, Kathleen; Tondella, Maria Lucia; Wang, Xin; Winchell, Jonas M; Mayer, Leonard W; Jernigan, Daniel; Mawle, Alison C

    2016-02-01

    In this study, a multicenter evaluation of the Life Technologies TaqMan(®) Array Card (TAC) with 21 custom viral and bacterial respiratory assays was performed on the Applied Biosystems ViiA™ 7 Real-Time PCR System. The goal of the study was to demonstrate the analytical performance of this platform when compared to identical individual pathogen specific laboratory developed tests (LDTs) designed at the Centers for Disease Control and Prevention (CDC), equivalent LDTs provided by state public health laboratories, or to three different commercial multi-respiratory panels. CDC and Association of Public Health Laboratories (APHL) LDTs had similar analytical sensitivities for viral pathogens, while several of the bacterial pathogen APHL LDTs demonstrated sensitivities one log higher than the corresponding CDC LDT. When compared to CDC LDTs, TAC assays were generally one to two logs less sensitive depending on the site performing the analysis. Finally, TAC assays were generally more sensitive than their counterparts in three different commercial multi-respiratory panels. TAC technology allows users to spot customized assays and design TAC layout, simplify assay setup, conserve specimen, dramatically reduce contamination potential, and as demonstrated in this study, analyze multiple samples in parallel with good reproducibility between instruments and operators. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Labeled Nucleoside Triphosphates with Reversibly Terminating Aminoalkoxyl Groups

    PubMed Central

    Hutter, Daniel; Kim, Myong-Jung; Karalkar, Nilesh; Leal, Nicole A.; Chen, Fei; Guggenheim, Evan; Visalakshi, Visa; Olejnik, Jerzy; Gordon, Steven; Benner, Steven A.

    2013-01-01

    Nucleoside triphosphates having a 3′-ONH2 blocking group have been prepared with and without fluorescent tags on their nucleobases. DNA polymerases were identified that accepted these, adding a single nucleotide to the 3′-end of a primer in a template-directed extension reaction that then stops. Nitrite chemistry was developed to cleave the 3′-ONH2 group under mild conditions to allow continued primer extension. Extension-cleavage-extension cycles in solution were demonstrated with untagged nucleotides and mixtures of tagged and untagged nucleotides. Multiple extension-cleavage-extension cycles were demonstrated on an Intelligent Bio-Systems Sequencer, showing the potential of the 3′-ONH2 blocking group in “next generation sequencing”. PMID:21128174

  19. Reconstruction method for data protection in telemedicine systems

    NASA Astrophysics Data System (ADS)

    Buldakova, T. I.; Suyatinov, S. I.

    2015-03-01

    In the report the approach to protection of transmitted data by creation of pair symmetric keys for the sensor and the receiver is offered. Since biosignals are unique for each person, their corresponding processing allows to receive necessary information for creation of cryptographic keys. Processing is based on reconstruction of the mathematical model generating time series that are diagnostically equivalent to initial biosignals. Information about the model is transmitted to the receiver, where the restoration of physiological time series is performed using the reconstructed model. Thus, information about structure and parameters of biosystem model received in the reconstruction process can be used not only for its diagnostics, but also for protection of transmitted data in telemedicine complexes.

  20. KRAS detection in colonic tumors by DNA extraction from FTA paper: the molecular touch-prep.

    PubMed

    Petras, Melissa L; Lefferts, Joel A; Ward, Brian P; Suriawinata, Arief A; Tsongalis, Gregory J

    2011-12-01

    DNA isolated from formalin-fixed paraffin-embedded (FFPE) tissue is usually more degraded and contains more polymerase chain reaction (PCR) inhibitors than DNA isolated from nonfixed tissue. In addition, the tumor size and cellular heterogeneity found in tissue sections can often impact testing for molecular biomarkers. As a potential remedy to this situation, we evaluated the use of Whatman FTA paper cards for collection of colorectal tumor samples before tissue fixation and for isolation of DNA for use in a real-time PCR-based KRAS mutation assay. Eleven colon tumor samples were collected by making a cut into the fresh tumor and applying the Whatman FTA paper to the cut surface. Matched FFPE tissue blocks from these tumors were also collected for comparison. KRAS mutation analysis was carried out using the Applied Biosystems 7500 Fast Real-time PCR System using 7 independent custom TaqMan PCR assays. Of the 11 colon tumors sampled, 6 were positive for KRAS mutations in both the Whatman FTA paper preparations and corresponding FFPE samples. Whatman FTA paper cards for collection of colorectal tumor samples before tissue fixation and for isolation of DNA have many advantages including ease of use, intrinsic antimicrobial properties, long storage potential (stability of DNA over time), and a faster turnaround time for results. Extracted DNA should be suitable for most molecular diagnostic assays that use PCR techniques. This novel means of DNA preservation from surgical specimens would benefit from additional study and validation as a dependable and practical technique to preserve specimens for molecular testing.

  1. Ecosystem growth and development.

    PubMed

    Fath, Brian D; Jørgensen, Sven E; Patten, Bernard C; Straskraba, Milan

    2004-11-01

    One of the most important features of biosystems is how they are able to maintain local order (low entropy) within their system boundaries. At the ecosystem scale, this organization can be observed in the thermodynamic parameters that describe it, such that these parameters can be used to track ecosystem growth and development during succession. Thermodynamically, ecosystem growth is the increase of energy throughflow and stored biomass, and ecosystem development is the internal reorganization of these energy mass stores, which affect transfers, transformations, and time lags within the system. Several proposed hypotheses describe thermodynamically the orientation or natural tendency that ecosystems follow during succession, and here, we consider five: minimize specific entropy production, maximize dissipation, maximize exergy storage (includes biomass and information), maximize energy throughflow, and maximize retention time. These thermodynamic orientors were previously all shown to occur to some degree during succession, and here we present a refinement by observing them during different stages of succession. We view ecosystem succession as a series of four growth and development stages: boundary, structural, network, and informational. We demonstrate how each of these ecological thermodynamic orientors behaves during the different growth and development stages, and show that while all apply during some stages only maximizing energy throughflow and maximizing exergy storage are applicable during all four stages. Therefore, we conclude that the movement away from thermodynamic equilibrium, and the subsequent increase in organization during ecosystem growth and development, is a result of system components and configurations that maximize the flux of useful energy and the amount of stored exergy. Empirical data and theoretical models support these conclusions.

  2. Performance Evaluation of the Real-Q Cytomegalovirus (CMV) Quantification Kit Using Two Real-Time PCR Systems for Quantifying CMV DNA in Whole Blood.

    PubMed

    Park, Jong Eun; Kim, Ji Youn; Yun, Sun Ae; Lee, Myoung Keun; Huh, Hee Jae; Kim, Jong Won; Ki, Chang Seok

    2016-11-01

    Standardized cytomegalovirus (CMV) DNA quantification is important for managing CMV disease. We evaluated the performance of the Real-Q CMV Quantification Kit (Real-Q assay; BioSewoom, Korea) using whole blood (WB), with nucleic acid extraction using MagNA Pure 96 (Roche Diagnostics, Germany). Real-time PCR was performed on two platforms: the 7500 Fast real-time PCR (7500 Fast; Applied Biosystems, USA) and CFX96 real-time PCR detection (CFX96; Bio-Rad, USA) systems. The WHO international standard, diluted with CMV-negative WB, was used to validate the analytical performance. We used 90 WB clinical samples for comparison with the artus CMV RG PCR kit (artus assay; Qiagen, Germany). Limits of detections (LODs) in 7500 Fast and CFX96 were 367 and 479 IU/mL, respectively. The assay was linear from the LOD to 10⁶ IU/mL (R² ≥0.9886). The conversion factors from copies to IU in 7500 Fast and CFX96 were 0.95 and 1.06, respectively. Compared with the artus assay, for values <1,000 copies/mL, 100% of the samples had a variation <0.7 log₁₀ copies/mL; >1,000 copies/mL, 73.3% and 80.6% of samples in 7500 Fast and CFX96, respectively, had <0.5 log₁₀ copies/mL. The Real-Q assay is useful for quantifying CMV in WB with the two real-time PCR platforms.

  3. Human Performance and Biosystems (Spring Review)

    DTIC Science & Technology

    2014-03-01

    public release; distribution is unlimited Areas of Emphasis Biofilms/Nanowires – microbe communication, extracellular electron transfer, cyborg ...Artificial Photosynthesis • Algal oil generation • Biofilm, Nanowires, Cyborg Cell • tDCS • Biomarkers 5 Distribution A: Approved for public...release; distribution is unlimited Program Interactions BRI magnetic navigation Microbes/nanowires tDCS/ Cyborg cell Synthetic Biology

  4. The Value of Career ePortfolios on Job Applicant Performance: Using Data to Determine Effectiveness

    ERIC Educational Resources Information Center

    Ring, Gail L.; Waugaman, Chelsea; Brackett, Bob

    2017-01-01

    This research project investigated how the development of an ePortfolio, combined with ePortfolio pedagogies, impacted the interview performance of undergraduate students as they prepared to enter the job market. Participants were students in the Health Sciences and Biosystems Engineering programs at Clemson University, enrolled in…

  5. A sensitive and innovative detection method for rapid C-reactive proteins analysis based on a micro-fluxgate sensor system

    PubMed Central

    Yang, Zhen; Zhi, Shaotao; Feng, Zhu; Lei, Chong; Zhou, Yong

    2018-01-01

    A sensitive and innovative assay system based on a micro-MEMS-fluxgate sensor and immunomagnetic beads-labels was developed for the rapid analysis of C-reactive proteins (CRP). The fluxgate sensor presented in this study was fabricated through standard micro-electro-mechanical system technology. A multi-loop magnetic core made of Fe-based amorphous ribbon was employed as the sensing element, and 3-D solenoid copper coils were used to control the sensing core. Antibody-conjugated immunomagnetic microbeads were strategically utilized as signal tags to label the CRP via the specific conjugation of CRP to polyclonal CRP antibodies. Separate Au film substrates were applied as immunoplatforms to immobilize CRP-beads labels through classical sandwich assays. Detection and quantification of the CRP at different concentrations were implemented by detecting the stray field of CRP labeled magnetic beads using the newly-developed micro-fluxgate sensor. The resulting system exhibited the required sensitivity, stability, reproducibility, and selectivity. A detection limit as low as 0.002 μg/mL CRP with a linearity range from 0.002 μg/mL to 10 μg/mL was achieved, and this suggested that the proposed biosystem possesses high sensitivity. In addition to the extremely low detection limit, the proposed method can be easily manipulated and possesses a quick response time. The response time of our sensor was less than 5 s, and the entire detection period for CRP analysis can be completed in less than 30 min using the current method. Given the detection performance and other advantages such as miniaturization, excellent stability and specificity, the proposed biosensor can be considered as a potential candidate for the rapid analysis of CRP, especially for point-of-care platforms. PMID:29601593

  6. General Formalism of Decision Making Based on Theory of Open Quantum Systems

    NASA Astrophysics Data System (ADS)

    Asano, M.; Ohya, M.; Basieva, I.; Khrennikov, A.

    2013-01-01

    We present the general formalism of decision making which is based on the theory of open quantum systems. A person (decision maker), say Alice, is considered as a quantum-like system, i.e., a system which information processing follows the laws of quantum information theory. To make decision, Alice interacts with a huge mental bath. Depending on context of decision making this bath can include her social environment, mass media (TV, newspapers, INTERNET), and memory. Dynamics of an ensemble of such Alices is described by Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation. We speculate that in the processes of evolution biosystems (especially human beings) designed such "mental Hamiltonians" and GKSL-operators that any solution of the corresponding GKSL-equation stabilizes to a diagonal density operator (In the basis of decision making.) This limiting density operator describes population in which all superpositions of possible decisions has already been resolved. In principle, this approach can be used for the prediction of the distribution of possible decisions in human populations.

  7. A least-squares parameter estimation algorithm for switched hammerstein systems with applications to the VOR

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Kearney, Robert E.; Galiana, Henrietta L.

    2005-01-01

    A "Multimode" or "switched" system is one that switches between various modes of operation. When a switch occurs from one mode to another, a discontinuity may result followed by a smooth evolution under the new regime. Characterizing the switching behavior of these systems is not well understood and, therefore, identification of multimode systems typically requires a preprocessing step to classify the observed data according to a mode of operation. A further consequence of the switched nature of these systems is that data available for parameter estimation of any subsystem may be inadequate. As such, identification and parameter estimation of multimode systems remains an unresolved problem. In this paper, we 1) show that the NARMAX model structure can be used to describe the impulsive-smooth behavior of switched systems, 2) propose a modified extended least squares (MELS) algorithm to estimate the coefficients of such models, and 3) demonstrate its applicability to simulated and real data from the Vestibulo-Ocular Reflex (VOR). The approach will also allow the identification of other nonlinear bio-systems, suspected of containing "hard" nonlinearities.

  8. A Hypothesis: Life Initiated from Two Genes, as Deduced from the RNA World Hypothesis and the Characteristics of Life-Like Systems

    PubMed Central

    Kawamura, Kunio

    2016-01-01

    RNA played a central role in the emergence of the first life-like system on primitive Earth since RNA molecules contain both genetic information and catalytic activity. However, there are several drawbacks regarding the RNA world hypothesis. Here, I briefly discuss the feasibility of the RNA world hypothesis to deduce the RNA functions that are essential for forming a life-like system. At the same time, I have conducted a conceptual analysis of the characteristics of biosystems as a useful approach to deduce a realistic life-like system in relation to the definition of life. For instance, an RNA-based life-like system should possess enough stability to resist environmental perturbations, by developing a cell-like compartment, for instance. Here, a conceptual viewpoint is summarized to provide a realistic life-like system that is compatible with the primitive Earth environment and the capabilities of RNA molecules. According to the empirical and conceptual analysis, I propose the hypothesis that the first life-like system could have initiated from only two genes. PMID:27490571

  9. Creation of Two-Particle Entanglement in Open Macroscopic Quantum Systems

    DOE PAGES

    Merkli, M.; Berman, G. P.; Borgonovi, F.; ...

    2012-01-01

    We considermore » an open quantum system of N not directly interacting spins (qubits) in contact with both local and collective thermal environments. The qubit-environment interactions are energy conserving. We trace out the variables of the thermal environments and N − 2 qubits to obtain the time-dependent reduced density matrix for two arbitrary qubits. We numerically simulate the reduced dynamics and the creation of entanglement (concurrence) as a function of the parameters of the thermal environments and the number of qubits, N . Our results demonstrate that the two-qubit entanglement generally decreases as N increases. We show analytically that, in the limit N → ∞ , no entanglement can be created. This indicates that collective thermal environments cannot create two-qubit entanglement when many qubits are located within a region of the size of the environment coherence length. We discuss possible relevance of our consideration to recent quantum information devices and biosystems.« less

  10. Automated Sanger Analysis Pipeline (ASAP): A Tool for Rapidly Analyzing Sanger Sequencing Data with Minimum User Interference.

    PubMed

    Singh, Aditya; Bhatia, Prateek

    2016-12-01

    Sanger sequencing platforms, such as applied biosystems instruments, generate chromatogram files. Generally, for 1 region of a sequence, we use both forward and reverse primers to sequence that area, in that way, we have 2 sequences that need to be aligned and a consensus generated before mutation detection studies. This work is cumbersome and takes time, especially if the gene is large with many exons. Hence, we devised a rapid automated command system to filter, build, and align consensus sequences and also optionally extract exonic regions, translate them in all frames, and perform an amino acid alignment starting from raw sequence data within a very short time. In full capabilities of Automated Mutation Analysis Pipeline (ASAP), it is able to read "*.ab1" chromatogram files through command line interface, convert it to the FASTQ format, trim the low-quality regions, reverse-complement the reverse sequence, create a consensus sequence, extract the exonic regions using a reference exonic sequence, translate the sequence in all frames, and align the nucleic acid and amino acid sequences to reference nucleic acid and amino acid sequences, respectively. All files are created and can be used for further analysis. ASAP is available as Python 3.x executable at https://github.com/aditya-88/ASAP. The version described in this paper is 0.28.

  11. Quantitation of tacrolimus in whole blood using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS).

    PubMed

    Donaldson, Keri J; Shaw, Leslie M

    2010-01-01

    We describe a multiple reaction monitoring positive ion HPLC/tandem mass spectrometric method for quantification of tacrolimus in human whole blood with online extraction and cleanup. Included in this procedure: API 2000 triple quadrupole mass spectrometer with turbo-ion spray source (Applied Biosystems, Foster City, CA); 10-port diverter/switching valve (Valco, Houston, TX); HPLC system (Agilent Technologies series 1100, Wilmington, DE); 10 mm (C(18)) guard cartridge (Perkin Elmer, Norwalk, CT) used as an extraction column; a Nova-Pak C18 analytical column (2.1 x 150 mm I.D., 4 microm, Waters Corp, Milford, MA); washing solution, methanol: 30 mM ammonium acetate pH 5.1 (80:20); eluting solution, methanol:30 mM ammonium acetate pH 5.1 (97:3); flow rate 0.8 mL/min; and a run-time of 2.8 min. The first and third quadrupoles were set to detect the ammonium adduct ion and a high mass fragment of tacrolimus (m/z 821.5-->768.3), and of an internal standard (ascomycin) (m/z 901.8-->834.4). The lower limit of quantification of this method is 3.75 mg/L. The concentration of drug is determined by comparing peak-area ratios for tacrolimus and internal standard to a standard curve constructed using non-weighted linear through zero regression.

  12. Paternity testing in case of brother-sister incest.

    PubMed

    Macan, Marijana; Uvodić, Petra; Botica, Vladimir

    2003-06-01

    We performed a paternity test in a case of incest between brother and sister. DNA from blood samples of the alleged parents and their two children was obtained with Chelex DNA extraction method and quantified with Applied Biosystems QuantiBlot quantitation kit. Polymerase chain reaction (PCR) amplification of DNA samples was performed with AmpFlSTR SGM Plus PCR amplification kit and GenePrint PowerPlex PCR amplification kit. The amplified products were separated and detected by using the Perkin Elmer's ABI PRISM trade mark 310 Genetic Analyser. DNA and data analysis of 17 loci and Amelogenin confirmed the suspicion of brother-sister incest. Since both children had inherited all of the obligate alleles from the alleged father, we could confirm with certainty of 99.999999% that the oldest brother in the family was the biological father of both children. Calculated data showed that even in a case of brother-sister incest, paternity could be proved by the analysis of Amelogenin and 17 DNA loci.

  13. A pneumatic device for rapid loading of DNA sequencing gels.

    PubMed

    Panussis, D A; Cook, M W; Rifkin, L L; Snider, J E; Strong, J T; McGrane, R M; Wilson, R K; Mardis, E R

    1998-05-01

    This work describes the design and construction of a device that facilitates the loading of DNA samples onto polyacrylamide gels for detection in the Perkin Elmer/Applied Biosystems (PE/ABI) 373 and 377 DNA sequencing instruments. The device is mounted onto the existing gel cassettes and makes the process of loading high-density gels less cumbersome while the associated time and errors are reduced. The principle of operation includes the simultaneous transfer of the entire batch of samples, in which a spring-loaded air cylinder generates positive pressure and flexible silica capillaries transfer the samples. A retractable capillary array carrier allows the delivery ends of the capillaries to be held up clear of the gel during loader attachment on the gel plates, while enabling their insertion in the gel wells once the device is securely mounted. Gel-loading devices capable of simultaneously transferring 72 samples onto the PE/ABI 373 and 377 are currently being used in our production sequencing groups while a 96-sample transfer prototype undergoes testing.

  14. STR-typing of ancient skeletal remains: which multiplex-PCR kit is the best?

    PubMed Central

    Harder, Melanie; Renneberg, Rebecca; Meyer, Patrick; Krause-Kyora, Ben; von Wurmb-Schwark, Nicole

    2012-01-01

    Aim To comparatively test nine commercially available short tandem repeat (STR)-multiplex kits (PowerPlex 16, 16HS, ES, ESI17, ESX17, S5 [all Promega]; AmpFiSTR Identifiler, NGM and SEfiler [all Applied Biosystems]) for their efficiency and applicability to analyze ancient and thus highly degraded DNA samples. Methods Fifteen human skeletal remains from the late medieval age were obtained and analyzed using the nine polymerase chain reaction assays with slightly modified protocols. Data were systematically compared to find the most meaningful and sensitive assay. Results The ESI, ESX, and NGM kits showed the best overall results regarding amplification success, detection rate, identification of heterozygous alleles, sex determination, and reproducibility of the obtained data. Conclusion Since application of these three kits enables the employment of different primer sequences for all the investigated amplicons, a combined application is recommended for best possible and – most importantly – reliable genetic analysis of ancient skeletal material or otherwise highly degraded samples, eg, from forensic cases. PMID:23100203

  15. Analysis of amadori-glycated phosphatidylethanolamine in the plasma of healthy subjects and diabetic patients by liquid chromatography-tandem mass spectrometry.

    PubMed

    Miyazawa, Teruo; Ibusuki, Daigo; Yamashita, Shinji; Nakagawa, Kiyotaka

    2008-04-01

    Peroxidized phospholipid-mediated cytotoxity, the abnormal increase in the levels of phosphatidylcholine hydroperoxide (PCOOH) found in the plasma of type 2 diabetic patients, is involved in the pathophysiology of many diseases. PCOOH accumulation may be related to Amadori-glycated phosphatidylethanolamine (deoxy-D-fructosyl PE, or Amadori-PE) because Amadori-PE causes oxidative stress. However, the occurrence of lipid glycation products, including Amadori-PE, in vivo remains unclear. We developed a method to analyze Amadori-PE by using quadrupole/linear ion-trap mass spectrometry, the Applied Biosystems 4000 Q TRAP. We found that pyridoxals could easily be condensed with PE before the glucose-PE reaction occurred. The PE-pyridoxal 5'-phosphate adduct was detectable in human red blood cells, and the increased plasma Amadori-PE concentration in streptozotocin-induced diabetic rats was decreased by dietary supplementation with pyridoxal 5'-phosphate. Therefore, it is likely that pyridoxal 5'-phosphate acts as a lipid glycation inhibitor in vivo, and this may contribute to diabetes prevention.

  16. A Free Accessible Individual-Based Simulator Enabling Virtual Experiments on Soil Organic Matter Processes in Classroom

    ERIC Educational Resources Information Center

    Gras, Anna; Cañadas, Juan Carlos; Ginovart, Marta

    2013-01-01

    This work addresses and aims to fulfill a very clear need in teaching biosystem engineering. When introducing students to the complexity of soil processes, one of the frustrations that teachers often experience is the impossibility to demonstrate practically, in the lab, some of the concepts and processes discussed in class. Either the experiments…

  17. Linking First-Year and Senior Engineering Design Teams: Engaging Early Academic Career Students in Engineering Design

    ERIC Educational Resources Information Center

    Fox, Garey A.; Weckler, Paul; Thomas, Dan

    2015-01-01

    In Biosystems Engineering at Oklahoma State University, senior design is a two semester course in which students work on real-world projects provided by clients. First-year (freshmen and trans­fer) students enroll in an introductory engineering course. Historically, these students worked on a team-based analysis project, and the engineering design…

  18. Greenhouse gas (GHG) emission in organic farming. Approximate quantification of its generation at the organic garden of the School of Agricultural, Food and Biosystems Engineering (ETSIAAB) in the Technical University of Madrid (UPM)

    NASA Astrophysics Data System (ADS)

    Campos, Jorge; Barbado, Elena; Maldonado, Mariano; Andreu, Gemma; López de Fuentes, Pilar

    2016-04-01

    As it well-known, agricultural soil fertilization increases the rate of greenhouse gas (GHG) emission production such as CO2, CH4 and N2O. Participation share of this activity on the climate change is currently under study, as well as the mitigation possibilities. In this context, we considered that it would be interesting to know how this share is in the case of organic farming. In relation to this, a field experiment was carried out at the organic garden of the School of Agricultural, Food and Biosystems Engineering (ETSIAAB) in the Technical University of Madrid (UPM). The orchard included different management growing areas, corresponding to different schools of organic farming. Soil and gas samples were taken from these different sites. Gas samples were collected throughout the growing season from an accumulated atmosphere inside static chambers inserted into the soil. Then, these samples were carried to the laboratory and there analyzed. The results obtained allow knowing approximately how ecological fertilization contributes to air pollution due to greenhouse gases.

  19. Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields.

    PubMed

    Lagardère, Louis; Jolly, Luc-Henri; Lipparini, Filippo; Aviat, Félix; Stamm, Benjamin; Jing, Zhifeng F; Harger, Matthew; Torabifard, Hedieh; Cisneros, G Andrés; Schnieders, Michael J; Gresh, Nohad; Maday, Yvon; Ren, Pengyu Y; Ponder, Jay W; Piquemal, Jean-Philip

    2018-01-28

    We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over a single-core computation is observed for the largest systems. The extension of the present CPU implementation of Tinker-HP to other computational platforms is discussed.

  20. Development and inter-laboratory validation of unlabeled probe melting curve analysis for detection of JAK2 V617F mutation in polycythemia vera.

    PubMed

    Wu, Zhiyuan; Yuan, Hong; Zhang, Xinju; Liu, Weiwei; Xu, Jinhua; Zhang, Wei; Guan, Ming

    2011-01-01

    JAK2 V617F, a somatic point mutation that leads to constitutive JAK2 phosphorylation and kinase activation, has been incorporated into the WHO classification and diagnostic criteria of myeloid neoplasms. Although various approaches such as restriction fragment length polymorphism, amplification refractory mutation system and real-time PCR have been developed for its detection, a generic rapid closed-tube method, which can be utilized on routine genetic testing instruments with stability and cost-efficiency, has not been described. Asymmetric PCR for detection of JAK2 V617F with a 3'-blocked unlabeled probe, saturate dye and subsequent melting curve analysis was performed on a Rotor-Gene® Q real-time cycler to establish the methodology. We compared this method to the existing amplification refractory mutation systems and direct sequencing. Hereafter, the broad applicability of this unlabeled probe melting method was also validated on three diverse real-time systems (Roche LightCycler® 480, Applied Biosystems ABI® 7500 and Eppendorf Mastercycler® ep realplex) in two different laboratories. The unlabeled probe melting analysis could genotype JAK2 V617F mutation explicitly with a 3% mutation load detecting sensitivity. At level of 5% mutation load, the intra- and inter-assay CVs of probe-DNA heteroduplex (mutation/wild type) covered 3.14%/3.55% and 1.72%/1.29% respectively. The method could equally discriminate mutant from wild type samples on the other three real-time instruments. With a high detecting sensitivity, unlabeled probe melting curve analysis is more applicable to disclose JAK2 V617F mutation than conventional methodologies. Verified with the favorable inter- and intra-assay reproducibility, unlabeled probe melting analysis provided a generic mutation detecting alternative for real-time instruments.

  1. Compartmentalized microchannel array for high-throughput analysis of single cell polarized growth and dynamics

    DOE PAGES

    Geng, Tao; Bredeweg, Erin L.; Szymanski, Craig J.; ...

    2015-11-04

    Here, interrogating polarized growth is technologically challenging due to extensive cellular branching and uncontrollable environmental conditions in conventional assays. Here we present a robust and high-performance microfluidic system that enables observations of polarized growth with enhanced temporal and spatial control over prolonged periods. The system has built-in tunability and versatility to accommodate a variety of science applications requiring precisely controlled environments. Using the model filamentous fungus, Neurospora crassa, this microfluidic system enabled direct visualization and analysis of cellular heterogeneity in a clonal fungal cell population, nuclear distribution and dynamics at the subhyphal level, and quantitative dynamics of gene expression withmore » single hyphal compartment resolution in response to carbon source starvation and exchange experiments. Although the microfluidic device is demonstrated on filamentous fungi, our technology is immediately extensible to a wide array of other biosystems that exhibit similar polarized cell growth with applications ranging from bioenergy production to human health.« less

  2. The role of fractional calculus in modeling biological phenomena: A review

    NASA Astrophysics Data System (ADS)

    Ionescu, C.; Lopes, A.; Copot, D.; Machado, J. A. T.; Bates, J. H. T.

    2017-10-01

    This review provides the latest developments and trends in the application of fractional calculus (FC) in biomedicine and biology. Nature has often showed to follow rather simple rules that lead to the emergence of complex phenomena as a result. Of these, the paper addresses the properties in respiratory lung tissue, whose natural solutions arise from the midst of FC in the form of non-integer differ-integral solutions and non-integer parametric models. Diffusion of substances in human body, e.g. drug diffusion, is also a phenomena well known to be captured with such mathematical models. FC has been employed in neuroscience to characterize the generation of action potentials and spiking patters but also in characterizing bio-systems (e.g. vegetable tissues). Despite the natural complexity, biological systems belong as well to this class of systems, where FC has offered parsimonious yet accurate models. This review paper is a collection of results and literature reports who are essential to any versed engineer with multidisciplinary applications and bio-medical in particular.

  3. Free Energy Reconstruction from Logarithmic Mean-Force Dynamics Using Multiple Nonequilibrium Trajectories.

    PubMed

    Morishita, Tetsuya; Yonezawa, Yasushige; Ito, Atsushi M

    2017-07-11

    Efficient and reliable estimation of the mean force (MF), the derivatives of the free energy with respect to a set of collective variables (CVs), has been a challenging problem because free energy differences are often computed by integrating the MF. Among various methods for computing free energy differences, logarithmic mean-force dynamics (LogMFD) [ Morishita et al., Phys. Rev. E 2012 , 85 , 066702 ] invokes the conservation law in classical mechanics to integrate the MF, which allows us to estimate the free energy profile along the CVs on-the-fly. Here, we present a method called parallel dynamics, which improves the estimation of the MF by employing multiple replicas of the system and is straightforwardly incorporated in LogMFD or a related method. In the parallel dynamics, the MF is evaluated by a nonequilibrium path-ensemble using the multiple replicas based on the Crooks-Jarzynski nonequilibrium work relation. Thanks to the Crooks relation, realizing full-equilibrium states is no longer mandatory for estimating the MF. Additionally, sampling in the hidden subspace orthogonal to the CV space is highly improved with appropriate weights for each metastable state (if any), which is hardly achievable by typical free energy computational methods. We illustrate how to implement parallel dynamics by combining it with LogMFD, which we call logarithmic parallel dynamics (LogPD). Biosystems of alanine dipeptide and adenylate kinase in explicit water are employed as benchmark systems to which LogPD is applied to demonstrate the effect of multiple replicas on the accuracy and efficiency in estimating the free energy profiles using parallel dynamics.

  4. Quantum formalism as an optimisation procedure of information flows for physical and biological systems.

    PubMed

    Baladrón, Carlos; Khrennikov, Andrei

    2016-12-01

    The similarities between biological and physical systems as respectively defined in quantum information biology (QIB) and in a Darwinian approach to quantum mechanics (DAQM) have been analysed. In both theories the processing of information is a central feature characterising the systems. The analysis highlights a mutual support on the thesis contended by each theory. On the one hand, DAQM provides a physical basis that might explain the key role played by quantum information at the macroscopic level for bio-systems in QIB. On the other hand, QIB offers the possibility, acting as a macroscopic testing ground, to analyse the emergence of quantumness from classicality in the terms held by DAQM. As an added result of the comparison, a tentative definition of quantum information in terms of classical information flows has been proposed. The quantum formalism would appear from this comparative analysis between QIB and DAQM as an optimal information scheme that would maximise the stability of biological and physical systems at any scale. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Remote sensing investigations of wetland biomass and productivity for global biosystems research

    NASA Technical Reports Server (NTRS)

    Harkisky, M.; Klemas, V.

    1983-01-01

    Monitoring biomass of wetlands ecosystems can provide information on net primary production and on the chemical and physical status of wetland soils relative to anaerobic microbial transformation of key elements. Multispectral remote sensing techniques successfully estimated macrophytic biomass in wetlands systems. Regression models developed from ground spectral data for predicting Spartina alterniflora biomass over an entire growing season include seasonal variations in biomass density and illumination intensity. An independent set of biomass and spectral data were collected and the standing crop biomass and net primary productivity were estimated. The improved spatial, radiometric and spectral resolution of th LANDSAT-4 Thematic Mapper over the LANDSAT MSS can greatly enhance multispectral techniques for estimating wetlands biomass over large areas. These techniques can provide the biomass data necessary for global ecology studies.

  6. PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities

    PubMed Central

    2011-01-01

    Background Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS) that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. Results The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. Conclusions PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/. PMID:21385349

  7. Studying dissolved organic carbon export from the Penobscot Watershed in to Gulf of Maine using Regional Hydro-Ecological Simulation System (RHESSys)

    NASA Astrophysics Data System (ADS)

    Rouhani, S. F. B. B.; Schaaf, C.; Douglas, E. M.; Choate, J. S.; Yang, Y.; Kim, J.

    2014-12-01

    The movement of Dissolved Organic Carbon (DOC) from terrestrial system into aquatic system plays an important role for carbon sequestration in ecosystems and affects the formation of soil organic matters.Carbon cycling, storage, and transport to marine systems have become critical issues in global-change science, especially with regard to northern latitudes (Freeman et al., 2001; Benner et al., 2004). DOC, as an important composition of the carbon cycling, leaches from the terrestrial watersheds is a large source of marine DOC. The Penobscot River basin in north-central Maine is the second largest watershed in New England, which drains in to Gulf of Maine. Approximately 89% of the watershed is forested (Griffith and Alerich, 1996).Studying temporal and spatial changes in DOC export can help us to understand terrestrial carbon cycling and to detect any shifts from carbon sink to carbon source or visa versa in northern latitude forested ecosystems.Despite for the importance of understanding carbon cycling in terrestrial and aquatic biogeochemistry, the Doc export, especially the combination of DOC production from bio-system and DOC transportation from the terrestrial in to stream has been lightly discussed in most conceptual or numerical models. The Regional Hydro-Ecological Simulation System (RHESSys), which has been successfully applied in many study sites, is a physical process based terrestrial model that has the ability to simulate both the source and transportation of DOC by combining both hydrological and ecological processes. The focus of this study is on simulating the DOC concentration and flux from the land to the water using RHESSys in the Penobscot watershed. The simulated results will be compared with field measurement of DOC from the watershed to explore the spatial and temporal DOC export pattern. This study will also enhance our knowledge to select sampling locations properly and also improve our understanding on DOC production and transportation in terrestrial forest ecosystem.

  8. Evaluation of the Neuroactivity of ToxCast Compounds Using Multi-well Microelectrode Array Recordings in Primary Cortical Neurons

    EPA Science Inventory

    Evaluation of the Neuroactivity of ToxCast Compounds Using Multi-well Microelectrode Array Recordings in Primary Cortical Neurons P Valdivia1, M Martin2, WR LeFew3, D Hall3, J Ross1, K Houck2 and TJ Shafer3 1Axion Biosystems, Atlanta GA and 2NCCT, 3ISTD, NHEERL, ORD, US EPA, RT...

  9. National Nanotechnology Initiative: The Initiative and Its Implementation Plan

    DTIC Science & Technology

    2000-07-01

    precisely controlled size and composition and then to assemble them into larger structures with unique properties and functions will revolutionize...thousand pounds could be stripped from a pilotless fighter aircraft , resulting in longer missions, and fighter agility could be dramatically improved...societal impact: $12 million. e. Major themes and new programs in FY 2001 include : • Nano-biotechnology: biosystems, bio-mimetics and composites (priority

  10. Informational Closed-Loop Coding-Decoding Control Concept as the Base of the Living or Organized Systems Theory

    NASA Astrophysics Data System (ADS)

    Kirvelis, Dobilas; Beitas, Kastytis

    2008-10-01

    The aim of this work is to show that the essence of life and living systems is their organization as bioinformational technology on the base of informational anticipatory control. Principal paradigmatic and structural schemes of functional organization of life (organisms and their systems) are constructed on the basis of systemic analysis and synthesis of main phenomenological features of living world. Life is based on functional elements that implement engineering procedures of closed-loop coding-decoding control (CL-CDC). Phenomenon of natural bioinformational control appeared and developed on the Earth 3-4 bln years ago, when the life originated as a result of chemical and later biological evolution. Informatics paradigm considers the physical and chemical transformations of energy and matter in organized systems as flows that are controlled and the signals as means for purposive informational control programs. The social and technical technological systems as informational control systems are a latter phenomenon engineered by man. The information emerges in organized systems as a necessary component of control technology. Generalized schemes of functional organization on levels of cell, organism and brain neocortex, as the highest biosystem with CL-CDC, are presented. CL-CDC concept expands the understanding of bioinformatics.

  11. A DNA-based pattern classifier with in vitro learning and associative recall for genomic characterization and biosensing without explicit sequence knowledge.

    PubMed

    Lee, Ju Seok; Chen, Junghuei; Deaton, Russell; Kim, Jin-Woo

    2014-01-01

    Genetic material extracted from in situ microbial communities has high promise as an indicator of biological system status. However, the challenge is to access genomic information from all organisms at the population or community scale to monitor the biosystem's state. Hence, there is a need for a better diagnostic tool that provides a holistic view of a biosystem's genomic status. Here, we introduce an in vitro methodology for genomic pattern classification of biological samples that taps large amounts of genetic information from all genes present and uses that information to detect changes in genomic patterns and classify them. We developed a biosensing protocol, termed Biological Memory, that has in vitro computational capabilities to "learn" and "store" genomic sequence information directly from genomic samples without knowledge of their explicit sequences, and that discovers differences in vitro between previously unknown inputs and learned memory molecules. The Memory protocol was designed and optimized based upon (1) common in vitro recombinant DNA operations using 20-base random probes, including polymerization, nuclease digestion, and magnetic bead separation, to capture a snapshot of the genomic state of a biological sample as a DNA memory and (2) the thermal stability of DNA duplexes between new input and the memory to detect similarities and differences. For efficient read out, a microarray was used as an output method. When the microarray-based Memory protocol was implemented to test its capability and sensitivity using genomic DNA from two model bacterial strains, i.e., Escherichia coli K12 and Bacillus subtilis, results indicate that the Memory protocol can "learn" input DNA, "recall" similar DNA, differentiate between dissimilar DNA, and detect relatively small concentration differences in samples. This study demonstrated not only the in vitro information processing capabilities of DNA, but also its promise as a genomic pattern classifier that could access information from all organisms in a biological system without explicit genomic information. The Memory protocol has high potential for many applications, including in situ biomonitoring of ecosystems, screening for diseases, biosensing of pathological features in water and food supplies, and non-biological information processing of memory devices, among many.

  12. Atypical Opioid Mechanisms of Control of Injury-Induced Cutaneous Pain by Delta Receptors

    DTIC Science & Technology

    2016-07-01

    treat, and current opioids (i.e. mu opioid receptor agonists such as morphine) cause unacceptable side effects including addiction . Injuries suffered...treat, and current opioids that act on mu opioid receptors such as morphine generate significant side effects including addiction . War-related...slides. Slides were then processed for fluorescent in situ hybridization with RNAscope technology (ACD Biosystems) to detect Oprd1 mRNA, as described

  13. Photodegradation of major soil microbial biomolecules is comparable to biodegradation: Insights from infrared and diffusion editing NMR spectroscopies

    NASA Astrophysics Data System (ADS)

    Spence, Adrian; Kelleher, Brian P.

    2016-03-01

    As a primary decomposition process in terrestrial biosystems, biodegradation has been extensively studied with regard to its impact on soil organic matter transformation. However, the biotransformation of soil microbial biomass (a primary source of soil organic carbon) remains poorly understood, and even less is known about the fate of microbial-derived carbon under photodegradation. Here, we combine infrared and diffusion editing NMR spectroscopies to provide molecular-level information on the photodegradation of major biochemical components in soil microbial biomass and leachates over time. Results indicate a considerable enrichment in aliphatic components, presumably polymethylenic-C [(C-H2)n] and the simultaneous loss of carbohydrate and protein structures in the biomass. An immediate conclusion is that photodegradation increased the conversion of macromolecular carbohydrates and proteins to smaller components. However, further analysis reveals that macromolecular carbohydrates and proteins may be more resistant to photodegradation than initially thought and are found in the leachates. Although attenuated, there is also evidence to suggest that some aliphatic structures persist in the leachates. Overall, the photodegradation pathway reported here is remarkably similar to that of biodegradation, suggesting that under rapidly expanding anthropogenic land disturbances, photodegradation could be an important driver of the transformation of microbial-derived organic matter in terrestrial biosystems.

  14. The Asp(327)Asn polymorphism in the sex hormone-binding globulin gene modifies the association of soy food and tea intake with endometrial cancer risk.

    PubMed

    Xu, Wang Hong; Zheng, Wei; Cai, Qiuyin; Cheng, Jia-Rong; Cai, Hui; Xiang, Yong-Bing; Shu, Xiao Ou

    2008-01-01

    We evaluated the interactive effect of polymorphisms in the sex hormone-binding globulin (SHBG) gene with soy isoflavones, tea consumption, and dietary fiber on endometrial cancer risk in a population-based, case-control study of 1,199 endometrial cancer patients and 1,212 controls. Genotyping of polymorphisms was performed by using TaqMan (Applied Biosystems, Foster City, CA) assays (rs6259) or the Affymetrix MegAllele Targeted Genotyping System (Affymetrix, Inc., US) (rs13894, rs858521, and rs2955617). Dietary information was obtained using a validated food frequency questionnaire. A logistic regression model was employed to compute adjusted odds ratios (ORs) and 95% confidence intervals (CIs). We found that the Asp(327)Asn (rs6259) polymorphism was associated with decreased risk of endometrial cancer, particularly among postmenopausal women (OR = 0.79, 95% CI = 0.62-1.00). This single nucleotide polymorphism (SNP) modified associations of soy isoflavones and tea consumption but not fiber intake with endometrial cancer, with the inverse association of soy intake and tea consumption being more evident for those with the Asp/Asp genotype of the SHBG gene at Asp(327)Asn (rs6259), particularly premenopausal women (P(interaction) = 0.06 and 0.02, respectively, for soy isoflavones and tea intake). This study suggests that gene-diet interaction may play an important role in the etiology of endometrial cancer risk.

  15. Genetic variation in Tanis was associated with elevating plasma triglyceride level in Chinese nondiabetic subjects

    PubMed Central

    2013-01-01

    Background The association of genetic polymorphisms of Tanis with triglyceride concentration in human has not been thoroughly examined. We aimed to investigate the relationship between triglyceride concentrations and Tanis genetic polymorphisms. Methods All participants (n=1497) selected from subjects participating in the Cardiovascular Risk Survey (CRS) study were divided into two groups according to ethnicity (Han: n=1059; Uygur: n= 438). Four tagging SNPs (rs12910524, rs1384565, rs2101171, rs4965814) of Tanis gene were genotyped using TaqMan® assays from Applied Biosystems following the manufacturer’s suggestions and analyzed in an ABI 7900HT Fast Real-Time PCR System. Results We found that the SNP rs12910524 was associated with triglyceride levels by analyses of a dominant model (P<0.001), recessive model (P <0.001) and additive model (P < 0.001) not only in Han ethnic but also in Uygur ethnic group, and the difference remained significant after the adjustment of sex, age, alcohol intake, smoking, BMI and plasma glucose (GLU) level (All P < 0.001). However, this relationship was not observed in rs1384565, rs2101171, and rs4965814 before and after multivariate adjustment (All P > 0.05). Furthermore, there were significant interactions between rs12910524 and GLU on TG both in Han (P=0.001) and Uygur population (P=2.60×10-4). Conclusion Our results indicated that the rs12910524 in the Tanis gene was associated with triglyceride concentrations in subjects without diabetes in China. PMID:23829426

  16. Highly efficient nuclear DNA typing of the World War II skeletal remains using three new autosomal short tandem repeat amplification kits with the extended European Standard Set of loci

    PubMed Central

    Zupanič Pajnič, Irena; Gornjak Pogorelc, Barbara; Balažic, Jože; Zupanc, Tomaž; Štefanič, Borut

    2012-01-01

    Aim To perform an efficiency study of three new amplification kits with the extended European Standard Set (ESS) of loci for autosomal short tandem repeat (STR) typing of skeletal remains excavated from the World War II mass graves in Slovenia. Methods In the beginning of the 2011, we analyzed 102 bones and teeth using the PowerPlex ESX 17 System (Promega), AmpFiSTR NGM PCR Amplification Kit (Applied Biosystems), and Investigator ESSplex Kit (Qiagen). We cleaned the bones and teeth, removed surface contamination, and ground them into a powder using liquid nitrogen. Prior to DNA isolation with Biorobot EZ1 (Qiagen), 0.5 g bone or tooth powder was decalcified. Nuclear DNA of the samples was quantified using real-time polymerase chain reaction. All three kits used the same extract with the amplification conditions recommended by the manufacturers. Results We extracted up to 131 ng DNA/g of powder from the bones and teeth. All three amplification kits showed very similar efficiency, since DNA typing was successful with all amplification kits in 101 out of 102 bones and teeth, which represents a 99% success rate. Conclusion The commercially available ESX 17, ESSplex, and NGM kits are highly reliable for STR typing of World War II skeletal remains with the DNA extraction method optimized in our laboratory. PMID:22351574

  17. MOSAIK: a hash-based algorithm for accurate next-generation sequencing short-read mapping.

    PubMed

    Lee, Wan-Ping; Stromberg, Michael P; Ward, Alistair; Stewart, Chip; Garrison, Erik P; Marth, Gabor T

    2014-01-01

    MOSAIK is a stable, sensitive and open-source program for mapping second and third-generation sequencing reads to a reference genome. Uniquely among current mapping tools, MOSAIK can align reads generated by all the major sequencing technologies, including Illumina, Applied Biosystems SOLiD, Roche 454, Ion Torrent and Pacific BioSciences SMRT. Indeed, MOSAIK was the only aligner to provide consistent mappings for all the generated data (sequencing technologies, low-coverage and exome) in the 1000 Genomes Project. To provide highly accurate alignments, MOSAIK employs a hash clustering strategy coupled with the Smith-Waterman algorithm. This method is well-suited to capture mismatches as well as short insertions and deletions. To support the growing interest in larger structural variant (SV) discovery, MOSAIK provides explicit support for handling known-sequence SVs, e.g. mobile element insertions (MEIs) as well as generating outputs tailored to aid in SV discovery. All variant discovery benefits from an accurate description of the read placement confidence. To this end, MOSAIK uses a neural-network based training scheme to provide well-calibrated mapping quality scores, demonstrated by a correlation coefficient between MOSAIK assigned and actual mapping qualities greater than 0.98. In order to ensure that studies of any genome are supported, a training pipeline is provided to ensure optimal mapping quality scores for the genome under investigation. MOSAIK is multi-threaded, open source, and incorporated into our command and pipeline launcher system GKNO (http://gkno.me).

  18. MOSAIK: A Hash-Based Algorithm for Accurate Next-Generation Sequencing Short-Read Mapping

    PubMed Central

    Lee, Wan-Ping; Stromberg, Michael P.; Ward, Alistair; Stewart, Chip; Garrison, Erik P.; Marth, Gabor T.

    2014-01-01

    MOSAIK is a stable, sensitive and open-source program for mapping second and third-generation sequencing reads to a reference genome. Uniquely among current mapping tools, MOSAIK can align reads generated by all the major sequencing technologies, including Illumina, Applied Biosystems SOLiD, Roche 454, Ion Torrent and Pacific BioSciences SMRT. Indeed, MOSAIK was the only aligner to provide consistent mappings for all the generated data (sequencing technologies, low-coverage and exome) in the 1000 Genomes Project. To provide highly accurate alignments, MOSAIK employs a hash clustering strategy coupled with the Smith-Waterman algorithm. This method is well-suited to capture mismatches as well as short insertions and deletions. To support the growing interest in larger structural variant (SV) discovery, MOSAIK provides explicit support for handling known-sequence SVs, e.g. mobile element insertions (MEIs) as well as generating outputs tailored to aid in SV discovery. All variant discovery benefits from an accurate description of the read placement confidence. To this end, MOSAIK uses a neural-network based training scheme to provide well-calibrated mapping quality scores, demonstrated by a correlation coefficient between MOSAIK assigned and actual mapping qualities greater than 0.98. In order to ensure that studies of any genome are supported, a training pipeline is provided to ensure optimal mapping quality scores for the genome under investigation. MOSAIK is multi-threaded, open source, and incorporated into our command and pipeline launcher system GKNO (http://gkno.me). PMID:24599324

  19. Genetic polymorphisms variants in interleukin-6 and interleukin-1beta patients with obstructive sleep apnea syndrome in East Northern Turkey.

    PubMed

    Gok, Ilhami; Huseyinoglu, Nergiz; Ilhan, Dogan

    2015-08-01

    To investigate the relationship of IL-1β and IL-6 cytokine gene polymorphisms with obstructive sleep apnea syndrome (OSAS) in 61 patients admitted to the neurology clinic in Kafkas University Hospital with insomnia problem who were diagnosed with OSAS in sleeping labs, and 80 healthy subjects not associated with the syndrome. METHODS :Blood samples were taken to isolate DNA from patients diagnosed with OSAS based on polysomnography results and healthy controls. DNA amplification of the genes was performed with PCR. Amplification products were cut with the restriction enzymes in order to determine IL-1 gene (TaqI) and IL-6 gene (Lwel) polymorphisms. The cut DNA fragments were carried out in agarose gel electrophoresis, and RFLP analysis was performed by utilizing the images with gel imaging system. PCR products were sequenced with an Applied Biosystems Automated Sequencer. Polymorphic changes were observed for IL-1β gene in 26 of 62 patients (41.9%), and 16 of the 80 (25.8%) in the control group. The incidence of polymorphic changes in IL-6 gene was in seen in seven (of the 62 patients) (11.3%), and in the 16 (20%) controls. The findings on the genomic level in OSAS may provide an important contribution to diagnosis of obstructive sleep apnea syndrome in clinical practice, as well as it helps to obtain the results easily about environmental and genetic interaction of OSAS patients. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  20. System-based approach for an advanced drug delivery platform

    NASA Astrophysics Data System (ADS)

    Kulinsky, Lawrence; Xu, Han; Tsai, Han-Kuan A.; Madou, Marc

    2006-03-01

    Present study is looking at the problem of integrating drug delivery microcapsule, a bio-sensor, and a control mechanism into a biomedical drug delivery system. A wide range of medical practices from cancer therapy to gastroenterological treatments can benefit from such novel bio-system. Drug release in our drug delivery system is achieved by electrochemically actuating an array of polymeric valves on a set of drug reservoirs. The valves are bi-layer structures, made in the shape of a flap hinged on one side to a valve seat, and consisting of thin films of evaporated gold and electrochemically deposited polypyrrole (PPy). These thin PPy(DBS) bi-layer flaps cover access holes of underlying chambers micromachined in a silicon substrate. Chromium and polyimide layers are applied to implement "differential adhesion" to obtain a voltage induced deflection of the bilayer away from the drug reservoir. The Cr is an adhesion-promoting layer, which is used to strongly bind the gold layer down to the substrate, whereas the gold adheres weakly to polyimide. Drug actives (dry or wet) were pre-stored in the chambers and their release is achieved upon the application of a small bias (~ 1V). Negative voltage causes cation adsorption and volume change in PPy film. This translates into the bending of the PPy/Au bi-layer actuator and release of the drug from reservoirs. This design of the drug delivery module is miniaturized to the dimensions of 200μm valve diameter. Galvanostatic and potentiostatic PPy deposition methods were compared, and potentiostatic deposition method yields film of more uniform thickness. PPy deposition experiments with various pyrrole and NaDBS concentrations were also performed. Glucose biosensor based on glucose oxidase (GOx) embedded in the PPy matrix during elechtrochemical deposition was manufactured and successfully tested. Multiple-drug pulsatile release and continuous linear release patterns can be implemented by controlling the operation of an array of valves. Varying amounts of drugs, together with more complex controlling strategies would allow creation of more complex drug delivery patterns.

  1. Biocompatible Surface Chemistry Manipulation of Gold Nanorods Preserves Optical Properties for Bio-Imaging Applications

    DTIC Science & Technology

    2015-12-18

    3. DATES COVERED (From - To) March 2014 – Sept 2014 4. TITLE AND SUBTITLE Biocompatible surface chemistry manipulation of gold nanorods preserves...Due to their anisotropic shape, gold nanorods (GNRs) possess a number of advantages for biosystem use including, enhanced surface area and tunable...intracellular aggregation of MTAB-TA GNRs, and identify them as prime andidates for use in nanobased bio-imaging applications. 15. SUBJECT TERMS Gold

  2. Biogas recirculation for simultaneous calcium removal and biogas purification within an expanded granular sludge bed system treating leachate.

    PubMed

    Luo, Jinghuan; Lu, Xueqin; Liu, Jianyong; Qian, Guangren; Lu, Yongsheng

    2014-12-01

    Biogas, generated from an expanded granular sludge bed (EGSB) reactor treating municipal solid waste (MSW) leachate, was recirculated for calcium removal from the leachate via a carbonation process with simultaneous biogas purification. Batch trials were performed to optimize the solution pH and imported biogas (CO2) for CaCO3 precipitation. With applicable pH of 10-11 obtained, continuous trials achieved final calcium concentrations of 181-375 mg/L (removal efficiencies≈92.8-96.5%) in the leachate and methane contents of 87.1-91.4% (purification efficiencies≈65.4-82.2%) in the biogas. Calcium-balance study indicates that 23-986 mg Ca/d was released from the bio-system under the carbonized condition where CaCO3 precipitating was moved outside the bioreactor, whereas 7918-9517 mg Ca/d was trapped into the system for the controlled one. These findings demonstrate that carbonation removal of calcium by biogas recirculation could be a promising alternative to pretreat calcium-rich MSW leachate and synergistically to improve methane content. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc04531j

    PubMed Central

    Lagardère, Louis; Jolly, Luc-Henri; Lipparini, Filippo; Aviat, Félix; Stamm, Benjamin; Jing, Zhifeng F.; Harger, Matthew; Torabifard, Hedieh; Cisneros, G. Andrés; Schnieders, Michael J.; Gresh, Nohad; Maday, Yvon; Ren, Pengyu Y.; Ponder, Jay W.

    2017-01-01

    We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over a single-core computation is observed for the largest systems. The extension of the present CPU implementation of Tinker-HP to other computational platforms is discussed. PMID:29732110

  4. Quantum-Like Model for Decision Making Process in Two Players Game. A Non-Kolmogorovian Model

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Ohya, Masanori; Khrennikov, Andrei

    2011-03-01

    In experiments of games, players frequently make choices which are regarded as irrational in game theory. In papers of Khrennikov (Information Dynamics in Cognitive, Psychological and Anomalous Phenomena. Fundamental Theories of Physics, Kluwer Academic, Norwell, 2004; Fuzzy Sets Syst. 155:4-17, 2005; Biosystems 84:225-241, 2006; Found. Phys. 35(10):1655-1693, 2005; in QP-PQ Quantum Probability and White Noise Analysis, vol. XXIV, pp. 105-117, 2009), it was pointed out that statistics collected in such the experiments have "quantum-like" properties, which can not be explained in classical probability theory. In this paper, we design a simple quantum-like model describing a decision-making process in a two-players game and try to explain a mechanism of the irrational behavior of players. Finally we discuss a mathematical frame of non-Kolmogorovian system in terms of liftings (Accardi and Ohya, in Appl. Math. Optim. 39:33-59, 1999).

  5. The genetic code as a periodic table: algebraic aspects.

    PubMed

    Bashford, J D; Jarvis, P D

    2000-01-01

    The systematics of indices of physico-chemical properties of codons and amino acids across the genetic code are examined. Using a simple numerical labelling scheme for nucleic acid bases, A=(-1,0), C=(0,-1), G=(0,1), U=(1,0), data can be fitted as low order polynomials of the six coordinates in the 64-dimensional codon weight space. The work confirms and extends the recent studies by Siemion et al. (1995. BioSystems 36, 231-238) of the conformational parameters. Fundamental patterns in the data such as codon periodicities, and related harmonics and reflection symmetries, are here associated with the structure of the set of basis monomials chosen for fitting. Results are plotted using the Siemion one-step mutation ring scheme, and variants thereof. The connections between the present work, and recent studies of the genetic code structure using dynamical symmetry algebras, are pointed out.

  6. Plant response to gravity: towards a biosystems view of root gravitropism

    NASA Astrophysics Data System (ADS)

    Palme, Klaus; Volkmann, Dieter; Bennett, Malcolm J.; Gausepohl, Heinrich

    2005-10-01

    Plants are sessile organisms that originated and evolved in Earth's environment. They monitor a wide range of disparate external and internal signals and compute appropriate developmental responses. How do plant cells process these myriad signals into an appropriate response? How do they integrate these signals to reach a finely balanced decision on how to grow, how to determine the direction of growth and how to develop their organs to exploit the environment? As plant responses are generally irreversible growth responses, their signalling systems must compute each developmental decision with extreme care. One stimulus to which plants are continuously exposed is the gravity vector. Gravity affects adaptive growth responses that reorient organs towards light and nutrient resources. The MAP team was established by ESA to study in the model plant Arabidopsis thaliana the role of the hormone auxin in gravity-mediated growth control. Another goal was to dissect gravity perception and gravity signal transduction pathways.

  7. Encapsulates for Food Bioconversions and Metabolite Production

    NASA Astrophysics Data System (ADS)

    Breguet, Véronique; Vojinovic, Vojislav; Marison, Ian W.

    The control of production costs in the food industry must be very strict as a result of the relatively low added value of food products. Since a wide variety of enzymes and/or cells are employed in the food industry for starch processing, cheese making, food preservation, lipid hydrolysis and other applications, immobilization of the cells and/or enzymes has been recognized as an attractive approach to improving food processes while minimizing costs. This is due to the fact that biocatalyst immobilization allows for easier separation/purification of the product and reutilization of the biocatalyst. The advantages of the use of immobilized systems are many, and they have a special relevance in the area of food technology, especially because industrial processes using immobilized biosystems are usually characterized by lower capital/energy costs and better logistics. The main applications of immobilization, related to the major processes of food bioconversions and metabolite production, will be described and discussed in this chapter.

  8. Application of structural health monitoring technologies to bio-systems: current status and path forward

    NASA Astrophysics Data System (ADS)

    Bhalla, Suresh; Srivastava, Shashank; Suresh, Rupali; Moharana, Sumedha; Kaur, Naveet; Gupta, Ashok

    2015-03-01

    This paper presents a case for extension of structural health monitoring (SHM) technologies to offer solutions for biomedical problems. SHM research has made remarkable progress during the last two/ three decades. These technologies are now being extended for possible applications in the bio-medical field. Especially, smart materials, such as piezoelectric ceramic (PZT) patches and fibre-Bragg grating (FBG) sensors, offer a new set of possibilities to the bio-medical community to augment their conventional set of sensors, tools and equipment. The paper presents some of the recent extensions of SHM, such as condition monitoring of bones, monitoring of dental implant post surgery and foot pressure measurement. Latest developments, such as non-bonded configuration of PZT patches for monitoring bones and possible applications in osteoporosis detection, are also discussed. In essence, there is a whole new gamut of new possibilities for SHM technologies making their foray into the bi-medical sector.

  9. Micro-nano-biosystems: An overview of European research.

    PubMed

    Lymberis, Andreas

    2010-06-01

    New developments in science, technologies and applications are blurring the boundaries between information and communications technology (ICT), micro-nano systems and life sciences, e.g. through miniaturisation and the ability to manipulate matter at the atomic scale and to interface live and man-made systems. Interdisciplinary research towards integrated systems and their applications based on emerging convergence of information & communication technologies, micro-nano and bio technologies is expected to have a direct influence on healthcare, ageing population and well being. Micro-Nano-Bio Systems (MNBS) research and development activities under the European Union's R&D Programs, Information & Communication Technologies priority address miniaturised, smart and integrated systems for in-vitro testing e.g. lab-on-chips and systems interacting with the human e.g. autonomous implants, endoscopic capsules and robotics for minimally invasive surgery. The MNBS group involves hundreds of key public and private international organisations working on system development and validation in diverse applications such as cancer detection and therapy follow-up, minimally invasive surgery, capsular endocsopy, wearable biochemical monitoring and repairing of vital functions with active implant devices. The paper presents MNBS rationale and activities, discusses key research and innovation challenges and proposes R&D directions to achieve the expected impact on healthcare and quality of life.

  10. Ethanol generation, oxidation and energy production in a cooperative bioelectrochemical system.

    PubMed

    Pagnoncelli, Kamila C; Pereira, Andressa R; Sedenho, Graziela C; Bertaglia, Thiago; Crespilho, Frank N

    2018-08-01

    Integrating in situ biofuel production and energy conversion into a single system ensures the production of more robust networks as well as more renewable technologies. For this purpose, identifying and developing new biocatalysts is crucial. Herein, is reported a bioelectrochemical system consisting of alcohol dehydrogenase (ADH) and Saccharomyces cerevisiae, wherein both function cooperatively for ethanol production and its bioelectrochemical oxidation. Here, it is shown that it is possible to produce ethanol and use it as a biofuel in a tandem manner. The strategy is to employ flexible carbon fibres (FCF) electrode that could adsorb both the enzyme and the yeast cells. Glucose is used as a substrate for the yeast for the production of ethanol, while the enzyme is used to catalyse the oxidation of ethanol to acetaldehyde. Regarding the generation of reliable electricity based on electrochemical systems, the biosystem proposed in this study operates at a low temperature and ethanol production is proportional to the generated current. With further optimisation of electrode design, we envision the use of the cooperative biofuel cell for energy conversion and management of organic compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Effect of flow velocity on the photoacoustic detection for glucose aqueous solutions

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Ding, Yu; Yao, Qingkai

    2018-01-01

    The blood glucose non-invasive detection has become the research hot-spot. The photoacoustic spectroscopy is a well-promising, high-efficient and noninvasive detection method because it combines the advantages of the pure optic and pure ultrasonic. In practice, the photoacoustic detection of blood glucose is impacted by many factors because the human body is a complicated bio-system. To study the effect of flow velocity in the blood vessel on the photoacoustic detection of blood glucose, a photoacoustic detection system based on optical parameter oscillator (OPO) pulsed laser induced ultrasonic was established. In this system, a 532nm pumped Nd: YAG OPO pulsed laser was used as the excitation source, and the photoacoustic signals of glucose were captured by ultrasonic transducer. Moreover, a set of blood circulation system was built to simulate the real blood flow situation in the human body. The experiments of the photoacoustic detection of glucose aqueous solutions with different concentrations at different flow velocities were experimentally investigated. Experimental results show that the photoacoustic peak-to-peak value linearly increases with the glucose concentration, but it decreases with the increase of the flow velocity although the profiles of photoacoustic signals don't change.

  12. Final Scientific/Technical Report, DE-FG02-06ER64171, Integrated Nucleic Acid System for In-Field Monitoring of Microbial Community Dynamics and Metabolic Activity – Subproject to Co-PI Eric E. Roden

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric E. Roden

    2009-07-08

    This report summarizes research conducted in conjunction with a project entitled “Integrated Nucleic Acid System for In-Field Monitoring of Microbial Community Dynamics and Metabolic Activity”, which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. Darrell Chandler (originally at Argonne National Laboratory, now with Akonni Biosystems) was the overall PI/PD for the project. The overall project goals were to (1) apply a model iron-reducer and sulfate-reducer microarray and instrumentation systems to sediment and groundwater samples from the Scheibe et al. FRC Areamore » 2 field site, UMTRA sediments, and other DOE contaminated sites; (2) continue development and expansion of a 16S rRNA/rDNA¬-targeted probe suite for microbial community dynamics as new sequences are obtained from DOE-relevant sites; and (3) address the fundamental molecular biology and analytical chemistry associated with the extraction, purification and analysis of functional genes and mRNA in environmental samples. Work on the UW subproject focused on conducting detailed batch and semicontinuous culture reactor experiments with uranium-contaminated FRC Area 2 sediment. The reactor experiments were designed to provide coherent geochemical and microbiological data in support of microarray analyses of microbial communities in Area 2 sediments undergoing biostimulation with ethanol. A total of four major experiments were conducted (one batch and three semicontinuous culture), three of which (the batch and two semicontinuous culture) provided samples for DNA microarray analysis. A variety of other molecular analyses (clone libraries, 16S PhyloChip, RT-PCR, and T-RFLP) were conducted on parallel samples from the various experiments in order to provide independent information on microbial community response to biostimulation.« less

  13. Respirometric biomonitor for the control of industrial effluent toxicity

    NASA Astrophysics Data System (ADS)

    Campanella, Luigi; Favero, G.; Mastrofini, D.; Tomassetti, M.

    1995-10-01

    A yeast cell biosystem has been recently developed for the total toxicity testing of a sample that may contain a number of different polluting species. The method uses an amperometric gas diffusion oxygen sensor as indicating electrode and is based on the perturbation of the respiratory activity of the immobilized yeast Saccharomyces cerevisiae; glucose acts as substrate. Several toxic substances were tested: metal ions, phenol and cationic, anionic or nonionic surfactants. Some results of a monitoring program of an industrial wastewater are also reported and discussed.

  14. Thiazole derivative-modified upconversion nanoparticles for Hg2+ detection in living cells

    NASA Astrophysics Data System (ADS)

    Gu, Bin; Zhou, Yi; Zhang, Xiao; Liu, Xiaowang; Zhang, Yuhai; Marks, Robert; Zhang, Hua; Liu, Xiaogang; Zhang, Qichun

    2015-12-01

    Mercury ion (Hg2+) is an extremely toxic ion, which will accumulate in human bodies and cause severe nervous system damage. Therefore, the sensitive and efficient monitoring of Hg2+ in human bodies is of great importance. Upconversion nanoparticle (UCNPs) based nano probes exhibit no autofluorescence, deep penetration depth and chemical stability in biological samples, as well as a large anti-stokes shift. In this study, we have developed thiazole-derivative-functionalized UCNPs, and employed an upconversion emission intensity ratio of 540 nm to 803 nm (I540/I803) as a ratiometric signal to detect Hg2+ in living cells showing excellent photo stability and high selectivity. Our nano probe was characterized using transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD). The low cytotoxicity of our probe was confirmed by an MTT assay and the UCL test in HeLa cells was carried out by confocal microscopy. Our results demonstrated that organic-dye-functionalized UCNPs should be a good strategy for detecting toxic metal ions when studying cellular biosystems.Mercury ion (Hg2+) is an extremely toxic ion, which will accumulate in human bodies and cause severe nervous system damage. Therefore, the sensitive and efficient monitoring of Hg2+ in human bodies is of great importance. Upconversion nanoparticle (UCNPs) based nano probes exhibit no autofluorescence, deep penetration depth and chemical stability in biological samples, as well as a large anti-stokes shift. In this study, we have developed thiazole-derivative-functionalized UCNPs, and employed an upconversion emission intensity ratio of 540 nm to 803 nm (I540/I803) as a ratiometric signal to detect Hg2+ in living cells showing excellent photo stability and high selectivity. Our nano probe was characterized using transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD). The low cytotoxicity of our probe was confirmed by an MTT assay and the UCL test in HeLa cells was carried out by confocal microscopy. Our results demonstrated that organic-dye-functionalized UCNPs should be a good strategy for detecting toxic metal ions when studying cellular biosystems. Electronic supplementary information (ESI) available: NMR, MALDI-TOF MS spectra, etc. See DOI: 10.1039/c5nr05286f

  15. Bioremediation of diesel and lubricant oil-contaminated soils using enhanced landfarming system.

    PubMed

    Wang, Sih-Yu; Kuo, Yu-Chia; Hong, Andy; Chang, Yu-Min; Kao, Chih-Ming

    2016-12-01

    Lubricant and diesel oil-polluted sites are difficult to remediate because they have less volatile and biodegradable characteristics. The goal of this research was to evaluate the potential of applying an enhanced landfarming to bioremediate soils polluted by lubricant and diesel. Microcosm study was performed to evaluate the optimal treatment conditions with the addition of different additives (nutrients, addition of activated sludge from oil-refining wastewater facility, compost, TPH-degrading bacteria, and fern chips) to enhance total petroleum hydrocarbon (TPH) removal. To simulate the aerobic landfarming biosystem, air in the microcosm headspace was replaced once a week. Results demonstrate that the additives of activated sludge and compost could result in the increase in soil microbial populations and raise TPH degradation efficiency (up to 83% of TPH removal with 175 days of incubation) with initial (TPH = 4100 mg/kg). The first-order TPH degradation rate reached 0.01 1/d in microcosms with additive of activated sludge (mass ratio of soil to inocula = 50:1). The soil microbial communities were determined by nucleotide sequence analyses and 16S rRNA-based denatured gradient gel electrophoresis. Thirty-four specific TPH-degrading bacteria were detected in microcosm soils. Chromatograph analyses demonstrate that resolved peaks were more biodegradable than unresolved complex mixture. Results indicate that more aggressive remedial measures are required to enhance the TPH biodegradation, which included the increase of (1) microbial population or TPH-degrading bacteria, (2) biodegradable carbon sources, (3) nutrient content, and (4) soil permeability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Molecular Dynamics Simulations, Challenges and Opportunities: A Biologist's Prospective.

    PubMed

    Kumari, Indu; Sandhu, Padmani; Ahmed, Mushtaq; Akhter, Yusuf

    2017-08-30

    Molecular dynamics (MD) is a computational technique which is used to study biomolecules in virtual environment. Each of the constituent atoms represents a particle and hence the biomolecule embodies a multi-particle mechanical system analyzed within a simulation box during MD analysis. The potential energies of the atoms are explained by a mathematical expression consisting of different forces and space parameters. There are various software and force fields that have been developed for MD studies of the biomolecules. MD analysis has unravelled the various biological mechanisms (protein folding/unfolding, protein-small molecule interactions, protein-protein interactions, DNA/RNA-protein interactions, proteins embedded in membrane, lipid-lipid interactions, drug transport etc.) operating at the atomic and molecular levels. However, there are still some parameters including torsions in amino acids, carbohydrates (whose structure is extended and not well defined like that of proteins) and single stranded nucleic acids for which the force fields need further improvement, although there are several workers putting in constant efforts in these directions. The existing force fields are not efficient for studying the crowded environment inside the cells, since these interactions involve multiple factors in real time. Therefore, the improved force fields may provide the opportunities for their wider applications on the complex biosystems in diverse cellular conditions. In conclusion, the intervention of MD in the basic sciences involving interdisciplinary approaches will be helpful for understanding many fundamental biological and physiological processes at the molecular levels that may be further applied in various fields including biotechnology, fisheries, sustainable agriculture and biomedical research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Expression of candidate genes associated with obesity in peripheral white blood cells of Mexican children

    PubMed Central

    Ulloa-Martínez, Marcela; Burguete-García, Ana I.; Murugesan, Selvasankar; Hoyo-Vadillo, Carlos; Cruz-Lopez, Miguel

    2016-01-01

    Introduction Obesity is a chronic, complex, and multifactorial disease, characterized by excess body fat. Diverse studies of the human genome have led to the identification of susceptibility genes that contribute to obesity. However, relatively few studies have addressed specifically the association between the level of expression of these genes and obesity. Material and methods We studied 160 healthy and obese unrelated Mexican children aged 6 to 14 years. We measured the transcriptional expression of 20 genes associated with obesity, in addition to the biochemical parameters, in peripheral white blood cells. The detection of mRNA levels was performed using the OpenArray Real-Time PCR System (Applied Biosystems). Results Obese children exhibited higher values of fasting glucose (p = 0.034), fasting insulin (p = 0.004), low-density lipoprotein (p = 0.006), triglycerides (p < 0.001), systolic blood pressure and diastolic blood pressure (p < 0.001), and lower values of high-density lipoprotein (p < 0.001) compared to lean children. Analysis of transcriptional expression data showed a difference for ADRB1 (p = 0.0297), ADIPOR1 (p = 0.0317), GHRL (p = 0.0060) and FTO (p = 0.0348) genes. Conclusions Our results suggest that changes in the expression level of the studied genes are involved in biological processes implicated in the development of childhood obesity. Our study contributes new perspectives for a better understanding of biological processes involved in obesity. The protocol was approved by the National Committee and Ethical Committee Board from the Mexican Social Security Institute (IMSS) (IMSS FIS/IMSS/PRIO/10/011). PMID:27695486

  18. Selected developments and medical applications of organic-inorganic hybrid biomaterials based on functionalized spherosilicates.

    PubMed

    John, Łukasz

    2018-07-01

    Well-defined and tailor-made spherosilicates and POSS-based (POSS = Polyhedral Oligomeric Silsesquioxanes) (nano)composites with interesting chemical and mechanical properties have applications in the widely-regarded field of innovative biomaterials. They can serve as delivery systems, three-dimensional scaffolds for specific tissue engineering, biomaterials for orthopedic, cardiovascular, and reconstructive surgery, etc. Such organic-inorganic hybrids are much more effective biomaterials than pure polymers, bioglasses, metals, alloys, and ceramics currently used in medical applications and are considered as next-generation systems in innovative medical approaches. This range of applications creates a strong impetus for novel, cheap, and easy-to-scale-up methods for their synthesis. In this review (highlights since 2006), selected biomaterials consisting of various polymeric derivatives such as polymethacrylates, polylactides, polycaprolactones, polyurethanes, etc., which serve as organic side-arms of POSS and can create polymer platforms for precisely localized spherosilicates among organic matrices, are discussed as a new generation of silicon-based biosystems using spherosilicates, promising biomaterials with a particular use in soft- and hard-tissue engineering. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Quantifying Environmental Effects on the Decay of Hole Transfer Couplings in Biosystems.

    PubMed

    Ramos, Pablo; Pavanello, Michele

    2014-06-10

    In the past two decades, many research groups worldwide have tried to understand and categorize simple regimes in the charge transfer of such biological systems as DNA. Theoretically speaking, the lack of exact theories for electron-nuclear dynamics on one side and poor quality of the parameters needed by model Hamiltonians and nonadiabatic dynamics alike (such as couplings and site energies) on the other are the two main difficulties for an appropriate description of the charge transfer phenomena. In this work, we present an application of a previously benchmarked and linear-scaling subsystem density functional theory (DFT) method for the calculation of couplings, site energies, and superexchange decay factors (β) of several biological donor-acceptor dyads, as well as double stranded DNA oligomers composed of up to five base pairs. The calculations are all-electron and provide a clear view of the role of the environment on superexchange couplings in DNA-they follow experimental trends and confirm previous semiempirical calculations. The subsystem DFT method is proven to be an excellent tool for long-range, bridge-mediated coupling and site energy calculations of embedded molecular systems.

  20. Pair-barcode high-throughput sequencing for large-scale multiplexed sample analysis

    PubMed Central

    2012-01-01

    Background The multiplexing becomes the major limitation of the next-generation sequencing (NGS) in application to low complexity samples. Physical space segregation allows limited multiplexing, while the existing barcode approach only permits simultaneously analysis of up to several dozen samples. Results Here we introduce pair-barcode sequencing (PBS), an economic and flexible barcoding technique that permits parallel analysis of large-scale multiplexed samples. In two pilot runs using SOLiD sequencer (Applied Biosystems Inc.), 32 independent pair-barcoded miRNA libraries were simultaneously discovered by the combination of 4 unique forward barcodes and 8 unique reverse barcodes. Over 174,000,000 reads were generated and about 64% of them are assigned to both of the barcodes. After mapping all reads to pre-miRNAs in miRBase, different miRNA expression patterns are captured from the two clinical groups. The strong correlation using different barcode pairs and the high consistency of miRNA expression in two independent runs demonstrates that PBS approach is valid. Conclusions By employing PBS approach in NGS, large-scale multiplexed pooled samples could be practically analyzed in parallel so that high-throughput sequencing economically meets the requirements of samples which are low sequencing throughput demand. PMID:22276739

  1. Pair-barcode high-throughput sequencing for large-scale multiplexed sample analysis.

    PubMed

    Tu, Jing; Ge, Qinyu; Wang, Shengqin; Wang, Lei; Sun, Beili; Yang, Qi; Bai, Yunfei; Lu, Zuhong

    2012-01-25

    The multiplexing becomes the major limitation of the next-generation sequencing (NGS) in application to low complexity samples. Physical space segregation allows limited multiplexing, while the existing barcode approach only permits simultaneously analysis of up to several dozen samples. Here we introduce pair-barcode sequencing (PBS), an economic and flexible barcoding technique that permits parallel analysis of large-scale multiplexed samples. In two pilot runs using SOLiD sequencer (Applied Biosystems Inc.), 32 independent pair-barcoded miRNA libraries were simultaneously discovered by the combination of 4 unique forward barcodes and 8 unique reverse barcodes. Over 174,000,000 reads were generated and about 64% of them are assigned to both of the barcodes. After mapping all reads to pre-miRNAs in miRBase, different miRNA expression patterns are captured from the two clinical groups. The strong correlation using different barcode pairs and the high consistency of miRNA expression in two independent runs demonstrates that PBS approach is valid. By employing PBS approach in NGS, large-scale multiplexed pooled samples could be practically analyzed in parallel so that high-throughput sequencing economically meets the requirements of samples which are low sequencing throughput demand.

  2. Surface topography and chemistry shape cellular behavior on wide band-gap semiconductors.

    PubMed

    Bain, Lauren E; Collazo, Ramon; Hsu, Shu-Han; Latham, Nicole Pfiester; Manfra, Michael J; Ivanisevic, Albena

    2014-06-01

    The chemical stability and electrical properties of gallium nitride make it a promising material for the development of biocompatible electronics, a range of devices including biosensors as well as interfaces for probing and controlling cellular growth and signaling. To improve the interface formed between the probe material and the cell or biosystem, surface topography and chemistry can be applied to modify the ways in which the device interacts with its environment. PC12 cells are cultured on as-grown planar, unidirectionally polished, etched nanoporous and nanowire GaN surfaces with and without a physisorbed peptide sequence that promotes cell adhesion. While cells demonstrate preferential adhesion to roughened surfaces over as-grown flat surfaces, the topography of that roughness also influences the morphology of cellular adhesion and differentiation in neurotypic cells. Addition of the peptide sequence generally contributes further to cellular adhesion and promotes development of stereotypic long, thin neurite outgrowths over alternate morphologies. The dependence of cell behavior on both the topographic morphology and surface chemistry is thus demonstrated, providing further evidence for the importance of surface modification for modulating bio-inorganic interfaces. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Two brothers' alleged paternity for a child: who is the father?

    PubMed

    Dogan, Muhammed; Kara, Umut; Emre, Ramazan; Fung, Wing Kam; Canturk, Kemal Murat

    2015-06-01

    In paternity cases where individuals are close relatives, it may be necessary to evaluate mother's DNA profile (trio test) and to increase the number of polymorphic STR loci that are analyzed. In our case, two alleged fathers who are brothers and the child (duo case) were analyzed based on 20 STR loci; however, no exclusions could be achieved. Then trio test (with mother) was performed using the Identifiler Plus kit (Applied Biosystems) and no exclusions could be achieved again. Analysis performed with the ESS Plex Plus kit (Qiagen), the paternity of one of the two alleged fathers was rejected only on 2 STR loci. We made the calculations of power of exclusion values to interpret our results more properly. The probability of exclusion (PE) is calculated as 0.9776546 in 15 loci of Identifiler Plus kit without mother. The PE is calculated as 0.9942803, if 5 additional loci from ESS Plex Plus kit are typed. The PE becomes 0.9961048 for the Identifiler Plus kit in trio analysis. If both Identifiler Plus and ESS Plex Plus kits are used for testing, the PE is calculated as 0.999431654, which indicates that the combined kits are highly discriminating.

  4. Genome wide analysis in a discordant monozygotic twin with caudal appendage and multiple congenital anomalies.

    PubMed

    Cogulu, O; Pariltay, E; Koroglu, O A; Aykut, A; Ozyurek, R; Levent, E; Kultursay, N; Ozkinay, F

    2013-01-01

    Caudal appendage is a rare dysmorphic feature of which etiologic mechanisms are not well understood. Here we report monozygotic (MZ) twin brothers who are discordant for the caudal appendage and multiple congenital anomalies. Twins were the product of a 33 weeks of gestation, monochorionic-diamniotic pregnancy. On admission the proband had micrognathia, beaked nose, hypospadias, caudal appendage and juxtaductal aorta coarctation. At birth, he was small for gestational age and he had transient hypothyroidism which was detected in the newborn period. Karyotype analysis showed 46,XY. Monozygosity was shown by 15 microsatellite markers plus amelogenin (AmpFlSTR Identifiler PCR Amplification Kit, Applied Biosystems). Genome-wide copy number analysis of the twins by DNA-DNA hybridization of whole genomic DNA (NimbleGen Human CGH 385K WG-T v2.0 array) showed a significant difference at two neighboring probes with Log2 ratio: 0.72088 which are located on chromosome 3p12.3. Further analysis by high resolution of chromosome 3 array (Roche NimbleGen Human HG18 CHR3 FT Median Probe Spacing 475 bp) and quantitative PCR analysis did not confirm the deletion.

  5. VARiD: a variation detection framework for color-space and letter-space platforms.

    PubMed

    Dalca, Adrian V; Rumble, Stephen M; Levy, Samuel; Brudno, Michael

    2010-06-15

    High-throughput sequencing (HTS) technologies are transforming the study of genomic variation. The various HTS technologies have different sequencing biases and error rates, and while most HTS technologies sequence the residues of the genome directly, generating base calls for each position, the Applied Biosystem's SOLiD platform generates dibase-coded (color space) sequences. While combining data from the various platforms should increase the accuracy of variation detection, to date there are only a few tools that can identify variants from color space data, and none that can analyze color space and regular (letter space) data together. We present VARiD--a probabilistic method for variation detection from both letter- and color-space reads simultaneously. VARiD is based on a hidden Markov model and uses the forward-backward algorithm to accurately identify heterozygous, homozygous and tri-allelic SNPs, as well as micro-indels. Our analysis shows that VARiD performs better than the AB SOLiD toolset at detecting variants from color-space data alone, and improves the calls dramatically when letter- and color-space reads are combined. The toolset is freely available at http://compbio.cs.utoronto.ca/varid.

  6. Lack of association between the LRRK2 A419V variant and Asian Parkinson's disease.

    PubMed

    Gopalai, Aroma Agape; Lim, Shen Yang; Aziz, Zariah Abdul; Lim, Soo Kun; Tan, Li Ping; Chong, Yip Boon; Tan, Chong Tin; Puvanarajah, Santhi; Viswanathan, Shanti; Kuppusamy, Rishikesan; Tan, Ai Huey; Lim, Thien Thien; Eow, Gaik Bee; Norlinah, Mohamed Ibrahim; Li, Hui Hua; Zhao, Yi; Ahmad-Annuar, Azlina

    2013-05-01

    The G2385R and R1628P LRRK2 gene variants have been associated with an increased risk of Parkinson's disease (PD) in the Asian population. Recently, a new LRRK2 gene variant, A419V, was reported to be a third risk variant for PD in Asian patients. Our objective was to investigate this finding in our cohort of Asian subjects. Eight hundred and twenty-eight subjects (404 PD patients, and 424 age and gender-matched control subjects without neurological disorders) were recruited. Genotyping was done by Taqman® allelic discrimination assay on an Applied Biosystems 7500 Fast Real-Time PCR machine. The heterozygous A419V genotype was found in only 1 patient with PD, compared to 3 in the control group (0.4% vs 1.3%), giving an odds ratio of 0.35 (95% confidence interval (CI), 0.01 to 3.79; P = 0.624). A419V is not an important LRRK2 risk variant in our Asian cohort of patients with PD. Our data are further supported by a literature review which showed that 4 out of 6 published studies reported a negative association of this variant in PD.

  7. Toxicity prediction of PHDDs and phenols in the light of nucleic acid bases and DNA base pair interaction.

    PubMed

    Mondal Roy, Sutapa; Roy, Debesh R; Sahoo, Suban K

    2015-11-01

    The applicability of Density Functional Theory (DFT) based descriptors for the development of quantitative structure-toxicity relationships (QSTR) is assessed for two different series of toxic aromatic compounds, viz., polyhalogenated dibenzo-p-dioxins (PHDDs) and phenols (PHs). A series of 20 compounds each for PHDDs and PHs with their experimental toxicities (IC50 and IGC50) is chosen in the present study to develop DFT based efficient quantum chemical parameters (QCPs) for explaining the toxin potential of the considered compounds. A systematic analysis to find out the electron donation/acceptance nature of these selected compounds with the considered model biosystems, viz., nucleic acid (NA) bases and DNA base pairs, is performed to identify potential QCPs. Accordingly, PHDDs is found to be electron acceptors whereas phenols as donors, during their interaction with biosystems. Two parameter regression model is carried out comprising global charge transfer (ΔN), and local Fukui Function's for nucleophilic attack (fk(+)) for PHDDs and the same for electrophilic attack (fk(-)) in case of PHs. It is heartening to note that our chosen descriptors, viz, charge transfer (ΔN) and Fukui Function (fk(±)) plays a crucial role by explaining more than 90% of the observed toxic behavior (in terms of correlation-coefficient, R) of PHDDs and PHs. The developed QCPs, viz., ΔN and fk(±) can be added as the new descriptors in the QSTR parlance. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A comparative evaluation of software for the analysis of liquid chromatography-tandem mass spectrometry data from isotope coded affinity tag experiments.

    PubMed

    Moulder, Robert; Filén, Jan-Jonas; Salmi, Jussi; Katajamaa, Mikko; Nevalainen, Olli S; Oresic, Matej; Aittokallio, Tero; Lahesmaa, Riitta; Nyman, Tuula A

    2005-07-01

    The options available for processing quantitative data from isotope coded affinity tag (ICAT) experiments have mostly been confined to software specific to the instrument of acquisition. However, recent developments with data format conversion have subsequently increased such processing opportunities. In the present study, data sets from ICAT experiments, analysed with liquid chromatography/tandem mass spectrometry (MS/MS), using an Applied Biosystems QSTAR Pulsar quadrupole-TOF mass spectrometer, were processed in triplicate using separate mass spectrometry software packages. The programs Pro ICAT, Spectrum Mill and SEQUEST with XPRESS were employed. Attention was paid towards the extent of common identification and agreement of quantitative results, with additional interest in the flexibility and productivity of these programs. The comparisons were made with data from the analysis of a specifically prepared test mixture, nine proteins at a range of relative concentration ratios from 0.1 to 10 (light to heavy labelled forms), as a known control, and data selected from an ICAT study involving the measurement of cytokine induced protein expression in human lymphoblasts, as an applied example. Dissimilarities were detected in peptide identification that reflected how the associated scoring parameters favoured information from the MS/MS data sets. Accordingly, there were differences in the numbers of peptides and protein identifications, although from these it was apparent that both confirmatory and complementary information was present. In the quantitative results from the three programs, no statistically significant differences were observed.

  9. Nature versus design: synthetic biology or how to build a biological non-machine.

    PubMed

    Porcar, M; Peretó, J

    2016-04-18

    The engineering ideal of synthetic biology presupposes that organisms are composed of standard, interchangeable parts with a predictive behaviour. In one word, organisms are literally recognized as machines. Yet living objects are the result of evolutionary processes without any purposiveness, not of a design by external agents. Biological components show massive overlapping and functional degeneracy, standard-free complexity, intrinsic variation and context dependent performances. However, although organisms are not full-fledged machines, synthetic biologists may still be eager for machine-like behaviours from artificially modified biosystems.

  10. Overview on experimental models of interactions between nanoparticles and the immune system.

    PubMed

    Najafi-Hajivar, Saeedeh; Zakeri-Milani, Parvin; Mohammadi, Hamed; Niazi, Mehri; Soleymani-Goloujeh, Mehdi; Baradaran, Behzad; Valizadeh, Hadi

    2016-10-01

    Nanotechnology increasingly plays a significant role in modern medicine development. The clear benefits of using nanomaterials in various biomedical applications are often challenged by concerns about the lack of adequate data regarding their toxicity. Two decades of nanotoxicology research have shown that the interactions between nanoparticles (NPs) and biosystem are remarkably complex. This complexity derives from NPs' ability to bind and interact with biological cells and change their surface characteristics. One area of interest involves the interactions between NPs and the immune component. Immune system's function in the maintenance of tissue homeostasis is to protect the host from unfamiliar agents. This is done through effective surveillance and elimination of foreign substances and abnormal self cells from the body. Research shows that nanomaterials can stimulate and/or suppress the immune responses, and that their compatibility with the immune system is largely determined by their surface properties. NP size, shape, composition, protein binding and administration routes seem to be the main factors that contribute to the interactions of NPs with the immune system. In the present article, we focus on the relationship between effective physiochemical properties of NPs and their immunogenic effects. In addition, we review more details about immunological responses of different types of NPs. Understanding the interactions of nanomaterials with the immune system is essential for the engineering of new NP-based systems for medical applications. Copyright © 2016. Published by Elsevier Masson SAS.

  11. INTRODUCTION: Wetting and dewetting in bio-related systems

    NASA Astrophysics Data System (ADS)

    Herminghaus, S.

    2005-03-01

    Research on such genuinely soft-matter related phenomena as wetting and dewetting would not be complete without reminiscence to biological systems. The recent stir around what has been known as the lotus effect, the amazing ultra-hydrophobic properties of many plants, has highlighted the interconnections of wetting with bio-systems. In the first paper of this section (Mock et al), a `biomimetic' system is conceived which imitates the properties of plant leaves with elastic hairs. The synthesis of such a system turns out to be tricky, but the progress is encouraging. The next three papers deal with surfactant layers, as they occur in many biological systems, such as the plasma membrane. Various experimental techniques, such as fluorescence microscopy (Tanaka et al), neutron reflectivity (Steitz et al), and x-ray scattering (Ahrens et al), are demonstrated as powerful tools for their investigation. The last paper (Heim et al) takes us back to where we started: the morphologies emerging upon dewetting of a liquid. This time, the full diversity of patterns is shown which appears in the deposited solute, once the liquid has evaporated. The motivation of this work is the morphology of deposition of DNA on bio-chips, which may affect the readout results of such devices. It is shown that although much can already be understood, a lot of work has still to be done, and many beautiful mechanisms may still be discovered.

  12. Influencing governance of a public-private partnership in plant genomics: The societal interface group as a new instrument for public involvement.

    PubMed

    Hanssen, Lucien; Gremmen, Bart

    2013-08-01

    The Centre for BioSystems Genomics (CBSG) is a Dutch public-private partnership in plant genomics active in potato and tomato research and exploitation. Its Societal Interface Group (SIG) has been developed to inform its communication strategy and governance practice. This new instrument identifies and discusses early signals from society by bringing together people from different societal backgrounds with members of CBSG management. This interactive learning process facilitates the inclusion of public concerns and needs in scientific developments in the field of plant genomics, and simultaneously enables genomics scientists to search for more societal aims, meanings, and starting points for their research agenda. Analysis of the SIG sessions revealed that the input of public expertise is not threatening or irrational, but provides the opportunity to harness the creative potential of future users highly relevant for the development of societal practices in which plant genomics plays a role.

  13. ATP analogues at a glance.

    PubMed

    Bagshaw, C

    2001-02-01

    ATP has long been known to play a central role in the energetics of cells both in transduction mechanisms and in metabolic pathways, and is involved in regulation of enzyme, channel and receptor activities. Numerous ATP analogues have been synthesised to probe the role of ATP in biosystems (Yount, 1975; Jameson and Eccleston, 1997; Bagshaw, 1998). In general, two contrasting strategies are employed. Modifications may be introduced deliberately to change the properties of ATP (e.g. making it non-hydrolysable) so as to perturb the chemical steps involved in its action. Typically these involve modification of the phosphate chain. Alternatively, derivatives (e.g. fluorescent probes) are designed to report on the action of ATP but have a minimal effect on its properties. ATP-utilising systems vary enormously in their specificity; so what acts as a good analogue in one case may be very poor in another. The accompanying poster shows a representative selection of derivatives that have been synthesised and summarises their key properties.

  14. Development and validation of a LC-MS method with electrospray ionization for the determination of the imidazole H3 antagonist ROS203 in rat plasma.

    PubMed

    Vacondio, Federica; Silva, Claudia; Fioni, Alessandro; Mor, Marco; Rivara, Mirko; Bordi, Fabrizio; Flammini, Lisa; Ballabeni, Vigilio; Barocelli, Elisabetta

    2008-01-07

    A rapid, simple and sensitive liquid chromatography-mass spectrometry (LC-MS) method was developed and validated for the determination of the imidazole H(3) antagonist ROS203 in rat plasma, using the superior homologue ROS287 as internal standard. Analyses were performed on an Agilent 1100 Series HPLC system employing a Supelco Ascentis C(18) column and isocratic elution with acetonitrile-10mM ammonium acetate buffer pH 4.0 (30:70, v/v) at a flow rate of 0.25 mL/min. An Applied Biosystems/MDS Sciex 150-EX single quadrupole mass spectrometer, equipped with an electrospray ionization interface was employed, operating in the positive ion mode. Plasma samples were deproteinized with acetonitrile (1:2), evaporated under nitrogen stream, reconstituted in the mobile phase and 5 microL were injected into the system. The retention times of ROS203 and IS were 2.20 and 2.90 min, respectively. Calibration curves in spiked plasma were linear over the concentration range of 2610-2.61 ng/mL with determination coefficients >0.99. The lower limit of quantification (LLOQ) was 2.61 ng/mL. The accuracy of the method was within 15%. Intra- and inter-day relative standard deviations were less or equal to 9.50% or 7.19%, respectively. The applicability of the LC-MS method was tested employing plasma samples obtained after i.p. administration of ROS203 to female Wistar rats to support a behavioral in vivo study. The specificity of the method was confirmed by the absence of interferences from endogenous substances. The reported method can provide the necessary sensitivity, linearity, precision, accuracy and specificity to allow the determination of ROS203 in rat plasma samples to support further pharmacokinetic assays.

  15. Real-time quantitative PCR for retrovirus-like particle quantification in CHO cell culture.

    PubMed

    de Wit, C; Fautz, C; Xu, Y

    2000-09-01

    Chinese hamster ovary (CHO) cells have been widely used to manufacture recombinant proteins intended for human therapeutic uses. Retrovirus-like particles, which are apparently defective and non-infectious, have been detected in all CHO cells by electron microscopy (EM). To assure viral safety of CHO cell-derived biologicals, quantification of retrovirus-like particles in production cell culture and demonstration of sufficient elimination of such retrovirus-like particles by the down-stream purification process are required for product market registration worldwide. EM, with a detection limit of 1x10(6) particles/ml, is the standard retrovirus-like particle quantification method. The whole process, which requires a large amount of sample (3-6 litres), is labour intensive, time consuming, expensive, and subject to significant assay variability. In this paper, a novel real-time quantitative PCR assay (TaqMan assay) has been developed for the quantification of retrovirus-like particles. Each retrovirus particle contains two copies of the viral genomic particle RNA (pRNA) molecule. Therefore, quantification of retrovirus particles can be achieved by quantifying the pRNA copy number, i.e. every two copies of retroviral pRNA is equivalent to one retrovirus-like particle. The TaqMan assay takes advantage of the 5'-->3' exonuclease activity of Taq DNA polymerase and utilizes the PRISM 7700 Sequence Detection System of PE Applied Biosystems (Foster City, CA, U.S.A.) for automated pRNA quantification through a dual-labelled fluorogenic probe. The TaqMan quantification technique is highly comparable to the EM analysis. In addition, it offers significant advantages over the EM analysis, such as a higher sensitivity of less than 600 particles/ml, greater accuracy and reliability, higher sample throughput, more flexibility and lower cost. Therefore, the TaqMan assay should be used as a substitute for EM analysis for retrovirus-like particle quantification in CHO cell-based production system. Copyright 2000 The International Association for Biologicals.

  16. Optimizing wind pumps system for crop irrigation based on wind data processing

    NASA Astrophysics Data System (ADS)

    Ruiz, Fernando; Tarquis, Ana M.; Sanchez, Raúl; Garcia, Jose Luis

    2015-04-01

    Crop irrigation is a major consumer of energy that can be resolved with renewable ones, such as wind, which has experienced recent developments in the area of power generation. Therefore, wind power can play an interesting role in irrigation projects in different areas [1]. A simple methodology has been developed in previous papers for technical evaluation of windmills for irrigation water pumping [2]. This methodology can determine the feasibility of the technology and the levels of daily irrigation demand satisfied by windmills. The present work compared the possibilities of this methodology adjusting the three-hourly wind velocity to the Weibull II distribution function, without considering the time sequence [2], or processing wind data using time series analysis. The study was applied to practical cases of wind pumps for irrigation of crops, both in the outside (corn) and inside greenhouses (tomato). The analysis showed that the use of three hourly time series analysis supplied a more realistic modelling of the situation with a better optimization of the water storage tank of the wind pump facility taking into account the risk of calm periods in which the pumping is null. A factor to consider in this study is available precision of the wind sampling rate. References [1] Díaz-Méndez, R., Adnan Rasheed, M. Peillón, A. Perdigones, R. Sánchez, A.M. Tarquis, José L. García-Fernández. Wind pumps for irrigating greenhouse crops: comparison in different socio-economical frameworks. Biosystems Engineering, 128, 21-28, 2014. [2] Peillón, M., Sánchez, R., Tarquis, A.M., García, J.L. The use of wind pumps for greenhouse microirrigation: A case study for tomato in Cuba. Agricultural Water Management, 120, 107-114, 2013.

  17. Role of the X-linked gene GPR174 in autoimmune Addison's disease.

    PubMed

    Napier, C; Mitchell, A L; Gan, E; Wilson, I; Pearce, S H S

    2015-01-01

    Autoimmune endocrinopathies demonstrate a profound gender bias, but the reasons for this remain obscure. The 1000 genes on the X chromosome are likely to be implicated in this inherent susceptibility; various theories, including skewed X chromosome inactivation and fetal microchimerism, have been proposed. GPR174 is an Xq21 putative purinergic receptor that is widely expressed in lymphoid tissues. A single-nucleotide polymorphism, rs3827440, encoding Ser162Pro, has recently been associated with Graves' disease in Chinese and Polish populations, suggesting a role of this X chromosome gene in autoimmune disease. We investigated the role of rs3827440 in a UK cohort of patients with autoimmune Addison's disease (AAD). Samples from 286 AAD cases and 288 healthy controls were genotyped using TaqMan single-nucleotide polymorphism genotyping assays (C_25954273_10) on the Applied Biosystems 7900HT Fast real-time PCR system. Using a dominant (present/absent) model, the serine-encoding T allele of rs3827440 was present in 189 of 286 AAD patients (66%) compared with 132 of 288 unaffected controls (46%) [P = .010, odds ratio 1.80 (5%-95% confidence interval 1.22-2.67)]. An allele dosage model found a significant excess of the T allele in AAD patients compared with controls [P = .03, odds ratio 1.34 (5%-95% confidence interval 1.07-1.67)]. We have demonstrated a significant association of this X chromosome-encoded immunoreceptor with AAD for the first time. This X-linked gene could have a more generalized role in autoimmunity pathogenesis: G protein-coupled receptors are promising drugable targets, and further work to elucidate the functional role of GPR174 is now warranted.

  18. The use of in vitro technologies coupled with high resolution accurate mass LC-MS for studying drug metabolism in equine drug surveillance.

    PubMed

    Scarth, James P; Spencer, Holly A; Timbers, Sarah E; Hudson, Simon C; Hillyer, Lynn L

    2010-01-01

    The detection of drug abuse in horseracing often requires knowledge of drug metabolism, especially if urine is the matrix of choice. In this study, equine liver/lung microsomes/S9 tissue fractions were used to study the phase I metabolism of eight drugs of relevance to equine drug surveillance (acepromazine, azaperone, celecoxib, fentanyl, fluphenazine, mepivacaine, methylphenidate and tripelennamine). In vitro samples were analyzed qualitatively alongside samples originating from in vivo administrations using LC-MS on a high resolution accurate mass Thermo Orbitrap Discovery instrument and by LC-MS/MS on an Applied Biosystems Sciex 5500 Q Trap.Using high resolution accurate mass full-scan analysis on the Orbitrap, the in vitro systems were found to generate at least the two most abundant phase I metabolites observed in vitro for all eight drugs studied. In the majority of cases, in vitro experiments were also able to generate the minor in vivo metabolites and sometimes metabolites that were only observed in vitro. More detailed analyses of fentanyl incubates using LC-MS/MS showed that it was possible to generate good quality spectra from the metabolites generated in vitro. These data support the suggestion of using in vitro incubates as metabolite reference material in place of in vivo post-administration samples in accordance with new qualitative identification guidelines in the 2009 International Laboratory Accreditation Cooperation-G7 (ILAC-G7) document.In summary, the in vitro and in vivo phase I metabolism results reported herein compare well and demonstrate the potential of in vitro studies to compliment, refine and reduce the existing equine in vivo paradigm. © 2010 John Wiley & Sons, Ltd.

  19. Establishing a novel automated magnetic bead-based method for the extraction of DNA from a variety of forensic samples.

    PubMed

    Witt, Sebastian; Neumann, Jan; Zierdt, Holger; Gébel, Gabriella; Röscheisen, Christiane

    2012-09-01

    Automated systems have been increasingly utilized for DNA extraction by many forensic laboratories to handle growing numbers of forensic casework samples while minimizing the risk of human errors and assuring high reproducibility. The step towards automation however is not easy: The automated extraction method has to be very versatile to reliably prepare high yields of pure genomic DNA from a broad variety of sample types on different carrier materials. To prevent possible cross-contamination of samples or the loss of DNA, the components of the kit have to be designed in a way that allows for the automated handling of the samples with no manual intervention necessary. DNA extraction using paramagnetic particles coated with a DNA-binding surface is predestined for an automated approach. For this study, we tested different DNA extraction kits using DNA-binding paramagnetic particles with regard to DNA yield and handling by a Freedom EVO(®)150 extraction robot (Tecan) equipped with a Te-MagS magnetic separator. Among others, the extraction kits tested were the ChargeSwitch(®)Forensic DNA Purification Kit (Invitrogen), the PrepFiler™Automated Forensic DNA Extraction Kit (Applied Biosystems) and NucleoMag™96 Trace (Macherey-Nagel). After an extensive test phase, we established a novel magnetic bead extraction method based upon the NucleoMag™ extraction kit (Macherey-Nagel). The new method is readily automatable and produces high yields of DNA from different sample types (blood, saliva, sperm, contact stains) on various substrates (filter paper, swabs, cigarette butts) with no evidence of a loss of magnetic beads or sample cross-contamination. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Flatness-based control in successive loops for stabilization of heart's electrical activity

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Melkikh, Alexey

    2016-12-01

    The article proposes a new flatness-based control method implemented in successive loops which allows for stabilization of the heart's electrical activity. Heart's pacemaking function is modeled as a set of coupled oscillators which potentially can exhibit chaotic behavior. It is shown that this model satisfies differential flatness properties. Next, the control and stabilization of this model is performed with the use of flatness-based control implemented in cascading loops. By applying a per-row decomposition of the state-space model of the coupled oscillators a set of nonlinear differential equations is obtained. Differential flatness properties are shown to hold for the subsystems associated with the each one of the aforementioned differential equations and next a local flatness-based controller is designed for each subsystem. For the i-th subsystem, state variable xi is chosen to be the flat output and state variable xi+1 is taken to be a virtual control input. Then the value of the virtual control input which eliminates the output tracking error for the i-th subsystem becomes reference setpoint for the i + 1-th subsystem. In this manner the control of the entire state-space model is performed by successive flatness-based control loops. By arriving at the n-th row of the state-space model one computes the control input that can be actually exerted on the aforementioned biosystem. This real control input of the coupled oscillators' system, contains recursively all virtual control inputs associated with the previous n - 1 rows of the state-space model. This control approach achieves asymptotically the elimination of the chaotic oscillation effects and the stabilization of the heart's pulsation rhythm. The stability of the proposed control scheme is proven with the use of Lyapunov analysis.

  1. Y-chromosomal diversity of the Valachs from the Czech Republic: model for isolated population in Central Europe

    PubMed Central

    Ehler, Edvard; Vaněk, Daniel; Stenzl, Vlastimil; Vančata, Václav

    2011-01-01

    Aim To evaluate Y-chromosomal diversity of the Moravian Valachs of the Czech Republic and compare them with a Czech population sample and other samples from Central and South-Eastern Europe, and to evaluate the effects of genetic isolation and sampling. Methods The first sample set of the Valachs consisted of 94 unrelated male donors from the Valach region in northeastern Czech Republic border-area. The second sample set of the Valachs consisted of 79 men who originated from 7 paternal lineages defined by surname. No close relatives were sampled. The third sample set consisted of 273 unrelated men from the whole of the Czech Republic and was used for comparison, as well as published data for other 27 populations. The total number of samples was 3244. Y-short tandem repeat (STR) markers were typed by standard methods using PowerPlex® Y System (Promega) and Yfiler® Amplification Kit (Applied Biosystems) kits. Y-chromosomal haplogroups were estimated from the haplotype information. Haplotype diversity and other intra- and inter-population statistics were computed. Results The Moravian Valachs showed a lower genetic variability of Y-STR markers than other Central European populations, resembling more to the isolated Balkan populations (Aromuns, Csango, Bulgarian, and Macedonian Roma) than the surrounding populations (Czechs, Slovaks, Poles, Saxons). We illustrated the effect of sampling on Valach paternal lineages, which includes reduction of discrimination capacity and variability inside Y-chromosomal haplogroups. Valach modal haplotype belongs to R1a haplogroup and it was not detected in the Czech population. Conclusion The Moravian Valachs display strong substructure and isolation in their Y chromosomal markers. They represent a unique Central European population model for population genetics. PMID:21674832

  2. Polymorphism of SMAD7 gene (rs2337104) and risk of colorectal cancer in an Iranian population: a case-control study

    PubMed Central

    Akbari, Zahra; Safari-Alighiarloo, Nahid; Taleghani, Mohammad Yaghoob; Mirfakhar, Farzaneh Sadat; Asadzadeh Aghdaei, Hamid; Vahedi, Mohsen; Irani Shemirani, Atena; Nazemalhosseini-Mojarad, Ehsan; Zali, Mohammad Reza

    2014-01-01

    Aim: The purpose of this study was to evaluate the influence of intronic polymorphism of the SMAD7 (Mothers Against Decantaplegic Homolog 7) gene (rs2337104) on the risk of colorectal cancer (CRC) and clinicopathological features in an Iranian population. Background: SMAD7 has been identified as an antagonist of transforming growth factor beta (TGF-b)-mediating fibrosis, carcinogenesis, and inflammation. Regarding to the recent genome-wide scan, a risk locus for colorectal cancer at 18q21 has been found, which maps to the SMAD7 gene. Patients and methods: This case-control study was performed on 109 CRC patients and 109 healthy controls recruited in Taleghani Hospital. The genotyping of all samples were done by TaqMan assay via an ABI 7500 Real Time PCR System (Applied Biosystems) with DNA from peripheral blood. The association of this polymorphism with the risk of CRC and clinicopathological features was investigated. Results: Our results indicated that there were no significant association between genotypic and allelic frequencies of SMAD7 polymorphism (rs2337104) and CRC risk in our population. Although the T allele is the most frequent one in this population and its frequency was 86.7% in patients compared with 91.7% in controls (OR=1.705, 95% CI= 0.916–3.172). Also, the SMAD7 genotypes were not associated with any clinicopathological characteristics in CRC patients (P>0.05). Conclusion: For the first time, this study results revealed that this SMAD7 polymorphism couldn’t be a potential risk factor for CRC or a prognostic biomarker for prediction of clinicopathological features in an Iranian population. A large-scale case-control study is needed to validate our results. PMID:25289133

  3. Liquid chromatography-tandem mass spectrometry method for the measurement of serum mevalonic acid: a novel marker of hydroxymethylglutaryl coenzyme A reductase inhibition by statins.

    PubMed

    Waldron, Jenna; Webster, Craig

    2011-05-01

    Mevalonic acid (MVA) is synthesized at an early and rate-limiting step in the biosynthesis of cholesterol by the enzyme hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase, and is a useful measure of statin efficacy or treatment. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the measurement of serum MVA has been developed. Following the in vitro conversion of MVA to mevalonic acid lactone (MVAL) in the serum, MVAL and a deuterated internal standard were extracted using an online solid-phase extraction procedure. Chromatographic separation was achieved using a Luna PFP column (Phenomenex), with enhanced selectivity and improved resolution for polar compounds. A gradient system was used, with mobile phase comprising methanol and water (5 mmol/L ammonium formate buffer, pH 2.5). Analysis was performed using an API 5000 tandem mass spectrometer (Applied Biosystems) in positive electrospray ionization mode. The method showed excellent recoveries (98 ± 8%) and imprecision (intra-assay coefficient of variation of 2.2% [6.5 ng/mL] and 2.6% [10.5 ng/mL], and inter-assay coefficient of variation of 9% [10.5 ng/mL]). The assay provides a calibration range up to 50 ng/mL with a limit of detection at 0.1 ng/mL. A simple, rapid and analytically specific method has been developed for the measurement of serum MVA, in the form of MVAL. The high analytical sensitivity of the method allows for accurate quantitation of MVAL in serum samples, both at the endogenous levels found in healthy individuals and in statin-treated patients where normal levels are expected to be greatly reduced through the inhibition of HMG-CoA reductase.

  4. The Changes of Gene Expression on Human Hair during Long-Spaceflight

    NASA Astrophysics Data System (ADS)

    Terada, Masahiro; Mukai, Chiaki; Ishioka, Noriaki; Majima, Hideyuki J.; Yamada, Shin; Seki, Masaya; Takahashi, Rika; Higashibata, Akira; Ohshima, Hiroshi; Sudoh, Masamichi; Minamisawa, Susumu

    Hair has many advantages as the experimental sample. In a hair follicle, hair matrix cells actively divide and these active changes sensitively reflect physical condition on human body. The hair shaft records the metabolic conditions of mineral elements in our body. From human hairs, we can detect physiological informations about the human health. Therefore, we focused on using hair root analysis to understand the effects of spaceflight on astronauts. In 2009, we started a research program focusing on the analysis of astronauts’ hairs to examine the effects of long-term spaceflight on the gene expression in the human body. We want to get basic information to invent the effectivly diagnostic methods to detect the health situations of astronauts during space flight by analyzing human hair. We extracted RNA form the collected samples. Then, these extracted RNA was amplified. Amplified RNA was processed and hybridized to the Whole Human Genome (4×44K) Oligo Microarray (Agilent Technologies) according to the manufacturer’s protocol. Slide scanning was performed using the Agilent DNA Microarray Scanner. Scanning data were normalized with Agilent’s Feature Extraction software. Data preprocessing and analysis were performed using GeneSpring software 11.0.1. Next, Synthesis of cDNA (1 mg) was carried out using the PrimeScript RT reagent Kit (TaKaRa Bio) following the manufacturer’s instructions. The qRT-PCR experiment was performed with SYBR Premix Ex Taq (TaKaRa Bio) using the 7500 Real-Time PCR system (Applied Biosystems). We detected the changes of some gene expressions during spaceflight from both microarray and qRT-PCR data. These genes seems to be related with the hair proliferation. We believe that these results will lead to the discovery of the important factor effected during space flight on the hair.

  5. Imaging mass spectrometry detection of gangliosides species in the mouse brain following transient focal cerebral ischemia and long-term recovery.

    PubMed

    Whitehead, Shawn N; Chan, Kenneth H N; Gangaraju, Sandhya; Slinn, Jacqueline; Li, Jianjun; Hou, Sheng T

    2011-01-01

    Gangliosides, a member of the glycosphingolipid family, are heterogeneously expressed in biological membranes and are particularly enriched within the central nervous system. Gangliosides consist of mono- or poly-sialylated oligosaccharide chains of variable lengths attached to a ceramide unit and are found to be intimately involved in brain disease development. The purpose of this study is to examine the spatial profile of ganglioside species using matrix-assisted laser desorption/ionization (MALDI) imaging (IMS) following middle cerebral artery occlusion (MCAO) reperfusion injury in the mouse. IMS is a powerful method to not only discriminate gangliosides by their oligosaccharide components, but also by their carbon length within their sphingosine base. Mice were subjected to a 30 min unilateral MCAO followed by long-term survival (up to 28 days of reperfusion). Brain sections were sprayed with the matrix 5-Chloro-2-mercaptobenzothiazole, scanned and analyzed for a series of ganglioside molecules using an Applied Biosystems 4800 MALDI TOF/TOF. Traditional histological and immunofluorescence techniques were performed to assess brain tissue damage and verification of the expression of gangliosides of interest. Results revealed a unique anatomical profile of GM1, GD1 and GT1b (d18:1, d20:1 as well as other members of the glycosphingolipid family). There was marked variability in the ratio of expression between ipsilateral and contralateral cortices for the various detected ganglioside species following MCAO-reperfusion injury. Most interestingly, MCAO resulted in the transient induction of both GM2 and GM3 signals within the ipsilateral hemisphere; at the border of the infarcted tissue. Taken together, the data suggest that brain region specific expression of gangliosides, particularly with respect to hydrocarbon length, may play a role in neuronal responses to injury.

  6. A hypothetical mathematical construct explaining the mechanism of biological amplification in an experimental model utilizing picoTesla (PT) electromagnetic fields.

    PubMed

    Saxena, Anjali; Jacobson, Jerry; Yamanashi, William; Scherlag, Benjamin; Lamberth, John; Saxena, Brij

    2003-06-01

    We seek to answer the conundrum: What is the fundamental mechanism by which very weak, low frequency Electromagnetic fields influence biosystems? In considering the hydrophobicity of intramembranous protein (IMP) H-bonds which cross the phospholipid bilayer of plasma membranes, and the necessity for photonic recycling in cell surface interactions after dissipation of energetic states, present models lack structure and thermodynamic properties to maintain (DeltaE) sufficient energy sources necessary for amplifications by factors of 10(12). Even though one accepts that the ligand-receptor association alters the conformation of extracellular, extruding portions of IMP's at the cell surface, and that this change can be transmitted to the cytoplasm by the transmembranous helical segments by nonlinear vibrations of proteins with generation of soliton waves, one is still unable to account for repair and balanced function. Indeed, responses of critical molecules to certain magnetic field signals may include enhanced vibrational amplitudes, increased quanta of thermal energies and order inducing interactions. We may accept that microtrabecular reticulum-receptor is associated with actin filaments and ATP molecules which contribute to the activation of the cyclase enzyme system through piezoelectricity. Magnetic fields will pass through the membrane which sharply attenuates the electric field component of an EM field, due to its high impedance. Furthermore, EM oscillations are converted to mechanical vibrations; i.e., photon-phonon transduction, to induce molecular vibrations of frequencies specifically responsible for bioamplifications of weak triggers at the membrane surface, as well as GAP junctions. The hydrogen bonds of considerable importance are those in proteins (10(12)Hz) and DNA (10(11)Hz) and may be viewed as centers of EM radiation emission in the range from the mm microwaves to the far IR. However, classical electrodynamical theory does not yield a model for biomolecular resonant responses which are integrated over time and account for the connection between the phonon field and photons. Jacobson Resonance does supply an initial physical mechanism, as equivalencies in energy to that of Zeeman Resonance (i.e., zero-order magnetic resonance) and cyclotron resonance may be derived from the DeBroglie wave particle equation. For the first time, we view the introduction of Relativity Theory to biology in the expression, mc(2)=BvLq, where m is the mass of a particle in the 'box' or 'string' (molecule in a biosystem), c is the velocity of electromagnetic field in space, independent of its inertial frame of reference, B is the magnetic flux density,v is the velocity of the carrier or 'string' (a one or two dimensional 'box') in which the particle exists, L is its dimension (length) and q represents a unit charge q=1C, by defining electromotive force as energy per unit charge. Equivalencies suggest that qvBL is one of the fundamental expressions of energy of a charged wave-particle in magnetic fields, just as Zeeman and cyclotron resonance energy expressions, gbetaB and qhB/2pim, and is applicable to all charged particles (molecules in biological systems). There may exist spontaneous, independent and incessant interactions of magnetic vector B and particles in biosystems which exert Lorentz forces. Lorentz forces may be transmitted from EM field to gravitational field as a gravity wave which return to the phonon field as microgravitational fluctuations to therein produce quantum vibrational states that increase quanta of thermal energies integrated over time. This may account for the differential of 10(12) between photonic energy of ELF waves and the Boltzman energy kT. Recent data from in vivo controlled studies are included as empirical support for the various hypotheses presented.

  7. Modeling biology with HDL languages: a first step toward a genetic design automation tool inspired from microelectronics.

    PubMed

    Gendrault, Yves; Madec, Morgan; Lallement, Christophe; Haiech, Jacques

    2014-04-01

    Nowadays, synthetic biology is a hot research topic. Each day, progresses are made to improve the complexity of artificial biological functions in order to tend to complex biodevices and biosystems. Up to now, these systems are handmade by bioengineers, which require strong technical skills and leads to nonreusable development. Besides, scientific fields that share the same design approach, such as microelectronics, have already overcome several issues and designers succeed in building extremely complex systems with many evolved functions. On the other hand, in systems engineering and more specifically in microelectronics, the development of the domain has been promoted by both the improvement of technological processes and electronic design automation tools. The work presented in this paper paves the way for the adaptation of microelectronics design tools to synthetic biology. Considering the similarities and differences between the synthetic biology and microelectronics, the milestones of this adaptation are described. The first one concerns the modeling of biological mechanisms. To do so, a new formalism is proposed, based on an extension of the generalized Kirchhoff laws to biology. This way, a description of all biological mechanisms can be made with languages widely used in microelectronics. Our approach is therefore successfully validated on specific examples drawn from the literature.

  8. Epidermal Growth Factor Signaling towards Proliferation: Modeling and Logic Inference Using Forward and Backward Search

    PubMed Central

    Riesco, Adrián; Santos-Buitrago, Beatriz; De Las Rivas, Javier; Knapp, Merrill; Talcott, Carolyn

    2017-01-01

    In biological systems, pathways define complex interaction networks where multiple molecular elements are involved in a series of controlled reactions producing responses to specific biomolecular signals. These biosystems are dynamic and there is a need for mathematical and computational methods able to analyze the symbolic elements and the interactions between them and produce adequate readouts of such systems. In this work, we use rewriting logic to analyze the cellular signaling of epidermal growth factor (EGF) and its cell surface receptor (EGFR) in order to induce cellular proliferation. Signaling is initiated by binding the ligand protein EGF to the membrane-bound receptor EGFR so as to trigger a reactions path which have several linked elements through the cell from the membrane till the nucleus. We present two different types of search for analyzing the EGF/proliferation system with the help of Pathway Logic tool, which provides a knowledge-based development environment to carry out the modeling of the signaling. The first one is a standard (forward) search. The second one is a novel approach based on narrowing, which allows us to trace backwards the causes of a given final state. The analysis allows the identification of critical elements that have to be activated to provoke proliferation. PMID:28191459

  9. Epidermal Growth Factor Signaling towards Proliferation: Modeling and Logic Inference Using Forward and Backward Search.

    PubMed

    Riesco, Adrián; Santos-Buitrago, Beatriz; De Las Rivas, Javier; Knapp, Merrill; Santos-García, Gustavo; Talcott, Carolyn

    2017-01-01

    In biological systems, pathways define complex interaction networks where multiple molecular elements are involved in a series of controlled reactions producing responses to specific biomolecular signals. These biosystems are dynamic and there is a need for mathematical and computational methods able to analyze the symbolic elements and the interactions between them and produce adequate readouts of such systems. In this work, we use rewriting logic to analyze the cellular signaling of epidermal growth factor (EGF) and its cell surface receptor (EGFR) in order to induce cellular proliferation. Signaling is initiated by binding the ligand protein EGF to the membrane-bound receptor EGFR so as to trigger a reactions path which have several linked elements through the cell from the membrane till the nucleus. We present two different types of search for analyzing the EGF/proliferation system with the help of Pathway Logic tool, which provides a knowledge-based development environment to carry out the modeling of the signaling. The first one is a standard (forward) search. The second one is a novel approach based on narrowing , which allows us to trace backwards the causes of a given final state. The analysis allows the identification of critical elements that have to be activated to provoke proliferation.

  10. Electrochemical aptamer-based nanosensor fabricated on single Au nanowire electrodes for adenosine triphosphate assay.

    PubMed

    Wang, Dongmei; Xiao, Xiaoqing; Xu, Shen; Liu, Yong; Li, Yongxin

    2018-01-15

    In this work, single Au nanowire electrodes (AuNWEs) were fabricated by laser-assisted pulling/hydrofluoric acid (HF) etching process, which then were characterized by transmission electron microscopy (TEM), electrochemical method and finite-element simulation. The as-prepared single AuNWEs were used to construct electrochemical aptamer-based nanosensors (E-AB nanosensors) based on the formation of Au-S bond that duplex DNA tagged with methylene blue (MB) was modified on the surface of electrode. In the presence of adenosine triphosphate (ATP), the MB-labeled aptamer dissociated from the duplex DNA due to the strong specific affinity between aptamer and target, which lead to the reduction of MB electrochemical signals. Moreover, BSA was employed to further passivate electrode surface bonding sites for the stable of the sensor. The as-prepared E-AB nanosensor has been used for ATP assay with excellent sensitivity and selectivity, even in a complex system like cerebrospinal fluid of rat brain. Considering the unique properties of good stability, larger surface area and smaller overall dimensions, this E-AB nanosensor should be an ideal platform for widely sensing applications in living bio-system. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Electromagnetism of Bacterial Growth

    NASA Astrophysics Data System (ADS)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  12. Methods of information geometry in computational system biology (consistency between chemical and biological evolution).

    PubMed

    Astakhov, Vadim

    2009-01-01

    Interest in simulation of large-scale metabolic networks, species development, and genesis of various diseases requires new simulation techniques to accommodate the high complexity of realistic biological networks. Information geometry and topological formalisms are proposed to analyze information processes. We analyze the complexity of large-scale biological networks as well as transition of the system functionality due to modification in the system architecture, system environment, and system components. The dynamic core model is developed. The term dynamic core is used to define a set of causally related network functions. Delocalization of dynamic core model provides a mathematical formalism to analyze migration of specific functions in biosystems which undergo structure transition induced by the environment. The term delocalization is used to describe these processes of migration. We constructed a holographic model with self-poetic dynamic cores which preserves functional properties under those transitions. Topological constraints such as Ricci flow and Pfaff dimension were found for statistical manifolds which represent biological networks. These constraints can provide insight on processes of degeneration and recovery which take place in large-scale networks. We would like to suggest that therapies which are able to effectively implement estimated constraints, will successfully adjust biological systems and recover altered functionality. Also, we mathematically formulate the hypothesis that there is a direct consistency between biological and chemical evolution. Any set of causal relations within a biological network has its dual reimplementation in the chemistry of the system environment.

  13. Thermomicrocapillaries as temperature biosensors in single cells

    NASA Astrophysics Data System (ADS)

    Herth, Simone; Giesguth, Miriam; Wedel, Waldemar; Reiss, Günther; Dietz, Karl-Josef

    2013-03-01

    Temperature is an important physical parameter in biology and its deviation from optimum can cause damage in biosystems. Thermocouples based on the Seebeck effect can be structured on glass microcapillaries to obtain thermomicrocapillaries (TMCs) usable in a micromanipulation setup. The suitability of the setup was proven by monitoring the temperature increase upon illumination of leaves and single cells following insertion of the TMC. The increase was 1.5 K in green tissue and 0.75 K in white leaf sections due to lower absorption. In single cells of trichomes, the increase was 0.5 K due to heat dissipation to the surrounding air.

  14. Constructal approach to cell membranes transport: Amending the ‘Norton-Simon’ hypothesis for cancer treatment

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto; Ponzetto, Antonio; Deisboeck, Thomas S.

    2016-01-01

    To investigate biosystems, we propose a new thermodynamic concept that analyses ion, mass and energy flows across the cell membrane. This paradigm-shifting approach has a wide applicability to medically relevant topics including advancing cancer treatment. To support this claim, we revisit ‘Norton-Simon’ and evolving it from an already important anti-cancer hypothesis to a thermodynamic theorem in medicine. We confirm that an increase in proliferation and a reduction in apoptosis trigger a maximum of ATP consumption by the tumor cell. Moreover, we find that positive, membrane-crossing ions lead to a decrease in the energy used by the tumor, supporting the notion of their growth inhibitory effect while negative ions apparently increase the cancer’s consumption of energy hence reflecting a growth promoting impact. Our results not only represent a thermodynamic proof of the original Norton-Simon hypothesis but, more concretely, they also advance the clinically intriguing and experimentally testable, diagnostic hypothesis that observing an increase in negative ions inside a cell in vitro, and inside a diseased tissue in vivo, may indicate growth or recurrence of a tumor. We conclude with providing theoretical evidence that applying electromagnetic field therapy early on in the treatment cycle may maximize its anti-cancer efficacy.

  15. Effect of collision energy optimization on the measurement of peptides by selected reaction monitoring (SRM) mass spectrometry.

    PubMed

    Maclean, Brendan; Tomazela, Daniela M; Abbatiello, Susan E; Zhang, Shucha; Whiteaker, Jeffrey R; Paulovich, Amanda G; Carr, Steven A; Maccoss, Michael J

    2010-12-15

    Proteomics experiments based on Selected Reaction Monitoring (SRM, also referred to as Multiple Reaction Monitoring or MRM) are being used to target large numbers of protein candidates in complex mixtures. At present, instrument parameters are often optimized for each peptide, a time and resource intensive process. Large SRM experiments are greatly facilitated by having the ability to predict MS instrument parameters that work well with the broad diversity of peptides they target. For this reason, we investigated the impact of using simple linear equations to predict the collision energy (CE) on peptide signal intensity and compared it with the empirical optimization of the CE for each peptide and transition individually. Using optimized linear equations, the difference between predicted and empirically derived CE values was found to be an average gain of only 7.8% of total peak area. We also found that existing commonly used linear equations fall short of their potential, and should be recalculated for each charge state and when introducing new instrument platforms. We provide a fully automated pipeline for calculating these equations and individually optimizing CE of each transition on SRM instruments from Agilent, Applied Biosystems, Thermo-Scientific and Waters in the open source Skyline software tool ( http://proteome.gs.washington.edu/software/skyline ).

  16. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning

    PubMed Central

    Valouev, Anton; Ichikawa, Jeffrey; Tonthat, Thaisan; Stuart, Jeremy; Ranade, Swati; Peckham, Heather; Zeng, Kathy; Malek, Joel A.; Costa, Gina; McKernan, Kevin; Sidow, Arend; Fire, Andrew; Johnson, Steven M.

    2008-01-01

    Using the massively parallel technique of sequencing by oligonucleotide ligation and detection (SOLiD; Applied Biosystems), we have assessed the in vivo positions of more than 44 million putative nucleosome cores in the multicellular genetic model organism Caenorhabditis elegans. These analyses provide a global view of the chromatin architecture of a multicellular animal at extremely high density and resolution. While we observe some degree of reproducible positioning throughout the genome in our mixed stage population of animals, we note that the major chromatin feature in the worm is a diversity of allowed nucleosome positions at the vast majority of individual loci. While absolute positioning of nucleosomes can vary substantially, relative positioning of nucleosomes (in a repeated array structure likely to be maintained at least in part by steric constraints) appears to be a significant property of chromatin structure. The high density of nucleosomal reads enabled a substantial extension of previous analysis describing the usage of individual oligonucleotide sequences along the span of the nucleosome core and linker. We release this data set, via the UCSC Genome Browser, as a resource for the high-resolution analysis of chromatin conformation and DNA accessibility at individual loci within the C. elegans genome. PMID:18477713

  17. Quantitative PCR assay to determine prevalence and intensity of MSX (Haplosporidium nelsoni) in North Carolina and Rhode Island oysters Crassostrea virginica.

    PubMed

    Wilbur, Ami E; Ford, Susan E; Gauthier, Julie D; Gomez-Chiarri, Marta

    2012-12-27

    The continuing challenges to the management of both wild and cultured eastern oyster Crassostrea virginica populations resulting from protozoan parasites has stimulated interest in the development of molecular assays for their detection and quantification. For Haplosporidium nelsoni, the causative agent of multinucleated sphere unknown (MSX) disease, diagnostic evaluations depend extensively on traditional but laborious histological approaches and more recently on rapid and sensitive (but not quantitative) end-point polymerase chain reaction (PCR) assays. Here, we describe the development and application of a quantitative PCR (qPCR) assay for H. nelsoni using an Applied Biosystems TaqMan® assay designed with minor groove binder (MGB) probes. The assay was highly sensitive, detecting as few as 20 copies of cloned target DNA. Histologically evaluated parasite density was significantly correlated with the quantification cycle (Cq), regardless of whether quantification was categorical (r2 = 0.696, p < 0.0001) or quantitative (r2 = 0.797, p < 0.0001). Application in field studies conducted in North Carolina, USA (7 locations), revealed widespread occurrence of the parasite with moderate to high intensities noted in some locations. In Rhode Island, USA, application of the assay on oysters from 2 locations resulted in no positives.

  18. Two-step activation of paper batteries for high power generation: design and fabrication of biofluid- and water-activated paper batteries

    NASA Astrophysics Data System (ADS)

    Lee, Ki Bang

    2006-11-01

    Two-step activation of paper batteries has been successfully demonstrated to provide quick activation and to supply high power to credit card-sized biosystems on a plastic chip. A stack of a magnesium layer (an anode), a fluid guide (absorbent paper), a highly doped filter paper with copper chloride (a cathode) and a copper layer as a current collector is laminated between two transparent plastic films into a high power biofluid- and water-activated battery. The battery is activated by two-step activation: (1) after placing a drop of biofluid/water-based solution on the fluid inlet, the surface tension first drives the fluid to soak the fluid guide; (2) the fluid in the fluid guide then penetrates into the heavily doped filter paper with copper chloride to start the battery reaction. The fabricated half credit card-sized battery was activated by saliva, urine and tap water and delivered a maximum voltage of 1.56 V within 10 s after activation and a maximum power of 15.6 mW. When 10 kΩ and 1 KΩ loads are used, the service time with water, urine and saliva is measured as more than 2 h. An in-series battery of 3 V has been successfully tested to power two LEDs (light emitting diodes) and an electric driving circuit. As such, this high power paper battery could be integrated with on-demand credit card-sized biosystems such as healthcare test kits, biochips, lab-on-a-chip, DNA chips, protein chips or even test chips for water quality checking or chemical checking.

  19. Internal validation of the DNAscan/ANDE™ Rapid DNA Analysis™ platform and its associated PowerPlex® 16 high content DNA biochip cassette for use as an expert system with reference buccal swabs.

    PubMed

    Moreno, Lilliana I; Brown, Alice L; Callaghan, Thomas F

    2017-07-01

    Rapid DNA platforms are fully integrated systems capable of producing and analyzing short tandem repeat (STR) profiles from reference sample buccal swabs in less than two hours. The technology requires minimal user interaction and experience making it possible for high quality profiles to be generated outside an accredited laboratory. The automated production of point of collection reference STR profiles could eliminate the time delay for shipment and analysis of arrestee samples at centralized laboratories. Furthermore, point of collection analysis would allow searching against profiles from unsolved crimes during the normal booking process once the infrastructure to immediately search the Combined DNA Index System (CODIS) database from the booking station is established. The DNAscan/ANDE™ Rapid DNA Analysis™ System developed by Network Biosystems was evaluated for robustness and reliability in the production of high quality reference STR profiles for database enrollment and searching applications. A total of 193 reference samples were assessed for concordance of the CODIS 13 loci. Studies to evaluate contamination, reproducibility, precision, stutter, peak height ratio, noise and sensitivity were also performed. The system proved to be robust, consistent and dependable. Results indicated an overall success rate of 75% for the 13 CODIS core loci and more importantly no incorrect calls were identified. The DNAscan/ANDE™ could be confidently used without human interaction in both laboratory and non-laboratory settings to generate reference profiles. Published by Elsevier B.V.

  20. Photo-switchable microbial fuel-cells.

    PubMed

    Schlesinger, Orr; Dandela, Rambabu; Bhagat, Ashok; Adepu, Raju; Meijler, Michael M; Xia, Lin; Alfonta, Lital

    2018-05-01

    Regulation of Bio-systems in a clean, simple, and efficient way is important for the design of smart bio-interfaces and bioelectronic devices. Light as a non-invasive mean to control the activity of a protein enables spatial and temporal control far superior to other chemical and physical methods. The ability to regulate the activity of a catalytic enzyme in a biofuel-cell reduces the waste of resources and energy and turns the fuel-cell into a smart and more efficient device for power generation. Here we present a microbial-fuel-cell based on a surface displayed, photo-switchable alcohol dehydrogenase. The enzyme was modified near the active site using non-canonical amino acids and a small photo-reactive molecule, which enables reversible control of enzymatic activity. Depending on the modification site, the enzyme exhibits reversible behavior upon irradiation with UV and visible light, in both biochemical, and electrochemical assays. The change observed in power output of a microbial fuel cell utilizing the modified enzyme was almost five-fold, between inactive and active states. © 2018 Wiley Periodicals, Inc.

  1. The start of the Abiogenesis: Preservation of homochirality in proteins as a necessary and sufficient condition for the establishment of the metabolism.

    PubMed

    Toxvaerd, Søren

    2018-08-14

    Biosystems contain an almost infinite amount of vital important details, which together ensure their life. There are, however, some common structures and reactions in the systems: the homochirality of carbohydrates and proteins, the metabolism and the genetics. The Abiogenesis, or the origin of life, is probably not a result of a series of single events, but rather the result of a gradual process with increasing complexity of molecules and chemical reactions, and the prebiotic synthesis of molecules might not have left a trace of the establishment of structures and reactions at the beginning of the evolution. But alternatively, one might be able to determine some order in the formation of the chemical denominators in the Abiogenesis. Here we review experimental results and present a model of the start of the Abionenesis, where the spontaneous formation of homochirality in proteins is the precondition for the establishment of homochirality of carbohydrates and for the metabolism at the start of the Abiogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Molecular modeling in structural nano-toxicology: interactions of nano-particles with nano-machinery of cells.

    PubMed

    Yanamala, Naveena; Kagan, Valerian E; Shvedova, Anna A

    2013-12-01

    Over the past two decades, nanotechnology has emerged as a key player in various disciplines of science and technology. Some of the most exciting applications are in the field of biomedicine - for theranostics (for combined diagnostic and therapeutic purposes) as well as for exploration of biological systems. A detailed understanding of the molecular interactions between nanoparticles and biological nano-machinery - macromolecules, membranes, and intracellular organelles - is crucial for obtaining adequate information on mechanisms of action of nanomaterials as well as a perspective on the long term effects of these materials and their possible toxicological outcomes. This review focuses on the use of structure-based computational molecular modeling as a tool to understand and to predict the interactions between nanomaterials and nano-biosystems. We review major approaches and provide examples of computational analysis of the structural principles behind such interactions. A rationale on how nanoparticles of different sizes, shape, structure and chemical properties can affect the organization and functions of nano-machinery of cells is also presented. Published by Elsevier B.V.

  3. The Role of Carbohydrates at the Origin of Homochirality in Biosystems

    NASA Astrophysics Data System (ADS)

    Toxvaerd, Søren

    2013-10-01

    Pasteur has demonstrated that the chiral components in a racemic mixture can separate in homochiral crystals. But with a strong chiral discrimination the chiral components in a concentrated mixture can also phase separate into homochiral fluid domains, and the isomerization kinetics can then perform a symmetry breaking into one thermodynamical stable homochiral system. Glyceraldehyde has a sufficient chiral discrimination to perform such a symmetry breaking. The requirement of a high concentration of the chiral reactant(s) in an aqueous solution in order to perform and maintain homochirality; the appearance of phosphorylation of almost all carbohydrates in the central machinery of life; the basic ideas that the biochemistry and the glycolysis and gluconeogenesis contain the trace of the biochemical evolution, all point in the direction of that homochirality was obtained just after- or at a phosphorylation of the very first products of the formose reaction, at high concentrations of the reactants in phosphate rich compartments in submarine hydrothermal vents. A racemic solution of D,L-glyceraldehyde-3-phosphate could be the template for obtaining homochiral D-glyceraldehyde-3-phosphate(aq) as well as L-amino acids.

  4. Oxygen-Free Biochemistry: The Putative CHN Foundation for Exotic Life in a Hydrocarbon World?

    NASA Astrophysics Data System (ADS)

    Lv, Kong-Peng; Norman, Lucy; Li, Yi-Liang

    2017-11-01

    Since Earth's biochemistry is carbon-based and water-borne, the main strategies for searching for life elsewhere are "follow the carbon" and "follow the water." Recently, however, there is a growing focus on the prospect that putative exotic life on other planets could rely on unearthly biochemistries. Here, we hypothesize a novel oxygen-free organic chemistry for supporting potential exotic biosystems, which is named CHN biochemistry. This oxygen-free CHN biochemistry starts from simple oxygen-free species (including hydrocarbons, hydrogen cyanide, and nitriles) and produces a range of functional macromolecules that may function in similar ways to terran macromolecules, such as sugars (cyanosugars), acids (cyanoacids), amino acids (amino cyanoacids), and nucleobases (cyanonucleobases). These CHN macromolecules could further interact with each other to generate higher "cyanoester" and "cyanoprotein" systems. In addition, theoretical calculations indicate that the energy changes of some reactions are consistent with their counterparts in Earth's biochemistry. The CHN biochemistry-based life would be applicable in habitats with a low bioavailability of oxygen, such as the alkane lakes of Titan and non-aquatic liquids on extrasolar bodies.

  5. Lung Reference Set A Application: LaszloTakacs - Biosystems (2010) — EDRN Public Portal

    Cancer.gov

    We would like to access the NCI lung cancer Combined Pre-Validation Reference Set A in order to further validate a lung cancer diagnostic test candidate. Our test is based on a panel of antibodies which have been tested on 4 different cohorts (see below, paragraph “Preliminary Data and Methods”). This Reference Set A, whose clinical setting is “Diagnosis of lung cancer”, will be used to validate the panel of monoclonal antibodies which have been demonstrated by extensive data analysis to provide the best discrimination between controls and Lung Cancer patient plasma samples, sensitivity and specificity values from ROC analyses are superior than 85 %.

  6. Chemical Fixation of CO2 in Coal Combustion Products and Recycling through Biosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Henry Copeland; Paul Pier; Samantha Whitehead

    2001-09-30

    This Annual Technical Progress Report presents the principle results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. A co-current reactor is present that increases the gas phase to bicarbonate transfer rate by a factor of five to nine. The bicarbonate concentration at a given pH is approximately double that obtained using a control column of similar construction. Algae growth experiments were performed under laboratory conditions to obtain baseline production rates and to perfect experimental methods. The final product of this initial phase in algae production is presented.

  7. Inverse problem studies of biochemical systems with structure identification of S-systems by embedding training functions in a genetic algorithm.

    PubMed

    Sarode, Ketan Dinkar; Kumar, V Ravi; Kulkarni, B D

    2016-05-01

    An efficient inverse problem approach for parameter estimation, state and structure identification from dynamic data by embedding training functions in a genetic algorithm methodology (ETFGA) is proposed for nonlinear dynamical biosystems using S-system canonical models. Use of multiple shooting and decomposition approach as training functions has been shown for handling of noisy datasets and computational efficiency in studying the inverse problem. The advantages of the methodology are brought out systematically by studying it for three biochemical model systems of interest. By studying a small-scale gene regulatory system described by a S-system model, the first example demonstrates the use of ETFGA for the multifold aims of the inverse problem. The estimation of a large number of parameters with simultaneous state and network identification is shown by training a generalized S-system canonical model with noisy datasets. The results of this study bring out the superior performance of ETFGA on comparison with other metaheuristic approaches. The second example studies the regulation of cAMP oscillations in Dictyostelium cells now assuming limited availability of noisy data. Here, flexibility of the approach to incorporate partial system information in the identification process is shown and its effect on accuracy and predictive ability of the estimated model are studied. The third example studies the phenomenological toy model of the regulation of circadian oscillations in Drosophila that follows rate laws different from S-system power-law. For the limited noisy data, using a priori information about properties of the system, we could estimate an alternate S-system model that showed robust oscillatory behavior with predictive abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Polymorphisms in CTNNBL1 in relation to colorectal cancer with evolutionary implications

    PubMed Central

    Huhn, Stefanie; Ingelfinger, Dierk; Bermejo, Justo Lorenzo; Bevier, Melanie; Pardini, Barbara; Naccarati, Alessio; Steinke, Verena; Rahner, Nils; Holinski-Feder, Elke; Morak, Monika; Schackert, Hans K; Görgens, Heike; Pox, Christian P; Goecke, Timm; Kloor, Matthias; Loeffler, Markus; Büttner, Reinhard; Vodickova, Ludmila; Novotny, Jan; Demir, Kubilay; Cruciat, Cristina-Maria; Renneberg, Rebecca; Huber, Wolfgang; Niehrs, Christof; Boutros, Michael; Propping, Peter; Vodička, Pavel; Hemminki, Kari; Försti, Asta

    2011-01-01

    Colorectal cancer (CRC) is a complex disease related to environmental and genetic risk factors. Several studies have shown that susceptibility to complex diseases can be mediated by ancestral alleles. Using RNAi screening, CTNNBL1 was identified as a putative regulator of the Wnt signaling pathway, which plays a key role in colorectal carcinogenesis. Recently, single nucleotide polymorphisms (SNPs) in CTNNBL1 have been associated with obesity, a known risk factor for CRC. We investigated whether genetic variation in CTNNBL1 affects susceptibility to CRC and tested for signals of recent selection. We applied a tagging SNP approach that cover all known common variation in CTNNBL1 (allele frequency >5%; r2>0.8). A case-control study was carried out using two well-characterized study populations: a hospital-based Czech population composed of 751 sporadic cases and 755 controls and a family/early onset-based German population (697 cases and 644 controls). Genotyping was performed using allele specific PCR based TaqMan® assays (Applied Biosystems, Weiterstadt, Germany). In the Czech cohort, containing sporadic cases, the ancestral alleles of three SNPs showed evidence of association with CRC: rs2344481 (OR 1.44, 95%CI 1.06-1.95, dominant model), rs2281148 (OR 0.59, 95%CI 0.36-0.96, dominant model) and rs2235460 (OR 1.38, 95%CI 1.01-1.89, AA vs. GG). The associations were less prominent in the family/early onset-based German cohort. Data derived from several databases and statistical tests consistently pointed to a likely shaping of CTNNBL1 by positive selection. Further studies are needed to identify the actual function of CTNNBL1 and to validate the association results in other populations. PMID:21537400

  9. Microfluidic Approaches to Synchrotron Radiation-Based Fourier Transform Infrared (SR-FTIR) Spectral Microscopy of Living Biosystems

    PubMed Central

    Loutherback, Kevin; Birarda, Giovanni; Chen, Liang; Holman, Hoi-Ying N.

    2016-01-01

    A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the water thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration. PMID:26732243

  10. Microfluidic approaches to synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy of living biosystems

    DOE PAGES

    Loutherback, Kevin; Birarda, Giovanni; Chen, Liang; ...

    2016-02-15

    A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the watermore » thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration.« less

  11. Microfluidic approaches to synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy of living biosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loutherback, Kevin; Birarda, Giovanni; Chen, Liang

    A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the watermore » thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration.« less

  12. Optogenetic stimulation of multiwell MEA plates for neural and cardiac applications

    NASA Astrophysics Data System (ADS)

    Clements, Isaac P.; Millard, Daniel C.; Nicolini, Anthony M.; Preyer, Amanda J.; Grier, Robert; Heckerling, Andrew; Blum, Richard A.; Tyler, Phillip; McSweeney, K. M.; Lu, Yi-Fan; Hall, Diana; Ross, James D.

    2016-03-01

    Microelectrode array (MEA) technology enables advanced drug screening and "disease-in-a-dish" modeling by measuring the electrical activity of cultured networks of neural or cardiac cells. Recent developments in human stem cell technologies, advancements in genetic models, and regulatory initiatives for drug screening have increased the demand for MEA-based assays. In response, Axion Biosystems previously developed a multiwell MEA platform, providing up to 96 MEA culture wells arrayed into a standard microplate format. Multiwell MEA-based assays would be further enhanced by optogenetic stimulation, which enables selective excitation and inhibition of targeted cell types. This capability for selective control over cell culture states would allow finer pacing and probing of cell networks for more reliable and complete characterization of complex network dynamics. Here we describe a system for independent optogenetic stimulation of each well of a 48-well MEA plate. The system enables finely graded control of light delivery during simultaneous recording of network activity in each well. Using human induced pluripotent stem cell (hiPSC) derived cardiomyocytes and rodent primary neuronal cultures, we demonstrate high channel-count light-based excitation and suppression in several proof-of-concept experimental models. Our findings demonstrate advantages of combining multiwell optical stimulation and MEA recording for applications including cardiac safety screening, neural toxicity assessment, and advanced characterization of complex neuronal diseases.

  13. Carbon-dot-based fluorescent turn-on sensor for selectively detecting sulfide anions in totally aqueous media and imaging inside live cells.

    PubMed

    Hou, Xianfeng; Zeng, Fang; Du, Fangkai; Wu, Shuizhu

    2013-08-23

    Sulfide anions are generated not only as a byproduct from industrial processes but also in biosystems. Hence, robust fluorescent sensors for detecting sulfide anions which are fast-responding, water soluble and biocompatible are highly desirable. Herein, we report a carbon-dot-based fluorescent sensor, which features excellent water solubility, low cytotoxicity and a short response time. This sensor is based on the ligand/Cu(II) approach so as to achieve fast sensing of sulfide anions. The carbon dot (CD) serves as the fluorophore as well as the anchoring site for the ligands which bind with copper ions. For this CD-based system, as copper ions bind with the ligands which reside on the surface of the CD, the paramagnetic copper ions efficiently quench the fluorescence of the CD, affording the system a turn-off sensor for copper ions. More importantly, the subsequently added sulfide anions can extract Cu(2+) from the system and form very stable CuS with Cu(2+), resulting in fluorescence enhancement and affording the system a turn-on sensor for sulfide anions. This fast-responding and selective sensor can operate in totally aqueous solution or in physiological milieu with a low detection limit of 0.78 μM. It displays good biocompatibility, and excellent cell membrane permeability, and can be used to monitor S(2-) levels in running water and living cells.

  14. 16S rRNA partial gene sequencing for the differentiation and molecular subtyping of Listeria species.

    PubMed

    Hellberg, Rosalee S; Martin, Keely G; Keys, Ashley L; Haney, Christopher J; Shen, Yuelian; Smiley, R Derike

    2013-12-01

    Use of 16S rRNA partial gene sequencing within the regulatory workflow could greatly reduce the time and labor needed for confirmation and subtyping of Listeria monocytogenes. The goal of this study was to build a 16S rRNA partial gene reference library for Listeria spp. and investigate the potential for 16S rRNA molecular subtyping. A total of 86 isolates of Listeria representing L. innocua, L. seeligeri, L. welshimeri, and L. monocytogenes were obtained for use in building the custom library. Seven non-Listeria species and three additional strains of Listeria were obtained for use in exclusivity and food spiking tests. Isolates were sequenced for the partial 16S rRNA gene using the MicroSeq ID 500 Bacterial Identification Kit (Applied Biosystems). High-quality sequences were obtained for 84 of the custom library isolates and 23 unique 16S sequence types were discovered for use in molecular subtyping. All of the exclusivity strains were negative for Listeria and the three Listeria strains used in food spiking were consistently recovered and correctly identified at the species level. The spiking results also allowed for differentiation beyond the species level, as 87% of replicates for one strain and 100% of replicates for the other two strains consistently matched the same 16S type. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Fragman: an R package for fragment analysis.

    PubMed

    Covarrubias-Pazaran, Giovanny; Diaz-Garcia, Luis; Schlautman, Brandon; Salazar, Walter; Zalapa, Juan

    2016-04-21

    Determination of microsatellite lengths or other DNA fragment types is an important initial component of many genetic studies such as mutation detection, linkage and quantitative trait loci (QTL) mapping, genetic diversity, pedigree analysis, and detection of heterozygosity. A handful of commercial and freely available software programs exist for fragment analysis; however, most of them are platform dependent and lack high-throughput applicability. We present the R package Fragman to serve as a freely available and platform independent resource for automatic scoring of DNA fragment lengths diversity panels and biparental populations. The program analyzes DNA fragment lengths generated in Applied Biosystems® (ABI) either manually or automatically by providing panels or bins. The package contains additional tools for converting the allele calls to GenAlEx, JoinMap® and OneMap software formats mainly used for genetic diversity and generating linkage maps in plant and animal populations. Easy plotting functions and multiplexing friendly capabilities are some of the strengths of this R package. Fragment analysis using a unique set of cranberry (Vaccinium macrocarpon) genotypes based on microsatellite markers is used to highlight the capabilities of Fragman. Fragman is a valuable new tool for genetic analysis. The package produces equivalent results to other popular software for fragment analysis while possessing unique advantages and the possibility of automation for high-throughput experiments by exploiting the power of R.

  16. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments.

    PubMed

    MacLean, Brendan; Tomazela, Daniela M; Shulman, Nicholas; Chambers, Matthew; Finney, Gregory L; Frewen, Barbara; Kern, Randall; Tabb, David L; Liebler, Daniel C; MacCoss, Michael J

    2010-04-01

    Skyline is a Windows client application for targeted proteomics method creation and quantitative data analysis. It is open source and freely available for academic and commercial use. The Skyline user interface simplifies the development of mass spectrometer methods and the analysis of data from targeted proteomics experiments performed using selected reaction monitoring (SRM). Skyline supports using and creating MS/MS spectral libraries from a wide variety of sources to choose SRM filters and verify results based on previously observed ion trap data. Skyline exports transition lists to and imports the native output files from Agilent, Applied Biosystems, Thermo Fisher Scientific and Waters triple quadrupole instruments, seamlessly connecting mass spectrometer output back to the experimental design document. The fast and compact Skyline file format is easily shared, even for experiments requiring many sample injections. A rich array of graphs displays results and provides powerful tools for inspecting data integrity as data are acquired, helping instrument operators to identify problems early. The Skyline dynamic report designer exports tabular data from the Skyline document model for in-depth analysis with common statistical tools. Single-click, self-updating web installation is available at http://proteome.gs.washington.edu/software/skyline. This web site also provides access to instructional videos, a support board, an issues list and a link to the source code project.

  17. Development of positive control materials for DNA-based detection of cystic fibrosis: Cloning and sequencing of 31 mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iovannisci, D.; Brown, C.; Winn-Deen, E.

    1994-09-01

    The cloning and sequencing of the gene associated with cystic fibrosis (CF) now provides the opportunity for earlier detection and carrier screening through DNA-based detection schemes. To date, over 300 mutations have been reported to the CF Consortium; however, only 30 mutations have been observed frequently enough world-wide to warrant routine screening. Many of these mutations are not available as cloned material or as established tissue culture cell lines to aid in the development of DNA-based detection assays. We have therefore cloned the 30 most frequently reported mutations, plus the mutation R347H due to its association with male infertility (31more » mutations, total). Two approaches were employed: direct PCR amplification, where mutations were available from patient sources, and site-directed PCR mutagenesis of normal genomic DNA to generate the remaining mutations. After amplification, products were cloned into a sequencing vector, bacterial transformants were screened by a novel method (PCR/oligonucleotide litigation assay/sequence-coded separation), and plamid DNA sequences determined by automated fluorescent methods on the Applied Biosystems 373A. Mixing of the clones allows the construction of artificial genotypes useful as positive control material for assay validation. A second round of mutagenesis, resulting in the construction of plasmids bearing multiple mutations, will be evaluated for their utility as reagent control materials in kit development.« less

  18. Detection of levamisole exposure in cocaine users by liquid chromatography-tandem mass spectrometry.

    PubMed

    Lynch, Kara L; Dominy, Stephen S; Graf, Jonathan; Kral, Alexander H

    2011-04-01

    Levamisole, a veterinary antihelminthic, was recently recognized as an adulterant in cocaine and is known to cause severe adverse reactions in some cocaine users. Because of the health concerns involving levamisole-adulterated cocaine, we developed a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method for the detection of levamisole in urine. This method was used to determine the prevalence of levamisole in cocaine-positive patient samples. All cocaine-positive urine samples that were sent to the San Francisco General Hospital Clinical Laboratory were tested for levamisole for one month. For LC, an Agilent 1200 series was used with a C(18) column and a gradient of mobile phase A (0.05% formic acid) and B (acetonitrile/methanol). Detection was carried out with an Applied Biosystems QTRAP(®) LC-MS-MS. The levamisole LC-MS-MS method was linear over the range of 5-2500 ng/mL (r > 0.996). Interassay and intraassay CVs were < 6%. The lower limit of detection for levamisole was 0.5 ng/mL. Out of 949 total urine drug screens, 20% were positive for benzoylecgonine, and of those, 88% were positive for levamisole. The high prevalence of levamisole-adulterated cocaine and potential toxicity in cocaine users is a serious public health concern. These findings validate the utility of an LC-MS-MS method for the detection of levamisole.

  19. Typeability of DNA in Touch Traces Deposited on Paper and Optical Data Discs.

    PubMed

    Sołtyszewski, Ireneusz; Szeremeta, Michał; Skawrońska, Małgorzata; Niemcunowicz-Janica, Anna; Pepiński, Witold

    2015-01-01

    Nucleated epithelial cells that are transferred by casual touching and handling of objects are the primary source of biological evidence that is found in high-volume crimes. Cellular material associated with touch traces usually contains low levels of DNA template making it challenging to acquire an informative profile. The main purpose of this study was to examine the efficacy of DNA typing in fingerprints deposited on optical data discs and the office paper. Latent fingerprints were made by 60 subjects of both sexes (30 males and 30 females). A highly effective DNA extraction method with QIAamp DNA Mini Kit (Qiagen) and an increased sensitivity PCR by AmpFlSTR® NGM™ Amplification Kit (Applied Biosystems) carried out at standard 30 cycles and at increased 34 cycles were used. The mean value of total DNA recovery was 0.4 ng from CDs/DVDs and 0.3 ng from the office paper. Amplification of Low Template DNA (LT-DNA) resulted in improved analytical success by increasing the number of PCR cycles from standard 30 to 34. On the other hand, the increased PCR cycles resulted in allele drop-ins showing additional peaks, the majority of which were outside the stutter positions. Rigorous procedures and interpretation guidelines are required during LT-DNA for producing reliable and reproducible DNA profiles for forensic purposes.

  20. Ion-trap tandem mass spectrometric analysis of Amadori-glycated phosphatidylethanolamine in human plasma with or without diabetes.

    PubMed

    Nakagawa, Kiyotaka; Oak, Jeong-Ho; Higuchi, Ohki; Tsuzuki, Tsuyoshi; Oikawa, Shinichi; Otani, Haruhisa; Mune, Masatoshi; Cai, Hua; Miyazawa, Teruo

    2005-11-01

    Peroxidized phospholipid-mediated cytotoxicity is involved in the pathophysiology of diseases [i.e., an abnormal increase of phosphatidylcholine hydroperoxide (PCOOH) in plasma of type 2 diabetic patients]. The PCOOH accumulation may relate to Amadori-glycated phosphatidylethanolamine (Amadori-PE; deoxy-D-fructosyl phosphatidylethanolamine), because Amadori-PE causes oxidative stress. However, the occurrence of lipid glycation products, including Amadori-PE, in vivo is still unclear. Consequently, we developed an analysis method of Amadori-PE using a quadrupole/linear ion-trap mass spectrometer, the Applied Biosystems QTRAP. In positive ion mode, collision-induced dissociation of Amadori-PE produced a well-characterized diglyceride ion ([M+H-303]+) permitting neutral loss scanning and multiple reaction monitoring (MRM). When lipid extract from diabetic plasma was infused directly into the QTRAP, Amadori-PE molecular species could be screened out by neutral loss scanning. Interfacing liquid chromatography with QTRAP mass spectrometry enabled the separation and determination of predominant plasma Amadori-PE species with sensitivity of approximately 0.1 pmol/injection in MRM. The plasma Amadori-PE level was 0.08 mol% of total PE in healthy subjects and 0.15-0.29 mol% in diabetic patients. Furthermore, plasma Amadori-PE levels were positively correlated with PCOOH (a maker for oxidative stress). These results show the involvement between lipid glycation and lipid peroxidation in diabetes pathogenesis.

  1. Haplotype diversity of 16 Y-chromosomal STRs in three main ethnic populations (Malays, Chinese and Indians) in Malaysia.

    PubMed

    Chang, Yuet Meng; Perumal, Revathi; Keat, Phoon Yoong; Kuehn, Daniel L C

    2007-03-22

    We have analyzed 16 Y-STR loci (DYS456, DYS389I, DYS390, DYS389II, DYS458, DYS19, DYS385a/b, DYS393, DYS391, DYS439, DYS635 or Y-GATA C4, DYS392, Y-GATA H4, DYS437, DYS438 and DYS448) from the non-recombining region of the human Y-chromosome in 980 male individuals from three main ethnic populations in Malaysia (Malay, Chinese, Indian) using the AmpFlSTR((R)) Y-filertrade mark (Applied Biosystems, Foster City, CA). The observed 17-loci haplotypes and the individual allele frequencies for each locus were estimated, whilst the locus diversity, haplotype diversity and discrimination capacity were calculated in the three ethnic populations. Analysis of molecular variance indicated that 88.7% of the haplotypic variation is found within population and 11.3% is between populations (fixation index F(ST)=0.113, p=0.000). This study has revealed Y-chromosomes with null alleles at several Y-loci, namely DYS458, DYS392, DYS389I, DYS389II, DYS439, DYS448 and Y-GATA H4; and several occurrences of duplications at the highly polymorphic DYS385 loci. Some of these deleted loci were in regions of the Y(q) arm that have been implicated in the occurrence of male infertility.

  2. Establishment of a Laboratory for Biofuels Research at the University of Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crocker, Mark; Crofcheck, Czarena; Andrews, Rodney

    2013-03-29

    This project was aimed at the development of the biofuels industry in Kentucky by establishing a laboratory to develop improved processes for biomass utilization. The facility is based at the University of Kentucky Center for Applied Energy Research and the Department of Biosystems and Agricultural Engineering, and constitutes an “open” laboratory, i.e., its equipment is available to other Kentucky researchers working in the area. The development of this biofuels facility represents a significant expansion of research infrastructure, and will provide a lasting resource for biobased research endeavors at the University of Kentucky. In order to enhance the laboratory's capabilities andmore » contribute to on-going biofuels research at the University of Kentucky, initial research at the laboratory has focused on the following technical areas: (i) the identification of algae strains suitable for oil production, utilizing flue gas from coal-fired power plants as a source of CO 2; (ii) the conversion of algae to biofuels; and (iii) the development of methods for the analysis of lignin and its deconstruction products. Highlights from these activities include the development of catalysts for the upgrading of lipids to hydrocarbons by means of decarboxylation/decarbonylation (deCOx), a study of bio-oil production from the fast pyrolysis of algae (Scenedesmus), and the application of pyrolytic gas chromatography coupled with mass spectrometry (Py-GC-MS) to the characterization of high lignin biomass feedstocks.« less

  3. Biofuels from food processing wastes.

    PubMed

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed. Copyright © 2016. Published by Elsevier Ltd.

  4. Label-free electrical detection of DNA hybridization using carbon nanotubes and graphene

    PubMed Central

    Fu, Dongliang; Li, Lain-Jong

    2010-01-01

    The interface between biosystems and nanomaterials is emerging for detection of various biomolecules and subtle cellular activities. In particular, the development of cost-effective and sequence-selective DNA detection is urgent for the diagnosis of genetic or pathogenic diseases. Graphene-based nanocarbon materials, such as carbon nanotubes and thin graphene layers, have been employed as biosensors because they are biocompatible, extraordinarily sensitive, and promising for large-area detection. Electrical and label-free detection of DNA can be achieved by monitoring the conductance change of devices fabricated from these carbon materials. Here, the recent advances in this research area are briefly reviewed. The key issues and perspectives of future development are also discussed. PMID:22110861

  5. A Thermodynamic Approach to Soil-Plant-Atmosphere Modeling: From Metabolic Biochemical Processes to Water-Carbon-Nitrogen Balance

    NASA Astrophysics Data System (ADS)

    Clavijo, H. W.

    2016-12-01

    Modeling the soil-plant-atmosphere continuum has been central part of understanding interrelationships among biogeochemical and hydrological processes. Theory behind of couplings Land Surface Models (LSM) and Dynamical Global Vegetation Models (DGVM) are based on physical and physiological processes connected by input-output interactions mainly. This modeling framework could be improved by the application of non-equilibrium thermodynamic basis that could encompass the majority of biophysical processes in a standard fashion. This study presents an alternative model for plant-water-atmosphere based on energy-mass thermodynamics. The system of dynamic equations derived is based on the total entropy, the total energy balance for the plant, the biomass dynamics at metabolic level and the water-carbon-nitrogen fluxes and balances. One advantage of this formulation is the capability to describe adaptation and evolution of dynamics of plant as a bio-system coupled to the environment. Second, it opens a window for applications on specific conditions from individual plant scale, to watershed scale, to global scale. Third, it enhances the possibility of analyzing anthropogenic impacts on the system, benefiting from the mathematical formulation and its non-linearity. This non-linear model formulation is analyzed under the concepts of qualitative system dynamics theory, for different state-space phase portraits. The attractors and sources are pointed out with its stability analysis. Possibility of bifurcations are explored and reported. Simulations for the system dynamics under different conditions are presented. These results show strong consistency and applicability that validates the use of the non-equilibrium thermodynamic theory.

  6. Interaction between cytokine gene polymorphisms and the effect of physical exercise on clinical and inflammatory parameters in older women: study protocol for a randomized controlled trial.

    PubMed

    Pereira, Daniele S; Queiroz, Bárbara Z; Mateo, Elvis C C; Assumpção, Alexandra M; Felício, Diogo C; Miranda, Aline S; Anjos, Daniela M C; Jesus-Moraleida, Fabianna; Dias, Rosângela C; Pereira, Danielle A G; Teixeira, Antônio L; Pereira, Leani S M

    2012-08-08

    Aging is associated with chronic low-grade inflammatory activity with an elevation of cytokine levels. An association between regular physical activity and reduction of blood levels of anti-inflammatory cytokines is demonstrated in the literature pointing to an anti-inflammatory effect related to exercise. However, there is no consensus regarding which type of exercise and which parameters are the most appropriate to influence inflammatory markers. Evidence indicates that the single nucleotide polymorphism (SNP) can influence the synthesis of those cytokines affecting their production. The design of this study is a randomized controlled trial. The aim of this study is to investigate the interaction between the cytokine genes SNP and the effect of physical activity on older women. The main outcomes are: serum levels of sTNFR-1, sTNFR-2, interleukin (IL)-6, IL-10, measured by the ELISA method; genotyping of tumor necrosis factor- (TNF)-alpha (rs1800629), IL6 (rs1800795), IL10 (rs1800896) by the TaqMan Method (Applied Biosystems, Foster City, CA, USA); and physical performance assessed by Timed Up and Go and 10-Meter Walk Tests. Secondary outcomes include: Geriatric Depression Scale, Perceived Stress Scaleand aerobic capacity, assessed by the six-minute walk; and lower limb muscle strength, using an isokinetic dinamometer (Biodex Medical Systems, Inc., Shirley, NY,USA). Both exercise protocols will be performed three times a week for 10 weeks, 30 sessions in total. Investigating the interaction between genetic factors and exercise effects of both protocols of exercise on the levels of inflammatory cytokine levels can contribute to guide clinical practice related to treatment and prevention of functional changes due to chronic inflammatory activity in older adults. This approach could develop new perspectives on preventive and treatment proposals in physical therapy and in the management of the older patient. (ReBEC) RBR9v9cwf.

  7. Internal quality assurance in diagnostic microbiology: A simple approach for insightful data

    PubMed Central

    Scherz, Valentin; Durussel, Christian

    2017-01-01

    Given the importance of microbiology results on patient care, high quality standards are expected. Internal quality assurance (IQA) could mitigate the limitations of internal quality control, competency assessment and external quality assurance, adding a longitudinal insight, including pre- and post-analytical steps. Here, we implemented an IQA program in our clinical microbiology facilities with blind resubmission of routine samples during 22 months. One-hundred-and-twenty-one out of 123 (98.4%) serological analyses and 112 out of 122 (91.8%) molecular analyses were concordant. Among the discordances in molecular biology analyses, 6 results were low positive samples that turned out negative, likely due to stochastic repartition of nucleic acids. Moreover, one identified retranscription error led us to implement automated results transmission from the Applied Biosystems instruments to the laboratory information system (LIS). Regarding Gram stain microscopy, 560 out of 745 (75.2%) of compared parameters were concordant. As many as 67 out of 84 (79.8%) pairs of culture results were similar, including 16 sterile pairs, 27 having identical identification or description and semi-quantification and 24 only showing variations in semi-quantification with identical description or identification of colonies. Seventeen pairs had diverging identification or description of colonies. Culture was twice only done for one member of the pairs. Regarding antibiotic susceptibility testing, a major discrepancy was observed in 5 out of 48 results (10.4%). In conclusion, serological tests were highly reproducible. Molecular diagnosis also revealed to be robust except when the amounts of nucleic acids present in the sample were close to the limits of detection. Conventional microbiology was less robust with major discrepancies reaching 39.5% of the samples for microscopy. Similarly, culture and antibiotic susceptibility testing were prone to discrepancies. This work was ground for reconsidering multiples aspects of our practices and demonstrates the importance of IQA to complete the other quality management procedures. PMID:29135992

  8. Internal quality assurance in diagnostic microbiology: A simple approach for insightful data.

    PubMed

    Scherz, Valentin; Durussel, Christian; Greub, Gilbert

    2017-01-01

    Given the importance of microbiology results on patient care, high quality standards are expected. Internal quality assurance (IQA) could mitigate the limitations of internal quality control, competency assessment and external quality assurance, adding a longitudinal insight, including pre- and post-analytical steps. Here, we implemented an IQA program in our clinical microbiology facilities with blind resubmission of routine samples during 22 months. One-hundred-and-twenty-one out of 123 (98.4%) serological analyses and 112 out of 122 (91.8%) molecular analyses were concordant. Among the discordances in molecular biology analyses, 6 results were low positive samples that turned out negative, likely due to stochastic repartition of nucleic acids. Moreover, one identified retranscription error led us to implement automated results transmission from the Applied Biosystems instruments to the laboratory information system (LIS). Regarding Gram stain microscopy, 560 out of 745 (75.2%) of compared parameters were concordant. As many as 67 out of 84 (79.8%) pairs of culture results were similar, including 16 sterile pairs, 27 having identical identification or description and semi-quantification and 24 only showing variations in semi-quantification with identical description or identification of colonies. Seventeen pairs had diverging identification or description of colonies. Culture was twice only done for one member of the pairs. Regarding antibiotic susceptibility testing, a major discrepancy was observed in 5 out of 48 results (10.4%). In conclusion, serological tests were highly reproducible. Molecular diagnosis also revealed to be robust except when the amounts of nucleic acids present in the sample were close to the limits of detection. Conventional microbiology was less robust with major discrepancies reaching 39.5% of the samples for microscopy. Similarly, culture and antibiotic susceptibility testing were prone to discrepancies. This work was ground for reconsidering multiples aspects of our practices and demonstrates the importance of IQA to complete the other quality management procedures.

  9. Disposition of Cannabichromene, Cannabidiol, and Δ9-Tetrahydrocannabinol and its Metabolites in Mouse Brain following Marijuana Inhalation Determined by High-Performance Liquid Chromatography–Tandem Mass Spectrometry

    PubMed Central

    Poklis, Justin L.; Thompson, Candace C.; Long, Kelly A.; Lichtman, Aron H.; Poklis, Alphonse

    2011-01-01

    A liquid chromatography–tandem mass spectrometry (LC–MS–MS) method was developed for the analysis of marijuana cannabinoids in mouse brain tissue using an Applied Biosystems 3200 Q trap with a turbo V source for TurbolonSpray attached to a Shimadzu SCL HPLC system. The method included cannabichromene (CBC), cannabidiol (CBD), D9-tetrahydrocannabinol (THC), 11-hydroxytetrahydrocannabinol (11-OH-THC), and 11-nor-D9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH). These compounds were isolated by liquid-liquid extraction using cold acetonitrile. The following transition ions were monitored by multiple reaction monitoring (MRM): m/z 315>193, 315>259 for THC/CBD/CBC; m/z 331>193, 331>105 for 11-OH-THC; m/z 345>299, 345>193 for THC-COOH;c m/z 318>196 for THC-d3; m/z 334>196 for 11-OH-THC-d3, and m/z 348>302 for THCCOOH-d3. Linearity for THC, 1-OH-THC, and THC-COOH was 1-200 ng/g; for CBC and CBD, it was 0.5–20 ng/g. Within-run and between-run precisions for all the analytes yielded coefficients of variation of < 20%. Four C57BL6 mice were sacrificed 20 min after nose-only exposure to the smoke of 200 mg of marijuana containing 0.44 mg CBC, 0.93 mg CBD, and 8.81 mg THC. The mean brain concentrations were 3.9 ± 1.5 ng/g CBC, 21 ± 3.9 ng/g CBD, 364 ± 74 ng/g THC, and 28 ± 5.9 ng/g 11-OH-THC. THCCOOH was not detected. The relative mean brain cannabinoid concentrations correlated to the amounts of the cannabinoids in the inhaled marijuana. PMID:21258613

  10. A lectin HPLC method to enrich selectively-glycosylated peptides from complex biological samples.

    PubMed

    Johansen, Eric; Schilling, Birgit; Lerch, Michael; Niles, Richard K; Liu, Haichuan; Li, Bensheng; Allen, Simon; Hall, Steven C; Witkowska, H Ewa; Regnier, Fred E; Gibson, Bradford W; Fisher, Susan J; Drake, Penelope M

    2009-10-01

    Glycans are an important class of post-translational modifications. Typically found on secreted and extracellular molecules, glycan structures signal the internal status of the cell. Glycans on tumor cells tend to have abundant sialic acid and fucose moieties. We propose that these cancer-associated glycan variants be exploited for biomarker development aimed at diagnosing early-stage disease. Accordingly, we developed a mass spectrometry-based workflow that incorporates chromatography on affinity matrices formed from lectins, proteins that bind specific glycan structures. The lectins Sambucus nigra (SNA) and Aleuria aurantia (AAL), which bind sialic acid and fucose, respectively, were covalently coupled to POROS beads (Applied Biosystems) and packed into PEEK columns for high pressure liquid chromatography (HPLC). Briefly, plasma was depleted of the fourteen most abundant proteins using a multiple affinity removal system (MARS-14; Agilent). Depleted plasma was trypsin-digested and separated into flow-through and bound fractions by SNA or AAL HPLC. The fractions were treated with PNGaseF to remove N-linked glycans, and analyzed by LC-MS/MS on a QStar Elite. Data were analyzed using Mascot software. The experimental design included positive controls-fucosylated and sialylated human lactoferrin glycopeptides-and negative controls-high mannose glycopeptides from Saccharomyces cerevisiae-that were used to monitor the specificity of lectin capture. Key features of this workflow include the reproducibility derived from the HPLC format, the positive identification of the captured and PNGaseF-treated glycopeptides from their deamidated Asn-Xxx-Ser/Thr motifs, and quality assessment using glycoprotein standards. Protocol optimization also included determining the appropriate ratio of starting material to column capacity, identifying the most efficient capture and elution buffers, and monitoring the PNGaseF-treatment to ensure full deglycosylation. Future directions include using this workflow to perform mass spectrometry-based discovery experiments on plasma from breast cancer patients and control individuals.

  11. Determination of PNU-248686A, a novel matrix metalloproteinase inhibitor, in human plasma by liquid chromatography-tandem mass spectrometry, following protein precipitation in the 96-well plate format.

    PubMed

    Frigerio, E; Cenacchi, V; James, C A

    2003-02-14

    A sensitive, specific and high-throughput analytical method for the quantitation of PNU-248686A (I), in human plasma has been developed. I, sodium (2R)-3-[[(4'-chloro(1,1'-biphenyl)-4-yl]sulfonyl]-2-hydroxy-2-[(phenylsulfanyl)methyl] propanoate, is an orally active matrix metalloproteinase (MMP) inhibitor developed for the treatment of solid tumors over-expressing MMPs. Concentrations of I, as free acid, were determined in human plasma by LC-MS-MS after plasma protein precipitation in the 96-well plate format. Aliquots of plasma (50 microl) were placed into the plates and 0.2 ml of methanol was added. The plates were shaken for 5 min and centrifuged at 1500 g for 10 min. Aliquots of 10 microl of the supernatants were then directly injected into the LC-MS-MS system. A Symmetry Shield C. column (50 x 2.1 mm, 3.5 microm) was used to perform the chromatographic analysis. The mobile phase was 5 mM ammonium formate buffer solution pH 5.0-acetonitrile (60:40. v/v) with a flow-rate of 0.3 ml/min. Retention time of I was about 1.2 min. Total cycle time was 2.5 min. MS detection used the Applied Biosystems-MDS Sciex API 3000 with TurbolonSpray interface and single reaction monitoring (461 --> 251 m/z transition) operated in negative ion mode. Calibration curves were constructed by plotting the area of the compound (y) against its concentration (x). A weighed linear regression (weighting factor 1/x(2)) was used to calculate I concentrations in quality control and unknown samples. The method was fully validated over the range of 5.0-5000 ng/ml. The suitability and robustness of the method for in vivo samples was confirmed by analysis of plasma samples from a pilot clinical study.

  12. Modifications and substitutions of the RNA extraction module in the ViroSeq HIV-1 genotyping system version 2: effects on sensitivity and complexity of the assay.

    PubMed

    Stürmer, Martin; Berger, Annemarie; Doerr, Hans-Wilhelm

    2003-12-01

    Genotypic testing for HIV-1 resistance to anti-retroviral drugs has become accepted widely as a routine method to guide anti-retroviral therapy. However, implementation into routine high-throughput laboratory diagnosis is difficult due to the complexity of the assay. A commercially available assay is the ViroSeq HIV-1 Genotyping System (Applied Biosystems, Weiterstadt, Germany). We modified and substituted the RNA extraction module to optimize the proportion of samples amplified successfully as follows: 1 ml plasma was concentrated by ultracentrifugation and extracted according to the manufacturer's instructions (Kit), by substituting the lysis buffer (Roche, Roche Diagnostics GmbH, Mannheim, Germany), and by using the QIAamp Viral RNA Kit (Qiagen GmbH, Hilden, Germany) with elution volumes of 60 (Q60) or 50 micro l (Q50). Overall Q50 showed a higher success rate (97%) than the other extraction modules used (range 88-91%). In samples with a viral load range of 1,000-4,999 copies/ml, Q50 was superior (95 vs. 65% to 83%), while in samples with a viral load range of 5,000-9,999 copies/ml or those with 10,000 or more copies/ml, the success rate of the extraction procedures showed no significant differences. In 18 samples, which were negative using the Kit or Roche extraction, Q60 resulted in 7/18 positive results; in addition the Q50 was successful in amplifying 7/10 of the Q60 negative samples. When investigating samples with a measurable viral load of less than 1,000 copies/ml or lower, Q50 had the highest success rate with 80% compared to the other procedures (33-63%). A statistically significant new cut-off could be defined for Q50 at a value of 250 copies/ml. The results showed clearly that the ViroSeq System is suitable for analyzing the HIV-1 genotype over a wide range of viral loads but could be improved significantly when substituting the RNA extraction module with Q50 without using a nested PCR protocol. This is of great importance as it avoids further time- and cost-intensive steps. Copyright 2003 Wiley-Liss, Inc.

  13. Forces on nuclei moving on autoionizing molecular potential energy surfaces.

    PubMed

    Moiseyev, Nimrod

    2017-01-14

    Autoionization of molecular systems occurs in diatomic molecules and in small biochemical systems. Quantum chemistry packages enable calculation of complex potential energy surfaces (CPESs). The imaginary part of the CPES is associated with the autoionization decay rate, which is a function of the molecular structure. Molecular dynamics simulations, within the framework of the Born-Oppenheimer approximation, require the definition of a force field. The ability to calculate the forces on the nuclei in bio-systems when autoionization takes place seems to rely on an understanding of radiative damages in RNA and DNA arising from the release of slow moving electrons which have long de Broglie wavelengths. This work addresses calculation of the real forces on the nuclei moving on the CPES. By using the transformation of the time-dependent Schrödinger equation, previously used by Madelung, we proved that the classical forces on nuclei moving on the CPES correlated with the gradient of the real part of the CPES. It was proved that the force on the nuclei of the metastable molecules is time independent although the probability to detect metastable molecules exponentially decays. The classical force is obtained from the transformed Schrödinger equation when ℏ=0 and the Schrödinger equation is reduced to the classical (Newtonian) equations of motion. The forces on the nuclei regardless on what potential energy surface they move (parent CPES or product real PESs) vary in time due to the autoionization process.

  14. Light scattering optimization of chitin random network in ultrawhite beetle scales

    NASA Astrophysics Data System (ADS)

    Utel, Francesco; Cortese, Lorenzo; Pattelli, Lorenzo; Burresi, Matteo; Vignolini, Silvia; Wiersma, Diederik

    2017-09-01

    Among the natural white colored photonics structures, a bio-system has become of great interest in the field of disordered optical media: the scale of the white beetle Chyphochilus. Despite its low thickness, on average 7 μm, and low refractive index, this beetle exhibits extreme high brightness and unique whiteness. These properties arise from the interaction of light with a complex network of chitin nano filaments embedded in the interior of the scales. As it's been recently claimed, this could be a consequence of the peculiar morphology of the filaments network that, by means of high filling fraction (0.61) and structural anisotropy, optimizes the multiple scattering of light. We therefore performed a numerical analysis on the structural properties of the chitin network in order to understand their role in the enhancement of the scale scattering intensity. Modeling the filaments as interconnected rod shaped scattering centers, we numerically generated the spatial coordinates of the network components. Controlling the quantities that are claimed to play a fundamental role in the brightness and whiteness properties of the investigated system (filling fraction and average rods orientation, i.e. the anisotropy of the ensemble of scattering centers), we obtained a set of customized random networks. FDTD simulations of light transport have been performed on these systems, observing high reflectance for all the visible frequencies and proving the implemented algorithm to numerically generate the structures is suitable to investigate the dependence of reflectance by anisotropy.

  15. Aqueous multiphoton lithography with multifunctional silk-centred bio-resists.

    PubMed

    Sun, Yun-Lu; Li, Qi; Sun, Si-Ming; Huang, Jing-Chun; Zheng, Bo-Yuan; Chen, Qi-Dai; Shao, Zheng-Zhong; Sun, Hong-Bo

    2015-10-16

    Silk and silk fibroin, the biomaterial from nature, nowadays are being widely utilized in many cutting-edge micro/nanodevices/systems via advanced micro/nanofabrication techniques. Herein, for the first time to our knowledge, we report aqueous multiphoton lithography of diversiform-regenerated-silk-fibroin-centric inks using noncontact and maskless femtosecond laser direct writing (FsLDW). Initially, silk fibroin was FsLDW-crosslinked into arbitrary two/three-dimensional micro/nanostructures with good elastic properties merely using proper photosensitizers. More interestingly, silk/metal composite micro/nanodevices with multidimension-controllable metal content can be FsLDW-customized through laser-induced simultaneous fibroin oxidation/crosslinking and metal photoreduction using the simplest silk/Ag(+) or silk/[AuCl4](-) aqueous resists. Noticeably, during FsLDW, fibroin functions as biological reductant and matrix, while metal ions act as the oxidant. A FsLDW-fabricated prototyping silk/Ag microelectrode exhibited 10(4)-Ω(-1 ) m(-1)-scale adjustable electric conductivity. This work not only provides a powerful development to silk micro/nanoprocessing techniques but also creates a novel way to fabricate multifunctional metal/biomacromolecule complex micro/nanodevices for applications such as micro/nanoscale mechanical and electrical bioengineering and biosystems.

  16. Aqueous multiphoton lithography with multifunctional silk-centred bio-resists

    PubMed Central

    Sun, Yun-Lu; Li, Qi; Sun, Si-Ming; Huang, Jing-Chun; Zheng, Bo-Yuan; Chen, Qi-Dai; Shao, Zheng-Zhong; Sun, Hong-Bo

    2015-01-01

    Silk and silk fibroin, the biomaterial from nature, nowadays are being widely utilized in many cutting-edge micro/nanodevices/systems via advanced micro/nanofabrication techniques. Herein, for the first time to our knowledge, we report aqueous multiphoton lithography of diversiform-regenerated-silk-fibroin-centric inks using noncontact and maskless femtosecond laser direct writing (FsLDW). Initially, silk fibroin was FsLDW-crosslinked into arbitrary two/three-dimensional micro/nanostructures with good elastic properties merely using proper photosensitizers. More interestingly, silk/metal composite micro/nanodevices with multidimension-controllable metal content can be FsLDW-customized through laser-induced simultaneous fibroin oxidation/crosslinking and metal photoreduction using the simplest silk/Ag+ or silk/[AuCl4]− aqueous resists. Noticeably, during FsLDW, fibroin functions as biological reductant and matrix, while metal ions act as the oxidant. A FsLDW-fabricated prototyping silk/Ag microelectrode exhibited 104-Ω−1 m−1-scale adjustable electric conductivity. This work not only provides a powerful development to silk micro/nanoprocessing techniques but also creates a novel way to fabricate multifunctional metal/biomacromolecule complex micro/nanodevices for applications such as micro/nanoscale mechanical and electrical bioengineering and biosystems. PMID:26472600

  17. Oxygen-Free Biochemistry: The Putative CHN Foundation for Exotic Life in a Hydrocarbon World?

    PubMed

    Lv, Kong-Peng; Norman, Lucy; Li, Yi-Liang

    2017-11-01

    Since Earth's biochemistry is carbon-based and water-borne, the main strategies for searching for life elsewhere are "follow the carbon" and "follow the water." Recently, however, there is a growing focus on the prospect that putative exotic life on other planets could rely on unearthly biochemistries. Here, we hypothesize a novel oxygen-free organic chemistry for supporting potential exotic biosystems, which is named CHN biochemistry. This oxygen-free CHN biochemistry starts from simple oxygen-free species (including hydrocarbons, hydrogen cyanide, and nitriles) and produces a range of functional macromolecules that may function in similar ways to terran macromolecules, such as sugars (cyanosugars), acids (cyanoacids), amino acids (amino cyanoacids), and nucleobases (cyanonucleobases). These CHN macromolecules could further interact with each other to generate higher "cyanoester" and "cyanoprotein" systems. In addition, theoretical calculations indicate that the energy changes of some reactions are consistent with their counterparts in Earth's biochemistry. The CHN biochemistry-based life would be applicable in habitats with a low bioavailability of oxygen, such as the alkane lakes of Titan and non-aquatic liquids on extrasolar bodies. Key Words: Oxygen-free biochemistry-Titan-Hydrocarbons-Hydrogen cyanide-Nitriles. Astrobiology 17, 1173-1181.

  18. Organic bioelectronics probing conformational changes in surface confined proteins

    NASA Astrophysics Data System (ADS)

    Macchia, Eleonora; Alberga, Domenico; Manoli, Kyriaki; Mangiatordi, Giuseppe F.; Magliulo, Maria; Palazzo, Gerardo; Giordano, Francesco; Lattanzi, Gianluca; Torsi, Luisa

    2016-06-01

    The study of proteins confined on a surface has attracted a great deal of attention due to its relevance in the development of bio-systems for laboratory and clinical settings. In this respect, organic bio-electronic platforms can be used as tools to achieve a deeper understanding of the processes involving protein interfaces. In this work, biotin-binding proteins have been integrated in two different organic thin-film transistor (TFT) configurations to separately address the changes occurring in the protein-ligand complex morphology and dipole moment. This has been achieved by decoupling the output current change upon binding, taken as the transducing signal, into its component figures of merit. In particular, the threshold voltage is related to the protein dipole moment, while the field-effect mobility is associated with conformational changes occurring in the proteins of the layer when ligand binding occurs. Molecular Dynamics simulations on the whole avidin tetramer in presence and absence of ligands were carried out, to evaluate how the tight interactions with the ligand affect the protein dipole moment and the conformation of the loops surrounding the binding pocket. These simulations allow assembling a rather complete picture of the studied interaction processes and support the interpretation of the experimental results.

  19. Database resources of the National Center for Biotechnology Information

    PubMed Central

    2015-01-01

    The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank® nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. Additional NCBI resources focus on literature (Bookshelf, PubMed Central (PMC) and PubReader); medical genetics (ClinVar, dbMHC, the Genetic Testing Registry, HIV-1/Human Protein Interaction Database and MedGen); genes and genomics (BioProject, BioSample, dbSNP, dbVar, Epigenomics, Gene, Gene Expression Omnibus (GEO), Genome, HomoloGene, the Map Viewer, Nucleotide, PopSet, Probe, RefSeq, Sequence Read Archive, the Taxonomy Browser, Trace Archive and UniGene); and proteins and chemicals (Biosystems, COBALT, the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), the Molecular Modeling Database (MMDB), Protein Clusters, Protein and the PubChem suite of small molecule databases). The Entrez system provides search and retrieval operations for many of these databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at http://www.ncbi.nlm.nih.gov. PMID:25398906

  20. Database resources of the National Center for Biotechnology Information

    PubMed Central

    2016-01-01

    The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank® nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. Additional NCBI resources focus on literature (PubMed Central (PMC), Bookshelf and PubReader), health (ClinVar, dbGaP, dbMHC, the Genetic Testing Registry, HIV-1/Human Protein Interaction Database and MedGen), genomes (BioProject, Assembly, Genome, BioSample, dbSNP, dbVar, Epigenomics, the Map Viewer, Nucleotide, Probe, RefSeq, Sequence Read Archive, the Taxonomy Browser and the Trace Archive), genes (Gene, Gene Expression Omnibus (GEO), HomoloGene, PopSet and UniGene), proteins (Protein, the Conserved Domain Database (CDD), COBALT, Conserved Domain Architecture Retrieval Tool (CDART), the Molecular Modeling Database (MMDB) and Protein Clusters) and chemicals (Biosystems and the PubChem suite of small molecule databases). The Entrez system provides search and retrieval operations for most of these databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized datasets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov. PMID:26615191

  1. Aqueous multiphoton lithography with multifunctional silk-centred bio-resists

    NASA Astrophysics Data System (ADS)

    Sun, Yun-Lu; Li, Qi; Sun, Si-Ming; Huang, Jing-Chun; Zheng, Bo-Yuan; Chen, Qi-Dai; Shao, Zheng-Zhong; Sun, Hong-Bo

    2015-10-01

    Silk and silk fibroin, the biomaterial from nature, nowadays are being widely utilized in many cutting-edge micro/nanodevices/systems via advanced micro/nanofabrication techniques. Herein, for the first time to our knowledge, we report aqueous multiphoton lithography of diversiform-regenerated-silk-fibroin-centric inks using noncontact and maskless femtosecond laser direct writing (FsLDW). Initially, silk fibroin was FsLDW-crosslinked into arbitrary two/three-dimensional micro/nanostructures with good elastic properties merely using proper photosensitizers. More interestingly, silk/metal composite micro/nanodevices with multidimension-controllable metal content can be FsLDW-customized through laser-induced simultaneous fibroin oxidation/crosslinking and metal photoreduction using the simplest silk/Ag+ or silk/[AuCl4]- aqueous resists. Noticeably, during FsLDW, fibroin functions as biological reductant and matrix, while metal ions act as the oxidant. A FsLDW-fabricated prototyping silk/Ag microelectrode exhibited 104-Ω-1 m-1-scale adjustable electric conductivity. This work not only provides a powerful development to silk micro/nanoprocessing techniques but also creates a novel way to fabricate multifunctional metal/biomacromolecule complex micro/nanodevices for applications such as micro/nanoscale mechanical and electrical bioengineering and biosystems.

  2. Target fragmentation in radiobiology

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.; Townsend, Lawrence W.

    1993-01-01

    Nuclear reactions in biological systems produce low-energy fragments of the target nuclei seen as local high events of linear energy transfer (LET). A nuclear-reaction formalism is used to evaluate the nuclear-induced fields within biosystems and their effects within several biological models. On the basis of direct ionization interaction, one anticipates high-energy protons to have a quality factor and relative biological effectiveness (RBE) of unity. Target fragmentation contributions raise the effective quality factor of 10 GeV protons to 3.3 in reasonable agreement with RBE values for induced micronuclei in bean sprouts. Application of the Katz model indicates that the relative increase in RBE with decreasing exposure observed in cell survival experiments with 160 MeV protons is related solely to target fragmentation events. Target fragment contributions to lens opacity given an RBE of 1.4 for 2 GeV protons in agreement with the work of Lett and Cox. Predictions are made for the effective RBE for Harderian gland tumors induced by high-energy protons. An exposure model for lifetime cancer risk is derived from NCRP 98 risk tables, and protraction effects are examined for proton and helium ion exposures. The implications of dose rate enhancement effects on space radiation protection are considered.

  3. Organic bioelectronics probing conformational changes in surface confined proteins

    PubMed Central

    Macchia, Eleonora; Alberga, Domenico; Manoli, Kyriaki; Mangiatordi, Giuseppe F.; Magliulo, Maria; Palazzo, Gerardo; Giordano, Francesco; Lattanzi, Gianluca; Torsi, Luisa

    2016-01-01

    The study of proteins confined on a surface has attracted a great deal of attention due to its relevance in the development of bio-systems for laboratory and clinical settings. In this respect, organic bio-electronic platforms can be used as tools to achieve a deeper understanding of the processes involving protein interfaces. In this work, biotin-binding proteins have been integrated in two different organic thin-film transistor (TFT) configurations to separately address the changes occurring in the protein-ligand complex morphology and dipole moment. This has been achieved by decoupling the output current change upon binding, taken as the transducing signal, into its component figures of merit. In particular, the threshold voltage is related to the protein dipole moment, while the field-effect mobility is associated with conformational changes occurring in the proteins of the layer when ligand binding occurs. Molecular Dynamics simulations on the whole avidin tetramer in presence and absence of ligands were carried out, to evaluate how the tight interactions with the ligand affect the protein dipole moment and the conformation of the loops surrounding the binding pocket. These simulations allow assembling a rather complete picture of the studied interaction processes and support the interpretation of the experimental results. PMID:27312768

  4. Design of metal cofactors activated by a protein–protein electron transfer system

    PubMed Central

    Ueno, Takafumi; Yokoi, Norihiko; Unno, Masaki; Matsui, Toshitaka; Tokita, Yuichi; Yamada, Masako; Ikeda-Saito, Masao; Nakajima, Hiroshi; Watanabe, Yoshihito

    2006-01-01

    Protein-to-protein electron transfer (ET) is a critical process in biological chemistry for which fundamental understanding is expected to provide a wealth of applications in biotechnology. Investigations of protein–protein ET systems in reductive activation of artificial cofactors introduced into proteins remains particularly challenging because of the complexity of interactions between the cofactor and the system contributing to ET. In this work, we construct an artificial protein–protein ET system, using heme oxygenase (HO), which is known to catalyze the conversion of heme to biliverdin. HO uses electrons provided from NADPH/cytochrome P450 reductase (CPR) through protein–protein complex formation during the enzymatic reaction. We report that a FeIII(Schiff-base), in the place of the active-site heme prosthetic group of HO, can be reduced by NADPH/CPR. The crystal structure of the Fe(10-CH2CH2COOH-Schiff-base)·HO composite indicates the presence of a hydrogen bond between the propionic acid carboxyl group and Arg-177 of HO. Furthermore, the ET rate from NADPH/CPR to the composite is 3.5-fold faster than that of Fe(Schiff-base)·HO, although the redox potential of Fe(10-CH2CH2COOH-Schiff-base)·HO (−79 mV vs. NHE) is lower than that of Fe(Schiff-base)·HO (+15 mV vs. NHE), where NHE is normal hydrogen electrode. This work describes a synthetic metal complex activated by means of a protein–protein ET system, which has not previously been reported. Moreover, the result suggests the importance of the hydrogen bond for the ET reaction of HO. Our Fe(Schiff-base)·HO composite model system may provide insights with regard to design of ET biosystems for sensors, catalysts, and electronics devices. PMID:16769893

  5. High-throughput analysis using non-depletive SPME: challenges and applications to the determination of free and total concentrations in small sample volumes.

    PubMed

    Boyacı, Ezel; Bojko, Barbara; Reyes-Garcés, Nathaly; Poole, Justen J; Gómez-Ríos, Germán Augusto; Teixeira, Alexandre; Nicol, Beate; Pawliszyn, Janusz

    2018-01-18

    In vitro high-throughput non-depletive quantitation of chemicals in biofluids is of growing interest in many areas. Some of the challenges facing researchers include the limited volume of biofluids, rapid and high-throughput sampling requirements, and the lack of reliable methods. Coupled to the above, growing interest in the monitoring of kinetics and dynamics of miniaturized biosystems has spurred the demand for development of novel and revolutionary methodologies for analysis of biofluids. The applicability of solid-phase microextraction (SPME) is investigated as a potential technology to fulfill the aforementioned requirements. As analytes with sufficient diversity in their physicochemical features, nicotine, N,N-Diethyl-meta-toluamide, and diclofenac were selected as test compounds for the study. The objective was to develop methodologies that would allow repeated non-depletive sampling from 96-well plates, using 100 µL of sample. Initially, thin film-SPME was investigated. Results revealed substantial depletion and consequent disruption in the system. Therefore, new ultra-thin coated fibers were developed. The applicability of this device to the described sampling scenario was tested by determining the protein binding of the analytes. Results showed good agreement with rapid equilibrium dialysis. The presented method allows high-throughput analysis using small volumes, enabling fast reliable free and total concentration determinations without disruption of system equilibrium.

  6. Biomanufacturing: history and perspective.

    PubMed

    Zhang, Yi-Heng Percival; Sun, Jibin; Ma, Yanhe

    2017-05-01

    Biomanufacturing is a type of manufacturing that utilizes biological systems (e.g., living microorganisms, resting cells, animal cells, plant cells, tissues, enzymes, or in vitro synthetic (enzymatic) systems) to produce commercially important biomolecules for use in the agricultural, food, material, energy, and pharmaceutical industries. History of biomanufacturing could be classified into the three revolutions in terms of respective product types (mainly), production platforms, and research technologies. Biomanufacturing 1.0 focuses on the production of primary metabolites (e.g., butanol, acetone, ethanol, citric acid) by using mono-culture fermentation; biomanufacturing 2.0 focuses on the production of secondary metabolites (e.g., penicillin, streptomycin) by using a dedicated mutant and aerobic submerged liquid fermentation; and biomanufacturing 3.0 focuses on the production of large-size biomolecules-proteins and enzymes (e.g., erythropoietin, insulin, growth hormone, amylase, DNA polymerase) by using recombinant DNA technology and advanced cell culture. Biomanufacturing 4.0 could focus on new products, for example, human tissues or cells made by regenerative medicine, artificial starch made by in vitro synthetic biosystems, isobutanol fermented by metabolic engineering, and synthetic biology-driven microorganisms, as well as exiting products produced by far better approaches. Biomanufacturing 4.0 would help address some of the most important challenges of humankind, such as food security, energy security and sustainability, water crisis, climate change, health issues, and conflict related to the energy, food, and water nexus.

  7. Optimized transitory ectopic expression of promastigote surface antigen protein in Nicotiana benthamiana, a potential anti-leishmaniasis vaccine candidate.

    PubMed

    Lacombe, Séverine; Bangratz, Martine; Brizard, Jean-Paul; Petitdidier, Elodie; Pagniez, Julie; Sérémé, Drissa; Lemesre, Jean-Loup; Brugidou, Christophe

    2018-01-01

    In recent years, plants have been shown to be an efficient alternative expression system for high-value pharmaceuticals such as vaccines. However, constitutive expression of recombinant protein remains uncertain on their level of production and biological activity. To overcome these problems, transitory expression systems have been developed. Here, a series of experiments were performed to determine the most effective conditions to enhance vaccine antigen transient accumulation in Nicotiana benthamiana leaves using the promastigote surface antigen (PSA) from the parasitic protozoan Leishmania infantum. This protein has been previously identified as the major antigen of a licensed canine anti-leishmaniasis vaccine. The classical prokaryote Escherichia coli biosystem failed in accumulating PSA. Consequently, the standard plant system based on N. benthamiana has been optimized for the production of putatively active PSA. First, the RNA silencing defense mechanism set up by the plant against PSA ectopic expression was abolished by using three viral suppressors acting at different steps of the RNA silencing pathway. Then, we demonstrated that the signal peptide at the N-terminal side of the PSA is required for its accumulation. The PSA ER signaling and retention with the PSA signal peptide and the KDEL motif, respectively were optimized to significantly increase its accumulation. Finally, we demonstrate that the production of recombinant PSA in N. benthamiana leaves allows the conservation of its immunogenic property. These approaches demonstrate that based on these optimizations, plant based systems can be used to effectively produce the biological active PSA protein. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Automated extraction of DNA from blood and PCR setup using a Tecan Freedom EVO liquid handler for forensic genetic STR typing of reference samples.

    PubMed

    Stangegaard, Michael; Frøslev, Tobias G; Frank-Hansen, Rune; Hansen, Anders J; Morling, Niels

    2011-04-01

    We have implemented and validated automated protocols for DNA extraction and PCR setup using a Tecan Freedom EVO liquid handler mounted with the Te-MagS magnetic separation device (Tecan, Männedorf, Switzerland). The protocols were validated for accredited forensic genetic work according to ISO 17025 using the Qiagen MagAttract DNA Mini M48 kit (Qiagen GmbH, Hilden, Germany) from fresh whole blood and blood from deceased individuals. The workflow was simplified by returning the DNA extracts to the original tubes minimizing the risk of misplacing samples. The tubes that originally contained the samples were washed with MilliQ water before the return of the DNA extracts. The PCR was setup in 96-well microtiter plates. The methods were validated for the kits: AmpFℓSTR Identifiler, SGM Plus and Yfiler (Applied Biosystems, Foster City, CA), GenePrint FFFL and PowerPlex Y (Promega, Madison, WI). The automated protocols allowed for extraction and addition of PCR master mix of 96 samples within 3.5h. In conclusion, we demonstrated that (1) DNA extraction with magnetic beads and (2) PCR setup for accredited, forensic genetic short tandem repeat typing can be implemented on a simple automated liquid handler leading to the reduction of manual work, and increased quality and throughput. Copyright © 2011 Society for Laboratory Automation and Screening. Published by Elsevier Inc. All rights reserved.

  9. A Polymorphism in the Retinol Binding Protein 4 Gene is Not Associated with Gestational Diabetes Mellitus in Several Different Ethnic Groups

    PubMed Central

    Urschitz, Johann; Sultan, Omar; Ward, Kenneth

    2011-01-01

    Objective Various Asian and Pacifific Islander groups have higher prevalence rates of type 2 diabetes and gestational diabetes. This increased incidence is likely to include genetic factors. Single nucleotide polymorphisms in the retinol binding protein 4 gene have been linked to the occurrence of type 2 diabetes. Hypothesizing a link between retinol binding protein 4 and gestational diabetes, we performed a candidate gene study to look for an association between an important retinol binding protein gene polymorphism (rs3758539) and gestational diabetes. Study Design Blood was collected from Caucasian, Asian, and Pacific Islander women diagnosed with gestational diabetes and from ethnically matched non-diabetic controls. DNA was extracted and real time PCR technology (TaqMan, Applied Biosystems) used to screen for the rs3758539 single nucleotide polymorphism located 5′ of exon 1 of the retinol binding protein 4 gene. Results Genotype and allele frequencies in the controls and gestational diabetes cases were tested using chi-square contingency tests. Genotype frequencies were in Hardy-Weinberg equilibrium. There was no association between the rs3758539 retinol binding protein 4 single nucleotide polymorphism and gestational diabetes in the Caucasian, Filipino, or Pacific Islander groups. Conclusion Interestingly, the rs3758539 retinol binding protein 4 single nucleotide polymorphism was not found to be associated with gestational diabetes. The absence of association suggests that gestational and type 2 diabetes may have more divergent molecular pathophysiology than previously suspected. PMID:21886308

  10. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments

    PubMed Central

    MacLean, Brendan; Tomazela, Daniela M.; Shulman, Nicholas; Chambers, Matthew; Finney, Gregory L.; Frewen, Barbara; Kern, Randall; Tabb, David L.; Liebler, Daniel C.; MacCoss, Michael J.

    2010-01-01

    Summary: Skyline is a Windows client application for targeted proteomics method creation and quantitative data analysis. It is open source and freely available for academic and commercial use. The Skyline user interface simplifies the development of mass spectrometer methods and the analysis of data from targeted proteomics experiments performed using selected reaction monitoring (SRM). Skyline supports using and creating MS/MS spectral libraries from a wide variety of sources to choose SRM filters and verify results based on previously observed ion trap data. Skyline exports transition lists to and imports the native output files from Agilent, Applied Biosystems, Thermo Fisher Scientific and Waters triple quadrupole instruments, seamlessly connecting mass spectrometer output back to the experimental design document. The fast and compact Skyline file format is easily shared, even for experiments requiring many sample injections. A rich array of graphs displays results and provides powerful tools for inspecting data integrity as data are acquired, helping instrument operators to identify problems early. The Skyline dynamic report designer exports tabular data from the Skyline document model for in-depth analysis with common statistical tools. Availability: Single-click, self-updating web installation is available at http://proteome.gs.washington.edu/software/skyline. This web site also provides access to instructional videos, a support board, an issues list and a link to the source code project. Contact: brendanx@u.washington.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20147306

  11. Rapid detection of Shigella and enteroinvasive Escherichia coli in produce enrichments by a conventional multiplex PCR assay.

    PubMed

    Binet, Rachel; Deer, Deanne M; Uhlfelder, Samantha J

    2014-06-01

    Faster detection of contaminated foods can prevent adulterated foods from being consumed and minimize the risk of an outbreak of foodborne illness. A sensitive molecular detection method is especially important for Shigella because ingestion of as few as 10 of these bacterial pathogens can cause disease. The objectives of this study were to compare the ability of four DNA extraction methods to detect Shigella in six types of produce, post-enrichment, and to evaluate a new and rapid conventional multiplex assay that targets the Shigella ipaH, virB and mxiC virulence genes. This assay can detect less than two Shigella cells in pure culture, even when the pathogen is mixed with background microflora, and it can also differentiate natural Shigella strains from a control strain and eliminate false positive results due to accidental laboratory contamination. The four DNA extraction methods (boiling, PrepMan Ultra [Applied Biosystems], InstaGene Matrix [Bio-Rad], DNeasy Tissue kit [Qiagen]) detected 1.6 × 10(3)Shigella CFU/ml post-enrichment, requiring ∼18 doublings to one cell in 25 g of produce pre-enrichment. Lower sensitivity was obtained, depending on produce type and extraction method. The InstaGene Matrix was the most consistent and sensitive and the multiplex assay accurately detected Shigella in less than 90 min, outperforming, to the best of our knowledge, molecular assays currently in place for this pathogen. Published by Elsevier Ltd.

  12. Interleukin-10 family cytokines pathway: genetic variants and psoriasis.

    PubMed

    Galimova, E; Rätsep, R; Traks, T; Kingo, K; Escott-Price, V; Kõks, S

    2017-06-01

    Interleukin (IL)-10 family cytokines IL-10, IL-19, IL-20 and IL-24 have been implicated in autoimmune diseases and we have previously reported that genetic variants in the IL10 gene cluster were associated with psoriasis. To analyse the relationship between genetic polymorphisms in the IL10 gene cluster and psoriasis. This study also explores whether there are gene-gene interactions among these genetic polymorphisms. A total of 377 patients with psoriasis and 403 matched healthy controls were enrolled to carry out a case-control study for 48 single-nucleotide polymorphisms (SNPs) of the IL10 gene cluster. Genotyping for the SNPs was conducted on the Applied Biosystems 3730 DNA Analyzer using SNPlex ® technology. Generalized multifactor dimensionality reduction (GMDR) analysis was applied to discover a likely gene-gene interaction model among the SNPs. The results showed that the allele distributions of IL10 gene cluster SNPs are significantly different between the case and control groups. Carriers of the IL10 T allele (rs1554286) and the IL20 T allele (rs1400986) conferred protection from psoriasis [odds ratio (OR) = 0·63, corrected P-value (Pc) = 0·007; OR = 0·62, Pc = 0·038, respectively]. GMDR analysis displayed a significant gene-gene interaction between IL10 (rs1554286) and IL20 (rs1518108) variants. The strongest protective effect was found with the block 1 haplotype ACATA in the IL10 gene (Pc = 0·004). This study presents a novel finding that the combination of the two SNPs, IL10 (rs1554286) and IL20 (rs1518108), is associated with a reduced risk of psoriasis. Our results indicate that genetic variants of the immunomodulatory IL10 and IL20 genes may offer a protective effect in Europeans from Russia. Independent studies are required to verify the results and find a possible functional explanation. © 2017 British Association of Dermatologists.

  13. Phylogenetic Network Analysis Revealed the Occurrence of Horizontal Gene Transfer of 16S rRNA in the Genus Enterobacter

    PubMed Central

    Sato, Mitsuharu; Miyazaki, Kentaro

    2017-01-01

    Horizontal gene transfer (HGT) is a ubiquitous genetic event in bacterial evolution, but it seldom occurs for genes involved in highly complex supramolecules (or biosystems), which consist of many gene products. The ribosome is one such supramolecule, but several bacteria harbor dissimilar and/or chimeric 16S rRNAs in their genomes, suggesting the occurrence of HGT of this gene. However, we know little about whether the genes actually experience HGT and, if so, the frequency of such a transfer. This is primarily because the methods currently employed for phylogenetic analysis (e.g., neighbor-joining, maximum likelihood, and maximum parsimony) of 16S rRNA genes assume point mutation-driven tree-shape evolution as an evolutionary model, which is intrinsically inappropriate to decipher the evolutionary history for genes driven by recombination. To address this issue, we applied a phylogenetic network analysis, which has been used previously for detection of genetic recombination in homologous alleles, to the 16S rRNA gene. We focused on the genus Enterobacter, whose phylogenetic relationships inferred by multi-locus sequence alignment analysis and 16S rRNA sequences are incompatible. All 10 complete genomic sequences were retrieved from the NCBI database, in which 71 16S rRNA genes were included. Neighbor-joining analysis demonstrated that the genes residing in the same genomes clustered, indicating the occurrence of intragenomic recombination. However, as suggested by the low bootstrap values, evolutionary relationships between the clusters were uncertain. We then applied phylogenetic network analysis to representative sequences from each cluster. We found three ancestral 16S rRNA groups; the others were likely created through recursive recombination between the ancestors and chimeric descendants. Despite the large sequence changes caused by the recombination events, the RNA secondary structures were conserved. Successive intergenomic and intragenomic recombination thus shaped the evolution of 16S rRNA genes in the genus Enterobacter. PMID:29180992

  14. Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip.

    PubMed

    Li, Pan; Yu, Haibo; Liu, Na; Wang, Feifei; Lee, Gwo-Bin; Wang, Yuechao; Liu, Lianqing; Li, Wen Jung

    2018-05-23

    The development of microengineered hydrogels co-cultured with cells in vitro could advance in vivo bio-systems in both structural complexity and functional hierarchy, which holds great promise for applications in regenerative tissues or organs, drug discovery and screening, and bio-sensors or bio-actuators. Traditional hydrogel microfabrication technologies such as ultraviolet (UV) laser or multiphoton laser stereolithography and three-dimensional (3D) printing systems have advanced the development of 3D hydrogel micro-structures but need either expensive and complex equipment, or harsh material selection with limited photoinitiators. Herein, we propose a simple and flexible hydrogel microfabrication method based on a ubiquitous visible-light projection system combined with a custom-designed photosensitive microfluidic chip, to rapidly (typically several to tens of seconds) fabricate various two-dimensional (2D) hydrogel patterns and 3D hydrogel constructs. A theoretical layer-by-layer model that involves continuous polymerizing-delaminating-polymerizing cycles is presented to explain the polymerization and structural formation mechanism of hydrogels. A large area of hydrogel patterns was efficiently fabricated without the usage of costly laser systems or photoinitiators, i.e., a stereoscopic mesh-like hydrogel network with intersecting hydrogel micro-belts was fabricated via a series of dynamic-changing digital light projections. The pores and gaps of the hydrogel network are tunable, which facilitates the supply of nutrients and discharge of waste in the construction of 3D thick bio-models. Cell co-culture experiments showed the effective regulation of cell spreading by hydrogel scaffolds fabricated by the new method presented here. This visible light enabled hydrogel microfabrication method may provide new prospects for designing cell-based units for advanced biomedical studies, e.g., for 3D bio-models or bio-actuators in the future.

  15. Field-Control, Phase-Transitions, and Life’s Emergence

    PubMed Central

    Mitra-Delmotte, Gargi; Mitra, A. N.

    2012-01-01

    Instances of critical-like characteristics in living systems at each organizational level (bio-molecules to ecosystems) as well as the spontaneous emergence of computation (Langton), do suggest the relevance of self-organized criticality (SOC). But extrapolating complex bio-systems to life’s origins, brings up a paradox: how could simple organics – lacking the “soft-matter” response properties of today’s complex bio-molecules – have dissipated energy from primordial reactions (eventually reducing CO2) in a controlled manner for their “ordering”? Nevertheless, a causal link of life’s macroscopic irreversible dynamics to the microscopic reversible laws of statistical mechanics is indicated via the “functional-takeover” of a soft magnetic scaffold by organics (c.f. Cairns-Smith’s “crystal-scaffold”). A field-controlled structure offers a mechanism for boot-strapping – bottom-up assembly with top-down control: its super-paramagnetic colloidal components obey reversible dynamics, but its dissipation of magnetic (H)-field energy for aggregation breaks time-reversal symmetry. The responsive adjustments of the controlled (host) mineral system to environmental changes would bring about mutual coupling between random organic sets supported by it; here the generation of long-range correlations within organic (guest) networks could include SOC-like mechanisms. And, such cooperative adjustments enable the selection of the functional configuration by altering the inorganic dipolar network’s capacity to assist a spontaneous process. A non-equilibrium dynamics could now drive the kinetically oriented system (trimming the phase-space via sterically coupled organics) toward a series of phase-transitions with appropriate organic replacements “taking-over” its functions. Where available, experiments are cited in support of these speculations and for designing appropriate tests. PMID:23060803

  16. The 3'-UTR of the adiponectin Q gene harbours susceptibility loci for atherosclerosis and its metabolic risk traits.

    PubMed

    Muiya, Nzioka; Al-Najai, Mohammed; Tahir, Asma I; Elhawari, Samar; Gueco, Daisy; Andres, Editha; Mazhar, Nejat; Altassan, Nada; Meyer, Brian F; Alshahid, Maie; Dzimiri, Nduna

    2013-12-13

    Adiponectin Q is a hormone that modulates several metabolic processes and contributes to the suppression of biochemical pathways leading to metabolic syndrome. Hence, polymorphic changes in the adiponectin Q (ADIPOQ) gene are likely to contribute to metabolic disorders, and consequently lead to atherosclerosis. In the present study, we performed a population-based association study for 8 SNPs in 4646 Saudi individuals (2339 CAD cases versus angiographed 2307 controls) by real-time PCR. Linkage analysis was done by the Affymetrix Gene Chip array, sequencing by the MegaBACE DNA analysis system and genotyping accomplished by TaqMan chemistry with the Applied Biosystem real-time Prism 7900HT Sequence Detection System. The rs2241766 (TG + GG) [Odds ratio(95% Confidence Interval = 1.35(1.01-1.72); p = 0.015] and rs9842733A > T [1.48(1.01-2.07); p = 0.042] were associated with hypertension [HTN; 3541 cases vs 1101 controls), following adjustment for the presence of other cardiovascular risk traits. The rs2241766 (TG + GG) was further implicated in harbouring of low high density lipoprotein levels (LHDL; 1353 versus 2156 controls) [1.35(1.10-1.67); p = 0.005], but lost its association with obesity after the adjustment for confounders. Besides, low high density lipoprotein was also linked with rs6444174 (TC + CC) [1.28(1.05-1.59)]. On the other hand, while initial univariate logistic regression analysis pointed to rs1063537 C > T (p = 0.010), rs2082940 C > T (p = 0.035) and rs1063539 G > C (p = 0.035) as being associated with myocardial infarction, significance levels of these relationships were diminished following adjustment for the influence of confounding covariates. Interestingly, haplotyping showed that an 8-mer haplotype GTGCCTCA and several of its derivatives constructed from the studied SNPs were commonly implicated in MI (χ² = 4.12; p = 0.042), HTN (χ² = 6.40; p = 0.011) and OBS (χ² = 5.18; p = 0.023). These results demonstrate that the ADIPOQ 3'UTR harbours common susceptibility variants for metabolic risk traits and CAD, pointing to the importance of this region in atherosclerosis disease pathways.

  17. Adsorption of insulin peptide on charged single-walled carbon nanotubes: significant role of ordered water molecules.

    PubMed

    Shen, Jia-Wei; Wu, Tao; Wang, Qi; Kang, Yu; Chen, Xin

    2009-06-02

    Ordered hydration shells: The more ordered hydration shells outside the charged CNT surfaces prevent more compact adsorption of the peptide in the charged CNT systems [picture: see text], but peptide binding strengths on the charged CNT surfaces are stronger due to the electrostatic interaction.Studies of adsorption dynamics and stability for peptides/proteins on single-walled carbon nanotubes (SWNTs) are of great importance for a better understanding of the properties and nature of nanotube-based biosystems. Herein, the dynamics and mechanism of the adsorption of the insulin chain B peptide on different charged SWNTs are investigated by explicit solvent molecular dynamics simulations. The results show that all types of surfaces effectively attract the model peptide. Water molecules play a significant role in peptide adsorption on the surfaces of charged carbon nanotubes (CNTs). Compared to peptide adsorption on neutral CNT surfaces, the more ordered hydration shells outside the tube prevent more compact adsorption of the peptide in charged CNT systems. This shield effect leads to a smaller conformational change and van der Waals interaction between the peptide and surfaces, but peptide binding strengths on charged CNT surfaces are stronger than those on the neutral CNT surface due to the strong electrostatic interaction. The result of these simulations implies the possibility of improving the binding strength of peptides/proteins on CNT surfaces, as well as keeping the integrity of the peptide/protein conformation in peptide/protein-CNT complexes by charging the CNTs.

  18. Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications.

    PubMed

    Farahani, Rouhollah D; Dubé, Martine; Therriault, Daniel

    2016-07-01

    The integration of nanotechnology into three-dimensional printing (3DP) offers huge potential and opportunities for the manufacturing of 3D engineered materials exhibiting optimized properties and multifunctionality. The literature relating to different 3DP techniques used to fabricate 3D structures at the macro- and microscale made of nanocomposite materials is reviewed here. The current state-of-the-art fabrication methods, their main characteristics (e.g., resolutions, advantages, limitations), the process parameters, and materials requirements are discussed. A comprehensive review is carried out on the use of metal- and carbon-based nanomaterials incorporated into polymers or hydrogels for the manufacturing of 3D structures, mostly at the microscale, using different 3D-printing techniques. Several methods, including but not limited to micro-stereolithography, extrusion-based direct-write technologies, inkjet-printing techniques, and popular powder-bed technology, are discussed. Various examples of 3D nanocomposite macro- and microstructures manufactured using different 3D-printing technologies for a wide range of domains such as microelectromechanical systems (MEMS), lab-on-a-chip, microfluidics, engineered materials and composites, microelectronics, tissue engineering, and biosystems are reviewed. Parallel advances on materials and techniques are still required in order to employ the full potential of 3D printing of multifunctional nanocomposites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A hydrophobic organelle probe based on aggregation-induced emission: Nanosuspension preparation and direct use for endoplasmic reticulum imaging in living cells

    NASA Astrophysics Data System (ADS)

    Zheng, Sichao; Huang, Cuihong; Zhao, Xuyan; Zhang, Yong; Liu, Shuwen; Zhu, Qiuhua

    2018-01-01

    Organic fluorophores have a wide range of biological uses and are usually needed to be prepared as water-soluble compounds or nanoparticles for applications in aqueous biosystems owing to their hydrophobic properties, which often is a complex, time-consuming and high-cost process. Here, the nanoparticle preparation of hydrophobic fluorophores and their application in cell imaging have been investigated. It was found: a) fetal bovine serum (FBS) shows an excellent dispersion effect on hydrophobic small-molecule organic compounds; b) a hydrophobic C6-unsubstituted tetrahydropyrimidine (Me-THP-Naph) can be prepared as nanosuspensions utilizing cell culture medium with 10% FBS and directly be used as a specific real-time imaging probe for the endoplasmic reticulum (ER), a dynamic organelle playing a crucial role in many cellular processes. Compared with existing ER-targeted organic fluorescent probes, Me-THP-Naph, a product of an efficient five-component reaction that we developed, has unconventional aggregation-induced emission characteristics and shows advantages of low cost, long-term staining, good photostability, high signal-to-noise ratio and excellent biocompatibility, which make it a potential specific probe for real-time ER imaging. More importantly, this work affords a simple strategy for direct application of hydrophobic organic compounds in aqueous biological systems.

  20. Influence of capillary barrier effect on biogas distribution at the base of passive methane oxidation biosystems: Parametric study.

    PubMed

    Ahoughalandari, Bahar; Cabral, Alexandre R

    2017-05-01

    The efficiency of methane oxidation in passive methane oxidation biosystems (PMOBs) is influenced by, among other things, the intensity and distribution of the CH 4 loading at the base of the methane oxidation layer (MOL). Both the intensity and distribution are affected by the capillary barrier that results from the superposition of the two materials constituting the PMOB, namely the MOL and the gas distribution layer (GDL). The effect of capillary barriers on the unsaturated flow of water has been well documented in the literature. However, its effect on gas flow through PMOBs is still poorly documented. In this study, sets of numerical simulations were performed to evaluate the effect of unsaturated hydraulic characteristics of the MOL material on the value and distribution of moisture and hence, the ease and uniformity in the distribution of the upward flow of biogas along the GDL-MOL interface. The unsaturated hydraulic parameters of the materials used to construct the experimental field plot at the St-Nicephore landfill (Quebec, Canada) were adopted to build the reference simulation of the parametric study. The behavior of the upward flow of biogas for this particular material was analyzed based on its gas intrinsic permeability function, which was obtained in the laboratory. The parameters that most influenced the distribution and the ease of biogas flow at the base of the MOL were the saturated hydraulic conductivity and pore size distribution of the MOL material, whose effects were intensified as the slope of the interface increased. The effect of initial dry density was also assessed herein. Selection of the MOL material must be made bearing in mind that these three parameters are key in the effort to prevent unwanted restriction in the upward flow of biogas, which may result in the redirection of biogas towards the top of the slope, leading to high CH 4 fluxes (hotspots). In a well-designed PMOB, upward flow of biogas across the GDL-MOL interface is unrestricted and moisture distribution is uniform. This paper tries to show how to obtain this. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Challenges in Characterizing and Controlling Complex Cellular Systems

    NASA Astrophysics Data System (ADS)

    Wikswo, John

    2011-03-01

    Multicellular dynamic biological processes such as developmental differentiation, wound repair, disease, aging, and even homeostasis can be represented by trajectories through a phase space whose extent reflects the genetic, post-translational, and metabolic complexity of the process - easily extending to tens of thousands of dimensions. Intra- and inter-cellular sensing and regulatory systems and their nested, redundant, and non-linear feed-forward and feed-back controls create high-dimensioned attractors in this phase space. Metabolism provides free energy to drive non-equilibrium processes and dynamically reconfigure attractors. Studies of single molecules and cells provide only minimalist projections onto a small number of axes. It may be difficult to infer larger-scale emergent behavior from linearized experiments that perform only small amplitude perturbations on a limited number of the dimensions. Complete characterization may succeed for bounded component problems, such as an individual cell cycle or signaling cascade, but larger systems problems will require a coarse-grained approach. Hence a new experimental and analytical framework is needed. Possibly one could utilize high-amplitude, multi-variable driving of the system to infer coarse-grained, effective models, which in turn can be tested by their ability to control systems behavior. Navigation at will between attractors in a high-dimensioned dynamical system will provide not only detailed knowledge of the shape of attractor basins, but also measures of underlying stochastic events such as noise in gene expression or receptor binding and how both affect system stability and robustness. Needed for this are wide-bandwidth methods to sense and actuate large numbers of intracellular and extracellular variables and automatically and rapidly infer dynamic control models. The success of this approach may be determined by how broadly the sensors and actuators can span the full dimensionality of the phase space. Supported by the Defense Threat Reduction Agency HDTRA-09-1-0013, NIH National Institute on Drug Abuse RC2DA028981, the National Academies Keck Futures Initiative, and the Vanderbilt Institute for Integrative Biosystems Research and Education.

  2. A microsatellite study for determination of allelic variation of Kurdish population-Kurdistan region-Iraq

    NASA Astrophysics Data System (ADS)

    Murad, Media J.; Amin, Bushra K.

    2017-09-01

    The purpose of this study was detecting genetic variations for the Kurdish population in Kurdistan region-Iraq, using fifteen autosomal STR loci. Buccal swabs were collected and depositing on Nucleic Card (Copan, Italia Spa) from 302 healthy unrelated Iraqi Kurds in five provinces of Kurdistan region-Iraq. Fifteen autosomal STR loci are D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818, FGA and Amelogenin included in the AmpFlSTR Identifiler® Direct PCR Amplification Kit (Applied Biosystems, Foster City, CA, USA). No significant departure from Hardy Weinberg Equilibrium (HWE) expectations were observed in 10 from 15 STR loci analyzed (a 5% significance level was taken). The exceptions were the CSF1PO, D3S1358, D13S317, D16S539 and D2S1338 loci. Statistical parameters of forensic efficiencies were estimated for the loci, based on allelic frequencies. The mean of observed heterozygosity, expected heterozygosity and PIC values across the 15 loci were 0.762, 0.797 and 0.768 respectively, indicating high gene diversity. The combined probability of exclusion, power of discrimination, probability of matching value for all the 15 STR loci were 0.9999968; 0.9999999 and 4.966×10-17, respectively. These parameters indicated the importance of the loci for forensic genetic purposes and paternity testing.

  3. Real-Time Reverse-Transcription Quantitative Polymerase Chain Reaction Assay Is a Feasible Method for the Relative Quantification of Heregulin Expression in Non-Small Cell Lung Cancer Tissue.

    PubMed

    Kristof, Jessica; Sakrison, Kellen; Jin, Xiaoping; Nakamaru, Kenji; Schneider, Matthias; Beckman, Robert A; Freeman, Daniel; Spittle, Cindy; Feng, Wenqin

    2017-01-01

    In preclinical studies, heregulin ( HRG ) expression was shown to be the most relevant predictive biomarker for response to patritumab, a fully human anti-epidermal growth factor receptor 3 monoclonal antibody. In support of a phase 2 study of erlotinib ± patritumab in non-small cell lung cancer (NSCLC), a reverse-transcription quantitative polymerase chain reaction (RT-qPCR) assay for relative quantification of HRG expression from formalin-fixed paraffin-embedded (FFPE) NSCLC tissue samples was developed and validated and described herein. Test specimens included matched FFPE normal lung and NSCLC and frozen NSCLC tissue, and HRG -positive and HRG -negative cell lines. Formalin-fixed paraffin-embedded tissue was examined for functional performance. Heregulin distribution was also analyzed across 200 NSCLC commercial samples. Applied Biosystems TaqMan Gene Expression Assays were run on the Bio-Rad CFX96 real-time PCR platform. Heregulin RT-qPCR assay specificity, PCR efficiency, PCR linearity, and reproducibility were demonstrated. The final assay parameters included the Qiagen FFPE RNA Extraction Kit for RNA extraction from FFPE NSCLC tissue, 50 ng of RNA input, and 3 reference (housekeeping) genes ( HMBS, IPO8 , and EIF2B1 ), which had expression levels similar to HRG expression levels and were stable among FFPE NSCLC samples. Using the validated assay, unimodal HRG distribution was confirmed across 185 evaluable FFPE NSCLC commercial samples. Feasibility of an RT-qPCR assay for the quantification of HRG expression in FFPE NSCLC specimens was demonstrated.

  4. [Correlation analysis of surnames and Y-chromosome genetic heritage in 3 provinces of southwestern Colombia].

    PubMed

    Gómez, Alberto; Avila, Sandra J; Briceño, Ignacio

    2008-09-01

    In Colombia, surnames are characters usually passed to the children by the father, and they have been compared to neutral alleles associated with the Y-chromosome. Population frequencies were determined for 17 short tandem repeats (STR) DNA markers on the Y-chromosome to compare the two identity codes and define the correlation between haplotypes and surnames in each individual. DNA was extracted from blood samples from 308 male individuals in provinces of Valle del Cauca, Cauca and Nariño, all in southwestern Colombia. Sample DNA was analyzed with the commercial kit AmpFLSTR Yfiler (Applied Biosystems) and examined for the following 17 Y-chromosome STR markers: DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385a/b, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635 and Y-GATA-H4. The frequencies of molecular haplotypes were associated with the surname reported by each individual, and a correlation table was constructed. Amerindian and European surnames were associated with the presence of allele DYS19/13, a characteristic of Amerindian populations. Allele frequencies were reported for each of the 17 STR markers in the southwestern region of Colombia-high genetic and haplotypic diversities were obtained. Approximately 40% of lineage inconsistencies were found when the molecular genotype was compared with the European or Amerindian surnames. Surnames must be used as population markers with reservation. The genetic evidence indicates that traditional genealogies based on surnames with or without documental support, may be inconsistant with their biological provenance.

  5. High prevalence of exon 8 G533C mutation in apparently sporadic medullary thyroid carcinoma in Greece.

    PubMed

    Sarika, H L; Papathoma, A; Garofalaki, M; Vasileiou, V; Vlassopoulou, B; Anastasiou, E; Alevizaki, M

    2012-12-01

    Genetic screening for ret mutation has become routine practice in the evaluation of medullary thyroid carcinoma (MTC). Approximately 25% of these tumours are familial, and they occur as components of the multiple endocrine neoplasia type 2 syndromes (MEN 2A and 2B) or familial MTC. In familial cases, the majority of mutations are found in exons 10, 11, 13, 14 or 15 of the ret gene. A rare mutation involving exon 8 (G533C) has recently been reported in familial cases of MTC in Brazil and Greece; some of these cases were originally thought to be sporadic. The aim of this study was to re-evaluate a series of sporadic cases of MTC, with negative family history, and screen them for germline mutations in exon 8. Genomic DNA was extracted from peripheral lymphocytes in 129 unrelated individuals who had previously been characterized as 'sporadic' based on the negative family history and negative screening for ret gene mutations. Samples were analysed in Applied Biosystems 7500 real-time PCR and confirmed by sequencing. The G533C exon 8 mutation was identified in 10 of 129 patients with sporadic MTC. Asymptomatic gene carriers were subsequently identified in other family members. In our study, we found that 7·75% patients with apparently sporadic MTC do carry G533C mutation involving exon 8 of ret. We feel that there is now a need to include exon 8 mutation screening in all patients diagnosed as sporadic MTC, in Greece. © 2012 Blackwell Publishing Ltd.

  6. Stochastic sampling effects in STR typing: Implications for analysis and interpretation.

    PubMed

    Timken, Mark D; Klein, Sonja B; Buoncristiani, Martin R

    2014-07-01

    The analysis and interpretation of forensic STR typing results can become more complicated when reduced template amounts are used for PCR amplification due to increased stochastic effects. These effects are typically observed as reduced heterozygous peak-height balance and increased frequency of undetected alleles (allelic "dropout"). To investigate the origins of these effects, a study was performed using the AmpFlSTR(®) Identifiler Plus(®) and MiniFiler(®) kits to amplify replicates from a dilution series of NIST Human DNA Quantitation Standard (SRM(®) 2372A). The resulting amplicons were resolved and detected on two different genetic analyzer platforms, the Applied Biosystems 3130xL and 3500 analyzers. Results from our study show that the four different STR/genetic analyzer combinations exhibited very similar peak-height ratio statistics when normalized for the amount of template DNA in the PCR. Peak-height ratio statistics were successfully modeled using the Poisson distribution to simulate pre-PCR stochastic sampling of the alleles, confirming earlier explanations that sampling is the primary source for peak-height imbalance in reduced template dilutions. In addition, template-based pre-PCR sampling simulations also successfully predicted allelic dropout frequencies, as modeled by logistic regression methods, for the low-template DNA dilutions. We discuss the possibility that an accurately quantified DNA template might be used to characterize the linear signal response for data collected using different STR kits or genetic analyzer platforms, so as to provide a standardized approach for comparing results obtained from different STR/CE combinations and to aid in validation studies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. [Evaluation of association between 9 genetic polymorphism and myocardial infarction in the Siberian population].

    PubMed

    Maksimov, V N; Kulikov, I V; Orlov, P S; Gafarov, V V; Maliutina, S K; Romashchenko, A G; Voevoda, M I

    2012-01-01

    to evaluate association between genetic polymorphism (SNPs) and myocardial infarction (identified in recent GWAS) as markers of high risk of myocardial infarction (MI) in Siberian population. Patients were divided into 2 groups - MI patients and control group (ratio 1:2) and presented the sapmle of population of Novosibirsk (9400 patients, 45-69 years) within international project HAPIEE (Health, Alcohol and Psychosocial factors In Eastern Europe). 200 patients with MI (129 men, 71 women) were included. Control group - individuals without MI (420) matched for age and sex. Genomic DNA was extracted from venous blood by phenol-chloroform extraction. Gene polymorphism of genes tested by real-time PCR according to protocol (probes TaqMan, Applied Biosystems, USA) with the use of ABI 7900HT. The following SNPs were studied: rs28711149, rs499818, rs619203, rs10757278 and rs1333049 (hr. 9), rs1376251, rs2549513, rs4804611, rs17465637. The association of SNP and MI was confirmed for 4 of 9 studied SNPs: rs1333049 (hr. 9), rs10757278 (hr. 9), rs499818 (hr. 6), rs619203 gene ROS1. Heart rate was associated with rs1333049 and rs10757278. Glucose level was associated with rs619203, rs28711149 and rs1376251. Total cholesterol and atherogenic index was associated with rs28711149. For the first time in Russian population the associations of GWAS with myocardial infarction SNPs was detected for rs619203, rs499818, rs1333049 and rs10757278. These genetic markers can be used for assessing the risk of myocardial infarction in Russian population.

  8. Synergetic computer and holonics - information dynamics of a semantic computer

    NASA Astrophysics Data System (ADS)

    Shimizu, H.; Yamaguchi, Y.

    1987-12-01

    The dynamics of semantic information in biosystem is studied based on holons, generators of mutual relations. Any biosystem has an internal world, a so-called "self", which has an intrinsic purpose rendering the system continuously alive and developed as much as possible against a fluctuating external world. External signals to the system through sensory organs are classified by the self into two basic categories, semantic information with some meaning and value for the purpose and inputs from background and noise sources. Due to this breaking of semantic symmetry, any input signals are transformed into a figure and background, respectively. As a typical example, the visual perception of vertebrates is studied. For such semantic transformation the external signal is first decomposed and converted into a number of elementary signs named "syntons" which are then transmitted into a sensory area of cortex corresponding to an image synthesizer. The synthesizer is a sort of autonomic parallel processor composed of autonomic units, "holons", which are characterized by many internal modes. Syntons are fed into the holons one by one. A set of the elementary meanings, the so-called "semons", provided to the synton are encoded in the internal modes of the holon; that is, each internal mode encodes a semon. A dynamic information theory for the transformation of external signals to semantic information is developed based on our model which we call holovision. Holovision is a dynamic model of visual perception that processes an autonomic ability to self-organize visual images. Autonomous oscillators are utilized as the line processors to encode line elements with specific orientations in their phases as semons. An information space is defined according to the assembly of holons; the spatial plane on which holons are arranged is a syntactic subspace while the internal modes of the holons span a semantic subspace in the orthogonal direction. In this information space, the image of a figure is self-organized - as a sort of spatiotemporal pattern - by autonomic coordinations of the holons that select relevant internal modes, accompanied with compression of irrelevant syntons that correspond to the background. Holons coded by a synton are relevantly connected by means of coherent relations, i.e., dynamic connections with time-coherence, in order to represent the image that varies in time depending on the instantaneous state of the external object. These connections depend on the internal modes that are cooperatively selectively selected by the holons. The image is regarded as a bridge between the external and internal world that has both external and internal consistency. The meaning of the image, i.e., transformed semantic information, is spontaneously transferred from semantic items that have a coherent relation with the image, and the external signal is perceived by the self through the image. We demonstrate that images are indeed self-organized in holovision in the previously described sense. Simulated processes of the creation of semantic information in holovision are shown to display typical features of the forgoing steps of information compression. Based on these results, we propose quantitative indices that represent the value of semantic information in the image processor as well as in the memory.

  9. Application of mixsep software package: Performance verification of male-mixed DNA analysis

    PubMed Central

    HU, NA; CONG, BIN; GAO, TAO; CHEN, YU; SHEN, JUNYI; LI, SHUJIN; MA, CHUNLING

    2015-01-01

    An experimental model of male-mixed DNA (n=297) was constructed according to the mixed DNA construction principle. This comprised the use of the Applied Biosystems (ABI) 7500 quantitative polymerase chain reaction system, with scientific validation of mixture proportion (Mx; root-mean-square error ≤0.02). Statistical analysis was performed on locus separation accuracy using mixsep, a DNA mixture separation R-package, and the analytical performance of mixsep was assessed by examining the data distribution pattern of different mixed gradients, short tandem repeat (STR) loci and mixed DNA types. The results showed that locus separation accuracy had a negative linear correlation with the mixed gradient (R2=−0.7121). With increasing mixed gradient imbalance, locus separation accuracy first increased and then decreased, with the highest value detected at a gradient of 1:3 (≥90%). The mixed gradient, which is the theoretical Mx, was one of the primary factors that influenced the success of mixed DNA analysis. Among the 16 STR loci detected by Identifiler®, the separation accuracy was relatively high (>88%) for loci D5S818, D8S1179 and FGA, whereas the median separation accuracy value was lowest for the D7S820 locus. STR loci with relatively large numbers of allelic drop-out (ADO; >15) were all located in the yellow and red channels, including loci D18S51, D19S433, FGA, TPOX and vWA. These five loci featured low allele peak heights, which was consistent with the low sensitivity of the ABI 3130xl Genetic Analyzer to yellow and red fluorescence. The locus separation accuracy of the mixsep package was substantially different with and without the inclusion of ADO loci; inclusion of ADO significantly reduced the analytical performance of the mixsep package, which was consistent with the lack of an ADO functional module in this software. The present study demonstrated that the mixsep software had a number of advantages and was recommended for analysis of mixed DNA. This software was easy to operate and produced understandable results with a degree of controllability. PMID:25936428

  10. In children with autoimmune thyroiditis CTLA4 and FCRL3 genes--but not PTPN22--are overexpressed when compared to adults.

    PubMed

    Wojciechowska-Durczynska, Katarzyna; Krawczyk-Rusiecka, Kinga; Zygmunt, Arkadiusz; Stawerska, Renata; Lewinski, Andrzej

    2016-01-01

    Numerous genetic studies revealed several susceptibility genes of autoimmune thyroid diseases (AITD), including CTLA4, PTPN22 and FCRL3. These immune-modulating genes are involved in genetic background of AITD among children and adult patients. However, possible age-related differences in overexpression of these genes remain unclear. The goal of this single centre cohort study was evaluation of expression levels of three (3) genes CTLA4, PTPN22 and FCRL3 in adult patients and children with autoimmune thyroiditis. A total of 47 patients--24 adults (mean age--47.7 years) and 23 children (mean age--12.4 years) with autoimmune thyroiditis were assessed for the level of expression of CTLA4, PTPN22 and FCRL3 genes, utilizing ABI PRISM' 7500 Sequence Detection System (Applied Biosystem, Foster City, CA, USA). The overexpression of PTPN22 (mean RQ = 2.988) and FCRL3 (mean RQ = 2.544) genes were confirmed in adult patients with autoimmune thyroiditis, at the same time the expression level of CTLA4 gene was significantly decreased (mean RQ = 0.899) (p < 0.05). Similar discrepancies were not observed in children with autoimmune thyroiditis in whom overexpression of all three genes--CTLA4, PTPN22 and FCRL3--was observed. Differences in CTLA4 and FCRL3 genes expression levels in patients with autoimmune thyroiditis were found depending on the age, with increased expression levels of CTLA4 (mean RQ = 3.45 1) and FCRL3 (mean RQ = 7.410) in children when compared to adults (p < 0.05) (Mann-Whitney's U-test). There were moderate negative linear correlations between two genes in question (CTLA4 and FCRL3) expression level and patients' age [correlation coefficient (r) = -0.529 (p < 0.0002) and -0.423 (p < 0.0032), respectively; Spearman's rank correlation test]. Our results are consistent with the hypothesis that there are few age-dependent genetic differences as regards autoimmune thyroiditis in adults and children. Accordingly, CTLA4 and FCRL3 genes overexpression may play an important role in children suffering from autoimmune thyroiditis.

  11. Remote sensing investigations of wetland biomass and productivity for global biosystems research

    NASA Technical Reports Server (NTRS)

    Klemas, V.

    1986-01-01

    The relationship between spectral radiance and plant canopy biomass was studied in wetlands. Spectroradiometer data was gathered on Thematic Mapper wavebands 3, 4, and 5, and correlated with canopy and edaphic factors determined by harvesting. The relationship between spectral radiance and plant canopy biomass for major salt and brackish canopy types was determined. Algorithms were developed for biomass measurement in mangrove swamps. The influence of latitudinal variability in canopy structure on biomass assessment of selected plants was investigated. Brackish marsh biomass estimates were obtained from low altitude aircraft and compared with ground measurements. Annual net aerial primary productivity estimates computed from spectral radiance data were compiled for a Spartina alterniflora marsh. Spectral radiance data were expressed as vegetation or infrared index values. Biomass estimates computed from models were in close agreement with biomass estimates determined from harvests.

  12. Old tree with new shoots: silver nanoparticles for label-free and colorimetric mercury ions detection

    NASA Astrophysics Data System (ADS)

    Gao, Shuyan; Jia, Xiaoxia; Chen, Yanli

    2013-01-01

    Mercury in the environment from global mercury emissions as well as various forms of contamination poses severe threats to both human health and the environment. Long-term exposure to high levels of Hg-based toxins results in serious and irreversible damage of the central nervous system and other organs. Therefore, the development of effective sensing systems for mercury detection becomes an increasing demand. In this article, a yogurt-mediated silver nanostructure is reported to be unprecedentedly used in the naked-eye and label-free detection of mercury. The method relies on the redox reaction resulting from the electrode potential difference between Ag+/Ag (0.7996 V) and Hg2+/Hg2 2+ (0.920 V) that makes colorless Hg2+ ions which oxidize colored silver nanoparticle (AgNP) to colorless Ag+. The labor-intensive modification of AgNPs and expensive labeling are avoided, and the traditional AuNPs are substituted by AgNPs in this Hg2+ ions sensing platform, which makes it facile, low-cost, and particularly useful for home, clinic, or field applications as well as resource-limited conditions. This sensing system achieves a detection limit as low as 10 nM, lower than the toxicity level of Hg2+ ions in drinking water (30 nM) defined by World Health Organization, and exhibits excellent selectivity, largely free from the matrix effect of the real water samples. This visual label-free Hg2+ ions sensing motif shows great promise for sensing Hg2+ ions in terms of sensitivity, selectivity, cost, and maneuverability. It is also a good example for the organic combination of green chemistry and functional materials, which may trigger interest in furthering biosystems for environmental science applications.

  13. [Molecular mechanisms of lung cancer development at its different stages in nuclear industry workers].

    PubMed

    Rusinova, G G; Vyazovskaya, N S; Azizova, T V; Revina, V S; Glazkova, I V; Generozov, E V; Zakharzhevskaya, N B; Guryanov, M Yu; Belosokhov, M V; Osovets, S V

    2015-01-01

    to assess mutational events in exons 5, 7, and 8 of the p53 gene and to reveal mutant p53 protein in verified cases of morphologically altered (proliferative and precancerous changes, lung cancer) and histologically unaltered, lung tissues in workers exposed to occupational radiation. The investigation used formalin-fixed paraffin-embedded unaltered and altered lung tissue blocks (FFPBs) obtained from the human radiobiological tissue repository. The shelf-life of FFPBs was 5-31 years. An immunohistochemical technique using mouse antibodies against p53 protein (, Denmark), stained with diaminobenzidine (DAB) chromogen, was employed to determine p53 protein. DNA was isolated from lung tissue FFPBs with QIAmp DNA FFPE Tissue Kit, (, USA). Polymerase chain reaction (PCR) was performed to amplify the p53 gene exons 5, 7, and 8 selected for examination, by applying the sequences of genes and primers, the specificity of which was checked using the online resource (http://www.ncbi.nlm.nih.gov/blast). PCR products were detected by temporal temperature gradient gel-electrophoresis and the Sanger sequencing method. The obtained DNA fragments were analyzed on a sequencer ABI Prism 3100 Genetic Analizer (, USA). Computer-aided DNA analysis was made using the BLAST program. A package of applied Statistica 6.0 programs was employed for statistical data processing. Results. Immunohistochemical analysis showed that mutant p53 protein was absent in the cells of unaltered lung tissue and the number of cells with mutant p53 protein increased in all the patients with proliferative and precancerous changes and lung cancer, suggesting p53 protein dysfunction. The total number of p53 gene mutations in exons 5, 7, and 8, if there were proliferative and precancerous lung tissue changes and lung cancer, were 25, 20, and 40%, respectively. All the found mutations were transversions (the substitution of purine for pyrimidine or, conversely), indicating the action of exogenous mutagens. The results of this investigation have confirmed other investigators' data showing that p53 gene mutations in lung cancer are observed in 40-70% of cases. The differences in the number of cases of altered lung tissue with mutations in the p53 gene (not more than 40%) and in those of p53 protein expression were found in 100%, suggesting the regulation of p53 gene function in the cell at multiple levels.

  14. Challenges and Rewards on the Road to Translational Systems Biology in Acute Illness: Four Case Reports from Interdisciplinary Teams

    PubMed Central

    An, Gary; Hunt, C. Anthony; Clermont, Gilles; Neugebauer, Edmund; Vodovotz, Yoram

    2007-01-01

    Introduction Translational systems biology approaches can be distinguished from mainstream systems biology in that their goal is to drive novel therapies and streamline clinical trials in critical illness. One systems biology approach, dynamic mathematical modeling (DMM), is increasingly used in dealing with the complexity of the inflammatory response and organ dysfunction. The use of DMM often requires a broadening of research methods and a multidisciplinary team approach that includes bioscientists, mathematicians, engineers, and computer scientists. However, the development of these groups must overcome domain-specific barriers to communication and understanding. Methods We present four case studies of successful translational, interdisciplinary systems biology efforts, which differ by organizational level from an individual to an entire research community. Results Case 1 is a single investigator involved in DMM of the acute inflammatory response at Cook County Hospital, in which extensive translational progress was made using agent-based models of inflammation and organ damage. Case 2 is a community-level effort from the University of Witten-Herdecke in Cologne, whose efforts have led to the formation of the Society for Complexity in Acute Illness. Case 3 is an institution-based group, the Biosystems Group at the University of California, San Francisco, whose work has included a focus on a common lexicon for DMM. Case 4 is an institution-based, trans-disciplinary research group (the Center for Inflammation and Regenerative Modeling at the University of Pittsburgh, whose modeling work has led to internal education efforts, grant support, and commercialization. Conclusion A transdisciplinary approach, which involves team interaction in an iterative fashion to address ambiguity and is supported by educational initiatives, is likely to be necessary for DMM in acute illness. Community-wide organizations such as the Society of Complexity in Acute Illness (SCAI) must strive to facilitate the implementation of DMM in sepsis/trauma research into the research community as a whole. PMID:17548029

  15. biochem4j: Integrated and extensible biochemical knowledge through graph databases.

    PubMed

    Swainston, Neil; Batista-Navarro, Riza; Carbonell, Pablo; Dobson, Paul D; Dunstan, Mark; Jervis, Adrian J; Vinaixa, Maria; Williams, Alan R; Ananiadou, Sophia; Faulon, Jean-Loup; Mendes, Pedro; Kell, Douglas B; Scrutton, Nigel S; Breitling, Rainer

    2017-01-01

    Biologists and biochemists have at their disposal a number of excellent, publicly available data resources such as UniProt, KEGG, and NCBI Taxonomy, which catalogue biological entities. Despite the usefulness of these resources, they remain fundamentally unconnected. While links may appear between entries across these databases, users are typically only able to follow such links by manual browsing or through specialised workflows. Although many of the resources provide web-service interfaces for computational access, performing federated queries across databases remains a non-trivial but essential activity in interdisciplinary systems and synthetic biology programmes. What is needed are integrated repositories to catalogue both biological entities and-crucially-the relationships between them. Such a resource should be extensible, such that newly discovered relationships-for example, those between novel, synthetic enzymes and non-natural products-can be added over time. With the introduction of graph databases, the barrier to the rapid generation, extension and querying of such a resource has been lowered considerably. With a particular focus on metabolic engineering as an illustrative application domain, biochem4j, freely available at http://biochem4j.org, is introduced to provide an integrated, queryable database that warehouses chemical, reaction, enzyme and taxonomic data from a range of reliable resources. The biochem4j framework establishes a starting point for the flexible integration and exploitation of an ever-wider range of biological data sources, from public databases to laboratory-specific experimental datasets, for the benefit of systems biologists, biosystems engineers and the wider community of molecular biologists and biological chemists.

  16. biochem4j: Integrated and extensible biochemical knowledge through graph databases

    PubMed Central

    Batista-Navarro, Riza; Dunstan, Mark; Jervis, Adrian J.; Vinaixa, Maria; Ananiadou, Sophia; Faulon, Jean-Loup; Kell, Douglas B.

    2017-01-01

    Biologists and biochemists have at their disposal a number of excellent, publicly available data resources such as UniProt, KEGG, and NCBI Taxonomy, which catalogue biological entities. Despite the usefulness of these resources, they remain fundamentally unconnected. While links may appear between entries across these databases, users are typically only able to follow such links by manual browsing or through specialised workflows. Although many of the resources provide web-service interfaces for computational access, performing federated queries across databases remains a non-trivial but essential activity in interdisciplinary systems and synthetic biology programmes. What is needed are integrated repositories to catalogue both biological entities and–crucially–the relationships between them. Such a resource should be extensible, such that newly discovered relationships–for example, those between novel, synthetic enzymes and non-natural products–can be added over time. With the introduction of graph databases, the barrier to the rapid generation, extension and querying of such a resource has been lowered considerably. With a particular focus on metabolic engineering as an illustrative application domain, biochem4j, freely available at http://biochem4j.org, is introduced to provide an integrated, queryable database that warehouses chemical, reaction, enzyme and taxonomic data from a range of reliable resources. The biochem4j framework establishes a starting point for the flexible integration and exploitation of an ever-wider range of biological data sources, from public databases to laboratory-specific experimental datasets, for the benefit of systems biologists, biosystems engineers and the wider community of molecular biologists and biological chemists. PMID:28708831

  17. AgIIS, Agricultural Irrigation Imaging System, design and application

    NASA Astrophysics Data System (ADS)

    Haberland, Julio Andres

    Remote sensing is a tool that is increasingly used in agriculture for crop management purposes. A ground-based remote sensing data acquisition system was designed, constructed, and implemented to collect high spatial and temporal resolution data in irrigated agriculture. The system was composed of a rail that mounts on a linear move irrigation machine, and a small cart that runs back and forth on the rail. The cart was equipped with a sensors package that measured reflectance in four discrete wavelengths (550 nm, 660 nm, 720 nm, and 810 nm, all 10 nm bandwidth) and an infrared thermometer. A global positioning system and triggers on the rail indicated cart position. The data was postprocessed in order to generate vegetation maps, N and water status maps and other indices relevant for site-specific crop management. A geographic information system (GIS) was used to generate images of the field on any desired day. The system was named AgIIS (A&barbelow;gricultural I&barbelow;rrigation I&barbelow;maging S&barbelow;ystem). This ground based remote sensing acquisition system was developed at the Agricultural and Biosystems Engineering Department at the University of Arizona in conjunction with the U.S. Water Conservation Laboratory in Phoenix, as part of a cooperative study primarily funded by the Idaho National Environmental and Engineering Laboratory. A second phase of the study utilized data acquired with AgIIS during the 1999 cotton growing season to model petiole nitrate (PNO3 -) and total leaf N. A latin square experimental design with optimal and low water and optimal and low N was used to evaluate N status under water and no water stress conditions. Multivariable models were generated with neural networks (NN) and multilinear regression (MLR). Single variable models were generated from chlorophyll meter readings (SPAD) and from the Canopy Chlorophyll Content Index (CCCI). All models were evaluated against observed PNO3- and total leaf N levels. The NN models showed the highest correlation with PNO3- and total leaf N. AgIIS was a reliable and efficient data acquisition system for research and also showed potential for use in commercial farming systems.

  18. [Diffusion and diffusion-osmosis models of the charged macromolecule transfer in barriers of biosystems].

    PubMed

    Varakin, A I; Mazur, V V; Arkhipova, N V; Serianov, Iu V

    2009-01-01

    Mathematical models of the transfer of charged macromolecules have been constructed on the basis of the classical equations of electromigration diffusion of Helmholtz-Smolukhovskii, Goldman, and Goldman-Hodgkin-Katz. It was shown that ion transfer in placental (mimicking lipid-protein barriers) and muscle barriers occurs by different mechanisms. In placental barriers, the electromigration diffusion occurs along lipid-protein channels formed due to the conformational deformation of phospholipid and protein molecules with the coefficients of diffusion D = (2.6-3.6) x 10(-8) cm2/s. The transfer in muscle barriers is due to the migration across charged interfibrillar channels with the negative diffusion activation energy, which is explained by changes in the structure of muscle fibers and expenditures of thermal energy for the extrusion of Cl- from channel walls with the diffusion coefficient D = (6.0-10.0) x 10(-6) cm2/s.

  19. First International Conference between West and East—Leonardo and Lao-Tze. Western Science Meets Eastern Wisdom. Experiences of Scientists and Intellectuals for the Creation of a New Paradigm of Modern Science

    PubMed Central

    2008-01-01

    The Conference was organized and supported by: Nei Dan School (European School of Internal Martial Arts), NIB (Laboratory of Molecular Biology and Stem Cell Bioengineering, National Institute of Biostructures and Biosystems, Institute of Cardiology, S.Orsola-Malpighi Hospital, Bologna), WACIMA (Worldwide Association Chinese Internal Martial Arts), Arti D’Oriente (Magazine of Eastern culture and traditions), Nuovo Orizzonte (Taiji Quan School in Florence), Samurai (Journal on Martial Arts), and Pinus (First National Institute for the Unification of Medical Strategies). Nei Dan School (www.taichineidan.com, neidan@libero.it) was in charge of the organization. Future meetings of the Centro studi ‘Tao and Science’ will take place in spring 2007 in Firenze and in October 2007 in Bologna. For information: E-mail: neidan@libero.it; web site: www.taichineidan.com, www.taoandscience.com PMID:18317548

  20. Mid-infrared spectroscopic analysis of saccharides in aqueous solutions with sodium chloride.

    PubMed

    Kanou, Mikihito; Kameoka, Takaharu; Suehara, Ken-Ichiro; Hashimoto, Atsushi

    2017-04-01

    The infrared spectral characteristics of three different types of disaccharides (trehalose, maltose, and sucrose) and four different types of monosaccharides (glucose, mannose, galactose, and fructose) in aqueous solutions with sodium chloride (NaCl) were determined. The infrared spectra were obtained using the FT-IR/ATR method and the absorption intensities respected the interaction between the saccharide and water with NaCl were determined. This study also focused on not only the glycosidic linkage position and the constituent monosaccharides, but also the concentration of the saccharides and NaCl and found that they have a significant influence on the infrared spectroscopic characterization of the disaccharides in an aqueous solution with NaCl. The absorption intensities representing the interaction between a saccharide and water with NaCl were spectroscopically determined. Additionally, the applications of MIR spectroscopy to obtain information about saccharide-NaCl interactions in foods and biosystems were suggested.

  1. A New Metrics for Countries' Fitness and Products' Complexity

    NASA Astrophysics Data System (ADS)

    Tacchella, Andrea; Cristelli, Matthieu; Caldarelli, Guido; Gabrielli, Andrea; Pietronero, Luciano

    2012-10-01

    Classical economic theories prescribe specialization of countries industrial production. Inspection of the country databases of exported products shows that this is not the case: successful countries are extremely diversified, in analogy with biosystems evolving in a competitive dynamical environment. The challenge is assessing quantitatively the non-monetary competitive advantage of diversification which represents the hidden potential for development and growth. Here we develop a new statistical approach based on coupled non-linear maps, whose fixed point defines a new metrics for the country Fitness and product Complexity. We show that a non-linear iteration is necessary to bound the complexity of products by the fitness of the less competitive countries exporting them. We show that, given the paradigm of economic complexity, the correct and simplest approach to measure the competitiveness of countries is the one presented in this work. Furthermore our metrics appears to be economically well-grounded.

  2. Report of the In Situ Resources Utilization Workshop

    NASA Technical Reports Server (NTRS)

    Fairchild, Kyle (Editor); Mendell, Wendell W. (Editor)

    1988-01-01

    The results of a workshop of 50 representatives from the public and private sector which investigated the potential joint development of the key technologies and mechanisms that will enable the permanent habitation of space are presented. The workshop is an initial step to develop a joint public/private assessment of new technology requirements of future space options, to share knowledge on required technologies that may exist in the private sector, and to investigate potential joint technology development opportunities. The majority of the material was produced in 5 working groups: (1) Construction, Assembly, Automation and Robotics; (2) Prospecting, Mining, and Surface Transportation; (3) Biosystems and Life Support; (4) Materials Processing; and (5) Innovative Ventures. In addition to the results of the working groups, preliminary technology development recommendations to assist in near-term development priority decisions are presented. Finally, steps are outlined for potential new future activities and relationships among the public, private, and academic sectors.

  3. Database resources of the National Center for Biotechnology Information.

    PubMed

    2016-01-04

    The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank(®) nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. Additional NCBI resources focus on literature (PubMed Central (PMC), Bookshelf and PubReader), health (ClinVar, dbGaP, dbMHC, the Genetic Testing Registry, HIV-1/Human Protein Interaction Database and MedGen), genomes (BioProject, Assembly, Genome, BioSample, dbSNP, dbVar, Epigenomics, the Map Viewer, Nucleotide, Probe, RefSeq, Sequence Read Archive, the Taxonomy Browser and the Trace Archive), genes (Gene, Gene Expression Omnibus (GEO), HomoloGene, PopSet and UniGene), proteins (Protein, the Conserved Domain Database (CDD), COBALT, Conserved Domain Architecture Retrieval Tool (CDART), the Molecular Modeling Database (MMDB) and Protein Clusters) and chemicals (Biosystems and the PubChem suite of small molecule databases). The Entrez system provides search and retrieval operations for most of these databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized datasets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  4. Database resources of the National Center for Biotechnology Information.

    PubMed

    2015-01-01

    The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank(®) nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. Additional NCBI resources focus on literature (Bookshelf, PubMed Central (PMC) and PubReader); medical genetics (ClinVar, dbMHC, the Genetic Testing Registry, HIV-1/Human Protein Interaction Database and MedGen); genes and genomics (BioProject, BioSample, dbSNP, dbVar, Epigenomics, Gene, Gene Expression Omnibus (GEO), Genome, HomoloGene, the Map Viewer, Nucleotide, PopSet, Probe, RefSeq, Sequence Read Archive, the Taxonomy Browser, Trace Archive and UniGene); and proteins and chemicals (Biosystems, COBALT, the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), the Molecular Modeling Database (MMDB), Protein Clusters, Protein and the PubChem suite of small molecule databases). The Entrez system provides search and retrieval operations for many of these databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at http://www.ncbi.nlm.nih.gov. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. Magnetic Fluid Hyperthermia for Bladder Cancer: A Preclinical Dosimetry Study

    PubMed Central

    Oliveira, Tiago R.; Stauffer, Paul R.; Lee, Chen-Ting; Landon, Chelsea D.; Etienne, Wiguins; Ashcraft, Kathleen A.; McNerny, Katie L.; Mashal, Alireza; Nouls, John; Maccarini, Paolo F.; Beyer, Wayne F.; Inman, Brant; Dewhirst, Mark W.

    2014-01-01

    Purpose This paper describes a preclinical investigation of the feasibility of thermotherapy treatment of bladder cancer with Magnetic Fluid Hyperthermia (MFH), performed by analyzing the thermal dosimetry of nanoparticle heating in a rat bladder model. Materials and Methods The bladders of twenty-five female rats were instilled with magnetite-based nanoparticles, and hyperthermia was induced using a novel small animal magnetic field applicator (Actium Biosystems, Boulder, CO). We aimed to increase the bladder lumen temperature to 42°C in <10 min and maintain that temperature for 60 min. Temperatures were measured within the bladder lumen and throughout the rat with seven fiberoptic probes (OpSens Technologies, Quebec, Canada). An MRI analysis was used to confirm the effectiveness of the catheterization method to deliver and maintain various nanoparticle volumes within the bladder. Thermal dosimetry measurements recorded the temperature rise of rat tissues for a variety of nanoparticle exposure conditions. Results Thermal dosimetry data demonstrated our ability to raise and control the temperature of rat bladder lumen ≥1°C/min to a steady-state of 42°C with minimal heating of surrounding normal tissues. MRI scans confirmed the homogenous nanoparticle distribution throughout the bladder. Conclusion These data demonstrate that our MFH system with magnetite-based nanoparticles provide well-localized heating of rat bladder lumen with effective control of temperature in the bladder and minimal heating of surrounding tissues. PMID:24050253

  6. 3D bio-etching of a complex composite-like embryonic tissue.

    PubMed

    Hazar, Melis; Kim, Yong Tae; Song, Jiho; LeDuc, Philip R; Davidson, Lance A; Messner, William C

    2015-08-21

    Morphogenesis involves a complex series of cell signaling, migration and differentiation events that are coordinated as tissues self-assemble during embryonic development. Collective cell movements such as those that occur during morphogenesis have typically been studied in 2D with single layers of cultured cells adhering to rigid substrates such as glass or plastic. In vivo, the intricacies of the 3D microenvironment and complex 3D responses are pivotal in the formation of functional tissues. To study such processes as collective cell movements within 3D multilayered tissues, we developed a microfluidic technique capable of producing complex 3D laminar multicellular structures. We call this technique "3D tissue-etching" because it is analogous to techniques used in the microelectromechanics (MEMS) field where complex 3D structures are built by successively removing material from a monolithic solid through subtractive manufacturing. We use a custom-designed microfluidic control system to deliver a range of tissue etching reagents (detergents, chelators, proteases, etc.) to specific regions of multilayered tissues. These tissues were previously isolated by microsurgical excision from embryos of the African claw-toed frog, Xenopus laevis. The ability to shape the 3D form of multicellular tissues and to control 3D stimulation will have a high impact on tissue engineering and regeneration applications in bioengineering and medicine as well as provide significant improvements in the synthesis of highly complex 3D integrated multicellular biosystems.

  7. Global warming effects: future feasibility of current cooling equipment for animal houses

    NASA Astrophysics Data System (ADS)

    Valiño, V.; Perdigones, A.; García, J. L.; de La Plaza, S.

    2009-04-01

    Interest in global warming effects on the agricultural systems is currently high, especially in areas which are likely to be more affected by this temperature rising, i.e. the Mediterranean area (IPCC, 2008). According to this report, the model projections of surface warming predict a temperature increase between 0.5°C to 1.5°C in the European area by the period 2020-2029. The aim of the present work was to assess the future consequences of the global warming effect on the feasibility of the cooling equipment in animal houses. Several equipment combinations were compared by means of modelling the inside climate in fattening pig houses, including forced ventilation and cooling pad. The modelling was carried out for six different European locations: Spain, Greece, Italy, The Netherlands, Germany and the United Kingdom, for the today conditions; secondly, the global warming effect in the inside climate was considered in a second set of simulations, and a mean temperature rising of 2°C was taken into account. Climate data. The six European locations were: Madrid (Spain); Aliartos (Greece); Bedford (The United Kingdom); Schipol (The Netherlands); Milan (Italy); and Stuttgart (Germany). From every location, the available climate data were monthly mean temperature (To; °C); monthly mean relative humidity (HRo, %) and monthly mean solar irradiation on horizontal surface (So; W m-2). From these monthly values, hourly means were calculated resulting in 24 data for a typical day, each month. Climate model. In this study, cooling strategies resulted from the combination of natural ventilation, mechanical ventilation and cooling pads. The climate model was developed taking into account the following energy fluxes: solar radiation, ventilation (Seginer, 2002), animal heat losses (Blanes and Pedersen, 2005), and loss of energy due to the cooling pads (Seginer, 2002). Results for the present work, show a comparative scene of the inside climate by using different cooling equipment combinations, from natural ventilation to cooling pads. Simulations which include the effects of climate change show the evolution in cooling technologies which will be necessary in this kind of animal houses, in six European locations, if the global temperature rising continues with the current rate. The necessary changes in cooling technologies of animal houses, will be important in Europe when the outside air temperature rising is greater than or equal to two Celsius degrees. Intergovernmental Panel on the Climate Change. 2008. Climate Change 2007: Synthesis Report. http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4syr.pdf I. Seginer. 2002. The Penman-Monteith Evapotranspiration Equation as an Element in Greenhouse Ventilation Design. Biosystems Eng. 82(4): 423-439. doi:10.1006/bioe2002.0086 V. Blanes, S. Pedersen. 2005. Ventilation Flow in Pig Houses measured and calculated by Carbon Dioxide, Moisture and Heat Balance Equations. Biosystems Eng. 92(4): 483-493. doi:10.1006/j.biosystemseng.2005.09.002

  8. Association of α-, β-, and γ-Synuclein With Diffuse Lewy Body Disease

    PubMed Central

    Nishioka, Kenya; Wider, Christian; Vilariño-Güell, Carles; Soto-Ortolaza, Alexandra I.; Lincoln, Sarah J.; Kachergus, Jennifer M.; Jasinska-Myga, Barbara; Ross, Owen A.; Rajput, Alex; Robinson, Christopher A.; Ferman, Tanis J.; Wszolek, Zbigniew K.; Dickson, Dennis W.; Farrer, Matthew J.

    2016-01-01

    Objective To determine the association of the genes that encode α-, β-, and γ-synuclein (SNCA, SNCB, and SNCG, respectively) with diffuse Lewy body disease (DLBD). Design Case-control study. Subjects A total of 172 patients with DLBD consistent with a clinical diagnosis of Parkinson disease dementia/dementia with Lewy bodies and 350 clinically and 97 pathologically normal controls. Interventions Sequencing of SNCA, SNCB, and SNCG and genotyping of single-nucleotide polymorphisms performed on an Applied Biosystems capillary sequencer and a Sequenom MassArray pLEX platform, respectively. Associations were determined using χ2 or Fisher exact tests. Results Initial sequencing studies of the coding regions of each gene in 89 patients with DLBD did not detect any pathogenic substitutions. Nevertheless, genotyping of known polymorphic variability in sequence-conserved regions detected several single-nucleotide polymorphisms in the SNCA and SNCG genes that were significantly associated with disease (P=.05 to <.001). Significant association was also observed for 3 single-nucleotide polymorphisms located in SNCB when comparing DLBD cases and pathologically confirmed normal controls (P=.03-.01); however, this association was not significant for the clinical controls alone or the combined clinical and pathological controls (P>.05). After correction for multiple testing, only 1 single-nucleotide polymorphism in SNCG (rs3750823) remained significant in all of the analyses (P=.05-.009). Conclusion These findings suggest that variants in all 3 members of the synuclein gene family, particularly SNCA and SNCG, affect the risk of developing DLBD and warrant further investigation in larger, pathologically defined data sets as well as clinically diagnosed Parkinson disease/dementia with Lewy bodies case-control series. PMID:20697047

  9. Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk, localized prostate cancer.

    PubMed

    Nguyen, Han Christine Ngoc; Xie, Wanling; Yang, Ming; Hsieh, Chen-Lin; Drouin, Sarah; Lee, Gwo-Shu Mary; Kantoff, Philip W

    2013-03-01

    Recent studies show that microRNAs (miRNAs), small non-coding RNAs that negatively regulate gene expression, may have potential for monitoring cancer status. We investigated circulating miRNAs in prostate cancer that may be associated with the progression of hormone-sensitive primary tumors to metastatic castration resistant prostate cancer (CRPC) after androgen deprivation therapy. Using genome-wide expression profiling by TaqMan Human MicroRNA Arrays (Applied Biosystems) and/or quantitative real-time polymerase chain reaction, we compared the expression levels of miRNAs in serum samples from 28 patients of low-risk localized disease, 30 of high-risk localized disease and 26 of metastatic CRPC. We demonstrated that serum samples from patients of low risk, localized prostate cancer and metastatic CRPC patients exhibit distinct circulating miRNA signatures. MiR-375, miR-378*, and miR-141 were significantly over-expressed in serum from CRPC patients compared with serum from low-risk localized patients, while miR-409-3p was significantly under-expressed. In prostate primary tumor samples, miR-375 and miR-141 also had significantly higher expression levels compared with those in normal prostate tissue. Circulating miRNAs, particularly miR-375, miR-141, miR-378*, and miR-409-3p, are differentially expressed in serum samples from prostate cancer patients. In the search for improved minimally invasive methods to follow cancer pathogenesis, the correlation of disease status with the expression patterns of circulating miRNAs may indicate the potential importance of circulating miRNAs as prognostic markers for prostate cancer progression. Copyright © 2012 Wiley Periodicals, Inc.

  10. Association between ABCG1 polymorphism rs1893590 and high-density lipoprotein (HDL) in an asymptomatic Brazilian population.

    PubMed

    Zago, V H S; Scherrer, D Z; Parra, E S; Panzoldo, N B; Alexandre, F; Nakandakare, E R; Quintão, E C R; de Faria, E C

    2015-03-01

    ATP binding cassette transporter G1 (ABCG1) promotes lipidation of nascent high-density lipoprotein (HDL) particles, acting as an intracellular transporter. SNP rs1893590 (c.-204A > C) of ABCG1 gene has been previously studied and reported as functional over plasma HDL-C and lipoprotein lipase activity. This study aimed to investigate the relationships of SNP rs1893590 with plasma lipids and lipoproteins in a large Brazilian population. Were selected 654 asymptomatic and normolipidemic volunteers from both genders. Clinical and anthropometrical data were taken and blood samples were drawn after 12 h fasting. Plasma lipids and lipoproteins, as well as HDL particle size and volume were determined. Genomic DNA was isolated for SNP rs1893590 detection by TaqMan(®) OpenArray(®) Real-Time PCR Plataform (Applied Biosystems). Mann-Whitney U, Chi square and two-way ANOVA were the used statistical tests. No significant differences were found in the comparison analyses between the allele groups for all studied parameters. Conversely, significant interactions were observed between SNP and age over plasma HDL-C, were volunteers under 60 years with AA genotype had increased HDL-C (p = 0.048). Similar results were observed in the group with body mass index (BMI) < 25 kg/m(2), where volunteers with AA genotype had higher HDL-C levels (p = 0.0034), plus an increased HDL particle size (p = 0.01). These findings indicate that SNP rs1893590 of ABCG1 has a significant impact over HDL-C under asymptomatic clinical conditions in an age and BMI dependent way.

  11. The mRNA expression levels of uncoupling proteins 1 and 2 in mononuclear cells from patients with metabolic disorders: obesity and type 2 diabetes mellitus.

    PubMed

    Margaryan, Sona; Witkowicz, Agata; Partyka, Anna; Yepiskoposyan, Levon; Manukyan, Gayane; Karabon, Lidia

    2017-10-19

    Type 2 diabetes mellitus (T2DM) and obesity are metabolic disorders whose major hallmark is insulin resistance. Impaired mitochondrial activity, such as reduced ratio of energy production to respiration, has been implicated in the development of insulin resistance. Uncoupling proteins (UCPs) are proton carriers, expressed in the mitochondrial inner membrane, that uncouple oxygen consumption by the respiratory chain from ATP synthesis. The aim of the study was to determine transcriptional levels of UCP1 and UCP2 in peripheral blood mononuclear cells (PBMCs) from patients with metabolic disorders: T2DM, obesity and from healthy individuals. The mRNA levels of UCP1, UCP2 were determined by Real-Time PCR method using Applied Biosystems assays. The UCP1 mRNA expression level was not detectable in the majority of studied samples, while very low expression was found in PBMCs from 3 obese persons. UCP2 mRNA expression level was detectable in all samples. The median mRNA expression of UCP2 was lower in all patients with metabolic disorders as compared to the controls (0.20+0.14 vs. 0.010+0.009, p=0.05). When compared separately, the differences of medians UCP2 mRNA expression level between the obese individuals and the controls as well as between the T2DM patients and the controls did not reach statistical significance. Decreased UCP2 gene expression in mononuclear cells from obese and diabetic patients might contribute to the immunological abnormalities in these metabolic disorders and suggests its role as a candidate gene in future studies of obesity and diabetes.

  12. The ACTN3 R577X genotype is associated with muscle function in a Japanese population.

    PubMed

    Kikuchi, Naoki; Yoshida, Shou; Min, Seok-ki; Lee, Kihyuk; Sakamaki-Sunaga, Mikako; Okamoto, Takanobu; Nakazato, Koichi

    2015-04-01

    Homozygosity for the common nonsense polymorphism R577X in the α-actinin-3 gene (ACTN3) causes complete α-actinin-3 deficiency in fast-twitch skeletal muscle fibers. This study investigated whether the ACTN3 R577X polymorphism affects fitness status using a battery of tests in a large Japanese cohort. In the present study, 1227 subjects (age: 25-85 years) were genotyped for the ACTN3 R577X polymorphism (rs1815739) using a TaqMan SNP genotyping assay (Applied Biosystems). All subjects were divided into 2 groups based on their age (<55 years and ≥55 years). All subjects completed a questionnaire about exercise habits and were subjected to a battery of tests to assess their fitness status (including grip strength test, chair stand test, and 8-foot walking test). A significant association between the ACTN3 R577X genotype and chair stand test performance was observed in the group of men ≥55 using ANCOVA adjusted for age and exercise habits (p = 0.036). The ACTN3 R577X genotype accounted for 2.5% of the variability in the results of the chair stand test among men in the ≥55 age group. Moreover, for the ≥55 age group, performance in the chair stand test was lower among those with the XX genotype than among those with the RR genotype (p = 0.024) or RX genotype (p = 0.005), unlike results for the <55 age group. No significant difference was noted for hand grip strength or 8-foot walking time. Thus, our results suggest that the ACTN3 R577X genotype is associated with lower-extremity muscle function in the Japanese population.

  13. Detection of Francisella tularensis within infected mouse tissues by using a hand-held PCR thermocycler.

    PubMed

    Emanuel, Peter A; Bell, Ryan; Dang, Jessica L; McClanahan, Rebecca; David, John C; Burgess, Robert J; Thompson, Joseph; Collins, Lisa; Hadfield, Ted

    2003-02-01

    The diagnosis of human cases of tularemia often relies upon the demonstration of an antibody response to Francisella tularensis or the direct culturing of the bacteria from the patient. Antibody response is not detectable until 2 weeks or more after infection, and culturing requires special media and suspicion of tularemia. In addition, handling live Francisella poses a risk to laboratory personnel due to the highly infectious nature of this pathogen. In an effort to develop a rapid diagnostic assay for tularemia, we investigated the use of TaqMan 5' hydrolysis fluorogenic PCR to detect the organism in tissues of infected mice. Mice were infected to produce respiratory tularemia. The fopA and tul4 genes of F. tularensis were amplified from infected spleen, lung, liver, and kidney tissues sampled over a 5-day period. The samples were analyzed using the laboratory-based Applied Biosystems International 7900 and the Smiths Detection-Edgewood BioSeeq, a hand-held portable fluorescence thermocycler designed for use in the field. A comparison of culturing and PCR for detection of bacteria in infected tissues shows that culturing was more sensitive than PCR. However, the results for culture take 72 h, whereas PCR results were available within 4 h. PCR was able to detect infection in all the tissues tested. Lung tissue showed the earliest response at 2 days when tested with the ABI 7900 and in 3 days when tested with the BioSeeq. The results were in agreement between the ABI 7900 and the BioSeeq when presented with the same sample. Template preparation may account for the loss of sensitivity compared to culturing techniques. The hand-held BioSeeq thermocycler shows promise as an expedient means of forward diagnosis of infection in the field.

  14. Detection of Francisella tularensis within Infected Mouse Tissues by Using a Hand-Held PCR Thermocycler

    PubMed Central

    Emanuel, Peter A.; Bell, Ryan; Dang, Jessica L.; McClanahan, Rebecca; David, John C.; Burgess, Robert J.; Thompson, Joseph; Collins, Lisa; Hadfield, Ted

    2003-01-01

    The diagnosis of human cases of tularemia often relies upon the demonstration of an antibody response to Francisella tularensis or the direct culturing of the bacteria from the patient. Antibody response is not detectable until 2 weeks or more after infection, and culturing requires special media and suspicion of tularemia. In addition, handling live Francisella poses a risk to laboratory personnel due to the highly infectious nature of this pathogen. In an effort to develop a rapid diagnostic assay for tularemia, we investigated the use of TaqMan 5′ hydrolysis fluorogenic PCR to detect the organism in tissues of infected mice. Mice were infected to produce respiratory tularemia. The fopA and tul4 genes of F. tularensis were amplified from infected spleen, lung, liver, and kidney tissues sampled over a 5-day period. The samples were analyzed using the laboratory-based Applied Biosystems International 7900 and the Smiths Detection-Edgewood BioSeeq, a hand-held portable fluorescence thermocycler designed for use in the field. A comparison of culturing and PCR for detection of bacteria in infected tissues shows that culturing was more sensitive than PCR. However, the results for culture take 72 h, whereas PCR results were available within 4 h. PCR was able to detect infection in all the tissues tested. Lung tissue showed the earliest response at 2 days when tested with the ABI 7900 and in 3 days when tested with the BioSeeq. The results were in agreement between the ABI 7900 and the BioSeeq when presented with the same sample. Template preparation may account for the loss of sensitivity compared to culturing techniques. The hand-held BioSeeq thermocycler shows promise as an expedient means of forward diagnosis of infection in the field. PMID:12574268

  15. Glucokinase gene mutations (MODY 2) in Asian Indians.

    PubMed

    Kanthimathi, Sekar; Jahnavi, Suresh; Balamurugan, Kandasamy; Ranjani, Harish; Sonya, Jagadesan; Goswami, Soumik; Chowdhury, Subhankar; Mohan, Viswanathan; Radha, Venkatesan

    2014-03-01

    Heterozygous inactivating mutations in the glucokinase (GCK) gene cause a hyperglycemic condition termed maturity-onset diabetes of the young (MODY) 2 or GCK-MODY. This is characterized by mild, stable, usually asymptomatic, fasting hyperglycemia that rarely requires pharmacological intervention. The aim of the present study was to screen for GCK gene mutations in Asian Indian subjects with mild hyperglycemia. Of the 1,517 children and adolescents of the population-based ORANGE study in Chennai, India, 49 were found to have hyperglycemia. These children along with the six patients referred to our center with mild hyperglycemia were screened for MODY 2 mutations. The GCK gene was bidirectionally sequenced using BigDye(®) Terminator v3.1 (Applied Biosystems, Foster City, CA) chemistry. In silico predictions of the pathogenicity were carried out using the online tools SIFT, Polyphen-2, and I-Mutant 2.0 software programs. Direct sequencing of the GCK gene in the patients referred to our Centre revealed one novel mutation, Thr206Ala (c.616A>G), in exon 6 and one previously described mutation, Met251Thr (c.752T>C), in exon 7. In silico analysis predicted the novel mutation to be pathogenic. The highly conserved nature and critical location of the residue Thr206 along with the clinical course suggests that the Thr206Ala is a MODY 2 mutation. However, we did not find any MODY 2 mutations in the 49 children selected from the population-based study. Hence prevalence of GCK mutations in Chennai is <1:1,517. This is the first study of MODY 2 mutations from India and confirms the importance of considering GCK gene mutation screening in patients with mild early-onset hyperglycemia who are negative for β-cell antibodies.

  16. PP128. Placental Caspase-3 gene polymorphisms is associated with preeclampsia.

    PubMed

    Hsu, C-D; Polavarapu, S; Parton, L

    2012-07-01

    Increased placental trophoblastic apoptosis (programmed cell death) was previously reported in pregnancies complicated by preeclampsia. Caspase-3 is one of the key executioners of apoptosis. Caspase are expressed in many tissues including human placental trophoblast and other tissues. Variations in the promoter area of the Caspase genes may modulate apoptotic signaling, contributing to an increased risk of preeclampsia To determine if gene polymorphisms of Caspase 3 proteins differ between patient with and without preeclampsia. Forty-three singleton placentas were studied. Twenty-two placentas were with preeclampsia and 21 were normotensive controls. DNA was extracted from placentas using QIAAmp DNA Minikit. Genotyping of Caspase 3 +567 was determined by real-time PCR using the Applied Biosystems Prism 7900 HT SDS machine. Chi-square and Fisher's exact tests were used for statistical analysis. There were no significant differences in maternal age, parity or race between the two groups. Preeclamptic placentas had higher frequency of wild type TT of Caspase-3 SNP (+567) as compared with normotensive controls (59% versus 28.5%). Preeclamptic placentas expressed significantly more genotype of TT of Caspase-3 SNP (+567) than normotensive patients when compared to CC (p=0.02). The alle frequencies of the Caspase SNP (+567) in preeclampstic placentas were 0.77 and 0.23 for T and C, respectively, as compared to 0.52 and 0.48, respectively, in placentas from normotensive pregnancies. Immune intolerance of maternal and placental interaction plays an important role in the pathogenesis of preeclampsia. Increased of placental apoptosis was reported in pregnancy complicated with preeclamsia. Our findings indicate placental Caspase 3 (+567) gene polymorphisms is associated with preeclampsia. Altered placental alle frequencies and caspase-3 SNP (+567) in preeclampsia further suggests preeclampsia is a trophoblastic disorder. Copyright © 2012. Published by Elsevier B.V.

  17. A multianalytical approach to evaluate the association of 55 SNPs in 28 genes with obesity risk in North Indian adults.

    PubMed

    Srivastava, Apurva; Mittal, Balraj; Prakash, Jai; Srivastava, Pranjal; Srivastava, Nimisha; Srivastava, Neena

    2017-03-01

    The aim of the study was to investigate the association of 55 SNPs in 28 genes with obesity risk in a North Indian population using a multianalytical approach. Overall, 480 subjects from the North Indian population were studied using strict inclusion/exclusion criteria. SNP Genotyping was carried out by Sequenom Mass ARRAY platform (Sequenom, San Diego, CA) and validated Taqman ® allelic discrimination (Applied Biosystems ® ). Statistical analyses were performed using SPSS software version 19.0, SNPStats, GMDR software (version 6) and GENEMANIA. Logistic regression analysis of 55 SNPs revealed significant associations (P < .05) of 49 SNPs with BMI linked obesity risk whereas the remaining 6 SNPs revealed no association (P > .05). The pathway-wise G-score revealed the significant role (P = .0001) of food intake-energy expenditure pathway genes. In CART analysis, the combined genotypes of FTO rs9939609 and TCF7L2 rs7903146 revealed the highest risk for BMI linked obesity. The analysis of the FTO-IRX3 locus revealed high LD and high order gene-gene interactions for BMI linked obesity. The interaction network of all of the associated genes in the present study generated by GENEMANIA revealed direct and indirect connections. In addition, the analysis with centralized obesity revealed that none of the SNPs except for FTO rs17818902 were significantly associated (P < .05). In this multi-analytical approach, FTO rs9939609 and IRX3 rs3751723, along with TCF7L2 rs7903146 and TMEM18 rs6548238, emerged as the major SNPs contributing to BMI linked obesity risk in the North Indian population. © 2016 Wiley Periodicals, Inc.

  18. Haplotype diversity of 17 Y-chromosomal STRs in three native Sarawak populations (Iban, Bidayuh and Melanau) in East Malaysia.

    PubMed

    Chang, Yuet Meng; Swaran, Yuvaneswari; Phoon, Yoong Keat; Sothirasan, Kavin; Sim, Hang Thiew; Lim, Kong Boon; Kuehn, Daniel

    2009-06-01

    17 Y-STRs (DYS456, DYS389I, DYS390, DYS389II, DYS458, DYS19, DYS385a/b, DYS393, DYS391, DYS439, DYS635 or Y-GATA C4, DYS392, Y-GATA H4, DYS437, DYS438 and DYS448) have been analyzed in 320 male individuals from Sarawak, an eastern state of Malaysia on the Borneo island using the AmpFlSTR Y-filer (Applied Biosystems, Foster City, CA). These individuals were from three indigenous ethnic groups in Sarawak comprising of 103 Ibans, 113 Bidayuhs and 104 Melanaus. The observed 17-loci haplotypes and the individual allele frequencies for each locus were estimated, whilst the locus diversity, haplotype diversity and discrimination capacity were calculated in the three groups. Analysis of molecular variance (AMOVA) indicated that 87.6% of the haplotypic variation was found within population and 12.4% between populations (fixation index F(ST)=0.124, p=0.000). This study has revealed that the indigenous populations in Sarawak are distinctly different to each other, and to the three major ethnic groups in Malaysia (Malays, Chinese and Indians), with the Melanaus having a strikingly high degree of shared haplotypes within. There are rare unusual variants and microvariants that were not present in Malaysian Malay, Chinese or Indian groups. In addition, occurrences of DYS385 duplications which were only noticeably present in Chinese group previously was also observed in the Iban group whilst null alleles were detected at several Y-loci (namely DYS19, DYS392, DYS389II and DYS448) in the Iban and Melanau groups.

  19. Genetic and clinical risk factors of root resorption associated with orthodontic treatment.

    PubMed

    Guo, Yujiao; He, Shushu; Gu, Tian; Liu, Yi; Chen, Song

    2016-08-01

    External apical root resorption (EARR) is a common complication in orthodontic treatment. Despite many studies on EARR, great controversies remain with regard to its risk factors. The objective of this study was to explore the relationship among sex, root movement, IL-1RN single nucleotide polymorphism (SNP) rs419598, IL-6 SNP rs1800796, and EARR associated with orthodontic treatment. Altogether 174 patients (with 174 maxillary left central incisors) were selected for this study. Cone-beam computed tomography was performed before the start of the treatment and at the end of the treatment. Cone-beam computed tomography data were used to reconstruct a 3-dimensional image of each tooth; the volume and the root resorption volume of each tooth were calculated. Three-dimensional matching was used to measure the amount of movement of each root. Genomic DNA was extracted from buccal swabs, and genotypes of SNP rs419598 and SNP rs1800796 of each subject were determined using TaqMan polymerase chain reaction genotyping (Applied Biosystems, Foster City, Calif). The data were analyzed with multiple linear regression analysis. The statistical analysis indicated no relationship between sex, tooth movement amount, and IL-1RN SNP rs419598 with EARR. The IL-6 SNP rs1800796 GC was associated with EARR, and root resorption differed significantly between SNP rs1800796 GC and CC. IL-6 SNP rs1800796 GC is a risk factor for EARR. The amount of root movement, IL-1RN SNP rs419598, and sex as risk factors for EARR need further study. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  20. Human scFv antibody fragments specific for hepatocellular carcinoma selected from a phage display library.

    PubMed

    Yu, Bing; Ni, Ming; Li, Wen-Han; Lei, Ping; Xing, Wei; Xiao, Dai-Wen; Huang, Yu; Tang, Zhen-Jie; Zhu, Hui-Fen; Shen, Guan-Xin

    2005-07-14

    To identify the scFv antibody fragments specific for hepatocellular carcinoma by biopanning from a large human naive scFv phage display library. A large human naive scFv phage library was used to search for the specific targets by biopanning with the hepatocellular carcinoma cell line HepG2 for the positive-selecting and the normal liver cell line L02 for the counter-selecting. After three rounds of biopanning, individual scFv phages binding selectively to HepG2 cells were picked out. PCR was carried out for identification of the clones containing scFv gene sequence. The specific scFv phages were selected by ELISA and flow cytometry. DNA sequences of positive clones were analyzed by using Applied Biosystem Automated DNA sequencers 3 730. The expression proteins of the specific scFv antibody fragments in E.coli HB2151 were purified by the affinity chromatography and detected by SDS-PAGE, Western blot and ELISA. The biological effect of the soluble antibody fragments on the HepG2 cells was investigated by observing the cell proliferation. Two different positive clones were obtained and the functional variable sequences were identified. Their DNA sequences of the scFv antibody fragments were submitted to GenBank (accession nos: AY686498 and AY686499). The soluble scFv antibody fragments were successfully expressed in E.coli HB2151. The relative molecular mass of the expression products was about 36 ku, according to its predicted M(r) value. The two soluble scFv antibody fragments also had specific binding activity and obvious growth inhibition properties to HepG2 cells. The phage library biopanning permits identification of specific antibody fragments for hepatocellular carcinoma and affords experiment evidence for its immunotherapy study.

  1. Combining local scaling and global methods to detect soil pore space

    NASA Astrophysics Data System (ADS)

    Martin-Sotoca, Juan Jose; Saa-Requejo, Antonio; Grau, Juan B.; Tarquis, Ana M.

    2017-04-01

    The characterization of the spatial distribution of soil pore structures is essential to obtain different parameters that will influence in several models related to water flow and/or microbial growth processes. The first step in pore structure characterization is obtaining soil images that best approximate reality. Over the last decade, major technological advances in X-ray computed tomography (CT) have allowed for the investigation and reconstruction of natural porous media architectures at very fine scales. The subsequent step is delimiting the pore structure (pore space) from the CT soil images applying a thresholding. Many times we could find CT-scan images that show low contrast at the solid-void interface that difficult this step. Different delimitation methods can result in different spatial distributions of pores influencing the parameters used in the models. Recently, new local segmentation method using local greyscale value (GV) concentration variabilities, based on fractal concepts, has been presented. This method creates singularity maps to measure the GV concentration at each point. The C-A method was combined with the singularity map approach (Singularity-CA method) to define local thresholds that can be applied to binarize CT images. Comparing this method with classical methods, such as Otsu and Maximum Entropy, we observed that more pores can be detected mainly due to its ability to amplify anomalous concentrations. However, it delineated many small pores that were incorrect. In this work, we present an improve version of Singularity-CA method that avoid this problem basically combining it with the global classical methods. References Martín-Sotoca, J.J., A. Saa-Requejo, J.B. Grau, A.M. Tarquis. New segmentation method based on fractal properties using singularity maps. Geoderma, 287, 40-53, 2017. Martín-Sotoca, J.J, A. Saa-Requejo, J.B. Grau, A.M. Tarquis. Local 3D segmentation of soil pore space based on fractal properties using singularity maps. Geoderma, http://dx.doi.org/10.1016/j.geoderma.2016.11.029. Torre, Iván G., Juan C. Losada and A.M. Tarquis. Multiscaling properties of soil images. Biosystems Engineering, http://dx.doi.org/10.1016/j.biosystemseng.2016.11.006.

  2. Investigation of the unusual behavior of cesium-137 and other radionuclides in the Florida environment. Progress report, September 1, 1975--August 31, 1976. [Digitaria decumbens, Paspalum notatum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, J.F.

    1976-01-01

    The most significant development in the contract year was the documentation of the presence of endomycorrhizal, vesicular arbuscular (V-A) mycorrhizae in the pasture systems of south Florida that have the elevated levels of cesium-137 activity. In all samples the V-A hyphal network was well developed and growing throughout the particles of organic matter. The organic particles are held in a loose, aggregate structure by the hyphal network. In improved pastures of Digitaria decumbens (pangola) and Paspalum notatum (bahiagrass) the root infection ranged from 24 to 95 percent. The principle association was Gigaspora and Glomus sp. In the unimproved pastures ofmore » mostly Aristida stricta (wiregrass) and Serenoa repens (saw palmetto) the infection was 70 percent and only Acaulospora laevis was found. Experiments are in progress to show whether there are differences in cesium uptake between mycorrhizal and non-mycorrhizal grass plants. The test grass is pangola. Greenhouse tests involve V-A mycorrhizal control using a fungicide, the infection of grass cuttings with mycorrhizal strains found in the test area. These pot experiments will serve as pilot programs for field experiments. The effects of ectomycorrhizal associations on uptake of cesium in pine seedlings is also being studied. Analysis of the dynamics of organic matter cycling in a mesic hardwood forest shows that the rates of organic matter flow are similar to tropical systems although the plant species are warm temperate. The increased tempo of organic turnover probably contributes to the observed higher-than-expected levels of cesium-137 activity in Florida biosystems.« less

  3. 8 Allergenic Composition of Polymerized Allergen Extracts of Betula verrucosa, Dermatophagoides Pteronyssinus and Phleum Pratense

    PubMed Central

    Fernandez-Caldas, Enrique; Cases, Barbara; Tudela, Jose Ignacio; Fernandez, Eva Abel; Casanovas, Miguel; Subiza, Jose Luis

    2012-01-01

    Background Allergoids have been successfully used in the treatment of respiratory allergic diseases. They are modified allergen extracts that allow the administration of high allergen doses, due to their reduced IgE binding capacity.They maintain allergen-specific T-cell recognition. Since they are native allergen extracts that have been polymerized with glutaraldehyde, identification of the allergenic molecules requires more complicated methods. The aim of the study was to determine the qualitative composition of different polymerized extracts and investigate the presence of defined allergenic molecules using Mass spectrometry. Methods Proteomic analysis was carried out at the Proteomics Facility of the Hospital Nacional de Parapléjicos (Toledo, Spain). After reduction and alkylation, proteins were digested with trypsin and the resulting peptides were cleaned using C18 SpinTips Sample Prep Kit; peptides were separated on an Ultimate nano-LC system using a Monolithic C18 column in combination with a precolumn for salt removal. Fractionation of the peptides was performed with a Probot microfraction collector and MS and MS/MS analysis of offline spotted peptide samples were performed using the Applied Biosystems 4800 plus MALDI TOF/TOF Analyzer mass spectrometer. ProteinPilot Software V 2.0.1 and the Paragon algorithm were used for the identification of the proteins. Each MS/MS spectrum was searched against the SwissProt 2010_10 database, Uniprot-Viridiplantae database and Uniprot_Betula database. Results Analysis of the peptides revealed the presence of native allergens in the polymerized extracts: Der p 1, Der p 2, Der p 3, Der p 8 and Der p 11 in D. pteronyssinus; Bet v 2, Bet v 6, Bet v 7 and several Bet v 1 isoforms in B. verrucosa and Phl p 1, Phl p 3, Phl p 5, Phl p 11 and Phl p 12 in P. pratense allergoids. In all cases, potential allergenic proteins were also identified, including ubiquitin, actin, Eenolase, fructose-bisphosphate aldolase, luminal-binding protein (Heat shock protein 70), calmodulin, among others. Conclusions The characterization of the allergenic composition of allergoids is possible using MS/MS analysis. The analysis confirms the presence of native allergens in the allergoids. Mayor allergens are preserved during polymerization.

  4. Use of PCR-restriction fragment length polymorphism analysis for identification of yeast species isolated from bovine intramammary infection.

    PubMed

    Fadda, M E; Pisano, M B; Scaccabarozzi, L; Mossa, V; Deplano, M; Moroni, P; Liciardi, M; Cosentino, S

    2013-01-01

    This study reports a rapid PCR-based technique using a one-enzyme RFLP for discrimination of yeasts isolated from bovine clinical and subclinical mastitis milk samples. We analyzed a total of 1,486 milk samples collected over 1 yr in south Sardinia and northern Italy, and 142 yeast strains were preliminarily grouped based on their cultural morphology and physiological characteristics. Assimilation tests were conducted using the identification kit API ID 32C and APILAB Plus software (bioMérieux, Marcy l'Etoile, France). For PCR-RFLP analysis, the 18S-ITS1-5.8S ribosomal(r)DNA region was amplified and then digested with HaeIII, and dendrogram analysis of RFLP fragments was carried out. Furthermore, within each of the groups identified by the API or PCR-RFLP methods, the identification of isolates was confirmed by sequencing of the D1/D2 region using an ABI Prism 310 automatic sequencer (Applied Biosystems, Foster City, CA). The combined phenotypic and molecular approach enabled the identification of 17 yeast species belonging to the genera Candida (47.9%), Cryptococcus (21.1%), Trichosporon (19.7%), Geotrichum (7.1%), and Rhodotorula (4.2%). All Candida species were correctly identified by the API test and their identification confirmed by sequencing. All strains identified with the API system as Geotrichum candidum, Cryptococcus uniguttulatus, and Rhodotorula glutinis also produced characteristic restriction patterns and were confirmed as Galactomyces geotrichum (a teleomorph of G. candidum), Filobasidium uniguttulatum (teleomorph of Crypt. uniguttulatus), and R. glutinis, respectively, by D1/D2 rDNA sequencing. With regard to the genus Trichosporon, preliminary identification by API was problematic, whereas the RFLP technique used in this study gave characteristic restriction profiles for each species. Moreover, sequencing of the D1/D2 region allowed not only successful identification of Trichosporon gracile where API could not, but also correct identification of misidentified isolates. In conclusion, the 18S-ITS1-5.8S region appears to be useful in detecting genetic variability among yeast species, which is valuable for taxonomic purposes and for species identification. We have established an RFLP database for yeast species identified in milk samples using the software GelCompar II and the RFLP database constitutes an initial method for veterinary yeast identification. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. [Association between rs10938397 polymorphism in GNPDA2 and obesity in children at different stages of development].

    PubMed

    Gao, L W; Zhang, M X; Wu, L J; Fu, L W; Zhao, X Y; Mi, J

    2018-01-10

    Objective: To examine the association between rs10938397 polymorphism in glucosamine-6-phosphate deaminase 2 ( GNPDA2 ) and risk of obesity in children at different stages of development and analyze the differences in the association. Methods: A total of 3 503 school-aged children were selected from the Beijing Child and Adolescent Metabolic Syndrome (BCAMS) study in Beijing and their complete anthropometry weight, height, fat mass percentage (FMP), fat mass index (FMI) and free fat mass index (FFMI) and sexual maturation (SM) data were used. The developmental stages were evaluated using male testicular volume and female breast Tanner staging. FMP, FM and FFM were measured by bioelectrical impedance analysis. General obesity and adiposity were respectively defined according to Chinese sex-age-specific body mass index (BMI) cutoffs and sex-age-specific FMP cutoffs. The SNP rs10938397 were genotyped by the TaqMan Allelic Discrimination Assay with the GeneAmp 7900 sequence detection system (Applied Biosystems, Foster city, CA, USA). Relationships between rs10938397 polymorphism and BMI, FMP, FMI and FFMI and different types of obesity were tested using multivariate linear regression and logistic regression models. Results: After age adjustment and correction for multiple testing, the rs10938397-G was associated with BMI and risk of general obesity in boys in early puberty ( β =0.328, P =0.001; OR =1.420, 95% CI : 1.126-1.790), and the rs10938397-G was associated with BMI in girls in late puberty ( β =0.266, P =0.001). The associations of GNPDA2 rs10938397-G with FFMI and FMI were observed in boys in early puberty ( β =0.137, P =0.016; β =0.202, P =0.007) and the associations of rs10938397-G with FMP and FMI were observed in girls in late puberty ( β =0.153, P =0.002; β =0.168, P =0.001). The rs10938397-G was also associated with adiposity in girls in late puberty ( OR =1.339, 95% CI : 1.093-1.637). Conclusion: The rs10938397 polymorphism in GNPDA2 is associated with adiposity in girls, and it is important to use an accurate indicator of obesity in exposing the genuine association between genes and obesity.

  6. Samsung Salmonella Detection Kit. AOAC Performance Tested Method(SM) 021203.

    PubMed

    Li, Jun; Cheung, Win Den; Opdyke, Jason; Harvey, John; Chong, Songchun; Moon, Cheol Gon

    2012-01-01

    Salmonella, one of the most common causes of foodborne illness, is a significant public health concern worldwide. There is a need in the food industry for methods that are simple, rapid, and sensitive for the detection of foodborne pathogens. In this study, the Samsung Salmonella Detection Kit, a real-time PCR assay for the detection of Salmonella, was evaluated according to the current AOAC guidelines. The validation consisted of lot-to-lot consistency, stability, robustness, and inclusivity/exclusivity studies, as well as a method comparison of 10 different food matrixes. In the validation, the Samsung Salmonella Detection Kit was used in conjunction with the Applied Biosystems StepOnePlus PCR system and the Samsung Food Testing Software for the detection of Salmonella species. The performance of the assays was compared to the U.S. Department of Agriculture/Food Safety and Inspection Service-Microbiology Laboratory Guidebook (USDA/FSIS-MLG) 4.05: Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg, and Catfish and the and U.S. Food and Drug Administration/Bacteriological Analytical Manual (FDA/BAM) Chapter 5 Salmonella reference methods. The validation was conducted using an unpaired study design for detection of Salmonella spp. in raw ground beef, raw pork, raw ground pork, raw chicken wings, raw salmon, alfalfa sprouts, pasteurized orange juice, peanut butter, pasteurized whole milk, and shell eggs. The Samsung Salmonella Detection Kit demonstrated lot-to-lot consistency among three independent lots as well as ruggedness with minor modifications to changes in enrichment incubation time, enrichment incubation temperature, and DNA sample volume for PCR reaction. Stability was observed for 13 months at -20 degrees C and 3 months at 5 degrees C. For the inclusivity/exclusivity study, the Samsung Salmonella Detection Kit correctly identified 147 Salmonella species isolates out of 147 isolates tested from each of three different enrichment broths (a total of 441 isolates detected), and correctly excluded all 31 nontarget strains analyzed. For the method comparison, statistical analysis was conducted according to the Mantel-Haenszel Chi-square formula for unpaired test portions, and there was no significant difference in the number of positive samples detected between the Samsung Salmonella Detection Kit and the USDA/FSIS-MLG and FDA/BAM reference methods for all 10 food matrixes.

  7. Association of the angiotensinogen gene polymorphism with atherosclerosis and its risk traits in the Saudi population

    PubMed Central

    2013-01-01

    Background Angiotensinogen (AGT) constitutes a central component of the renin-angiotensin system that controls the systemic blood pressure and several other cardiovascular functions and may play an important role in atherosclerosis pathways. In this study, we employed TaqMan genotyping assays to evaluate the role of 8 AGT variants in primary hypertension (HTN), type 2 diabetes mellitus (T2DM), and obesity as a possible trigger of coronary artery disease (CAD) in a population of 4615 angiographed native Saudi individuals. Methods Linkage analysis was done by using the Affymetrix Gene Chip array, sequencing by using the MegaBACE DNA analysis system and genotyping accomplished by TaqMan chemistry using the Applied Biosystem real-time Prism 7900HT Sequence Detection System. Results Six variants, rs2067853 GG [Odds ratio(95% Confidence Interval) = 1.44(1.17-1.78); p = 0.001], rs7079 [1.49(1.20-1.85); p < 0.0001], rs699 G [1.19(1.08-1.13); p < 0.0001], rs3789679 A [1.51(1.14-1.99); p = 0.004], rs2148582 GG [1.31(1.11-1.55); p = 0.002] and rs5051 TC + CC [1.32(1.13-1.60); p = 0.001] conferred risk for HTN (3521 cases versus 1094 controls). The rs2067853 (p = 0.042), rs699G (p = 0.007) and rs5051 (p = 0.051) also conferred risk for myocardial infarction (MI; 2982 vs 1633), while rs3789679 A (p < 0.0001) and GA + AA (p < 0.0001) as well as rs4762G (p = 0.019) were associated with obesity (1576 vs 2458). However, while these variants appeared to be also associated with CAD (2323 vs 2292), only the rs7079G (p = 0.035) retained its significant relationship. Interestingly, among the haplotypes constructed from these SNPs, the baseline 8-mer haplotype, GGTGGGGT (χ2 = 7.02; p = 0.0081) and another GGCGGAGT (χ2 = 5.10; p = 0.024), together with several of their derivatives were associated with HTN. T2DM was associated with two 8-mer haplotypes, GGTAGGAC (χ2 = 5.66; p = 0.017) and ATTGAGAC (χ2 = 5.93; p = 0.015), obesity with GGCGGAGT (χ2 = 9.49; p = 0.0021) and MI was linked to ATTGGGAC (χ2 = 6.68; p = 0.010) and GGTGGGAT (χ2 = 4.25; p = 0.039). Furthermore, several causative haplotypes were also shared among the risk traits as well as with CAD. Conclusion These results point to AGT as independently conferring risk for various cardiovascular traits, and possibly interacting with these traits in events leading to atherosclerosis. PMID:23497386

  8. A mass action model of a Fibroblast Growth Factor signaling pathway and its simplification.

    PubMed

    Gaffney, E A; Heath, J K; Kwiatkowska, M Z

    2008-11-01

    We consider a kinetic law of mass action model for Fibroblast Growth Factor (FGF) signaling, focusing on the induction of the RAS-MAP kinase pathway via GRB2 binding. Our biologically simple model suffers a combinatorial explosion in the number of differential equations required to simulate the system. In addition to numerically solving the full model, we show that it can be accurately simplified. This requires combining matched asymptotics, the quasi-steady state hypothesis, and the fact subsets of the equations decouple asymptotically. Both the full and simplified models reproduce the qualitative dynamics observed experimentally and in previous stochastic models. The simplified model also elucidates both the qualitative features of GRB2 binding and the complex relationship between SHP2 levels, the rate SHP2 induces dephosphorylation and levels of bound GRB2. In addition to providing insight into the important and redundant features of FGF signaling, such work further highlights the usefulness of numerous simplification techniques in the study of mass action models of signal transduction, as also illustrated recently by Borisov and co-workers (Borisov et al. in Biophys. J. 89, 951-966, 2005, Biosystems 83, 152-166, 2006; Kiyatkin et al. in J. Biol. Chem. 281, 19925-19938, 2006). These developments will facilitate the construction of tractable models of FGF signaling, incorporating further biological realism, such as spatial effects or realistic binding stoichiometries, despite a more severe combinatorial explosion associated with the latter.

  9. Pioneering topological methods for network-based drug-target prediction by exploiting a brain-network self-organization theory.

    PubMed

    Durán, Claudio; Daminelli, Simone; Thomas, Josephine M; Haupt, V Joachim; Schroeder, Michael; Cannistraci, Carlo Vittorio

    2017-04-26

    The bipartite network representation of the drug-target interactions (DTIs) in a biosystem enhances understanding of the drugs' multifaceted action modes, suggests therapeutic switching for approved drugs and unveils possible side effects. As experimental testing of DTIs is costly and time-consuming, computational predictors are of great aid. Here, for the first time, state-of-the-art DTI supervised predictors custom-made in network biology were compared-using standard and innovative validation frameworks-with unsupervised pure topological-based models designed for general-purpose link prediction in bipartite networks. Surprisingly, our results show that the bipartite topology alone, if adequately exploited by means of the recently proposed local-community-paradigm (LCP) theory-initially detected in brain-network topological self-organization and afterwards generalized to any complex network-is able to suggest highly reliable predictions, with comparable performance with the state-of-the-art-supervised methods that exploit additional (non-topological, for instance biochemical) DTI knowledge. Furthermore, a detailed analysis of the novel predictions revealed that each class of methods prioritizes distinct true interactions; hence, combining methodologies based on diverse principles represents a promising strategy to improve drug-target discovery. To conclude, this study promotes the power of bio-inspired computing, demonstrating that simple unsupervised rules inspired by principles of topological self-organization and adaptiveness arising during learning in living intelligent systems (like the brain) can efficiently equal perform complicated algorithms based on advanced, supervised and knowledge-based engineering. © The Author 2017. Published by Oxford University Press.

  10. Raw hematite based Fe(III) bio-reduction process for humified landfill leachate treatment.

    PubMed

    Li, Rui; Jiang, Yu; Xi, Beidou; Li, Mingxiao; Meng, Xiaoguang; Feng, Chuanping; Mao, Xuhui; Liu, Hongliang; Jiang, Yonghai

    2018-05-03

    Microorganisms from paddy soils and raw hematite are used for enhancing natural Fe(III) bio-reduction, in order to remove macromolecular organic pollutants from humified landfill leachate. Based on batch experiments, 60% of refractory organics can be adsorbed by hematite in 12 days. In the presence of Fe(III)-reducing bacteria, 489.60 ± 0.14 mg L -1 of dissolved organic matters can be degraded to 51.90 ± 3.96 mg L -1 within 50 days; twelve types of semi volatile organic compounds can be degraded; hereby, the reaction follows a first-order kinetics. Crystalline Fe(III) is transformed into the amorphous form and reduced to Fe(II), hydroquinone functional groups in the humic acid (HA) are transformed to quinone ones, and the formation of HA-hematite ligands is promoted. Comparing with most of the studies about electron shuttling of HA, the transformation of quinone in the HA to hydroquinone could not be observed in the present bio-system. Based on column evaluations, more than 93% of chemical oxygen demand (influent concentration of 658 ± 19 mg L -1 ) could be removed microbially under flow conditions, when the hydraulic retention time was 45 h. Raw hematite-based Fe(III) bio-reduction has a promising potential for the removal of humic and benzene series in humified landfill leachate. Copyright © 2018. Published by Elsevier B.V.

  11. Pichia pastoris: a recombinant microfactory for antibodies and human membrane proteins.

    PubMed

    Gonçalves, A M; Pedro, A Q; Maia, C; Sousa, F; Queiroz, J A; Passarinha, L A

    2013-05-01

    During the last few decades, it has become evident that the compatibility of the yeast biochemical environment with the ability to process and translate the RNA transcript, along with its capacity to modify a translated protein, are relevant requirements for selecting this host cell for protein expression in several pharmaceutical and clinical applications. In particular, Pichia pastoris is used as an industrial host for recombinant protein and metabolite production, showing a powerful capacity to meet required biomolecular target production levels in high-throughput assays for functional genomics and drug screening. In addition, there is a great advantage to using P. pastoris for protein secretion, even at high molecular weights, since the recovery and purification steps are simplified owing to relatively low levels of endogenous proteins in the extracellular medium. Clearly, no single microexpression system can provide all of the desired properties for human protein production. Moreover, chemical and physical bioprocess parameters, including culture medium formulation, temperature, pH, agitation, aeration rates, induction, and feeding strategies, can highly influence product yield and quality. In order to benefit from the currently available wide range of biosynthesis strategies using P. pastoris, this mini review focuses on the developments and technological fermentation achievements, providing both a comparative and an overall integration analysis. The main aim is to highlight the relevance and versatility of the P. pastoris biosystem to the design of more cost-effective microfactories to meet the increasing demands for recombinant membrane proteins and clinical antibodies for several therapeutic applications.

  12. Perspectives for the information approach application to natural and artificial ecosystems investigation

    NASA Astrophysics Data System (ADS)

    Lankin, Yuliy

    As a methodological matter, all modern conceptions of life development can be subdivided into the substrate (S), the energetic (E) and the informational (I). The S-conception is based on biochemical, genetic and morphological ideas. The E-conception deals with an idea of development of complicated open systems (COS) which are characterized by energy getting constantly from the outside, by improvement of substance cycles and as speeding-up and increasing of "power" of them as well, and by increasing of energy intensity transformation by the each structure of COS. The I-conception has been developing so far in the main within the frameworks of the traditional both cybernetic ideas and information theory that are convenient for many technical applications but are deficient for investigation of ecoand bio-systems. Situation was changed when the conception of adaptive systems (CAS) based on the ideas of ecology, biology and neurocybernetic (neuroinforamtic) had offered. As a consequence of this, the I-conception based on the CAS well accords with the S- and the E-conceptions and allows to hope to their combine into one the S + E + I conception that will include all virtues of the S-, the E-, and the I-conceptions and eliminate of their limitations. Thanks to relative easiness of hierarchic adaptive nonlinear models making using of the CAS, it is possible overcome effectively both of the problems as the "dimensionality problem" and the "loss of stability" as well for complicated models of ecosystems (CME). Optimization of energy and substance consumption process and adaptation of the CME to changes of current conditions are well realized in ranges given by goal function. A use adaptive networks (including neural nets) in frames of the CAS allows to realize any continuous function in control loops and at information processing. The considered features of the S + E + I proposed approach based on the CAS make it perspective for construction as biosphere models and artificial ecosystems as well for space and earth applications.

  13. Synthetic biology for microbial heavy metal biosensors.

    PubMed

    Kim, Hyun Ju; Jeong, Haeyoung; Lee, Sang Jun

    2018-02-01

    Using recombinant DNA technology, various whole-cell biosensors have been developed for detection of environmental pollutants, including heavy metal ions. Whole-cell biosensors have several advantages: easy and inexpensive cultivation, multiple assays, and no requirement of any special techniques for analysis. In the era of synthetic biology, cutting-edge DNA sequencing and gene synthesis technologies have accelerated the development of cell-based biosensors. Here, we summarize current technological advances in whole-cell heavy metal biosensors, including the synthetic biological components (bioparts), sensing and reporter modules, genetic circuits, and chassis cells. We discuss several opportunities for improvement of synthetic cell-based biosensors. First, new functional modules must be discovered in genome databases, and this knowledge must be used to upgrade specific bioparts through molecular engineering. Second, modules must be assembled into functional biosystems in chassis cells. Third, heterogeneity of individual cells in the microbial population must be eliminated. In the perspectives, the development of whole-cell biosensors is also discussed in the aspects of cultivation methods and synthetic cells.

  14. Reciprocity phase in various 2×2 games by agents equipped with two-memory length strategy encouraged by grouping for interaction and adaptation.

    PubMed

    Wakiyama, Motoya; Tanimoto, Jun

    2011-01-01

    This paper numerically investigates 2×2 games involving the Prisoner's Dilemma, Chicken, Hero, Leader, Stag Hunt, and Trivial Games in which agents have a strategy expressed by five-bit, two-memory length. Our motivation is to explore how grouping for game interaction and strategy adaptation influence ST reciprocity and R reciprocity (Tanimoto and Sagara, 2007a [Tanimoto, J., Sagara, H., 2007a. A study on emergence of coordinated alternating reciprocity in a 2×2 game with 2-memory length strategy. Biosystems 90(3), 728-737]. Enhanced R reciprocity is observed with the stronger grouping for game interaction when a relatively stronger grouping for strategy adaptation is assumed. On the other hand, enhanced ST reciprocity emerged with the stronger grouping for strategy adaptation when the relatively weaker grouping for game interaction is imposed. Our numerical experiment deals with those two groupings independently and dependently. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Perturbing Tandem Energy Transfer in Luminescent Heterobinuclear Lanthanide Coordination Polymer Nanoparticles Enables Real-Time Monitoring of Release of the Anthrax Biomarker from Bacterial Spores.

    PubMed

    Gao, Nan; Zhang, Yunfang; Huang, Pengcheng; Xiang, Zhehao; Wu, Fang-Ying; Mao, Lanqun

    2018-06-05

    Lanthanide-based luminescent sensors have been widely used for the detection of the anthrax biomarker dipicolinic acid (DPA). However, mainly based on DPA sensitization to the lanthanide core, most of them failed to realize robust detection of DPA in bacterial spores. We proposed a new strategy for reliable detection of DPA by perturbing a tandem energy transfer in heterobinuclear lanthanide coordination polymer nanoparticles simply constructed by two kinds of lanthanide ions, Tb 3+ and Eu 3+ , and guanosine 5'-monophosphate. This smart luminescent probe was demonstrated to exhibit highly sensitive and selective visual luminescence color change upon exposure to DPA, enabling accurate detection of DPA in complex biosystems such as bacterial spores. DPA release from bacterial spores on physiological germination was also successfully monitored in real time by confocal imaging. This probe is thus expected to be a powerful tool for efficient detection of bacterial spores in responding to anthrax threats.

  16. Characterization of ZnO nanoparticles grown in presence of Folic acid template

    PubMed Central

    2012-01-01

    Background ZnO nanoparticles (grown in the template of folic acid) are biologically useful, luminescent material. It can be used for multifunctional purposes, e.g., as biosensor, bioimaging, targeted drug delivery and as growth promoting medicine. Methods Sol–gel chemical method was used to develop the uniform ZnO nanoparticles, in a folic acid template at room temperature and pH ~ 7.5. Agglomeration of the particles was prevented due to surface charge density of folic acid in the medium. ZnO nanoparticle was further characterized by different physical methods. Results Nanocrystalline, wurtzite ZnO particles thus prepared show interesting structural as well as band gap properties due to capping with folic acid. Conclusions A rapid, easy and chemical preparative method for the growth of ZnO nanoparticles with important surface physical properties is discussed. Emphatically, after capping with folic acid, its photoluminescence properties are in the visible region. Therefore, the same can be used for monitoring local environmental properties of biosystems. PMID:22788841

  17. Molecular toxicity of nanomaterials.

    PubMed

    Chang, Xue-Ling; Yang, Sheng-Tao; Xing, Gengmei

    2014-10-01

    With the rapid developments in the fields of nanoscience and nanotechnlogy, more and more nanomaterials and their based consumer products have been used into our daily life. The safety concerns of nanomaterials have been well recognized by the scientific community and the public. Molecular mechanism of interactions between nanomaterials and biosystems is the most essential topic and final core of the biosafety. In the last two decades, nanotoxicology developed very fast and toxicity phenomena of nanomaterials have been reported. To achieve better understanding and detoxication of nanomaterials, thorough studies of nanotoxicity at molecular level are important. The interactions between nanomaterials and biomolecules have been widely investigated as the first step toward the molecular nanotoxicology. The consequences of such interactions have been discussed in the literature. Besides this, the chemical mechanism of nanotoxicology is gaining more attention, which would lead to a better design of nontoxic nanomaterials. In this review, we focus on the molecular nanotoxicology and explore the toxicity of nanomaterials at molecular level. The molecular level studies of nanotoxicology are summarized and the published nanotoxicological data are revisited.

  18. Phylogenetic and Structural Analysis of the Pluripotency Factor Sex-Determining Region Y box2 Gene of Camelus dromedarius (cSox2).

    PubMed

    Alawad, Abdullah; Alharbi, Sultan; Alhazzaa, Othman; Alagrafi, Faisal; Alkhrayef, Mohammed; Alhamdan, Ziyad; Alenazi, Abdullah; Al-Johi, Hasan; Alanazi, Ibrahim O; Hammad, Mohamed

    2016-01-01

    Although the sequencing information of Sox2 cDNA for many mammalian is available, the Sox2 cDNA of Camelus dromedaries has not yet been characterized. The objective of this study was to sequence and characterize Sox2 cDNA from the brain of C. dromedarius (also known as Arabian camel). A full coding sequence of the Sox2 gene from the brain of C. dromedarius was amplified by reverse transcription PCRjmc and then sequenced using the 3730XL series platform Sequencer (Applied Biosystem) for the first time. The cDNA sequence displayed an open reading frame of 822 nucleotides, encoding a protein of 273 amino acids. The molecular weight and the isoelectric point of the translated protein were calculated as 29.825 kDa and 10.11, respectively, using bioinformatics analysis. The predicted cSox2 protein sequence exhibited high identity: 99% for Homo sapiens, Mus musculus, Bos taurus, and Vicugna pacos; 98% for Sus scrofa and 93% for Camelus ferus. A 3D structure was built based on the available crystal structure of the HMG-box domain of human stem cell transcription factor Sox2 (PDB: 2 LE4) with 81 residues and predicting bioinformatics software for 273 amino acid residues. The comparison confirms the presence of the HMG-box domain in the cSox2 protein. The orthologous phylogenetic analysis showed that the Sox2 isoform from C. dromedarius was grouped with humans, alpacas, cattle, and pigs. We believe that this genetic and structural information will be a helpful source for the annotation. Furthermore, Sox2 is one of the transcription factors that contributes to the generation-induced pluripotent stem cells (iPSCs), which in turn will probably help generate camel induced pluripotent stem cells (CiPSCs).

  19. A case report and literature review of Fanconi Anemia (FA) diagnosed by genetic testing.

    PubMed

    Solomon, Ponnumony John; Margaret, Priya; Rajendran, Ramya; Ramalingam, Revathy; Menezes, Godfred A; Shirley, Alph S; Lee, Seung Jun; Seong, Moon-Woo; Park, Sung Sup; Seol, Dodam; Seo, Soo Hyun

    2015-05-08

    Fanconi anemia (FA) is a genetically heterogeneous rare autosomal recessive disorder characterized by congenital malformations, hematological problems and predisposition to malignancies. The genes that have been found to be mutated in FA patients are called FANC. To date 16 distinct FANC genes have been reported. Among these, mutations in FANCA are the most frequent among FA patients worldwide which account for 60- 65%. In this study, a nine years old male child was brought to our hospital one year ago for opinion and advice. He was the third child born to consanguineous parents. The mutation analyses were performed for proband, parents, elder sibling and the relatives [maternal aunt and maternal aunt's son (cousin)]. Molecular genetic testing [targeted next-generation sequencing (MiSeq, Illumina method)] was performed by mutation analysis in 15 genes involved. Entire coding exons and their flanking regions of the genes were analysed. Sanger sequencing [(ABI 3730 analyzer by Applied Biosystems)] was performed using primers specific for 43 coding exons of the FANCA gene. A novel splice site mutation, c.3066 + 1G > T, (IVS31 + 1G > T), homozygote was detected by sequencing in the patient. The above sequence variant was identified in heterozygous state in his parents. Further, the above sequence variant was not identified in other family members (elder sibling, maternal aunt and cousin). It is concluded that genetic study should be done if possible in all the cases of suspected FA, including siblings, parents and close blood relatives. It will help us to plan appropriate treatment and also to select suitable donor for hematopoietic stem cell transplantation and to plan for genetic counseling. In addition to the case report, the main focus of this manuscript was to review literature on role of FANCA gene in FA since large number of FANCA mutations and polymorphisms have been identified.

  20. Profound Effect of Profiling Platform and Normalization Strategy on Detection of Differentially Expressed MicroRNAs – A Comparative Study

    PubMed Central

    Meyer, Swanhild U.; Kaiser, Sebastian; Wagner, Carola; Thirion, Christian; Pfaffl, Michael W.

    2012-01-01

    Background Adequate normalization minimizes the effects of systematic technical variations and is a prerequisite for getting meaningful biological changes. However, there is inconsistency about miRNA normalization performances and recommendations. Thus, we investigated the impact of seven different normalization methods (reference gene index, global geometric mean, quantile, invariant selection, loess, loessM, and generalized procrustes analysis) on intra- and inter-platform performance of two distinct and commonly used miRNA profiling platforms. Methodology/Principal Findings We included data from miRNA profiling analyses derived from a hybridization-based platform (Agilent Technologies) and an RT-qPCR platform (Applied Biosystems). Furthermore, we validated a subset of miRNAs by individual RT-qPCR assays. Our analyses incorporated data from the effect of differentiation and tumor necrosis factor alpha treatment on primary human skeletal muscle cells and a murine skeletal muscle cell line. Distinct normalization methods differed in their impact on (i) standard deviations, (ii) the area under the receiver operating characteristic (ROC) curve, (iii) the similarity of differential expression. Loess, loessM, and quantile analysis were most effective in minimizing standard deviations on the Agilent and TLDA platform. Moreover, loess, loessM, invariant selection and generalized procrustes analysis increased the area under the ROC curve, a measure for the statistical performance of a test. The Jaccard index revealed that inter-platform concordance of differential expression tended to be increased by loess, loessM, quantile, and GPA normalization of AGL and TLDA data as well as RGI normalization of TLDA data. Conclusions/Significance We recommend the application of loess, or loessM, and GPA normalization for miRNA Agilent arrays and qPCR cards as these normalization approaches showed to (i) effectively reduce standard deviations, (ii) increase sensitivity and accuracy of differential miRNA expression detection as well as (iii) increase inter-platform concordance. Results showed the successful adoption of loessM and generalized procrustes analysis to one-color miRNA profiling experiments. PMID:22723911

  1. The HOXB13 G84E Mutation Is Associated with an Increased Risk for Prostate Cancer and Other Malignancies.

    PubMed

    Beebe-Dimmer, Jennifer L; Hathcock, Matthew; Yee, Cecilia; Okoth, Linda A; Ewing, Charles M; Isaacs, William B; Cooney, Kathleen A; Thibodeau, Stephen N

    2015-09-01

    A rare nonconservative substitution (G84E) in the HOXB13 gene has been shown to be associated with risk of prostate cancer. DNA samples from male patients included in the Mayo Clinic Biobank (MCB) were genotyped to determine the frequency of the G84E mutation and its association with various cancers. Subjects were genotyped using a custom TaqMan (Applied Biosystems) assay for G84E (rs138213197). In addition to donating a blood specimen, all MCB participants completed a baseline questionnaire to collect information on medical history and family history of cancer. Forty-nine of 9,012 male patients were carriers of G84E (0.5%). Thirty-one percent (n = 2,595) of participants had been diagnosed with cancer, including 51.1% of G84E carriers compared with just 30.6% of noncarriers (P = 0.004). G84E was most frequently observed among men with prostate cancer compared with men without cancer (P < 0.0001). However, the mutation was also more commonly observed in men with bladder cancer (P = 0.06) and leukemia (P = 0.01). G84E carriers were more likely to have a positive family history of prostate cancer in a first-degree relative compared to noncarriers (36.2% vs. 16.0%, P = 0.0003). Our study confirms the association between the HOXB13 G84E variant and prostate cancer and suggests a novel association between G84E and leukemia and a suggestive association with bladder cancer. Future investigation is warranted to confirm these associations in order to improve our understanding of the role of germline HOXB13 mutations in human cancer. The associations between HOXB13 and prostate, leukemia, and bladder suggest that this gene is important in carcinogenesis. ©2015 American Association for Cancer Research.

  2. Validation of Association of Genetic Variants at 10q with PSA Levels in Men at High Risk for Prostate Cancer

    PubMed Central

    Chang, Bao-Li; Hughes, Lucinda; Chen, David Y. T.; Gross, Laura; Ruth, Karen; Giri, Veda N.

    2013-01-01

    Objectives Men with a family history of prostate cancer and African American men are at increased risk for prostate cancer and stand to benefit from individualized interpretation of PSA to guide screening strategies. The purpose of this study was to validate six previously identified markers among high-risk men enrolled in the Prostate Cancer Risk Assessment Program - a prostate cancer screening study. Patients and Methods Eligibility for PRAP includes men ages 35–69 years with a family history of prostate cancer, any African American male regardless of family history, and men with known BRCA gene mutations. GWAS markers assessed included rs2736098 (5p15.33), rs10993994 (10q11), rs10788160 (10q26), rs11067228 (12q24), rs4430796 (17q12), and rs17632542 (19q13.33). Genotyping methods included either Taqman® SNP Genotyping Assay (Applied Biosystems) or pyrosequencing. Linear regression models were used to evaluate the association between individual markers and log-transformed baseline PSA levels, while adjusting for potential confounders. Results 707 participants (37% Caucasian, 63% African American) with clinical and genotype data were included in the analysis. Rs10788160 (10q26) strongly associated with PSA levels among high-risk Caucasian participants (p<0.01), with a 33.2% increase in PSA level with each A-allele carried. Furthermore, rs10993994 (10q11) demonstrated an association to PSA level (p=0.03) in high-risk Caucasian men, with a 15% increase in PSA with each T-allele carried. A PSA adjustment model based on allele carrier status at rs10788160 and rs10993994 is proposed specific to high-risk Caucasian men. Conclusion Genetic variation at 10q may be particularly important in personalizing interpretation of PSA for high-risk Caucasian men. Such information may have clinical relevance in shared decision-making and individualized prostate cancer screening strategies for high-risk Caucasian men. Further study is warranted. PMID:23937305

  3. Genetic variation in IL-16 miRNA target site and time to prostate cancer diagnosis in African American men

    PubMed Central

    Hughes, Lucinda; Ruth, Karen; Rebbeck, Timothy R.; Giri, Veda N.

    2013-01-01

    Background Men with a family history of prostate cancer and African American men are at high risk for prostate cancer and in need of personalized risk estimates to inform screening decisions. This study evaluated genetic variants in genes encoding microRNA (miRNA) binding sites for informing of time to prostate cancer diagnosis among ethnically-diverse, high-risk men undergoing prostate cancer screening. Methods The Prostate Cancer Risk Assessment Program (PRAP) is a longitudinal screening program for high-risk men. Eligibility includes men ages 35-69 with a family history of prostate cancer or African descent. Participants with ≥ 1 follow-up visit were included in the analyses (n=477). Genetic variants in regions encoding miRNA binding sites in four target genes (ALOX15, IL-16, IL-18, and RAF1) previously implicated in prostate cancer development were evaluated. Genotyping methods included Taqman® SNP Genotyping Assay (Applied Biosystems) or pyrosequencing. Cox models were used to assess time to prostate cancer diagnosis by risk genotype. Results Among 256 African Americans with ≥ one follow-up visit, the TT genotype at rs1131445 in IL-16 was significantly associated with earlier time to prostate cancer diagnosis vs. the CC/CT genotypes (p=0.013), with a suggestive association after correction for false-discovery (p=0.065). Hazard ratio after controlling for age and PSA for TT vs. CC/CT among African Americans was 3.0 (95% CI 1.26-7.12). No association to time to diagnosis was detected among Caucasians by IL-16 genotype. No association to time to prostate cancer diagnosis was found for the other miRNA target genotypes. Conclusions Genetic variation in IL-16 encoding miRNA target site may be informative of time to prostate cancer diagnosis among African American men enrolled in prostate cancer risk assessment, which may inform individualized prostate cancer screening strategies in the future. PMID:24061634

  4. p.Q192R SNP of PON1 seems not to be Associated with Carotid Atherosclerosis Risk Factors in an Asymptomatic and Normolipidemic Brazilian Population Sample

    PubMed Central

    Scherrer, Daniel Zanetti; Zago, Vanessa Helena de Souza; Vieira, Isabela Calanca; Parra, Eliane Soler; Panzoldo, Natália Baratella; Alexandre, Fernanda; Secolin, Rodrigo; Baracat, Jamal; Quintão, Eder Carlos Rocha; de Faria, Eliana Cotta

    2015-01-01

    Background Evidences suggest that paraoxonase 1 (PON1) confers important antioxidant and anti-inflammatory properties when associated with high-density lipoprotein (HDL). Objective To investigate the relationships between p.Q192R SNP of PON1, biochemical parameters and carotid atherosclerosis in an asymptomatic, normolipidemic Brazilian population sample. Methods We studied 584 volunteers (females n = 326, males n = 258; 19-75 years of age). Total genomic DNA was extracted and SNP was detected in the TaqMan® SNP OpenArray® genotyping platform (Applied Biosystems, Foster City, CA). Plasma lipoproteins and apolipoproteins were determined and PON1 activity was measured using paraoxon as a substrate. High-resolution β-mode ultrasonography was used to measure cIMT and the presence of carotid atherosclerotic plaques in a subgroup of individuals (n = 317). Results The presence of p.192Q was associated with a significant increase in PON1 activity (RR = 12.30 (11.38); RQ = 46.96 (22.35); QQ = 85.35 (24.83) μmol/min; p < 0.0001), HDL-C (RR= 45 (37); RQ = 62 (39); QQ = 69 (29) mg/dL; p < 0.001) and apo A-I (RR = 140.76 ± 36.39; RQ = 147.62 ± 36.92; QQ = 147.49 ± 36.65 mg/dL; p = 0.019). Stepwise regression analysis revealed that heterozygous and p.192Q carriers influenced by 58% PON1 activity towards paraoxon. The univariate linear regression analysis demonstrated that p.Q192R SNP was not associated with mean cIMT; as a result, in the multiple regression analysis, no variables were selected with 5% significance. In logistic regression analysis, the studied parameters were not associated with the presence of carotid plaques. Conclusion In low-risk individuals, the presence of the p.192Q variant of PON1 is associated with a beneficial plasma lipid profile but not with carotid atherosclerosis. PMID:26039660

  5. Combination of polymorphisms within the HDAC1 and HDAC3 gene predict tumor recurrence in hepatocellular carcinoma patients that have undergone transplant therapy.

    PubMed

    Yang, Zhe; Zhou, Lin; Wu, Li-Ming; Xie, Hai-Yang; Zhang, Feng; Zheng, Shu-Sen

    2010-12-01

    Histone deacetylases (HDACs) have been reported to be poor prognostic indicators in patients with cancer. However, no data are available for the role of single nucleotide polymorphism (SNP) of class I HDAC in hepato-cellular carcinoma (HCC). Therefore, we investigated the association of class I HDAC isoforms genomic polymorphisms with risk of HCC and tumor recurrence following liver transplantation (LT). One hundred and ninety-six Chinese subjects consisting of 97 HCC patients and 99 controls were enrolled in this study. Nine polymorphisms of the HDAC1, HDAC2, and HDAC3 gene (rs2530223, rs1741981, rs2547547, rs13204445, rs6568819, rs10499080, rs11741808, rs2475631, rs11391) were examined using Applied Biosystems SNaP-Shot and TaqMan technology. We found no significant difference in genotype frequencies between the HCC cases and controls. In terms of tumor recurrence following LT, patients carrying the T allele of HDAC1 SNP rs1741981 showed a favorable outcome for recurrence free survival when compared with patients homozygous for CC. In addition, the same significant trend was observed in HDAC3 SNP rs2547547. Kaplan-Meier analysis showed that the combination of the T variant allele (CT+TT) of HDAC1 SNP rs1741981 and the homozygous TT variant allele of HDAC3 SNP rs2547547 was the most favorable prognostic factor. The risk for postoperative tumor recurrence was about 2.2-fold lower for patients with this genotype combination compared with carriers of the HDAC1 SNP rs1741981 CC and HDAC3 SNP rs2547547 CT genotype combination (hazard ratio: 2.235, p=0.003). Our data suggest that combined analysis of HDAC1 SNP rs1741981 and HDAC3 SNP rs2547547 may be a potential genetic marker for HCC recurrence in LT patients.

  6. The recombination landscape around forensic STRs: Accurate measurement of genetic distances between syntenic STR pairs using HapMap high density SNP data.

    PubMed

    Phillips, C; Ballard, D; Gill, P; Court, D Syndercombe; Carracedo, A; Lareu, M V

    2012-05-01

    Family studies can be used to measure the genetic distance between same-chromosome (syntenic) STRs in order to detect physical linkage or linkage disequilibrium. However, family studies are expensive and time consuming, in many cases uninformative, and lack a reliable means to infer the phase of the diplotypes obtained. HapMap provides a more comprehensive and fine-scale estimation of recombination rates using high density multi-point SNP data (average inter-SNP distance: 900 nucleotides). Data at this fine scale detects sub-kilobase genetic distances across the whole recombining human genome. We have used the most recent HapMap SNP data release 22 to measure and compare genetic distances, and by inference fine-scale recombination rates, between 29 syntenic STR pairs identified from 39 validated STRs currently available for forensic use. The 39 STRs comprise 23 core loci: SE33, Penta D & E, 13 CODIS and 7 non-CODIS European Standard Set STRs, plus supplementary STRs in the recently released Promega CS-7™ and Qiagen Investigator HDplex™ kits. Also included were D9S1120, a marker we developed for forensic use unique to chromosome 9, and the novel D6S1043 component STR of SinoFiler™ (Applied Biosystems). The data collated provides reliable estimates of recombination rates between each STR pair, that can then be placed into haplotype frequency calculators for short pedigrees with multiple meiotic inputs and which just requires the addition of allele frequencies. This allows all current STR sets or their combinations to be used in supplemented paternity analyses without the need for further adjustment for physical linkage. The detailed analysis of recombination rates made for autosomal forensic STRs was extended to the more than 50 X chromosome STRs established or in development for complex kinship analyses. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Determination of suvorexant in human plasma using 96-well liquid-liquid extraction and HPLC with tandem mass spectrometric detection.

    PubMed

    Breidinger, S A; Simpson, R C; Mangin, E; Woolf, E J

    2015-10-01

    A method, using liquid chromatography with tandem mass spectrometric detection (LC-MS/MS), was developed for the determination of suvorexant (MK-4305, Belsomra(®)), a selective dual orexin receptor antagonist for the treatment insomnia, in human plasma over the concentration range of 1-1000ng/mL. Stable isotope labeled (13)C(2)H3-suvorexant was used as an internal standard. The sample preparation procedure utilized liquid-liquid extraction, in the 96-well format, of a 100μL plasma sample with methyl t-butyl ether. The compounds were chromatographed under isocratic conditions on a Waters dC18 (50×2.1mm, 3μm) column with a mobile phase consisting of 30/70 (v/v %) 10mM ammonium formate, pH3/acetonitrile at a flow rate of 0.3mL/min. Multiple reaction monitoring of the precursor-to-product ion pairs for suvorexant (m/z 451→186) and (13)C(2)H3-suvorexant (m/z 455→190) on an Applied Biosystems API 4000 tandem mass spectrometer was used for quantitation. Intraday assay precision, assessed in six different lots of control plasma, was within 10% CV at all concentrations, while assay accuracy ranged from 95.6 to 105.0% of nominal. Quality control (QC) samples in plasma were stored at -20°C. Initial within day analysis of QCs after one freeze-thaw cycle showed accuracy within 9.5% of nominal with precision (CV) of 6.7% or less. The plasma QC samples were demonstrated to be stable for up to 25 months at -20°C. The method described has been used to support clinical studies during Phase I through III of clinical development. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Search for DQ2.5 and DQ8 alleles using a lower cost technique in patients with type 1 diabetes and celiac disease in a population of southern Brazil.

    PubMed

    Bastos, Marília D; Kowalski, Thayne W; Puñales, Márcia; Tschiedel, Balduíno; Mariath, Luiza M; Pires, Ana Luiza G; Faccini, Lavínia S; Silveira, Themis R

    2017-12-01

    To evaluate the frequency of DQ2.5 and DQ8 alleles using the Tag-single-nucleotide polymorphism (Tag-SNP) technique in individuals with type 1 diabetes mellitus (T1DM) and celiac disease (CD) in southern Brazil. In a prospective design, we performed the search for DQA1*0501 and DQB1*0201 alleles for DQ2.5 and DQB1*0302 for DQ8 through Real-Time Polymerase Chain Reaction (RT-PCR) technique, using TaqMan Genotyping Assays (Applied Biosystems, USA). The diagnosis of CD was established by duodenal biopsy and genotypic determination performed by StepOne Software v2.3. Allelic and genotypic frequencies were compared between groups using Chi-square and Fisher's exact tests and the multiple comparisons using Finner's adjustment. Three hundred and sixty two patients with a median age of 14 years were divided into 3 groups: T1DM without CD (264); T1DM with CD (32) and CD without T1DM (66). In 97% of individuals with T1DM and CD and 76% of individuals with CD without T1DM, respectively, the alleles DQ2.5 and/or DQ8 were identified (p < 0.001). DQ2.5 was more common in individuals with CD (p = 0.004) and DQ8 was more common in individuals with type 1 diabetes (p = 0.008). The evaluation of the alleles for DQ2.5 and DQ8 by Tag-SNP technique showed a high negative predictive value among those with T1DM, similar to that described by the conventional technique. The high frequency of DQ8 alleles in individuals with T1DM did not allow differentiating those at higher risk of developing T1DM.

  9. p.Q192R SNP of PON1 seems not to be Associated with Carotid Atherosclerosis Risk Factors in an Asymptomatic and Normolipidemic Brazilian Population Sample.

    PubMed

    Scherrer, Daniel Zanetti; Zago, Vanessa Helena de Souza; Vieira, Isabela Calanca; Parra, Eliane Soler; Panzoldo, Natália Baratella; Alexandre, Fernanda; Secolin, Rodrigo; Baracat, Jamal; Quintão, Eder Carlos Rocha; Faria, Eliana Cotta de

    2015-07-01

    Evidences suggest that paraoxonase 1 (PON1) confers important antioxidant and anti-inflammatory properties when associated with high-density lipoprotein (HDL). To investigate the relationships between p.Q192R SNP of PON1, biochemical parameters and carotid atherosclerosis in an asymptomatic, normolipidemic Brazilian population sample. We studied 584 volunteers (females n = 326, males n = 258; 19-75 years of age). Total genomic DNA was extracted and SNP was detected in the TaqMan® SNP OpenArray® genotyping platform (Applied Biosystems, Foster City, CA). Plasma lipoproteins and apolipoproteins were determined and PON1 activity was measured using paraoxon as a substrate. High-resolution β-mode ultrasonography was used to measure cIMT and the presence of carotid atherosclerotic plaques in a subgroup of individuals (n = 317). The presence of p.192Q was associated with a significant increase in PON1 activity (RR = 12.30 (11.38); RQ = 46.96 (22.35); QQ = 85.35 (24.83) μmol/min; p < 0.0001), HDL-C (RR= 45 (37); RQ = 62 (39); QQ = 69 (29) mg/dL; p < 0.001) and apo A-I (RR = 140.76 ± 36.39; RQ = 147.62 ± 36.92; QQ = 147.49 ± 36.65 mg/dL; p = 0.019). Stepwise regression analysis revealed that heterozygous and p.192Q carriers influenced by 58% PON1 activity towards paraoxon. The univariate linear regression analysis demonstrated that p.Q192R SNP was not associated with mean cIMT; as a result, in the multiple regression analysis, no variables were selected with 5% significance. In logistic regression analysis, the studied parameters were not associated with the presence of carotid plaques. In low-risk individuals, the presence of the p.192Q variant of PON1 is associated with a beneficial plasma lipid profile but not with carotid atherosclerosis.

  10. Comparison of gene expression profiles altered by comfrey and riddelliine in rat liver

    PubMed Central

    Guo, Lei; Mei, Nan; Dial, Stacey; Fuscoe, James; Chen, Tao

    2007-01-01

    Background Comfrey (Symphytum officinale) is a perennial plant and has been consumed by humans as a vegetable, a tea and an herbal medicine for more than 2000 years. It, however, is hepatotoxic and carcinogenic in experimental animals and hepatotoxic in humans. Pyrrolizidine alkaloids (PAs) exist in many plants and many of them cause liver toxicity and/or cancer in humans and experimental animals. In our previous study, we found that the mutagenicity of comfrey was associated with the PAs contained in the plant. Therefore, we suggest that carcinogenicity of comfrey result from those PAs. To confirm our hypothesis, we compared the expression of genes and processes of biological functions that were altered by comfrey (mixture of the plant with PAs) and riddelliine (a prototype of carcinogenic PA) in rat liver for carcinogenesis in this study. Results Groups of 6 Big Blue Fisher 344 rats were treated with riddelliine at 1 mg/kg body weight by gavage five times a week for 12 weeks or fed a diet containing 8% comfrey root for 12 weeks. Animals were sacrificed one day after the last treatment and the livers were isolated for gene expression analysis. The gene expressions were investigated using Applied Biosystems Rat Whole Genome Survey Microarrays and the biological functions were analyzed with Ingenuity Analysis Pathway software. Although there were large differences between the significant genes and between the biological processes that were altered by comfrey and riddelliine, there were a number of common genes and function processes that were related to carcinogenesis. There was a strong correlation between the two treatments for fold-change alterations in expression of drug metabolizing and cancer-related genes. Conclusion Our results suggest that the carcinogenesis-related gene expression patterns resulting from the treatments of comfrey and riddelliine are very similar, and PAs contained in comfrey are the main active components responsible for carcinogenicity of the plant. PMID:18047722

  11. Association of the genetic markers for myocardial infarction with sudden cardiac death.

    PubMed

    Ivanova, Anastasiya A; Maksimov, Vladimir N; Orlov, Pavel S; Ivanoshchuk, Dinara E; Savchenko, Sergei V; Voevoda, Mikhail I

    2017-04-01

    Investigate the association of rs17465637 gene MIAF3 (1q41), rs1376251 gene TAS2R50 (12p13), rs4804611 gene ZNF627 (19p13), rs619203 gene ROS1 (6q22), rs1333049 (9p21), rs10757278 (9p21), rs2549513 (16q23), rs499818 (6p24) associated with myocardial infarction available from the international genome-wide studies with sudden cardiac death (SCD) in a case-control study. A sample of SCD cases (n=285) was formed using the WHO criteria; the control sample (n=421) was selected according to sex and age. DNA was isolated by phenol-chloroform extraction from the myocardial tissue of SCD cases and blood of control cases. The groups were genotyped for the selected SNPs by real-time PCR using TaqMan probes (Applied Biosystems, United States). No statistically significant differences in the genotype and allelic frequencies of studied single nucleotide polymorphisms between sudden cardiac death cases and control were detectable in general group. By separating the groups of sex and age differences in the genotype frequencies of rs1333049, rs10757278 and rs499818 are statistical significance. Genotypes CC of rs1333049 and GG of rs10757278 are associated with an increased sudden cardiac death risk in men (p=0.019, OR=1.7, 95% CI 1.1-2.8; p=0.011, OR=1.8, 95% CI 1.2-2.8, respectively). Genotype AG of rs499818 is associated with an increased sudden cardiac death risk in the women over 50 years old (p=0.009, OR=2.4, 95% CI 1.3-4.6). Polymorphisms rs1333049 and rs10757278 are associated with SCD in men and rs499818 in the women aged over 50 years. Copyright © 2016. Published by Elsevier B.V.

  12. Catechol-O-Methyltransferase Genotypes and Parenting Influence on Long-Term Executive Functioning After Moderate to Severe Early Childhood Traumatic Brain Injury: An Exploratory Study.

    PubMed

    Kurowski, Brad G; Treble-Barna, Amery; Zang, Huaiyu; Zhang, Nanhua; Martin, Lisa J; Yeates, Keith Owen; Taylor, H Gerry; Wade, Shari L

    To examine catechol-O-methyltransferase (COMT) rs4680 genotypes as moderators of the effects of parenting style on postinjury changes in parent behavior ratings of executive dysfunction following moderate to severe early childhood traumatic brain injury. Research was conducted in an outpatient setting. Participants included children admitted to hospital with moderate to severe traumatic brain injury (n = 55) or orthopedic injuries (n = 70) between ages 3 and 7 years. Prospective cohort followed over 7 years postinjury. Parenting Practices Questionnaire and the Behavior Rating Inventory of Executive Functioning obtained at baseline, 6, 12, and 18 months, and 3.5 and 6.8 years postinjury. DNA was collected from saliva samples, purified using the Oragene (DNA Genotek, Ottawa, Ontario, Canada) OG-500 self-collection tubes, and analyzed using TaqMan (Applied Biosystems, Thermo Fisher Scientific, Waltham, Massachusetts) assay protocols to identify the COMT rs4680 polymorphism. Linear mixed models revealed a significant genotype × parenting style × time interaction (F = 5.72, P = .02), which suggested that the adverse effects of authoritarian parenting on postinjury development of executive functioning were buffered by the presence of the COMT AA genotype (lower enzyme activity, higher dopamine levels). There were no significant associations of executive functioning with the interaction between genotype and authoritative or permissive parenting ratings. The lower activity COMT rs4680 genotype may buffer the negative effect of authoritarian parenting on long-term executive functioning following injury in early childhood. The findings provide preliminary evidence for associations of parenting style with executive dysfunction in children and for a complex interplay of genetic and environmental factors as contributors to decreases in these problems after traumatic injuries in children. Further investigation is warranted to understand the interplay among genetic and environmental factors related to recovery after traumatic brain injury in children.

  13. The key role of biogenic manganese oxides in enhanced removal of highly recalcitrant 1,2,4-triazole from bio-treated chemical industrial wastewater.

    PubMed

    Wu, Ruiqin; Wu, Haobo; Jiang, Xinbai; Shen, Jinyou; Faheem, Muhammad; Sun, Xiuyun; Li, Jiansheng; Han, Weiqing; Wang, Lianjun; Liu, Xiaodong

    2017-04-01

    The secondary effluent from biological treatment process in chemical industrial plant often contains refractory organic matter, which deserves to be further treated in order to meet the increasingly stringent environmental regulations. In this study, the key role of biogenic manganese oxides (BioMnOx) in enhanced removal of highly recalcitrant 1,2,4-triazole from bio-treated chemical industrial wastewater was investigated. BioMnOx production by acclimated manganese-oxidizing bacterium (MOB) consortium was confirmed through scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) analysis. Pseudomonas and Bacillus were found to be the most predominant species in acclimated MOB consortium. Mn 2+ could be oxidized optimally at neutral pH and initial Mn 2+ concentration below 33 mg L -1 . However, 1,2,4-triazole removal by BioMnOx produced occurred optimally at slightly acidic pH. High dosage of both Mn 2+ and 1,2,4-triazole resulted in decreased 1,2,4-triazole removal. In a biological aerated filter (BAF) coupled with manganese oxidation, 1,2,4-triazole and total organic carbon removal could be significantly enhanced compared to the control system without the participation of manganese oxidation, confirming the key role of BioMnOx in the removal of highly recalcitrant 1,2,4-triazole. This study demonstrated that the biosystem coupled with manganese oxidation had a potential for the removal of various recalcitrant contaminants from bio-treated chemical industrial wastewater.

  14. Space Product Development: Bringing the Benefits of Space Down to Earth

    NASA Technical Reports Server (NTRS)

    Allen, Rosalie W.; Tygielski, Andrew; Gabris, Edward A.

    1997-01-01

    The newly developed microgravity Research Program Office was created to consolidate and integrate NASA's microgravity research efforts, comprised of the microgravity Science and Applications Program and Space Product Development Program. This resulted in an integrated agency program serving the science and industrial research communities, providing leadership, management, direction and overview of all agency microgravity research activities. This paper provides an overview of NASA's microgravity Research Program, with particular emphasis on the Space Product Development Program activities, the potential economic impact and quality of life improvements resulting from this research, and future plans for commercial microgravity research in space. The goal of the Space Product Development Program is to facilitate the use of space for commercial products and services. The unique attributes of space are exploited to conduct industry driven research in the areas of crystallography, bio-systems, agriculture, electronic and non-electronic materials. Industry uses the knowledge gained from focused space research to create new products and processes, to gain economic competitive advantages, to create new jobs and improve the quality of life on earth. The objectives of the program are implemented through NASA's Commercial Space Centers, non-profit consortia of industry, academia and government, that provide the mechanism for communication and technical expert exchange between NASA and industry. Over 200 commercial research activities have been conducted by the Commercial Space Centers and their industrial affiliates over the last four and one-half years during Space Shuttle mission, as well as sounding rocket flights. The results of this research will have a significant impact on competitive products, jobs and quality of life improvements.

  15. An ESIPT-based two-photon fluorescent probe detection of hydrogen peroxide in live cells and tissues.

    PubMed

    Zhou, Liyi; Peng, Yongbo; Wang, Qianqian; Lin, Qinlu

    2017-02-01

    A variety of diseases associated with human aging, which have a strong oxidative stress, but connecting age-related diseases and oxidative stress of the basic molecular mechanisms still insufficiently understood. Oxidative stress origins from the unregulated production of reactive oxygen species (ROS), and oxidative damaging to tissues and organs from subsequent oxidation-reduction chemistry by cellular mismanagement. In particular, H 2 O 2 is a major by-product of ROS in live organisms and a common marker for oxidative stress, and its dynamic equilibrium can have various physiological and pathological consequences. H 2 O 2 is a small molecule, but it is an essential oxygen metabolite in living systems and acts as an important compound in cellular signal transduction by reversible oxidation of proteins. To quantitatively detect of H 2 O 2 in biosystems, herein, we adopted a 2-(2'-hydroxyphenyl)-4(3H)-quinazolinone (HPQ), a small organic fluorophore known for its luminescence mechanism through excited-state intramolecular proton transfer (ESIPT). HPQ was employed as a precursor to develop a turn-on probe (HPQ-H) for bioimaging applications. After cleavaging the boronic ester moiety by H 2 O 2 , HPQ-H releases a HPQ fluorophore which shows a 45-fold fluorescence intensity enhancement with high sensitivity and selectivity over other reactive oxygen species (ROS), and a high resolution imaging and large tissue-imaging depth (70-170μm) in living cells and tissues images under two-photon excitation (720nm). Copyright © 2017 Elsevier B.V. All rights reserved.

  16. [NH4+-N removal stability of zeolite media packed multistage-biofilm system for coke-plant wastewater treatment].

    PubMed

    Zhao, Wen-Tao; Huang, Xia; He, Miao; Zhang, Peng-Yi; Zuo, Chen-Yan

    2009-02-15

    The practical ammonia stripping effectiveness of coke-plant wastewater treatment may vary widely, and high NH4+-N shock loading will lead to the fluctuation of residual NH4+-N concentration of biological effluent. A zeolite media packed multistage-biofilm system (ZMBS) was used for coke-plant wastewater treatment for enhancing the NH4+-N treatment ability of the bio-system to shock loading, as well as achieving high COD removal efficiency. Treatment performance during steady-state and shock loading and transformation of organic pollutants in the system were investigated systematically. The experiment results indicated that when the system was operated at NH4+-N loading 0.21 kg/(m3 x d) and COD loading < or = 1.35 kg/(m3 x d), the average effluent NH4+-N and COD concentrations were (2.2 +/- 1.2) mg/L, (228 +/- 60) mg/L with average removal efficiencies of (99.1 +/- 0.5)% and (86.0 +/- 2.6)%. During the twice NH4+-N shock loadings [0.03 kg/(m3 x d) and 0.06 kg/(m3 x d)], ZMBS showed a strong resisting ability with average removal efficiencies of 99.0% and 92.9% higher than those of a compared system's 96.8% and 89.3%. By monitoring the change of water quality along the length of the ZMBS's cells, two function zones for different pollutant removal were found to exist, named as decarbonization/nitrification (C/N) zone and nitrification (N) zone, and the NH4+-N removal rate in N zone was 2-8 times as that in C/N zone. TOC concentrations of organic matters with relative molecular weight < 1 x 10(3), 1 x 10(3) to 1 x 10(4), and > 1 x 10(4), were 227.6, 104.8 and 35.0 mg/L in raw wastewater, and 31.2, 22.9 and 31.5 mg/L in the effluent, respectively. Organic matters with relative molecular weight < 1 x 10(3) and 1 x 10(3) to 1 x 10(4) in raw wastewater were removed effectively by ZMBS, but those with relative molecular weight > 1x 10(3) were the main remained substances in the effluent.

  17. Looking to the future of organs-on-chips: interview with Professor John Wikswo.

    PubMed

    Wikswo, John P

    2017-06-01

    John Wikswo talks to Francesca Lake, Managing Editor: John is the founding Director of the Vanderbilt Institute for Integrative Biosystems Research and Education (VIIBRE). He is also the Gordon A Cain University Professor; a B learned Professor of Living State Physics; and a Professor of Biomedical Engineering, Molecular Physiology and Biophysics, and Physics. John earned his PhD in physics at Stanford University (CA, USA). After serving as a Research Fellow in Cardiology at Stanford, he joined the Department of Physics and Astronomy at Vanderbilt University (TN, USA), where he went on to make the first measurement of the magnetic field of an isolated nerve. He founded VIIBRE at Vanderbilt in 2001 in order to foster and enhance interdisciplinary research in the biophysical sciences, bioengineering and medicine. VIIBRE efforts have led to the development of devices integral to organ-on-chip research. He is focusing on the neurovascular unit-on-a-chip, heart-on-a-chip, a missing organ microformulator, and microfluidic pumps and valves to control and analyze organs-on-chips.

  18. Database resources of the National Center for Biotechnology Information.

    PubMed

    Sayers, Eric W; Barrett, Tanya; Benson, Dennis A; Bolton, Evan; Bryant, Stephen H; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M; Dicuccio, Michael; Federhen, Scott; Feolo, Michael; Fingerman, Ian M; Geer, Lewis Y; Helmberg, Wolfgang; Kapustin, Yuri; Krasnov, Sergey; Landsman, David; Lipman, David J; Lu, Zhiyong; Madden, Thomas L; Madej, Tom; Maglott, Donna R; Marchler-Bauer, Aron; Miller, Vadim; Karsch-Mizrachi, Ilene; Ostell, James; Panchenko, Anna; Phan, Lon; Pruitt, Kim D; Schuler, Gregory D; Sequeira, Edwin; Sherry, Stephen T; Shumway, Martin; Sirotkin, Karl; Slotta, Douglas; Souvorov, Alexandre; Starchenko, Grigory; Tatusova, Tatiana A; Wagner, Lukas; Wang, Yanli; Wilbur, W John; Yaschenko, Eugene; Ye, Jian

    2012-01-01

    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Website. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Genome and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Probe, Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.

  19. Graphene-Based Platform for Infrared Near-Field Nanospectroscopy of Water and Biological Materials in an Aqueous Environment.

    PubMed

    Khatib, Omar; Wood, Joshua D; McLeod, Alexander S; Goldflam, Michael D; Wagner, Martin; Damhorst, Gregory L; Koepke, Justin C; Doidge, Gregory P; Rangarajan, Aniruddh; Bashir, Rashid; Pop, Eric; Lyding, Joseph W; Thiemens, Mark H; Keilmann, Fritz; Basov, D N

    2015-08-25

    Scattering scanning near-field optical microscopy (s-SNOM) has emerged as a powerful nanoscale spectroscopic tool capable of characterizing individual biomacromolecules and molecular materials. However, applications of scattering-based near-field techniques in the infrared (IR) to native biosystems still await a solution of how to implement the required aqueous environment. In this work, we demonstrate an IR-compatible liquid cell architecture that enables near-field imaging and nanospectroscopy by taking advantage of the unique properties of graphene. Large-area graphene acts as an impermeable monolayer barrier that allows for nano-IR inspection of underlying molecular materials in liquid. Here, we use s-SNOM to investigate the tobacco mosaic virus (TMV) in water underneath graphene. We resolve individual virus particles and register the amide I and II bands of TMV at ca. 1520 and 1660 cm(-1), respectively, using nanoscale Fourier transform infrared spectroscopy (nano-FTIR). We verify the presence of water in the graphene liquid cell by identifying a spectral feature associated with water absorption at 1610 cm(-1).

  20. Pre-aeration of food waste to augment acidogenic process at higher organic load: Valorizing biohydrogen, volatile fatty acids and biohythane.

    PubMed

    Sarkar, Omprakash; Venkata Mohan, S

    2017-10-01

    Application of pre-aeration (AS) to waste prior to feeding was evaluated on acidogenic process in a semi-pilot scale biosystem for the production of biobased products (biohydrogen, volatile fatty acids (VFA) and biohythane) from food waste. Oxygen assisted in pre-hydrolysis of waste along with the suppression of methanogenic activity resulting in enhanced acidogenic product formation. AS operation resulted in 97% improvement in hydrogen conversion efficiency (HCE) and 10% more VFA production than the control. Increasing the organic load (OL) of food waste in association with AS application improved the productivity. The application of AS also influenced concentration and composition of fatty acid. Highest fraction of acetic (5.3g/l), butyric (0.7g/l) and propionic acid (0.84g/l) was achieved at higher OL (100g COD/l) with good degree of acidification (DOA). AS strategy showed positive influence on biofuel (biohydrogen and biohythane) production along with the biosynthesis of short chain fatty acids functioning as a low-cost pretreatment strategy in a single stage bioprocess. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A novel ferrocenyl-naphthalimide as a multichannel probe for the detection of Cu(ii) and Hg(ii) in aqueous media and living cells.

    PubMed

    Dong, Junyang; Hu, Jianfeng; Baigude, Huricha; Zhang, Hao

    2018-01-02

    A novel ferrocenyl-naphthalimide multichannel probe 1 was designed and synthesized using a facile method. The color of the solution containing probe 1 changed from yellow to colorless upon the addition of Cu 2+ or Hg 2+ . Interestingly, probe 1 exhibited highly selective fluorescent turn-on for Cu 2+ and turn-off for Hg 2+ in aqueous solution. Probe 1 was an electrochemical Cu 2+ and Hg 2+ ion sensor, in which the Fc/Fc + redox couple was significantly shifted (ΔE 1/2 = 178 mV and ΔE 1/2 = 53 mV, respectively) upon complexation. Therefore, probe 1 can act as a naked-eye chemosensor, as well as an electrochemical and a fluorescent probe for Cu 2+ and Hg 2+ . Furthermore, this is the first reported probe that can be used for the bifunctional fluorescent detection of intracellular Cu 2+ and Hg 2+ by fluorescent imaging studies. These characteristics give this probe considerable potential in the study and analysis of Cu 2+ and Hg 2+ in complex biosystems.

  2. Kinetics of the maintenance of the epidermis

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.; Cho, Nam-Joon

    2013-08-01

    The epidermis is the outermost layer of skin. It is comprised of keratin-containing cells called keratinocytes. Functionally, the epidermis serves as a physical barrier that can prevent infection and regulate body hydration. Maintenance and repair of the epidermis are important for human health. Mechanistically, these processes occur primarily via proliferation and differentiation of stem cells located in the basal monolayer. These processes are believed to depend on cell-cell communication and spatial constraints but existing kinetic models focus mainly on proliferation and differentiation. To address this issue, we present a mean-field kinetic model that takes these additional factors into account and describes the epidermis at a biosystem level. The corresponding equations operate with the populations of stem cells and differentiated cells in the basal layer. The keratinocytes located above the basal layer are treated at a more coarse-grained level by considering the thickness of the epidermis. The model clarifies the likely role of various negative feedbacks that may control the epidermis and, accordingly, provides insight into the cellular mechanisms underlying complex biological phenomena such as wound healing.

  3. An agent-based model identifies MRI regions of probable tumor invasion in a patient with glioblastoma

    NASA Astrophysics Data System (ADS)

    Chen, L. Leon; Ulmer, Stephan; Deisboeck, Thomas S.

    2010-01-01

    We present an application of a previously developed agent-based glioma model (Chen et al 2009 Biosystems 95 234-42) for predicting spatio-temporal tumor progression using a patient-specific MRI lattice derived from apparent diffusion coefficient (ADC) data. Agents representing collections of migrating glioma cells are initialized based upon voxels at the outer border of the tumor identified on T1-weighted (Gd+) MRI at an initial time point. These simulated migratory cells exhibit a specific biologically inspired spatial search paradigm, representing a weighting of the differential contribution from haptotactic permission and biomechanical resistance on the migration decision process. ADC data from 9 months after the initial tumor resection were used to select the best search paradigm for the simulation, which was initiated using data from 6 months after the initial operation. Using this search paradigm, 100 simulations were performed to derive a probabilistic map of tumor invasion locations. The simulation was able to successfully predict a recurrence in the dorsal/posterior aspect long before it was depicted on T1-weighted MRI, 18 months after the initial operation.

  4. An agent-based model identifies MRI regions of probable tumor invasion in a patient with glioblastoma.

    PubMed

    Chen, L Leon; Ulmer, Stephan; Deisboeck, Thomas S

    2010-01-21

    We present an application of a previously developed agent-based glioma model (Chen et al 2009 Biosystems 95 234-42) for predicting spatio-temporal tumor progression using a patient-specific MRI lattice derived from apparent diffusion coefficient (ADC) data. Agents representing collections of migrating glioma cells are initialized based upon voxels at the outer border of the tumor identified on T1-weighted (Gd+) MRI at an initial time point. These simulated migratory cells exhibit a specific biologically inspired spatial search paradigm, representing a weighting of the differential contribution from haptotactic permission and biomechanical resistance on the migration decision process. ADC data from 9 months after the initial tumor resection were used to select the best search paradigm for the simulation, which was initiated using data from 6 months after the initial operation. Using this search paradigm, 100 simulations were performed to derive a probabilistic map of tumor invasion locations. The simulation was able to successfully predict a recurrence in the dorsal/posterior aspect long before it was depicted on T1-weighted MRI, 18 months after the initial operation.

  5. Database resources of the National Center for Biotechnology Information

    PubMed Central

    Acland, Abigail; Agarwala, Richa; Barrett, Tanya; Beck, Jeff; Benson, Dennis A.; Bollin, Colleen; Bolton, Evan; Bryant, Stephen H.; Canese, Kathi; Church, Deanna M.; Clark, Karen; DiCuccio, Michael; Dondoshansky, Ilya; Federhen, Scott; Feolo, Michael; Geer, Lewis Y.; Gorelenkov, Viatcheslav; Hoeppner, Marilu; Johnson, Mark; Kelly, Christopher; Khotomlianski, Viatcheslav; Kimchi, Avi; Kimelman, Michael; Kitts, Paul; Krasnov, Sergey; Kuznetsov, Anatoliy; Landsman, David; Lipman, David J.; Lu, Zhiyong; Madden, Thomas L.; Madej, Tom; Maglott, Donna R.; Marchler-Bauer, Aron; Karsch-Mizrachi, Ilene; Murphy, Terence; Ostell, James; O'Sullivan, Christopher; Panchenko, Anna; Phan, Lon; Pruitt, Don Preussm Kim D.; Rubinstein, Wendy; Sayers, Eric W.; Schneider, Valerie; Schuler, Gregory D.; Sequeira, Edwin; Sherry, Stephen T.; Shumway, Martin; Sirotkin, Karl; Siyan, Karanjit; Slotta, Douglas; Soboleva, Alexandra; Soussov, Vladimir; Starchenko, Grigory; Tatusova, Tatiana A.; Trawick, Bart W.; Vakatov, Denis; Wang, Yanli; Ward, Minghong; John Wilbur, W.; Yaschenko, Eugene; Zbicz, Kerry

    2014-01-01

    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, PubReader, Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link, Primer-BLAST, COBALT, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, the Genetic Testing Registry, Genome and related tools, the Map Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, ClinVar, MedGen, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Probe, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool, Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All these resources can be accessed through the NCBI home page. PMID:24259429

  6. Short communication: Genetic correlation of bovine leukosis incidence with somatic cell score and milk yield in a US Holstein population.

    PubMed

    Abdalla, E A; Weigel, K A; Byrem, T M; Rosa, G J M

    2016-03-01

    Bovine leukosis (BL) is a retroviral disease caused by the bovine leukosis virus (BLV), which affects only cattle. Dairy cows positive for BL produce less milk and have more days open than cows negative for BL. In addition, the virus also affects the immune system and causes weaker response to vaccines. Heritability estimates of BL incidence have been reported for Jersey and Holstein populations at about 0.08, indicating an important genetic component that can potentially be exploited to reduce the prevalence of the disease. However, before BL is used in selection programs, it is important to study its genetic associations with other economically important traits such that correlated responses to selection can be predicted. Hence, this study aimed to estimate the genetic correlations of BL with milk yield (MY) and with somatic cell score (SCS). Data of a commercial assay (ELISA) used to detect BLV antibodies in milk samples were obtained from Antel BioSystems (Lansing, MI). The data included continuous milk ELISA scores and binary milk ELISA results for 11,554 cows from 112 dairy herds across 16 US states. Continuous and binary milk ELISA were analyzed with linear and threshold models, respectively, together with MY and SCS using multitrait animal models. Genetic correlations (posterior means ± standard deviations) between BL incidence and MY were 0.17 ± 0.077 and 0.14 ± 0.076 using ELISA scores and results, respectively; with SCS, such estimates were 0.20 ± 0.081 and 0.17 ± 0.079, respectively. In summary, the results indicate that selection for higher MY may lead to increased BLV prevalence in dairy herds, but that the inclusion of BL (or SCS as an indicator trait) in selection indexes may help attenuate this problem. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Next-generation Sequencing (NGS) Analysis on Single Circulating Tumor Cells (CTCs) with No Need of Whole-genome Amplification (WGA).

    PubMed

    Palmirotta, Raffaele; Lovero, Domenica; Silvestris, Erica; Felici, Claudia; Quaresmini, Davide; Cafforio, Paola; Silvestris, Franco

    2017-01-01

    Isolation and genotyping of circulating tumor cells (CTCs) is gaining an increasing interest by clinical researchers in oncology not only for investigative purposes, but also for concrete application in clinical practice in terms of diagnosis, prognosis and decision treatment with targeted therapies. For the mutational analysis of single CTCs, the most advanced biotechnology methodology currently available includes the combination of whole genome amplification (WGA) followed by next-generation sequencing (NGS). However, the sequence of these molecular techniques is time-consuming and may also favor operator-dependent errors, related to the procedures themselves that, as in the case of the WGA technique, might affect downstream molecular analyses. A preliminary approach of molecular analysis by NGS on a model of CTCs without previous WGA procedural step was performed. We set-up an artificial sample obtained by spiking the SK-MEL-28 melanoma cell line in normal donor peripheral whole blood. Melanoma cells were first enriched using an AutoMACS® (Miltenyi) cell separator and then isolated as single and pooled CTCs by DEPArray™ System (Silicon Biosystems). NGS analysis, using the Ion AmpliSeq™ Cancer Hotspot Panel v2 (Life Technologies) with the Ion Torrent PGM™ system (Life Technologies), was performed on the SK-MEL-28 cell pellet, a single CTC previously processed with WGA and on 1, 2, 4 and 8 recovered CTCs without WGA pre-amplification. NGS directly carried out on CTCs without WGA showed the same mutations identified in SK-MEL-28 cell line pellet, with a considerable efficiency and avoiding the errors induced by the WGA procedure. We identified a cost-effective, time-saving and reliable methodological approach that could improve the analytical accuracy of the liquid biopsy and appears promising in studying CTCs from cancer patients for both research and clinical purposes. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. [A rarely isolated bacterium in microbiology laboratories: Streptococcus uberis].

    PubMed

    Eryıldız, Canan; Bukavaz, Şebnem; Gürcan, Şaban; Hatipoğlu, Osman

    2017-04-01

    Streptococcus uberis is a gram-positive bacterium that is mostly responsible for mastitis in cattle. The bacterium rarely has been associated with human infections. Conventional phenotyphic methods can be inadequate for the identification of S.uberis; and in microbiology laboratories S.uberis is confused with the other streptococci and enterococci isolates. Recently, molecular methods are recommended for the accurate identification of S.uberis isolates. The aim of this report is to present a lower respiratory tract infection case caused by S.uberis and the microbiological methods for identification of this bacterium. A 66-year-old male patient with squamous cell lung cancer who received radiotherapy was admitted in our hospital for the control. According to the chest X-Ray, patient was hospitalized with the prediagnosis of ''cavitary tumor, pulmonary abscess''. In the first day of the hospitalization, blood and sputum cultures were drawn. Blood culture was negative, however, Candida albicans was isolated in the sputum culture and it was estimated to be due to oral lesions. After two weeks from the hospitalization, sputum sample was taken from the patient since he had abnormal respiratory sounds and cough complaint. In the Gram stained smear of the sputum there were abundant leucocytes and gram-positive cocci, and S.uberis was isolated in both 5% sheep blood and chocolate agar media. Bacterial identification and antibiotic susceptibility tests were performed by VITEK 2 (Biomerieux, France) and also, the bacterium was identified by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) based VITEK MS system as S.uberis. The isolate was determined susceptible to ampicillin, erythromycin, clindamycin, levofloxacin, linezolid, penicillin, cefotaxime, ceftriaxone, tetracycline and vancomycin. 16S, 23S ribosomal RNA and 16S-23S intergenic spacer gene regions were amplified with specific primers and partial DNA sequence analysis of 16S rRNA polymerase chain reaction (PCR) products were performed by 3500xL Genetic Analyzer (Applied Biosystems, USA). According to the partial 16S rRNA gene sequencing results, bacterium was confirmed as S.uberis. This report makes a significant contribution to the number of case reports of human infections caused by S.uberis as the identification was performed by current microbiological methods in our case. In conclusion, S.uberis should be evaluated as an opportunistic pathogen among the immunosuppressed patients and in addition to phenotypic bacteriological methods, the other recent microbiological methods should also be utilized for the identification.

  9. An eco-sustainable green approach for heavy metals management: two case studies of developing industrial region.

    PubMed

    Rai, Prabhat Kumar

    2012-01-01

    Multifaceted issues or paradigm of sustainable development should be appropriately addressed in the discipline of environmental management. Pollution of the biosphere with toxic metals has accelerated dramatically since the beginning of the Industrial Revolution. In present review, comparative assessment of traditional chemical technologies and phytoremediation has been reviewed particularly in the context of cost-effectiveness. The potential of phytoremediation and green chemicals in heavy metals management has been described critically. Further, the review explores our work on phytoremediation as green technology during the last 6 years and hand in hand addresses the various ecological issues, benefits and constraints pertaining to heavy metal pollution of aquatic ecosystems and its phytoremediation as first case study. Second case study demonstrates the possible health implications associated with use of metal contaminated wastewater for irrigation in peri-urban areas of developing world. Our researches revealed wetland plants/macrophytes as ideal bio-system for heavy metals removal in terms of both ecology and economy, when compared with chemical treatments. However, there are several constraints or limitations in the use of aquatic plants for phytoremediation in microcosm as well as mesocosm conditions. On the basis of our past researches, an eco-sustainable model has been proposed in order to resolve the certain constraints imposed in two case studies. In relation to future prospect, phytoremediation technology for enhanced heavy metal accumulation is still in embryonic stage and needs more attention in gene manipulation area. Moreover, harvesting and recycling tools needs more extensive research. A multidisciplinary research effort that integrates the work of natural sciences, environmental engineers and policy makers is essential for greater success of green technologies as a potent tool of heavy metals management.

  10. ConvAn: a convergence analyzing tool for optimization of biochemical networks.

    PubMed

    Kostromins, Andrejs; Mozga, Ivars; Stalidzans, Egils

    2012-01-01

    Dynamic models of biochemical networks usually are described as a system of nonlinear differential equations. In case of optimization of models for purpose of parameter estimation or design of new properties mainly numerical methods are used. That causes problems of optimization predictability as most of numerical optimization methods have stochastic properties and the convergence of the objective function to the global optimum is hardly predictable. Determination of suitable optimization method and necessary duration of optimization becomes critical in case of evaluation of high number of combinations of adjustable parameters or in case of large dynamic models. This task is complex due to variety of optimization methods, software tools and nonlinearity features of models in different parameter spaces. A software tool ConvAn is developed to analyze statistical properties of convergence dynamics for optimization runs with particular optimization method, model, software tool, set of optimization method parameters and number of adjustable parameters of the model. The convergence curves can be normalized automatically to enable comparison of different methods and models in the same scale. By the help of the biochemistry adapted graphical user interface of ConvAn it is possible to compare different optimization methods in terms of ability to find the global optima or values close to that as well as the necessary computational time to reach them. It is possible to estimate the optimization performance for different number of adjustable parameters. The functionality of ConvAn enables statistical assessment of necessary optimization time depending on the necessary optimization accuracy. Optimization methods, which are not suitable for a particular optimization task, can be rejected if they have poor repeatability or convergence properties. The software ConvAn is freely available on www.biosystems.lv/convan. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. p40 (ΔNp63) expression in breast disease and its correlation with p63 immunohistochemistry

    PubMed Central

    Kim, Sang Kyum; Jung, Woo Hee; Koo, Ja Seung

    2014-01-01

    p63 protein is widely used to identify myoepithelial cells in breast disease. There have been no comparative studies of the p63 antibodies which detect different isoforms. In this study, we examine the expression profiles of p63 protein in benign proliferative diseases and malignant tumors of the breast using pan-p63 and p40 antibodies, and analyze their diagnostic utility and clinical implications. We selected 32 adenoses, 34 intraductal papillomas, 31 ductal carcinoma in situ (DCIS), 257 invasive ductal carcinoma (IDC), and 36 metaplastic carcinomas, and created tissue microarray blocks from them. Immunohistochemical assays for p63 protein were performed on these samples. We investigated the expression patterns of the pan-p63 (TP63, 4A4, Dako, 1:700), p40 antibody [5-17, CalBiochem/EMD Biosciences, 1:2000, p40 (CB)], and p40 antibody [polyclonal, Diagnostic BioSystems, 1:100, p40 (DB)] in various forms of breast disease. We determined that p63 and p40 (DB) expression in myoepithelial cells was broadly similar and showed cognate clinicopathologic features, unlike p40 (CB). p40 (CB) was more sensitive (99.0%) but less specific (85.8%), and p63 was less sensitive (93.8%) in adenosis, IP, and DCIS. In IDCs, p63 and p40 (DB) had similar expression in cancer cells; p40 (CB) expression, however, was statistically different. In metaplastic carcinomas, both p63 and p40 (DB) had distinct expression profiles, according to their histologic subtypes. We conclude that p40 antibodies as well as pan-p63 antibody are specific and sensitive myoepithelial cell markers. Interpretation of p40 positivity in cancer cells, however, should be considered carefully, due to their relatively lower specificity. PMID:24696720

  12. Influence of time scale wind speed data on sustainability analysis for irrigating greenhouse crops

    NASA Astrophysics Data System (ADS)

    Díaz Méndez, Rodrigo; García Llaneza, Joaquín; Peillón, Manuel; Perdigones, Alicia; Sanchez, Raul; Tarquis, Ana M.; Garcia, Jose Luis

    2014-05-01

    Appropriate water supply at crop/farm level, with suitable costs, is becoming more and more important. Energy management is closely related to water supply in this context, being wind energy one of the options to be considered, using wind pumps for irrigation water supply. Therefore, it is important to characterize the wind speed frequency distribution to study the technical feasibility to use its energy for irrigation management purpose. The general objective of this present research is to analyze the impact of time scale recorded wind speed data in the sustainability for tomato (Solanum lycopersicum L.) grown under greenhouse at Cuban conditions using drip irrigation system. For this porpoise, a daily estimation balance between water needs and water availability was used to evaluate the feasibility of the most economic windmill irrigation system. Several factors were included: wind velocity (W, m/s) in function of the time scale averaged, flow supplied by the wind pump as a function of the elevation height (H, m) and daily greenhouse evapotranspiration. Monthly volumes of water required for irrigation (Dr, m3/ha) and in the water tank (Vd, m3), as well as the monthly irrigable area (Ar, ha), were estimated by cumulative deficit water budgeting taking in account these factors. Three-hourly wind velocity (W3h, m/s) data from 1992 till 2008 was available for this study. The original data was grouped in six and twelve hourly data (W6h and W12h respectively) as well as daily data (W24h). For each time scale the daily estimation balance was applied. A comparison of the results points out a need for at least three-hourly data to be used mainly in the months in which mean wind speed are close or below the pumps threshold speed to start-up functioning. References Manuel Esteban Peillon Mesa, Ana Maria Tarquis Alfonso, José Luis García Fernández, and Raúl Sánchez Calvo. The use of wind pumps for irrigating greenhouse tomato crops: a case study in Cuba. Geophysical Research Abstracts, 13, EGU2011-64-1, 2011. EGU General Assembly 2011 M. Peillón, R. Sánchez, A.M. Tarquis and J.L. García. Wind pumps for irrigating greenhouse crops. Geophysical Research Abstracts, 14, EGU2012-14155, 2012. EGU General Assembly 2012. Manuel Peillón, Raúl Sánchez, Ana M. Tarquis, José L. García-Fernández. The use of wind pumps for greenhouse microirrigation: A case study for tomato in Cuba. Agricultural Water Management, 120, 107-114, 2013. R. Díaz, A. Rasheed, M. Peillón, A. Perdigones, R. Sánchez, A.M. Tarquis, and J.L. García. Wind pumps for irrigating greenhouse crops: a comparison in different socio-economical frameworks. Submitted to Biosystems, 2014.

  13. Quantitative high-throughput determination of endogenous retinoids in human plasma using triple-stage liquid chromatography/tandem mass spectrometry.

    PubMed

    Gundersen, Thomas E; Bastani, Nasser E; Blomhoff, Rune

    2007-01-01

    A high-throughput ultrasensitive analytical method based on liquid chromatography with positive ion atmospheric pressure chemical ionization (APCI) coupled to tandem mass spectrometric detection (LC/MS/MS) was developed for the determination of all-trans-4-oxo-retinoic acid (at4oxoRA), 13-cis-4-oxo-retinoic acid (13c4oxoRA), 13-cis-retinoic acid (13cRA), all-trans-retinoic acid (atRA) and all-trans-retinol (atROH) in human plasma. A stable isotope of atRA was used as internal standard (IS). The analytes and IS were isolated from 100 microL plasma by acetonitrile mono-phase extraction (MPE) performed in black 96-well microtiterplates. A 100 microL injection was focused on-column and chromatographed on an Agilent ZORBAX SB-C18 rapid-resolution high-throughput (RRHT) column with 1.8-microm particles (4.6 mmx50 mm) maintained at 60 degrees C. The initial mobile phase composition was acetonitrile/water/formic acid (10:90:0.1, v/v/v) delivered at 1.8 mL/min. Elution was accomplished by a fast gradient to acetonitrile/methanol/formic acid (90:10:0.1, v/v/v). The method had a chromatographic total run time of 7 min. An Applied Biosystems 4000 Q TRAP linear tandem mass spectrometer equipped with a heated nebulizer (APCI) ionization source was operated in multiple reaction monitoring (MRM) mode with the precursor-to-product ion transitions m/z 315.4-->297 (4-oxo-retinoic acids), 301.2-->205 (retinoic acids), 305.0-->209 (IS) and 269.2-->93 (retinol) used for quantification. The assay was fully validated and found to have acceptable accuracy, precision, linearity, sensitivity and selectivity. The mean extraction recoveries from spiked plasma samples were 80-105% for the various retinoids at three different levels. The intra-day accuracy of the assay was within 8% of nominal and intra-day precision was better than 8% coefficient of variance (CV) for retinoic acids. Inter-day precision results for quality control samples run over a 12-day period alongside clinical samples showed mean precision better than 12.5% CV. The limit of quantification was in the range of 0.1-0.2 ng/mL and the mass limit of detection (mLOD) was in the range 1-4 pg on column for the retinoic acids. The assay has been successfully applied to the analysis of 1700 plasma samples. Copyright (c) 2007 John Wiley & Sons, Ltd.

  14. Fast Screening Technology for Drug Emergency Management: Predicting Suspicious SNPs for ADR with Information Theory-based Models.

    PubMed

    Liang, Zhaohui; Liu, Jun; Huang, Jimmy X; Zeng, Xing

    2018-01-01

    The genetic polymorphism of Cytochrome P450 (CYP 450) is considered as one of the main causes for adverse drug reactions (ADRs). In order to explore the latent correlations between ADRs and potentially corresponding single-nucleotide polymorphism (SNPs) in CYP450, three algorithms based on information theory are used as the main method to predict the possible relation. The study uses a retrospective case-control study to explore the potential relation of ADRs to specific genomic locations and single-nucleotide polymorphism (SNP). The genomic data collected from 53 healthy volunteers are applied for the analysis, another group of genomic data collected from 30 healthy volunteers excluded from the study are used as the control group. The SNPs respective on five loci of CYP2D6*2,*10,*14 and CYP1A2*1C, *1F are detected by the Applied Biosystem 3130xl. The raw data is processed by ChromasPro to detect the specific alleles on the above loci from each sample. The secondary data are reorganized and processed by R combined with the reports of ADRs from clinical reports. Three information theory based algorithms are implemented for the screening task: JMI, CMIM, and mRMR. If a SNP is selected by more than two algorithms, we are confident to conclude that it is related to the corresponding ADR. The selection results are compared with the control decision tree + LASSO regression model. In the study group where ADRs occur, 10 SNPs are considered relevant to the occurrence of a specific ADR by the combined information theory model. In comparison, only 5 SNPs are considered relevant to a specific ADR by the decision tree + LASSO regression model. In addition, the new method detects more relevant pairs of SNP and ADR which are affected by both SNP and dosage. This implies that the new information theory based model is effective to discover correlations of ADRs and CYP 450 SNPs and is helpful in predicting the potential vulnerable genotype for some ADRs. The newly proposed information theory based model has superiority performance in detecting the relation between SNP and ADR compared to the decision tree + LASSO regression model. The new model is more sensitive to detect ADRs compared to the old method, while the old method is more reliable. Therefore, the selection criteria for selecting algorithms should depend on the pragmatic needs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. [Accurate diagnosis of Pseudomonas luteola in routine microbiology laboratory: on the occasion of two isolates].

    PubMed

    Çiçek, Muharrem; Hasçelik, Gülşen; Müştak, H Kaan; Diker, K Serdar; Şener, Burçin

    2016-10-01

    Pseudomonas luteola which was previously known as Chryseomonas luteola; is a gram-negative, non-fermentative, aerobic, motile, non-spore-forming bacillus. It is frequently found as a saprophyte in soil, water and other damp environments and is an opportunistic pathogen in patients with underlying medical disorders or with indwelling catheters. It has been reported as an uncommon cause of bacteremia, sepsis, septic arthritis, meningitis, endocarditis, and peritonitis. Thus, early and accurate identification of this rare species is important for the treatment and also to provide information about the epidemiology of P.luteola infections. This report was aimed to draw attention to the accurate identification of P.luteola in clinical samples, upon the isolation and identification in two cases in the medical microbiology laboratory of a university hospital. In February 2011, a 66-year-old man, with chronic obstructive pulmonary disease, coronary artery disease and aplastic anemia, was admitted to our hospital due to progressive dyspnea. A chest tube was inserted on the 20th day of admission by the reason of recurrent pleural effusion. Staphylococcus aureus and a non-fermentative gram-negative bacillus (NFGNB) with wrinkled, sticky yellow colonies were isolated from the pleural fluid sample obtained on the 9th day following the insertion of the chest tube. In February 2012, a 7-year-old male cystic fibrosis patient who had no signs and symptoms of acute pulmonary exacerbation was admitted to the hospital for a routine control. This patient had chronic colonization with Pseudomonas aeruginosa and S.aureus and his sputum sample obtained at this visit revealed isolation of P.aeruginosa, S.aureus, Aspergillus fumigatus and a wrinkled, sticky yellow NFGNB. Both of these NFGNB were identified as P.luteola by the Phoenix automated microbial identification system (BD Diagnostics, USA). To evaluate the microbiological characteristics of these two isolates, the strains were further analysed by VITEK MS (bioMerieux, France) and Microflex LT mass spectrometer (Bruker Daltonics, Germany). Both of the MALDI-TOF-MS systems identified the isolates as P.luteola and 16S rRNA gene sequencing (ABI PRISM 3100, Applied Biosystems, USA) also confirmed the identification. The strains had wrinkled, sticky yellow colonies which were oxidase-negative, catalase-positive and non-fermentative. The Gram stained smears of the colonies revealed clusters of gram-negative bacilli probably embedded into a biofilm matrix. Since there are no accepted standards for testing the antibiotic susceptibility of P.luteola strains, the standards determined by CLSI for "other non-Enterobacteriaceae" (non-fermentative bacteria excluding P.aeruginosa, Acinetobacter spp., Burkholderia cepacia, B.mallei, B.pseudomallei and Stenotrophomonas maltophilia) were used for the susceptibility testing. Gradient MIC method (E-Test, bioMerieux, France) revealed that the isolates were susceptible to gentamicin, piperacillin-tazobactam, ceftazidime, cefepime, meropenem, colistin and levofloxacin. Accurate and prompt identification of P.luteola which is identified as a rare pathogen in serious cases is of critical importance since it has been suggested that this organism is likely to become more frequent as a nosocomial pathogen since the interventional processes increase in current medical practice. This report supported that Phoenix automated phenotypic identification system (BD Diagnostics, USA) and the two MALDI-TOF-MS based systems (VITEK MS and Bruker Microflex LT mass spectrometer) were successfull in the accurate identification of P.luteola.

  16. Application of a non-hazardous vital dye for cell counting with automated cell counters.

    PubMed

    Kim, Soo In; Kim, Hyun Jeong; Lee, Ho-Jae; Lee, Kiwon; Hong, Dongpyo; Lim, Hyunchang; Cho, Keunchang; Jung, Neoncheol; Yi, Yong Weon

    2016-01-01

    Recent advances in automated cell counters enable us to count cells more easily with consistency. However, the wide use of the traditional vital dye trypan blue (TB) raises environmental and health concerns due to its potential teratogenic effects. To avoid this chemical hazard, it is of importance to introduce an alternative non-hazardous vital dye that is compatible with automated cell counters. Erythrosin B (EB) is a vital dye that is impermeable to biological membranes and is used as a food additive. Similarly to TB, EB stains only nonviable cells with disintegrated membranes. However, EB is less popular than TB and is seldom used with automated cell counters. We found that cell counting accuracy with EB was comparable to that with TB. EB was found to be an effective dye for accurate counting of cells with different viabilities across three different automated cell counters. In contrast to TB, EB was less toxic to cultured HL-60 cells during the cell counting process. These results indicate that replacing TB with EB for use with automated cell counters will significantly reduce the hazardous risk while producing comparable results. Copyright © 2015 Logos Biosystems, Inc. Published by Elsevier Inc. All rights reserved.

  17. Database resources of the National Center for Biotechnology Information

    PubMed Central

    Sayers, Eric W.; Barrett, Tanya; Benson, Dennis A.; Bolton, Evan; Bryant, Stephen H.; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M.; DiCuccio, Michael; Federhen, Scott; Feolo, Michael; Fingerman, Ian M.; Geer, Lewis Y.; Helmberg, Wolfgang; Kapustin, Yuri; Krasnov, Sergey; Landsman, David; Lipman, David J.; Lu, Zhiyong; Madden, Thomas L.; Madej, Tom; Maglott, Donna R.; Marchler-Bauer, Aron; Miller, Vadim; Karsch-Mizrachi, Ilene; Ostell, James; Panchenko, Anna; Phan, Lon; Pruitt, Kim D.; Schuler, Gregory D.; Sequeira, Edwin; Sherry, Stephen T.; Shumway, Martin; Sirotkin, Karl; Slotta, Douglas; Souvorov, Alexandre; Starchenko, Grigory; Tatusova, Tatiana A.; Wagner, Lukas; Wang, Yanli; Wilbur, W. John; Yaschenko, Eugene; Ye, Jian

    2012-01-01

    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Website. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Genome and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Probe, Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov. PMID:22140104

  18. Database resources of the National Center for Biotechnology Information

    PubMed Central

    2013-01-01

    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, the Genetic Testing Registry, Genome and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Probe, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool, Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page. PMID:23193264

  19. Analysis and 3D reconstruction of heterogeneity in malignant brain tumors: an interdisciplinary case study using a novel computational visualization approach.

    PubMed

    Mojsilovic, Aleksandra; Rogowitz, Bernice; Gomes, Jose; Deisboeck, Thomas S

    2002-06-01

    To explore how a multidisciplinary approach, combining modern visualization and image processing techniques with innovative experimental studies, can augment the understanding of tumor development. We analyzed histologic sections of a microscopic brain tumor and reconstructed these slices into a 3D representation. We processed these slices to: (1) identify tumor boundaries, (2) isolate proliferating tumor cells, and (3) segment the tumor into regions based on the density of proliferating cells. We then reconstructed the 3D shape of the tumor using a constrained deformable surface approach. This novel method allows the analyst to (1) see specific properties of histologic slices in the 3D environment with animation, (2) switch 2D "views" dynamically, and (3) see relationships between the 3D structure and structure on a plane. Using this method to analyze a specific "case," we were also able to shed light on the limitations of a widely held assumption about the shape of expanding microscopic solid tumors as well as find more indications that such tumors behave as adaptive biosystems. Implications of these case study results, as well as future applications of the method for tumor biology research, are discussed.

  20. Self-organization and information in biosystems: a case study.

    PubMed

    Haken, Hermann

    2018-05-01

    Eigen's original molecular evolution equations are extended in two ways. (1) By an additional nonlinear autocatalytic term leading to new stability features, their dependence on the relative size of fitness parameters and on initial conditions is discussed in detail. (2) By adding noise terms that represent the spontaneous generation of molecules by mutations of substrate molecules, these terms are taken care of by both Langevin and Fokker-Planck equations. The steady-state solution of the latter provides us with a potential landscape giving a bird's eye view on all stable states (attractors). Two different types of evolutionary processes are suggested: (a) in a fixed attractor landscape and (b) caused by a changed landscape caused by changed fitness parameters. This may be related to Gould's concept of punctuated equilibria. External signals in the form of additional molecules may generate a new initial state within a specific basin of attraction. The corresponding attractor is then reached by self-organization. This approach allows me to define pragmatic information as signals causing a specific reaction of the receiver and to use equations equivalent to (1) as model of (human) pattern recognition as substantiated by the synergetic computer.

  1. Abrupt decadal-to-centennial hydroclimate changes in the Mediterranean region since the mid-Holocene

    NASA Astrophysics Data System (ADS)

    Hu, Hsun-Ming; Shen, Chuan-Chou; Jiang, Xiuyang; Wang, Yongjin; Mii, Horng-Sheng; Michel, Véronique

    2016-04-01

    A series of severe drought events in the Mediterranean region over the past two decades has posed a threat on both human society and biosystem. Holocene hydrological dynamics can offer valuable clues for understanding future climate and making proper adaption strategy. Here, we present a decadal-resolved stalagmite record documenting various hydroclimatic fluctuations in the north central Mediterranean region since the middle Holocene. The stalagmite δ18O sequence shows dramatic instability, characterized by abrupt shifts between dry and wet conditions <50 years. The timing of regional culture demises, such as the Hittite Kingdom, Mycenaean Greece, Akkadian Empire, Egyptian Old Kingdom, and Uruk, occurred during the drought events, suggesting an important role of climate impact on human civilization. The unstable hydroclimate evolution is related to transferred North Atlantic Oscillation states. Rate of rapid transfer of precipitation patterns, which can be pin-pointed by our good chronology, improves the prediction to future climate changes in North Atlantic region. We also found that a strong correlation between this stalagmite δ18O and sea surface temperatures especially in Pacific Ocean. This agreement suggests a distant interregional climate teleconnection.

  2. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater.

    PubMed

    Rezania, Shahabaldin; Taib, Shazwin Mat; Md Din, Mohd Fadhil; Dahalan, Farrah Aini; Kamyab, Hesam

    2016-11-15

    Environmental pollution specifically water pollution is alarming both in the developed and developing countries. Heavy metal contamination of water resources is a critical issue which adversely affects humans, plants and animals. Phytoremediation is a cost-effective remediation technology which able to treat heavy metal polluted sites. This environmental friendly method has been successfully implemented in constructed wetland (CWs) which is able to restore the aquatic biosystem naturally. Nowadays, many aquatic plant species are being investigated to determine their potential and effectiveness for phytoremediation application, especially high growth rate plants i.e. macrophytes. Based on the findings, phytofiltration (rhizofiltration) is the sole method which defined as heavy metals removal from water by aquatic plants. Due to specific morphology and higher growth rate, free-floating plants were more efficient to uptake heavy metals in comparison with submerged and emergent plants. In this review, the potential of wide range of aquatic plant species with main focus on four well known species (hyper-accumulators): Pistia stratiotes, Eicchornia spp., Lemna spp. and Salvinia spp. was investigated. Moreover, we discussed about the history, methods and future prospects in phytoremediation of heavy metals by aquatic plants comprehensively. Copyright © 2016. Published by Elsevier B.V.

  3. Impact of genetic variants of ATP binding cassette B1, AICAR transformylase/IMP cyclohydrolase, folyl-polyglutamatesynthetase, and methylenetetrahydrofolatereductase on methotrexate toxicity.

    PubMed

    Sala-Icardo, Luis; Lamana, Amalia; Ortiz, Ana María; García Lorenzo, Elena; Moreno Fresneda, Pablo; García-Vicuña, Rosario; González-Álvaro, Isidoro

    To analyze the effect of single nucleotide polymorphisms (SNPs) with well-known functional impact of methylenetetrahydrofolatereductase (MTHFR; rs1801131 and rs1801133), the membrane transporter ABCB1 (rs1045642), the AICAR transformylase/IMP cyclohydrolase (ATIC; rs2372536) and folyl-polyglutamatesynthetase (FPGS; rs1544105), on liver and bone marrow toxicity of methotrexate (MTX). We analyzed 1415 visits from 350 patients of the PEARL (Princesa Early Arthritis Register Longitudinal) study: (732 with MTX, 683 without MTX). The different SNPs were genotyped using specific TaqMan probes (Applied Biosystems). Multivariate analyzes were performed using generalized linear models in which the dependent variables were the levels of serum alanine aminotransferase (liver toxicity), leukocytes, platelets or hemoglobin (hematologic toxicity) and adjusted for clinical variables (disease activity, etc.), analytical (renal function, etc.), sociodemographic (age, sex, etc.) and genetic variants of MTHFR, ABCB1, ATIC and FPGS. The effect of these variables on the MTX doses prescribed throughout follow-up was also analyzed through multivariate analysis nested by visit and patient. When taking MTX, those patients carrying the CC genotype of rs1045642 in ABCB1 showed significantly higher GPT levels (7.1±2.0 U/L; P<.001). Carrying at least one G allele of rs1544105 in FPGS was associated with lower leukocyte (-0.67±0.32; 0.038), hemoglobin (-0.34±0.11g/dL; P=.002), and platelet (-11.8±4.7; P=.012) levels. The presence of the G allele of rs1544105 in FPGS, and the T allele of rs1801133 in MTHFR, was significantly associated with the use of lower doses of MTX. Our data suggest that genotyping functional variants in FGPS and MTHFR enzymes and the transporter ABCB1 could help to identify patients with increased risk of MTX toxicity. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  4. Matrix-assisted laser desorption/ionization coupled with quadrupole/orthogonal acceleration time-of-flight mass spectrometry for protein discovery, identification, and structural analysis.

    PubMed

    Baldwin, M A; Medzihradszky, K F; Lock, C M; Fisher, B; Settineri, T A; Burlingame, A L

    2001-04-15

    The design and operation of a novel UV-MALDI ionization source on a commercial QqoaTOF mass spectrometer (Applied Biosystem/MDS Sciex QSTAR Pulsar) is described. Samples are loaded on a 96-well target plate, the movement of which is under software control and can be readily automated. Unlike conventional high-energy MALDI-TOF, the ions are produced with low energies (5-10 eV) in a region of relatively low vacuum (8 mTorr). Thus, they are cooled by extensive low-energy collisions before selection in the quadrupole mass analyzer (Q1), potentially giving a quasi-continuous ion beam ideally suited to the oaTOF used for mass analysis of the fragment ions, although ion yields from individual laser shots may vary widely. Ion dissociation is induced by collisions with argon in an rf-only quadrupole cell, giving typical low-energy CID spectra for protonated peptide ions. Ions separated in the oaTOF are registered by a four-anode detector and time-to-digital converter and accumulated in "bins" that are 625 ps wide. Peak shapes depend upon the number of ion counts in adjacent bins. As expected, the accuracy of mass measurement is shown to be dependent upon the number of ions recorded for a particular peak. With internal calibration, mass accuracy better than 10 ppm is attainable for peaks that contain sufficient ions to give well-defined Gaussian profiles. By virtue of its high resolution, capability for accurate mass measurements, and sensitivity in the low-femotomole range, this instrument is ideally suited to protein identification for proteomic applications by generation of peptide tags, manual sequence interpretation, identification of modifications such as phosphorylation, and protein structural elucidation. Unlike the multiply charged ions typical of electrospray ionization, the singly charged MALDI-generated peptide ions show a linear dependence of optimal collision energy upon molecular mass, which is advantageous for automated operation. It is shown that the novel pulsing technique of this instrument that increases the sensitivity for precursor ions scans is applicable to the identification of peptides labeled with isotope-coded affinity tags.

  5. Association of Genetic Polymorphisms on VEGFA and VEGFR2 With Risk of Coronary Heart Disease

    PubMed Central

    Liu, Doxing; Song, Jiantao; Ji, Xianfei; Liu, Zunqi; Cong, Mulin; Hu, Bo

    2016-01-01

    Abstract Coronary heart disease (CHD) is a cardiovascular disease which is contributed by abnormal neovascularization. VEGFA (vascular endothelial growth factor A) and VEGFR2 (vascular endothelial growth factor receptor 2) have been revealed to be involved in the pathological angiogenesis. This study was intended to confirm whether single nucleotide polymorphisms (SNPs) of VEGFA and VEGFR2 were associated with CHD in a Chinese population, considering pathological features and living habits of CHD patients. Peripheral blood samples were collected from 810 CHD patients and 805 healthy individuals. Six tag SNPs within VEGFA and VEGFR2 were obtained from HapMap Database. Genotyping of SNPs was performed using SNapShot method (Applied Biosystems, Foster, CA). Odd ratios (ORs) and their 95% confidence intervals (95% CIs) were calculated to evaluate the association between SNPs and CHD risk. Under the allelic model, 6 SNPs of VEGFA and VEGFR2 were remarkably associated with the susceptibility to CHD. Genotype CT of rs3025039, TT of rs2305948, and AA of rs1873077 were associated with a reduced risk of CHD when smoking, alcohol intake and diabetes were considered, while homozygote GG of rs1570360 might elevate the susceptibility to CHD (all P < 0.05) for patients who were addicted to smoking or those with hypertension. All of the combined effects of rs699947 (CC/CA) and rs2305948 (TT), rs3025039 (TT) and rs2305948 (TT), rs3025039 (CT) and rs1870377 (AA) had positive effects on the risk of CHD, respectively (all P < 0.05). By contrast, the synthetic effects of rs69947 (CA/AA) and rs1870377 (TA), rs699947 (CA) and rs7667298 (GG), rs699947 (AA) and rs7667298 (GG), rs1570360 (GG) and rs2305948 (TT), as well as rs1570360 (GG) and rs1870377 (AA) all exhibited adverse effects on the risk of CHD, respectively (all P < 0.05). Six polymorphisms in VEGFA and VEGFR2 may have substantial influence on the susceptibility to CHD in a Han Chinese population. Prospective cohort studies should be further designed to confirm the above conclusions. PMID:27175642

  6. Intratumoral iron oxide nanoparticle hyperthermia and radiation cancer treatment

    NASA Astrophysics Data System (ADS)

    Hoopes, P. J.; Strawbridge, R. R.; Gibson, U. J.; Zeng, Q.; Pierce, Z. E.; Savellano, M.; Tate, J. A.; Ogden, J. A.; Baker, I.; Ivkov, R.; Foreman, A. R.

    2007-02-01

    The potential synergism and benefit of combined hyperthermia and radiation for cancer treatment is well established, but has yet to be optimized clinically. Specifically, the delivery of heat via external arrays /applicators or interstitial antennas has not demonstrated the spatial precision or specificity necessary to achieve appropriate a highly positive therapeutic ratio. Recently, antibody directed and possibly even non-antibody directed iron oxide nanoparticle hyperthermia has shown significant promise as a tumor treatment modality. Our studies are designed to determine the effects (safety and efficacy) of iron oxide nanoparticle hyperthermia and external beam radiation in a murine breast cancer model. Methods: MTG-B murine breast cancer cells (1 x 106) were implanted subcutaneous in 7 week-old female C3H/HeJ mice and grown to a treatment size of 150 mm3 +/- 50 mm3. Tumors were then injected locally with iron oxide nanoparticles and heated via an alternating magnetic field (AMF) generator operated at approximately 160 kHz and 400 - 550 Oe. Tumor growth was monitored daily using standard 3-D caliper measurement technique and formula. specific Mouse tumors were heated using a cooled, 36 mm diameter square copper tube induction coil which provided optimal heating in a 1 cm wide region in the center of the coil. Double dextran coated 80 nm iron oxide nanoparticles (Triton Biosystems) were used in all studies. Intra-tumor, peri-tumor and rectal (core body) temperatures were continually measured throughout the treatment period. Results: Preliminary in vivo nanoparticle-AMF hyperthermia (167 KHz and 400 or 550 Oe) studies demonstrated dose responsive cytotoxicity which enhanced the effects of external beam radiation. AMF associated eddy currents resulted in nonspecific temperature increases in exposed tissues which did not contain nanoparticles, however these effects were minor and not injurious to the mice. These studies also suggest that iron oxide nanoparticle hyperthermia is more effective than non-nanoparticle tumor heating techniques when similar thermal doses are applied. Initial electron and light microscopy studies of iron oxide nanoparticle and AMF exposed tumor cells show a rapid uptake of particles and acute cytotoxicity following AMF exposure.

  7. Genetic high throughput screening in Retinitis Pigmentosa based on high resolution melting (HRM) analysis.

    PubMed

    Anasagasti, Ander; Barandika, Olatz; Irigoyen, Cristina; Benitez, Bruno A; Cooper, Breanna; Cruchaga, Carlos; López de Munain, Adolfo; Ruiz-Ederra, Javier

    2013-11-01

    Retinitis Pigmentosa (RP) involves a group of genetically determined retinal diseases caused by a large number of mutations that result in rod photoreceptor cell death followed by gradual death of cone cells. Most cases of RP are monogenic, with more than 80 associated genes identified so far. The high number of genes and variants involved in RP, among other factors, is making the molecular characterization of RP a real challenge for many patients. Although HRM has been used for the analysis of isolated variants or single RP genes, as far as we are concerned, this is the first study that uses HRM analysis for a high-throughput screening of several RP genes. Our main goal was to test the suitability of HRM analysis as a genetic screening technique in RP, and to compare its performance with two of the most widely used NGS platforms, Illumina and PGM-Ion Torrent technologies. RP patients (n = 96) were clinically diagnosed at the Ophthalmology Department of Donostia University Hospital, Spain. We analyzed a total of 16 RP genes that meet the following inclusion criteria: 1) size: genes with transcripts of less than 4 kb; 2) number of exons: genes with up to 22 exons; and 3) prevalence: genes reported to account for, at least, 0.4% of total RP cases worldwide. For comparison purposes, RHO gene was also sequenced with Illumina (GAII; Illumina), Ion semiconductor technologies (PGM; Life Technologies) and Sanger sequencing (ABI 3130xl platform; Applied Biosystems). Detected variants were confirmed in all cases by Sanger sequencing and tested for co-segregation in the family of affected probands. We identified a total of 65 genetic variants, 15 of which (23%) were novel, in 49 out of 96 patients. Among them, 14 (4 novel) are probable disease-causing genetic variants in 7 RP genes, affecting 15 patients. Our HRM analysis-based study, proved to be a cost-effective and rapid method that provides an accurate identification of genetic RP variants. This approach is effective for medium sized (<4 kb transcript) RP genes, which constitute over 80% of the total of known RP genes.

  8. Genetic highthroughput screening in retinitis pigmentosa based on high resolution melting (HRM) analysis.

    PubMed

    Anasagasti, Ander; Barandika, Olatz; Irigoyen, Cristina; Benitez, Bruno A; Cooper, Breanna; Cruchaga, Carlos; López de Munain, Adolfo; Ruiz-Ederra, Javier

    2013-10-24

    Retinitis Pigmentosa (RP) involves a group of genetically determined retinal diseases caused by a large number of mutations that result in rod photoreceptor cell death followed by gradual death of cone cells. Most cases of RP are monogenic, with more than 80 associated genes identified so far. The high number of genes and variants involved in RP, among other factors, is making the molecular characterization of RP a real challenge for many patients. Although HRM has been used for the analysis of isolated variants or single RP genes, as far as we are concerned, this is the first study that uses HRM analysis for a high-throughput screening of several RP genes. Our main goal was to test the suitability of HRM analysis as a genetic screening technique in RP, and to compare its performance with two of the most widely used NGS platforms, Illumina and PGM-Ion Torrent technologies. RP patients (n=96) were clinically diagnosed at the Ophthalmology Department of Donostia University Hospital, Spain. We analyzed a total of 16 RP genes that meet the following inclusion criteria: 1) size: genes with transcripts of less than 4 kb; 2) number of exons: genes with up to 22 exons; and 3) prevalence: genes reported to account for, at least, 0.4 % of total RP cases worldwide. For comparison purposes, RHO gene was also sequenced with Illumina (GAII; Illumina), Ion semiconductor technologies (PGM; Life Technologies) and Sanger sequencing (ABI 3130xl platform; Applied Biosystems). Detected variants were confirmed in all cases by Sanger sequencing and tested for co-segregation in the family of affected probands. We identified a total of 65 genetic variants, 15 of which (23%) were novel, in 49 out of 96 patients. Among them, 14 (4 novel) are probable disease-causing genetic variants in 7 RP genes, affecting 15 patients. Our HRM analysis-based study, proved to be a cost-effective and rapid method that provides an accurate identification of genetic RP variants. This approach is effective for medium sized (<4 kb transcript) RP genes, which constitute over 80% of the total of known RP genes. © 2013 Published by Elsevier Ltd.

  9. Multidentate zwitterionic chitosan oligosaccharide modified gold nanoparticles: stability, biocompatibility and cell interactions

    NASA Astrophysics Data System (ADS)

    Liu, Xiangsheng; Huang, Haoyuan; Liu, Gongyan; Zhou, Wenbo; Chen, Yangjun; Jin, Qiao; Ji, Jian

    2013-04-01

    Surface engineering of nanoparticles plays an essential role in their colloidal stability, biocompatibility and interaction with biosystems. In this study, a novel multidentate zwitterionic biopolymer derivative is obtained from conjugating dithiolane lipoic acid and zwitterionic acryloyloxyethyl phosphorylcholine to the chitosan oligosaccharide backbone. Gold nanoparticles (AuNPs) modified by this polymer exhibit remarkable colloidal stabilities under extreme conditions including high salt conditions, wide pH range and serum or plasma containing media. The AuNPs also show strong resistance to competition from dithiothreitol (as high as 1.5 M). Moreover, the modified AuNPs demonstrate low cytotoxicity investigated by both MTT and LDH assays, and good hemocompatibility evaluated by hemolysis of human red blood cells. In addition, the intracellular fate of AuNPs was investigated by ICP-MS and TEM. It showed that the AuNPs are uptaken by cells in a concentration dependent manner, and they can escape from endosomes/lysosomes to cytosol and tend to accumulate around the nucleus after 24 h incubation but few of them are excreted out of the cells. Gold nanorods are also stabilized by this ligand, which demonstrates robust dispersion stability and excellent hemocompatibility. This kind of multidentate zwitterionic chitosan derivative could be widely used for stabilizing other inorganic nanoparticles, which will greatly improve their performance in a variety of bio-related applications.Surface engineering of nanoparticles plays an essential role in their colloidal stability, biocompatibility and interaction with biosystems. In this study, a novel multidentate zwitterionic biopolymer derivative is obtained from conjugating dithiolane lipoic acid and zwitterionic acryloyloxyethyl phosphorylcholine to the chitosan oligosaccharide backbone. Gold nanoparticles (AuNPs) modified by this polymer exhibit remarkable colloidal stabilities under extreme conditions including high salt conditions, wide pH range and serum or plasma containing media. The AuNPs also show strong resistance to competition from dithiothreitol (as high as 1.5 M). Moreover, the modified AuNPs demonstrate low cytotoxicity investigated by both MTT and LDH assays, and good hemocompatibility evaluated by hemolysis of human red blood cells. In addition, the intracellular fate of AuNPs was investigated by ICP-MS and TEM. It showed that the AuNPs are uptaken by cells in a concentration dependent manner, and they can escape from endosomes/lysosomes to cytosol and tend to accumulate around the nucleus after 24 h incubation but few of them are excreted out of the cells. Gold nanorods are also stabilized by this ligand, which demonstrates robust dispersion stability and excellent hemocompatibility. This kind of multidentate zwitterionic chitosan derivative could be widely used for stabilizing other inorganic nanoparticles, which will greatly improve their performance in a variety of bio-related applications. Electronic supplementary information (ESI) available: More experimental details for the synthesis of AuNPs and AuNRs. Fig. S1, 1H NMR spectrum of LA-CSO-PC and Fig. S2, FT-IR spectrum of AuNP-LA-CSO-PC. See DOI: 10.1039/c3nr00284e

  10. [Gene-gene interaction on central obesity in school-aged children in China].

    PubMed

    Fu, L W; Zhang, M X; Wu, L J; Gao, L W; Mi, J

    2017-07-10

    Objective: To investigate possible effect of 6 obesity-associated SNPs in contribution to central obesity and examine whether there is an interaction in the 6 SNPs in the cause of central obesity in school-aged children in China. Methods: A total of 3 502 school-aged children who were included in Beijing Child and Adolescent Metabolic Syndrome (BCAMS) Study were selected, and based on the age and sex specific waist circumference (WC) standards in the BCAMS study, 1 196 central obese cases and 2 306 controls were identified. Genomic DNA was extracted from peripheral blood white cells using the salt fractionation method. A total of 6 single nucleotide polymorphisms ( FTO rs9939609, MC4R rs17782313, BDNF rs6265, PCSK1 rs6235, SH2B1 rs4788102, and CSK rs1378942) were genotyped by TaqMan allelic discrimination assays with the GeneAmp 7900 sequence detection system (Applied Biosystems, Foster City, CA, USA). Logistic regression model was used to investigate the association between 6 SNPs and central obesity. Gene-gene interactions among 6 polymorphic loci were analyzed by using the Generalized Multifactor Dimensionality Reduction (GMDR) method, and then logistic regression model was constructed to confirm the best combination of loci identified in the GMDR. Results: After adjusting gender, age, Tanner stage, physical activity and family history of obesity, the FTO rs9939609-A, MC4R rs17782313-C and BDNF rs6265-G alleles were associated with central obesity under additive genetic model ( OR =1.24, 95 %CI : 1.06-1.45, P =0.008; OR =1.26, 95 %CI : 1.11-1.43, P =2.98×10(-4); OR =1.18, 95 % CI : 1.06-1.32, P =0.003). GMDR analysis showed a significant gene-gene interaction between MC4R rs17782313 and BDNF rs6265 ( P =0.001). The best two-locus combination showed the cross-validation consistency of 10/10 and testing accuracy of 0.539. This interaction showed the maximum consistency and minimum prediction error among all gene-gene interaction models evaluated. Moreover, the combination of MC4R rs17782313-C and BDNF rs6265-G was associated with an increased risk of central obesity after adjustment for gender, age, Tanner stage, physical activity and family history of obesity. Conclusions: Our study showed that FTO rs9939609-A, MC4R rs17782313-C and BDNF rs6265-G alleles were associated with central obesity, and statistical interaction between MC4R rs17782313-C and BDNF rs6265-G increased risk of central obesity in school-aged children in China.

  11. About Mass Transfer in Capillaries of Biological Systems under Influence of Vibrations

    NASA Astrophysics Data System (ADS)

    Prisniakov, K.

    Vibrations accompany the flight of the manned spacecraft both at a stage of a orbital injection to an orbit, and during long flights (as noise), rendering undesirable physiological influence on crew, reducing serviceability and creating constant discomfort. The report represents attempt to predict a state of the cosmonaut in conditions of influence of vibrations for the period of start and stay in Space, being based on researches of mass transfer processes in capillary systems. For this purpose the original researches on heat and mass transfer processes with evaporation of liquids in capillary - porous structures in conditions of vibration actions and changes of a direction of action of gravitation are generalized. Report demonstrates the existence of modes at which increased or lowered mass transfer is achieved on border of separation "liquid - gas". The possible mechanism of influence of vibrations on evaporation of a liquid in capillaries is examined. The magnitudes of frequencies and amplitudes are submitted at which minimax characteristics are observed. The opportunity of application of the developed mathematical model of heat and mass transfer in capillary - porous structures to forecasting influence of vibrations for biological processes in capillaries of alive essences is analyzed. Such approach is justified on the mechanical nature of harmful influence of vibrations on an organism of the person. In addition the range of vibration frequencies which arise during space flights, corresponds to own resonant frequencies of a human body and his separate organs. Comparison of these resonant frequencies of a body of the person (5-80 Hertz) with vibration frequencies of optimum modes of heat and mass transfer in capillary - porous structures (20-40 Hertz) is shown their ranges of coverage. It gives the basis to assume existence of similar effects in capillaries of human body. It is supposed, that the difficulty of breath, change of a rhythm of breath, the subsequent weariness under vibration action are attributable to infringements of normal mass transfer between the inhaled air and blood. The opportunity of use of the received laws is discussed for assessment of influence of gravitational fields on intensity mass transfer in capillaries of biosystems also.

  12. Laser tweezer actuated microphotonic array devices for high resolution imaging and analysis in chip-based biosystems

    NASA Astrophysics Data System (ADS)

    Birkbeck, Aaron L.

    A new technology is developed that functionally integrates arrays of lasers and micro-optics into microfluidic systems for the purpose of imaging, analyzing, and manipulating objects and biological cells. In general, the devices and technologies emerging from this area either lack functionality through the reliance on mechanical systems or provide a serial-based, time consuming approach. As compared to the current state of art, our all-optical design methodology has several distinguishing features, such as parallelism, high efficiency, low power, auto-alignment, and high yield fabrication methods, which all contribute to minimizing the cost of the integration process. The potential use of vertical cavity surface emitting lasers (VCSELs) for the creation of two-dimensional arrays of laser optical tweezers that perform independently controlled, parallel capture, and transport of large numbers of individual objects and biological cells is investigated. One of the primary biological applications for which VCSEL array sourced laser optical tweezers are considered is the formation of engineered tissues through the manipulation and spatial arrangement of different types of cells in a co-culture. Creating devices that combine laser optical tweezers with select micro-optical components permits optical imaging and analysis functions to take place inside the microfluidic channel. One such device is a micro-optical spatial filter whose motion and alignment is controlled using a laser optical tweezer. Unlike conventional spatial filter systems, our device utilizes a refractive optical element that is directly incorporated onto the lithographically patterned spatial filter. This allows the micro-optical spatial filter to automatically align itself in three-dimensions to the focal point of the microscope objective, where it then filters out the higher frequency additive noise components present in the laser beam. As a means of performing high resolution imaging in the microfluidic channel, we developed a novel technique that integrates the capacity of a laser tweezer to optically trap and manipulate objects in three-dimensions with the resolution-enhanced imaging capabilities of a solid immersion lens (SIL). In our design, the SIL is a free-floating device whose imaging beam, motion control and alignment is provided by a laser optical tweezer, which allows the microfluidic SIL to image in areas that are inaccessible to traditional solid immersion microscopes.

  13. Modification of nucleic acids by azobenzene derivatives and their applications in biotechnology and nanotechnology.

    PubMed

    Li, Jing; Wang, Xingyu; Liang, Xingguo

    2014-12-01

    Azobenzene has been widely used as a photoregulator due to its reversible photoisomerization, large structural change between E and Z isomers, high photoisomerization yield, and high chemical stability. On the other hand, some azobenzene derivatives can be used as universal quenchers for many fluorophores. Nucleic acid is a good candidate to be modified because it is not only the template of gene expression but also widely used for building well-organized nanostructures and nanodevices. Because the size and polarity distribution of the azobenzene molecule is similar to a nucleobase pair, the introduction of azobenzene into nucleic acids has been shown to be an ingenious molecular design for constructing light-switching biosystems or light-driven nanomachines. Here we review recent advances in azobenzene-modified nucleic acids and their applications for artificial regulation of gene expression and enzymatic reactions, construction of photoresponsive nanostructures and nanodevices, molecular beacons, as well as obtaining structural information using the introduced azobenzene as an internal probe. In particular, nucleic acids bearing multiple azobenzenes can be used as a novel artificial nanomaterial with merits of high sequence specificity, regular duplex structure, and high photoregulation efficiency. The combination of functional groups with biomolecules may further advance the development of chemical biotechnology and biomolecular engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of surfactants on the interaction of phenol with laccase: Molecular docking and molecular dynamics simulation studies.

    PubMed

    Liu, Yujie; Liu, Zhifeng; Zeng, Guangming; Chen, Ming; Jiang, Yilin; Shao, Binbin; Li, Zhigang; Liu, Yang

    2018-05-22

    Some surfactants can enhance the removal of phenol by laccase (Lac) in various industrial effluents. Their behavior and function in the biodegradation of phenolic wastewater have been experimentally reported by many researchers, but the underlying molecular mechanism is still unclear. Therefore, the interaction mechanisms of phenol with Lac from Trametes versicolor were investigated in the presence or absence of Triton X-100 (TX100) or rhamnolipid (RL) by molecular docking and molecular dynamics (MD) simulations. The results indicate that phenol contacts with an active site of Lac by hydrogen bonds (HBs) and van der Waals (vdW) interactions in aqueous solution for maintaining its stability. The presence of TX100 or RL results in the significant changes of enzymatic conformations. Meanwhile, the hydrophobic parts of surfactants contact with the outside surface of Lac. These changes lead to the decrease of binding energy between phenol and Lac. The migration behavior of water molecules within hydration shell is also inevitably affected. Therefore, the amphipathic TX100 or RL may influence the phenol degradation ability of Lac by modulating their interactions and water environment. This study offers molecular level of understanding on the function of surfactants in biosystem. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. A differentiable reformulation for E-optimal design of experiments in nonlinear dynamic biosystems.

    PubMed

    Telen, Dries; Van Riet, Nick; Logist, Flip; Van Impe, Jan

    2015-06-01

    Informative experiments are highly valuable for estimating parameters in nonlinear dynamic bioprocesses. Techniques for optimal experiment design ensure the systematic design of such informative experiments. The E-criterion which can be used as objective function in optimal experiment design requires the maximization of the smallest eigenvalue of the Fisher information matrix. However, one problem with the minimal eigenvalue function is that it can be nondifferentiable. In addition, no closed form expression exists for the computation of eigenvalues of a matrix larger than a 4 by 4 one. As eigenvalues are normally computed with iterative methods, state-of-the-art optimal control solvers are not able to exploit automatic differentiation to compute the derivatives with respect to the decision variables. In the current paper a reformulation strategy from the field of convex optimization is suggested to circumvent these difficulties. This reformulation requires the inclusion of a matrix inequality constraint involving positive semidefiniteness. In this paper, this positive semidefiniteness constraint is imposed via Sylverster's criterion. As a result the maximization of the minimum eigenvalue function can be formulated in standard optimal control solvers through the addition of nonlinear constraints. The presented methodology is successfully illustrated with a case study from the field of predictive microbiology. Copyright © 2015. Published by Elsevier Inc.

  16. Enabling personalized implant and controllable biosystem development through 3D printing.

    PubMed

    Nagarajan, Neerajha; Dupret-Bories, Agnes; Karabulut, Erdem; Zorlutuna, Pinar; Vrana, Nihal Engin

    The impact of additive manufacturing in our lives has been increasing constantly. One of the frontiers in this change is the medical devices. 3D printing technologies not only enable the personalization of implantable devices with respect to patient-specific anatomy, pathology and biomechanical properties but they also provide new opportunities in related areas such as surgical education, minimally invasive diagnosis, medical research and disease models. In this review, we cover the recent clinical applications of 3D printing with a particular focus on implantable devices. The current technical bottlenecks in 3D printing in view of the needs in clinical applications are explained and recent advances to overcome these challenges are presented. 3D printing with cells (bioprinting); an exciting subfield of 3D printing, is covered in the context of tissue engineering and regenerative medicine and current developments in bioinks are discussed. Also emerging applications of bioprinting beyond health, such as biorobotics and soft robotics, are introduced. As the technical challenges related to printing rate, precision and cost are steadily being solved, it can be envisioned that 3D printers will become common on-site instruments in medical practice with the possibility of custom-made, on-demand implants and, eventually, tissue engineered organs with active parts developed with biorobotics techniques. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Comparability of automated human induced pluripotent stem cell culture: a pilot study.

    PubMed

    Archibald, Peter R T; Chandra, Amit; Thomas, Dave; Chose, Olivier; Massouridès, Emmanuelle; Laâbi, Yacine; Williams, David J

    2016-12-01

    Consistent and robust manufacturing is essential for the translation of cell therapies, and the utilisation automation throughout the manufacturing process may allow for improvements in quality control, scalability, reproducibility and economics of the process. The aim of this study was to measure and establish the comparability between alternative process steps for the culture of hiPSCs. Consequently, the effects of manual centrifugation and automated non-centrifugation process steps, performed using TAP Biosystems' CompacT SelecT automated cell culture platform, upon the culture of a human induced pluripotent stem cell (hiPSC) line (VAX001024c07) were compared. This study, has demonstrated that comparable morphologies and cell diameters were observed in hiPSCs cultured using either manual or automated process steps. However, non-centrifugation hiPSC populations exhibited greater cell yields, greater aggregate rates, increased pluripotency marker expression, and decreased differentiation marker expression compared to centrifugation hiPSCs. A trend for decreased variability in cell yield was also observed after the utilisation of the automated process step. This study also highlights the detrimental effect of the cryopreservation and thawing processes upon the growth and characteristics of hiPSC cultures, and demonstrates that automated hiPSC manufacturing protocols can be successfully transferred between independent laboratories.

  18. Epigenetics in adaptive evolution and development: the interplay between evolving species and epigenetic mechanisms: extract from Trygve Tollefsbol (ed.) (2011) Handbook of epigenetics--the new molecular and medical genetics. Chapter 26. Amsterdam, USA: Elsevier, pp. 423-446.

    PubMed

    House, Simon H

    2013-04-01

    By comparing epigenetics of current species with fossil records across evolutionary transitions, we can gauge the moment of emergence of some novel mechanisms in evolution, and recognize that epigenetic mechanisms have a bearing on mutation. Understanding the complexity and changeability of these mechanisms, as well as the changes they can effect, is both fascinating and of vital practical benefit. Our most serious pandemics of so-called 'non-communicable' diseases - mental and cardiovascular disorders, obesity and diabetes, rooted in the 'metabolic syndrome' - are evidently related to effects on our evolutionary mechanisms of agricultural and food industrialization, modern lifestyle and diet. Pollution affects us directly as well as indirectly by its destruction of ecologically essential biosystems. Evidently such powerful conditions of existence have epigenetic effects on both our health and our continuing evolution. Such effects are most profound during reproductive and developmental processes, when levels of hormones, as affected by stress particularly, may be due to modern cultures in childbearing such as excessive intervention, separation, maternal distress and disruption of bonding. Mechanisms of genomic imprinting seem likely to throw light on problems in assisted reproductive technology, among other transgenerational effects. © The Author(s) 2014.

  19. Database resources of the National Center for Biotechnology Information.

    PubMed

    Sayers, Eric W; Barrett, Tanya; Benson, Dennis A; Bolton, Evan; Bryant, Stephen H; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M; DiCuccio, Michael; Federhen, Scott; Feolo, Michael; Fingerman, Ian M; Geer, Lewis Y; Helmberg, Wolfgang; Kapustin, Yuri; Landsman, David; Lipman, David J; Lu, Zhiyong; Madden, Thomas L; Madej, Tom; Maglott, Donna R; Marchler-Bauer, Aron; Miller, Vadim; Mizrachi, Ilene; Ostell, James; Panchenko, Anna; Phan, Lon; Pruitt, Kim D; Schuler, Gregory D; Sequeira, Edwin; Sherry, Stephen T; Shumway, Martin; Sirotkin, Karl; Slotta, Douglas; Souvorov, Alexandre; Starchenko, Grigory; Tatusova, Tatiana A; Wagner, Lukas; Wang, Yanli; Wilbur, W John; Yaschenko, Eugene; Ye, Jian

    2011-01-01

    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Electronic PCR, OrfFinder, Splign, ProSplign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), IBIS, Biosystems, Peptidome, OMSSA, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.

  20. Cross-site comparison of ribosomal depletion kits for Illumina RNAseq library construction.

    PubMed

    Herbert, Zachary T; Kershner, Jamie P; Butty, Vincent L; Thimmapuram, Jyothi; Choudhari, Sulbha; Alekseyev, Yuriy O; Fan, Jun; Podnar, Jessica W; Wilcox, Edward; Gipson, Jenny; Gillaspy, Allison; Jepsen, Kristen; BonDurant, Sandra Splinter; Morris, Krystalynne; Berkeley, Maura; LeClerc, Ashley; Simpson, Stephen D; Sommerville, Gary; Grimmett, Leslie; Adams, Marie; Levine, Stuart S

    2018-03-15

    Ribosomal RNA (rRNA) comprises at least 90% of total RNA extracted from mammalian tissue or cell line samples. Informative transcriptional profiling using massively parallel sequencing technologies requires either enrichment of mature poly-adenylated transcripts or targeted depletion of the rRNA fraction. The latter method is of particular interest because it is compatible with degraded samples such as those extracted from FFPE and also captures transcripts that are not poly-adenylated such as some non-coding RNAs. Here we provide a cross-site study that evaluates the performance of ribosomal RNA removal kits from Illumina, Takara/Clontech, Kapa Biosystems, Lexogen, New England Biolabs and Qiagen on intact and degraded RNA samples. We find that all of the kits are capable of performing significant ribosomal depletion, though there are differences in their ease of use. All kits were able to remove ribosomal RNA to below 20% with intact RNA and identify ~ 14,000 protein coding genes from the Universal Human Reference RNA sample at >1FPKM. Analysis of differentially detected genes between kits suggests that transcript length may be a key factor in library production efficiency. These results provide a roadmap for labs on the strengths of each of these methods and how best to utilize them.

  1. A new era. Healing the injuries we have inflicted on our planet.

    PubMed

    Berry, T

    1992-03-01

    The health of the earth is essential for the well-being of every living creature on the planet; however, our plundering industrial economy has disrupted the earth's biosystems. Such neglect can no longer be accepted. Medicine is in the same situation as the entire range of human activities: All must find a way to exist in harmony with the natural world. We have been so caught up in our scientific capacity to alter the natural world that we have ignored its most basic structure. We must, therefore, enter a new era-the "Ecozoic" era, a period when humans would live on the earth in a mutually enhancing manner. This transition will require changes at a most profound level in human activity. Three principles form the basis for the Ecozoic era: Humans must recognize the universe as a communion of subjects, not a collection of objects. The earth is primary; humans are derivative. The planet will never again function as it has in the past. To enter the Ecozoic era, humans need sciences that create a new way of understanding the natural world as possessing its own unique spontaneities. Especially needed are biological sciences that have a "feel for the organism." This move from anthropology to "earthology" and cosmology is a comprehensive challenge to all our professions.

  2. Impact of intracellular metallothionein on metal biouptake and partitioning dynamics at bacterial interfaces.

    PubMed

    Présent, Romain M; Rotureau, Elise; Billard, Patrick; Pagnout, Christophe; Sohm, Bénédicte; Flayac, Justine; Gley, Renaud; Pinheiro, José P; Duval, Jérôme F L

    2017-11-08

    Genetically engineered microorganisms are alternatives to physicochemical methods for remediation of metal-contaminated aquifers due to their remarkable bioaccumulation capacities. The design of such biosystems would benefit from the elaboration of a sound quantitative connection between performance in terms of metal removal from aqueous solution and dynamics of the multiscale processes leading to metal biouptake. In this work, this elaboration is reported for Escherichia coli cells modified to overexpress intracellular metallothionein (MTc), a strong proteinaceous metal chelator. Depletion kinetics of Cd(ii) from bulk solution following biouptake and intracellular accumulation is addressed as a function of cell volume fraction using electroanalytical probes and ligand exchange-based analyses. It is shown that metal biouptake in the absence and presence of MTc is successfully interpreted on the basis of a formalism recently developed for metal partitioning dynamics at biointerfaces with integration of intracellular metal speciation. The analysis demonstrates how fast sequestration of metals by intracellular MTc bypasses metal excretion (efflux) and enhances the rate of metal depletion to an extent such that complete removal is achieved at sufficiently large cell volume fractions. The magnitude of the stability constant of nanoparticulate metal-MTc complexes, as derived from refined analysis of macroscopic bulk metal depletion data, is further confirmed by independent electrochemical measurement of metal binding by purified MTc extracts.

  3. Preparation of non-aggregated fluorescent nanodiamonds (FNDs) by non-covalent coating with a block copolymer and proteins for enhancement of intracellular uptake.

    PubMed

    Lee, Jong Woo; Lee, Seonju; Jang, Sangmok; Han, Kyu Young; Kim, Younggyu; Hyun, Jaekyung; Kim, Seong Keun; Lee, Yan

    2013-05-01

    Fluorescent nanodiamonds (FNDs) are very promising fluorophores for use in biosystems due to their high biocompatibility and photostability. To overcome their tendency to aggregate in physiological solutions, which severely limits the biological applications of FNDs, we developed a new non-covalent coating method using a block copolymer, PEG-b-P(DMAEMA-co-BMA), or proteins such as BSA and HSA. By simple mixing of the block copolymer with FNDs, the cationic DMAEMA and hydrophobic BMA moieties can strongly interact with the anionic and hydrophobic moieties on the FND surface, while the PEG block can form a shell to prevent the direct contact between FNDs. The polymer-coated FNDs, along with BSA- and HSA-coated FNDs, showed non-aggregation characteristics and maintained their size at the physiological salt concentration. The well-dispersed, polymer- or protein-coated FNDs in physiological solutions showed enhanced intracellular uptake, which was confirmed by CLSM. In addition, the biocompatibility of the coated FNDs was expressly supported by a cytotoxicity assay. Our simple non-covalent coating with the block copolymer, which can be easily modified by various chemical methods, projects a very promising outlook for future biomedical applications, especially in comparison with covalent coating or protein-based coating.

  4. Electrochemistry and spectroelectrochemistry of bioactive hydroxyquinolines: a mechanistic study.

    PubMed

    Sokolová, Romana; Nycz, Jacek E; Ramešová, Šárka; Fiedler, Jan; Degano, Ilaria; Szala, Marcin; Kolivoška, Viliam; Gál, Miroslav

    2015-05-21

    The oxidation mechanism of selected hydroxyquinoline carboxylic acids such as 8-hydroxyquinoline-7-carboxylic acid (1), the two positional isomers 2-methyl-8-hydroxyquinoline-7-carboxylic acid (3) and 2-methyl-5-hydroxyquinoline-6-carboxylic acid (4), as well as other hydroxyquinolines were studied in aprotic environment using cyclic voltammetry, controlled potential electrolysis, in situ UV-vis and IR spectroelectrochemistry, and HPLC-MS/MS techniques. IR spectroelectrochemistry showed that oxidation unexpectedly proceeds together with protonation of the starting compound. We proved that the nitrogen atom in the heterocycle of hydroxyquinolines is protonated during the apparent 0.7 electron oxidation process. This was rationalized by the autodeprotonation reaction by another two starting molecules of hydroxyquinoline, so that the overall oxidation mechanism involves two electrons and three starting molecules. Both the electrochemical and spectroelectrochemical results showed that the oxidation mechanism is not influenced by the presence of the carboxylic group in the chemical structure of hydroxyquinolines, as results from oxidation of 2,7-dimethyl-5-hydroxyquinoline (6). In the presence of a strong proton acceptor such as pyridine, the oxidation ECEC process involves two electrons and two protons per one molecule of the hydroxyquinoline derivative. The electron transfer efficiency of hydroxyquinolines in biosystems may be related to protonation of biocompounds containing nitrogen bases. Molecular orbital calculations support the experimental findings.

  5. Resolving the Origins of Crystalline Anharmonicity Using Terahertz Time-Domain Spectroscopy and ab Initio Simulations.

    PubMed

    Ruggiero, Michael T; Zeitler, J Axel

    2016-11-17

    Anharmonicity has been shown to be an important piece of the fundamental framework that dictates numerous observable phenomena. In particular, anharmonicity is the driving force of vibrational relaxation processes, mechanisms that are integral to the proper function of numerous chemical processes. However, elucidating its origins has proven difficult due to experimental and theoretical challenges, specifically related to separating the anharmonic contributions from other unrelated effects. While no one technique is particularly suited for providing a complete picture of anharmonicity, by combining multiple complementary methods such a characterization can be made. In this study the role of individual atomic interactions on the anharmonic properties of crystalline purine, the building block of many DNA and RNA nucleobases, is studied by experimental terahertz time-domain spectroscopy and first-principles density functional theory (DFT) and ab initio molecular dynamics simulations (AIMD). In particular, the detailed vibrational information provided by the DFT calculations is used to interpret the atomic origins of anharmonic-related effects as determined by the AIMD calculations, which are in good agreement with the experimental data. The results highlight that anharmonicity is especially pronounced in the intermolecular interactions, particularly along the amine hydrogen bond coordinate, and yields valuable insight into what is similarly observed complex biosystems and crystalline solids.

  6. Analytical model of solutions of (2+1)-D heat convection equations in a shape memory alloy device immersed in a blood vessel

    NASA Astrophysics Data System (ADS)

    Maher Abourabia, Aly; Hassan, Kawsar Mohammad; Abo-Elghar, Eman Mohammad

    2015-02-01

    We investigate a bio-system composed of a shape memory alloy (SMA) immersed and subjected to heat convection in a blood vessel, affected by heart beats that create a wave motion of long wavelength. The tackled model in (2+1)-D is based on the continuity and momentum equations for the fluid phase, besides; the state of the SMA are described via previous works in the form of statistical distributions of energy for both Martensite and Austenite phases. The solution based on the reductive perturbation technique gives a thermal diffusion-like equation as a key for expressing the temperature and velocity components of the blood. In terms of two cases concerning the difference between the wave numbers in the perpendicular directions, it is found that the system's temperature increases nonlinearly from a minimum initial temperature 293 K (20 °C) up to a maximum value about 316.68 K (43.68 °C), then tends to decrease along the blood flow (anisotropy of K and L) direction. In both cases it is observed that the SMA acquires most of this temperature raising not the blood because of its conventional biological limits (37-40 °C). The range of the heart beats wave numbers characteristic for each person plays an important role in realizing phase changes in the anisotropic case leading to the formation of the hysteresis loops Martensite-Austenite-Martensite or vice versa, according to the energy variation. The entropy generation σ is investigated for the system (Blood + SMA), it predicts that along the flow direction the system gains energy convectively up to a maximum value, then reverses his tendency to gradually loosing energy passing by the equilibrium state, then the system looses energy to the surroundings by the same amount which was gained beforehand. The loss diminishes but stops before arriving to equilibrium again. For certain differences in wave numbers the system starts to store energy again after it passes by the state of equilibrium for the second time. In the curves of σ the common points of intersections can be looked for as the positions where the phase changes take place. It is observed that the effect of heat transfer is dominated over the viscous dissipation substantially; this is illustrated by the irreversibility distribution ratio ϕ and the Bejan number. On the other hand this is assured by the smallness of the ratio between the initial effect of shear viscosity to the initial thermal effect in the alloy (Γ ≈ 10-8). Furthermore, this allows the SMA to reveal the properties of phase change in order, for instance, to prevent the passage of large clots from reaching the lungs.

  7. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies.

    PubMed

    Cang-Rong, Jason Teng; Pastorin, Giorgia

    2009-06-24

    In the last decade, many environmental organizations have devoted their efforts to identifying renewable biosystems, which could provide sustainable fuels and thus enhance energy security. Amidst the myriad of possibilities, some biofuels make use of different types of waste biomasses, and enzymes are often employed to hydrolyze these biomasses and produce sugars that will be subsequently converted into ethanol. In this project, we aimed to bridge nanotechnology and biofuel production: here we report on the activity and structure of the enzyme amyloglucosidase (AMG), physically adsorbed or covalently immobilized onto single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs). In fact, carbon nanotubes (CNTs) present several properties that render them ideal support systems, without the diffusion limitations displayed by porous material and with the advantage of being further functionalizable at their surface. Chemical ligation was achieved both on oxidized nanotubes (via carbodiimide chemistry), as well as on amino-functionalized nanotubes (via periodate-oxidized AMG). Results showed that AMG retained a certain percentage of its specific activity for all enzyme-carbon nanotubes complexes prepared, with the physically adsorbed samples displaying better catalytic efficiency than the covalently immobilized samples. Analysis of the enzyme's structure through circular dichroism (CD) spectroscopy revealed significant structural changes in all samples, the degree of change being consistent with the activity profiles. This study proves that AMG interacts differently with carbon nanotubes depending on the method employed. Due to the higher activity reported by the enzyme physically adsorbed onto CNTs, these samples demonstrated a vast potential for further development. At the same time, the possibility of inducing magnetic properties into CNTs offers the opportunity to easily separate them from the original solution. Hence, substances to which they have been attached can be separated from a reaction medium, or directed by an external magnetic field to achieve efficient biofuel production. This paves the way for future design of efficient CNT-enzyme nanostructure bioreactors.

  8. Efficiency of fluorescence and reflectance imaging as complementary tools for early warning of stress effects on plants

    NASA Astrophysics Data System (ADS)

    Krumov, A.; Nikolova, A.; Vassilev, N.; Vassilev, V.

    Monitoring of terrestrial vegetation for the needs of agriculture, forestry and scientific investigation has demonstrated significant contribution to Earth' sciences in general and particular in ecological surveys and disaster management. Remote sensing of specific vegetation signature by space-born instruments is the only technique allowing large scale (regional or global) repeated observation, which can be used for early warning of natural hazards. Nowadays reflectance spectra are the main optical signatures used for monitoring of plant biomes. However, such a spectrum provides only data primarily related to the total quantity of vegetation and the concentration of their constituents. In fact, changes in the reflectance signature appear only after serious damage of the bio-systems has occurred. Thus, the use of reflectance signal as an early indicator of stress factors is rather impossible. More recently, the interest of the scientific community is increasingly devoted to the vegetation fluorescence emission, known to be an intrinsic early indicator of plant photosynthetic activity. With respect to reflectance, fluorescence is more specific as an observable of the basic biophysical processes in the plant cells. Several projects dedicated to remote measurements of solar-induced plant fluorescence, have shown the feasibility the fluorescence signal to be remotely sensed from a satellite altitudes. However, the correlation between reflectance and fluorescence still needs to be investigated. This work presents a set of experiments aimed to investigate the link between reflectance and fluorescence emission under controlled illumination conditions. They were performed in a specially designed laboratory bio chamber. The hardware of the bio-chamber allows monitoring of the plants vitality both by fluorescence and reflectance spectral imaging. Different types of stress factors (water, drought stress, acid impact etc.) were investigated. The acquired fluorescence and spectral data are analysed, interpreted and compared by their sensibility, rapidity of changes in response to stress changes, and informational diversity. Selected images illustrate an early detection of plant dysfunction and also regeneration of plants after removing of the negative factors.

  9. Inner hydrogen atom transfer in benzo-fused low symmetrical metal-free tetraazaporphyrin and phthalocyanine analogues: density functional theory studies.

    PubMed

    Qi, Dongdong; Zhang, Yuexing; Cai, Xue; Jiang, Jianzhuang; Bai, Ming

    2009-02-01

    Density functional theory (DFT) calculations were carried out to study the inner hydrogen atom transfer in low symmetrical metal-free tetrapyrrole analogues ranging from tetraazaporphyrin H(2)TAP (A(0)B(0)C(0)D(0)) to naphthalocyanine H(2)Nc (A(2)B(2)C(2)D(2)) via phthalocyanine H(2)Pc (A(1)B(1)C(1)D(1)). All the transition paths of sixteen different compounds (A(0)B(0)C(0)D(0)-A(2)B(2)C(2)D(2) and A(0)B(0)C(m)D(n), m

  10. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies

    NASA Astrophysics Data System (ADS)

    Cang-Rong, Jason Teng; Pastorin, Giorgia

    2009-06-01

    In the last decade, many environmental organizations have devoted their efforts to identifying renewable biosystems, which could provide sustainable fuels and thus enhance energy security. Amidst the myriad of possibilities, some biofuels make use of different types of waste biomasses, and enzymes are often employed to hydrolyze these biomasses and produce sugars that will be subsequently converted into ethanol. In this project, we aimed to bridge nanotechnology and biofuel production: here we report on the activity and structure of the enzyme amyloglucosidase (AMG), physically adsorbed or covalently immobilized onto single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs). In fact, carbon nanotubes (CNTs) present several properties that render them ideal support systems, without the diffusion limitations displayed by porous material and with the advantage of being further functionalizable at their surface. Chemical ligation was achieved both on oxidized nanotubes (via carbodiimide chemistry), as well as on amino-functionalized nanotubes (via periodate-oxidized AMG). Results showed that AMG retained a certain percentage of its specific activity for all enzyme-carbon nanotubes complexes prepared, with the physically adsorbed samples displaying better catalytic efficiency than the covalently immobilized samples. Analysis of the enzyme's structure through circular dichroism (CD) spectroscopy revealed significant structural changes in all samples, the degree of change being consistent with the activity profiles. This study proves that AMG interacts differently with carbon nanotubes depending on the method employed. Due to the higher activity reported by the enzyme physically adsorbed onto CNTs, these samples demonstrated a vast potential for further development. At the same time, the possibility of inducing magnetic properties into CNTs offers the opportunity to easily separate them from the original solution. Hence, substances to which they have been attached can be separated from a reaction medium, or directed by an external magnetic field to achieve efficient biofuel production. This paves the way for future design of efficient CNT-enzyme nanostructure bioreactors.

  11. Prognostic significance of c-KIT in vulvar cancer: bringing this molecular marker from bench to bedside

    PubMed Central

    2012-01-01

    Background Vulvar carcinomas are rare tumors, and there is limited data regarding molecular alterations. To our knowledge there are no published studies on c-KIT and squamous cell carcinomas of the vulva (VSCC). Although there are a significant number of other tumor types which express c-KIT, there remains controversy as to its relationship to patient outcome. Thus, we wished to investigate such controversial findings to determine the prognostic importance of c-KIT by evaluating its protein and mRNA expression in VSCCs, correlating these findings with clinicopathological features and Human Papillomavirus (HPV) infection. Methods c-KIT expression was scored by immunohistochemistry (IHC) as positive or negative in 139 formalin-fixed paraffin-embedded (FFPE) cases of vulvar carcinomas arrayed in a tissue microarray (TMA) using the DAKO® A4502 rabbit polyclonal c-KIT antibody (diluted 1:100). c-KIT mRNA was evaluated by qRT-PCR in 34 frozen samples from AC Camargo Hospital Biobank (17 tumoral and 17 non-tumoral samples) using TaqMan probes–Applied Biosystems [Hs00174029_m1]. HPV genotyping was assessed in 103 samples using Linear Array® HPV Genotyping Test kit (Roche Molecular Diagnostics, Basel, Switzerland). All results obtained were correlated with clinical and pathological data of the patients. Results c-KIT protein was positive by immunohistochemistry in 70.5% of the cases and this was associated with a higher global survival (p = 0.007), a higher recurrence-free survival (p < 0.0001), an absence of associated lesions (p = 0.001), lymph node metastasis (p = 0.0053), and HPV infection (p = 0.034). Furthermore, c-KIT mRNA quantitation revealed higher levels of transcripts in normal samples compared to tumor samples (p = 0,0009). Conclusions Our findings indicate that those vulvar tumors staining positively for c-KIT present better prognosis. Thus, positivity of c-KIT as evaluated by IHC may be a good predictor for use of more conservative surgery techniques and lymph node dissection in vulvar cancer. So part of the essence of our study is to see the possibility of translating our current results from the bench to the bedside. This will help provide patients a more appropriate, less mutilating treatment, in order to keep the maximum physical and psychic quality as possible to these women. PMID:22839358

  12. Recovery of human DNA profiles from poached deer remains part 2: improved recovery protocol without the need for LCN analysis.

    PubMed

    Tobe, Shanan S; Bailey, Stuart; Govan, James; Welch, Lindsey A

    2013-03-01

    Although poaching is a common wildlife crime, the high and prohibitive cost of specialised animal testing means that many cases are left un-investigated. We previously described a novel approach to wildlife crime investigation that looked at the identification of human DNA on poached animal remains (Tobe, Govan and Welch, 2011). Human DNA was successfully isolated and amplified from simulated poaching incidents, however a low template protocol was required which made this method unsuitable for use in many laboratories. We now report on an optimised recovery and amplification protocol which removes the need for low template analysis. Samples from 10 deer (40 samples total - one from each leg) analysed in the original study were re-analysed in the current study with an additional 11 deer samples. Four samples analysed using Chelex did not show any results and a new method was devised whereby the available DNA was concentrated. By combining the DNA extracts from all tapings of the same deer remains followed by concentration, the recovered quantity of human DNA was found to be 29.5pg±43.2pg, 31× greater than the previous study. The use of the Investigator Decaplex SE (QIAGEN) STR kit provided better results in the form of more complete profiles than did the AmpFℓSTR® SGM Plus® kit at 30cycles (Applied Biosystems). Re-analysis of the samples from the initial study using the new, optimised protocol resulted in an average increase of 18% of recovered alleles. Over 17 samples, 71% of the samples analysed using the optimised protocol showed sufficient amplification for comparison to a reference profile and gave match probabilities ranging from 7.7690×10(-05) to 2.2706×10(-14). The removal of low template analysis means this optimised method provides evidence of high probative value and is suitable for immediate use in forensic laboratories. All methods and techniques used are standard and are compatible with current SOPs. As no high cost non-human DNA analysis is required the overall process is no more expensive than the investigation of other volume crime samples. The technique is suitable for immediate use in poaching incidents. Copyright © 2012 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Design of electro-active polymer gels as actuator materials

    NASA Astrophysics Data System (ADS)

    Popovic, Suzana

    Smart materials, alternatively called active or adaptive, differ from passive materials in their sensing and activation capability. These materials can sense changes in environment such as: electric field, magnetic field, UV light, pH, temperature. They are capable of responding in numerous ways. Some change their stiffness properties (electro-rheological fluids), other deform (piezos, shape memory alloys, electrostrictive materials) or change optic properties (electrochromic polymers). Polymer gels are one of such materials which can change the shape, volume and even optical properties upon different applied stimuli. Due to their low stiffness property they are capable of having up to 100% of strain in a short time, order of seconds. Their motion resembles the one of biosystems, and they are often seen as possible artificial muscle materials. Despite their delicate nature, appropriate design can make them being used as actuator materials which can form controllable surfaces and mechanical switches. In this study several different groups of polymer gel material were investigated: (a) acrylamide based gels are sensitive to pH and electric field and respond in volume change, (b) polyacrylonitrile (PAN) gel is sensitive to pH and electric field and responds in axial strain and bending, (c) polyvinylalcohol (PVA) gel is sensitive to electric field and responds in axial strain and bending and (d) perfluorinated sulfonic acid membrane, Nafion RTM, is sensitive to electric field and responds in bending. Electro-mechanical and chemo-mechanical behavior of these materials is a function of a variety of phenomena: polymer structure, affinity of polymer to the solvent, charge distribution within material, type of solvent, elasticity of polymer matrix, etc. Modeling of this behavior is a task aimed to identify what is driving mechanism for activation and express it in a quantitative way in terms of deformation of material. In this work behavior of the most promising material as an actuator material, Nafion 117, was simulated. It was suggested that dominant phenomenon causing the material deformation is non-uniform water distribution within a material, that causes it to expand on one side and shrink on the other, macroscopically inducing bending of membrane. Uneven distribution of water is believed to be under the influence of two processes, electroosmosis and self-diffusion of free water.

  14. [Impact of obesity-related gene polymorphism on risk of obesity and metabolic disorder in childhood].

    PubMed

    Zhang, Meixian; Zhao, Xiaoyuan; Xi, Bo; Shen, Yue; Wu, Lijun; Cheng, Hong; Hou, Dongqing; Mi, Jie

    2014-09-01

    To examine the impact of single nucleotide polymorphisms in obesity-related genes on risk of obesity and metabolic disorder in childhood. A total of 3 503 Chinese children aged 6 to 18 years participated in the study, including 1 229 obese, 655 overweight and 1 619 normal weight children (diagnosed by the Chinese age- and sex- specific BMI cutoffs). Body size parameters were assessed and venipuncture blood samples were collected after a 12-hour overnight fast. Plasma glucose, insulin and serum lipid profiles were measured.Genomic DNA was isolated from peripheral blood white cells using the salt fractionation method. A total of 11 single nucleotide polymorphisms were genotyped by TaqMan allelic discrimination assays with the GeneAmp 7900 sequence detection system (Applied Biosystems, Foster City, CA, USA) (FTO rs9939609, MC4R rs17782313, GNPDA2 rs10938397, FAIM2 rs7138803, BDNF rs6265, NPC1 rs1805081, PCSK1 rs6235, KCTD15 rs29941, BAT2 rs2844479, SEC16B rs10913469 and SH2B1 rs4788102). Multiple factor analysis was performed to estimate the association between the variant and obesity-related traits. The false discovery rate (FDR) approach was used to correct for multiple comparisons. After sex, age and pubertal stage adjustment and correction for multiple testing, the rs9939609-A, rs17782313-C, rs10938397-G, and rs7138803-A alleles were associated with higher BMI (β = 0.352-0.747), fat mass percentage(β = 0.568-1.113), waist circumference (β = 0.885-1.649) and waist-to-height ratio(β = 0.005-0.010) (all P values < 0.01) in Chinese children. The rs6265-G allele increased BMI(β = 0.251, P = 0.020). The rs9939609-A, rs17782313-C, and rs10938397-G and rs6265-G alleles were also associated with risk of obesity (OR = 1.386, 95%CI:1.171-1.642; OR = 1.367, 95%CI:1.196-1.563; OR = 1.242, 95%CI:1.102-1.400; OR = 1.156, 95%CI:1.031-1.296).Rs7138803 was associated with risk of obesity only in boys (OR = 1.234, 95%CI:1.043-1.460). GNPDA2 rs10938397-G allele was associated with risk of insulin resistance(OR = 1.205, 95%CI:1.069-1.359), but there was no significance after adjusting for BMI. The association of FTO rs9939609-A, MC4R rs17782313-C, GNPDA2 rs10938397-G, and FAIM2 rs7138803-A with higher BMI, fat mass percentage, waist circumference, and waist-to height ratio and risk of obesity, and BDNF rs6265-G allele may increase BMI and obesity risk in Chinese children. GNPDA2 rs10938397-G may increase the risk of childhood insulin resistance depending on BMI.

  15. Advanced water splitting for green hydrogen gas production through complete oxidation of starch by in vitro metabolic engineering.

    PubMed

    Kim, Jae-Eung; Kim, Eui-Jin; Chen, Hui; Wu, Chang-Hao; Adams, Michael W W; Zhang, Y-H Percival

    2017-11-01

    Starch is a natural energy storage compound and is hypothesized to be a high-energy density chemical compound or solar fuel. In contrast to industrial hydrolysis of starch to glucose, an alternative ATP-free phosphorylation of starch was designed to generate cost-effective glucose 6-phosphate by using five thermophilic enzymes (i.e., isoamylase, alpha-glucan phosphorylase, 4-α-glucanotransferase, phosphoglucomutase, and polyphosphate glucokinase). This enzymatic phosphorolysis is energetically advantageous because the energy of α-1,4-glycosidic bonds among anhydroglucose units is conserved in the form of phosphorylated glucose. Furthermore, we demonstrated an in vitro 17-thermophilic enzyme pathway that can convert all glucose units of starch, regardless of branched and linear contents, with water to hydrogen at a theoretic yield (i.e., 12 H 2 per glucose), three times of the theoretical yield from dark microbial fermentation. The use of a biomimetic electron transport chain enabled to achieve a maximum volumetric productivity of 90.2mmol of H 2 /L/h at 20g/L starch. The complete oxidation of starch to hydrogen by this in vitro synthetic (enzymatic) biosystem suggests that starch as a natural solar fuel becomes a high-density hydrogen storage compound with a gravimetric density of more than 14% H 2 -based mass and an electricity density of more than 3000Wh/kg of starch. Copyright © 2017. Published by Elsevier Inc.

  16. Toxicant inhibition in activated sludge: fractionation of the physiological status of bacteria.

    PubMed

    Foladori, P; Bruni, L; Tamburini, S

    2014-09-15

    In wastewater treatment plants the sensitivity of activated sludge to a toxicant depends on the toxicity test chosen, and thus the use of more than one test is suggested. The physiological status of bacteria in response to toxicants was analysed by flow cytometry to distinguish intact, permeabilised, active cells and cells disrupted. Results were compared with respirometry and bioluminescence bioassay (Vibrio fischeri). 3,5-Dichlorophenol (DCP) was used as reference xenobiotic. DCP has a strong effect on cellular integrity, causing an increase in permeabilised and disrupted cells. A reduction of 44-80% of intact cells with 6-30 mgDCP/L for 5h was found. Inhibition of active cells was 25-49%, at 6-30 mgDCP/L for 5h. The bioluminescence bioassay resulted oversensitive to DCP compared to tests based on activated sludge, while oxygen uptake rate was affected similarly to intact cells measured by flow cytometry. Landfill leachate was tested: a detrimental impact on both cellular integrity and enzymatic activity was observed. Reduction of intact cells and active cells was by 32% and 61% respectively after addition of 50% (v/v) of leachate for 5h. The flow cytometry analysis proposed here might be widely applicable in the monitoring of various toxicants and in other aquatic biosystems. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels.

    PubMed

    Soman, Pranav; Chung, Peter H; Zhang, A Ping; Chen, Shaochen

    2013-11-01

    Complex 3D interfacial arrangements of cells are found in several in vivo biosystems such as blood vasculature, renal glomeruli, and intestinal villi. Current tissue engineering techniques fail to develop suitable 3D microenvironments to evaluate the concurrent effects of complex topography and cell encapsulation. There is a need to develop new fabrication approaches that control cell density and distribution within complex 3D features. In this work, we present a dynamic projection printing process that allows rapid construction of complex 3D structures using custom-defined computer-aided-design (CAD) files. Gelatin-methacrylate (GelMA) constructs featuring user-defined spiral, pyramid, flower, and dome micro-geometries were fabricated with and without encapsulated cells. Encapsulated cells demonstrate good cell viability across all geometries both on the scaffold surface and internal to the structures. Cells respond to geometric cues individually as well as collectively throughout the larger-scale patterns. Time-lapse observations also reveal the dynamic nature of mechanical interactions between cells and micro-geometry. When compared to conventional cell-seeding, cell encapsulation within complex 3D patterned scaffolds provides long-term control over proliferation, cell morphology, and geometric guidance. Overall, this biofabrication technique offers a flexible platform to evaluate cell interactions with complex 3D micro-features, with the ability to scale-up towards high-throughput screening platforms. © 2013 Wiley Periodicals, Inc.

  18. Biochemical imaging of tissues by SIMS for biomedical applications

    NASA Astrophysics Data System (ADS)

    Lee, Tae Geol; Park, Ji-Won; Shon, Hyun Kyong; Moon, Dae Won; Choi, Won Woo; Li, Kapsok; Chung, Jin Ho

    2008-12-01

    With the development of optimal surface cleaning techniques by cluster ion beam sputtering, certain applications of SIMS for analyzing cells and tissues have been actively investigated. For this report, we collaborated with bio-medical scientists to study bio-SIMS analyses of skin and cancer tissues for biomedical diagnostics. We pay close attention to the setting up of a routine procedure for preparing tissue specimens and treating the surface before obtaining the bio-SIMS data. Bio-SIMS was used to study two biosystems, skin tissues for understanding the effects of photoaging and colon cancer tissues for insight into the development of new cancer diagnostics for cancer. Time-of-flight SIMS imaging measurements were taken after surface cleaning with cluster ion bombardment by Bi n or C 60 under varying conditions. The imaging capability of bio-SIMS with a spatial resolution of a few microns combined with principal component analysis reveal biologically meaningful information, but the lack of high molecular weight peaks even with cluster ion bombardment was a problem. This, among other problems, shows that discourse with biologists and medical doctors are critical to glean any meaningful information from SIMS mass spectrometric and imaging data. For SIMS to be accepted as a routine, daily analysis tool in biomedical laboratories, various practical sample handling methodology such as surface matrix treatment, including nano-metal particles and metal coating, in addition to cluster sputtering, should be studied.

  19. Longitudinal study on patent citations to academic research articles in nanotechnology (1976-2004)

    NASA Astrophysics Data System (ADS)

    Hu, Daning; Chen, Hsinchun; Huang, Zan; Roco, Mihail C.

    2007-08-01

    Academic nanoscale science and engineering (NSE) research provides a foundation for nanotechnology innovation reflected in patents. About 60% or about 50,000 of the NSE-related patents identified by "full-text" keyword searching between 1976 and 2004 at the United States Patent and Trademark Office (USPTO) have an average of approximately 18 academic citations. The most cited academic journals, individual researchers, and research articles have been evaluated as sources of technology innovation in the NSE area over the 28-year period. Each of the most influential articles was cited about 90 times on the average, while the most influential author was cited more than 700 times by the NSE-related patents. Thirteen mainstream journals accounted for about 20% of all citations. Science, Nature and Proceedings of the National Academy of Sciences (PNAS) have consistently been the top three most cited journals, with each article being cited three times on average. There is another kind of influential journals, represented by Biosystems and Origin of Life, which have very few articles cited but with exceptionally high frequencies. The number of academic citations per year from ten most cited journals has increased by over 17 times in the interval (1990-1999) as compared to (1976-1989), and again over 3 times in the interval (2000-2004) as compared to (1990-1999). This is an indication of increased used of academic knowledge creation in the NSE-related patents.

  20. Enzymes immobilized on amine-terminated ionic liquid-functionalized carbon nanotube for hydrogen peroxide determination.

    PubMed

    Liu, Xiuhui; Bu, Caihong; Nan, Zhihan; Zheng, Lichun; Qiu, Yu; Lu, Xiaoquan

    2013-02-15

    We report on a new approach for the electrochemical detection of hydrogen peroxide (H2O2) based on Cytochrome C (Cyt c) immobilized ionic liquid (IL)-functionalized multi-walled carbon nanotubes (MWCNTs) modified glass carbon electrode (GCE). Functionalization of multi-walled carbon nanotube with amine-terminated ionic liquid materials was characterized using fourier transform infrared spectroscopy (FTIR), UV-vis spectra, and electrochemical impedance spectroscopy (EIS), and the results showed that the covalent modification of MWCNTs with ILs exhibited a high surface area for enzyme immobilization and provided a good microenvironment for Cyt c to retain its bioelectrocatalytic activity toward H2O2. Amperometry was used to evaluate the catalytic activity of the cyt c towards H2O2. The proposed biosensor exhibited a wide linear response range nearly 4 orders of magnitude of H2O2 (4.0 × 10(-8)M-1.0 × 10(-4)M) with a good linearity (0.9980) and a low detection limit of 1.3 × 10(-8)M (based on S/N=3). Furthermore, the biosensor also displays some other excellent characteristics such as high selectivity, good reproducibility and long-term stability. Thus, the biosensor constructed in this study has great potential for detecting H2O2 in the complex biosystems. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. A dynamic metabolic flux analysis of ABE (acetone-butanol-ethanol) fermentation by Clostridium acetobutylicum ATCC 824, with riboflavin as a by-product.

    PubMed

    Zhao, Xinhe; Kasbi, Mayssa; Chen, Jingkui; Peres, Sabine; Jolicoeur, Mario

    2017-12-01

    The present study reveals that supplementing sodium acetate (NaAc) strongly stimulates riboflavin production in acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum ATCC 824 with xylose as carbon source. Riboflavin production increased from undetectable concentrations to ∼0.2 g L -1 (0.53 mM) when supplementing 60 mM NaAc. Of interest, solvents production and biomass yield were also promoted with fivefold acetone, 2.6-fold butanol, and 2.4-fold biomass adding NaAc. A kinetic metabolic model, developed to simulate ABE biosystem, with riboflavin production, revealed from a dynamic metabolic flux analysis (dMFA) simultaneous increase of riboflavin (ribA) and GTP (precursor of riboflavin) (PurM) synthesis flux rates under NaAc supplementation. The model includes 23 fluxes, 24 metabolites, and 72 kinetic parameters. It also suggested that NaAc condition has first stimulated the accumulation of intracellular metabolite intermediates during the acidogenic phase, which have then fed the solventogenic phase leading to increased ABE production. In addition, NaAc resulted in higher intracellular levels of NADH during the whole culture. Moreover, lower GTP-to-adenosine phosphates (ATP, ADP, AMP) ratio under NaAc supplemented condition suggests that GTP may have a minor role in the cell energetic metabolism compared to its contribution to riboflavin synthesis. © 2017 Wiley Periodicals, Inc.

  2. Spectroscopic and electrochemical investigation with coordination stabilities: Mononuclear manganese(II) complexes derived from different constituents macrocyclic ligands

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv; Chnadra, S.; Mishra, Parashuram

    2007-12-01

    Since the manganese(II) complexes are known as having a high degree of stability, some of them may be able to play a very important role in biosystems. We prepared manganese(II) complexes with different chromospheres containing macrocyclic ligands bearing N, S and O like functional donor atoms in order to obtain different models of compounds. So these new manganese(II) complexes were derived from macrocyclic ligands by chelating them with metal ions. Thus, two macrocyclic ligands, L 1: 2,4-diphenyl-1,5-diaza-8,12-dioxo-6,7:13,14-dibenzocyclo tetradeca-1,4-diene[N 2O 2]ane; L 2: 2,4,9,11-tetraphenyl-6,13-dimethyl-1,5,8,12-traazacyclotertr-adeca-1,4,8,11-tetraene[N 4]ane; and two more different form first one viz.—L 3: 1,7-diaza-4-monothia-10,14-dioxo-8,9:15,16-cyclohexadecane[N 2O 2S]ane and L 4: 4,13-diaoxa-1,7,10,16-hexazacyclooctadecane[N 4O 2]ane were prepared and their capacity to retain the manganese(II) ion in solid as well as aqueous solution was determined from various physiochemical techniques viz: characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, mass, IR, electronic, ESR spectral studies and cyclic voltammetric measurements.

  3. Can we trust intraoperative culture results in nonunions?

    PubMed

    Palmer, Michael P; Altman, Daniel T; Altman, Gregory T; Sewecke, Jeffrey J; Ehrlich, Garth D; Hu, Fen Z; Nistico, Laura; Melton-Kreft, Rachel; Gause, Trent M; Costerton, John W

    2014-07-01

    To identify the presence of bacterial biofilms in nonunions comparing molecular techniques (multiplex polymerase chain reaction and mass spectrometry, fluorescent in situ hybridization) with routine intraoperative cultures. Thirty-four patients with nonunions were scheduled for surgery and enrolled in this ongoing prospective study. Intraoperative specimens were collected from removed implants, surrounding tissue membrane, and local soft tissue followed by standard culture analysis, Ibis's second generation molecular diagnostics (Ibis Biosystems), and bacterial 16S rRNA-based fluorescence in situ hybridization (FISH). Confocal microscopy was used to visualize the tissue specimens reacted with the FISH probes, which were chosen based on the Ibis analysis. Thirty-four patient encounters were analyzed. Eight were diagnosed as infected nonunions by positive intraoperative culture results. Ibis confirmed the presence of bacteria in all 8 samples. Ibis identified bacteria in a total of 30 of 34 encounters, and these data were confirmed by FISH. Twenty-two of 30 Ibis-positive samples were culture-negative. Four samples were negative by all methods of analysis. No samples were positive by culture, but negative by molecular techniques. Our preliminary data indicate that molecular diagnostics are more sensitive for identifying bacteria than cultures in cases of bony nonunion. This is likely because of the inability of cultures to detect biofilms and bacteria previously exposed to antibiotic therapy. Diagnostic Level I. See Instructions for Authors for a complete description of levels of evidence.

  4. Dynamic modeling of green algae cultivation in a photobioreactor for sustainable biodiesel production.

    PubMed

    Del Rio-Chanona, Ehecatl A; Liu, Jiao; Wagner, Jonathan L; Zhang, Dongda; Meng, Yingying; Xue, Song; Shah, Nilay

    2018-02-01

    Biodiesel produced from microalgae has been extensively studied due to its potentially outstanding advantages over traditional transportation fuels. In order to facilitate its industrialization and improve the process profitability, it is vital to construct highly accurate models capable of predicting the complex behavior of the investigated biosystem for process optimization and control, which forms the current research goal. Three original contributions are described in this paper. Firstly, a dynamic model is constructed to simulate the complicated effect of light intensity, nutrient supply and light attenuation on both biomass growth and biolipid production. Secondly, chlorophyll fluorescence, an instantly measurable variable and indicator of photosynthetic activity, is embedded into the model to monitor and update model accuracy especially for the purpose of future process optimal control, and its correlation between intracellular nitrogen content is quantified, which to the best of our knowledge has never been addressed so far. Thirdly, a thorough experimental verification is conducted under different scenarios including both continuous illumination and light/dark cycle conditions to testify the model predictive capability particularly for long-term operation, and it is concluded that the current model is characterized by a high level of predictive capability. Based on the model, the optimal light intensity for algal biomass growth and lipid synthesis is estimated. This work, therefore, paves the way to forward future process design and real-time optimization. © 2017 Wiley Periodicals, Inc.

  5. Bioeffectiveness of Cosmic Rays Near the Earth Surface

    NASA Astrophysics Data System (ADS)

    Belisheva, N. K.

    2014-10-01

    Experimental studies of the dynamics of morphological and functional state of the diverse biosystems (microflora, plant Maranta leuconeura «Fascinator», cell cultures, human peripheral blood, the human body ) have shown that geocosmical agents modulated the functional state of biological systems Belisheva 2006; Belisheva et all 2007 ) . First time on the experimental data showed the importance of the increase in the fluxes of solar cosmic rays (CRs ) with high energies (Belisheva et all 2002; 2012; Belisheva, Lammer, Biernat, 2004) and galactic cosmic ray variations (Belisheva et al, 2005; 2006; Vinnichenko Belisheva, 2009 ) near the Earth surface for the functional state of biosystems. The evidence of the presence of the particles with high bioeffectiveness in the secondary cosmic rays was obtained by simulating the particle cascades in the atmosphere, performed by using Geant4 (Planetocosmics, based on the Monte Carlo code (Maurchev et al, 2011), and experimental data, where radiobiological effects of cosmic rays were revealed. Modeling transport of solar protons through the Earth's atmosphere, taking into account the angular and energy distributions of secondary particles in different layers of the atmosphere, allowed us to estimate the total neutron flux during three solar proton events, accompanied by an increase in the intensity of the nucleon component of secondary cosmic rays - Ground Level Enhancement GLE (43, 44, 45) in October 1989 (19, 22, 24 October). The results obtained by simulation were compared with the data of neutron monitors and balloon measurements made during solar proton events. Confirmation of the neutron fluxes near the Earth surface during the GLE (43, 44, 45) were obtained in the experiments on the cellular cultures (Belisheva et al. 2012). A direct evidence of biological effects of CR has been demonstrated in experiments with three cellular lines growing in culture during three events of Ground Level Enhancement (GLEs) in the neutron count rate detected by ground-based neutron monitor in October, 1989. Various phenomena associated with DNA lesion on the cellular level demonstrate coherent dynamics of radiation effects in all cellular lines coincident with the time of arrival of high-energy solar particles to the near-Earth space and with the main peak in GLE. These results were obtained in the course of six separate experiments, with partial overlapping of the time of previous and subsequent experiments, which started and finished in the quiet period of solar activity (SA).A significant difference between the values of multinuclear cells in all cellular lines in the quiet period and during GLE events indicates that the cause of radiation effects in the cell cultures is an exposure of cells to the secondary solar CR near the Earth's surface. Calculations of the total flux of particles with the greatest bioeffectiveness and ambient dose equivalent neutron fluxes in different energy ranges showed that taking into account the duration of all cases GLE (19, 22, 24 October 1989), the cellular cultures were irradiated by ambient dose equivalent equal 217 microSv cm^2, which corresponds to a little less than half of the radiation dose astronauts during the day in Earth orbit (Reitz et.all, 2005; Semkova et al, 2012) and more than the average dose received by pilots per flying hour in 1997 (2.96 mSv h -1) (Langner et all, 2004). These doses are sufficient to cause genetic damages as material for the variability and the subsequent evolution of biological systems. Results of experiments conducted on cellular cultures during a great solar proton events showed that the main damages of the genetic material in the cellular nuclei appeared with increasing of the spectral hardness of solar protons that corresponded to the arrival of the particles with energies > 850 MeV in the near Earth space. The analysis shows that the prevalence of certain forms of congenital malformations in children (CDF) at high latitudes was associated with increases in fluxes of CR and with solar proton events accompanied by GLE cases. Furthermore, the frequency of incidence of all forms of congenital malformations in children increased in the years with low solar activity associated with an increase in the intensity of Cosmic rays. We found that the incidence of certain diseases of children and adults in Arctic region were higher in the year with high intensity of cosmic rays ( Belisheva, Talykova, Melnik, 2011). The results show that the GLE cases, associated with increase in particle fluxes of hard energy spectrum, can trigger DNA damage in human cells, as in the case of cellular cultures during solar proton events. These results are of basic importance for the recognition of the biological effectiveness of the background fluctuations of Cosmic rays

  6. Method and system for an on-chip AC self-test controller

    DOEpatents

    Flanagan, John D [Rhinebeck, NY; Herring, Jay R [Poughkeepsie, NY; Lo, Tin-Chee [Fishkill, NY

    2008-09-30

    A method and system for performing AC self-test on an integrated circuit that includes a system clock for use during normal operation are provided. The method includes applying a long data capture pulse to a first test register in response to the system clock, applying an at speed data launch pulse to the first test register in response to the system clock, inputting the data from the first register to a logic path in response to applying the at speed data launch pulse to the first test register, applying an at speed data capture pulse to a second test register in response to the system clock, inputting the logic path output to the second test register in response to applying the at speed data capture pulse to the second test register, and applying a long data launch pulse to the second test register in response to the system clock.

  7. 40 CFR 63.1083 - Does this subpart apply to my heat exchange system?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Applicability for Heat Exchange Systems § 63.1083 Does this subpart apply to my heat exchange system? The provisions of this subpart apply to your heat exchange system if you own...

  8. 40 CFR 63.1083 - Does this subpart apply to my heat exchange system?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Applicability for Heat Exchange Systems § 63.1083 Does this subpart apply to my heat exchange system? The provisions of this subpart apply to your heat exchange system if you own...

  9. 40 CFR 63.1083 - Does this subpart apply to my heat exchange system?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Applicability for Heat Exchange Systems § 63.1083 Does this subpart apply to my heat exchange system? The provisions of this subpart apply to your heat exchange system if you own...

  10. 40 CFR 63.1083 - Does this subpart apply to my heat exchange system?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Applicability for Heat Exchange Systems § 63.1083 Does this subpart apply to my heat exchange system? The provisions of this subpart apply to your heat exchange system if you own...

  11. 30 CFR 260.111 - What conditions apply to the bidding systems that MMS uses?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What conditions apply to the bidding systems... INTERIOR OFFSHORE OUTER CONTINENTAL SHELF OIL AND GAS LEASING Bidding Systems General Provisions § 260.111 What conditions apply to the bidding systems that MMS uses? (a) For each of the bidding systems in...

  12. Method and system for an on-chip AC self-test controller

    DOEpatents

    Flanagan, John D.; Herring, Jay R.; Lo, Tin-Chee

    2006-06-06

    A method for performing AC self-test on an integrated circuit, including a system clock for use during normal operation. The method includes applying a long data capture pulse to a first test register in response to the system clock, and further applying at an speed data launch pulse to the first test register in response to the system clock. Inputting the data from the first register to a logic path in response to applying the at speed data launch pulse to the first test register. Applying at speed data capture pulse to a second test register in response to the system clock. Inputting the output from the logic path to the second test register in response to applying the at speed data capture pulse to the second register. Applying a long data launch pulse to the second test register in response to the system clock.

  13. [Theoretical model study about the application risk of high risk medical equipment].

    PubMed

    Shang, Changhao; Yang, Fenghui

    2014-11-01

    Research for establishing a risk monitoring theoretical model of high risk medical equipment at applying site. Regard the applying site as a system which contains some sub-systems. Every sub-system consists of some risk estimating indicators. After quantizing of each indicator, the quantized values are multiplied with corresponding weight and then the products are accumulated. Hence, the risk estimating value of each subsystem is attained. Follow the calculating method, the risk estimating values of each sub-system are multiplied with corresponding weights and then the product is accumulated. The cumulative sum is the status indicator of the high risk medical equipment at applying site. The status indicator reflects the applying risk of the medical equipment at applying site. Establish a risk monitoring theoretical model of high risk medical equipment at applying site. The model can monitor the applying risk of high risk medical equipment at applying site dynamically and specially.

  14. Near-infrared radiation curable multilayer coating systems and methods for applying same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, Mark P; Verdun, Shelley D; Post, Gordon L

    2015-04-28

    Multilayer coating systems, methods of applying and related substrates are disclosed. The coating system may comprise a first coating comprising a near-IR absorber, and a second coating deposited on a least a portion of the first coating. Methods of applying a multilayer coating composition to a substrate may comprise applying a first coating comprising a near-IR absorber, applying a second coating over at least a portion of the first coating and curing the coating with near infrared radiation.

  15. Hyperuricemia and metabolic syndrome in type 2 diabetes mellitus patients at Hawassa university comprehensive specialized hospital, South West Ethiopia.

    PubMed

    Woyesa, Shiferaw Bekele; Hirigo, Agete Tadewose; Wube, Temesgen Bizuayehu

    2017-12-12

    Metabolic syndrome is a cluster of the most dangerous heart attack risk factors such as diabetes and prediabetes, abdominal obesity, high cholesterol and high blood pressure. Hyperuricemia is a condition in which the serum uric acid concentration is greater than 5.5 mg per deciliter for child and greater than 7.2 and 6.0 mg per deciliters for male and female adults respectively. A cross-sectional study was conducted to determine the magnitude of hyperuricemia and associated factors among type 2 diabetes mellitus patients at Hawassa Comprehensive Specialized Hospital (HCSH) from February 28 to May 30 /2017. A random sampling technique was used to include 319 study subjects and a signed consent had been provided by each study subject before running any data collection. An interviewer administered structured questionnaire was used to collect socio-demographic and some clinically useful data. In addition to this, we reviewed the records of the study subjects to obtain other useful clinical data. Five milliliter blood specimen was collected from each study subjects after overnight fasting. A25TM Bio-System Random Access chemistry analyzer was used for blood sample analysis. All data were checked visually, coded and entered into epi-data version 3.4 and statistical analysis was performed using SPSS version 20.0 software. Bi-variate and multivariate logistic regressions were used to determine the association between explanatory and the outcome variables. The prevalence of hyperuricemia and metabolic syndrome among type 2 diabetic patients in the study area were 33.8%(n = 106) and 70.1% (n = 220) respectively. Having age greater or equal to 45 years (AOR: 1.9, CI: 1.-3.2, P value =0.015) and having metabolic syndrome (AOR: 2.6, CI: 1.5-4.7, P value = 0.001) were the determinant variables for hyperuricemia among type 2 diabetic patients. There was high prevalence of hyperuricemia among type 2 diabetic patients with high prevalence of metabolic syndrome. Therefore, regular health information about life style modification, early diagnosis and treatment for hyperuricemia and metabolic syndrome are essential to reduce hyperuricemia and metabolic syndrome in type 2 diabetic patients.

  16. Use of the 22C3 anti-PD-L1 antibody to determine PD-L1 expression in multiple automated immunohistochemistry platforms.

    PubMed

    Ilie, Marius; Khambata-Ford, Shirin; Copie-Bergman, Christiane; Huang, Lingkang; Juco, Jonathan; Hofman, Veronique; Hofman, Paul

    2017-01-01

    For non-small cell lung cancer (NSCLC), treatment with pembrolizumab is limited to patients with tumours expressing PD-L1 assessed by immunohistochemistry (IHC) using the PD-L1 IHC 22C3 pharmDx (Dako, Inc.) companion diagnostic test, on the Dako Autostainer Link 48 (ASL48) platform. Optimised protocols are urgently needed for use of the 22C3 antibody concentrate to test PD-L1 expression on more widely available IHC autostainers. We evaluated PD-L1 expression using the 22C3 antibody concentrate in the three main commercially available autostainers Dako ASL48, BenchMark ULTRA (Ventana Medical Systems, Inc.), and Bond-III (Leica Biosystems) and compared the staining results with the PD-L1 IHC 22C3 pharmDx kit on the Dako ASL48 platform. Several technical conditions for laboratory-developed tests (LDTs) were evaluated in tonsil specimens and a training set of three NSCLC samples. Optimised protocols were then validated in 120 NSCLC specimens. Optimised protocols were obtained on both the VENTANA BenchMark ULTRA and Dako ASL48 platforms. Significant expression of PD-L1 was obtained on tissue controls with the Leica Bond-III autostainer when high concentrations of the 22C3 antibody were used. It therefore was not tested on the 120 NSCLC specimens. An almost 100% concordance rate for dichotomized tumour proportion score (TPS) results was observed between TPS ratings using the 22C3 antibody concentrate on the Dako ASL48 and VENTANA BenchMark ULTRA platforms relative to the PD-L1 IHC 22C3 pharmDx kit on the Dako ASL48 platform. Interpathologist agreement was high on both LDTs and the PD-L1 IHC 22C3 pharmDx kit on the Dako ASL48 platform. Availability of standardized protocols for determining PD-L1 expression using the 22C3 antibody concentrate on the widely available Dako ASL48 and VENTANA BenchMark ULTRA IHC platforms will expand the number of laboratories able to determine eligibility of patients with NSCLC for treatment with pembrolizumab in a reliable and concordant manner.

  17. Sensitivity of drainage efficiency of cranberry fields to edaphic conditions

    NASA Astrophysics Data System (ADS)

    Periard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean; Hallema, Dennis W.

    2014-05-01

    Water management on a cranberry farm requires intelligent irrigation and drainage strategies to sustain strong productivity and minimize environmental impact. For example, to avoid propagation of disease and meet evapotranspiration demand, it is imperative to maintain optimal moisture conditions in the root zone, which depends on an efficient drainage system. However, several drainage problems have been identified in cranberry fields. Most of these drainage problems are due to the presence of a restrictive layer in the soil profile (Gumiere et al., 2014). The objective of this work is to evaluate the effects of a restrictive layer on the drainage efficiency by the bias of a multi-local sensitivity analysis. We have tested the sensitivity of the drainage efficiency to different input parameters set of soil hydraulic properties, geometrical parameters and climatic conditions. Soil water flux dynamic for every input parameters set was simulated with finite element model Hydrus 1D (Simanek et al., 2008). Multi-local sensitivity was calculated with the Gâteaux directional derivatives with the procedure described by Cheviron et al. (2010). Results indicate that drainage efficiency is more sensitive to soil hydraulic properties than geometrical parameters and climatic conditions. Then, the geometrical parameters of the depth are more sensitive than the thickness. The drainage efficiency was very insensitive to the climatic conditions. Understanding the sensitivity of drainage efficiency according to soil hydraulic properties, geometrical and climatic conditions are essential for diagnosis drainage problems. However, it becomes important to identify the mechanisms involved in the genesis of anthropogenic soils cranberry to identify conditions that may lead to the formation of a restrictive layer. References: Cheviron, B., S.J. Gumiere, Y. Le Bissonnais, R. Moussa and D. Raclot. 2010. Sensitivity analysis of distributed erosion models: Framework. Water Resources Research 46: W08508. doi:10.1029/2009WR007950. Gumiere, S.J., J. Lafond, D. W. Hallema, Y. Périard, J. Caron et J. Gallichand. 2014. Mapping soil hydraulic conductivity and matric potential for water management of cranberry: Characterization and spatial interpolation methods. Biosystems Engineering.

  18. Center-level variability in broad-spectrum antibiotic prescribing for children undergoing hematopoietic cell transplantion for acute leukemia.

    PubMed Central

    Elgarten, Caitlin; Arnold, Staci; Li, Yimei; Huang, Y Vera; Gerber, Jeffrey S; Saber, Wael; Aplenc, Richard; Fisher, Brian T

    2017-01-01

    Abstract Background Antibiotic exposure after allogeneic hematopoietic cell transplant (HCT) is common. Exposure to specific classes of antibiotics after HCT has been associated with mortality, relapse and graft-vs.-host disease. Exploring differences in antibiotic utilization across hospitals could provide opportunities for comparative effectiveness studies and quality improvement interventions. Methods We conducted a retrospective cohort study of patients undergoing HCT for acute leukemia using a dataset merged from two sources: the Pediatric Health Information System and the Center for International Blood and Marrow Transplant Research. Medication use data were obtained from the day of transplant through engraftment. Hospital antibiotic utilization rates were reported as antibiotic days/1000 neutropenic days. Adjusted rates were calculated using a poisson regression controlling for age, sex, race, graft characteristics and days of ICU-level care. Results After adjustment, hospital rates of anti-pseudomonal antibiotic use varied from 410 to 1037 antibiotic days/1000 neutropenic days (Figure 1A) and for Gram-positive antibiotic use from 109 to 771 antibiotic days/1000 neutropenic days (Figure 1B). As shown in Figure 1, within anti-pseudomonal antibiotics, there was variation by hospital in the use of Fourth and 5th generation cephalosporins, anti-pseudomonal penicillins and carbapenems; variation in Gram-positive exposure was driven by vancomycin. Gram-positive antibiotic use was moderately associated with days of ICU-level of care (spearman correlation coefficient = .55) but anti-pseudomonal antibiotic use was not (Figure 2). There was no association between days of antibiotic exposure and 30-day mortality. Conclusion Among a homogenous population of children undergoing transplantation for acute leukemia, both the volume and spectrum of antibiotic exposure in the immediate post-transplant period varied widely. These data present an opportunity for hospitals to benchmark their antibiotic utilization practices and can be further leveraged to assess the clinical impact of differential antibiotic exposure. Disclosures B. T. Fisher, Pfizer, Inc.: Grant Investigator, Research support. Merck, Inc.: Investigator, Research support. T2 Biosystems, Inc.: Investigator, Research support. Ansun Biopharma: Investigator, Research support

  19. Could Neutrophil CD64 Expression Be Used as a Diagnostic Parameter of Bacteremia in Patients with Febrile Neutropenia?

    PubMed

    Efe İris, Nur; Yıldırmak, Taner; Gedik, Habip; Şimşek, Funda; Aydın, Demet; Demirel, Naciye; Yokuş, Osman

    2017-06-05

    The aim of this study is to investigate if neutrophil CD64 expression in febrile neutropenia patients could be used as an early indicator of bacteremia. All consecutive patients older than 18 years of age who had developed febrile neutropenia episodes due to hematological malignancies were included in the study. Those patients who had significant growth in their blood cultures constituted the case group, while those who had febrile neutropenia without any growth in their cultures and who did not have any documented infections formed the control group. Blood culture bottles were incubated in the Bact ALERT 3D system (bioMerieux, France), identification and susceptibility testing were performed using an automated broth microdilution method (VITEK 2, bioMerieux), and CD64 expression analysis was performed by the flow cytometry method. C-reactive protein (CRP) was measured by turbidimetric methods (Biosystems, Spain) and erythrocyte sedimentation rate (ESR) was measured by the Wintrobe method. In total, we prospectively evaluated 31 febrile episodes. The case group consisted of 17 patients while the control group included 14 patients. CD64 was found on neutrophils of the case group patients with a mean count of 8006 molecules/cell and of control group with a mean count of 2786 molecules/cell. CD64 levels of the case group were significantly higher than those of the control group (p=0.005). In the differentiation of the case group from the control group, a 2500 cut-off value for CD64 had significant [AUC=0.792 (0.619-0.965)] predictive value (p=0.001). In the prediction of patients with a 2500 cut-off value for CD64, sensitivity was 94.1%, positive predictive value was 76.2%, specificity was 64.3%, and negative predictive value was 90.0%. CRP levels and ESR values did not differ significantly between the groups (p=0.005). Neutrophil CD64 expression could be a good predictor as an immune parameter with high sensitivity and a negative predictive value for bacteremia in febrile neutropenic patients.

  20. Immunohistochemistry is a reliable screening tool for identification of ALK rearrangement in non-small-cell lung carcinoma and is antibody dependent.

    PubMed

    Conklin, Chris M J; Craddock, Kenneth J; Have, Cherry; Laskin, Janessa; Couture, Christian; Ionescu, Diana N

    2013-01-01

    Fluorescence in situ hybridization (FISH) is the standard procedure for the detection of anaplastic lymphoma receptor tyrosine kinase (ALK) rearrangement in non-small-cell lung carcinoma (NSCLC) but is expensive and time consuming. We tested three antibodies to ALK, using various detection systems, and hypothesized that ALK immunohistochemistry (IHC) may represent a cost-effective and efficient means of screening for ALK rearrangement in NSCLC. We screened 377 stage I or II NSCLC cases in a tissue microarray by FISH and IHC (5A4 [Leica Biosystems Newcastle Ltd, Newcastle upon Tyne, UYnited Kingdom] by Nichirei's N-Histofine ALK detection kit [Nichirei Biosciences inc., Tokyo, Japan], 5A4 by Novocastra with ADVANCE [Dako Canada inc., Burlington, Ontario, Canada], D5F3 by Cell Signaling Technology with ADVANCE [Cell Signalling Technologies inc., Danvers, MA], and DAKO clone ALK1 with FLEX [Dako Canada inc., Burlington, Ontario, Canada] and ADVANCE). IHC was scored as 0, 1+, 2+, or 3+. Possibly positive or positive cases were further analyzed by IHC and FISH on whole section. Tissue microarray results were available on 377 cases by IHC and 273 cases by FISH. Eleven cases were positive or possibly positive by either IHC or FISH, and three cases were positive or possibly positive by both methods. Three cases were ALK-positive by FISH on whole section validation. There was no correlation between semiquantitative IHC score (1+, 2+, 3+) and ALK rearrangement by FISH. D5F3 (Cell Signaling by ADVANCE) and 5A4 (Novocastra by ADVANCE) showed the greatest combination of sensitivity (100%) and specificity (87.5% for 5A4 by Novocastra and 75% for D5F3 by Cell Signaling), and produced no false-negative results. IHC is a reliable screening tool for identification of ALK rearrangement in NSCLC and is antibody dependent. D5F3 (Cell Signaling) and 5A4 (Novocastra) can be used with FISH for identification of IHC-positive cases to reduce screening costs.

  1. Fundamental Study on Saving Energy for Electrified Railway System Applying High Temperature Superconductor Motor and Energy Storage System

    NASA Astrophysics Data System (ADS)

    Konishi, Takeshi; Nakamura, Taketsune; Amemiya, Naoyuki

    Induction motor instead of dc one has been applied widely for dc electric rolling stock because of the advantage of its utility and efficiency. However, further improvement of motor characteristics will be required to realize environment-friendly dc railway system in the future. It is important to study more efficient machine applying dc electric rolling stock for next generation high performance system. On the other hand, the methods to reuse regenerative energy produced by motors effectively are also important. Therefore, we carried out fundamental study on saving energy for electrified railway system. For the first step, we introduced the energy storage system applying electric double-layer capacitors (EDLC), and its control system. And then, we tried to obtain the specification of high temperature superconductor induction/synchronous motor (HTS-ISM), which performance is similar with that of the conventional induction motors. Furthermore, we tried to evaluate an electrified railway system applying energy storage system and HTS-ISM based on simulation. We succeeded in showing the effectiveness of the introductions of energy storage system and HTS-ISM in DC electrified railway system.

  2. SCAT3 changes from baseline and associations with X2 Patch measured head acceleration in amateur Australian football players.

    PubMed

    Willmott, Catherine; McIntosh, Andrew S; Howard, Teresa; Mitra, Biswadev; Dimech-Betancourt, Bleydy; Donovan, Jarrod; Rosenfeld, Jeffrey V

    2018-05-01

    To investigate changes from baseline on SCAT3 as a result of football game exposure, and association with X2 Patch measured head acceleration events in amateur Australian footballers. Prospective cohort. Peak linear acceleration (PLA) of the head (>10 g) was measured by wearable head acceleration sensor X2 Biosystems X-Patch in male (n=34) and female (n=19) Australian footballers. SCAT3 was administered at baseline (B) and post-game (PG). 1394 head acceleration events (HEA) >10 g were measured. Mean and median HEA PLA were recorded as 15.2 g (SD=9.2, range=10.0-115.8) and 12.4 g (IQR=11.0-15.6) respectively. No significant difference in median HEA PLA (g) was detected across gender (p=0.55), however, more HEAs were recorded in males (p=0.03). A greater number (p=0.004) and severity (p<0.001) of symptoms were reported PG than at B. No significant association between number of HEA or median PLA, and SCAT3 change scores (p>0.05 for all), was identified for either gender. Increase in symptom severity post game was not associated with X2 measured HEA. Males sustained more HEA, however HEA PLA magnitude did not differ across gender. Further work on the validation of head acceleration sensors is required and their role in sports concussion research and medical management. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  3. Response of soybean rhizosphere communities to human hygiene water addition as determined by community level physiological profiling (CLPP) and terminal restriction fragment length polymorphism (TRFLP) analysis

    NASA Technical Reports Server (NTRS)

    Kerkhof, L.; Santoro, M.; Garland, J.

    2000-01-01

    In this report, we describe an experiment conducted at Kennedy Space Center in the biomass production chamber (BPC) using soybean plants for purification and processing of human hygiene water. Specifically, we tested whether it was possible to detect changes in the root-associated bacterial assemblage of the plants and ultimately to identify the specific microorganism(s) which differed when plants were exposed to hygiene water and other hydroponic media. Plants were grown in hydroponics media corresponding to four different treatments: control (Hoagland's solution), artificial gray water (Hoagland's+surfactant), filtered gray water collected from human subjects on site, and unfiltered gray water. Differences in rhizosphere microbial populations in all experimental treatments were observed when compared to the control treatment using both community level physiological profiles (BIOLOG) and molecular fingerprinting of 16S rRNA genes by terminal restriction fragment length polymorphism analysis (TRFLP). Furthermore, screening of a clonal library of 16S rRNA genes by TRFLP yielded nearly full length SSU genes associated with the various treatments. Most 16S rRNA genes were affiliated with the Klebsiella, Pseudomonas, Variovorax, Burkholderia, Bordetella and Isosphaera groups. This molecular approach demonstrated the ability to rapidly detect and identify microorganisms unique to experimental treatments and provides a means to fingerprint microbial communities in the biosystems being developed at NASA for optimizing advanced life support operations.

  4. pH-switchable electrochemical sensing platform based on chitosan-reduced graphene oxide/concanavalin a layer for assay of glucose and urea.

    PubMed

    Song, Yonghai; Liu, Hongyu; Tan, Hongliang; Xu, Fugang; Jia, Jianbo; Zhang, Lixue; Li, Zhuang; Wang, Li

    2014-02-18

    A facile and effective electrochemical sensing platform for the detection of glucose and urea in one sample without separation was developed using chitosan-reduced graphene oxide (CS-rGO)/concanavalin A (Con A) as a sensing layer. The CS-rGO/Con A with pH-dependent surface net charges exhibited pH-switchable response to negatively charged Fe(CN)6(3-). The principle for glucose and urea detection was essentially based on in situ pH-switchable enzyme-catalyzed reaction in which the oxidation of glucose catalyzed by glucose oxidase or the hydrolyzation of urea catalyzed by urease resulted in a pH change of electrolyte solution to give different electrochemical responses toward Fe(CN)6(3-). It was verified by cyclic voltammograms, differential pulse voltammograms, and electrochemical impedance spectroscopy. The resistance to charge transfer or amperometric current changed proportionally toward glucose concentration from 1.0 to 10.0 mM and urea concentration from 1.0 to 7.0 mM. On the basis of human serum experiments, the sensing platform was proved to be suitable for simultaneous assay of glucose and urea in a practical biosystem. This work not only gives a way to detect glucose and urea in one sample without separation but also provides a potential strategy for the detection of nonelectroactive species based on the enzyme-catalyzed reaction and pH-switchable biosensor.

  5. Top down and bottom up engineering of bone.

    PubMed

    Knothe Tate, Melissa L

    2011-01-11

    The goal of this retrospective article is to place the body of my lab's multiscale mechanobiology work in context of top-down and bottom-up engineering of bone. We have used biosystems engineering, computational modeling and novel experimental approaches to understand bone physiology, in health and disease, and across time (in utero, postnatal growth, maturity, aging and death, as well as evolution) and length scales (a single bone like a femur, m; a sample of bone tissue, mm-cm; a cell and its local environment, μm; down to the length scale of the cell's own skeleton, the cytoskeleton, nm). First we introduce the concept of flow in bone and the three calibers of porosity through which fluid flows. Then we describe, in the context of organ-tissue, tissue-cell and cell-molecule length scales, both multiscale computational models and experimental methods to predict flow in bone and to understand the flow of fluid as a means to deliver chemical and mechanical cues in bone. Addressing a number of studies in the context of multiple length and time scales, the importance of appropriate boundary conditions, site specific material parameters, permeability measures and even micro-nanoanatomically correct geometries are discussed in context of model predictions and their value for understanding multiscale mechanobiology of bone. Insights from these multiscale computational modeling and experimental methods are providing us with a means to predict, engineer and manufacture bone tissue in the laboratory and in the human body. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. HERBICIDE SENSITIVITY OF ECHINOCHLOA CRUS-GALLI POPULATIONS: A COMPARISON BETWEEN CROPPING SYSTEMS.

    PubMed

    Claerhout, S; De Cauwer, B; Reheul, D

    2014-01-01

    Echinochloa crus-galli populations exhibit high morphological variability and their response to herbicides varies from field to field. Differential response to herbicides could reflect differences in selection pressure, caused by years of cropping system related herbicide usage. This study investigates the relation between herbicide sensitivity of Echinochloa crus-galli populations and the cropping system to which they were subjected. The herbicide sensitivity of Echinochloa crus-galli was evaluated for populations collected on 18 fields, representing three cropping systems, namely (1) a long-term organic cropping system, (2) a conventional cropping system with corn in crop rotation or (3) a conventional cropping system with long-term monoculture of corn. Each cropping system was represented by 6 E. crus-galli populations. All fields were located on sandy soils. Dose-response pot experiments were conducted in the greenhouse to assess the effectiveness of three foliar-applied corn herbicides: nicosulfuron (ALS-inhibitor), cycloxydim (ACCase-inhibitor) and topramezone (HPPD-inhibitor), and two soil-applied corn herbicides: S-metolachlor and dimethenamid-P (both VLCFA-inhibitors). Foliar-applied herbicides were tested at a quarter, half and full recommended doses. Soil-applied herbicides were tested within a dose range of 0-22.5 g a.i. ha(-1) for S-metolachlor and 0-45 g a.i. ha(-1) for dimethenamid-P. Foliar-applied herbicides were applied at the three true leaves stage. Soil-applied herbicides were treated immediately after sowing the radicle-emerged seeds. All experiments were performed twice. The foliage dry weight per pot was determined four weeks after treatment. Plant responses to herbicides were expressed as biomass reduction (%, relative to the untreated control). Sensitivity to foliar-applied herbicides varied among cropping systems. Compared to populations from monoculture corn fields, populations originating from organic fields were significantly more sensitive to cycloxydim, topramezone and nicosulfuron (resp. 5.3%, 5.9% and 12.3%). Populations from the conventional crop rotation system showed intermediate sensitivity levels. Contrary to foliar-applied herbicides, the effectiveness of soil-applied herbicides was not affected by cropping system. Integrated weed management may be necessary to preserve herbicide efficacy on the long term.

  7. Architecture Analysis of Evolving Complex Systems of Systems: Technical Presentation [and Executive Status Report

    NASA Technical Reports Server (NTRS)

    Lindvall, Mikael; Godfrey, Sally; Ackermann, Chris; Ray, Arnab; Yonkwa, Lyly; Ganesan, Dharma; Stratton, William C.; Sibol, Deane E.

    2008-01-01

    Analyze, Visualize, and Evaluate structure and behavior using static and dynamic information, individual systems as well as systems of systems. Next steps: Refine software tool support; Apply to other systems; and Apply earlier in system life cycle.

  8. Task force on applied mathematics

    NASA Technical Reports Server (NTRS)

    Prieto, A.

    1979-01-01

    Tomas Garza relates how the Research Center for Applied Mathematics Systems and Services in Mexico became the Research Institute for Applied Mathematics and Systems and what the type of work performed is.

  9. Spin-vibronic quantum dynamics for ultrafast excited-state processes.

    PubMed

    Eng, Julien; Gourlaouen, Christophe; Gindensperger, Etienne; Daniel, Chantal

    2015-03-17

    Ultrafast intersystem crossing (ISC) processes coupled to nuclear relaxation and solvation dynamics play a central role in the photophysics and photochemistry of a wide range of transition metal complexes. These phenomena occurring within a few hundred femtoseconds are investigated experimentally by ultrafast picosecond and femtosecond transient absorption or luminescence spectroscopies, and optical laser pump-X-ray probe techniques using picosecond and femtosecond X-ray pulses. The interpretation of ultrafast structural changes, time-resolved spectra, quantum yields, and time scales of elementary processes or transient lifetimes needs robust theoretical tools combining state-of-the-art quantum chemistry and developments in quantum dynamics for solving the electronic and nuclear problems. Multimode molecular dynamics beyond the Born-Oppenheimer approximation has been successfully applied to many small polyatomic systems. Its application to large molecules containing a transition metal atom is still a challenge because of the nuclear dimensionality of the problem, the high density of electronic excited states, and the spin-orbit coupling effects. Rhenium(I) α-diimine carbonyl complexes, [Re(L)(CO)3(N,N)](n+) are thermally and photochemically robust and highly flexible synthetically. Structural variations of the N,N and L ligands affect the spectroscopy, the photophysics, and the photochemistry of these chromophores easily incorporated into a complex environment. Visible light absorption opens the route to a wide range of applications such as sensors, probes, or emissive labels for imaging biomolecules. Halide complexes [Re(X)(CO)3(bpy)] (X = Cl, Br, or I; bpy = 2,2'-bipyridine) exhibit complex electronic structure and large spin-orbit effects that do not correlate with the heavy atom effects. Indeed, the (1)MLCT → (3)MLCT intersystem crossing (ISC) kinetics is slower than in [Ru(bpy)3](2+) or [Fe(bpy)3](2+) despite the presence of a third-row transition metal. Counterintuitively, singlet excited-state lifetime increases on going from Cl (85 fs) to Br (128 fs) and to I (152 fs). Moreover, correlation between the Re-X stretching mode and the rate of ISC is observed. In this Account, we emphasize on the role of spin-vibronic coupling on the mechanism of ultrafast ISC put in evidence in [Re(Br)(CO)3(bpy)]. For this purpose, we have developed a model Hamiltonian for solving an 11 electronic excited states multimode problem including vibronic and SO coupling within the linear vibronic coupling (LVC) approximation and the assumption of harmonic potentials. The presence of a central metal atom coupled to rigid ligands, such as α-diimine, ensures nuclear motion of small amplitudes and a priori justifies the use of the LVC model. The simulation of the ultrafast dynamics by wavepacket propagations using the multiconfiguration time-dependent Hartree (MCTDH) method is based on density functional theory (DFT), and its time-dependent extension to excited states (TD-DFT) electronic structure data. We believe that the interplay between time-resolved experiments and these pioneering simulations covering the first picoseconds and including spin-vibronic coupling will promote a number of quantum dynamical studies that will contribute to a better understanding of ultrafast processes in a wide range of organic and inorganic chromophores easily incorporated in biosystems or supramolecular devices for specific functions.

  10. Antiskid braking system

    NASA Technical Reports Server (NTRS)

    Pazdera, J. S.

    1974-01-01

    Published report describes analytical development and simulation of braking system. System prevents wheels from skidding when brakes are applied, significantly reducing stopping distance. Report also presents computer simulation study on system as applied to aircraft.

  11. An investigation into the placement of force delivery systems and the initial forces applied by clinicians during space closure.

    PubMed

    Nattrass, C; Ireland, A J; Sherriff, M

    1997-05-01

    This in vitro investigation was designed to establish not only how clinicians apply forces for space closure when using the straight wire appliance and sliding mechanics, but also to quantify the initial force levels produced. A single typodont, with residual extraction space in each quadrant, was set up to simulate space closure using sliding mechanics. On two occasions, at least 2 months apart, 18 clinicians were asked to apply three force delivery systems to the typodont, in the manner in which they would apply it in a clinical situation. The three types of force delivery system investigated were elastomeric chain, an elastomeric module on a steel ligature, and a nickel-titanium closed coil spring. A choice of spaced or unspaced elastomeric chain produced by a single manufacturer was provided. The amount of stretch which was placed on each type of system was measured and, using an Instron Universal Testing Machine, the initial force which would be generated by each force delivery system was established. Clinicians were assessed to examine their consistency in the amount of stretch which each placed on the force delivery systems, their initial force application and their ability to apply equivalent forces with the different types of force delivery system. The clinicians were found to be consistent in their method of application of the force delivery systems and, therefore, their force application, as individuals, but there was a wide range of forces applied as a group. However, most clinicians applied very different forces when using different force delivery systems. When using the module on a ligature the greatest force was applied, whilst the nickel titanium coil springs provided the least force.

  12. A comparison of inferface pressures of three compression bandage systems.

    PubMed

    Hanna, Richard; Bohbot, Serge; Connolly, Nicki

    To measure and compare the interface pressures achieved with two compression bandage systems - a four-layer system (4LB) and a two-layer short-stretch system (SSB) - with a new two-layer system (2LB), which uses an etalonnage (performance indicator) to help achieve the correct therapeutic pressure for healing venous leg ulcers - recommended as 40 mmHg. 32 nurses with experience of using compression bandages applied each of the three systems to a healthy female volunteer in a sitting position. The interface pressures and time taken to apply the systems were measured. A questionnaire regarding the concept of the new system and its application in comparison to the existing two systems was then completed by the nurses. The interface pressures achieved show that many nurses applied very high pressures with the 4LB (25% achieving pressures > 50 mmHg) whereas the majority of the nurses (75%) achieved a pressure of < 30 mmHg when using the SSB. A pressure of 30-50 mmHg was achieved with the new 2LB. The SSB took the least time to be applied (mean: 1 minute 50 seconds) with the 4LB the slowest (mean: 3 minutes 46 seconds). A mean time of 2 minutes 35 seconds was taken to apply the 2LB. Over 63% of the nurses felt the 2LB was very easy to apply. These results suggest that the 2LB achieves the required therapeutic pressure necessary for the management of venous leg ulcers, is easy to apply and may provide a suitable alternative to other multi-layer bandage systems.

  13. Heuristic consequences of a load of oxygen in microtubules.

    PubMed

    Denis, Pierre A

    2014-04-01

    The current cell oxygen paradigm shows some major gaps that have not yet been resolved. Something seems to be lacking for the comprehensive statement of the oxygen distribution in the cell, especially the low cytoplasmic oxygen level. The entrapment of oxygen in microtubules (MTs) resolves the latter observation, as well as the occurrence of an extensive cytoplasmic foam formation. It leads to a novel oxygen paradigm for cells. During the steady-state treadmilling, the mobile cavity would absorb oxygenated cytoplasm forward, entrap gas nuclei and concentrate them. A fluorescence method is described to confirm the in vitro load of oxygen in MTs during their periodic growths and shrinkages. The latter operating mechanism is called the gas dynamic instability (GDI) of MTs. Several known biosystems could rest on the GDI. (1) The GTP-cap is linked with the gas meniscus encountered in a tube filled with gas. The GTP hydrolysis is linked to the conformational change of the GTPase domain according to the bubble pressure, and to the shaking of protofilaments with gas particles (soliton-like waves). (2) The GDI provides a free energy water pump because water molecules have to escape from MT pores when foam concentrates within the MT. Beside ATP hydrolysis in motor proteins, the GDI provides an additional driving force in intracellular transport of cargo. The water streams flowing from the MT through slits organize themselves as water layers between the cargo and the MT surface, and break ionic bridges. It makes the cargo glide over a water rail. (3) The GDI provides a universal motor for chromosome segregation because the depolymerization of kinetochorial MTs is expected to generate a strong cytoplasmic foam. Chromosomes are sucked up according to the pressure difference (or density difference) applied to opposite sides of the kinetochore, which is in agreement with Archimedes' principle of buoyancy. Non-kinetochorial MTs reabsorb foam during GDI. Last, the mitotic spindle is imagined as a gas recycler. (4) The luminal particles within MTs (called MIPs) are imagined as a foam organizer, the luminal proteins being part of the borders and edges of identical bubbles. (5) Last, volatile anesthetics could destabilize MTs through anesthetic-induced bubble nucleation between protofilaments, and therefore causing shear stress and the opening of MT. The load of oxygen in MTs might provide a major advance in this area of research. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. Development and validation of a D-loop mtDNA SNP assay for the screening of specimens in forensic casework.

    PubMed

    Chemale, Gustavo; Paneto, Greiciane Gaburro; Menezes, Meiga Aurea Mendes; de Freitas, Jorge Marcelo; Jacques, Guilherme Silveira; Cicarelli, Regina Maria Barretto; Fagundes, Paulo Roberto

    2013-05-01

    Mitochondrial DNA (mtDNA) analysis is usually a last resort in routine forensic DNA casework. However, it has become a powerful tool for the analysis of highly degraded samples or samples containing too little or no nuclear DNA, such as old bones and hair shafts. The gold standard methodology still constitutes the direct sequencing of polymerase chain reaction (PCR) products or cloned amplicons from the HVS-1 and HVS-2 (hypervariable segment) control region segments. Identifications using mtDNA are time consuming, expensive and can be very complex, depending on the amount and nature of the material being tested. The main goal of this work is to develop a less labour-intensive and less expensive screening method for mtDNA analysis, in order to aid in the exclusion of non-matching samples and as a presumptive test prior to final confirmatory DNA sequencing. We have selected 14 highly discriminatory single nucleotide polymorphisms (SNPs) based on simulations performed by Salas and Amigo (2010) to be typed using SNaPShot(TM) (Applied Biosystems, Foster City, CA, USA). The assay was validated by typing more than 100 HVS-1/HVS-2 sequenced samples. No differences were observed between the SNP typing and DNA sequencing when results were compared, with the exception of allelic dropouts observed in a few haplotypes. Haplotype diversity simulations were performed using 172 mtDNA sequences representative of the Brazilian population and a score of 0.9794 was obtained when the 14 SNPs were used, showing that the theoretical prediction approach for the selection of highly discriminatory SNPs suggested by Salas and Amigo (2010) was confirmed in the population studied. As the main goal of the work is to develop a screening assay to skip the sequencing of all samples in a particular case, a pair-wise comparison of the sequences was done using the selected SNPs. When both HVS-1/HVS-2 SNPs were used for simulations, at least two differences were observed in 93.2% of the comparisons performed. The assay was validated with casework samples. Results show that the method is straightforward and can be used for exclusionary purposes, saving time and laboratory resources. The assay confirms the theoretic prediction suggested by Salas and Amigo (2010). All forensic advantages, such as high sensitivity and power of discrimination, as also the disadvantages, such as the occurrence of allele dropouts, are discussed throughout the article. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Effects of breed and casein genetic variants on protein profile in milk from Swedish Red, Danish Holstein, and Danish Jersey cows.

    PubMed

    Gustavsson, F; Buitenhuis, A J; Johansson, M; Bertelsen, H P; Glantz, M; Poulsen, N A; Lindmark Månsson, H; Stålhammar, H; Larsen, L B; Bendixen, C; Paulsson, M; Andrén, A

    2014-01-01

    In selecting cows for higher milk yields and milk quality, it is important to understand how these traits are affected by the bovine genome. The major milk proteins exhibit genetic polymorphism and these genetic variants can serve as markers for milk composition, milk production traits, and technological properties of milk. The aim of this study was to investigate the relationships between casein (CN) genetic variants and detailed protein composition in Swedish and Danish dairy milk. Milk and DNA samples were collected from approximately 400 individual cows each of 3 Scandinavian dairy breeds: Swedish Red (SR), Danish Holstein (DH), and Danish Jersey (DJ). The protein profile with relative concentrations of α-lactalbumin, β-lactoglobulin, and α(S1)-, α(S2)-, κ-, and β-CN was determined for each milk sample using capillary zone electrophoresis. The genetic variants of the α(S1)- (CSN1S1), β- (CSN2), and κ-CN (CSN3) genes for each cow were determined using TaqMan SNP genotyping assays (Applied Biosystems, Foster City, CA). Univariate statistical models were used to evaluate the effects of composite genetic variants, α(S1)-β-κ-CN, on the protein profile. The 3 studied Scandinavian breeds differed from each other regarding CN genotypes, with DH and SR having similar genotype frequencies, whereas the genotype frequencies in DJ differed from the other 2 breeds. The similarities in genotype frequencies of SR and DH and differences compared with DJ were also seen in milk production traits, gross milk composition, and protein profile. Frequencies of the most common composite α(S1)-β-κ-CN genotype BB/A(2)A(2)/AA were 30% in DH and 15% in SR, and cows that had this genotype gave milk with lower relative concentrations of κ- and β-CN and higher relative concentrations of αS-CN, than the majority of the other composite genotypes in SR and DH. The effect of composite genotypes on relative concentrations of the milk proteins was not as pronounced in DJ. The present work suggests that a higher frequency of BB/A(1)A(2)/AB, together with a decrease in BB/A(2)A(2)/AA, could have positive effects on DH and SR milk regarding, for example, the processing of cheese. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Patatin-like phospholipase domain containing-3 gene I148M polymorphism, steatosis, and liver damage in hereditary hemochromatosis

    PubMed Central

    Valenti, Luca; Maggioni, Paolo; Piperno, Alberto; Rametta, Raffaela; Pelucchi, Sara; Mariani, Raffaella; Dongiovanni, Paola; Fracanzani, Anna Ludovica; Fargion, Silvia

    2012-01-01

    AIM: To investigate whether the patatin-like phospholipase domain containing-3 gene (PNPLA3) I148M polymorphism is associated with steatosis, fibrosis stage, and cirrhosis in hereditary hemochromatosis (HH). METHODS: We studied 174 consecutive unrelated homozygous for the C282Y HFE mutation of HH (C282Y+/+ HH) patients from Northern Italy, for whom the presence of cirrhosis could be determined based on histological or clinical criteria, without excessive alcohol intake (< 30/20 g/d in males or females) or hepatitis B virus and hepatitis C virus viral hepatitis. Steatosis was evaluated in 123 patients by histology (n = 100) or ultrasound (n = 23). The PNPLA3 rs738409 single nucleotide polymorphism, encoding for the p.148M protein variant, was genotyped by a Taqman assay (assay on demand, Applied Biosystems). The association of the PNPLA3 I148M protein variant (p.I148M) with steatosis, fibrosis stage, and cirrhosis was evaluated by logistic regression analysis. RESULTS: PNPLA3 genotype was not associated with metabolic parameters, including body mass index (BMI), the presence of diabetes, and lipid levels, but the presence of the p.148M variant at risk was independently associated with steatosis [odds ratio (OR) 1.84 per p.148M allele, 95% confidence interval (CI): 1.05-3.31; P = 0.037], independently of BMI and alanine aminotransaminase (ALT) levels. The p.148M variant was also associated with higher aspartate aminotransferase (P = 0.0014) and ALT levels (P = 0.017) at diagnosis, independently of BMI and the severity of iron overload. In patients with liver biopsy, the 148M variant was independently associated with the severity (stage) of fibrosis (estimated coefficient 0.56 ± 0.27, P = 0.041). In the overall series of patients, the p.148M variant was associated with cirrhosis in lean (P = 0.049), but not in overweight patients (P = not significant). At logistic regression analysis, cirrhosis was associated with BMI ≥ 25 (OR 1.82, 95% CI: 1.02-3.55), ferritin > 1000 ng/mL at diagnosis (OR 19.3, 95% CI: 5.3-125), and with the G allele in patients with BMI < 25 (OR 3.26, 95% CI: 1.3-10.3). CONCLUSION: The PNPLA3 I148M polymorphism may represent a permissive factor for fibrosis progression in patients with C282Y+/+ HH. PMID:22719190

  17. Applied Information Systems Research Program Workshop

    NASA Technical Reports Server (NTRS)

    Bredekamp, Joe

    1991-01-01

    Viewgraphs on Applied Information Systems Research Program Workshop are presented. Topics covered include: the Earth Observing System Data and Information System; the planetary data system; Astrophysics Data System project review; OAET Computer Science and Data Systems Programs; the Center of Excellence in Space Data and Information Sciences; and CASIS background.

  18. Macrophage involvement affects matrix stiffness-related influences on cell osteogenesis under three-dimensional culture conditions.

    PubMed

    He, Xiao-Tao; Wu, Rui-Xin; Xu, Xin-Yue; Wang, Jia; Yin, Yuan; Chen, Fa-Ming

    2018-04-15

    Accumulating evidence indicates that the physicochemical properties of biomaterials exert profound influences on stem cell fate decisions. However, matrix-based regulation selected through in vitro analyses based on a given cell population do not genuinely reflect the in vivo conditions, in which multiple cell types are involved and interact dynamically. This study constitutes the first investigation of how macrophages (Mφs) in stiffness-tunable transglutaminase cross-linked gelatin (TG-gel) affect the osteogenesis of bone marrow-derived mesenchymal stem cells (BMMSCs). When a single cell type was cultured, low-stiffness TG-gels promoted BMMSC proliferation, whereas high-stiffness TG-gels supported cell osteogenic differentiation. However, Mφs in high-stiffness TG-gels were more likely to polarize toward the pro-inflammatory M1 phenotype. Using either conditioned medium (CM)-based incubation or Transwell-based co-culture, we found that Mφs encapsulated in the low-stiffness matrix exerted a positive effect on the osteogenesis of co-cultured BMMSCs. Conversely, Mφs in high-stiffness TG-gels negatively affected cell osteogenic differentiation. When both cell types were cultured in the same TG-gel type and placed into the Transwell system, the stiffness-related influences of Mφs on BMMSCs were significantly altered; both the low- and high-stiffness matrix induced similar levels of BMMSC osteogenesis. Although the best material parameter for synergistically affecting Mφs and BMMSCs remains unknown, our data suggest that Mφ involvement in the co-culture system alters previously identified material-related influences on BMMSCs, such as matrix stiffness-related effects, which were identified based on a culture system involving a single cell type. Such Mφ-stem cell interactions should be considered when establishing proper matrix parameter-associated cell regulation in the development of biomimetic biomaterials for regenerative applications. The substrate stiffness of a scaffold plays critical roles in modulating both reparative cells, such as mesenchymal stem cells (MSCs), and immune cells, such as macrophages (Mφs). Although the influences of material stiffness on either Mφs or MSCs, have been extensively described, how the two cell types respond to matrix cues to dynamically affect each other in a three-dimensional (3D) biosystem remains largely unknown. Here, we report our findings that, in a platform wherein Mφs and bone marrow-derived MSCs coexist, matrix stiffness can influence stem cell fate through both direct matrix-associated regulation and indirect Mφ-based modulation. Our data support future studies of the MSC-Mφ-matrix interplay in the 3D context to optimize matrix parameters for the development of the next biomaterial. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Systems Engineering Processes Applied to Ground Vehicle Integration at US Army Tank Automotive Research, Development, and Engineering Center (TARDEC)

    DTIC Science & Technology

    2010-08-19

    UNCLASSIFIED Systems Engineering Processes Applied To Ground Vehicle Integration at US Army Tank Automotive Research, Development, and Engineering...DATES COVERED - 4. TITLE AND SUBTITLE Systems Engineering Processes Applied To Ground Vehicle Integration at US Army Tank Automotive Research...release, distribution unlimited 13. SUPPLEMENTARY NOTES Presented at NDIAs Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), 17 22

  20. LANDSCAPE MANAGEMENT FOR SUSTAINABLE SUPPLIES OF BIOENERGY FEEDSTOCK AND ENHANCED SOIL QUALITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas L. Karlen; David J. Muth, Jr.

    2012-09-01

    Agriculture can simultaneously address global food, feed, fiber, and energy challenges provided our soil, water, and air resources are not compromised in doing so. As we embark on the 19th Triennial Conference of the International Soil and Tillage Research Organization (ISTRO), I am pleased to proclaim that our members are well poised to lead these endeavors because of our comprehensive understanding of soil, water, agricultural and bio-systems engineering processes. The concept of landscape management, as an approach for integrating multiple bioenergy feedstock sources, including biomass residuals, into current crop production systems, is used as the focal point to show howmore » these ever-increasing global challenges can be met in a sustainable manner. Starting with the 2005 Billion Ton Study (BTS) goals, research and technology transfer activities leading to the 2011 U.S. Department of Energy (DOE) Revised Billion Ton Study (BT2) and development of a residue management tool to guide sustainable crop residue harvest will be reviewed. Multi-location USDA-Agricultural Research Service (ARS) Renewable Energy Assessment Project (REAP) team research and on-going partnerships between public and private sector groups will be shared to show the development of landscape management strategies that can simultaneously address the multiple factors that must be balanced to meet the global challenges. Effective landscape management strategies recognize the importance of nature’s diversity and strive to emulate those conditions to sustain multiple critical ecosystem services. To illustrate those services, the soil quality impact of harvesting crop residues are presented to show how careful, comprehensive monitoring of soil, water and air resources must be an integral part of sustainable bioenergy feedstock production systems. Preliminary analyses suggest that to sustain soil resources within the U.S. Corn Belt, corn (Zea mays L.) stover should not be harvested if average grain yields are less than 11 Mg ha-1 (175 bu ac-1) unless more intensive landscape management practices are implemented. Furthermore, although non-irrigated corn grain yields east and west of the primary Corn Belt may not consistently achieve the 11 Mg ha-1 yield levels, corn can still be part of an overall landscape approach for sustainable feedstock production. Another option for producers with consistently high yields (> 12.6 Mg ha-1 or 200 bu ac-1) that may enable them to sustainably harvest even more stover is to decrease their tillage intensity which will reduce fuel use, preserve rhizosphere carbon, and/or help maintain soil structure and soil quality benefits often attributed to no-till production systems. In conclusion, I challenge all ISTRO scientists to critically ask if your research is contributing to improved soil and crop management strategies that effectively address the complexity associated with sustainable food, feed, fiber and fuel production throughout the world.« less

  1. Neuro-parity pattern recognition system and method

    DOEpatents

    Gross, Kenneth C.; Singer, Ralph M.; Van Alstine, Rollin G.; Wegerich, Stephan W.; Yue, Yong

    2000-01-01

    A method and system for monitoring a process and determining its condition. Initial data is sensed, a first set of virtual data is produced by applying a system state analyzation to the initial data, a second set of virtual data is produced by applying a neural network analyzation to the initial data and a parity space analyzation is applied to the first and second set of virtual data and also to the initial data to provide a parity space decision about the condition of the process. A logic test can further be applied to produce a further system decision about the state of the process.

  2. System Applies Polymer Powder To Filament Tow

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Snoha, John J.; Marchello, Joseph M.

    1993-01-01

    Polymer powder applied uniformly and in continuous manner. Powder-coating system applies dry polymer powder to continuous fiber tow. Unique filament-spreading technique, combined with precise control of tension on fibers in system, ensures uniform application of polymer powder to web of spread filaments. Fiber tows impregnated with dry polymer powders ("towpregs") produced for preform-weaving and composite-material-molding applications. System and process valuable to prepreg industry, for production of flexible filament-windable tows and high-temperature polymer prepregs.

  3. Method and apparatus for operating a powertrain system upon detecting a stuck-closed clutch

    DOEpatents

    Hansen, R. Anthony

    2014-02-18

    A powertrain system includes a multi-mode transmission having a plurality of torque machines. A method for controlling the powertrain system includes identifying all presently applied clutches including commanded applied clutches and the stuck-closed clutch upon detecting one of the torque-transfer clutches is in a stuck-closed condition. A closed-loop control system is employed to control operation of the multi-mode transmission accounting for all the presently applied clutches.

  4. Development of adaptive control applied to chaotic systems

    NASA Astrophysics Data System (ADS)

    Rhode, Martin Andreas

    1997-12-01

    Continuous-time derivative control and adaptive map-based recursive feedback control techniques are used to control chaos in a variety of systems and in situations that are of practical interest. The theoretical part of the research includes the review of fundamental concept of control theory in the context of its applications to deterministic chaotic systems, the development of a new adaptive algorithm to identify the linear system properties necessary for control, and the extension of the recursive proportional feedback control technique, RPF, to high dimensional systems. Chaos control was applied to models of a thermal pulsed combustor, electro-chemical dissolution and the hyperchaotic Rossler system. Important implications for combustion engineering were suggested by successful control of the model of the thermal pulsed combustor. The system was automatically tracked while maintaining control into regions of parameter and state space where no stable attractors exist. In a simulation of the electrochemical dissolution system, application of derivative control to stabilize a steady state, and adaptive RPF to stabilize a period one orbit, was demonstrated. The high dimensional adaptive control algorithm was applied in a simulation using the Rossler hyperchaotic system, where a period-two orbit with two unstable directions was stabilized and tracked over a wide range of a system parameter. In the experimental part, the electrochemical system was studied in parameter space, by scanning the applied potential and the frequency of the rotating copper disk. The automated control algorithm is demonstrated to be effective when applied to stabilize a period-one orbit in the experiment. We show the necessity of small random perturbations applied to the system in order to both learn the dynamics and control the system at the same time. The simultaneous learning and control capability is shown to be an important part of the active feedback control.

  5. A Vision for Systems Engineering Applied to Wind Energy (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felker, F.; Dykes, K.

    2015-01-01

    This presentation was given at the Third Wind Energy Systems Engineering Workshop on January 14, 2015. Topics covered include the importance of systems engineering, a vision for systems engineering as applied to wind energy, and application of systems engineering approaches to wind energy research and development.

  6. Applying Early Systems Engineering: Injecting Knowledge into the Capability Development Process

    DTIC Science & Technology

    2012-10-01

    involves early use of systems engi- neering and technical analyses to supplement the existing operational analysis techniques currently used in...complexity, and costs of systems now being developed require tight coupling between operational requirements stated in the CDD, system requirements...Fleischer » Keywords: Capability Development, Competitive Prototyping, Knowledge Points, Early Systems Engineering Applying Early Systems

  7. Planning and executing motions for multibody systems in free-fall. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan M.

    1991-01-01

    The purpose of this research is to develop an end-to-end system that can be applied to a multibody system in free-fall to analyze its possible motions, save those motions in a database, and design a controller that can execute those motions. A goal is for the process to be highly automated and involve little human intervention. Ideally, the output of the system would be data and algorithms that could be put in ROM to control the multibody system in free-fall. The research applies to more than just robots in space. It applies to any multibody system in free-fall. Mathematical techniques from nonlinear control theory were used to study the nature of the system dynamics and its possible motions. Optimization techniques were applied to plan motions. Image compression techniques were proposed to compress the precomputed motion data for storage. A linearized controller was derived to control the system while it executes preplanned trajectories.

  8. Size and surface functionalization of iron oxide nanoparticles influence the composition and dynamic nature of their protein corona.

    PubMed

    Ashby, Jonathan; Pan, Songqin; Zhong, Wenwan

    2014-09-10

    Nanoparticles (NPs) adsorb proteins when in the biological matrix, and the resulted protein corona could affect NP-cell interactions. The corona has a dynamic nature with the adsorbed proteins constantly exchanging with the free proteins in the matrix at various rates. The rapidly exchanging proteins compose the soft corona, which responds more dynamically to environment changes than the hard corona established by the ones with slow exchange rates. In the present study, the corona formed on the superparamagnetic iron oxide NPs (SPIONs) in human serum was studied by flow field-flow fractionation and ultracentrifugation, which rapidly differentiated the corona proteins based on their exchange rates. By varying the surface hydrophobicity of the SPIONs with a core size around 10 nm, we found out that, the more hydrophobic surface ligand attracted proteins with higher surface hydrophobicity and formed a more dynamic corona with a larger portion of the involved proteins with fast exchange rates. Increasing the core diameter of the SPIONs but keeping the surface ligand the same could also result in a more dynamic corona. A brief investigation of the effect on the cellular uptake of SPIONs using one selected corona protein, transferrin, was conducted. The result showed that, only the stably bound transferrin could significantly enhance cellular uptake, while transferrin bound in a dynamic nature had negligible impact. Our study has led to a better understanding of the relationship between the particle properties and the dynamic nature of the corona, which can help with design of nanomaterials with higher biocompatibility and higher efficacy in biosystems for biomedical applications.

  9. Size and Surface Functionalization of Iron Oxide Nanoparticles Influence the Composition and Dynamic Nature of Their Protein Corona

    PubMed Central

    2015-01-01

    Nanoparticles (NPs) adsorb proteins when in the biological matrix, and the resulted protein corona could affect NP-cell interactions. The corona has a dynamic nature with the adsorbed proteins constantly exchanging with the free proteins in the matrix at various rates. The rapidly exchanging proteins compose the soft corona, which responds more dynamically to environment changes than the hard corona established by the ones with slow exchange rates. In the present study, the corona formed on the superparamagnetic iron oxide NPs (SPIONs) in human serum was studied by flow field-flow fractionation and ultracentrifugation, which rapidly differentiated the corona proteins based on their exchange rates. By varying the surface hydrophobicity of the SPIONs with a core size around 10 nm, we found out that, the more hydrophobic surface ligand attracted proteins with higher surface hydrophobicity and formed a more dynamic corona with a larger portion of the involved proteins with fast exchange rates. Increasing the core diameter of the SPIONs but keeping the surface ligand the same could also result in a more dynamic corona. A brief investigation of the effect on the cellular uptake of SPIONs using one selected corona protein, transferrin, was conducted. The result showed that, only the stably bound transferrin could significantly enhance cellular uptake, while transferrin bound in a dynamic nature had negligible impact. Our study has led to a better understanding of the relationship between the particle properties and the dynamic nature of the corona, which can help with design of nanomaterials with higher biocompatibility and higher efficacy in biosystems for biomedical applications. PMID:25144382

  10. Telangiectatic focal nodular hyperplasia: a variant of hepatocellular adenoma.

    PubMed

    Paradis, Valerie; Benzekri, Asmae; Dargère, Delphine; Bièche, Ivan; Laurendeau, Ingrid; Vilgrain, Valerie; Belghiti, Jacques; Vidaud, Michel; Degott, Claude; Bedossa, Pierre

    2004-05-01

    "Telangiectatic focal nodular hyperplasia" designate atypical lesions considered as variants of focal nodular hyperplasia (FNH). However, because "telangiectatic FNH" share several morphologic patterns with hepatocellular adenomas, classification of such lesions deserve further clarification. Therefore, the aim of the present study was to reconsider the classification of telangiectatic FNH with the help of a molecular approach. Ten telangiectatic FNH, 6 typical FNH, and 6 hepatocellular adenomas were studied. DNA, RNA, and protein from each lesion were extracted. Clonality was assessed by the study of the X chromosome inactivation pattern (HUMARA assay). Angiopoietin (ANGPT-1 and ANGPT-2) mRNA, genes the expression of which is typically modified in FNH, were quantified by a real-time RT-PCR procedure. Protein profiles were analyzed by SELDI-TOF PROTEINCHIP (Cyphergen Biosystem, Inc., Fremont, CA) technology. Although all informative cases of FNH (5 of 6) and hepatocellular adenomas (6 of 6) were polyclonal and monoclonal, respectively, clonal analysis showed a nonrandom pattern of X chromosome inactivation consistent with a monoclonal lesion in 6 of 8 cases of telangiectatic FNH. The mean value of the ANGPT-1/ANGPT-2 mRNA ratio was 21.4 in FNH, 2.6 in adenomas, and 2.1 in telangiectatic FNH (P

  11. Near real-time measurement of forces applied by an optical trap to a rigid cylindrical object

    NASA Astrophysics Data System (ADS)

    Glaser, Joseph; Hoeprich, David; Resnick, Andrew

    2014-07-01

    An automated data acquisition and processing system is established to measure the force applied by an optical trap to an object of unknown composition in real time. Optical traps have been in use for the past 40 years to manipulate microscopic particles, but the magnitude of applied force is often unknown and requires extensive instrument characterization. Measuring or calculating the force applied by an optical trap to nonspherical particles presents additional difficulties which are also overcome with our system. Extensive experiments and measurements using well-characterized objects were performed to verify the system performance.

  12. 75 FR 26792 - Amended Certification Regarding Eligibility To Apply for Worker Adjustment Assistance: Auburn...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... Regarding Eligibility To Apply for Worker Adjustment Assistance: Auburn Hills, MI Electronic Data Systems, a... Suppliers, Affiliated Computer Services, Inc., Apex Systems, Inc., ASA Solutions, Inc., Avaya, Inc., Bender... Systems, Educorp Training and Consulting, Inc., EMC Corp., Empirix, Inc., Fujitsu Computer Systems Corp...

  13. 46 CFR 162.161-1 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... APPROVAL ENGINEERING EQUIPMENT Fixed Clean Agent Fire Extinguishing Systems § 162.161-1 Scope. (a) This subpart applies to each engineered fixed fire extinguishing system using a halocarbon or an inert gas as an agent. It does not apply to pre-engineered systems. (b) Each system must be designed for...

  14. 46 CFR 162.161-1 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... APPROVAL ENGINEERING EQUIPMENT Fixed Clean Agent Fire Extinguishing Systems § 162.161-1 Scope. (a) This subpart applies to each engineered fixed fire extinguishing system using a halocarbon or an inert gas as an agent. It does not apply to pre-engineered systems. (b) Each system must be designed for...

  15. 46 CFR 162.161-1 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... APPROVAL ENGINEERING EQUIPMENT Fixed Clean Agent Fire Extinguishing Systems § 162.161-1 Scope. (a) This subpart applies to each engineered fixed fire extinguishing system using a halocarbon or an inert gas as an agent. It does not apply to pre-engineered systems. (b) Each system must be designed for...

  16. Responses to applied forces and the Jarzynski equality in classical oscillator systems coupled to finite baths: an exactly solvable nondissipative nonergodic model.

    PubMed

    Hasegawa, Hideo

    2011-07-01

    Responses of small open oscillator systems to applied external forces have been studied with the use of an exactly solvable classical Caldeira-Leggett model in which a harmonic oscillator (system) is coupled to finite N-body oscillators (bath) with an identical frequency (ω(n) = ω(o) for n = 1 to N). We have derived exact expressions for positions, momenta, and energy of the system in nonequilibrium states and for work performed by applied forces. A detailed study has been made on an analytical method for canonical averages of physical quantities over the initial equilibrium state, which is much superior to numerical averages commonly adopted in simulations of small systems. The calculated energy of the system which is strongly coupled to a finite bath is fluctuating but nondissipative. It has been shown that the Jarzynski equality is valid in nondissipative nonergodic open oscillator systems regardless of the rate of applied ramp force.

  17. "Wood already touched by fire is not hard to set alight": Comment on "Constraints to applying systems thinking concepts in health systems: A regional perspective from surveying stakeholders in Eastern Mediterranean countries".

    PubMed

    Agyepong, Irene Akua

    2015-03-01

    A major constraint to the application of any form of knowledge and principles is the awareness, understanding and acceptance of the knowledge and principles. Systems Thinking (ST) is a way of understanding and thinking about the nature of health systems and how to make and implement decisions within health systems to maximize desired and minimize undesired effects. A major constraint to applying ST within health systems in Low- and Middle-Income Countries (LMICs) would appear to be an awareness and understanding of ST and how to apply it. This is a fundamental constraint and in the increasing desire to enable the application of ST concepts in health systems in LMIC and understand and evaluate the effects; an essential first step is going to be enabling of a wide spread as well as deeper understanding of ST and how to apply this understanding.

  18. Space Generic Open Avionics Architecture (SGOAA) standard specification

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1993-01-01

    The purpose of this standard is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of a specific avionics hardware/software system. This standard defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.

  19. General Systems Theory: Application To The Design Of Speech Communication Courses

    ERIC Educational Resources Information Center

    Tucker, Raymond K.

    1971-01-01

    General systems theory can be applied to problems in the teaching of speech communication courses. The author describes general systems theory as it is applied to the designing, conducting and evaluation of speech communication courses. (Author/MS)

  20. Multi-layer compression: comparison of four different four-layer bandage systems applied to the leg.

    PubMed

    Dale, J J; Ruckley, C V; Gibson, B; Brown, D; Lee, A J; Prescott, R J

    2004-01-01

    To compare performance of four commercial four-layer bandage systems when applied to the leg. Four experienced bandagers applied each system: [Profore Regular (Smith and Nephew); Ultra-Four (Robinson); System 4 (Seton) and K Four (Parema)] to the same leg. Bandages were applied as single layers and as completed systems using standard techniques. For each application, 18 pressure measurements were taken using the Borgnis Medical Stocking Tester (MST) at three measuring points (ankle, gaiter and mid-calf) on medial and lateral aspects in three postures: (horizontal, standing and sitting). In all 2304 observations were made, 576 for each bandager, 576 for each bandaging system, 768 for each measuring point, 1152 for each aspect and 768 for each posture. The increase in pressure produced by each additional layer was 65-75% of the pressure of the same bandage when used as a single layer. There were significant differences in the final pressures achieved by the bandagers (means: 45-54 mmHg, p<0.001) and between bandage systems (means: System 4: 46 mmHg, Profore: 47 mmHg, K Four: 52 mmHg, Ultra-Four: 54 mmHg; p=0.005). The relationships between the final pressures achieved at each of the three measuring points, the three postures and the two aspects were not consistent among the bandage systems (p<0.01). When a bandage is applied as part of a multi-layered system it exerts approximately 70% of the pressure exerted when applied alone, thus challenging the commonly-held assumption that the final pressure achieved by a multi-layer bandaging system is the sum of the pressures exerted by each individual layer. Each of the four bandaging systems exerted different final pressures and gradients and different changes with posture change. These differences have important implications, which could influence the selection (or avoidance) of a particular bandage system according to a patient's condition and circumstances.

Top