Whole-central nervous system functional imaging in larval Drosophila
Lemon, William C.; Pulver, Stefan R.; Höckendorf, Burkhard; McDole, Katie; Branson, Kristin; Freeman, Jeremy; Keller, Philipp J.
2015-01-01
Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord. PMID:26263051
Enhancing communication by using the Coordinated Care Classification System.
O'Neal, P V; Kozeny, D K; Garland, P P; Gaunt, S M; Gordon, S C
1998-07-01
Because of the changes in our healthcare system, some clinical nurse specialists (CNSs) are having to expand their traditional roles of clinician, educator, consultant, leader, and researcher to include case management activities. The CNSs at Promina Gwinnett Health System in Lawrenceville, Georgia, have combined CNS and case manager activities and have adopted the title "CNS/Outcomes Coordinator." The CNS/Outcomes Coordinator is responsible for coordinating patient care, promoting team collaboration, and facilitating communication. To inform the healthcare team of the CNS/Outcomes Coordinator's patient responsibilities, the CNS/Outcomes Coordinators developed a Coordinated Care Classification System. This article describes how coordinating patient care, promoting team collaboration, and facilitating communication can be enhanced by the use of a classification system.
The role of the immune system in central nervous system plasticity after acute injury.
Peruzzotti-Jametti, Luca; Donegá, Matteo; Giusto, Elena; Mallucci, Giulia; Marchetti, Bianca; Pluchino, Stefano
2014-12-26
Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Nanomedicine and its application in treatment of microglia-mediated neuroinflammation.
Baby, N; Patnala, R; Ling, Eng-Ang; Dheen, S T
2014-01-01
Nanomedicine, an emerging therapeutic tool in current medical frontiers, offers targeted drug delivery for many neurodegenerative disorders. Neuroinflammation, a hallmark of many neurodegenerative disorders, is mediated by microglia, the resident immunocompetent cells of the central nervous system (CNS). Microglial cells respond to various stimuli in the CNS resulting in their activation which may have a beneficial or a detrimental effect. In general, the activated microglia remove damaged neurons and infectious agents by phagocytosis, therefore being neuroprotective. However, their chronic activation exacerbates neuronal damage through excessive release of proinflammatory cytokines, chemokines and other inflammatory mediators which contribute to neuroinflammation and subsequent neurodegeneration in the CNS. Hence, controlling microglial inflammatory response and their proliferation has been considered as an important aspect in treating neurodegenerative disorders. Regulatory factors that control microglial activation and proliferation also play an important role in microglia-mediated neuroinflammation and neurotoxicity. Various anti-inflammatory drugs and herbal compounds have been identified in treating microglia-mediated neuroinflammation in the CNS. However, hurdles in crossing blood brain barrier (BBB), expression of metabolic enzymes, presence of efflux pumps and several other factors prevent the entry of these drugs into the CNS. Use of non-degradable delivery systems and microglial activation in response to the drug delivery system further complicate drug delivery to the CNS. Nanomedicine, a nanoparticle-mediated drug delivery system, exhibits immense potential to overcome these hurdles in drug delivery to the CNS enabling new alternatives with significant promises in revolutionising the field of neurodegenerative disease therapy. This review attempts to summarise various regulatory factors in microglia, existing therapeutic strategies in controlling microglial activation, and how nanotechnology can serve to improve the delivery of therapeutic drugs across the BBB for treating microglia- mediated neuroinflammation and neurodegeneration.
Immune privilege of the CNS is not the consequence of limited antigen sampling
NASA Astrophysics Data System (ADS)
Harris, Melissa G.; Hulseberg, Paul; Ling, Changying; Karman, Jozsef; Clarkson, Benjamin D.; Harding, Jeffrey S.; Zhang, Mengxue; Sandor, Adam; Christensen, Kelsey; Nagy, Andras; Sandor, Matyas; Fabry, Zsuzsanna
2014-03-01
Central nervous system (CNS) immune privilege is complex, and it is still not understood how CNS antigens are sampled by the peripheral immune system under steady state conditions. To compare antigen sampling from immune-privileged or nonprivileged tissues, we created transgenic mice with oligodendrocyte or gut epithelial cell expression of an EGFP-tagged fusion protein containing ovalbumin (OVA) antigenic peptides and tested peripheral anti-OVA peptide-specific sentinel OT-I and OT-II T cell activation. We report that oligodendrocyte or gut antigens are sampled similarly, as determined by comparable levels of OT-I T cell activation. However, activated T cells do not access the CNS under steady state conditions. These data show that afferent immunity is normally intact as there is no barrier at the antigen sampling level, but that efferent immunity is restricted. To understand how this one-sided surveillance contributes to CNS immune privilege will help us define mechanisms of CNS autoimmune disease initiation.
Air pollution: mechanisms of neuroinflammation and CNS disease.
Block, Michelle L; Calderón-Garcidueñas, Lilian
2009-09-01
Air pollution has been implicated as a chronic source of neuroinflammation and reactive oxygen species (ROS) that produce neuropathology and central nervous system (CNS) disease. Stroke incidence and Alzheimer's and Parkinson's disease pathology are linked to air pollution. Recent reports reveal that air pollution components reach the brain; systemic effects that impact lung and cardiovascular disease also impinge upon CNS health. While mechanisms driving air pollution-induced CNS pathology are poorly understood, new evidence suggests that microglial activation and changes in the blood-brain barrier are key components. Here we summarize recent findings detailing the mechanisms through which air pollution reaches the brain and activates the resident innate immune response to become a chronic source of pro-inflammatory factors and ROS, culminating in CNS disease.
Observing the work of the Clinical Nurse Specialist: a pilot study.
Darmody, Julie V
2005-01-01
The Clinical Nurse Specialist (CNS) is an advanced practice nurse (APN) with graduate preparation as a clinical expert within a specialty area of nursing practice. There is a need for information about the work of the CNS in order to link CNS activities to outcomes and costs of care. To describe the work of the CNS in the acute care setting using the National Association of Clinical Nurse Specialists (NACNS) model as an organizing framework. Descriptive pilot study of the work of the CNS in acute care. A 500-bed academic medical center located in the Midwestern United States. Five masters-prepared APNs in a unit-based CNS role. Direct observation and time study were used to record activities and time for 4 hours with each CNS (n = 5) for a total of 20 hours of observation. CNS activity and time within each practice domain included patient/client (30%), nursing (44%), organization/system (10%), and other activities (16%). Specific activities observed were linked to possible outcomes in the NACNS framework. The NACNS model provided a useful framework for developing a data collection tool that can be used in a larger study that analyzes the work of the acute care CNS. Describing the work of the CNS is an important preliminary step to measuring outcomes and costs of care.
Fleck, Ann-Katrin; Schuppan, Detlef; Wiendl, Heinz; Klotz, Luisa
2017-07-14
In the last decade the role of environmental factors as modulators of disease activity and progression has received increasing attention. In contrast to classical environmental modulators such as exposure to sun-light or fine dust pollution, nutrition is an ideal tool for a personalized human intervention. Various studies demonstrate a key role of dietary factors in autoimmune diseases including Inflammatory Bowel Disease (IBD), rheumatoid arthritis or inflammatory central nervous system (CNS) diseases such as Multiple Sclerosis (MS). In this review we discuss the connection between diet and inflammatory processes via the gut-CNS-axis. This axis describes a bi-directional communication system and comprises neuronal signaling, neuroendocrine pathways and modulation of immune responses. Therefore, the gut-CNS-axis represents an emerging target to modify CNS inflammatory activity ultimately opening new avenues for complementary and adjunctive treatment of autoimmune diseases such as MS.
Nature, nurture, and microbes: The development of multiple sclerosis.
Wekerle, H
2017-11-01
This paper argues that multiple sclerosis (MS) is the result of an autoimmune attack against components of the central nervous system (CNS). The effector cells involved in the pathogenic process are CNS-autoreactive T cells present in the healthy immune system in a resting state. Upon activation, these cells cross the blood-brain barrier and attack the CNS target tissue. Recent evidence indicates that autoimmune activation may happen in the intestine, following an interaction of bacterial components of the gut flora with local CNS autoreactive T cells. The consequences of this concept are discussed. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
ABORDO-ADESIDA, EVELYN; FOLLENZI, ANTONIA; BARCIA, CARLOS; SCIASCIA, SANDRA; CASTRO, MARIA G.; NALDINI, LUIGI; LOWENSTEIN, PEDRO R.
2009-01-01
Lentiviral vectors are promising tools for gene therapy in the CNS. It is therefore important to characterize their interactions with the immune system in the CNS. This work characterizes transgene expression and brain inflammation in the presence or absence of immune responses generated after systemic immunization with lentiviral vectors. We characterized transduction with SIN-LV vectors in the CNS. A dose—response curve using SIN-LV-GFP demonstrated detectable transgene expression in the striatum at a dose of 102, and maximum expression at 106, transducing units of lentiviral vector, with minimal increase in inflammatory markers between the lowest and highest dose of vector injected. Our studies demonstrate that injection of a lentiviral vector into the CNS did not cause a measurable inflammatory response. Systemic immunization after CNS injection, with the lentiviral vector expressing the same transgene as a vector injected into the CNS, caused a decrease in transgene expression in the CNS, concomitantly with an infiltration of inflammatory cells into the CNS parenchyma at the injection site. However, peripheral immunization with a lentiviral vector carrying a different transgene did not diminish transgene expression, or cause CNS inflammation. Systemic immunization preceding injection of lentiviral vectors into the CNS determined that preexisting antilentiviral immunity, regardless of the transgene, did not affect transgene expression. Furthermore, we showed that the transgene, but not the virion or vector components, is responsible for providing antigenic epitopes to the activated immune system, on systemic immunization with lentivirus. Low immunogenicity and prolonged transgene expression in the presence of preexisting lentiviral immunity are encouraging data for the future use of lentiviral vectors in CNS gene therapy. In summary, the lentiviral vectors tested induced undetectable activation of innate immune responses, and stimulation of adaptive immune responses against lentiviral vectors was effective in causing a decrease in transgene expression only if the immune response was directed against the transgene. A systemic immune response against vector components alone did not cause brain inflammation, possibly because vector-derived epitopes were not being presented in the CNS. PMID:15960605
Thiazole containing Heterocycles with CNS activity.
Kalal, Priyanka; Gandhi, Divyani; Prajapat, Prakash; Agarwal, Shikha
2017-07-24
Thiazoles are promising scaffolds in the area of medicinal and pharmaceutical chemistry and have accounted to show different pharmacophoric properties. For the last years, thiazole derivatives have focused too much attention to develop different new CNS active agents. It has been broadly used to generate diverse therapeutic agents against various CNS targets. Histamine H3 receptors are seriously involved in the pathophysiology of numerous disorders of the central nervous system. The literature survey has been done using different database from peer-reviewed journals. The quality of repossessed papers was evaluated using standard tools. The details of important papers were described to focus on the potency of thiazole containing heterocycles with CNS activity. Eighty nine papers were included in the review indicating thiazole containing heterocycles with CNS activity. (1) to (30) papers included different thiazole derivatives impregnated withCNS activity. Different CNS agents have been shown in references (37) to (56). The remaining papers have been searched for anticonvulsant agents (57) to (78) and other miscellaneous activities from (79) to (89). A detailed investigation has been carried out on thiazoles and its derivatives to judge its efficacy to overcome several CNS disorders. This article covers the recent updates of thiazole and its derivative with CNS activity already present in literature and will definitely provide a better platform for the production and development of potent thiazole based CNS vigorous drugs in near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Air Pollution: Mechanisms of Neuroinflammation & CNS Disease
Block, Michelle L.; Calderón-Garcidueñas, Lilian
2009-01-01
Emerging evidence implicates air pollution as a chronic source of neuroinflammation, reactive oxygen species (ROS), and neuropathology instigating central nervous system (CNS) disease. Stroke incidence, and Alzheimer’s and Parkinson’s disease pathology are linked to air pollution. Recent reports reveal that air pollution components reach the brain. Further, systemic effects known to impact lung and cardiovascular disease also impinge upon CNS health. While mechanisms driving air pollution-induced CNS pathology are poorly understood, new evidence suggests that activation of microglia and changes in the blood brain barrier may be key to this process. Here, we summarize recent findings detailing the mechanisms through which air pollution reaches the brain and activates the resident innate immune response to become a chronic source of pro-inflammatory factors and ROS culpable in CNS disease. PMID:19716187
Appu, Abhilash P; Arun, Peethambaran; Krishnan, Jishnu K S; Moffett, John R; Namboodiri, Aryan M A
2016-02-01
The blood brain barrier (BBB) is critical for maintaining central nervous system (CNS) homeostasis by restricting entry of potentially toxic substances. However, the BBB is a major obstacle in the treatment of neurotoxicity and neurological disorders due to the restrictive nature of the barrier to many medications. Intranasal delivery of active enzymes to the brain has therapeutic potential for the treatment of numerous CNS enzyme deficiency disorders and CNS toxicity caused by chemical threat agents. The aim of this work is to provide a sensitive model system for analyzing the rapid delivery of active enzymes into various regions of the brain with therapeutic bioavailability. We tested intranasal delivery of chloramphenicol acetyltransferase (CAT), a relatively large (75kD) enzyme, in its active form into different regions of the brain. CAT was delivered intranasally to anaesthetized rats and enzyme activity was measured in different regions using a highly specific High Performance Thin Layer Chromatography (HP-TLC)-radiometry coupled assay. Active enzyme reached all examined areas of the brain within 15min (the earliest time point tested). In addition, the yield of enzyme activity in the brain was almost doubled in the brains of rats pre-treated with matrix metalloproteinase-9 (MMP-9). Intranasal administration of active enzymes in conjunction with MMP-9 to the CNS is both rapid and effective. The present results suggest that intranasal enzyme therapy is a promising method for counteracting CNS chemical threat poisoning, as well as for treating CNS enzyme deficiency disorders. Published by Elsevier B.V.
Lounder, Dana T; Khandelwal, Pooja; Chandra, Sharat; Jordan, Michael B; Kumar, Ashish R; Grimley, Michael S; Davies, Stella M; Bleesing, Jack J; Marsh, Rebecca A
2017-05-01
Hemophagocytic lymphohistiocytosis (HLH) is an immune regulatory disorder that commonly presents with central nervous system (CNS) involvement. The only cure for genetic HLH is hematopoietic stem cell transplantation (HSCT), typically treated with reduced-intensity conditioning (RIC) regimens. We sought to estimate the incidence of CNS relapse after RIC HSCT, determine risk factors, and evaluate outcomes. We performed a retrospective chart review of 94 consecutive children and young adults with primary HLH who received RIC HSCT. CNS relapse within 1 year after transplantation was diagnosed by review of clinical symptoms, cerebral spinal fluid (CSF), and radiologic findings. Four (4.25%) patients developed symptoms of possible CNS HLH after HSCT and 3 patients were diagnosed. Eight patients underwent screening lumbar puncture because of history of active CNS disease at the onset of the conditioning regimen and 4 had evidence of continued disease. The overall incidence of CNS relapse and continued CNS disease after RIC HSCT was 8%. All patients with CNS disease after HSCT responded to CNS-directed therapy. Whole blood donor chimerism at the time of CNS relapse was low at 1% to 34%, but it remained high at 88% to 100% for patients with continued CNS disease. Overall survival for patients with CNS relapse was 50%, compared with 75% for patients without CNS disease (P = .079). Our data suggest that a low level of donor chimerism or active CNS disease at the time of transplantation increase the risk of CNS HLH after HSCT. Surveillance CSF evaluation after allogeneic RIC HSCT should be considered in patients with risk factors and CNS-directed treatment should be initiated if appropriate. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Yoshimori, Mayumi; Imadome, Ken-Ichi; Tomii, Shohei; Yamamoto, Kouhei; Miura, Osamu; Arai, Ayako
2018-01-01
As chronic active Epstein-Barr virus (EBV) infection (CAEBV) progresses, EBV-infected tumor cells invade the central nervous system (CNS). To establish a diagnostic procedure for CNS invasion, we retrospectively analyzed cerebrospinal fluid (CSF) obtained from eight patients. Two patients presented with consciousness disturbance and were diagnosed with CNS invasion based on scan and autopsy results, respectively. The remaining six patients were diagnosed without CNS invasion by clinical findings and scans. In the two patients with CNS invasion, the number of mononuclear cells and the protein concentration were increased, whereas the CSF to serum glucose ratio and the adenosine deaminase concentration were raised. In one of the two patients, however, bacterial meningitis could not be excluded. Cytological examination of CSF demonstrated class 1-3. Notably, the CSF EBV-DNA load was positive in all patients, independent of CNS invasion diagnosis, and the CSF load correlated with that of the peripheral blood. Taken together, this indicates that CSF may lack the specific markers of CNS invasion in CAEBV patients. The CSF EBV-DNA load and the cytological analysis did not reflect CNS invasion; therefore, new biomarkers need to be established.
Antiviral Type I and Type III Interferon Responses in the Central Nervous System
Sorgeloos, Frédéric; Kreit, Marguerite; Hermant, Pascale; Lardinois, Cécile; Michiels, Thomas
2013-01-01
The central nervous system (CNS) harbors highly differentiated cells, such as neurons that are essential to coordinate the functions of complex organisms. This organ is partly protected by the blood-brain barrier (BBB) from toxic substances and pathogens carried in the bloodstream. Yet, neurotropic viruses can reach the CNS either by crossing the BBB after viremia, or by exploiting motile infected cells as Trojan horses, or by using axonal transport. Type I and type III interferons (IFNs) are cytokines that are critical to control early steps of viral infections. Deficiencies in the IFN pathway have been associated with fatal viral encephalitis both in humans and mice. Therefore, the IFN system provides an essential protection of the CNS against viral infections. Yet, basal activity of the IFN system appears to be low within the CNS, likely owing to the toxicity of IFN to this organ. Moreover, after viral infection, neurons and oligodendrocytes were reported to be relatively poor IFN producers and appear to keep some susceptibility to neurotropic viruses, even in the presence of IFN. This review addresses some trends and recent developments concerning the role of type I and type III IFNs in: i) preventing neuroinvasion and infection of CNS cells; ii) the identity of IFN-producing cells in the CNS; iii) the antiviral activity of ISGs; and iv) the activity of viral proteins of neurotropic viruses that target the IFN pathway. PMID:23503326
Antiviral type I and type III interferon responses in the central nervous system.
Sorgeloos, Frédéric; Kreit, Marguerite; Hermant, Pascale; Lardinois, Cécile; Michiels, Thomas
2013-03-15
The central nervous system (CNS) harbors highly differentiated cells, such as neurons that are essential to coordinate the functions of complex organisms. This organ is partly protected by the blood-brain barrier (BBB) from toxic substances and pathogens carried in the bloodstream. Yet, neurotropic viruses can reach the CNS either by crossing the BBB after viremia, or by exploiting motile infected cells as Trojan horses, or by using axonal transport. Type I and type III interferons (IFNs) are cytokines that are critical to control early steps of viral infections. Deficiencies in the IFN pathway have been associated with fatal viral encephalitis both in humans and mice. Therefore, the IFN system provides an essential protection of the CNS against viral infections. Yet, basal activity of the IFN system appears to be low within the CNS, likely owing to the toxicity of IFN to this organ. Moreover, after viral infection, neurons and oligodendrocytes were reported to be relatively poor IFN producers and appear to keep some susceptibility to neurotropic viruses, even in the presence of IFN. This review addresses some trends and recent developments concerning the role of type I and type III IFNs in: i) preventing neuroinvasion and infection of CNS cells; ii) the identity of IFN-producing cells in the CNS; iii) the antiviral activity of ISGs; and iv) the activity of viral proteins of neurotropic viruses that target the IFN pathway.
Gandhi, Leena; Ou, Sai-Hong Ignatius; Shaw, Alice T; Barlesi, Fabrice; Dingemans, Anne-Marie C; Kim, Dong-Wan; Camidge, D Ross; Hughes, Brett G M; Yang, James C-H; de Castro, Javier; Crino, Lucio; Léna, Hervé; Do, Pascal; Golding, Sophie; Bordogna, Walter; Zeaiter, Ali; Kotb, Ahmed; Gadgeel, Shirish
2017-09-01
Central nervous system (CNS) progression is common in patients with anaplastic lymphoma kinase-positive (ALK+) non-small-cell lung cancer (NSCLC) receiving crizotinib. Next-generation ALK inhibitors have shown activity against CNS metastases, but accurate assessment of response and progression is vital. Data from two phase II studies in crizotinib-refractory ALK+ NSCLC were pooled to examine the CNS efficacy of alectinib, a CNS-active ALK inhibitor, using Response Evaluation Criteria in Solid Tumours (RECIST version 1.1) and Response Assessment in Neuro-Oncology high-grade glioma (RANO-HGG) criteria. Both studies enrolled patients aged ≥18 years who had previously received crizotinib. NP28761 was conducted in North America and NP28673 was a global study. All patients received 600 mg oral alectinib twice daily and had baseline CNS imaging. CNS response for those with baseline CNS metastases was determined by an independent review committee. Baseline measurable CNS disease was identified in 50 patients by RECIST and 43 by RANO-HGG. CNS objective response rate was 64.0% by RECIST (95% confidence interval [CI]: 49.2-77.1; 11 CNS complete responses [CCRs]) and 53.5% by RANO-HGG (95% CI: 37.7-68.8; eight CCRs). CNS responses were durable, with consistent estimates of median duration of 10.8 months with RECIST and 11.1 months with RANO-HGG. Of the 39 patients with measurable CNS disease by both RECIST and RANO-HGG, only three (8%) had CNS progression according to one criteria but not the other (92% concordance rate). Alectinib demonstrated promising efficacy in the CNS for ALK+ NSCLC patients pretreated with crizotinib, regardless of the assessment criteria used. Copyright © 2017 Elsevier Ltd. All rights reserved.
New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.
Sturm, Dominik; Orr, Brent A; Toprak, Umut H; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J; Balasubramanian, Gnanaprakash; Worst, Barbara C; Pajtler, Kristian W; Brabetz, Sebastian; Johann, Pascal D; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M; Remke, Marc; Phillips, Joanna J; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C; Schniederjan, Matthew J; Santi, Mariarita; Buccoliero, Anna M; Dahiya, Sonika; Kramm, Christof M; von Bueren, André O; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S; Taylor, Michael D; Jones, Chris; Jabado, Nada; Karajannis, Matthias A; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M; Ellison, David W; Korshunov, Andrey; Kool, Marcel
2016-02-25
Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors. Copyright © 2016 Elsevier Inc. All rights reserved.
Blakely, Pennelope K; Huber, Amanda K; Irani, David N
2016-08-25
Alphaviruses can cause fatal encephalitis in humans. Natural infections occur via the bite of infected mosquitos, but aerosol transmissibility makes some of these viruses potential bioterrorism agents. Central nervous system (CNS) host responses contribute to alphavirus pathogenesis in experimental models and are logical therapeutic targets. We investigated whether reactive oxygen species (ROS) generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) activity within the CNS contributes to fatal alphavirus encephalitis in mice. Infected animals were treated systemically with the angiotensin receptor-blocking drug, telmisartan, given its ability to cross the blood-brain barrier, selectively block type-1 angiotensin receptors (AT1R), and inhibit Nox-derived ROS production in vascular smooth muscle and other extraneural tissues. Clinical, virological, biochemical, and histopathological outcomes were followed over time. The importance of the angiotensin II (Ang II)/AT1R axis in disease pathogenesis was confirmed by demonstrating increased Ang II levels in the CNS following infection, enhanced disease survival when CNS Ang II production was suppressed, increased AT1R expression on microglia and tissue-infiltrating myeloid cells, and enhanced disease survival in AT1R-deficient mice compared to wild-type (WT) controls. Systemic administration of telmisartan protected WT mice from lethal encephalitis caused by two different alphaviruses in a dose-dependent manner without altering virus replication or exerting any anti-inflammatory effects in the CNS. Infection triggered up-regulation of multiple Nox subunits in the CNS, while drug treatment inhibited local Nox activity, ROS production, and oxidative neuronal damage. Telmisartan proved ineffective in Nox-deficient mice, demonstrating that this enzyme is its main target in this experimental setting. Nox-derived ROS, likely arising from CNS myeloid cells triggered by AT1R signaling, are pathogenic during fatal alphavirus encephalitis in mice. Systemically administered telmisartan at non-hypotensive doses targets Nox activity in the CNS to exert a neuroprotective effect. Disruption of this pathway may have broader implications for the treatment of related infections as well as for other CNS diseases driven by oxidative injury.
Ou, Sai-Hong Ignatius; Weitz, Michael; Jalas, John R; Kelly, Daniel F; Wong, Vanessa; Azada, Michele C; Quines, Oliver; Klempner, Samuel J
2016-06-01
Alectinib is a second generation ALK inhibitor that has significant clinical activity in central nervous system (CNS) metastases in anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC). Pseudoprogression (PsP) due to radiation necrosis during alecitnib treatment of central nervous system (CNS) metastases from ALK-rearranged NSCLC as been reported. Hence, distinguishing radiation-related PsP from alectinib-induced radiographic changes is important to avoid erroneous early trial discontinuation and abandonment of an effective treatment. However, it remains difficult to assess casuality of radiation necrosis is related to recent direct radiation or induced by alectinib treatment or both. It is also unknown how long from previous radiation can alectinib still induce radiation necrosis. Here we reported a crizotinib-refractory ALK-positive NSCLC patient who develop radiation necrosis in one of his metastatic CNS lesions after approximately 12 months of alectinib treatment who otherwise had on-going CNS response on alectinib. His most recent radiation to his CNS metastases was 7 years prior to the start of alectinib. This case illustrates that in the setting of pror CNS radiation, given the significant clinical activity of alectinib in CNS metastases in ALK-positive NSCLC patients the risk of CNS radiation necrosis remains long after previous radiation to the CNS metastases has been completed and can occur after durable response of treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Jiang, Ludi; Chen, Jiahua; He, Yusu; Zhang, Yanling; Li, Gongyu
2016-02-01
The blood-brain barrier (BBB), a highly selective barrier between central nervous system (CNS) and the blood stream, restricts and regulates the penetration of compounds from the blood into the brain. Drugs that affect the CNS interact with the BBB prior to their target site, so the prediction research on BBB permeability is a fundamental and significant research direction in neuropharmacology. In this study, we combed through the available data and then with the help of support vector machine (SVM), we established an experiment process for discovering potential CNS compounds and investigating the mechanisms of BBB permeability of them to advance the research in this field four types of prediction models, referring to CNS activity, BBB permeability, passive diffusion and efflux transport, were obtained in the experiment process. The first two models were used to discover compounds which may have CNS activity and also cross the BBB at the same time; the latter two were used to elucidate the mechanism of BBB permeability of those compounds. Three optimization parameter methods, Grid Search, Genetic Algorithm (GA), and Particle Swarm Optimization (PSO), were used to optimize the SVM models. Then, four optimal models were selected with excellent evaluation indexes (the accuracy, sensitivity and specificity of each model were all above 85%). Furthermore, discrimination models were utilized to study the BBB properties of the known CNS activity compounds in Chinese herbs and this may guide the CNS drug development. With the relatively systematic and quick approach, the application rationality of traditional Chinese medicines for treating nervous system disease in the clinical practice will be improved.
Quick, Eamon D.; Leser, J. Smith; Tyler, Kenneth L.
2014-01-01
ABSTRACT West Nile virus (WNV) is a neurotropic flavivirus that causes significant neuroinvasive disease involving the brain and/or spinal cord. Experimental mouse models of WNV infection have established the importance of innate and adaptive immune responses in controlling the extent and severity of central nervous system (CNS) disease. However, differentiating between immune responses that are intrinsic to the CNS and those that are dependent on infiltrating inflammatory cells has proven difficult. We used a murine ex vivo spinal cord slice culture (SCSC) model to determine the innate immune processes specific to the CNS during WNV infections. By 7 days after ex vivo infection of SCSCs, the majority of neurons and a substantial percentage of astrocytes were infected with WNV, resulting in apoptotic cell death and astrogliosis. Microglia, the resident immune cells of the CNS, were activated by WNV infection, as exemplified by their amoeboid morphology, the development of filopodia and lamellipodia, and phagocytosis of WNV-infected cells and debris. Microglial cell activation was concomitant with increased expression of proinflammatory cytokines and chemokines, including CXCL10, CXCL1, CCL5, CCL3, CCL2, tumor necrosis factor alpha (TNF-α), TNF-related apoptosis-inducing ligand (TRAIL), and interleukin-6 (IL-6). The application of minocycline, an inhibitor of neuroinflammation, altered the WNV-induced proinflammatory cytokine/chemokine expression profile, with inhibited production of CCL5, CCL2, and IL-6. Our findings establish that CNS-resident cells have the capacity to initiate a robust innate immune response against WNV infection in the absence of infiltrating inflammatory cells and systemic immune responses. IMPORTANCE There are no specific treatments of proven efficacy available for WNV neuroinvasive disease. A better understanding of the pathogenesis of WNV CNS infection is crucial for the rational development of novel therapies. Development of a spinal cord slice culture (SCSC) model facilitates the study of WNV pathogenesis and allows investigation of the intrinsic immune responses of the CNS. Our studies demonstrate that robust CNS innate immune responses, including microglial activation and proinflammatory cytokine/chemokine production, develop independently of contributions from the peripheral immune system and CNS-infiltrating inflammatory cells. PMID:25165111
Nair, Sharmila; Diamond, Michael S.
2015-01-01
The innate immune system mediates protection against neurotropic viruses that replicate in the central nervous system (CNS). Virus infection within specific cells of the CNS triggers activation of several families of pattern recognition receptors including Toll-like receptors, retinoic acid-inducible gene 1 like receptors, nucleotide-binding oligomerization domain-like receptors, and cytosolic DNA sensors. In this review, we highlight recent advances in our understanding of how cell-intrinsic host defenses within the CNS modulate infection of different DNA and RNA viruses. PMID:26163762
Churchill, Melissa J.; Cowley, Daniel J.; Wesselingh, Steve L.; Gorry, Paul R.; Gray, Lachlan R.
2014-01-01
Human immunodeficiency virus type-1 (HIV-1) invades the central nervous system (CNS) during acute infection which can result in HIV-associated neurocognitive disorders (HAND) in up to 50% of patients, even in the presence of combination antiretroviral therapy (cART). Within the CNS, productive HIV-1 infection occurs in the perivascular macrophages and microglia. Astrocytes also become infected, although their infection is restricted and does not give rise to new viral particles. The major barrier to the elimination of HIV-1 is the establishment of viral reservoirs in different anatomical sites throughout the body and viral persistence during long-term treatment with cART. While the predominant viral reservoir is believed to be resting CD4+ T-cells in the blood, other anatomical compartments including the CNS, gut-associated lymphoid tissue, bone marrow, and genital tract can also harbor persistently infected cellular reservoirs of HIV-1. Viral latency is predominantly responsible for HIV-1 persistence, and is most likely governed at the transcriptional level. Current clinical trials are testing transcriptional activators, in the background of cART, in an attempt to purge these viral reservoirs and reverse viral latency. These strategies aim to activate viral transcription in cells constituting the viral reservoir, so they can be recognized and cleared by the immune system, while new rounds of infection are blocked by co-administration of cART. The CNS has several unique characteristics that may result in differences in viral transcription and in the way latency is established. These include CNS-specific cell types, different transcription factors, altered immune surveillance, and reduced antiretroviral drug bioavailability. A comprehensive understanding of viral transcription and latency in the CNS is required in order to determine treatment outcomes when using transcriptional activators within the CNS. PMID:25060300
Medicinal Chemical Properties of Successful Central Nervous System Drugs
Pajouhesh, Hassan; Lenz, George R.
2005-01-01
Summary: Fundamental physiochemical features of CNS drugs are related to their ability to penetrate the blood-brain barrier affinity and exhibit CNS activity. Factors relevant to the success of CNS drugs are reviewed. CNS drugs show values of molecular weight, lipophilicity, and hydrogen bond donor and acceptor that in general have a smaller range than general therapeutics. Pharmacokinetic properties can be manipulated by the medicinal chemist to a significant extent. The solubility, permeability, metabolic stability, protein binding, and human ether-ago-go-related gene inhibition of CNS compounds need to be optimized simultaneously with potency, selectivity, and other biological parameters. The balance between optimizing the physiochemical and pharmacokinetic properties to make the best compromises in properties is critical for designing new drugs likely to penetrate the blood brain barrier and affect relevant biological systems. This review is intended as a guide to designing CNS therapeutic agents with better drug-like properties. PMID:16489364
Robson, Matthew J; Quinlan, Meagan A; Blakely, Randy D
2017-05-17
Serotonin (5-hydroxytryptamine, 5-HT) has long been recognized as a key contributor to the regulation of mood and anxiety and is strongly associated with the etiology of major depressive disorder (MDD). Although more known for its roles within the central nervous system (CNS), 5-HT is recognized to modulate several key aspects of immune system function that may contribute to the development of MDD. Copious amounts of research have outlined a connection between alterations in immune system function, inflammation status, and MDD. Supporting this connection, peripheral immune activation results in changes in the function and/or expression of many components of 5-HT signaling that are associated with depressive-like phenotypes. How 5-HT is utilized by the immune system to effect CNS function and ultimately behaviors related to depression is still not well understood. This Review summarizes the evidence that immune system alterations related to depression affect CNS 5-HT signaling that can alter MDD-relevant behaviors and that 5-HT regulates immune system signaling within the CNS and periphery. We suggest that targeting the interrelationships between immune and 5-HT signaling may provide more effective treatments for subsets of those suffering from inflammation-associated MDD.
Marques, Andrea Horvath; Bjørke-Monsen, Anne-Lise; Teixeira, Antônio L; Silverman, Marni N
2015-08-18
Evidence suggests that maternal and fetal immune dysfunction may impact fetal brain development and could play a role in neurodevelopmental disorders, although the definitive pathophysiological mechanisms are still not completely understood. Stress, malnutrition and physical inactivity are three maternal behavioral lifestyle factors that can influence immune and central nervous system (CNS) functions in both the mother and fetus, and may therefore, increase risk for neurodevelopmental/psychiatric disorders. First, we will briefly review some aspects of maternal-fetal immune system interactions and development of immune tolerance. Second, we will discuss the bidirectional communication between the immune system and CNS and the pathways by which immune dysfunction could contribute to neurodevelopmental disorders. Third, we will discuss the effects of prenatal stress and malnutrition (over and undernutrition) on perinatal programming of the CNS and immune system, and how this might influence neurodevelopment. Finally, we will discuss the beneficial impact of physical fitness during pregnancy on the maternal-fetal unit and infant and how regular physical activity and exercise can be an effective buffer against stress- and inflammatory-related disorders. Although regular physical activity has been shown to promote neuroplasticity and an anti-inflammatory state in the adult, there is a paucity of studies evaluating its impact on CNS and immune function during pregnancy. Implementing stress reduction, proper nutrition and ample physical activity during pregnancy and the childbearing period may be an efficient strategy to counteract the impact of maternal stress and malnutrition/obesity on the developing fetus. Such behavioral interventions could have an impact on early development of the CNS and immune system and contribute to the prevention of neurodevelopmental and psychiatric disorders. Further research is needed to elucidate this relationship and the underlying mechanisms of protection. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease. Copyright © 2014 Elsevier B.V. All rights reserved.
Nogueiras, Ruben; Pérez-Tilve, Diego; Veyrat-Durebex, Christelle; Morgan, Donald A; Varela, Luis; Haynes, William G; Patterson, James T; Disse, Emmanuel; Pfluger, Paul T; López, Miguel; Woods, Stephen C; DiMarchi, Richard; Diéguez, Carlos; Rahmouni, Kamal; Rohner-Jeanrenaud, Françoise; Tschöp, Matthias H
2009-05-06
We investigated a possible role of the central glucagon-like peptide (GLP-1) receptor system as an essential brain circuit regulating adiposity through effects on nutrient partitioning and lipid metabolism independent from feeding behavior. Both lean and diet-induced obesity mice were used for our experiments. GLP-1 (7-36) amide was infused in the brain for 2 or 7 d. The expression of key enzymes involved in lipid metabolism was measured by real-time PCR or Western blot. To test the hypothesis that the sympathetic nervous system may be responsible for informing adipocytes about changes in CNS GLP-1 tone, we have performed direct recording of sympathetic nerve activity combined with experiments in genetically manipulated mice lacking beta-adrenergic receptors. Intracerebroventricular infusion of GLP-1 in mice directly and potently decreases lipid storage in white adipose tissue. These effects are independent from nutrient intake. Such CNS control of adipocyte metabolism was found to depend partially on a functional sympathetic nervous system. Furthermore, the effects of CNS GLP-1 on adipocyte metabolism were blunted in diet-induced obese mice. The CNS GLP-1 system decreases fat storage via direct modulation of adipocyte metabolism. This CNS GLP-1 control of adipocyte lipid metabolism appears to be mediated at least in part by the sympathetic nervous system and is independent of parallel changes in food intake and body weight. Importantly, the CNS GLP-1 system loses the capacity to modulate adipocyte metabolism in obese states, suggesting an obesity-induced adipocyte resistance to CNS GLP-1.
Zhou, Jieru; Cai, Wei; Jin, Min; Xu, Jingwei; Wang, Yanan; Xiao, Yichuan; Hao, Li; Wang, Bei; Zhang, Yanyun; Han, Jie; Huang, Rui
2015-09-02
Microglia are intrinsic immune cells in the central nervous system (CNS). The under controlled microglia activation plays important roles in inflammatory demyelination diseases, such as multiple sclerosis (MS). However, the means to modulate microglia activation as a therapeutic modality and the underlying mechanisms remain elusive. Here we show that administration of 18β-glycyrrhetinic acid (GRA), by using both preventive and therapeutic treatment protocols, significantly suppresses disease severity of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. The treatment effect of GRA on EAE is attributed to its regulatory effect on microglia. GRA-modulated microglia significantly decreased pro-inflammatory profile in the CNS through suppression of MAPK signal pathway. The ameliorated CNS pro-inflammatory profile prevented the recruitment of encephalitogenic T cells into the CNS, which alleviated inflammation-induced demyelination. In addition, GRA treatment promoted remyelination in the CNS of EAE mice. The induced remyelination can be mediated by the overcome of inflammation-induced blockade of brain-derived neurotrophic factor expression in microglia, as well as enhancing oligodendrocyte precursor cell proliferation. Collectively, our results demonstrate that GRA-modulated microglia suppresses EAE through inhibiting microglia activation-mediated CNS inflammation, and promoting neuroprotective effect of microglia, which represents a potential therapeutic strategy for MS and maybe other neuroinflammatory diseases associated with microglia activation.
Antiretroviral Therapy and Central Nervous System HIV-1 Infection
Price, Richard W.; Spudich, Serena
2008-01-01
Central nervous system (CNS) HIV-1 infection begins during primary viremia and continues throughout the course of untreated systemic infection. While frequently accompanied by local inflammatory reactions detectable in cerebrospinal fluid (CSF), CNS HIV-1 infection is not usually clinically apparent. In a minority of patients, CNS HIV-1 infection evolves late in the course of systemic infection into encephalitis, which compromises brain function and presents clinically as AIDS dementia complex (ADC). Combination highly active antiretroviral therapy (HAART) has had a major impact on all aspects of HIV-1 CNS infection and disease. In those with asymptomatic infection, HAART usually effectively suppresses CSF HIV-1 and markedly reduces the incidence of symptomatic ADC. In those presenting with ADC, HAART characteristically prevents neurological progression and leads to variable, and at times substantial, recovery. Treatment has similarly reduced CNS opportunistic infections. With better control of these severe disorders, attention has turned to the possible consequences of chronic silent infection, and the issue of whether indolent, low-grade brain injury might require earlier treatment intervention. PMID:18447615
The adverse effects of air pollution on the nervous system.
Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H; Genc, Kursad
2012-01-01
Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health.
The Adverse Effects of Air Pollution on the Nervous System
Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H.; Genc, Kursad
2012-01-01
Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health. PMID:22523490
Kobayashi, Zen; Tsuchiya, Kuniaki; Takahashi, Makoto; Yokota, Osamu; Sasaki, Atsushi; Bhunchet, Ekapot; Arai, Tetsuaki; Akiyama, Haruhiko; Kamoshita, Masaharu; Kotera, Minoru; Mizusawa, Hidehiro
2008-12-15
A 27-year-old Japanese man developed recurrent respiratory and central nervous system (CNS) symptoms, and hemophagocytic syndromes with a clinical course of 6 years. CT demonstrated multiple nodular lesions in the bilateral lungs, and MRI revealed multiple abnormal intensity areas in the brain and spinal cord. Cerebrospinal fluid (CSF) examination disclosed mild pleocytosis and the presence of Epstein-Barr virus (EBV)-DNA detected by polymerase chain reaction (PCR). The patient died of a hemorrhagic shock associated with a hemophagocytic syndrome. A postmortem study revealed massive hemorrhage in the abdominal cavity and iliopsoas muscles, as well as diffuse infiltration of lymphocytes and/or macrophages into the lungs, liver, kidneys, spleen, cardiac muscle, bone marrow, and CNS. The severe involvement was demonstrated in the CNS, especially in the spinal cord and brainstem. The CD3 positive cells of the brainstem were EBV-encoded RNA 1 positive. This is the first autopsy case of chronic active EBV infection (CAEBV) in which severe and extensive CNS involvement was demonstrated.
[Effect of nociceptin on histamine and serotonin release in the central nervous system].
Gyenge, Melinda; Hantos, Mónika; Laufer, Rudolf; Tekes, Korniléa
2006-01-01
Role in pain sensation of both nociceptin (NC), the bioactive heptadecapeptide sequence of preproorphaninFQ and of histamine has been widely evidenced in the central nervous system (CNS). In the current series of experiments effect of intracerebroventricularly (i.c.v.) administered NC (5.5 nmol/rat) on histamine and serotonin levels in blood plasma, CSF and brain areas (hypothalamus and hippocampus) was studies and compared to the effect of the mast cell degranulator Compound 48/80(100microg/kg, i.c.v.) and the neuroactive peptide Substance P (50nmol/rat, i.c.v.). It was found that all the three compounds increased the histamine level in the CNS, however their activity concerning the mast cell-, and neuronal histamine release is different. NC could release histamine from both the mast cells and the neurons and it decreased CNS serotonin levels. Substance P was found the most potent in increasing CNS histamine levels. Compound 48/80 treatment resulted in elevated histamine levels both in the CNS and blood plasma. It is concluded that the histamine releasing effects of i.c.v. administered NC and SP are limited to the CNS, but in the effect of Compound 48/80 its blood-brain barrier impairing activity is also involved. Data also demonstrate that NC has significant effect on both the histaminergic and serotonergic neurotransmission in the CNS.
Nootropic, anxiolytic and CNS-depressant studies on different plant sources of shankhpushpi.
Malik, Jai; Karan, Maninder; Vasisht, Karan
2011-12-01
Shankhpushpi, a well-known drug in Ayurveda, is extensively used for different central nervous system (CNS) effects especially memory enhancement. Different plants are used under the name shankhpushpi in different regions of India, leading to an uncertainty regarding its true source. Plants commonly used under the name shankhpushpi are: Convolvulus pluricaulis Chois., Evolvulus alsinoides Linn., both from Convolvulaceae, and Clitoria ternatea Linn. (Leguminosae). To find out the true source of shankhpushpi by evaluating and comparing memory-enhancing activity of the three above mentioned plants. Anxiolytic, antidepressant and CNS-depressant activities of these three plants were also compared and evaluated. The nootropic activity of the aqueous methanol extract of each plant was tested using elevated plus-maze (EPM) and step-down models. Anxiolytic, antidepressant and CNS-depressant studies were evaluated using EPM, Porsolt?s swim despair and actophotometer models, respectively. C. pluricaulis extract (CPE) at a dose of 100 mg/kg, p.o. showed maximum nootropic and anxiolytic activity (p < 0.001). E. alsinoides extract (EAE) and C. ternatea extract (CTE) showed maximum memory-enhancing and anxiolytic activity (p < 0.001) at 200 and 100?mg/kg, respectively. Amongst the three plants, EAE and CTE showed significant (p < 0.05), while CPE did not exhibit any antidepressant activity. All the three plants showed CNS-depressant action at higher dose levels. The above results showed all the three plants possess nootropic, anxiolytic and CNS-depressant activity. The results of memory-enhancing activity suggest C. pluricaulis to be used as true source of shankhpushpi.
Various drug delivery approaches to the central nervous system.
Pasha, Santosh; Gupta, Kshitij
2010-01-01
The presence of the blood-brain barrier (BBB), an insurmountable obstacle, in particular, and other barriers in brain and periphery contribute to hindrance of the successful diagnosis and treatment of a myriad of central nervous system pathologies. This review discusses several strategies adopted to define a rational drug delivery approach to the CNS along with a short description of the strategies implemented by the authors' group to enhance the analgesic activity, a CNS property, of chimeric peptide of Met-enkephalin and FMRFa (YGGFMKKKFMRFa-YFa). Various approaches for drug delivery to the CNS with their beneficial and non-beneficial aspects, supported by an extensive literature survey published recently, up to August 2009. The reader will have the privilege of gaining an understanding of previous as well as recent approaches to breaching the CNS barriers. Among the various strategies discussed, the potential for efficacious CNS drug targeting in future lies either with the non-invasively administered multifunctional nanosystems or these nanosystems without characterstics such as long systemic circulating capability and avoiding reticuloendothelial system scavenging system of the body, endogenous transporters and efflux inhibitors administered by convection-enhanced delivery.
Integrated Stress Response as a Therapeutic Target for CNS Injuries.
Romero-Ramírez, Lorenzo; Nieto-Sampedro, Manuel; Barreda-Manso, M Asunción
2017-01-01
Central nervous system (CNS) injuries, caused by cerebrovascular pathologies or mechanical contusions (e.g., traumatic brain injury, TBI) comprise a diverse group of disorders that share the activation of the integrated stress response (ISR). This pathway is an innate protective mechanism, with encouraging potential as therapeutic target for CNS injury repair. In this review, we will focus on the progress in understanding the role of the ISR and we will discuss the effects of various small molecules that target the ISR on different animal models of CNS injury.
Analgesic, antibacterial and central nervous system depressant activities of Albizia procera leaves.
Khatoon, Mst Mahfuza; Khatun, Mst Hajera; Islam, Md Ekramul; Parvin, Mst Shahnaj
2014-04-01
To ascertain analgesic, antibacterial and central nervous system (CNS) depressant activities of ethyl acetate, dichloromethane and carbon tetrachloride fractions of methanol extract of Albizia procera (A. procera) leaves. Leaves extracts of A. procera were tested for analgesic activity by acetic acid induced and formalin test method in mice. The in vitro antibacterial activity was performed by agar well diffusion method. CNS depressant activity was evaluated by hole cross and open field tests. All the extracts at 200 mg/kg exhibited significant (P<0.01) analgesic activity in acetic acid induced and formalin tests method in mice. Analgesic activity of the ethyl acetate fraction was almost same like as standard drug indomethacin in acetic acid induced method. The CNS depressant activity of the extracts at 500 mg/kg was comparable to the positive control diazepam as determined by hole cross and open field test method. The extracts exhibited moderate antimicrobial activity against all the tested microorganisms (Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, Esherichia coli, Shigella soneii, Shigella boydii) at concentration of 0.8 mg/disc. The measured diameter of zone of inhibition for the extracts was within the range of 7 to 12 mm which was less than the standard kanamycin (16-24 mm). It is concluded that all the extracts possess potential analgesic and CNS depressants activity. This study also showed that different fractions of methanol extract could be potential sources of new antimicrobial agents.
Goss, G; Tsai, C-M; Shepherd, F A; Ahn, M-J; Bazhenova, L; Crinò, L; de Marinis, F; Felip, E; Morabito, A; Hodge, R; Cantarini, M; Johnson, M; Mitsudomi, T; Jänne, P A; Yang, J C-H
2018-03-01
Central nervous system (CNS) metastases are common in patients with non-small-cell lung cancer (NSCLC). Osimertinib has shown systemic efficacy in patients with CNS metastases, and early clinical evidence shows efficacy in the CNS. To evaluate osimertinib activity further, we present a pre-specified subgroup analysis of CNS response using pooled data from two phase II studies: AURA extension (NCT01802632) and AURA2 (NCT02094261). Patients with T790M-positive advanced NSCLC, who had progressed following prior epidermal growth factor receptor-tyrosine kinase inhibitor treatment, received osimertinib 80 mg od (n = 411). Patients with stable, asymptomatic CNS metastases were eligible for enrolment; prior CNS treatment was allowed. Patients with ≥1 measurable CNS lesion (per RECIST 1.1) on baseline brain scan by blinded independent central neuroradiology review (BICR) were included in the evaluable for CNS response set (cEFR). The primary outcome for this CNS analysis was CNS objective response rate (ORR) by BICR; secondary outcomes included CNS duration of response, disease control rate (DCR) and progression-free survival (PFS). Of 128 patients with CNS metastases on baseline brain scans, 50 were included in the cEFR. Confirmed CNS ORR and DCR were 54% [27/50; 95% confidence interval (CI) 39-68] and 92% (46/50; 95% CI 81-98), respectively. CNS response was observed regardless of prior radiotherapy to the brain. Median CNS duration of response (22% maturity) was not reached (range, 1-15 months); at 9 months, 75% (95% CI 53-88) of patients were estimated to remain in response. Median follow-up for CNS PFS was 11 months; median CNS PFS was not reached (95% CI, 7, not calculable). The safety profile observed in the cEFR was consistent with the overall patient population. Osimertinib demonstrated clinically meaningful efficacy against CNS metastases, with a high DCR, encouraging ORR, and safety profile consistent with that reported previously. NCT01802632; NCT02094261.
Adult oligodendrocyte progenitor cells - multifaceted regulators of the CNS in health and disease
Fernandez-Castaneda, Anthony; Gaultier, Alban
2016-01-01
Oligodendrocyte progenitor cells (OPCs) are the often-overlooked fourth glial cell type in the central nervous system (CNS), comprising about 5% of the CNS. For a long time, our vision of OPC function was limited to the generation of mature oligodendrocytes. However, new studies have highlighted the multifaceted nature of the OPCs. During homeostatic and pathological conditions, OPCs are the most proliferative cell type in the CNS, a property not consistent with the need to generate new oligodendrocytes. Indeed, OPCs modulate neuronal activity and OPC depletion in the brain can trigger depressive-like behavior. More importantly, OPCs are actively recruited to injury sites, where they orchestrate glial scar formation and contribute to the immune response. The following is a comprehensive analysis of the literature on OPC function beyond myelination, in the context of the healthy and diseased adult CNS. PMID:26796621
Touil, Hanane; Kobert, Antonia; Lebeurrier, Nathalie; Rieger, Aja; Saikali, Philippe; Lambert, Caroline; Fawaz, Lama; Moore, Craig S; Prat, Alexandre; Gommerman, Jennifer; Antel, Jack P; Itoyama, Yasuto; Nakashima, Ichiro; Bar-Or, Amit
2018-04-19
The success of clinical trials of selective B cell depletion in patients with relapsing multiple sclerosis (MS) indicates B cells are important contributors to peripheral immune responses involved in the development of new relapses. Such B cell contribution to peripheral inflammation likely involves antibody-independent mechanisms. Of growing interest is the potential that B cells, within the MS central nervous system (CNS), may also contribute to the propagation of CNS-compartmentalized inflammation in progressive (non-relapsing) disease. B cells are known to persist in the inflamed MS CNS and are more recently described as concentrated in meningeal immune-cell aggregates, adjacent to the subpial cortical injury which has been associated with progressive disease. How B cells are fostered within the MS CNS and how they may contribute locally to the propagation of CNS-compartmentalized inflammation remain to be elucidated. We considered whether activated human astrocytes might contribute to B cell survival and function through soluble factors. B cells from healthy controls (HC) and untreated MS patients were exposed to primary human astrocytes that were either maintained under basal culture conditions (non-activated) or pre-activated with standard inflammatory signals. B cell exposure to astrocytes included direct co-culture, co-culture in transwells, or exposure to astrocyte-conditioned medium. Following the different exposures, B cell survival and expression of T cell co-stimulatory molecules were assessed by flow cytometry, as was the ability of differentially exposed B cells to induce activation of allogeneic T cells. Secreted factors from both non-activated and activated human astrocytes robustly supported human B cell survival. Soluble products of pre-activated astrocytes also induced B cell upregulation of antigen-presenting cell machinery, and these B cells, in turn, were more efficient activators of T cells. Astrocyte-soluble factors could support survival and activation of B cell subsets implicated in MS, including memory B cells from patients with both relapsing and progressive forms of disease. Our findings point to a potential mechanism whereby activated astrocytes in the inflamed MS CNS not only promote a B cell fostering environment, but also actively support the ability of B cells to contribute to the propagation of CNS-compartmentalized inflammation, now thought to play key roles in progressive disease.
Neuroinflamm-aging and neurodegenerative diseases: an overview.
Pizza, Vincenzo; Agresta, Anella; D'Acunto, Cosimo W; Festa, Michela; Capasso, Anna
2011-08-01
Neuroinflammation is considered a chronic activation of the immune response in the central nervous system (CNS) in response to different injuries. This brain immune activation results in various events: circulating immune cells infiltrate the CNS; resident cells are activated; and pro-inflammatory mediators produced and released induce neuroinflammatory brain disease. The effect of immune diffusible mediators on synaptic plasticity might result in CNS dysfunction during neuroinflammatory brain diseases. The CNS dysfunction may induce several human pathological conditions associated with both cognitive impairment and a variable degree of neuroinflammation. Furthermore, age has a powerful effect on enhanced susceptibility to neurodegenerative diseases and age-dependent enhanced neuroinflammatory processes may play an important role in toxin generation that causes death or dysfunction of neurons in neurodegenerative diseases This review will address current understanding of the relationship between ageing, neuroinflammation and neurodegenerative disease by focusing on the principal mechanisms by which the immune system influences the brain plastic phenomena. Also, the present review considers the principal human neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis and psychiatric disorders caused by aging and neuroinflammation.
Central nervous system toxicity of metallic nanoparticles
Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin
2015-01-01
Nanomaterials (NMs) are increasingly used for the therapy, diagnosis, and monitoring of disease- or drug-induced mechanisms in the human biological system. In view of their small size, after certain modifications, NMs have the capacity to bypass or cross the blood–brain barrier. Nanotechnology is particularly advantageous in the field of neurology. Examples may include the utilization of nanoparticle (NP)-based drug carriers to readily cross the blood–brain barrier to treat central nervous system (CNS) diseases, nanoscaffolds for axonal regeneration, nanoelectromechanical systems in neurological operations, and NPs in molecular imaging and CNS imaging. However, NPs can also be potentially hazardous to the CNS in terms of nano-neurotoxicity via several possible mechanisms, such as oxidative stress, autophagy, and lysosome dysfunction, and the activation of certain signaling pathways. In this review, we discuss the dual effect of NMs on the CNS and the mechanisms involved. The limitations of the current research are also discussed. PMID:26170667
Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach
Tam, Roger Y; Fuehrmann, Tobias; Mitrousis, Nikolaos; Shoichet, Molly S
2014-01-01
The central nervous system (CNS) has a limited capacity to spontaneously regenerate following traumatic injury or disease, requiring innovative strategies to promote tissue and functional repair. Tissue regeneration strategies, such as cell and/or drug delivery, have demonstrated promising results in experimental animal models, but have been difficult to translate clinically. The efficacy of cell therapy, which involves stem cell transplantation into the CNS to replace damaged tissue, has been limited due to low cell survival and integration upon transplantation, while delivery of therapeutic molecules to the CNS using conventional methods, such as oral and intravenous administration, have been limited by diffusion across the blood–brain/spinal cord-barrier. The use of biomaterials to promote graft survival and integration as well as localized and sustained delivery of biologics to CNS injury sites is actively being pursued. This review will highlight recent advances using biomaterials as cell- and drug-delivery vehicles for CNS repair. PMID:24002187
Hagberg, Lars; Cinque, Paola; Gisslen, Magnus; Brew, Bruce J; Spudich, Serena; Bestetti, Arabella; Price, Richard W; Fuchs, Dietmar
2010-06-03
HIV-1 invades the central nervous system (CNS) in the context of acute infection, persists thereafter in the absence of treatment, and leads to chronic intrathecal immunoactivation that can be measured by the macrophage activation marker, neopterin, in cerebrospinal fluid (CSF). In this review we describe our experience with CSF neopterin measurements in 382 untreated HIV-infected patients across the spectrum of immunosuppression and HIV-related neurological diseases, in 73 untreated AIDS patients with opportunistic CNS infections, and in 233 treated patients.In untreated patients, CSF neopterin concentrations are almost always elevated and increase progressively as immunosuppression worsens and blood CD4 cell counts fall. However, patients with HIV dementia exhibit particularly high CSF neopterin concentrations, above those of patients without neurological disease, though patients with CNS opportunistic infections, including CMV encephalitis and cryptococcal meningitis, also exhibit high levels of CSF neopterin. Combination antiretroviral therapy, with its potent effect on CNS HIV infection and CSF HIV RNA, mitigates both intrathecal immunoactivation and lowers CSF neopterin. However, despite suppression of plasma and CSF HIV RNA to below the detection limits of clinical assays (<50 copies HIV RNA/mL), CSF neopterin often remains mildly elevated, indicating persistent low-level intrathecal immune activation and raising the important questions of whether this elevation is driven by continued CNS infection and whether it causes continued indolent CNS injury.Although nonspecific, CSF neopterin can serve as a useful biomarker in the diagnosis of HIV dementia in the setting of confounding conditions, in monitoring the CNS inflammatory effects of antiretroviral treatment, and give valuable information to the cause of ongoing brain injury.
Advances in Meningeal Immunity.
Rua, Rejane; McGavern, Dorian B
2018-06-01
The central nervous system (CNS) is an immunologically specialized tissue protected by a blood-brain barrier. The CNS parenchyma is enveloped by a series of overlapping membranes that are collectively referred to as the meninges. The meninges provide an additional CNS barrier, harbor a diverse array of resident immune cells, and serve as a crucial interface with the periphery. Recent studies have significantly advanced our understanding of meningeal immunity, demonstrating how a complex immune landscape influences CNS functions under steady-state and inflammatory conditions. The location and activation state of meningeal immune cells can profoundly influence CNS homeostasis and contribute to neurological disorders, but these cells are also well equipped to protect the CNS from pathogens. In this review, we discuss advances in our understanding of the meningeal immune repertoire and provide insights into how this CNS barrier operates immunologically under conditions ranging from neurocognition to inflammatory diseases. Published by Elsevier Ltd.
Khambhla, Ekta; Shah, Viral; Baviskar, Kalpesh
2016-01-01
The current epoch has witnessed a lifestyle impregnated with stress, which is a major cause of several neurological disorders. High morbidity and mortality rate due to neurological diseases and disorders have generated a huge social impact. Despite voluminous research, patients suffering from fatal and/or debilitating CNS diseases such as brain tumors, HIV, encephalopathy, Alzheimer's, epilepsy, Parkinson's, migraine and multiple sclerosis outnumbered those suffering from systemic cancer or heart diseases. The brain being a highly sensitive neuronal organ, has evolved with vasculature barriers, which regulates the efflux and influx of substances to CNS. Treatment of CNS diseases/disorders is challenging because of physiologic, metabolic and biochemical obstacles created by these barriers which comprise mainly of BBB and BCFB. The inability of achieving therapeutically active concentration has become the bottleneck level difficulty, hampering the therapeutic efficiency of several promising drug candidates for CNS related disorders. Parallel maturation of an effective CNS drug delivery strategy with CNS drug discovery is the need of the hour. Recently, the focus of the pharmaceutical community has aggravated in the direction of developing novel and more efficient drug delivery systems, giving the potential of more effective and safer CNS therapies. The present review outlines several hurdles in drug delivery to the CNS along with ideal physicochemical properties desired in drug substance/formulation for CNS delivery. The review also focuses on different conventional and novel strategies for drug delivery to the CNS. The article also assesses and emphasizes on possible benefits of biomaterial based formulations for drug delivery to the CNS.
Eriksson, Charlotta E; Studahl, Marie; Bergström, Tomas
2016-06-15
Herpes simplex encephalitis (HSE) is characterized by a pronounced inflammatory activity in the central nervous system (CNS). Here, we investigated the acute and prolonged complement system activity in HSE patients, by using enzyme-linked immunosorbent assays (ELISAs) for numerous complement components (C). We found increased cerebrospinal fluid concentrations of C3a, C3b, C5 and C5a in HSE patients compared with healthy controls. C3a and C5a concentrations remained increased also compared with patient controls. Our results conclude that the complement system is activated in CNS during HSE in the acute phase, and interestingly also in later stages supporting previous reports of prolonged inflammation. Copyright © 2016 Elsevier B.V. All rights reserved.
Kara, Tomas; Leinveber, Pavel; Vlasin, Michal; Jurak, Pavel; Novak, Miroslav; Novak, Zdenek; Chrastina, Jan; Czechowicz, Krzysztof; Belehrad, Milos; Asirvatham, Samuel J
2014-06-01
Despite the substantial progress that has been achieved in interventional cardiology and cardiac electrophysiology, endovascular intervention for the diagnosis and treatment of central nervous system (CNS) disorders such as stroke, epilepsy and CNS malignancy is still limited, particularly due to highly tortuous nature of the cerebral arterial and venous system. Existing interventional devices and techniques enable only limited and complicated access especially into intra-cerebral vessels. The aim of this study was to develop a micro-catheter magnetically-guided technology specifically designed for endovascular intervention and mapping in deep CNS vascular structures. Mapping of electrical brain activity was performed via the venous system on an animal dog model with the support of the NIOBE II system. A novel micro-catheter specially designed for endovascular interventions in the CNS, with the support of the NIOBE II technology, was able to reach safely deep intra-cerebral venous structures and map the electrical activity there. Such structures are not currently accessible using standard catheters. This is the first study demonstrating successful use of a new micro-catheter in combination with NIOBE II technology for endovascular intervention in the brain.
Analgesic, antibacterial and central nervous system depressant activities of Albizia procera leaves
Khatoon, Mst. Mahfuza; Khatun, Mst. Hajera; Islam, Md. Ekramul; Parvin, Mst. Shahnaj
2014-01-01
Objective To ascertain analgesic, antibacterial and central nervous system (CNS) depressant activities of ethyl acetate, dichloromethane and carbon tetrachloride fractions of methanol extract of Albizia procera (A. procera) leaves. Methods Leaves extracts of A. procera were tested for analgesic activity by acetic acid induced and formalin test method in mice. The in vitro antibacterial activity was performed by agar well diffusion method. CNS depressant activity was evaluated by hole cross and open field tests. Results All the extracts at 200 mg/kg exhibited significant (P<0.01) analgesic activity in acetic acid induced and formalin tests method in mice. Analgesic activity of the ethyl acetate fraction was almost same like as standard drug indomethacin in acetic acid induced method. The CNS depressant activity of the extracts at 500 mg/kg was comparable to the positive control diazepam as determined by hole cross and open field test method. The extracts exhibited moderate antimicrobial activity against all the tested microorganisms (Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, Esherichia coli, Shigella soneii, Shigella boydii) at concentration of 0.8 mg/disc. The measured diameter of zone of inhibition for the extracts was within the range of 7 to 12 mm which was less than the standard kanamycin (16-24 mm). Conclusions It is concluded that all the extracts possess potential analgesic and CNS depressants activity. This study also showed that different fractions of methanol extract could be potential sources of new antimicrobial agents. PMID:25182551
Chancellor, Michael B; Staskin, David R; Kay, Gary G; Sandage, Bobby W; Oefelein, Michael G; Tsao, Jack W
2012-04-01
Overactive bladder (OAB) is a common condition, particularly in the elderly. Anticholinergic agents are the mainstay of pharmacological treatment of OAB; however, many anticholinergics can cross the blood-brain barrier (BBB) and may cause central nervous system (CNS) effects, including cognitive deficits, which can be especially detrimental in older patients. Many anticholinergics have the potential to cause adverse CNS effects due to muscarinic (M(1)) receptor binding in the brain. Of note, permeability of the BBB increases with age and can also be affected by trauma, stress, and some diseases and medications. Passive crossing of a molecule across the BBB into the brain is dependent upon its physicochemical properties. Molecular characteristics that hinder passive BBB penetration include a large molecular size, positive or negative ionic charge at physiological pH, and a hydrophilic structure. Active transport across the BBB is dependent upon protein-mediated transporter systems, such as that of permeability-glycoprotein (P-gp), which occurs only for P-gp substrates, such as trospium chloride, darifenacin and fesoterodine. Reliance on active transport can be problematic since genetic polymorphisms of P-gp exist, and many commonly used drugs and even some foods are P-gp inhibitors or are substrates themselves and, due to competition, can reduce the amount of the drug that is actively transported out of the CNS. Therefore, for drugs that are preferred not to cross into the CNS, such as potent anticholinergics intended for the bladder, it is optimal to have minimal passive crossing of the BBB, although it may also be beneficial for the drug to be a substrate for an active efflux transport system. Anticholinergics demonstrate different propensities to cross the BBB. Darifenacin, fesoterodine and trospium chloride are substrates for P-gp and, therefore, are actively transported away from the brain. In addition, trospium chloride has not been detected in cerebrospinal fluid assays and does not appear to have significant CNS penetration. This article reviews the properties of anticholinergics that affect BBB penetration and active transport out of the CNS, discusses issues of increased BBB permeability in patients with OAB, and examines the clinical implications of BBB penetration on adverse events associated with anticholinergics.
Martín-Martín, Lourdes; Almeida, Julia; Pomares, Helena; González-Barca, Eva; Bravo, Pilar; Giménez, Teresa; Heras, Cecilia; Queizán, José-Antonio; Pérez-Ceballos, Elena; Martínez, Violeta; Alonso, Natalia; Calvo, Carlota; Álvarez, Rodolfo; Caballero, María Dolores; Orfao, Alberto
2016-03-01
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare aggressive myeloid neoplasm which shows a high rate of central nervous system (CNS) recurrence and overall survival (OS) of <1 year. Despite this, screening for CNS involvement is not routinely performed at diagnosis and intrathecal (IT) prophylaxis is not regularly administered in BPDCN. Here, we prospectively evaluated 13 consecutive BPDCN patients for the presence of CNS involvement by flow cytometry. Despite none of the patients presented with neurological symptoms, occult CNS involvement was detected in 6/10 cases evaluated at diagnosis and 3/3 studied at relapse/progression. BPDCN patients evaluated at diagnosis received IT treatment -either CNS prophylaxis (n = 4) or active therapy (n = 6)- and all but one remain alive (median follow-up of 20 months). In contrast, all three patients assessed at relapse/progression died. The potential benefit of IT treatment administered early at diagnosis on OS and CNS recurrence-free survival of BPDCN was further confirmed in a retrospective cohort of another 23 BPDCN patients. Our results show that BPDCN patients studied at diagnosis frequently display occult CNS involvement; moreover, they also indicate that treatment of occult CNS disease might lead to a dramatically improved outcome of BPDCN.
Martín-Martín, Lourdes; Almeida, Julia; Pomares, Helena; González-Barca, Eva; Bravo, Pilar; Giménez, Teresa; Heras, Cecilia; Queizán, José-Antonio; Pérez-Ceballos, Elena; Martínez, Violeta; Alonso, Natalia; Calvo, Carlota; Álvarez, Rodolfo; Caballero, María Dolores; Orfao, Alberto
2016-01-01
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare aggressive myeloid neoplasm which shows a high rate of central nervous system (CNS) recurrence and overall survival (OS) of <1 year. Despite this, screening for CNS involvement is not routinely performed at diagnosis and intrathecal (IT) prophylaxis is not regularly administered in BPDCN. Here, we prospectively evaluated 13 consecutive BPDCN patients for the presence of CNS involvement by flow cytometry. Despite none of the patients presented with neurological symptoms, occult CNS involvement was detected in 6/10 cases evaluated at diagnosis and 3/3 studied at relapse/progression. BPDCN patients evaluated at diagnosis received IT treatment -either CNS prophylaxis (n = 4) or active therapy (n = 6)- and all but one remain alive (median follow-up of 20 months). In contrast, all three patients assessed at relapse/progression died. The potential benefit of IT treatment administered early at diagnosis on OS and CNS recurrence-free survival of BPDCN was further confirmed in a retrospective cohort of another 23 BPDCN patients. Our results show that BPDCN patients studied at diagnosis frequently display occult CNS involvement; moreover, they also indicate that treatment of occult CNS disease might lead to a dramatically improved outcome of BPDCN. PMID:26840087
NASA Astrophysics Data System (ADS)
Panetsos, Fivos; Sanchez-Jimenez, Abel; Torets, Carlos; Largo, Carla; Micera, Silvestro
2011-08-01
In this work we address the use of realtime cortical recordings for the generation of coherent, reliable and robust motor activity in spinal-lesioned animals through selective intraspinal microstimulation (ISMS). The spinal cord of adult rats was hemisectioned and groups of multielectrodes were implanted in both the central nervous system (CNS) and the spinal cord below the lesion level to establish a neural system interface (NSI). To test the reliability of this new NSI connection, highly repeatable neural responses recorded from the CNS were used as a pattern generator of an open-loop control strategy for selective ISMS of the spinal motoneurons. Our experimental procedure avoided the spontaneous non-controlled and non-repeatable neural activity that could have generated spurious ISMS and the consequent undesired muscle contractions. Combinations of complex CNS patterns generated precisely coordinated, reliable and robust motor actions.
Gadgeel, Shirish M; Shaw, Alice T; Govindan, Ramaswamy; Gandhi, Leena; Socinski, Mark A; Camidge, D Ross; De Petris, Luigi; Kim, Dong-Wan; Chiappori, Alberto; Moro-Sibilot, Denis L; Duruisseaux, Michael; Crino, Lucio; De Pas, Tommaso; Dansin, Eric; Tessmer, Antje; Yang, James Chih-Hsin; Han, Ji-Youn; Bordogna, Walter; Golding, Sophie; Zeaiter, Ali; Ou, Sai-Hong Ignatius
2016-12-01
Purpose Alectinib has shown activity in the CNS in phase I and II studies. To further evaluate this activity, we pooled efficacy and safety data from two single-arm phase II studies (NP28761 and NP28673; ClinicalTrials.gov identifiers: NCT01871805 and NCT01801111, respectively) in patients with ALK-positive non-small-cell lung cancer (NSCLC). Patients and Methods Both studies included patients with ALK-positive NSCLC who had previously received crizotinib; all patients received alectinib 600 mg twice per day. The primary end point in both studies was independent review committee (IRC)-assessed objective response rate (ORR; by Response Evaluation Criteria in Solid Tumors [RECIST] version 1.1). Additional end points (all by IRC) included CNS ORR (CORR), CNS disease control rate (CDCR), and CNS duration of response (CDOR). Results One hundred thirty-six patients had baseline CNS metastases (60% of the overall study populations); 50 patients (37%) had measurable CNS disease at baseline. Ninety-five patients (70%) had prior CNS radiotherapy; 55 patients completed the CNS radiotherapy more than 6 months before starting alectinib. Median follow-up time was 12.4 months (range, 0.9 to 19.7 months). For patients with baseline measurable CNS disease, IRC CORR was 64.0% (95% CI, 49.2% to 77.1%), CDCR was 90.0% (95% CI, 78.2% to 96.7%), and median CDOR was 10.8 months (95% CI, 7.6 to 14.1 months). For patients with measurable and/or nonmeasurable baseline CNS disease, IRC CORR was 42.6% (95% CI, 34.2% to 51.4%), CDCR was 85.3% (95% CI, 78.2% to 90.8%), and median CDOR was 11.1 months (95% CI, 10.3 months to not evaluable). CORR was 35.8% (95% CI, 26.2% to 46.3%) for patients with prior radiotherapy (n = 95) and 58.5% (95% CI, 42.1% to 73.7%) for patients without prior radiotherapy (n = 41). As previously reported, alectinib was well tolerated, regardless of baseline CNS disease. Conclusion Alectinib showed good efficacy against CNS metastases, in addition to systemic activity, in crizotinib-refractory ALK-positive NSCLC.
Forbes, Lindsey H.
2018-01-01
The extracellular environment of the central nervous system (CNS) becomes highly structured and organized as the nervous system matures. The extracellular space of the CNS along with its subdomains plays a crucial role in the function and stability of the CNS. In this review, we have focused on two components of the neuronal extracellular environment, which are important in regulating CNS plasticity including the extracellular matrix (ECM) and myelin. The ECM consists of chondroitin sulfate proteoglycans (CSPGs) and tenascins, which are organized into unique structures called perineuronal nets (PNNs). PNNs associate with the neuronal cell body and proximal dendrites of predominantly parvalbumin-positive interneurons, forming a robust lattice-like structure. These developmentally regulated structures are maintained in the adult CNS and enhance synaptic stability. After injury, however, CSPGs and tenascins contribute to the structure of the inhibitory glial scar, which actively prevents axonal regeneration. Myelin sheaths and mature adult oligodendrocytes, despite their important role in signal conduction in mature CNS axons, contribute to the inhibitory environment existing after injury. As such, unlike the peripheral nervous system, the CNS is unable to revert to a “developmental state” to aid neuronal repair. Modulation of these external factors, however, has been shown to promote growth, regeneration, and functional plasticity after injury. This review will highlight some of the factors that contribute to or prevent plasticity, sprouting, and axonal regeneration after spinal cord injury. PMID:29849554
Tahtouh, Muriel; Croq, Françoise; Lefebvre, Christophe; Pestel, Joël
2009-09-01
The complement system is well known as an enzyme cascade that helps to defend against infections. Indeed, this ancestral system bridges innate and adaptive immunity. Its implication in diseases of the central nervous system (CNS), has led to an increased number of studies. Complement activation in the CNS has been generally considered to contribute to tissue damage. However, recent studies suggest that complement may be neuroprotective, and can participate in maintenance and repair of the adult brain. Here, we will review this dual role of complement proteins and some of their functional interactions with part of the chemokine and cytokine network associated with the protection of CNS integrity.
Galvani, Gerónimo L; Fruttero, Leonardo L; Coronel, María F; Nowicki, Susana; Demartini, Diogo R; Defferrari, Marina S; Postal, Melissa; Canavoso, Lilián E; Carlini, Célia R; Settembrini, Beatriz P
2015-02-01
Triatoma infestans is the main vector of Chagas'disease in Southern Cone countries. In triatomines, symptoms suggesting neurotoxicity were observed after treatment with Jaburetox (Jbtx), the entomotoxic peptide obtained from jackbean urease. Here, we study its effect in the central nervous system (CNS) of this species. Immunohistochemistry, Western blots, immunoprecipitation, two-dimensional electrophoresis, tandem mass spectrometry and enzymatic assays were performed. Anti-Jbtx antibody labeled somata of the antennal lobe only in Jbtx-treated insects. Western blot assays of nervous tissue using the same antibody reacted with a 61kDa protein band only in peptide-injected insects. Combination of immunoprecipitation, two-dimensional electrophoresis and tandem mass spectrometry identified UDP-N-acetylglucosamine pyrophosphorylase (UDP-GlcNAcP) as a molecular target for Jbtx. The activity of UDP-GlcNAcP increased significantly in the CNS of Jbtx-treated insects. The effect of Jbtx on the activity of nitric oxide synthase (NOS) and NO production was investigated as NO is a recognized messenger molecule in the CNS of T. infestans. NOS activity and NO levels decreased significantly in CNS homogenates of Jbtx-treated insects. UDP-GlcNAcP is a molecular target of Jbtx. Jbtx impaired the activity of T. infestans nitrergic system, which may be related with early behavioral effects. We report that the CNS of Triatoma infestans is a target for the entomotoxic peptide and propose that a specific area of the brain is involved. Besides potentially providing tools for control strategies of Chagas' disease vectors our data may be relevant in various fields of research as insect physiology, neurobiology and protein function. Copyright © 2014 Elsevier B.V. All rights reserved.
Integrated Neural and Endocrine Control of Gastrointestinal Function.
Furness, John B
The activity of the digestive system is dynamically regulated by external factors, including body nutritional and activity states, emotions and the contents of the digestive tube. The gut must adjust its activity to assimilate a hugely variable mixture that is ingested, particularly in an omnivore such as human for which a wide range of food choices exist. It must also guard against toxins and pathogens. These nutritive and non-nutritive components of the gut contents interact with the largest and most vulnerable surface in the body, the lining of the gastrointestinal tract. This requires a gut sensory system that can detect many classes of nutrients, non-nutrient components of food, physicochemical conditions, toxins, pathogens and symbionts (Furness et al., Nat Rev Gastroenterol Hepatol 10:729-740, 2013). The gut sensors are in turn coupled to effector systems that can respond to the sensory information. The responses are exerted through enteroendocrine cells (EEC), the enteric nervous system (ENS), the central nervous system (CNS) and the gut immune and tissue defence systems. It is apparent that the control of the digestive organs is an integrated function of these effectors. The peripheral components of the EEC, ENS and CNS triumvirate are extensive. EEC cells have traditionally been classified into about 12 types (disputed in this review), releasing about 20 hormones, together making the gut endocrine system the largest endocrine organ in the body. Likewise, in human the ENS contains about 500 million neurons, far more than the number of neurons in the remainder of the peripheral autonomic nervous system. Together gut hormones, the ENS and the CNS control or influence functions including satiety, mixing and propulsive activity, release of digestive enzymes, induction of nutrient transporters, fluid transport, local blood flow, gastric acid secretion, evacuation and immune responses. Gut content receptors, including taste, free fatty acid, peptide and phytochemical receptors, are primarily located on EEC. Hormones released by EEC act via both the ENS and CNS to optimise digestion. Toxic chemicals and pathogens are sensed and then avoided, expelled or metabolised. These defensive activities also involve the EEC and signalling from EEC to the ENS and the CNS. A major challenge is to develop a comprehensive understanding of the integrated responses of the gut, via its effector systems, the ENS, extrinsic innervation, EEC and the gut immune system, to the sensory information it receives.
Kinzel, Silke; Lehmann-Horn, Klaus; Torke, Sebastian; Häusler, Darius; Winkler, Anne; Stadelmann, Christine; Payne, Natalie; Feldmann, Linda; Saiz, Albert; Reindl, Markus; Lalive, Patrice H; Bernard, Claude C; Brück, Wolfgang; Weber, Martin S
2016-07-01
In the pathogenesis of central nervous system (CNS) demyelinating disorders, antigen-specific B cells are implicated to act as potent antigen-presenting cells (APC), eliciting waves of inflammatory CNS infiltration. Here, we provide the first evidence that CNS-reactive antibodies (Ab) are similarly capable of initiating an encephalitogenic immune response by targeting endogenous CNS antigen to otherwise inert myeloid APC. In a transgenic mouse model, constitutive production of Ab against myelin oligodendrocyte glycoprotein (MOG) was sufficient to promote spontaneous experimental autoimmune encephalomyelitis (EAE) in the absence of B cells, when mice endogenously contained MOG-recognizing T cells. Adoptive transfer studies corroborated that anti-MOG Ab triggered activation and expansion of peripheral MOG-specific T cells in an Fc-dependent manner, subsequently causing EAE. To evaluate the underlying mechanism, anti-MOG Ab were added to a co-culture of myeloid APC and MOG-specific T cells. At otherwise undetected concentrations, anti-MOG Ab enabled Fc-mediated APC recognition of intact MOG; internalized, processed and presented MOG activated naïve T cells to differentiate in an encephalitogenic manner. In a series of translational experiments, anti-MOG Ab from two patients with an acute flare of CNS inflammation likewise facilitated detection of human MOG. Jointly, these observations highlight Ab-mediated opsonization of endogenous CNS auto-antigen as a novel disease- and/or relapse-triggering mechanism in CNS demyelinating disorders.
Zhang, Da-Wei; Johnstone, Stuart J; Roodenrys, Steven; Luo, Xiangsheng; Li, Hui; Wang, Encong; Zhao, Qihua; Song, Yan; Liu, Lu; Qian, Qiujin; Wang, Yufeng; Sun, Li
2018-06-01
This study explored the relationships between resting-state electroencephalogram (RS-EEG) localized activation and two important types of executive functions (EF) to extend the prognostic utilization of RS-EEG in children with Attention-Deficit/Hyperactivity Disorder (AD/HD). Also, the role of central nervous system (CNS) arousal in the relationships was examined. Fifty-eight children with AD/HD participated in the study. RS-EEG localized activation was derived from spectral power differences between EEG in eyes-closed and eyes-open conditions. CNS arousal was measured based on alpha band power. Common and everyday EF scores were obtained as EF outcomes. Frontal delta activation predicted common EF ability and posterior alpha activation predicted everyday EF. A serial mediation analysis found that lower CNS baseline arousal was related to greater arousal and delta activation in series, which in turn related to worse common EF. A follow-up study found that baseline arousal was related to larger interference cost. RS-EEG is indicative of individual differences in two important types of EF in children with AD/HD. Lower CNS arousal may be a driving force for the poorer common EF performance. The current study supports prognostic utilization of RS-EEG and AD/HD models that take resting brain activity into consideration in children with AD/HD. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Fleischmann, Alexander; Hvalby, Oivind; Jensen, Vidar; Strekalova, Tatyana; Zacher, Christiane; Layer, Liliana E; Kvello, Ane; Reschke, Markus; Spanagel, Rainer; Sprengel, Rolf; Wagner, Erwin F; Gass, Peter
2003-10-08
The immediate early gene c-fos is part of the activator protein-1 transcription factor and has been postulated to participate in the molecular mechanisms of learning and memory. To test this hypothesis in vivo, we generated mice with a nervous system-specific c-fos knock-out using the Cre-loxP system. Adult mice lacking c-Fos in the CNS (c-fosDeltaCNS) showed normal general and emotional behavior but were specifically impaired in hippocampus-dependent spatial and associative learning tasks. These learning deficits correlated with a reduction of long-term potentiation (LTP) in hippocampal CA3-CA1 synapses. The magnitude of LTP was restored by a repeated tetanization procedure, suggesting impaired LTP induction in c-fosDeltaCNS mice. This rescue was blocked by a selective inhibitor of NR2B-type NMDA receptors. This blockade was compensated in wild-type mice by NR2A-type NMDA receptor-activated signaling pathways, thus indicating that these pathways are compromised in c-fosDeltaCNS mice. In summary, our data suggest a role for c-Fos in hippocampus-dependent learning and memory as well as in NMDA receptor-dependent LTP formation.
Kegler, Kristel; Imbschweiler, Ilka; Ulrich, Reiner; Kovermann, Peter; Fahlke, Christoph; Deschl, Ulrich; Kalkuhl, Arno; Baumgärnter, Wolfgang; Wewetzer, Konstantin
2014-06-01
Central nervous system (CNS) injury triggers production of myelinating Schwann cells from endogenous oligodendrocyte precursors (OLPs). These CNS Schwann cells may be attractive candidates for novel therapeutic strategies aiming to promote endogenous CNS repair. However, CNS Schwann cells have been so far mainly characterized in situ regarding morphology and marker expression, and it has remained enigmatic whether they display functional properties distinct from peripheral nervous system (PNS) Schwann cells. Potassium channels (K+) have been implicated in progenitor and glial cell proliferation after injury and may, therefore, represent a suitable pharmacological target. In the present study, we focused on the function and expression of voltage-gated K+ channels Kv(1-12) and accessory β-subunits in purified adult canine CNS and PNS Schwann cell cultures using electrophysiology and microarray analysis and characterized their antigenic phenotype. We show here that K+ channels differed significantly in both cell types. While CNS Schwann cells displayed prominent K D-mediated K+ currents, PNS Schwann cells elicited K(D-) and K(A-type) K+ currents. Inhibition of K+ currents by TEA and Ba2+ was more effective in CNS Schwann cells. These functional differences were not paralleled by differential mRNA expression of Kv(1-12) and accessory β-subunits. However, O4/A2B5 and GFAP expressions were significantly higher and lower, respectively, in CNS than in PNS Schwann cells. Taken together, this is the first evidence that CNS Schwann cells display specific properties not shared by their peripheral counterpart. Both Kv currents and increased O4/A2B5 expression were reminiscent of OLPs suggesting that CNS Schwann cells retain OLP features during maturation.
Abid, Mohd; Hrishikeshavan, H J; Asad, Mohammed
2006-01-01
The research work deals with the screening of ethanol and chloroform extracts of Pachyrrhizus erosus seeds for central nervous system (CNS) depressant activity. The Pachyrrhizus erosus seed is known to contain rotinoids, flavonoids and phenylfuranocoumarin derivatives as chemical components and is reported to have antifungal, antisecretory, insecticides, antibacterial and spasmolytic activity. Since seeds of Pachyrrhizus erosus is used as folk medicine in treatment of insomnia, we made an attempt to study its CNS depressant effect. The different activities studied were potentiation of pentobarbitone-induced sleep, test for locomotor activity, effect on muscle co-ordination, antiaggressive and antianxiety activities. The result of the study reflected that ethanol extract of the seeds (150 mg/kg, p.o) decreased locomotor activity, produced muscle relaxation and showed antianxiety and antiaggressive activity.
Gimsa, Ulrike; Mitchison, N Avrion; Brunner-Weinzierl, Monika C
2013-01-01
Astrocytes have many functions in the central nervous system (CNS). They support differentiation and homeostasis of neurons and influence synaptic activity. They are responsible for formation of the blood-brain barrier (BBB) and make up the glia limitans. Here, we review their contribution to neuroimmune interactions and in particular to those induced by the invasion of activated T cells. We discuss the mechanisms by which astrocytes regulate pro- and anti-inflammatory aspects of T-cell responses within the CNS. Depending on the microenvironment, they may become potent antigen-presenting cells for T cells and they may contribute to inflammatory processes. They are also able to abrogate or reprogram T-cell responses by inducing apoptosis or secreting inhibitory mediators. We consider apparently contradictory functions of astrocytes in health and disease, particularly in their interaction with lymphocytes, which may either aggravate or suppress neuroinflammation.
Kedzierska, Ewa; Orzelska, Jolanta; Perković, Ivana; Knežević, Danijel; Fidecka, Sylwia; Kaiser, Marcel; Zorc, Branka
2016-02-01
New primaquine (PQ) urea and semicarbazide derivatives 1-4 were screened for the first time for central nervous system (CNS) and antimalarial activity. Behavioural tests were performed on mice. In vitro cytotoxicity on L-6 cells and activity against erythrocytic stages of Plasmodium falciparum was determined. Compound 4 inhibited 'head-twitch' responses and decreased body temperature of mice, which suggests some involvement of the serotonergic system. Compound 4 protected mice against clonic seizures and was superior in the antimalarial test. A hybrid of two PQ urea 2 showed a strong antimalarial activity, confirming the previous findings of the high activity of bis(8-aminoquinolines) and other bisantimalarial drugs. All the compounds decreased the locomotor activity of mice, what suggests their weak depressive effects on the CNS, while PQ derivatives 1 and 2 increased amphetamine-induced hyperactivity. None of the compounds impaired coordination, what suggests a lack of their neurotoxicity. All the tested compounds presented an antinociceptive activity in the 'writhing' test. Compounds 3 and 4 were active in nociceptive tests, and those effects were reversed by naloxone. Compound 4 could be a useful lead compound in the development of CNS active agents and antimalarials, whereas compound 3 may be considered as the most promising lead for new antinociceptive agents. © 2015 Société Française de Pharmacologie et de Thérapeutique.
Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System.
Ren, Xiaoyuan; Zou, Lili; Zhang, Xu; Branco, Vasco; Wang, Jun; Carvalho, Cristina; Holmgren, Arne; Lu, Jun
2017-11-01
The thioredoxin (Trx) and glutathione (GSH) systems play important roles in maintaining the redox balance in the brain, a tissue that is prone to oxidative stress due to its high-energy demand. These two disulfide reductase systems are active in various areas of the brain and are considered to be critical antioxidant systems in the central nervous system (CNS). Various neuronal disorders have been characterized to have imbalanced redox homeostasis. Recent Advances: In addition to their detrimental effects, recent studies have highlighted that reactive oxygen species/reactive nitrogen species (ROS/RNS) act as critical signaling molecules by modifying thiols in proteins. The Trx and GSH systems, which reversibly regulate thiol modifications, regulate redox signaling involved in various biological events in the CNS. In this review, we focus on the following: (i) how ROS/RNS are produced and mediate signaling in CNS; (ii) how Trx and GSH systems regulate redox signaling by catalyzing reversible thiol modifications; (iii) how dysfunction of the Trx and GSH systems causes alterations of cellular redox signaling in human neuronal diseases; and (iv) the effects of certain small molecules that target thiol-based signaling pathways in the CNS. Further study on the roles of thiol-dependent redox systems in the CNS will improve our understanding of the pathogenesis of many human neuronal disorders and also help to develop novel protective and therapeutic strategies against neuronal diseases. Antioxid. Redox Signal. 27, 989-1010.
What are the roles of clinical nurses and midwife specialists?
Wickham, Sheelagh
Research shows the increasing part the Clinical Nurse Specialist (CNS) plays in healthcare today. But what does a CNS actually do in their day-to day-work? This study, set in the Republic of Ireland, aimed to explore the CNS and clinical midwife specialist (CMS) roles in practice. Quantitative methodology was used to explore the roles and activities of the CNS and CMS. Following ethics approval, a valid and reliable questionnaire was circulated to the total population of CNS/CMS in Ireland. The data were analysed using SPSS. This study articulates the individual role elements and activity level. The findings show the CNS/CMS to be active in the roles of researcher, educator, communicator, change agent, leader and clinical specialist, but the level of activity varies between different roles and individual role elements. The CNS/CMS is seen as a valuable resource in health care today and has potential to have a positive effect on patient care. The majority of CNS/CMSs are active in varying roles but the analysis shows lesser activity in some areas, such as research. The findings merit further study on role activity and possible variables that influence role activity.
Sankowski, Roman; Mader, Simone; Valdés-Ferrer, Sergio Iván
2015-01-01
The nervous and immune systems have evolved in parallel from the early bilaterians, in which innate immunity and a central nervous system (CNS) coexisted for the first time, to jawed vertebrates and the appearance of adaptive immunity. The CNS feeds from, and integrates efferent signals in response to, somatic and autonomic sensory information. The CNS receives input also from the periphery about inflammation and infection. Cytokines, chemokines, and damage-associated soluble mediators of systemic inflammation can also gain access to the CNS via blood flow. In response to systemic inflammation, those soluble mediators can access directly through the circumventricular organs, as well as open the blood–brain barrier. The resulting translocation of inflammatory mediators can interfere with neuronal and glial well-being, leading to a break of balance in brain homeostasis. This in turn results in cognitive and behavioral manifestations commonly present during acute infections – including anorexia, malaise, depression, and decreased physical activity – collectively known as the sickness behavior (SB). While SB manifestations are transient and self-limited, under states of persistent systemic inflammatory response the cognitive and behavioral changes can become permanent. For example, cognitive decline is almost universal in sepsis survivors, and a common finding in patients with systemic lupus erythematosus. Here, we review recent genetic evidence suggesting an association between neurodegenerative disorders and persistent immune activation; clinical and experimental evidence indicating previously unidentified immune-mediated pathways of neurodegeneration; and novel immunomodulatory targets and their potential relevance for neurodegenerative disorders. PMID:25698933
The Choroid Plexus Functions as a Niche for T-Cell Stimulation Within the Central Nervous System
Strominger, Itai; Elyahu, Yehezqel; Berner, Omer; Reckhow, Jensen; Mittal, Kritika; Nemirovsky, Anna; Monsonego, Alon
2018-01-01
The choroid plexus (CP) compartment in the ventricles of the brain comprises fenestrated vasculature and, therefore, it is permeable to blood-borne mediators of inflammation. Here, we explored whether T-cell activation in the CP plays a role in regulating central nervous system (CNS) inflammation. We show that CD4 T cells injected into the lateral ventricles adhere to the CP, transmigrate across its epithelium, and undergo antigen-specific activation and proliferation. This process is enhanced following peripheral immune stimulation and significantly impacts the immune signaling induced by the CP. Ex vivo studies demonstrate that T-cell harboring the CP through its apical surface is a chemokine- and adhesion molecule-dependent process. We suggest that, within the CNS, the CP serves an immunological niche, which rapidly responds to peripheral inflammation and, thereby, promotes two-way T-cell trafficking that impact adaptive immunity in the CNS. PMID:29868025
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buehler, Paul W.; Butt, Omer I.; D'Agnillo, Felice, E-mail: felice.dagnillo@fda.hhs.gov
Highlights: {yields} Toxicological implications associated with the use of NaNO{sub 2} therapy to treat systemic cell-free Hb exposure are not well-defined. {yields} Systemic Hb exposure followed by NaNO{sub 2} infusion induces acute CNS toxicities in guinea pigs. {yields} These CNS effects were not reproduced by the infusion of cell-free Hb or NaNO{sub 2} alone. {yields} NaNO{sub 2}-mediated oxidation of cell-free Hb may play a causative role in the observed CNS changes. -- Abstract: Systemic cell-free hemoglobin (Hb) released via hemolysis disrupts vascular homeostasis, in part, through the scavenging of nitric oxide (NO). Sodium nitrite (NaNO{sub 2}) therapy can attenuate themore » hypertensive effects of Hb. However, the chemical reactivity of NaNO{sub 2} with Hb may enhance heme- or iron-mediated toxicities. Here, we investigate the effect of NaNO{sub 2} on the central nervous system (CNS) in guinea pigs exposed to systemic cell-free Hb. Intravascular infusion of NaNO{sub 2}, at doses sufficient to alleviate Hb-mediated blood pressure changes, reduced the expression of occludin, but not zona occludens-1 (ZO-1) or claudin-5, in cerebral tight junctions 4 h after Hb infusion. This was accompanied by increased perivascular heme oxygenase-1 expression, neuronal iron deposition, increased astrocyte and microglial activation, and reduced expression of neuron-specific nuclear protein (NeuN). These CNS changes were not observed in animals treated with Hb or NaNO{sub 2} alone. Taken together, these findings suggest that the use of nitrite salts to treat systemic Hb exposure may promote acute CNS toxicity.« less
2018-04-09
Anaplastic Astrocytoma; Anaplastic Ependymoma; Anaplastic Ganglioglioma; Anaplastic Meningioma; Anaplastic Oligodendroglioma; Pleomorphic Xanthoastrocytoma, Anaplastic; Atypical Teratoid/Rhabdoid Tumor; Brain Cancer; Brain Tumor; Central Nervous System Neoplasms; Choroid Plexus Carcinoma; CNS Embryonal Tumor With Rhabdoid Features; Ganglioneuroblastoma of Central Nervous System; CNS Tumor; Embryonal Tumor of CNS; Ependymoma; Glioblastoma; Glioma; Glioma, Malignant; Medulloblastoma; Medulloblastoma; Unspecified Site; Medulloepithelioma; Neuroepithelial Tumor; Neoplasms; Neoplasms, Neuroepithelial; Papillary Tumor of the Pineal Region (High-grade Only); Pediatric Brain Tumor; Pineal Parenchymal Tumor of Intermediate Differentiation (High-grade Only); Pineoblastoma; Primitive Neuroectodermal Tumor; Recurrent Medulloblastoma; Refractory Brain Tumor; Neuroblastoma. CNS; Glioblastoma, IDH-mutant; Glioblastoma, IDH-wildtype; Medulloblastoma, Group 3; Medulloblastoma, Group 4; Glioma, High Grade; Neuroepithelial Tumor, High Grade; Medulloblastoma, SHH-activated and TP53 Mutant; Medulloblastoma, SHH-activated and TP53 Wildtype; Medulloblastoma, Chromosome 9q Loss; Medulloblastoma, Non-WNT Non-SHH, NOS; Medulloblastoma, Non-WNT/Non-SHH; Medulloblastoma, PTCH1 Mutation; Medulloblastoma, WNT-activated; Ependymoma, Recurrent; Glioma, Recurrent High Grade; Glioma, Recurrent Malignant; Embryonal Tumor, NOS; Glioma, Diffuse Midline, H3K27M-mutant; Embryonal Tumor With Multilayered Rosettes (ETMR); Ependymoma, NOS, WHO Grade III; Ependymoma, NOS, WHO Grade II; Medulloblastoma, G3/G4; Ependymoma, RELA Fusion Positive
Dutta, Raini; Roy, Sabita
2015-06-20
Persistent systemic infection results in excessive trafficking of peripheral immune cells into the central nervous system (CNS), thereby contributing to sustained neuroinflammation that leads to neurocognitive deficits. In this study, we explored the role of opportunistic systemic infection with Streptococcus pneumoniae in the recruitment of peripheral leukocytes into the CNS and its contribution to HIV-1-associated neurocognitive disorders in opioid-dependent individuals. Wild-type B6CBAF1 (wt), μ-opioid receptor knockout (MORKO), FVB/N luciferase transgenic, and Toll-like receptor 2 and 4 knockout (TLR2KO and TLR4KO) mice were subcutaneously implanted with morphine/placebo pellet followed by HIV-1 Transactivator of transcription (Tat) protein injection intravenously and S. pneumoniae administration intraperitoneally. On postoperative day 5, brains perfused with phosphate-buffered saline were harvested and subjected to immunohistochemistry (for bacterial trafficking and chemokine ligand generation), flow cytometry (for phenotypic characterization of CNS trafficked immune cells), Western blot, and real-time PCR (for ligand expression). Our results show differential leukocyte trafficking of T lymphocytes (CD3+) and inflammatory monocytes (Ly6C+) into the CNS of mice treated with morphine, HIV-1 Tat, and/or S. pneumoniae. In addition, we demonstrate a Trojan horse mechanism for bacterial dissemination across the blood-brain barrier into the CNS by monocytes. Activation of TLRs on microglia induced a chemokine gradient that facilitated receptor-dependent trafficking of peripheral immune cells into the CNS. HIV-1 Tat induced trafficking of Ly6C+ and CD3+ cells into the CNS; infection with S. pneumoniae facilitated infiltration of only T lymphocytes into the CNS. We also observed differential chemokine secretion in the CNS, with CCL5 being the predominant chemokine following HIV-1 Tat treatment, which was potentiated further with morphine. S. pneumoniae alone led to preferential induction of CXCL12. Furthermore, we attributed a regulatory role for TLRs in the chemokine-mediated trafficking of leukocytes into the CNS. Chronic morphine and HIV-1 Tat, in the context of systemic S. pneumoniae co-infection, differentially modulated induction of TLR2/4, which consequently facilitated trafficking of TLR2 → CD3 + CCR5+ and TLR4 → Ly6C+(CCR5+/CXCR4+) immune cells into the CNS. Our murine study suggests that secondary infection in opioid-dependent individuals infected with HIV-1 augments peripheral leukocyte trafficking as a consequence of sustained chemokine gradients in the CNS.
McCoach, Caroline E; Berge, Eamon M; Lu, Xian; Barón, Anna E; Camidge, D Ross
2016-03-01
Central nervous system (CNS) metastases are common in non-small cell lung cancer (NSCLC), yet clinical trials of new drugs in advanced NSCLC have varying inclusion and exclusion criteria for CNS disease. The true extent of variation in CNS-related enrollment criteria in NSCLC clinical trials has not been documented. We performed a systematic search of the ClinicalTrials.gov website to characterize interventional drug trials enrolling adult patients with advanced NSCLC. Of 413 open trials, 78 (19%) strictly excluded patients with leptomeningeal disease (LMD). Separate from LMD, patients with any history of CNS metastases were strictly excluded in 59 trials (14%), allowed after local treatment in 169 (41%), and allowed with no prior treatment in 106 (26%). No explicit mention of CNS disease was made in 79 trials (19%). In multivariate analysis looking at trial phase, location, sponsor, and treatment type, only sponsor was statistically significant, with pharmaceutical industry-sponsored trials having higher odds of excluding patients with brain metastases than did university or investigator-initiated trials (OR = 2.262, 95% confidence interval: 1.063-4.808, p = 0.0342) CONCLUSIONS: With 14% to 19% of trials excluding any history of LMD or CNS parenchymal metastatic disease and 41% of trials permitting CNS disease only after prior CNS-directed treatment, direct evidence of activity of a treatment on CNS disease cannot be reliably generated in most NSCLC trials. Given the high frequency of CNS disease in NSCLC and only sponsor being associated with specific CNS exclusion criteria, sponsors should consider tailoring trial designs to explore CNS benefit more explicitly. Copyright © 2015 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Arslan, Cagatay; Dizdar, Omer; Altundag, Kadri
2014-08-01
Breast cancer (BC) is the second most common cause of CNS metastasis. Ten to 20% of all, and 38% of human epidermal growth factor-2(+), metastatic BC patients experience brain metastasis (BM). Prolonged survival with better control of systemic disease and limited penetration of drugs to CNS increased the probability of CNS metastasis as a sanctuary site of relapse. Treatment of CNS disease has become an important component of overall disease control and quality of life. Current standard therapy for BM is whole-brain radiotherapy, surgery, stereotactic body radiation therapy for selected cases, corticosteroids and systemic chemotherapy. Little progress has been made in chemotherapy for the treatment of BM in patients with BC. Nevertheless, new treatment choices have emerged. In this review, we aimed to update current and future treatment options in systemic treatment for BM of BC. Cornerstone local treatment options for BM of BC are radiotherapy and surgery in selected cases. Efficacy of cytotoxic chemotherapeutics is limited. Among targeted therapies, lapatinib has activity in systemic treatment of BM particularly when used in combination with capecitabine. Novel agents are currently investigated.
Hernandez, Ruben V.; Puro, Alana C.; Manos, Jessica C.; Huitron-Resendiz, Salvador; Reyes, Kenneth C.; Liu, Kevin; Vo, Khanh; Roberts, Amanda J.; Gruol, Donna L.
2015-01-01
A growing body of evidence has revealed that resident cells of the central nervous system (CNS), and particularly the glial cells, comprise a neuroimmune system that serves a number of functions in the normal CNS and during adverse conditions. Cells of the neuroimmune system regulate CNS functions through the production of signaling factors, referred to as neuroimmune factors. Recent studies show that ethanol can activate cells of the neuroimmune system, resulting in the elevated production of neuroimmune factors, including the cytokine interleukin-6 (IL-6). Here we analyzed the consequences of this CNS action of ethanol using transgenic mice that express elevated levels of IL-6 through increased astrocyte expression (IL-6-tg) to model the increased IL-6 expression that occurs with ethanol use. Results show that increased IL-6 expression induces neuroadaptive changes that alter the effects of ethanol. In hippocampal slices from non-transgenic (non-tg) littermate control mice, synaptically evoked dendritic field excitatory postsynaptic potential (fEPSP) and somatic population spike (PS) at the Schaffer collateral to CA1 pyramidal neuron synapse were reduced by acute ethanol (20 or 60 mM). In contrast, acute ethanol enhanced the fEPSP and PS in hippocampal slices from IL-6 tg mice. Long-term synaptic plasticity of the fEPSP (i.e., LTP) showed the expected dose-dependent reduction by acute ethanol in non-tg hippocampal slices, whereas LTP in the IL-6 tg hippocampal slices was resistant to this depressive effect of acute ethanol. Consistent with altered effects of acute ethanol on synaptic function in the IL-6 tg mice, EEG recordings showed a higher level of CNS activity in the IL-6 tg mice than in the non-tg mice during the period of withdrawal from an acute high dose of ethanol. These results suggest a potential role for neuroadaptive effects of ethanol-induced astrocyte production of IL-6 as a mediator or modulator of the actions of ethanol on the CNS, including persistent changes in CNS function that contribute to cognitive dysfunction and the development of alcohol dependence. PMID:26707655
Madeddu, Silvia; Woods, Tyson A; Mukherjee, Piyali; Sturdevant, Dan; Butchi, Niranjan B; Peterson, Karin E
2015-01-01
The activation of astrocytes and microglia is often associated with diseases of the central nervous system (CNS). Understanding how activation alters the transcriptome of these cells may offer valuable insight regarding how activation of these cells mediate neurological damage. Furthermore, identifying common and unique pathways of gene expression during activation may provide new insight into the distinct roles these cells have in the CNS during infection and inflammation. Since recent studies indicate that TLR7 recognizes not only viral RNA but also microRNAs that are released by damaged neurons and elevated during neurological diseases, we first examined the response of glial cells to TLR7 stimulation using microarray analysis. Microglia were found to generate a much stronger response to TLR7 activation than astrocytes, both in the number of genes induced as well as fold induction. Although the primary pathways induced by both cell types were directly linked to immune responses, microglia also induced pathways associated with cellular proliferation, while astrocytes did not. Targeted analysis of a subset of the upregulated genes identified unique mRNA, including Ifi202b which was only upregulated by microglia and was found to be induced during both retroviral and bunyavirus infections in the CNS. In addition, other genes including Birc3 and Gpr84 as well as two expressed sequences AW112010 and BC023105 were found to be induced in both microglia and astrocytes and were upregulated in the CNS following virus infection. Thus, expression of these genes may a useful measurement of glial activation during insult or injury to the CNS.
IL-1β Signaling Promotes CNS-Intrinsic Immune Control of West Nile Virus Infection
Ramos, Hilario J.; Lanteri, Marion C.; Blahnik, Gabriele; Negash, Amina; Suthar, Mehul S.; Brassil, Margaret M.; Sodhi, Khushbu; Treuting, Piper M.; Busch, Michael P.; Norris, Philip J.; Gale, Michael
2012-01-01
West Nile virus (WNV) is an emerging flavivirus capable of infecting the central nervous system (CNS) and mediating neuronal cell death and tissue destruction. The processes that promote inflammation and encephalitis within the CNS are important for control of WNV disease but, how inflammatory signaling pathways operate to control CNS infection is not defined. Here, we identify IL-1β signaling and the NLRP3 inflammasome as key host restriction factors involved in viral control and CNS disease associated with WNV infection. Individuals presenting with acute WNV infection displayed elevated levels of IL-1β in their plasma over the course of infection, suggesting a role for IL-1β in WNV immunity. Indeed, we found that in a mouse model of infection, WNV induced the acute production of IL-1β in vivo, and that animals lacking the IL-1 receptor or components involved in inflammasome signaling complex exhibited increased susceptibility to WNV pathogenesis. This outcome associated with increased accumulation of virus within the CNS but not peripheral tissues and was further associated with altered kinetics and magnitude of inflammation, reduced quality of the effector CD8+ T cell response and reduced anti-viral activity within the CNS. Importantly, we found that WNV infection triggers production of IL-1β from cortical neurons. Furthermore, we found that IL-1β signaling synergizes with type I IFN to suppress WNV replication in neurons, thus implicating antiviral activity of IL-1β within neurons and control of virus replication within the CNS. Our studies thus define the NLRP3 inflammasome pathway and IL-1β signaling as key features controlling WNV infection and immunity in the CNS, and reveal a novel role for IL-1β in antiviral action that restricts virus replication in neurons. PMID:23209411
The farnesoid-X-receptor in myeloid cells controls CNS autoimmunity in an IL-10-dependent fashion.
Hucke, Stephanie; Herold, Martin; Liebmann, Marie; Freise, Nicole; Lindner, Maren; Fleck, Ann-Katrin; Zenker, Stefanie; Thiebes, Stephanie; Fernandez-Orth, Juncal; Buck, Dorothea; Luessi, Felix; Meuth, Sven G; Zipp, Frauke; Hemmer, Bernhard; Engel, Daniel Robert; Roth, Johannes; Kuhlmann, Tanja; Wiendl, Heinz; Klotz, Luisa
2016-09-01
Innate immune responses by myeloid cells decisively contribute to perpetuation of central nervous system (CNS) autoimmunity and their pharmacologic modulation represents a promising strategy to prevent disease progression in Multiple Sclerosis (MS). Based on our observation that peripheral immune cells from relapsing-remitting and primary progressive MS patients exhibited strongly decreased levels of the bile acid receptor FXR (farnesoid-X-receptor, NR1H4), we evaluated its potential relevance as therapeutic target for control of established CNS autoimmunity. Pharmacological FXR activation promoted generation of anti-inflammatory macrophages characterized by arginase-1, increased IL-10 production, and suppression of T cell responses. In mice, FXR activation ameliorated CNS autoimmunity in an IL-10-dependent fashion and even suppressed advanced clinical disease upon therapeutic administration. In analogy to rodents, pharmacological FXR activation in human monocytes from healthy controls and MS patients induced an anti-inflammatory phenotype with suppressive properties including control of effector T cell proliferation. We therefore, propose an important role of FXR in control of T cell-mediated autoimmunity by promoting anti-inflammatory macrophage responses.
A role for central nervous system PPAR-γ in the regulation of energy balance.
Ryan, Karen K; Li, Bailing; Grayson, Bernadette E; Matter, Emily K; Woods, Stephen C; Seeley, Randy J
2011-05-01
The peroxisome proliferator-activated receptor-γ (PPAR-γ) is a nuclear receptor that is activated by lipids to induce the expression of genes involved in lipid and glucose metabolism, thereby converting nutritional signals into metabolic consequences. PPAR-γ is the target of the thiazolidinedione (TZD) class of insulin-sensitizing drugs, which have been widely prescribed to treat type 2 diabetes mellitus. A common side effect of treatment with TZDs is weight gain. Here we report a previously unknown role for central nervous system (CNS) PPAR-γ in the regulation of energy balance. We found that both acute and chronic activation of CNS PPAR-γ, by either TZDs or hypothalamic overexpression of a fusion protein consisting of PPAR-γ and the viral transcriptional activator VP16 (VP16-PPAR-γ), led to positive energy balance in rats. Blocking the endogenous activation of CNS PPAR-γ with pharmacological antagonists or reducing its expression with shRNA led to negative energy balance, restored leptin sensitivity in high-fat-diet (HFD)-fed rats and blocked the hyperphagic response to oral TZD treatment. These findings have implications for the widespread clinical use of TZD drugs and for understanding the etiology of diet-induced obesity.
Central Nervous System Fibrosis Is Associated with Fibrocyte-Like Infiltrates
Aldrich, Amy; Kielian, Tammy
2011-01-01
Fibrotic wall formation is essential for limiting pathogen dissemination during brain abscess development. However, little is known about the regulation of fibrotic processes in the central nervous system (CNS). Most CNS injury responses are associated with hypertrophy of resident astrocytes, a process termed reactive gliosis. Studies of fibrosis outside the CNS have identified two bone marrow–derived cell types, fibrocytes and alternatively activated M2 macrophages, as key mediators of fibrosis. The current study used bone marrow chimeras generated from green fluorescent protein transgenic mice to evaluate the appearance of these cell types and whether bone marrow–derived cells were capable of acquiring fibrotic characteristics during brain abscess development. Immunofluorescence staining revealed partial overlap between green fluorescent protein, α-smooth muscle actin, and procollagen, suggesting that a population of cells forming the brain abscess capsule originate from a bone marrow precursor. In addition, the influx of fibrocyte-like cells into brain abscesses immediately preceded the onset of fibrotic encapsulation. Fibrotic wall formation was also associated with increased numbers of alternatively activated M2 microglia and macrophages. To our knowledge, this is the first study demonstrating that bone marrow–derived infiltrates are capable of expressing fibrotic molecules during CNS inflammation. PMID:22015460
Reinwald, Mark; Schleyer, Eberhard; Kiewe, Philipp; Blau, Igor Wolfgang; Burmeister, Thomas; Pursche, Stefan; Neumann, Martin; Notter, Michael; Thiel, Eckhard; Hofmann, Wolf-Karsten; Kolb, Hans-Jochem; Burdach, Stefan; Bender, Hans-Ulrich
2014-01-01
Central nervous system (CNS) involvement is a severe complication of BCR-ABL-positive leukemia after allogenic stem cell transplantation (alloSCT) associated with fatal outcome. Although second-generation tyrosine-kinase inhibitors (TKI) such as nilotinib have shown activity in systemic BCR-ABL+ disease, little data exists on their penetration and efficacy within the CNS. Four patients (3 male, 1 female; age 15–49) with meningeal relapse after alloSCT and subsequent treatment with nilotinib were identified. A total of 17 cerebrospinal fluid (csf) and serum samples were assessed for nilotinib concentration and patient outcome was recorded. Nilotinib concentrations showed a low median csf/plasma ratio of 0.53% (range 0.23–1.5%), yet pronounced clinical efficacy was observed with long-lasting responses (>1 year) in three patients. Comparison with historical data showed a trend towards superior efficacy of nilotinib versus imatinib. Despite poor csf penetration, nilotinib showed significant clinical activity in CNS relapse of BCR-ABL+ leukemias. As nilotinib has a high protein-binding affinity, the low-protein concentration in csf could translate into a relatively higher amount of free and therefore active nilotinib in csf as compared to blood, possibly explaining the observed efficacy. Thus, treatment with a 2nd generation TKI warrants further investigation and should be considered in cases of CNS relapse of BCR-ABL-positive leukemia after alloSCT. PMID:25025064
NASA Astrophysics Data System (ADS)
Jourshabani, Milad; Shariatinia, Zahra; Badiei, Alireza
2018-01-01
Novel Sm2O3/S-doped g-C3N4 (CNS) composites were synthesized with in situ method by simultaneous combining S doping in carbon nitride structure to produce CNS as well as hybridization of CNS with the Sm2O3 semiconductor. The obtained composite photocatalysts with different Sm2O3 contents were characterized by XRD, FT-IR, XPS, TEM, BET, DRS and PL techniques and their photocatalytic activities were investigated for the degradation of methylene blue (MB) as a model pollutant in aqueous solution under visible-light irradiation. The XRD structure phase and TEM morphology results showed that stacking degree of π-conjugated system in the CNS structure was disrupted in the precense of Sm2O3 particles. The optimal Sm2O3 loading value was determined to be 8.9 wt% and its corresponding MB photodegradation rate was about 93% after 150 min light irradiation, which was indeed greater compared with those of the individual CNS and Sm2O3 samples. This enhanced photocatalytic performance was originated from characteristics of the hybrid formed between the Sm2O3 and CNS so that it improved the effective charge transfer through interfacial interactions between both components. In addition, the CNS synthesized by S doping exhibited a significant enhancement in the photocatalytic activity relative to that of the pure g-C3N4; this was mostly caused by the increase in its visible light harvesting ability and charge mobility. The possible mechanism for the photocatalytic degradation of MB was suggested and discussed in detail based on the findings acquired from radical/hole trapping experiments.
Reorganization of the human central nervous system.
Schalow, G; Zäch, G A
2000-10-01
The key strategies on which the discovery of the functional organization of the central nervous system (CNS) under physiologic and pathophysiologic conditions have been based included (1) our measurements of phase and frequency coordination between the firings of alpha- and gamma-motoneurons and secondary muscle spindle afferents in the human spinal cord, (2) knowledge on CNS reorganization derived upon the improvement of the functions of the lesioned CNS in our patients in the short-term memory and the long-term memory (reorganization), and (3) the dynamic pattern approach for re-learning rhythmic coordinated behavior. The theory of self-organization and pattern formation in nonequilibrium systems is explicitly related to our measurements of the natural firing patterns of sets of identified single neurons in the human spinal premotor network and re-learned coordinated movements following spinal cord and brain lesions. Therapy induced cell proliferation, and maybe, neurogenesis seem to contribute to the host of structural changes during the process of re-learning of the lesioned CNS. So far, coordinated functions like movements could substantially be improved in every of the more than 100 patients with a CNS lesion by applying coordination dynamic therapy. As suggested by the data of our patients on re-learning, the human CNS seems to have a second integrative strategy for learning, re-learning, storing and recalling, which makes an essential contribution of the functional plasticity following a CNS lesion. A method has been developed by us for the simultaneous recording with wire electrodes of extracellular action potentials from single human afferent and efferent nerve fibres of undamaged sacral nerve roots. A classification scheme of the nerve fibres in the human peripheral nervous system (PNS) could be set up in which the individual classes of nerve fibres are characterized by group conduction velocities and group nerve fibre diameters. Natural impulse patterns of several identified single afferent and efferent nerve fibres (motoneuron axons) were extracted from multi-unit impulse patterns, and human CNS functions could be analyzed under physiologic and pathophysiologic conditions. With our discovery of premotor spinal oscillators it became possible to judge upon CNS neuronal network organization based on the firing patterns of these spinal oscillators and their driving afferents. Since motoneurons fire occasionally for low activation and oscillatory for high activation, the coherent organization of subnetworks to generate macroscopic function is very complex and for the time being, may be best described by the theory of coordination dynamics. Since oscillatory firing has also been observed by us in single motor unit firing patterns measured electromyographically, it seems possible to follow up therapeutic intervention in patients with spinal cord and brain lesions not only based on the activity levels and phases of motor programs during locomotion but also based on the physiologic and pathophysiologic firing patterns and recruitment of spinal oscillators. The improvement of the coordination dynamics of the CNS can be partly measured directly by rhythmicity upon the patient performing rhythmic movements coordinated up to milliseconds. Since rhythmic dynamic, coordinated, stereotyped movements are mainly located in the spinal cord and only little supraspinal drive is necessary to initiate, maintain, and terminate them, rhythmic, dynamic, coordinated movements were used in therapy to enforce reorganization of the lesioned CNS by improving the self-organization and relative coordination of spinal oscillators (and their interactions with occasionally firing motoneurons) which became pathologic in their firing following CNS lesion. Paraparetic, tetraparetic spinal cord and brain-lesioned patients re-learned running and other movements by an oscillator formation and coordination dynamic therapy. Our development in neurorehabilitation is in accordance with those of theoretical and computational neurosciences which deal with the self-organization of neuronal networks. In particular, jumping on a springboard 'in-phase' and in 'anti-phase' to re-learn phase relations of oscillator coupling can be understood in the framework of the Haken-Kelso-Bunz coordination dynamic model. By introducing broken symmetry, intention, learning and spasticity in the landscape of the potential function of the integrated CNS activity, the change in self-organization becomes understandable. Movement patterns re-learned by oscillator formation and coordination dynamic therapy evolve from reorganization and regeneration of the lesioned CNS by cooperative and competitive interplay between intrinsic coordination dynamics, extrinsic therapy related inputs with physiologic re-afferent input, including intention, motivation, supervised learning, interpersonal coordination, and genetic constraints including neurogenesis. (ABSTRACT TRUNCATED)
The glymphatic system in CNS health and disease: past, present and future
Plog, Benjamin A.; Nedergaard, Maiken
2018-01-01
The central nervous system (CNS) is unique in being the only organ system lacking lymphatic vessels to assist in the removal of interstitial metabolic waste products. Recent work has led to the discovery of the glymphatic system, a glial-dependent perivascular network that subserves a pseudo-lymphatic function in the brain. Within the glymphatic pathway, cerebrospinal fluid (CSF) enters brain via periarterial spaces, passes into the interstitium via perivascular astrocytic aquaporin-4, and then drives the perivenous drainage of interstitial fluid (ISF) and its solute. Here we review the role of the glymphatic pathway in CNS physiology, factors known to regulate glymphatic flow, and pathologic processes where a breakdown of glymphatic CSF-ISF exchange has been implicated in disease initiation and progression. Important areas of future research, including manipulation of glymphatic activity aiming to improve waste clearance and therapeutic agent delivery, will also be discussed. PMID:29195051
Role of microglia in glioma biology.
Badie, B; Schartner, J
2001-07-15
Microglia, a type of differentiated tissue macrophage, are considered to be the most plastic cell population of the central nervous system (CNS). In response to pathological conditions, resting microglia undergo a stereotypic activation process and become capable of phagocytosis, antigen presentation, and lymphocyte activation. Considering their immune effector function, it is not surprising to see microglia accumulation in almost every CNS disease process, including malignant brain tumors or malignant gliomas. Although the function of these cells in CNS inflammatory processes is being studied, their role in malignant glioma biology remains unclear. On one hand, microglia may represent a CNS anti-tumor response, which is inactivated by local secretion of immunosuppressive factors by glioma cells. On the other hand, taking into account that microglia are capable of secreting a variety of immunomodulatory cytokines, it is possible that they are attracted by gliomas to promote tumor growth. A better understanding of microglia-glioma interaction will be helpful in designing novel immune-based therapies against these fatal tumors. Copyright 2001 Wiley-Liss, Inc.
Anticholinergics and Central Nervous System Effects: Are We Confused?
Staskin, David R; Zoltan, Edward
2007-01-01
The central nervous system (CNS) effects of anticholinergic agents have been documented in various patient populations and to varying degrees in case reports, brain-activity surrogates, and computerized cognitive testing. The older patient population with overactive bladder represents a group at increased risk of cognitive impairment and other CNS side effects associated with antimuscarinic agents. The complexity of the effect of anticholinergic agents on CNS function requires an increased level of careful investigation. Studies need to be performed in the at-risk population with multiple, validated tests at clinically prescribed doses in acute and chronic situations. These studies need to take into account the effect of commonly prescribed dosing regimens, with doses selected to represent with equivalent bladder potency. The alterations in the serum levels and parent/metabolite effects contributed by metabolic issues or drug delivery systems require special attention. PMID:18231615
Obesity-Induced Hypertension: Brain Signaling Pathways
da Silva, Alexandre A.; Wang, Zhen; Fang, Taolin; Aberdein, Nicola; de Lara Rodriguez, Cecilia E. P.; Hall, John E.
2017-01-01
Obesity greatly increases the risk for cardiovascular, metabolic, and renal diseases and is one of the most significant and preventable causes of increased blood pressure (BP) in patients with essential hypertension. This review high-lights recent advances in our understanding of central nervous system (CNS) signaling pathways that contribute to the etiology and pathogenesis of obesity-induced hypertension. We discuss the role of excess adiposity and activation of the brain leptin-melanocortin system in causing increased sympathetic activity in obesity. In addition, we highlight other potential brain mechanisms by which increased weight gain modulates metabolic and cardiovascular functions. Unraveling the CNS mechanisms responsible for increased sympathetic activation and hypertension and how circulating hormones activate brain signaling pathways to control BP offer potentially important therapeutic targets for obesity and hypertension. PMID:27262997
Activity-dependent plasticity in spinal cord injury
Lynskey, James V.; Belanger, Adam; Jung, Ranu
2008-01-01
The adult mammalian central nervous system (CNS) is capable of considerable plasticity, both in health and disease. After spinal neurotrauma, the degrees and extent of neuroplasticity and recovery depend on multiple factors, including the level and extent of injury, postinjury medical and surgical care, and rehabilitative interventions. Rehabilitation strategies focus less on repairing lost connections and more on influencing CNS plasticity for regaining function. Current evidence indicates that strategies for rehabilitation, including passive exercise, active exercise with some voluntary control, and use of neuroprostheses, can enhance sensorimotor recovery after spinal cord injury (SCI) by promoting adaptive structural and functional plasticity while mitigating maladaptive changes at multiple levels of the neuraxis. In this review, we will discuss CNS plasticity that occurs both spontaneously after SCI and in response to rehabilitative therapies. PMID:18566941
Tatenhorst, Lars; Hahnen, Eric; Heneka, Michael T.
2008-01-01
The peroxisome proliferator-activated receptors (PPARs) are ligand-inducible transcription factors which belong to the superfamily of nuclear hormone receptors. In recent years it turned out that natural as well as synthetic PPAR agonists exhibit profound antineoplastic as well as redifferentiation effects in tumors of the central nervous system (CNS). The molecular understanding of the underlying mechanisms is still emerging, with partially controverse findings reported by a number of studies dealing with the influence of PPARs on treatment of tumor cells in vitro. Remarkably, studies examining the effects of these drugs in vivo are just beginning to emerge. However, the agonists of PPARs, in particular the thiazolidinediones, seem to be promising candidates for new approaches in human CNS tumor therapy. PMID:18725982
Madeddu, Silvia; Woods, Tyson A.; Mukherjee, Piyali; Sturdevant, Dan; Peterson, Karin E.
2015-01-01
The activation of astrocytes and microglia is often associated with diseases of the central nervous system (CNS). Understanding how activation alters the transcriptome of these cells may offer valuable insight regarding how activation of these cells mediate neurological damage. Furthermore, identifying common and unique pathways of gene expression during activation may provide new insight into the distinct roles these cells have in the CNS during infection and inflammation. Since recent studies indicate that TLR7 recognizes not only viral RNA but also microRNAs that are released by damaged neurons and elevated during neurological diseases, we first examined the response of glial cells to TLR7 stimulation using microarray analysis. Microglia were found to generate a much stronger response to TLR7 activation than astrocytes, both in the number of genes induced as well as fold induction. Although the primary pathways induced by both cell types were directly linked to immune responses, microglia also induced pathways associated with cellular proliferation, while astrocytes did not. Targeted analysis of a subset of the upregulated genes identified unique mRNA, including Ifi202b which was only upregulated by microglia and was found to be induced during both retroviral and bunyavirus infections in the CNS. In addition, other genes including Birc3 and Gpr84 as well as two expressed sequences AW112010 and BC023105 were found to be induced in both microglia and astrocytes and were upregulated in the CNS following virus infection. Thus, expression of these genes may a useful measurement of glial activation during insult or injury to the CNS. PMID:26214311
Goldstein, Evan Z; Church, Jamie S; Pukos, Nicole; Gottipati, Manoj K; Popovich, Phillip G; McTigue, Dana M
2017-12-01
Iron is essential for basic cellular functions but in excess is highly toxic. For this reason, free iron and iron storage are controlled in the periphery by elaborate regulatory mechanisms. In contrast, iron regulation in the central nervous system (CNS) is not well defined. Given that excess iron is present after trauma, hemorrhagic stroke and neurodegeneration, understanding normal iron regulation and promoting iron uptake in CNS pathology is crucial. Peripherally, toll-like receptor 4 (TLR4) activation promotes iron sequestration by macrophages. Notably, iron-rich sites of CNS pathology typically contain TLR4 agonists, which may promote iron uptake. Indeed, our recent work showed impaired iron storage after acute spinal cord injury in mice with TLR4 deficiency. Here we used a reductionist model to ask if TLR4 activation in the CNS stimulates iron uptake and promotes neuroprotection from iron-induced toxicity. For this, we measured the ability of microglia/macrophages to sequester exogenous iron and prevent pathology with and without concomitant intraspinal TLR4 activation. Results show that, similar to the periphery, activating intraspinal TLR4 via focal LPS injection increased mRNA encoding iron uptake and storage proteins and promoted iron sequestration into ferritin-expressing macrophages. However, this did not prevent oligodendrocyte and neuron loss. Moreover, replacement of oligodendrocytes by progenitor cells - a normally robust response to in vivo macrophage TLR4 activation - was significantly reduced if iron was present concomitant with TLR4 activation. Thus, while TLR4 signaling promotes CNS iron uptake, future work needs to determine ways to enhance iron removal without blocking the reparative effects of innate immune receptor signaling. Copyright © 2017 Elsevier Inc. All rights reserved.
Microbial induction of vascular pathology in the CNS.
Kang, Silvia S; McGavern, Dorian B
2010-09-01
The central nervous system (CNS) is a finely tuned organ that participates in nearly every aspect of our day-to-day function. Neurons lie at the core of this functional unit and maintain an active dialogue with one another as well as their fellow CNS residents (e.g. astrocytes, oligodendrocytes, microglia). Because of this complex dialogue, it is essential that the CNS milieu be tightly regulated in order to permit uninterrupted and efficient neural chemistry. This is accomplished in part by anatomical barriers that segregate vascular components from the cerebral spinal fluid (CSF) and brain parenchyma. These barriers impede entry of noxious materials and enable the CNS to maintain requisite protein and ionic balances for constant electrochemical signaling. Under homeostatic conditions, the CNS is protected by the presence of specialized endothelium/epithelium, the blood brain barrier (BBB), and the blood-CSF barrier. However, following CNS infection these protective barriers can be comprised, sometimes resulting in severe neurological complications triggered by an imbalance or blockage of neural chemistry. In some instances, these disruptions are severe enough to be fatal. This review focuses on a selection of microbes (both viruses and parasites) that compromise vascular barriers and induce neurological complications upon gaining access to the CNS. Emphasis is placed on CNS diseases that result from a pathogenic interplay between host immune defenses and the invading microbe.
Microbial Induction of Vascular Pathology in the CNS
Kang, Silvia S.
2016-01-01
The central nervous system (CNS) is a finely tuned organ that participates in nearly every aspect of our day-to-day function. Neurons lie at the core of this functional unit and maintain an active dialogue with one another as well as their fellow CNS residents (e.g. astrocytes, oligodendrocytes, microglia). Because of this complex dialogue, it is essential that the CNS milieu be tightly regulated in order to permit uninterrupted and efficient neural chemistry. This is accomplished in part by anatomical barriers that segregate vascular components from the cerebral spinal fluid (CSF) and brain parenchyma. These barriers impede entry of noxious materials and enable the CNS to maintain requisite protein and ionic balances for constant electrochemical signaling. Under homeostatic conditions, the CNS is protected by the presence of specialized endothelium/epithelium, the blood brain barrier (BBB), and the blood-CSF barrier. However, following CNS infection these protective barriers can be comprised, sometimes resulting in severe neurological complications triggered by an imbalance or blockage of neural chemistry. In some instances, these disruptions are severe enough to be fatal. This review focuses on a selection of microbes (both viruses and parasites) that compromise vascular barriers and induce neurological complications upon gaining access to the CNS. Emphasis is placed on CNS diseases that result from a pathogenic interplay between host immune defenses and the invading microbe. PMID:20401700
2012-01-01
Background Fatty acid modifying enzyme (FAME) has been shown to modify free fatty acids to alleviate their bactericidal effect by esterifying fatty acids to cholesterol or alcohols. Although it has been shown in previous studies that FAME is required for Staphylococcus aureus survival in skin abscesses, FAME is poorly studied compared to other virulence factors. FAME activity had also been detected in coagulase-negative staphylococci (CNS). However, FAME activity was only surveyed after a bacterial culture was grown for 24 h. Therefore if FAME activity was earlier in the growth phase, it would not have been detected by the assay and those strains would have been labeled as FAME negative. Results Fifty CNS bovine mastitis isolates and several S. aureus, Escherichia coli, and Streptococcus uberis strains were assayed for FAME activity over 24 h. FAME activity was detected in 54% of CNS and 80% S. aureus strains surveyed but none in E. coli or S. uberis. While some CNS strains produced FAME activity comparable to the lab strain of S. aureus, the pattern of FAME activity varied among strains and across species of staphylococci. All CNS that produced FAME activity also exhibited lipase activity. Lipase activity relative to colony forming units of these CNS decreased over the 24 h growth period. No relationship was observed between somatic cell count in the milk and FAME activity in CNS. Conclusions Some staphylococcal species surveyed produced FAME activity, but E. coli and S. uberis strains did not. All FAME producing CNS exhibited lipase activity which may indicate that both these enzymes work in concert to alter fatty acids in the bacterial environment. PMID:22726316
Ramirez, Karol; Fornaguera-Trías, Jaime; Sheridan, John F
2017-01-01
Psychosocial stress is capable of causing immune dysregulation and increased neuroinflammatory signaling by repeated activation of the neuroendocrine and autonomic systems that may contribute to the development of anxiety and depression. The stress model of repeated social defeat (RSD) recapitulates many of the stress-driven alterations in the neuroimmune system seen in humans experiencing repeated forms of stress and associated affective disorders. For example, RSD-induced neuronal and microglia activation corresponds with sympathetic outflow to the peripheral immune system and increased ability of bone marrow derived myeloid progenitor cells (MPC) to redistribute throughout the body, including to the central nervous system (CNS), reinforcing stress-associated behaviors. An overview of the neuroendocrine, immunological, and behavioral stress-induced responses will be reviewed in this chapter using RSD to illustrate the mechanisms leading to stress-related alterations in inflammation in both the periphery and CNS, and stress-related changes in behavioral responses.
Targeting brain metastases in ALK-rearranged non-small-cell lung cancer.
Zhang, Isabella; Zaorsky, Nicholas G; Palmer, Joshua D; Mehra, Ranee; Lu, Bo
2015-10-01
The incidence of brain metastases has increased as a result of improved systemic control and advances in imaging. However, development of novel therapeutics with CNS activity has not advanced at the same rate. Research on molecular markers has revealed many potential targets for antineoplastic agents, and a particularly important aberration is translocation in the ALK gene, identified in non-small-cell lung cancer (NSCLC). ALK inhibitors have shown systemic efficacy against ALK-rearranged NSCLC in many clinical trials, but the effectiveness of crizotinib in CNS disease is limited by poor blood-brain barrier penetration and acquired drug resistance. In this Review, we discuss potential pathways to target ALK-rearranged brain metastases, including next generation ALK inhibitors with greater CNS penetration and mechanisms to overcome resistance. Other important mechanisms to control CNS disease include targeting pathways downstream of ALK phosphorylation, increasing the permeability of the blood-brain barrier, modifying the tumour microenvironment, and adding concurrent radiotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Molecular mechanism of central nervous system repair by the Drosophila NG2 homologue kon-tiki
Harrison, Neale
2016-01-01
Neuron glia antigen 2 (NG2)–positive glia are repair cells that proliferate upon central nervous system (CNS) damage, promoting functional recovery. However, repair is limited because of the failure of the newly produced glial cells to differentiate. It is a key goal to discover how to regulate NG2 to enable glial proliferation and differentiation conducive to repair. Drosophila has an NG2 homologue called kon-tiki (kon), of unknown CNS function. We show that kon promotes repair and identify the underlying mechanism. Crush injury up-regulates kon expression downstream of Notch. Kon in turn induces glial proliferation and initiates glial differentiation by activating glial genes and prospero (pros). Two negative feedback loops with Notch and Pros allow Kon to drive the homeostatic regulation required for repair. By modulating Kon levels in glia, we could prevent or promote CNS repair. Thus, the functional links between Kon, Notch, and Pros are essential for, and can drive, repair. Analogous mechanisms could promote CNS repair in mammals. PMID:27551055
Pothier, J; Cheav, S L; Galand, N; Dormeau, C; Viel, C
1998-08-01
Lupin is toxic because of its alkaloid content, sparteine and lupanine in particular. Although the pharmacological properties of sparteine are well known those of lupanine have not been much studied. This paper reports procedures for extraction, purification and crystallization of lupanine, and methods for the preparation of an extract for injection of Lupinus mutabilis Sweet, and for the determination of the acute toxicity and maximum non-lethal dose (DL0) of lupanine, sparteine and lupin extract in the mouse. The three substances were tested on the central nervous system (CNS) for locomotor activity, for interaction with specific drugs used for treatment of the CNS (the stimulant drugs amphetamine and pentetrazol and the depressant drugs pentobarbital and chlorpromazine) and for analgesic activity. The results indicate that lupanine and lupin extract are less toxic than sparteine and that at the doses studied the three products have a weak sedative effect on the CNS.
IFNβ secreted by microglia mediates clearance of myelin debris in CNS autoimmunity.
Kocur, Magdalena; Schneider, Reiner; Pulm, Ann-Kathrin; Bauer, Jens; Kropp, Sonja; Gliem, Michael; Ingwersen, Jens; Goebels, Norbert; Alferink, Judith; Prozorovski, Timour; Aktas, Orhan; Scheu, Stefanie
2015-04-03
Multiple sclerosis (MS) is a chronic demyelinating disorder of the central nervous system (CNS) leading to progressive neurological disability. Interferon β (IFNβ) represents a standard treatment for relapsing-remitting MS and exogenous administration of IFNβ exhibits protective effects in experimentally induced CNS autoimmunity. Also, genetic deletion of IFNβ in mice leads to an aggravation of disease symptoms in the MS model of experimental autoimmune encephalomyelitis (EAE). However, neither the underlying mechanisms mediating the beneficial effects nor the cellular source of IFNβ have been fully elucidated. In this report, a subpopulation of activated microglia was identified as the major producers of IFNβ in the CNS at the peak of EAE using an IFNβ-fluorescence reporter mouse model. These IFNβ expressing microglia specifically localized to active CNS lesions and were associated with myelin debris in demyelinated cerebellar organotypic slice cultures (OSCs). In response to IFNβ microglia showed an enhanced capacity to phagocytose myelin in vitro and up-regulated the expression of phagocytosis-associated genes. IFNβ treatment was further sufficient to stimulate association of microglia with myelin debris in OSCs. Moreover, IFNβ-producing microglia mediated an enhanced removal of myelin debris when co-transplanted onto demyelinated OSCs as compared to IFNβ non-producing microglia. These data identify activated microglia as the major producers of protective IFNβ at the peak of EAE and as orchestrators of IFNβ-induced clearance of myelin debris.
Altered development of the brain after focal herpesvirus infection of the central nervous system.
Koontz, Thad; Bralic, Marina; Tomac, Jelena; Pernjak-Pugel, Ester; Bantug, Glen; Jonjic, Stipan; Britt, William J
2008-02-18
Human cytomegalovirus infection of the developing central nervous system (CNS) is a major cause of neurological damage in newborn infants and children. To investigate the pathogenesis of this human infection, we developed a mouse model of infection in the developing CNS. Intraperitoneal inoculation of newborn animals with murine cytomegalovirus resulted in virus replication in the liver followed by virus spread to the brain. Virus infection of the CNS was associated with the induction of inflammatory responses, including the induction of a large number of interferon-stimulated genes and histological evidence of focal encephalitis with recruitment of mononuclear cells to foci containing virus-infected cells. The morphogenesis of the cerebellum was delayed in infected animals. The defects in cerebellar development in infected animals were generalized and, although correlated temporally with virus replication and CNS inflammation, spatially unrelated to foci of virus-infected cells. Specific defects included decreased granular neuron proliferation and migration, expression of differentiation markers, and activation of neurotrophin receptors. These findings suggested that in the developing CNS, focal virus infection and induction of inflammatory responses in resident and infiltrating mononuclear cells resulted in delayed cerebellar morphogenesis.
Altered development of the brain after focal herpesvirus infection of the central nervous system
Koontz, Thad; Bralic, Marina; Tomac, Jelena; Pernjak-Pugel, Ester; Bantug, Glen; Jonjic, Stipan; Britt, William J.
2008-01-01
Human cytomegalovirus infection of the developing central nervous system (CNS) is a major cause of neurological damage in newborn infants and children. To investigate the pathogenesis of this human infection, we developed a mouse model of infection in the developing CNS. Intraperitoneal inoculation of newborn animals with murine cytomegalovirus resulted in virus replication in the liver followed by virus spread to the brain. Virus infection of the CNS was associated with the induction of inflammatory responses, including the induction of a large number of interferon-stimulated genes and histological evidence of focal encephalitis with recruitment of mononuclear cells to foci containing virus-infected cells. The morphogenesis of the cerebellum was delayed in infected animals. The defects in cerebellar development in infected animals were generalized and, although correlated temporally with virus replication and CNS inflammation, spatially unrelated to foci of virus-infected cells. Specific defects included decreased granular neuron proliferation and migration, expression of differentiation markers, and activation of neurotrophin receptors. These findings suggested that in the developing CNS, focal virus infection and induction of inflammatory responses in resident and infiltrating mononuclear cells resulted in delayed cerebellar morphogenesis. PMID:18268036
NASA Technical Reports Server (NTRS)
Kubat, Greg; Vandrei, Don
2006-01-01
Project Objectives include: a) CNS Model Development; b Design/Integration of baseline set of CNS Models into ACES; c) Implement Enhanced Simulation Capabilities in ACES; d) Design and Integration of Enhanced (2nd set) CNS Models; and e) Continue with CNS Model Integration/Concept evaluations.
Exclusion of Integrins from CNS Axons Is Regulated by Arf6 Activation and the AIS
Franssen, Elske H. P.; Zhao, Rong-Rong; Koseki, Hiroaki; Kanamarlapudi, Venkateswarlu; Hoogenraad, Casper C.
2015-01-01
Integrins are adhesion and survival molecules involved in axon growth during CNS development, as well as axon regeneration after injury in the peripheral nervous system (PNS). Adult CNS axons do not regenerate after injury, partly due to a low intrinsic growth capacity. We have previously studied the role of integrins in axon growth in PNS axons; in the present study, we investigate whether integrin mechanisms involved in PNS regeneration may be altered or lacking from mature CNS axons by studying maturing CNS neurons in vitro. In rat cortical neurons, we find that integrins are present in axons during initial growth but later become restricted to the somato-dendritic domain. We investigated how this occurs and whether it can be altered to enhance axonal growth potential. We find a developmental change in integrin trafficking; transport becomes predominantly retrograde throughout axons, but not dendrites, as neurons mature. The directionality of transport is controlled through the activation state of ARF6, with developmental upregulation of the ARF6 GEF ARNO enhancing retrograde transport. Lowering ARF6 activity in mature neurons restores anterograde integrin flow, allows transport into axons, and increases axon growth. In addition, we found that the axon initial segment is partly responsible for exclusion of integrins and removal of this structure allows integrins into axons. Changing posttranslational modifications of tubulin with taxol also allows integrins into the proximal axon. The experiments suggest that the developmental loss of regenerative ability in CNS axons is due to exclusion of growth-related molecules due to changes in trafficking. PMID:26019348
Tissue-Specific Regulation of Chromatin Insulator Function
Matzat, Leah H.; Dale, Ryan K.; Moshkovich, Nellie; Lei, Elissa P.
2012-01-01
Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type–specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein Shep as a direct interactor of two individual components of the gypsy insulator complex in Drosophila. Mutation of shep improves gypsy-dependent enhancer blocking, indicating a role as a negative regulator of insulator activity. Unlike ubiquitously expressed core gypsy insulator proteins, Shep is highly expressed in the central nervous system (CNS) with lower expression in other tissues. We developed a novel, quantitative tissue-specific barrier assay to demonstrate that Shep functions as a negative regulator of insulator activity in the CNS but not in muscle tissue. Additionally, mutation of shep alters insulator complex nuclear localization in the CNS but has no effect in other tissues. Consistent with negative regulatory activity, ChIP–seq analysis of Shep in a CNS-derived cell line indicates substantial genome-wide colocalization with a single gypsy insulator component but limited overlap with intact insulator complexes. Taken together, these data reveal a novel, tissue-specific mode of regulation of a chromatin insulator. PMID:23209434
Vascular, glial, and lymphatic immune gateways of the central nervous system.
Engelhardt, Britta; Carare, Roxana O; Bechmann, Ingo; Flügel, Alexander; Laman, Jon D; Weller, Roy O
2016-09-01
Immune privilege of the central nervous system (CNS) has been ascribed to the presence of a blood-brain barrier and the lack of lymphatic vessels within the CNS parenchyma. However, immune reactions occur within the CNS and it is clear that the CNS has a unique relationship with the immune system. Recent developments in high-resolution imaging techniques have prompted a reassessment of the relationships between the CNS and the immune system. This review will take these developments into account in describing our present understanding of the anatomical connections of the CNS fluid drainage pathways towards regional lymph nodes and our current concept of immune cell trafficking into the CNS during immunosurveillance and neuroinflammation. Cerebrospinal fluid (CSF) and interstitial fluid are the two major components that drain from the CNS to regional lymph nodes. CSF drains via lymphatic vessels and appears to carry antigen-presenting cells. Interstitial fluid from the CNS parenchyma, on the other hand, drains to lymph nodes via narrow and restricted basement membrane pathways within the walls of cerebral capillaries and arteries that do not allow traffic of antigen-presenting cells. Lymphocytes targeting the CNS enter by a two-step process entailing receptor-mediated crossing of vascular endothelium and enzyme-mediated penetration of the glia limitans that covers the CNS. The contribution of the pathways into and out of the CNS as initiators or contributors to neurological disorders, such as multiple sclerosis and Alzheimer's disease, will be discussed. Furthermore, we propose a clear nomenclature allowing improved precision when describing the CNS-specific communication pathways with the immune system.
Central Nervous System Vasculitis
... of Vasculitis / Central Nervous System (CNS) Vasculitis Central Nervous System (CNS) Vasculitis Swap out your current Facebook Profile ... Facebook personal page. Replace with this image. Central nervous system (CNS) vasculitis is inflammation of blood vessel walls ...
Sasakura, Yasunori; Mita, Kaoru; Ogura, Yosuke; Horie, Takeo
2012-04-01
The swimming larvae of the chordate ascidians possess a dorsal hollowed central nervous system (CNS), which is homologous to that of vertebrates. Despite the homology, the ascidian CNS consists of a countable number of cells. The simple nervous system of ascidians provides an excellent experimental system to study the developmental mechanisms of the chordate nervous system. The neural fate of the cells consisting of the ascidian CNS is determined in both autonomous and non-autonomous fashion during the cleavage stage. The ascidian neural plate performs the morphogenetic movement of neural tube closure that resembles that in vertebrate neural tube formation. Following neurulation, the CNS is separated into five distinct regions, whose homology with the regions of vertebrate CNS has been discussed. Following their larval stage, ascidians undergo a metamorphosis and become sessile adults. The metamorphosis is completed quickly, and therefore the metamorphosis of ascidians is a good experimental system to observe the reorganization of the CNS during metamorphosis. A recent study has shown that the major parts of the larval CNS remain after the metamorphosis to form the adult CNS. In contrast to such a conserved manner of CNS reorganization, most larval neurons disappear during metamorphosis. The larval glial cells in the CNS are the major source for the formation of the adult CNS, and some of the glial cells produce adult neurons. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
... an ongoing accounting system that nets each day's Settling Trades with the prior day's Closing... Continuous Net Settlement (``CNS'') system \\5\\ (and for CNS-eligible items that are designated to be... value through the CNS system. Non-CNS eligible items, however, are assigned a market value pursuant to...
Understanding the functions and relationships of the glymphatic system and meningeal lymphatics.
Louveau, Antoine; Plog, Benjamin A; Antila, Salli; Alitalo, Kari; Nedergaard, Maiken; Kipnis, Jonathan
2017-09-01
Recent discoveries of the glymphatic system and of meningeal lymphatic vessels have generated a lot of excitement, along with some degree of skepticism. Here, we summarize the state of the field and point out the gaps of knowledge that should be filled through further research. We discuss the glymphatic system as a system that allows CNS perfusion by the cerebrospinal fluid (CSF) and interstitial fluid (ISF). We also describe the recently characterized meningeal lymphatic vessels and their role in drainage of the brain ISF, CSF, CNS-derived molecules, and immune cells from the CNS and meninges to the peripheral (CNS-draining) lymph nodes. We speculate on the relationship between the two systems and their malfunction that may underlie some neurological diseases. Although much remains to be investigated, these new discoveries have changed our understanding of mechanisms underlying CNS immune privilege and CNS drainage. Future studies should explore the communications between the glymphatic system and meningeal lymphatics in CNS disorders and develop new therapeutic modalities targeting these systems.
Immunomodulatory effects of endogenous and synthetic peptides activating opioid receptors.
Pomorska, Dorota K; Gach, Katarzyna; Janecka, Anna
2014-01-01
The main role of endogenous opioid peptides is the modulation of pain. Opioid peptides exert their analgesic activity by binding to the opioid receptors distributed widely in the central nervous system (CNS). However, opioid receptors are also found on tissues and organs outside the CNS, including the cells of the immune system, indicating that opioids are capable of exerting additional effects in periphery. Morphine, which is a gold standard in the treatment of chronic pain, is well-known for its immunosuppressive effects. Much less is known about the immunomodulatory effects exerted by endogenous (enkephalins, endorphins, dynorphins and endomorphins) and synthetic peptides activating opioid receptors. In this review we tried to summarize opioid peptide-mediated modulation of immune cell functions which can be stimulatory as well as inhibitory.
Sayed, Blayne A; Christy, Alison L; Walker, Margaret E; Brown, Melissa A
2010-06-15
Mast cells contribute to the pathogenesis of experimental autoimmune encephalomyelitis, a rodent model of the human demyelinating disease multiple sclerosis. Yet their site and mode of action is unknown. In both diseases, myelin-specific T cells are initially activated in peripheral lymphoid organs. However, for disease to occur, these cells must enter the immunologically privileged CNS through a breach in the relatively impermeable blood-brain barrier. In this study, we demonstrate that a dense population of resident mast cells in the meninges, structures surrounding the brain and spinal cord, regulate basal CNS barrier function, facilitating initial T cell CNS entry. Through the expression of TNF, mast cells recruit an early wave of neutrophils to the CNS. We propose that neutrophils in turn promote the blood-brain barrier breach and together with T cells lead to further inflammatory cell influx and myelin damage. These findings provide specific targets for intervention in multiple sclerosis as well as other immune-mediated CNS diseases.
Neuroimmune regulation of neurophysiology in the cerebellum.
Gruol, Donna L
2013-06-01
Recent studies have established the existence of an innate immune system in the central nervous system (CNS) and implicated a critical role for this system in both normal and pathological processes. Astrocytes and microglia, normal components of the CNS, are the primary cell types that comprise the innate immune system of the CNS. Basic to their role during normal and adverse conditions is the production of neuroimmune factors such as cytokines and chemokines, which are signaling molecules that initiate or coordinate downstream cellular actions. During adverse conditions, cytokines and chemokines function in defensive and repair. However, if expression of these factors becomes dysregulated, abnormal CNS function can result. Both neurons and glial cells of the CNS express receptors for cytokines and chemokines, but the biological consequence of receptor activation has yet to be fully resolved. Our studies show that neuroadaptive changes are produced in primary cultures of rat cerebellar cells chronically treated with the cytokine interleukin-6 (IL-6) and in the cerebellum of transgenic mice that chronically express elevated levels of IL-6 in the CNS. In the cerebellum in culture and in vivo, the neuroadaptive changes included alterations in the level of expression of proteins involved in gene expression, signal transduction, and synaptic transmission. Associated with these changes were alterations in neuronal function. A comparison of results from the cultured cerebellar cells and cerebellum of the transgenic mice indicated that the effects of IL-6 can vary across neuronal types. However, alterations in mechanisms involved in Ca(2+) homeostasis were observed in all cell types studied. These results indicate that modifications in cerebellar function are likely to occur in disorders associated with elevated levels of IL-6 in the cerebellum.
PERSPECTIVE: Electrical activity enhances neuronal survival and regeneration
NASA Astrophysics Data System (ADS)
Corredor, Raul G.; Goldberg, Jeffrey L.
2009-10-01
The failure of regeneration in the central nervous system (CNS) remains an enormous scientific and clinical challenge. After injury or in degenerative diseases, neurons in the adult mammalian CNS fail to regrow their axons and reconnect with their normal targets, and furthermore the neurons frequently die and are not normally replaced. While significant progress has been made in understanding the molecular basis for this lack of regenerative ability, a second approach has gained momentum: replacing lost neurons or lost connections with artificial electrical circuits that interface with the nervous system. In the visual system, gene therapy-based 'optogenetics' prostheses represent a competing technology. Now, the two approaches are converging, as recent data suggest that electrical activity itself, via the molecular signaling pathways such activity stimulates, is sufficient to induce neuronal survival and regeneration, particularly in retinal ganglion cells. Here, we review these data, discuss the effects of electrical activity on neurons' molecular signaling pathways and propose specific mechanisms by which exogenous electrical activity may be acting to enhance survival and regeneration.
Dimethyl fumarate modulation of immune and antioxidant responses: application to HIV therapy
Gill, Alexander J.; Kolson, Dennis L.
2013-01-01
The persistence of chronic immune activation and oxidative stress in human immunodeficiency virus (HIV)-infected, antiretroviral drug-treated individuals are major obstacles to fully preventing HIV disease progression. The immune modulator and antioxidant dimethyl fumarate (DMF) is effective in treating immune-mediated diseases and it also has potential applications to limiting HIV disease progression. Among the relevant effects of DMF and its active metabolite monomethyl fumarate (MMF) are induction of a Th1 → Th2 lymphocyte shift, inhibition of pro-inflammatory cytokine signaling, inhibition of NF-κB nuclear translocation, inhibition of dendritic cell maturation, suppression of lymphocyte and endothelial cell adhesion molecule expression, and induction of the Nrf2-dependent antioxidant response element (ARE) and effector genes. Associated with these effects are reduced lymphocyte and monocyte infiltration into psoriatic skin lesions in humans and immune-mediated demyelinating brain lesions in rodents, which confirms potent systemic and central nervous system (CNS) effects. In addition, DMF and MMF limit HIV infection in macrophages in vitro, albeit by unknown mechanisms. Finally, DMF and MMF also suppress neurotoxin production from HIV-infected macrophages, which drives CNS neurodegeneration. Thus, DMF might protect against systemic and CNS complications in HIV infection through its effective suppression of immune activation, oxidative stress, HIV replication, and macrophage-associated neuronal injury. PMID:23971529
[Antibiotic diffusion to central nervous system].
Cabrera-Maqueda, J M; Fuentes Rumí, L; Valero López, G; Baidez Guerrero, A E; García Molina, E; Díaz Pérez, J; García-Vázquez, E
2018-02-01
Central nervous system (CNS) infections caused by pathogens with a reduced sensitivity to drugs are a therapeutic challenge. Transport of fluid and solutes is tightly controlled within CNS, where vasculature exhibits a blood-brain barrier (BBB).The entry of drugs, including antibiotics, into the cerebro-spinal fluid (CSF) is governed by molecular size, lipophilicity, plasma protein binding and their affinity to transport systems at the BBB. The ratio of the AUCCSF (Area under the curve in CSF)/AUCS (Area under the curve in serum) is the most accurate parameter to characterize drug penetration into the CSF. Linezolid, some fluoroquinolones and metronidazole get high CSF concentrations and are useful for treating susceptible pathogens. Some highly active antibiotic compounds with low BBB permeability can be directly administered into the ventricles together with concomitant intravenous therapy. The ideal antibiotic to treat CNS infections should be that with a small moderately lipophilic molecule, low plasma protein binding and low affinity to efflux pumps at BBB. Knowledge of the pharmacokinetics and pharmacodynamics of antibiotics at the BBB will assist to optimize antibiotic treatment in CNS infections. This article reviews the physicochemical properties of the main groups of antibiotics to assess which compounds are most promising for the treatment of CNS infections and how to use them in the daily clinical practice. © The Author 2018. Published by Sociedad Española de Quimioterapia.
MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4
Walsh, James T.; Hendrix, Sven; Boato, Francesco; Smirnov, Igor; Zheng, Jingjing; Lukens, John R.; Gadani, Sachin; Hechler, Daniel; Gölz, Greta; Rosenberger, Karen; Kammertöns, Thomas; Vogt, Johannes; Vogelaar, Christina; Siffrin, Volker; Radjavi, Ali; Fernandez-Castaneda, Anthony; Gaultier, Alban; Gold, Ralf; Kanneganti, Thirumala-Devi; Nitsch, Robert; Zipp, Frauke; Kipnis, Jonathan
2015-01-01
A body of experimental evidence suggests that T cells mediate neuroprotection following CNS injury; however, the antigen specificity of these T cells and how they mediate neuroprotection are unknown. Here, we have provided evidence that T cell–mediated neuroprotection after CNS injury can occur independently of major histocompatibility class II (MHCII) signaling to T cell receptors (TCRs). Using two murine models of CNS injury, we determined that damage-associated molecular mediators that originate from injured CNS tissue induce a population of neuroprotective, IL-4–producing T cells in an antigen-independent fashion. Compared with wild-type mice, IL-4–deficient animals had decreased functional recovery following CNS injury; however, transfer of CD4+ T cells from wild-type mice, but not from IL-4–deficient mice, enhanced neuronal survival. Using a culture-based system, we determined that T cell–derived IL-4 protects and induces recovery of injured neurons by activation of neuronal IL-4 receptors, which potentiated neurotrophin signaling via the AKT and MAPK pathways. Together, these findings demonstrate that damage-associated molecules from the injured CNS induce a neuroprotective T cell response that is independent of MHCII/TCR interactions and is MyD88 dependent. Moreover, our results indicate that IL-4 mediates neuroprotection and recovery of the injured CNS and suggest that strategies to enhance IL-4–producing CD4+ T cells have potential to attenuate axonal damage in the course of CNS injury in trauma, inflammation, or neurodegeneration. PMID:25607842
Risk of defeats in the central nervous system during deep space missions.
Kokhan, Viktor S; Matveeva, Marina I; Mukhametov, Azat; Shtemberg, Andrey S
2016-12-01
Space flight factors (SFF) significantly affect the operating activity of astronauts during deep space missions. Gravitational overloads, hypo-magnetic field and ionizing radiation are the main SFF that perturb the normal activity of the central nervous system (CNS). Acute and chronic CNS risks include alterations in cognitive abilities, reduction of motor functions and behavioural changes. Multiple experimental works have been devoted to the SFF effects on integrative functional activity of the brain; however, the model parameters utilized have not always been ideal and consistent. Even less is known regarding the combined effects of these SFF in a real interplanetary mission, for example to Mars. Our review aims to systemize and analyse the last advancements in astrobiology, with a focus on the combined effects of SFF; as well as to discuss on unification of the parameters for ground-based models of deep space missions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Central nervous system involvement in AIDS-related lymphomas.
Barta, Stefan K; Joshi, Jitesh; Mounier, Nicolas; Xue, Xiaonan; Wang, Dan; Ribera, Josep-Maria; Navarro, Jose-Tomas; Hoffmann, Christian; Dunleavy, Kieron; Little, Richard F; Wilson, Wyndham H; Spina, Michele; Galicier, Lionel; Noy, Ariela; Sparano, Joseph A
2016-06-01
Central nervous system (CNS) involvement is reportedly more common in acquired immunodeficiency syndrome (AIDS)-related lymphomas (ARL). We describe factors and outcomes associated with CNS involvement at baseline (CNS(B) ) and relapse (CNS(R) ) in 886 patients with newly diagnosed ARL. Of 886 patients, 800 received either intrathecal (IT) therapy for CNS(B) or IT prophylaxis. CNS(B) was found in 13%. CNS(B) was not associated with reduced overall survival (OS). There was no difference in the prevalence of CNS(B) between the pre-combination antiretroviral therapy (cART) and cART eras. 5·3% of patients experienced CNS(R) at a median of 4·2 months after diagnosis (12% if CNS(B) ; 4% if not). Median OS after CNS(R) was 1·6 months. On multivariate analysis, only CNS(B) [hazard ratio (HR) 3·68, P = 0·005] and complete response to initial therapy (HR 0·14, P < 0·0001) were significantly associated with CNS(R) . When restricted to patients without CNS(B) , IT CNS prophylaxis with 3 vs. 1 agent did not significantly impact the risk of CNS(R) . Despite IT CNS prophylaxis, 5% of patients experienced CNS(R) . Our data confirms that CNS(R) in ARL occurs early and has a poor outcome. Complete response to initial therapy was associated with a reduced frequency of CNS(R) . Although CNS(B) conferred an increased risk for CNS(R) , it did not impact OS. © 2016 John Wiley & Sons Ltd.
Blachère, Nathalie E; Orange, Dana E; Santomasso, Bianca D; Doerner, Jessica; Foo, Patricia K; Herre, Margaret; Fak, John; Monette, Sébastien; Gantman, Emily C; Frank, Mayu O; Darnell, Robert B
2014-11-01
Paraneoplastic neurologic diseases (PND) involving immune responses directed toward intracellular antigens are poorly understood. Here, we examine immunity to the PND antigen Nova2, which is expressed exclusively in central nervous system (CNS) neurons. We hypothesized that ectopic expression of neuronal antigen in the periphery could incite PND. In our C57BL/6 mouse model, CNS antigen expression limits antigen-specific CD4+ and CD8+ T-cell expansion. Chimera experiments demonstrate that this tolerance is mediated by antigen expression in nonhematopoietic cells. CNS antigen expression does not limit tumor rejection by adoptively transferred transgenic T cells but does limit the generation of a memory population that can be expanded upon secondary challenge in vivo. Despite mediating cancer rejection, adoptively transferred transgenic T cells do not lead to paraneoplastic neuronal targeting. Preliminary experiments suggest an additional requirement for humoral activation to induce CNS autoimmunity. This work provides evidence that the requirements for cancer immunity and neuronal autoimmunity are uncoupled. Since humoral immunity was not required for tumor rejection, B-cell targeting therapy, such as rituximab, may be a rational treatment option for PND that does not hamper tumor immunity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tran, Khiem A.; Zhang, Xianming; Predescu, Dan; Huang, Xiaojia; Machado, Roberto F.; Göthert, Joachim R.; Malik, Asrar B.; Valyi-Nagy, Tibor; Zhao, You-Yang
2015-01-01
Background The blood-brain barrier (BBB) formed by brain endothelial cells (ECs) interconnected by tight junctions (TJs) is essential for the homeostasis of the central nervous system (CNS). Although studies have shown the importance of various signaling molecules in BBB formation during development, little is known about the molecular basis regulating the integrity of the adult BBB. Methods and Results Using a mouse model with tamoxifen-inducible EC-restricted disruption of ctnnb1 (iCKO), here we show that endothelial β-catenin signaling is essential for maintaining BBB integrity and CNS homeostasis in adult. The iCKO mice developed severe seizures accompanied by neuronal injury, multiple brain petechial hemorrhages, and CNS inflammation, and all died postictal. Disruption of endothelial β-catenin induced BBB breakdown and downregulation of specific TJ proteins Claudin-1 and -3 in adult brain ECs. The clinical relevance of the data is indicated by the observation of decreased expression of Claudin-1 and nuclear β-catenin in brain ECs of hemorrhagic lesions of hemorrhagic stroke patients. Conclusion These results demonstrate the prerequisite role of endothelial β-catenin in maintaining the integrity of adult BBB. The results suggest that BBB dysfunction secondary to defective β-catenin transcription activity is a key pathogenic factor in hemorrhagic stroke, seizure activity and CNS inflammation. PMID:26538583
Mankowski, Joseph L.; Queen, Suzanne E.; Fernandez, Caroline S.; Tarwater, Patrick M.; Karper, Jami M.; Adams, Robert J.; Kent, Stephen J.
2008-01-01
Human immunodeficiency virus (HIV) infection frequently causes neurologic disease even with anti-retroviral treatment. Although associations between MHC class I alleles and acquired immunodeficiency syndrome (AIDS) have been reported, the role MHC class I alleles play in restricting development of HIV-induced organ-specific diseases, including neurologic disease, has not been characterized. This study examined the relationship between expression of the MHC class I allele Mane-A*10 and development of lentiviral-induced central nervous system (CNS) disease using a well-characterized simian immunodeficiency (SIV)/pigtailed macaque model. The risk of developing CNS disease (SIV encephalitis) was 2.5 times higher for animals that did not express the MHC class I allele Mane-A*10 (P = 0.002; RR = 2.5). Animals expressing the Mane-A*10 allele had significantly lower amounts of activated macrophages, SIV RNA, and neuronal dysfunction in the CNS than Mane-A*10 negative animals (P<0.001). Mane-A*10 positive animals with the highest CNS viral burdens contained SIV gag escape mutants at the Mane-A*10-restricted KP9 epitope in the CNS whereas wild type KP9 sequences dominated in the brain of Mane-A*10 negative animals with comparable CNS viral burdens. These concordant findings demonstrate that particular MHC class I alleles play major neuroprotective roles in lentiviral-induced CNS disease. PMID:18978944
Qin, Weiping; Sun, Li; Cao, Jay; Peng, Yuanzhen; Collier, Lauren; Wu, Yong; Creasey, Graham; Li, Jianhua; Qin, Yiwen; Jarvis, Jonathan; Bauman, William A; Zaidi, Mone; Cardozo, Christopher
2013-05-10
Mechanisms by which muscle regulates bone are poorly understood. Electrically stimulated muscle contraction reversed elevations in bone resorption and increased Wnt signaling in bone-derived cells after spinal cord transection. Muscle contraction reduced resorption of unloaded bone independently of the CNS, through mechanical effects and, potentially, nonmechanical signals (e.g. myokines). The study provides new insights regarding muscle-bone interactions. Muscle and bone work as a functional unit. Cellular and molecular mechanisms underlying effects of muscle activity on bone mass are largely unknown. Spinal cord injury (SCI) causes muscle paralysis and extensive sublesional bone loss and disrupts neural connections between the central nervous system (CNS) and bone. Muscle contraction elicited by electrical stimulation (ES) of nerves partially protects against SCI-related bone loss. Thus, application of ES after SCI provides an opportunity to study the effects of muscle activity on bone and roles of the CNS in this interaction, as well as the underlying mechanisms. Using a rat model of SCI, the effects on bone of ES-induced muscle contraction were characterized. The SCI-mediated increase in serum C-terminal telopeptide of type I collagen (CTX) was completely reversed by ES. In ex vivo bone marrow cell cultures, SCI increased the number of osteoclasts and their expression of mRNA for several osteoclast differentiation markers, whereas ES significantly reduced these changes; SCI decreased osteoblast numbers, but increased expression in these cells of receptor activator of NF-κB ligand (RANKL) mRNA, whereas ES increased expression of osteoprotegerin (OPG) and the OPG/RANKL ratio. A microarray analysis revealed that ES partially reversed SCI-induced alterations in expression of genes involved in signaling through Wnt, FSH, parathyroid hormone (PTH), oxytocin, and calcineurin/nuclear factor of activated T-cells (NFAT) pathways. ES mitigated SCI-mediated increases in mRNA levels for the Wnt inhibitors DKK1, sFRP2, and sclerostin in ex vivo cultured osteoblasts. Our results demonstrate an anti-bone-resorptive activity of muscle contraction by ES that develops rapidly and is independent of the CNS. The pathways involved, particularly Wnt signaling, suggest future strategies to minimize bone loss after immobilization.
Croq, Françoise; Vizioli, Jacopo; Tuzova, Marina; Tahtouh, Muriel; Sautiere, Pierre-Eric; Van Camp, Christelle; Salzet, Michel; Cruikshank, William W; Pestel, Joel; Lefebvre, Christophe
2010-11-01
In contrast to mammals, the medicinal leech Hirudo medicinalis can completely repair its central nervous system (CNS) after injury. This invertebrate model offers unique opportunities to study the molecular and cellular basis of the CNS repair processes. When the leech CNS is injured, microglial cells migrate and accumulate at the site of lesion, a phenomenon known to be essential for the usual sprouting of injured axons. In the present study, we demonstrate that a new molecule, designated HmIL-16, having functional homologies with human interleukin-16 (IL-16), has chemotactic activity on leech microglial cells as observed using a gradient of human IL-16. Preincubation of microglial cells either with an anti-human IL-16 antibody or with anti-HmIL-16 antibody significantly reduced microglia migration induced by leech-conditioned medium. Functional homology was demonstrated further by the ability of HmIL-16 to promote human CD4+ T cell migration which was inhibited by antibody against human IL-16, an IL-16 antagonist peptide or soluble CD4. Immunohistochemistry of leech CNS indicates that HmIL-16 protein present in the neurons is rapidly transported and stored along the axonal processes to promote the recruitment of microglial cells to the injured axons. To our knowledge, this is the first identification of a functional interleukin-16 homologue in invertebrate CNS. The ability of HmIL-16 to recruit microglial cells to sites of CNS injury suggests a role for HmIL-16 in the crosstalk between neurons and microglia in the leech CNS repair.
ten Kulve, Jennifer S; Veltman, Dick J; van Bloemendaal, Liselotte; Barkhof, Frederik; Deacon, Carolyn F; Holst, Jens J; Konrad, Robert J; Sloan, John H; Drent, Madeleine L; Diamant, Michaela; IJzerman, Richard G
2015-12-01
The central nervous system (CNS) is a major player in the regulation of food intake. The gut hormone glucagon-like peptide-1 (GLP-1) has been proposed to have an important role in this regulation by relaying information about nutritional status to the CNS. We hypothesised that endogenous GLP-1 has effects on CNS reward and satiety circuits. This was a randomised, crossover, placebo-controlled intervention study, performed in a university medical centre in the Netherlands. We included patients with type 2 diabetes and healthy lean control subjects. Individuals were eligible if they were 40-65 years. Inclusion criteria for the healthy lean individuals included a BMI <25 kg/m(2) and normoglycaemia. Inclusion criteria for the patients with type 2 diabetes included BMI >26 kg/m(2), HbA1c levels between 42 and 69 mmol/mol (6.0-8.5%) and treatment for diabetes with only oral glucose-lowering agents. We assessed CNS activation, defined as blood oxygen level dependent (BOLD) signal, in response to food pictures in obese patients with type 2 diabetes (n = 20) and healthy lean individuals (n = 20) using functional magnetic resonance imaging (fMRI). fMRI was performed in the fasted state and after meal intake on two occasions, once during infusion of the GLP-1 receptor antagonist exendin 9-39, which was administered to block actions of endogenous GLP-1, and on the other occasion during saline (placebo) infusion. Participants were blinded for the type of infusion. The order of infusion was determined by block randomisation. The primary outcome was the difference in BOLD signal, i.e. in CNS activation, in predefined regions in the CNS in response to viewing food pictures. All patients were included in the analyses. Patients with type 2 diabetes showed increased CNS activation in CNS areas involved in the regulation of feeding (insula, amygdala and orbitofrontal cortex) in response to food pictures compared with lean individuals (p ≤ 0.04). Meal intake reduced activation in the insula in response to food pictures in both groups (p ≤ 0.05), but this was more pronounced in patients with type 2 diabetes. Blocking actions of endogenous GLP-1 significantly prevented meal-induced reductions in bilateral insula activation in response to food pictures in patients with type 2 diabetes (p ≤ 0.03). Our findings support the hypothesis that endogenous GLP-1 is involved in postprandial satiating effects in the CNS of obese patients with type 2 diabetes. ClinicalTrials.gov NCT 01363609. Funding The study was funded in part by a grant from Novo Nordisk.
Differentiation and Transmigration of CD4 T Cells in Neuroinflammation and Autoimmunity.
Sonar, Sandip Ashok; Lal, Girdhari
2017-01-01
CD4 + T cells play a central role in orchestrating protective immunity and autoimmunity. The activation and differentiation of myelin-reactive CD4 + T cells into effector (Th1 and Th17) and regulatory (Tregs) subsets at the peripheral tissues, and their subsequent transmigration across the blood-brain barrier (BBB) into the central nervous system (CNS) parenchyma are decisive events in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. How the Th1, Th17, and regulatory Tregs transmigrate across the BBB into the CNS and cause CNS inflammation is not clearly understood. Studies with transgenic and gene knockout mice have unraveled that Th1, Th17, and Tregs play a critical role in the induction and resolution of neuroinflammation. However, the plasticity of these lineages and functional dichotomy of their cytokine products makes it difficult to understand what role CD4 + T cells in the peripheral lymphoid organs, endothelial BBB, and the CNS parenchyma play in the CNS autoimmune response. In this review, we describe some of the recent findings that shed light on the mechanisms behind the differentiation and transmigration of CD4 + T cells across the BBB into the CNS parenchyma and also highlight how these two processes are interconnected, which is crucial for the outcome of CNS inflammation and autoimmunity.
Differentiation and Transmigration of CD4 T Cells in Neuroinflammation and Autoimmunity
Sonar, Sandip Ashok; Lal, Girdhari
2017-01-01
CD4+ T cells play a central role in orchestrating protective immunity and autoimmunity. The activation and differentiation of myelin-reactive CD4+ T cells into effector (Th1 and Th17) and regulatory (Tregs) subsets at the peripheral tissues, and their subsequent transmigration across the blood–brain barrier (BBB) into the central nervous system (CNS) parenchyma are decisive events in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. How the Th1, Th17, and regulatory Tregs transmigrate across the BBB into the CNS and cause CNS inflammation is not clearly understood. Studies with transgenic and gene knockout mice have unraveled that Th1, Th17, and Tregs play a critical role in the induction and resolution of neuroinflammation. However, the plasticity of these lineages and functional dichotomy of their cytokine products makes it difficult to understand what role CD4+ T cells in the peripheral lymphoid organs, endothelial BBB, and the CNS parenchyma play in the CNS autoimmune response. In this review, we describe some of the recent findings that shed light on the mechanisms behind the differentiation and transmigration of CD4+ T cells across the BBB into the CNS parenchyma and also highlight how these two processes are interconnected, which is crucial for the outcome of CNS inflammation and autoimmunity. PMID:29238350
Shabanpoor, Fazel; Hammond, Suzan M; Abendroth, Frank; Hazell, Gareth; Wood, Matthew J.A.
2017-01-01
Splice-switching antisense oligonucleotides are emerging treatments for neuromuscular diseases, with several splice-switching oligonucleotides (SSOs) currently undergoing clinical trials such as for Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA). However, the development of systemically delivered antisense therapeutics has been hampered by poor tissue penetration and cellular uptake, including crossing of the blood–brain barrier (BBB) to reach targets in the central nervous system (CNS). For SMA application, we have investigated the ability of various BBB-crossing peptides for CNS delivery of a splice-switching phosphorodiamidate morpholino oligonucleotide (PMO) targeting survival motor neuron 2 (SMN2) exon 7 inclusion. We identified a branched derivative of the well-known ApoE (141–150) peptide, which as a PMO conjugate was capable of exon inclusion in the CNS following systemic administration, leading to an increase in the level of full-length SMN2 transcript. Treatment of newborn SMA mice with this peptide-PMO (P-PMO) conjugate resulted in a significant increase in the average lifespan and gains in weight, muscle strength, and righting reflexes. Systemic treatment of adult SMA mice with this newly identified P-PMO also resulted in small but significant increases in the levels of SMN2 pre-messenger RNA (mRNA) exon inclusion in the CNS and peripheral tissues. This work provides proof of principle for the ability to select new peptide paradigms to enhance CNS delivery and activity of a PMO SSO through use of a peptide-based delivery platform for the treatment of SMA potentially extending to other neuromuscular and neurodegenerative diseases. PMID:28118087
Podda, Maria Vittoria; Grassi, Claudio
2014-07-01
Cyclic nucleotides play fundamental roles in the central nervous system (CNS) under both physiological and pathological conditions. The impact of cAMP and cGMP signaling on neuronal and glial cell functions has been thoroughly characterized. Most of their effects have been related to cyclic nucleotide-dependent protein kinase activity. However, cyclic nucleotide-gated (CNG) channels, first described as key mediators of sensory transduction in retinal and olfactory receptors, have been receiving increasing attention as possible targets of cyclic nucleotides in the CNS. In the last 15 years, consistent evidence has emerged for their expression in neurons and astrocytes of the rodent brain. Far less is known, however, about the functional role of CNG channels in these cells, although several of their features, such as Ca(2+) permeability and prolonged activation in the presence of cyclic nucleotides, make them ideal candidates for mediators of physiological functions in the CNS. Here, we review literature suggesting the involvement of CNG channels in a number of CNS cellular functions (e.g., regulation of membrane potential, neuronal excitability, and neurotransmitter release) as well as in more complex phenomena, like brain plasticity, adult neurogenesis, and pain sensitivity. The emerging picture is that functional and dysfunctional cyclic nucleotide signaling in the CNS has to be reconsidered including CNG channels among possible targets. However, concerted efforts and multidisciplinary approaches are still needed to get more in-depth knowledge in this field.
Zhang, Yan-Yan; Liu, Houfu; Summerfield, Scott G; Luscombe, Christopher N; Sahi, Jasminder
2016-05-02
Estimation of uptake across the blood-brain barrier (BBB) is key to designing central nervous system (CNS) therapeutics. In silico approaches ranging from physicochemical rules to quantitative structure-activity relationship (QSAR) models are utilized to predict potential for CNS penetration of new chemical entities. However, there are still gaps in our knowledge of (1) the relationship between marketed human drug derived CNS-accessible chemical space and preclinical neuropharmacokinetic (neuroPK) data, (2) interpretability of the selected physicochemical descriptors, and (3) correlation of the in vitro human P-glycoprotein (P-gp) efflux ratio (ER) and in vivo rodent unbound brain-to-blood ratio (Kp,uu), as these are assays routinely used to predict clinical CNS exposure, during drug discovery. To close these gaps, we explored the CNS druglike property boundaries of 920 market oral drugs (315 CNS and 605 non-CNS) and 846 compounds (54 CNS drugs and 792 proprietary GlaxoSmithKline compounds) with available rat Kp,uu data. The exact permeability coefficient (Pexact) and P-gp ER were determined for 176 compounds from the rat Kp,uu data set. Receiver operating characteristic curves were performed to evaluate the predictive power of human P-gp ER for rat Kp,uu. Our data demonstrates that simple physicochemical rules (most acidic pKa ≥ 9.5 and TPSA < 100) in combination with P-gp ER < 1.5 provide mechanistic insights for filtering BBB permeable compounds. For comparison, six classification modeling methods were investigated using multiple sets of in silico molecular descriptors. We present a random forest model with excellent predictive power (∼0.75 overall accuracy) using the rat neuroPK data set. We also observed good concordance between the structural interpretation results and physicochemical descriptor importance from the Kp,uu classification QSAR model. In summary, we propose a novel, hybrid in silico/in vitro approach and an in silico screening model for the effective development of chemical series with the potential to achieve optimal CNS exposure.
Biomaterial Scaffolds in Regenerative Therapy of the Central Nervous System
Tan, Hong
2018-01-01
The central nervous system (CNS) is the most important section of the nervous system as it regulates the function of various organs. Injury to the CNS causes impairment of neurological functions in corresponding sites and further leads to long-term patient disability. CNS regeneration is difficult because of its poor response to treatment and, to date, no effective therapies have been found to rectify CNS injuries. Biomaterial scaffolds have been applied with promising results in regeneration medicine. They also show great potential in CNS regeneration for tissue repair and functional recovery. Biomaterial scaffolds are applied in CNS regeneration predominantly as hydrogels and biodegradable scaffolds. They can act as cellular supportive scaffolds to facilitate cell infiltration and proliferation. They can also be combined with cell therapy to repair CNS injury. This review discusses the categories and progression of the biomaterial scaffolds that are applied in CNS regeneration. PMID:29805977
Neonatal Systemic AAV Induces Tolerance to CNS Gene Therapy in MPS I Dogs and Nonhuman Primates
Hinderer, Christian; Bell, Peter; Louboutin, Jean-Pierre; Zhu, Yanqing; Yu, Hongwei; Lin, Gloria; Choa, Ruth; Gurda, Brittney L; Bagel, Jessica; O'Donnell, Patricia; Sikora, Tracey; Ruane, Therese; Wang, Ping; Tarantal, Alice F; Casal, Margret L; Haskins, Mark E; Wilson, James M
2015-01-01
The potential host immune response to a nonself protein poses a fundamental challenge for gene therapies targeting recessive diseases. We demonstrate in both dogs and nonhuman primates that liver-directed gene transfer using an adeno-associated virus (AAV) vector in neonates induces a persistent state of immunological tolerance to the transgene product, substantially improving the efficacy of subsequent vector administration targeting the central nervous system (CNS). We applied this approach to a canine model of mucopolysaccharidosis type I (MPS I), a progressive neuropathic lysosomal storage disease caused by deficient activity of the enzyme α-l-iduronidase (IDUA). MPS I dogs treated systemically in the first week of life with a vector expressing canine IDUA did not develop antibodies against the enzyme and exhibited robust expression in the CNS upon intrathecal AAV delivery at 1 month of age, resulting in complete correction of brain storage lesions. Newborn rhesus monkeys treated systemically with AAV vector expressing human IDUA developed tolerance to the transgene, resulting in high cerebrospinal fluid (CSF) IDUA expression and no antibody induction after subsequent CNS gene therapy. These findings suggest that inducing tolerance to the transgene product during a critical period in immunological development can improve the efficacy and safety of gene therapy. PMID:26022732
Neonatal Systemic AAV Induces Tolerance to CNS Gene Therapy in MPS I Dogs and Nonhuman Primates.
Hinderer, Christian; Bell, Peter; Louboutin, Jean-Pierre; Zhu, Yanqing; Yu, Hongwei; Lin, Gloria; Choa, Ruth; Gurda, Brittney L; Bagel, Jessica; O'Donnell, Patricia; Sikora, Tracey; Ruane, Therese; Wang, Ping; Tarantal, Alice F; Casal, Margret L; Haskins, Mark E; Wilson, James M
2015-08-01
The potential host immune response to a nonself protein poses a fundamental challenge for gene therapies targeting recessive diseases. We demonstrate in both dogs and nonhuman primates that liver-directed gene transfer using an adeno-associated virus (AAV) vector in neonates induces a persistent state of immunological tolerance to the transgene product, substantially improving the efficacy of subsequent vector administration targeting the central nervous system (CNS). We applied this approach to a canine model of mucopolysaccharidosis type I (MPS I), a progressive neuropathic lysosomal storage disease caused by deficient activity of the enzyme α-l-iduronidase (IDUA). MPS I dogs treated systemically in the first week of life with a vector expressing canine IDUA did not develop antibodies against the enzyme and exhibited robust expression in the CNS upon intrathecal AAV delivery at 1 month of age, resulting in complete correction of brain storage lesions. Newborn rhesus monkeys treated systemically with AAV vector expressing human IDUA developed tolerance to the transgene, resulting in high cerebrospinal fluid (CSF) IDUA expression and no antibody induction after subsequent CNS gene therapy. These findings suggest that inducing tolerance to the transgene product during a critical period in immunological development can improve the efficacy and safety of gene therapy.
Neurotoxic reactive astrocytes are induced by activated microglia
Liddelow, Shane A; Guttenplan, Kevin A; Clarke, Laura E; Bennett, Frederick C; Bohlen, Christopher J; Schirmer, Lucas; Bennett, Mariko L; Münch, Alexandra E; Chung, Won-Suk; Peterson, Todd C; Wilton, Daniel K; Frouin, Arnaud; Napier, Brooke A; Panicker, Nikhil; Kumar, Manoj; Buckwalter, Marion S; Rowitch, David H; Dawson, Valina L; Dawson, Ted M; Stevens, Beth; Barres, Ben A
2017-01-01
Summary Reactive astrocytes are strongly induced by central nervous system (CNS) injury and disease but their role is poorly understood. Here we show that A1 reactive astrocytes are induced by classically-activated neuroinflammatory microglia. We show that activated microglia induce A1s by secreting Il-1α, TNFα, and C1q, and that these cytokines together are necessary and sufficient to induce A1s. A1s lose the ability to promote neuronal survival, outgrowth, synaptogenesis and phagocytosis, and induce death of neurons and oligodendrocytes. Death of axotomized CNS neurons in vivo is prevented when A1 formation is blocked. Finally, we show that A1s are highly present in human neurodegenerative diseases including Alzheimer’s, Huntington’s, Parkinson’s, ALS, and Multiple Sclerosis. Taken together these findings explain why CNS neurons die after axotomy, strongly suggest that A1s help to drive death of neurons and oligodendrocytes in neurodegenerative disorders, and point the way forward for developing new treatments of these diseases. PMID:28099414
Banerjee, Anirban; Kim, Brandon J.; Carmona, Ellese M.; Cutting, Andrew S.; Gurney, Michael A.; Carlos, Chris; Feuer, Ralph; Prasadarao, Nemani V.; Doran, Kelly S.
2011-01-01
Group B Streptococcus (GBS) is the leading cause of meningitis in newborn infants. Bacterial cell surface appendages, known as pili, have been recently described in streptococcal pathogens, including GBS. The pilus tip adhesin, PilA, contributes to GBS adherence to blood-brain barrier (BBB) endothelium; however, the host receptor and the contribution of PilA in central nervous system (CNS) disease pathogenesis are unknown. Here we show that PilA binds collagen, which promotes GBS interaction with the α2β1 integrin resulting in activation of host chemokine expression and neutrophil recruitment during infection. Mice infected with the PilA-deficient mutant exhibit delayed mortality, a decrease in neutrophil infiltration and bacterial CNS dissemination. We find that PilA-mediated virulence is dependent on neutrophil influx as neutrophil depletion results in a decrease in BBB permeability and GBS–BBB penetration. Our results suggest that the bacterial pilus, specifically the PilA adhesin, has a dual role in immune activation and bacterial entry into the CNS. PMID:21897373
The role of astrocytes in multiple sclerosis pathogenesis.
Guerrero-García, J J
2017-09-25
Multiple sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system (CNS), in which astrocytes play an important role as CNS immune cells. However, the activity of astrocytes as antigen-presenting cells (APC) continues to be subject to debate. This review analyses the existing evidence on the participation of astrocytes in CNS inflammation in MS and on several mechanisms that modify astrocyte activity in the disease. Astrocytes play a crucial role in the pathogenesis of MS because they express toll-like receptors (TLR) and major histocompatibility complex (MHC) classI andII. In addition, astrocytes participate in regulating the blood-brain barrier (BBB) and in modulating T cell activity through the production of cytokines. Future studies should focus on the role of astrocytes in order to find new therapeutic targets for the treatment of MS. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Timmermans, Silke; Bogie, Jeroen F J; Vanmierlo, Tim; Lütjohann, Dieter; Stinissen, Piet; Hellings, Niels; Hendriks, Jerome J A
2014-03-01
Epidemiological studies suggest a positive correlation between the incidence and severity of multiple sclerosis (MS) and the intake of fatty acids. It remains to be clarified whether high fat diet (HFD) indeed can exacerbate the disease pathology associated with MS and what the underlying mechanisms are. In this study, we determined the influence of HFD on the severity and pathology of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Mice were fed either normal diet (ND) or HFD and subsequently induced with EAE. Immunohistochemical staining and real-time PCR were used to determine immune cell infiltration and inflammatory mediators in the central nervous system (CNS). Our data show that HFD increases immune cell infiltration and inflammatory mediator production in the CNS and thereby aggravates EAE. Moreover, our data demonstrate that activation of the renin angiotensin system (RAS) is associated with the HFD-mediated effects on EAE severity. These results show that HFD exacerbates an autoreactive immune response within the CNS. This indicates that diets containing excess fat have a significant influence on neuroinflammation in EAE, which may have important implications for the treatment and prevention of neuroinflammatory disorders.
Pallesen, Jakob S; Tran, Kim T; Bach, Anders
2018-05-29
The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) has a protective effect against oxidative stress and plays a major role in inflammation and central nervous system (CNS) diseases. Inhibition of the protein-protein interaction (PPI) between Nrf2 and its repressor protein, Kelch-like ECH-associated protein 1 (Keap1), leads to translocation of Nrf2 from the cytosol to the nucleus and expression of detoxifying antioxidant enzymes. To date, several non-covalent small-molecule Keap1-Nrf2 inhibitors have been identified; however, many of them contain carboxylic acids and are rather large in size, which likely prevents or decreases CNS permeability. This Perspective describes current small-molecule Keap1-Nrf2 inhibitors with experimental evidence for the ability to inhibit the Keap1-Nrf2 interaction by binding to Keap1 in a non-covalent manner. Binding data, biostructural studies, and biological activity are summarized for the inhibitors, and their potential as CNS tool compounds is discussed by analyzing physicochemical properties, including CNS multiparameter optimization (MPO) scoring algorithms. Finally, several strategies for identifying CNS-targeting Keap1 inhibitors are described.
Esch, Tobias; Guarna, Massimo; Bianchi, Enrica; Zhu, Wei; Stefano, George B
2004-06-01
Currently, complementary and alternative medicine (CAM) are experiencing growing popularity, especially in former industrialized countries. However, most of the underlying physiological and molecular mechanisms as well as participating biological structures are still speculative. Specific and non-specific effects may play a role in CAM. Moreover, trust, belief, and expectation may be of importance, pointing towards common central nervous system (CNS) pathways involved in CAM. Four CAM approaches (acupuncture, meditation, music therapy, and massage therapy) were examined with regard to the CNS activity pattern involved. CNS commonalities between different approaches were investigated. Frontal/prefrontal and limbic brain structures play a role in CAM. Particularly, left-anterior regions of the brain and reward or motivation circuitry constituents are involved, indicating positive affect and emotion-related memory processing--accompanied by endocrinologic and autonomic functions--as crucial components of CAM effects. Thus, trust and belief in a therapist or positive therapy expectations seem to be important. However, besides common non-specific or subjective effects, specific (objective) physiological components also exist. Non-specific CNS commonalities are involved in various CAM therapies. Different therapeutic approaches physiologically overlap in the brain. However, molecular correspondents of the detected CNS analogies still have to be specified. In particular, fast acting autoregulatory signaling molecules presumably play a role. These may also be involved in the placebo response.
Majidi, Shahram; Leon Guerrero, Christopher R; Gandhy, Shreya; Burger, Kathleen M; Sigounas, Dimitri
2017-07-01
Central nervous system (CNS) involvement occurs in up to 50% of patients with systemic lupus erythematosus (SLE). Cerebral aneurysm formation is a rare complication of CNS lupus. The majority of these patients present with subarachnoid hemorrhage. We report a patient with an active SLE flare who presented with a recurrent ischemic stroke and was found to have numerous unruptured fusiform and saccular aneurysms in multiple vascular territories. He was treated with high-dose steroid and rituximab along with aspirin and blood pressure control for stroke prevention. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Imaging in Central Nervous System Drug Discovery.
Gunn, Roger N; Rabiner, Eugenii A
2017-01-01
The discovery and development of central nervous system (CNS) drugs is an extremely challenging process requiring large resources, timelines, and associated costs. The high risk of failure leads to high levels of risk. Over the past couple of decades PET imaging has become a central component of the CNS drug-development process, enabling decision-making in phase I studies, where early discharge of risk provides increased confidence to progress a candidate to more costly later phase testing at the right dose level or alternatively to kill a compound through failure to meet key criteria. The so called "3 pillars" of drug survival, namely; tissue exposure, target engagement, and pharmacologic activity, are particularly well suited for evaluation by PET imaging. This review introduces the process of CNS drug development before considering how PET imaging of the "3 pillars" has advanced to provide valuable tools for decision-making on the critical path of CNS drug development. Finally, we review the advances in PET science of biomarker development and analysis that enable sophisticated drug-development studies in man. Copyright © 2017 Elsevier Inc. All rights reserved.
Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease.
Argaw, Azeb Tadesse; Asp, Linnea; Zhang, Jingya; Navrazhina, Kristina; Pham, Trinh; Mariani, John N; Mahase, Sean; Dutta, Dipankar J; Seto, Jeremy; Kramer, Elisabeth G; Ferrara, Napoleone; Sofroniew, Michael V; John, Gareth R
2012-07-01
In inflammatory CNS conditions such as multiple sclerosis (MS), current options to treat clinical relapse are limited, and more selective agents are needed. Disruption of the blood-brain barrier (BBB) is an early feature of lesion formation that correlates with clinical exacerbation, leading to edema, excitotoxicity, and entry of serum proteins and inflammatory cells. Here, we identify astrocytic expression of VEGF-A as a key driver of BBB permeability in mice. Inactivation of astrocytic Vegfa expression reduced BBB breakdown, decreased lymphocyte infiltration and neuropathology in inflammatory and demyelinating lesions, and reduced paralysis in a mouse model of MS. Knockdown studies in CNS endothelium indicated activation of the downstream effector eNOS as the principal mechanism underlying the effects of VEGF-A on the BBB. Systemic administration of the selective eNOS inhibitor cavtratin in mice abrogated VEGF-A-induced BBB disruption and pathology and protected against neurologic deficit in the MS model system. Collectively, these data identify blockade of VEGF-A signaling as a protective strategy to treat inflammatory CNS disease.
Molecular mechanism of central nervous system repair by the Drosophila NG2 homologue kon-tiki.
Losada-Perez, Maria; Harrison, Neale; Hidalgo, Alicia
2016-08-29
Neuron glia antigen 2 (NG2)-positive glia are repair cells that proliferate upon central nervous system (CNS) damage, promoting functional recovery. However, repair is limited because of the failure of the newly produced glial cells to differentiate. It is a key goal to discover how to regulate NG2 to enable glial proliferation and differentiation conducive to repair. Drosophila has an NG2 homologue called kon-tiki (kon), of unknown CNS function. We show that kon promotes repair and identify the underlying mechanism. Crush injury up-regulates kon expression downstream of Notch. Kon in turn induces glial proliferation and initiates glial differentiation by activating glial genes and prospero (pros). Two negative feedback loops with Notch and Pros allow Kon to drive the homeostatic regulation required for repair. By modulating Kon levels in glia, we could prevent or promote CNS repair. Thus, the functional links between Kon, Notch, and Pros are essential for, and can drive, repair. Analogous mechanisms could promote CNS repair in mammals. © 2016 Losada-Perez et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayadev, Jyoti S.; Department of Radiation Oncology University of California-Davis Medical Center, Davis, CA; Douglas, James G., E-mail: drjay@u.washington.ed
Purpose: Neither the prognostic importance nor the appropriate management of central nervous system (CNS) involvement is known for patients with acute myeloid leukemia (AML) undergoing hematopoietic cell transplantation (HCT). We examined the impact of a CNS irradiation boost to standard intrathecal chemotherapy (ITC). Methods and Materials: From 1995 to 2005, a total of 648 adult AML patients received a myeloablative HCT: 577 patients were CNS negative (CNS-), and 71 were CNS positive (CNS+). Of the 71 CNS+ patients, 52 received intrathecal chemotherapy alone (CNS+ITC), and 19 received ITC plus an irradiation boost (CNS+RT). Results: The CNS-, CNS+ITC, and CNS+RT patientsmore » had 1- and 5-year relapse-free survivals (RFS) of 43% and 35%, 15% and 6%, and 37% and 32%, respectively. CNS+ITC patients had a statistically significant worse RFS compared with CNS- patients (hazard ratio [HR], 2.65; 95% confidence interval [CI], 2.0-3.6; p < 0.0001). CNS+RT patients had improved relapse free survival over that of CNS+ITC patients (HR, 0.45; 95% CI, 0.2-0.8; p = 0.01). The 1- and 5-year overall survivals (OS) of patients with CNS-, CNS+ITC, and CNS+RT, were 50% and 38%, 21% and 6%, and 53% and 42%, respectively. The survival of CNS+RT were significantly better than CNS+ITC patients (p = 0.004). After adjusting for known risk factors, CNS+RT patients had a trend toward lower relapse rates and reduced nonrelapse mortality. Conclusions: CNS+ AML is associated with a poor prognosis. The role of a cranial irradiation boost to intrathecal chemotherapy appears to mitigate the risk of CNS disease, and needs to be further investigated to define optimal treatment strategies.« less
Wang, Qiuying; Cui, Xufei; Li, Yibing; Ye, Fang
2017-01-01
To improve the ability of autonomous navigation for Unmanned Surface Vehicles (USVs), multi-sensor integrated navigation based on Inertial Navigation System (INS), Celestial Navigation System (CNS) and Doppler Velocity Log (DVL) is proposed. The CNS position and the DVL velocity are introduced as the reference information to correct the INS divergence error. The autonomy of the integrated system based on INS/CNS/DVL is much better compared with the integration based on INS/GNSS alone. However, the accuracy of DVL velocity and CNS position are decreased by the measurement noise of DVL and bad weather, respectively. Hence, the INS divergence error cannot be estimated and corrected by the reference information. To resolve the problem, the Adaptive Information Sharing Factor Federated Filter (AISFF) is introduced to fuse data. The information sharing factor of the Federated Filter is adaptively adjusted to maintaining multiple component solutions usable as back-ups, which can improve the reliability of overall system. The effectiveness of this approach is demonstrated by simulation and experiment, the results show that for the INS/CNS/DVL integrated system, when the DVL velocity accuracy is decreased and the CNS cannot work under bad weather conditions, the INS/CNS/DVL integrated system can operate stably based on the AISFF method. PMID:28165369
Wang, Qiuying; Cui, Xufei; Li, Yibing; Ye, Fang
2017-02-03
To improve the ability of autonomous navigation for Unmanned Surface Vehicles (USVs), multi-sensor integrated navigation based on Inertial Navigation System (INS), Celestial Navigation System (CNS) and Doppler Velocity Log (DVL) is proposed. The CNS position and the DVL velocity are introduced as the reference information to correct the INS divergence error. The autonomy of the integrated system based on INS/CNS/DVL is much better compared with the integration based on INS/GNSS alone. However, the accuracy of DVL velocity and CNS position are decreased by the measurement noise of DVL and bad weather, respectively. Hence, the INS divergence error cannot be estimated and corrected by the reference information. To resolve the problem, the Adaptive Information Sharing Factor Federated Filter (AISFF) is introduced to fuse data. The information sharing factor of the Federated Filter is adaptively adjusted to maintaining multiple component solutions usable as back-ups, which can improve the reliability of overall system. The effectiveness of this approach is demonstrated by simulation and experiment, the results show that for the INS/CNS/DVL integrated system, when the DVL velocity accuracy is decreased and the CNS cannot work under bad weather conditions, the INS/CNS/DVL integrated system can operate stably based on the AISFF method.
Neuroscience and Psychoanalysis
2007-01-01
There exists an enormous amount of biological and scientific data in the field of neuroscience, which are daunting and laborious to those who are not directly engaged in these specialized areas. The intricacies and complexities of the role of the central nervous system (CNS) in psychiatric disorders and human behavior are, of course, acknowledged. In this article, observations and speculations of some prominent workers in the field of neuroscience are described with focus on their conclusions, rather than specific findings as they pertain to the mind-body relationship. The mind-brain/body issue has not been resolved insofar as clarifying the connections between CNS activity and thinking is concerned. Currently, it is useful to accept the concept of parallelism between CNS activity and thought. An argument will be made for the inclusion of the psychoanalytic method as an essential component of the scientific effort to elucidate consciousness and thinking. PMID:20711329
CENTRAL NERVOUS SYSTEM INFECTION DURING IMMUNOSUPPRESSION
Zunt, Joseph R.
2009-01-01
The central nervous system (CNS) is susceptible to bacterial, viral, and fungal infections. Suppression of the immune system by human immunodeficiency virus (HIV) infection or immunosuppressive therapy after transplantation increases susceptibility to CNS infection and modifies the presentation, diagnosis, and recommended treatment of various CNS infections. This chapter discusses how suppression of the host immune status modifies the presentation, diagnosis, and treatment of selected CNS infections. PMID:11754299
A Review on Central Nervous System Effects of Gastrodin
Liu, Yuan; Gao, Jialiang; Peng, Min; Meng, Hongyan; Ma, Hongbo; Cai, Pingping; Xu, Yuan; Zhao, Qiong; Si, Guomin
2018-01-01
Rhizoma Gastrodiae (also known as Tian ma), the dried rhizome of Gastrodia elata Blume, is a famous Chinese herb that has been traditionally used for the treatment of headache, dizziness, spasm, epilepsy, stoke, amnesia and other disorders for centuries. Gastrodin, a phenolic glycoside, is the main bioactive constituent of Rhizoma Gastrodiae. Since identified in 1978, gastrodin has been extensively investigated on its pharmacological properties. In this article, we reviewed the central nervous system (CNS) effects of gastrodin in preclinical models of CNS disorders including epilepsy, Alzheimer's disease, Parkinson's disease, affective disorders, cerebral ischemia/reperfusion, cognitive impairment as well as the underlying mechanisms involved and, where possible, clinical data that support the pharmacological activities. The sources and pharmacokinetics of gastrodin were also reviewed here. As a result, gastrodin possesses a broad range of beneficial effects on the above-mentioned CNS diseases, and the mechanisms of actions include modulating neurotransmitters, antioxidative, anti-inflammatory, suppressing microglial activation, regulating mitochondrial cascades, up-regulating neurotrophins, etc. However, more detailed clinical trials are still in need for positioning it in the treatment of neurological disorders. PMID:29456504
The meninges: new therapeutic targets for multiple sclerosis.
Russi, Abigail E; Brown, Melissa A
2015-02-01
The central nervous system (CNS) largely comprises nonregenerating cells, including neurons and myelin-producing oligodendrocytes, which are particularly vulnerable to immune cell-mediated damage. To protect the CNS, mechanisms exist that normally restrict the transit of peripheral immune cells into the brain and spinal cord, conferring an "immune-specialized" status. Thus, there has been a long-standing debate as to how these restrictions are overcome in several inflammatory diseases of the CNS, including multiple sclerosis (MS). In this review, we highlight the role of the meninges, tissues that surround and protect the CNS and enclose the cerebral spinal fluid, in promoting chronic inflammation that leads to neuronal damage. Although the meninges have traditionally been considered structures that provide physical protection for the brain and spinal cord, new data have established these tissues as sites of active immunity. It has been hypothesized that the meninges are important players in normal immunosurveillance of the CNS but also serve as initial sites of anti-myelin immune responses. The resulting robust meningeal inflammation elicits loss of localized blood-brain barrier (BBB) integrity and facilitates a large-scale influx of immune cells into the CNS parenchyma. We propose that targeting the cells and molecules mediating these inflammatory responses within the meninges offers promising therapies for MS that are free from the constraints imposed by the BBB. Importantly, such therapies may avoid the systemic immunosuppression often associated with the existing treatments. Copyright © 2015 Elsevier Inc. All rights reserved.
Eynan, Mirit; Biram, Adi; Mullokandov, Michael; Kronfeld-Schor, Noga; Paz-Cohen, Rotem; Menajem, Dvir; Arieli, Yehuda
2017-01-01
Performance and safety are impaired in employees engaged in shift work. Combat divers who use closed-circuit oxygen diving apparatus undergo part of their training during the night hours. The greatest risk involved in diving with such apparatus is the development of central nervous system oxygen toxicity (CNS-OT). We investigated whether the switch from day-to-night activity may be a risk factor for the development of CNS-OT using a diurnal animal model, the fat sand rat (Psammomys obesus). Animals were kept on a 12:12 light-dark schedule (6 a.m. to 6 p.m. at 500 lx). The study included two groups: (1) Control group: animals were kept awake and active during the day, between 09:00 and 15:00. (2) Experimental group: animals were kept awake and active during the night, between 21:00 and 03:00, when they were exposed to dim light in order to simulate the conditions prevalent during combat diver training. This continued for a period of 3 weeks, 5 days a week. On completion of this phase, 6-sulphatoxymelatonin (6-SMT) levels in urine were determined over a period of 24 h. Animals were then exposed to hyperbaric oxygen (HBO). To investigate the effect of acute melatonin administration, melatonin (50 mg/kg) or its vehicle was administered to the animals in both groups 20 min prior to HBO exposure. After the exposure, the activity of superoxide dismutase, catalase and glutathione peroxidase was measured, as were the levels of neuronal nitric oxide synthase (nNOS) and overall nitrotyrosylation in the cortex and hippocampus. Latency to CNS-OT was significantly reduced after the transition from day-to-night activity. This was associated with alterations in the level of melatonin metabolites secreted in the urine. Acute melatonin administration had no effect on latency to CNS-OT in either of the groups. Nevertheless, the activity of superoxide dismutase and catalase, as well as nitrotyrosine and nNOS levels, were altered in the hippocampus following melatonin administration. On the basis of these results, we suggest that a switch from diurnal to nocturnal activity may represent an additional risk factor for the development of CNS-OT. Utilizing a diurnal animal model may contribute to our understanding of the heightened risk of developing CNS-OT when diving with closed-circuit oxygen apparatus at night.
Caspase-like activity is essential for long-term synaptic plasticity in the terrestrial snail Helix.
Bravarenko, N I; Onufriev, M V; Stepanichev, M Yu; Ierusalimsky, V N; Balaban, P M; Gulyaeva, N V
2006-01-01
Although caspase activity in the nervous system of mollusks has not been described before, we suggested that these cysteine proteases might be involved in the phenomena of neuroplasticity in mollusks. We directly measured caspase-3 (DEVDase) activity in the Helix lucorum central nervous system (CNS) using a fluorometrical approach and showed that the caspase-3-like immunoreactivity is present in the central neurons of Helix. Western blots revealed the presence of caspase-3-immunoreactive proteins with a molecular mass of 29 kDa. Staurosporin application, routinely used to induce apoptosis in mammalian neurons through the activating cleavage of caspase-3, did not result in the appearance of a smaller subunit corresponding to the active caspase in the snail. However, it did increase the enzyme activity in the snail CNS. This suggests differences in the regulation of caspase-3 activity in mammals and snails. In the snail CNS, the caspase homolog seems to possess an active center without activating cleavage typical for mammals. In electrophysiological experiments with identified snail neurons, selective blockade of the caspase-3 with the irreversible and cell-permeable inhibitor of caspase-3 N-benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp-(OMe)-fluoro-methylketone prevented development of the long-term stage of synaptic input sensitization, suggesting that caspase is necessary for normal synaptic plasticity in snails. The results of our study give the first direct evidence that the caspase-3-like activity is essential for long-term plasticity in the invertebrate neurons. This activity is presumably involved in removing inhibitory constraints on the storage of long-term memory.
NASA Astrophysics Data System (ADS)
Li, Jinxuan; Chen, Jing-Yi; Deng, Ya-Lin; Zhou, Qian; Wu, Yinuo; Wu, Deyan; Luo, Hai-Bin
2018-05-01
Phosphodiesterase 10 is a promising target for the treatment of a series of central nervous system (CNS) diseases. Imbalance between oxidative stress and antioxidant defense systems as a universal condition in neurodegenerative disorders is widely studied as a potential therapy for CNS diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). To discover multifunctional pharmaceuticals as a treatment for neurodegenerative diseases, a series of quinazoline-based derivatives with PDE10 inhibitory activities and antioxidant activities were designed and synthesized. Nine out of thirteen designed compounds showed good PDE10 inhibition at the concentration of 1.0 μM. Among these compounds, eight exhibited moderate to excellent antioxidant activity with ORAC (oxygen radical absorbance capacity) value above 1.0. Molecular docking was performed for better understanding of the binding patterns of these compounds with PDE10. Compound 11e, which showed remarkable inhibitory activity against PDE10 and antioxidant activity may serve as a lead for the further modification.
Quenum Zangbede, Fredice O; Chauhan, Arun; Sharma, Jyotika; Mishra, Bibhuti B
2018-06-26
Macrophages/microglia with M2- activation phenotype are thought to play an important anti-inflammatory and tissue reparative functions in the brain, yet the molecular basis of their functions in the central nervous system (CNS) remain to be clearly defined. In a preclinical model of neurocysticercosis using brain infection with a parasite Mesocestoides corti , we previously reported the presence of large numbers of M2 cells in the CNS. In this study using female mice, we report that M2 macrophages in the parasite-infected brain display abundant galectin-3 expression. Disease severity was increased in Galectin-3 -/- mice correlating with increased neurological defects, augmented cell death and, importantly, massive accumulation of neutrophils and M2 macrophages in the CNS of these mice. Because neutrophil clearance by efferocytosis is an important function of M2 macrophages, we investigated a possible role of galectin-3 in this process. Indeed, galectin-3 deficient M2 macrophages exhibited a defect in efferocytic clearance of neutrophils in-vitro. Furthermore, adoptive transfer of M2 macrophages from Galectin-3 sufficient WT mice reduced neutrophilia in the CNS and ameliorated disease severity in parasite-infected Galectin-3 -/- mice. Together, these results demonstrate for the first time a novel role of galectin-3 in M2 macrophage function in neutrophil turnover and resolution of inflammatory pathology in the CNS. This likely will have implications in neurocysticercosis and neuro-inflammatory diseases. SIGNIFICANCE STATEMENT Macrophages/microglia with M1-activation phenotype are thought to promote CNS pathology, whereas M2-anti-inflammatory phenotype promote CNS repair. However, the mechanisms regulating M2 cell protective functions in the CNS microenvironment are undefined. Quenum Zangbede et. al., report that helminth infection of the brain induces an increased expression of galectin-3 in M2 macrophages accumulated in the CNS. Using multiple experimental models in vivo and in vitro , they show that galectin-3 in M2 macrophages functions to clear neutrophils accumulated in the CNS. Importantly, galectin-3 in M2 macrophages plays a central role in the containment of neuropathology and disease severity. These results provide a direct mechanistic evidence of the protective function of M2- macrophages in the CNS. Copyright © 2018 the authors.
Weed, Michael R; Hienz, Robert D; Brady, Joseph V; Adams, Robert J; Mankowski, Joseph L; Clements, Janice E; Zink, M Christine
2003-08-01
Despite the high incidence of cognitive and motor impairment in acquired immunodeficiency syndrome (AIDS) patients, the mechanisms of AIDS-related central nervous system (CNS) pathology are not completely understood. Infection with simian immunodeficiency virus (SIV) in macaques provides an excellent model of AIDS, including human immunodeficiency virus (HIV)-induced CNS pathology and cognitive/behavioral impairment. Co-inoculation with two SIV strains, SIV/17E-Fr and SIV/DeltaB670, accelerates SIV CNS disease, producing SIV encephalitis in over 90% of pig-tailed macaques within 3 months. In the present study, this SIV model was employed to identify cellular and viral correlates of behavioral impairment following SIV infection. Measures of psychomotor speed (simple reaction time), fine motor control (bimanual motor task), and general motor activity (home cage movement) were all adversely affected by SIV disease. Prior to euthanasia, performance was significantly impaired in both a simple reaction time task in 6 of 12 monkeys and a bimanual motor task in 5 of 6 monkeys. All monkeys evaluated (11 of 11) showed significant reductions in spontaneous motor activity. Significant correlations were found between impaired performance on the bimanual motor test and axonal damage (accumulation of beta-amyloid precursor protein in the corpus callosum) as well as increased microglial activation and macrophage infiltration (levels of CD68 and Ham56 immunostaining). These results suggest that axonal damage is related to the behavioral impairment induced by infection with SIV. The axonal damage may result from neuroimmune responses, including microglial and macrophage activation. Therefore, axonal damage may be a morphologic manifestation of neuronal dysfunction that underlies development of behavioral impairment in HIV/SIV CNS infection.
Fu, Haiyan; DiRosario, Julianne; Kang, Lu; Muenzer, Joseph; McCarty, Douglas M
2010-07-01
Finding efficient central nervous system (CNS) delivery approaches has been the major challenge facing therapeutic development for treating diseases with global neurological manifestation, such as mucopolysaccharidosis (MPS) IIIB, a lysosomal storage disease, caused by autosomal recessive defect of alpha-N-acetylglucosaminidase (NaGlu). Previously, we developed an approach, intracisternal (i.c.) injection, to deliver recombinant adeno-associated viral (rAAV) vector to the CNS of mice, leading to a widespread periventricular distribution of transduction. In the present study, we delivered rAAV2 vector expressing human NaGlu into the CNS of MPS IIIB mice by an i.c. injection approach, to test its therapeutic efficacy and feasibility for treating the neurological manifestation of the disease. We demonstrated significant functional neurological benefits of a single i.c. vector infusion in adult MPS IIIB mice. The treatment slowed the disease progression by mediating widespread recombinant NaGlu expression in the CNS, resulting in the reduction of brain lysosomal storage pathology, significantly improved cognitive function and prolonged survival. However, persisting motor function deficits suggested that pathology in areas outside the CNS contributes to the MPS IIIB behavioral phenotype. The therapeutic benefit of i.c. rAAV2 delivery was dose-dependent and could be attribute solely to the CNS transduction because the procedure did not lead to detectable transduction in somatic tissues. A single IC rAAV2 gene delivery is functionally beneficial for treating the CNS disease of MPS IIIB in mice. It is immediately clinically translatable, with the potential of improving the quality of life for patients with MPS IIIB.
Methamphetamine compromises gap junctional communication in astrocytes and neurons.
Castellano, Paul; Nwagbo, Chisom; Martinez, Luis R; Eugenin, Eliseo A
2016-05-01
Methamphetamine (meth) is a central nervous system (CNS) stimulant that results in psychological and physical dependency. The long-term effects of meth within the CNS include neuronal plasticity changes, blood-brain barrier compromise, inflammation, electrical dysfunction, neuronal/glial toxicity, and an increased risk to infectious diseases including HIV. Most of the reported meth effects in the CNS are related to dysregulation of chemical synapses by altering the release and uptake of neurotransmitters, especially dopamine, norepinephrine, and epinephrine. However, little is known about the effects of meth on connexin (Cx) containing channels, such as gap junctions (GJ) and hemichannels (HC). We examined the effects of meth on Cx expression, function, and its role in NeuroAIDS. We found that meth altered Cx expression and localization, decreased GJ communication between neurons and astrocytes, and induced the opening of Cx43/Cx36 HC. Furthermore, we found that these changes in GJ and HC induced by meth treatment were mediated by activation of dopamine receptors, suggesting that dysregulation of dopamine signaling induced by meth is essential for GJ and HC compromise. Meth-induced changes in GJ and HC contributed to amplified CNS toxicity by dysregulating glutamate metabolism and increasing the susceptibility of neurons and astrocytes to bystander apoptosis induced by HIV. Together, our results indicate that connexin containing channels, GJ and HC, are essential in the pathogenesis of meth and increase the sensitivity of the CNS to HIV CNS disease. Methamphetamine (meth) is an extremely addictive central nervous system stimulant. Meth reduced gap junctional (GJ) communication by inducing internalization of connexin-43 (Cx43) in astrocytes and reducing expression of Cx36 in neurons by a mechanism involving activation of dopamine receptors (see cartoon). Meth-induced changes in Cx containing channels increased extracellular levels of glutamate and resulted in higher sensitivity of neurons and astrocytes to apoptosis in response to HIV infection. © 2016 International Society for Neurochemistry.
Microglia in CNS development: Shaping the brain for the future.
Mosser, Coralie-Anne; Baptista, Sofia; Arnoux, Isabelle; Audinat, Etienne
Microglial cells are the resident macrophages of the central nervous system (CNS) and are mainly known for their roles in neuropathologies. However, major recent developments have revealed that these immune cells actively interact with neurons in physiological conditions and can modulate the fate and functions of synapses. Originating from myeloid precursors born in the yolk sac, microglial cells invade the CNS during early embryonic development. As a consequence they can potentially influence neuronal proliferation, migration and differentiation as well as the formation and maturation of neuronal networks, thereby contributing to the entire shaping of the CNS. We review here recent evidence indicating that microglial cells are indeed involved in crucial steps of the CNS development, including neuronal survival and apoptosis, axonal growth, migration of neurons, pruning of supernumerary synapses and functional maturation of developing synapses. We also discuss current hypotheses proposing that diverting microglial cells of their physiological functions, by promoting the expression of an immune phenotype during development, may be central to neurodevelopmental disorders such as autism, schizophrenia and epilepsy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ten Kulve, Jennifer S; Veltman, Dick J; Gerdes, Victor E A; van Bloemendaal, Liselotte; Barkhof, Frederik; Deacon, Carolyn F; Holst, Jens J; Drent, Madeleine L; Diamant, Michaela; IJzerman, Richard G
2017-11-01
It has been suggested that weight reduction and improvements in satiety after Roux-en-Y gastric bypass (RYGB) are partly mediated via postoperative neuroendocrine changes. Glucagon-like peptide-1 (GLP-1) is a gut hormone secreted after food ingestion and is associated with appetite and weight reduction, mediated via effects on the central nervous system (CNS). Secretion of GLP-1 is greatly enhanced after RYGB. We hypothesized that postoperative elevated GLP-1 levels contribute to the improved satiety regulation after RYGB via effects on the CNS. Effects of the GLP-1 receptor antagonist exendin 9-39 (Ex9-39) and placebo were assessed in 10 women before and after RYGB. We used functional MRI to investigate CNS activation in response to visual food cues (pictures) and gustatory food cues (consumption of chocolate milk), comparing results with Ex9-39 versus placebo before and after RYGB. After RYGB, CNS activation was reduced in the rolandic operculum and caudate nucleus in response to viewing food pictures ( P = 0.03) and in the insula in response to consumption of palatable food ( P = 0.003). GLP-1 levels were significantly elevated postoperatively ( P < 0.001). After RYGB, GLP-1 receptor blockade resulted in a larger increase in activation in the caudate nucleus in response to food pictures ( P = 0.02) and in the insula in response to palatable food consumption ( P = 0.002). We conclude that the effects of RYGB on CNS activation in response to visual and gustatory food cues may be mediated by central effects of GLP-1. Our findings provide further insights into the mechanisms underlying the weight-lowering effects of RYGB. © 2017 by the American Diabetes Association.
Cheng, Ying; Zhang, Qian; Meng, Qingshu; Xia, Tingting; Huang, Zhiying; Wang, Chunxia; Liu, Bin; Chen, Shanghai; Xiao, Fei; Du, Ying; Guo, Feifan
2011-09-01
We previously showed that leucine deprivation decreases abdominal fat mass largely by increasing energy expenditure, as demonstrated by increased lipolysis in white adipose tissue (WAT) and uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT). The goal of the present study was to investigate the possible involvement of central nervous system (CNS) in this regulation and elucidate underlying molecular mechanisms. For this purpose, levels of genes and proteins related to lipolysis in WAT and UCP1 expression in BAT were analyzed in wild-type mice after intracerebroventricular administration of leucine or corticotrophin-releasing hormone antibodies, or in mice deleted for three β-adrenergic receptors, after being maintained on a leucine-deficient diet for 7 d. Here, we show that intracerebroventricular administration of leucine significantly attenuates abdominal fat loss and blocks activation of hormone sensitive lipase in WAT and induction of UCP1 in BAT in leucine-deprived mice. Furthermore, we provide evidence that leucine deprivation stimulates fat loss by increasing expression of corticotrophin-releasing hormone in the hypothalamus via activation of stimulatory G protein/cAMP/protein kinase A/cAMP response element-binding protein pathway. Finally, we show that the effect of leucine deprivation on fat loss is mediated by activation of the sympathetic nervous system. These results suggest that CNS plays an important role in regulating fat loss under leucine deprivation and thereby provide novel and important insights concerning the importance of CNS leucine in the regulation of energy homeostasis.
Spudich, Serena; Gisslen, Magnus; Hagberg, Lars; Lee, Evelyn; Liegler, Teri; Brew, Bruce; Fuchs, Dietmar; Tambussi, Giuseppe; Cinque, Paola; Hecht, Frederick M; Price, Richard W
2011-09-01
Central nervous system (CNS) human immunodeficiency virus (HIV) infection and immune activation lead to brain injury and neurological impairment. Although HIV enters the nervous system soon after transmission, the magnitude of infection and immunoactivation within the CNS during primary HIV infection (PHI) has not been characterized. This cross-sectional study analyzed cerebrospinal fluid (CSF) and blood from 96 participants with PHI and compared them with samples from neuroasymptomatic participants with chronic infection and ≥ 200 or < 200 blood CD4 T cells/μL, and with samples from HIV-seronegative participants with respect to CSF and plasma HIV RNA, CSF to serum albumin ratio, and CSF white blood cell counts (WBC), neopterin levels, and concentrations of chemokines CXCL10 and CCL2. The PHI participants (median 77 days post transmission) had CSF HIV RNA, WBC, neopterin, and CXCL10 concentrations similar to the chronic infection participants but uniquely high albumin ratios. 18 participants had ≤ 100 copies/mL CSF HIV RNA, which was associated with low CSF to plasma HIV ratios and levels of CSF inflammation lower than in other PHI participants but higher than in HIV-seronegative controls. Prominent CNS infection and immune activation is evident during the first months after HIV transmission, though a proportion of PHI patients demonstrate relatively reduced CSF HIV RNA and inflammation during this early period.
Shigematsu, Akio; Kako, Shinichi; Mitsuhashi, Kenjiro; Iwato, Koji; Uchida, Naoyuki; Kanda, Yoshinobu; Fukuda, Takahiro; Sawa, Masashi; Senoo, Yasushi; Ogawa, Hiroyasu; Miyamura, Koichi; Takada, Satoru; Nagamura-Inoue, Tokiko; Morishima, Yasuo; Ichinohe, Tatsuo; Atsuta, Yoshiko; Mizuta, Shuichi; Tanaka, Junji
2017-06-01
The prognosis for adult acute lymphoblastic leukemia (ALL) patients with central nervous system (CNS) involvement (CNS+) who received allogeneic hematopoietic stem cell transplantation (allo-SCT) remains unclear. We retrospectively compared the outcomes of allo-SCT for patients with CNS involvement and for patients without CNS involvement (CNS-) using a database in Japan. The eligibility criteria for this study were as follows: diagnosis of ALL, aged more than 16 years, allo-SCT between 2005 and 2012, and first SCT. Data for 2582 patients including 136 CNS+ patients and 2446 CNS- patients were used for analyses. As compared with CNS- patients, CNS+ patients were younger, had worse disease status at SCT and had poorer performance status (PS) at SCT (P < 0.01). Incidence of relapse was higher in CNS+ patients (P = 0.02), and incidence of CNS relapse was also higher (P < 0.01). The probability of 3-year overall survival (OS) was better in CNS- patients (P < 0.01) by univariate analysis. However, in patients who received SCT in CR, there was no difference in the probability of OS between CNS+ and CNS- patients (P = 0.38) and CNS involvement did not have an unfavorable effect on OS by multivariate analysis. CNS+ patients who achieved CR showed OS comparable to that of CNS- patients.
Allen, Joshua L; Liu, Xiufang; Pelkowski, Sean; Palmer, Brian; Conrad, Katherine; Oberdörster, Günter; Weston, Douglas; Mayer-Pröschel, Margot; Cory-Slechta, Deborah A
2014-09-01
Air pollution has been associated with adverse neurological and behavioral health effects in children and adults. Recent studies link air pollutant exposure to adverse neurodevelopmental outcomes, including increased risk for autism, cognitive decline, ischemic stroke, schizophrenia, and depression. We sought to investigate the mechanism(s) by which exposure to ultrafine concentrated ambient particles (CAPs) adversely influences central nervous system (CNS) development. We exposed C57BL6/J mice to ultrafine (< 100 nm) CAPs using the Harvard University Concentrated Ambient Particle System or to filtered air on postnatal days (PNDs) 4-7 and 10-13, and the animals were euthanized either 24 hr or 40 days after cessation of exposure. Another group of males was exposed at PND270, and lateral ventricle area, glial activation, CNS cytokines, and monoamine and amino acid neurotransmitters were quantified. We observed ventriculomegaly (i.e., lateral ventricle dilation) preferentially in male mice exposed to CAPs, and it persisted through young adulthood. In addition, CAPs-exposed males generally showed decreases in developmentally important CNS cytokines, whereas in CAPs-exposed females, we observed a neuroinflammatory response as indicated by increases in CNS cytokines. We also saw changes in CNS neurotransmitters and glial activation across multiple brain regions in a sex-dependent manner and increased hippocampal glutamate in CAPs-exposed males. We observed brain region- and sex-dependent alterations in cytokines and neurotransmitters in both male and female CAPs-exposed mice. Lateral ventricle dilation (i.e., ventriculomegaly) was observed only in CAPs-exposed male mice. Ventriculomegaly is a neuropathology that has been associated with poor neurodevelopmental outcome, autism, and schizophrenia. Our findings suggest alteration of developmentally important neurochemicals and lateral ventricle dilation may be mechanistically related to observations linking ambient air pollutant exposure and adverse neurological/neurodevelopmental outcomes in humans.
Nishi, Erika E; Bergamaschi, Cássia T; Campos, Ruy R
2015-04-20
What is the topic of this review? This review describes the role of renal nerves as the key carrier of signals from the kidneys to the CNS and vice versa; the brain and kidneys communicate through this carrier to maintain homeostasis in the body. What advances does it highlight? Whether renal or autonomic dysfunction is the predominant contributor to systemic hypertension is still debated. In this review, we focus on the role of the renal nerves in a model of renovascular hypertension. The sympathetic nervous system influences the renal regulation of arterial pressure and body fluid composition. Anatomical and physiological evidence has shown that sympathetic nerves mediate changes in urinary sodium and water excretion by regulating the renal tubular water and sodium reabsorption throughout the nephron, changes in the renal blood flow and the glomerular filtration rate by regulating the constriction of renal vasculature, and changes in the activity of the renin-angiotensin system by regulating the renin release from juxtaglomerular cells. Additionally, renal sensory afferent fibres project to the autonomic central nuclei that regulate blood pressure. Hence, renal nerves play a key role in the crosstalk between the kidneys and the CNS to maintain homeostasis in the body. Therefore, the increased sympathetic nerve activity to the kidney and the renal afferent nerve activity to the CNS may contribute to the outcome of diseases, such as hypertension. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.
Qin, Weiping; Sun, Li; Cao, Jay; Peng, Yuanzhen; Collier, Lauren; Wu, Yong; Creasey, Graham; Li, Jianhua; Qin, Yiwen; Jarvis, Jonathan; Bauman, William A.; Zaidi, Mone; Cardozo, Christopher
2013-01-01
Muscle and bone work as a functional unit. Cellular and molecular mechanisms underlying effects of muscle activity on bone mass are largely unknown. Spinal cord injury (SCI) causes muscle paralysis and extensive sublesional bone loss and disrupts neural connections between the central nervous system (CNS) and bone. Muscle contraction elicited by electrical stimulation (ES) of nerves partially protects against SCI-related bone loss. Thus, application of ES after SCI provides an opportunity to study the effects of muscle activity on bone and roles of the CNS in this interaction, as well as the underlying mechanisms. Using a rat model of SCI, the effects on bone of ES-induced muscle contraction were characterized. The SCI-mediated increase in serum C-terminal telopeptide of type I collagen (CTX) was completely reversed by ES. In ex vivo bone marrow cell cultures, SCI increased the number of osteoclasts and their expression of mRNA for several osteoclast differentiation markers, whereas ES significantly reduced these changes; SCI decreased osteoblast numbers, but increased expression in these cells of receptor activator of NF-κB ligand (RANKL) mRNA, whereas ES increased expression of osteoprotegerin (OPG) and the OPG/RANKL ratio. A microarray analysis revealed that ES partially reversed SCI-induced alterations in expression of genes involved in signaling through Wnt, FSH, parathyroid hormone (PTH), oxytocin, and calcineurin/nuclear factor of activated T-cells (NFAT) pathways. ES mitigated SCI-mediated increases in mRNA levels for the Wnt inhibitors DKK1, sFRP2, and sclerostin in ex vivo cultured osteoblasts. Our results demonstrate an anti-bone-resorptive activity of muscle contraction by ES that develops rapidly and is independent of the CNS. The pathways involved, particularly Wnt signaling, suggest future strategies to minimize bone loss after immobilization. PMID:23530032
King, Matthew R.; Matzat, Leah H.; Dale, Ryan K.; Lim, Su Jun; Lei, Elissa P.
2014-01-01
ABSTRACT Chromatin insulators are DNA–protein complexes that are situated throughout the genome that are proposed to contribute to higher-order organization and demarcation into distinct transcriptional domains. Mounting evidence in different species implicates RNA and RNA-binding proteins as regulators of chromatin insulator activities. Here, we identify the Drosophila hnRNP M homolog Rumpelstiltskin (Rump) as an antagonist of gypsy chromatin insulator enhancer-blocking and barrier activities. Despite ubiquitous expression of Rump, decreasing Rump levels leads to improvement of barrier activity only in tissues outside of the central nervous system (CNS). Furthermore, rump mutants restore insulator body localization in an insulator mutant background only in non-CNS tissues. Rump associates physically with core gypsy insulator proteins, and chromatin immunoprecipitation and sequencing analysis of Rump demonstrates extensive colocalization with a subset of insulator sites across the genome. The genome-wide binding profile and tissue specificity of Rump contrast with that of Shep, a recently identified RNA-binding protein that antagonizes gypsy insulator activity primarily in the CNS. Our findings indicate parallel roles for RNA-binding proteins in mediating tissue-specific regulation of chromatin insulator activity. PMID:24706949
Planty, Camille; Mallett, Corey P; Yim, Kevin; Blanco, Jorge C G; Boukhvalova, Marina; March, Thomas; van der Most, Robbert; Destexhe, Eric
2017-01-02
An increased risk of narcolepsy following administration of an AS03-adjuvanted A(H1N1)pdm09 pandemic influenza vaccine (Pandemrix™) was described in children and adolescents in certain European countries. We investigated the potential effects of administration of the AS03-adjuvanted vaccine, non-adjuvanted vaccine antigen and AS03 Adjuvant System alone, on the central nervous system (CNS) in one-month-old cotton rats. Naïve or A(H1N1)pdm09 virus-primed animals received 2 or 3 intramuscular injections, respectively, of test article or saline at 2-week intervals. Parameters related to systemic inflammation (hematology, serum IL-6/IFN-γ/TNF-α) were assessed. Potential effects on the CNS were investigated by histopathological evaluation of brain sections stained with hematoxylin-and-eosin, or by immunohistochemical staining of microglia, using Iba1 and CD68 as markers for microglia identification/activation, albumin as indicator of vascular leakage, and hypocretin. We also determined cerebrospinal fluid (CSF) hypocretin levels and hemagglutination-inhibiting antibody titers. Immunogenicity of the AS03-adjuvanted A(H1N1)pdm09 pandemic influenza vaccine was confirmed by the induction of hemagglutination-inhibiting antibodies. Both AS03-adjuvanted vaccine and AS03 alone activated transient innate (neutrophils/eosinophils) immune responses. No serum cytokines were detected. CNS analyses revealed neither microglia activation nor inflammatory cellular infiltrates in the brain. No differences between treatment groups were detected for albumin extravascular leakage, CSF hypocretin levels, numbers of hypocretin-positive neuronal bodies or distributions of hypocretin-positive axonal/dendritic projections. Consequently, there was no evidence that intramuscular administration of the test articles promoted inflammation or damage in the CNS, or blood-brain barrier disruption, in this model.
Planty, Camille; Mallett, Corey P.; Yim, Kevin; Blanco, Jorge C. G.; Boukhvalova, Marina; March, Thomas; van der Most, Robbert; Destexhe, Eric
2017-01-01
ABSTRACT An increased risk of narcolepsy following administration of an AS03-adjuvanted A(H1N1)pdm09 pandemic influenza vaccine (Pandemrix™) was described in children and adolescents in certain European countries. We investigated the potential effects of administration of the AS03-adjuvanted vaccine, non-adjuvanted vaccine antigen and AS03 Adjuvant System alone, on the central nervous system (CNS) in one-month-old cotton rats. Naïve or A(H1N1)pdm09 virus-primed animals received 2 or 3 intramuscular injections, respectively, of test article or saline at 2-week intervals. Parameters related to systemic inflammation (hematology, serum IL-6/IFN-γ/TNF-α) were assessed. Potential effects on the CNS were investigated by histopathological evaluation of brain sections stained with hematoxylin-and-eosin, or by immunohistochemical staining of microglia, using Iba1 and CD68 as markers for microglia identification/activation, albumin as indicator of vascular leakage, and hypocretin. We also determined cerebrospinal fluid (CSF) hypocretin levels and hemagglutination-inhibiting antibody titers. Immunogenicity of the AS03-adjuvanted A(H1N1)pdm09 pandemic influenza vaccine was confirmed by the induction of hemagglutination-inhibiting antibodies. Both AS03-adjuvanted vaccine and AS03 alone activated transient innate (neutrophils/eosinophils) immune responses. No serum cytokines were detected. CNS analyses revealed neither microglia activation nor inflammatory cellular infiltrates in the brain. No differences between treatment groups were detected for albumin extravascular leakage, CSF hypocretin levels, numbers of hypocretin-positive neuronal bodies or distributions of hypocretin-positive axonal/dendritic projections. Consequently, there was no evidence that intramuscular administration of the test articles promoted inflammation or damage in the CNS, or blood-brain barrier disruption, in this model. PMID:27629482
Hinson, Shannon R; Clift, Ian C; Luo, Ningling; Kryzer, Thomas J; Lennon, Vanda A
2017-05-23
Aquaporin-4 (AQP4) water channel-specific IgG distinguishes neuromyelitis optica (NMO) from multiple sclerosis and causes characteristic immunopathology in which central nervous system (CNS) demyelination is secondary. Early events initiating the pathophysiological outcomes of IgG binding to astrocytic AQP4 are poorly understood. CNS lesions reflect events documented in vitro following IgG interaction with AQP4: AQP4 internalization, attenuated glutamate uptake, intramyelinic edema, interleukin-6 release, complement activation, inflammatory cell recruitment, and demyelination. Here, we demonstrate that AQP4 internalization requires AQP4-bound IgG to engage an astrocytic Fcγ receptor (FcγR). IgG-lacking Fc redistributes AQP4 within the plasma membrane and induces interleukin-6 release. However, AQP4 endocytosis requires an activating FcγR's gamma subunit and involves astrocytic membrane loss of an inhibitory FcγR, CD32B. Interaction of the IgG-AQP4 complex with FcγRs triggers coendocytosis of the excitatory amino acid transporter 2 (EAAT2). Requirement of FcγR engagement for internalization of two astrocytic membrane proteins critical to CNS homeostasis identifies a complement-independent, upstream target for potential early therapeutic intervention in NMO.
Iskandar, Bermans J; Rizk, Elias; Meier, Brenton; Hariharan, Nithya; Bottiglieri, Teodoro; Finnell, Richard H; Jarrard, David F; Banerjee, Ruma V; Skene, J H Pate; Nelson, Aaron; Patel, Nirav; Gherasim, Carmen; Simon, Kathleen; Cook, Thomas D; Hogan, Kirk J
2010-05-01
The folate pathway plays a crucial role in the regeneration and repair of the adult CNS after injury. Here, we have shown in rodents that such repair occurs at least in part through DNA methylation. In animals with combined spinal cord and sciatic nerve injury, folate-mediated CNS axon regeneration was found to depend on injury-related induction of the high-affinity folate receptor 1 (Folr1). The activity of folate was dependent on its activation by the enzyme dihydrofolate reductase (Dhfr) and a functional methylation cycle. The effect of folate on the regeneration of afferent spinal neurons was biphasic and dose dependent and correlated closely over its dose range with global and gene-specific DNA methylation and with expression of both the folate receptor Folr1 and the de novo DNA methyltransferases. These data implicate an epigenetic mechanism in CNS repair. Folic acid and possibly other nontoxic dietary methyl donors may therefore be useful in clinical interventions to promote brain and spinal cord healing. If indeed the benefit of folate is mediated by epigenetic mechanisms that promote endogenous axonal regeneration, this provides possible avenues for new pharmacologic approaches to treating CNS injuries.
Iskandar, Bermans J.; Rizk, Elias; Meier, Brenton; Hariharan, Nithya; Bottiglieri, Teodoro; Finnell, Richard H.; Jarrard, David F.; Banerjee, Ruma V.; Skene, J.H. Pate; Nelson, Aaron; Patel, Nirav; Gherasim, Carmen; Simon, Kathleen; Cook, Thomas D.; Hogan, Kirk J.
2010-01-01
The folate pathway plays a crucial role in the regeneration and repair of the adult CNS after injury. Here, we have shown in rodents that such repair occurs at least in part through DNA methylation. In animals with combined spinal cord and sciatic nerve injury, folate-mediated CNS axon regeneration was found to depend on injury-related induction of the high-affinity folate receptor 1 (Folr1). The activity of folate was dependent on its activation by the enzyme dihydrofolate reductase (Dhfr) and a functional methylation cycle. The effect of folate on the regeneration of afferent spinal neurons was biphasic and dose dependent and correlated closely over its dose range with global and gene-specific DNA methylation and with expression of both the folate receptor Folr1 and the de novo DNA methyltransferases. These data implicate an epigenetic mechanism in CNS repair. Folic acid and possibly other nontoxic dietary methyl donors may therefore be useful in clinical interventions to promote brain and spinal cord healing. If indeed the benefit of folate is mediated by epigenetic mechanisms that promote endogenous axonal regeneration, this provides possible avenues for new pharmacologic approaches to treating CNS injuries. PMID:20424322
Miao, Linqing; Yang, Liu; Huang, Haoliang; Liang, Feisi; Ling, Chen; Hu, Yang
2016-03-30
Injured mature CNS axons do not regenerate in mammals. Deletion of PTEN, the negative regulator of PI3K, induces CNS axon regeneration through the activation of PI3K-mTOR signaling. We have conducted an extensive molecular dissection of the cross-regulating mechanisms in axon regeneration that involve the downstream effectors of PI3K, AKT and the two mTOR complexes (mTORC1 and mTORC2). We found that the predominant AKT isoform in CNS, AKT3, induces much more robust axon regeneration than AKT1 and that activation of mTORC1 and inhibition of GSK3β are two critical parallel pathways for AKT-induced axon regeneration. Surprisingly, phosphorylation of T308 and S473 of AKT play opposite roles in GSK3β phosphorylation and inhibition, by which mTORC2 and pAKT-S473 negatively regulate axon regeneration. Thus, our study revealed a complex neuron-intrinsic balancing mechanism involving AKT as the nodal point of PI3K, mTORC1/2 and GSK3β that coordinates both positive and negative cues to regulate adult CNS axon regeneration.
Approach to Cerebrospinal Fluid (CSF) Biomarker Discovery and Evaluation in HIV Infection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Richard W.; Peterson, Julia; Fuchs, Dietmar
2013-12-13
Central nervous system (CNS) infection is a nearly universal facet of systemic HIV infection that varies in character and neurological consequences. While clinical staging and neuropsychological test performance have been helpful in evaluating patients, cerebrospinal fluid (CSF) biomarkers present a valuable and objective approach to more accurate diagnosis, assessment of treatment effects and understanding of evolving pathobiology. We review some lessons from our recent experience with CSF biomarker studies. We have used two approaches to biomarker analysis: targeted, hypothesis-driven and non-targeted exploratory discovery methods. We illustrate the first with data from a cross-sectional study of defined subject groups across themore » spectrum of systemic and CNS disease progression and the second with a longitudinal study of the CSF proteome in subjects initiating antiretroviral treatment. Both approaches can be useful and, indeed, complementary. The first is helpful in assessing known or hypothesized biomarkers while the second can identify novel biomarkers and point to broad interactions in pathogenesis. Common to both is the need for well-defined samples and subjects that span a spectrum of biological activity and biomarker concentrations. Previouslydefined guide biomarkers of CNS infection, inflammation and neural injury are useful in categorizing samples for analysis and providing critical biological context for biomarker discovery studies. CSF biomarkers represent an underutilized but valuable approach to understanding the interactions of HIV and the CNS and to more objective diagnosis and assessment of disease activity. Both hypothesis-based and discovery methods can be useful in advancing the definition and use of these biomarkers.« less
Approach to cerebrospinal fluid (CSF) biomarker discovery and evaluation in HIV infection.
Price, Richard W; Peterson, Julia; Fuchs, Dietmar; Angel, Thomas E; Zetterberg, Henrik; Hagberg, Lars; Spudich, Serena; Smith, Richard D; Jacobs, Jon M; Brown, Joseph N; Gisslen, Magnus
2013-12-01
Central nervous system (CNS) infection is a nearly universal facet of systemic HIV infection that varies in character and neurological consequences. While clinical staging and neuropsychological test performance have been helpful in evaluating patients, cerebrospinal fluid (CSF) biomarkers present a valuable and objective approach to more accurate diagnosis, assessment of treatment effects and understanding of evolving pathobiology. We review some lessons from our recent experience with CSF biomarker studies. We have used two approaches to biomarker analysis: targeted, hypothesis-driven and non-targeted exploratory discovery methods. We illustrate the first with data from a cross-sectional study of defined subject groups across the spectrum of systemic and CNS disease progression and the second with a longitudinal study of the CSF proteome in subjects initiating antiretroviral treatment. Both approaches can be useful and, indeed, complementary. The first is helpful in assessing known or hypothesized biomarkers while the second can identify novel biomarkers and point to broad interactions in pathogenesis. Common to both is the need for well-defined samples and subjects that span a spectrum of biological activity and biomarker concentrations. Previously-defined guide biomarkers of CNS infection, inflammation and neural injury are useful in categorizing samples for analysis and providing critical biological context for biomarker discovery studies. CSF biomarkers represent an underutilized but valuable approach to understanding the interactions of HIV and the CNS and to more objective diagnosis and assessment of disease activity. Both hypothesis-based and discovery methods can be useful in advancing the definition and use of these biomarkers.
Zhao, Liping; Kim, Ki Woo; Ikeda, Yayoi; Anderson, Kimberly K; Beck, Laurel; Chase, Stephanie; Tobet, Stuart A; Parker, Keith L
2008-06-01
Steroidogenic factor 1 (SF-1) plays key roles in adrenal and gonadal development, expression of pituitary gonadotropins, and development of the ventromedial hypothalamic nucleus (VMH). If kept alive by adrenal transplants, global knockout (KO) mice lacking SF-1 exhibit delayed-onset obesity and decreased locomotor activity. To define specific roles of SF-1 in the VMH, we used the Cre-loxP system to inactivate SF-1 in a central nervous system (CNS)-specific manner. These mice largely recapitulated the VMH structural defect seen in mice lacking SF-1 in all tissues. In multiple behavioral tests, mice with CNS-specific KO of SF-1 had significantly more anxiety-like behavior than wild-type littermates. The CNS-specific SF-1 KO mice had diminished expression or altered distribution in the mediobasal hypothalamus of several genes whose expression has been linked to stress and anxiety-like behavior, including brain-derived neurotrophic factor, the type 2 receptor for CRH (Crhr2), and Ucn 3. Moreover, transfection and EMSAs support a direct role of SF-1 in Crhr2 regulation. These findings reveal important roles of SF-1 in the hypothalamic expression of key regulators of anxiety-like behavior, providing a plausible molecular basis for the behavioral effect of CNS-specific KO of this nuclear receptor.
Metabolic Dysfunction and Peroxisome Proliferator-Activated Receptors (PPAR) in Multiple Sclerosis.
Ferret-Sena, Véronique; Capela, Carlos; Sena, Armando
2018-06-01
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS) probably caused, in most cases, by the interaction of genetic and environmental factors. This review first summarizes some clinical, epidemiological and pathological characteristics of MS. Then, the involvement of biochemical pathways is discussed in the development and repair of the CNS lesions and the immune dysfunction in the disease. Finally, the potential roles of peroxisome proliferator-activated receptors (PPAR) in MS are discussed. It is suggested that metabolic mechanisms modulated by PPAR provide a window to integrate the systemic and neurological events underlying the pathogenesis of the disease. In conclusion, the reviewed data highlight molecular avenues of understanding MS that may open new targets for improved therapies and preventive strategies for the disease.
NASA Astrophysics Data System (ADS)
Koprivica, Vuk; Cho, Kin-Sang; Park, Jong Bae; Yiu, Glenn; Atwal, Jasvinder; Gore, Bryan; Kim, Jieun A.; Lin, Estelle; Tessier-Lavigne, Marc; Chen, Dong Feng; He, Zhigang
2005-10-01
Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.
Felix, Arthur; Leblanc, Thierry; Petit, Arnaud; Nelkem, Brigitte; Bertrand, Yves; Gandemer, Virginie; Sirvent, Anne; Paillard, Catherine; Schmitt, Claudine; Rohrlich, Pierre Simon; Fenneteau, Odile; Ragu, Christine; Michel, Gerard; Auvrignon, Anne; Baruchel, André; Leverger, Guy
2018-01-01
Central nervous system (CNS) involvement at diagnosis of pediatric acute myeloid leukemia (AML) is not considered as an independent prognostic factor. This study describes the prognostic value of pediatric AML with CNS involvement at diagnosis. Pediatric patients were treated for de novo AML in the French multicenter trial ELAM02. Lumbar puncture was carried out in the first week, and the treatment was adapted to the CNS status. No patient received CNS radiotherapy. The patients were classified into 2 groups: CNS+ and CNS-. Of the 438 patients, 16% (n=70) had CNS involvement at diagnosis, and 29% showed clinical signs. The patients with CNS disease were younger (40% were below 2 y old), had a higher white blood cell count (median of 45 vs. 13 G/L), and had M4 and M5 morphologies. The complete remission rate was similar at 92.8% for CNS+ and 88.5% for CNS-. There was no significant difference between the CNS+ and the CNS- group in overall survival (76% and 71%, respectively) and event-free survival (57% and 52%, respectively). Regarding the occurrence of first relapse, the CNS+ group had a higher combined relapse rate of 26.1% compared with 10% for the CNS- group. The results indicate that CNS involvement at diagnosis of pediatric AML is not an independent prognostic factor. Triple intrathecal chemotherapy combined with high-dose intravenous cytarabine should be the first-line treatment for CNS disease.
Gross anatomy of central nervous system in firefly, Pteroptyx tener (Coleoptera: Lampyridae)
NASA Astrophysics Data System (ADS)
Hudawiyah, Nur; Wahida, O. Nurul; Norela, S.
2015-09-01
This paper describes for the first time the organization and fine structure of the central nervous system (CNS) in the fireflies, Pteroptyx tener (Coleoptera: Lampyridae). The morphology of the CNS was examined by using Carl Zeiss AxioScope A1 photomicroscope with iSolution Lite software. Some specific structural features such as the localization of protocerebrum, deutocerebrum and tritocerebrum in the brain region were analyzed. Other than that, the nerve cord and its peripheral structure were also analyzed. This study suggests that, there is a very obvious difference between male and female central nervous system which illustrates that they may differ in function in controlling physiological and behavioral activities.
Shih, W W; Baumhefner, R W; Tourtellotte, W W; Haskell, C M; Korn, E L; Fahey, J L
1983-01-01
Cyclophosphamide (CY), 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) and 5-fluorouracil (5-FU) were given in single course schedules to chronic progressive multiple sclerosis (MS) patients clinically stable for 6 months. The following peripheral immune cellular parameters were measured before, during and after each drug administration: white blood count (WBC), polymorphonuclear count (PMN), lymphocyte count, percentage of T cells, T cell response to phytohaemagglutinin (PHA), percentage of B cells, percentage of cells bearing receptors for the Fc portion of immunoglobulin (% FcR cells), killer (K) cell activity defined by antibody-dependent cellular cytotoxicity (ADCC), and natural killer (NK) cell activity. Central nervous system (CNS) immunoglobulin G (IgG) synthesis was also measured. The patients were followed carefully by both quantitative and qualitative methods for any change in their neurologic condition. Selective reduction in NK activity was observed with CY and 5-FU while no significant alteration was seen in %FcR cells and K activity. CY differed from 5-FU in reducing lymphocyte count and B cell percentage while 5-FU decreased the percentage of T cells. CCNU, but not the other drugs, reduced T cell proliferative response to PHA. In addition, CCNU, which is known to penetrate well into the nervous system, caused a modest reduction in CNS IgG synthesis, while 5-FU had an uncertain effect. Clinically the patients were unchanged or continued to progress in their disability. The results suggest an independence of the CNS immune from the systemic immune system in MS in response to many immunosuppressive drugs. PMID:6603303
Investigation on navigation patterns of inertial/celestial integrated systems
NASA Astrophysics Data System (ADS)
Luo, Dacheng; Liu, Yan; Liu, Zhiguo; Jiao, Wei; Wang, Qiuyan
2014-11-01
It is known that Strapdown Inertial Navigation System (SINS), Global Navigation Satellite System (GNSS) and Celestial Navigation System (CNS) can complement each other's advantages. The SINS/CNS integrated system, which has the characteristics of strong autonomy, high accuracy and good anti-jamming, is widely used in military and civilian applications. Similar to SINS/GNSS integrated system, the SINS/CNS integrated system can also be divided into three kinds according to the difference of integrating depth, i.e., loosely coupled pattern, tightly coupled pattern and deeply coupled pattern. In this paper, the principle and characteristics of each pattern of SINS/CNS system are analyzed. Based on the comparison of these patterns, a novel deeply coupled SINS/CNS integrated navigation scheme is proposed. The innovation of this scheme is that a new star pattern matching method aided by SINS information is put forward. Thus the complementary features of these two subsystems are reflected.
The role of microbiome in central nervous system disorders
Wang, Yan; Kasper, Lloyd H.
2014-01-01
Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders. PMID:24370461
Quick, Eamon D; Seitz, Scott; Clarke, Penny; Tyler, Kenneth L
2017-11-15
West Nile virus (WNV) is a neurotropic flavivirus that can cause significant neurological disease. Mouse models of WNV infection demonstrate that a proinflammatory environment is induced within the central nervous system (CNS) after WNV infection, leading to entry of activated peripheral immune cells. We utilized ex vivo spinal cord slice cultures (SCSC) to demonstrate that anti-inflammatory mechanisms may also play a role in WNV-induced pathology and/or recovery. Microglia are a type of macrophage that function as resident CNS immune cells. Similar to mouse models, infection of SCSC with WNV induces the upregulation of proinflammatory genes and proteins that are associated with microglial activation, including the microglial activation marker Iba1 and CC motif chemokines CCL2, CCL3, and CCL5. This suggests that microglia assume a proinflammatory phenotype in response to WNV infection similar to the proinflammatory (M1) activation that can be displayed by other macrophages. We now show that the WNV-induced expression of these and other proinflammatory genes was significantly decreased in the presence of minocycline, which has antineuroinflammatory properties, including the ability to inhibit proinflammatory microglial responses. Minocycline also caused a significant increase in the expression of anti-inflammatory genes associated with alternative anti-inflammatory (M2) macrophage activation, including interleukin 4 (IL-4), IL-13, and FIZZ1. Minocycline-dependent alterations to M1/M2 gene expression were associated with a significant increase in survival of neurons, microglia, and astrocytes in WNV-infected slices and markedly decreased levels of inducible nitric oxide synthase (iNOS). These results demonstrate that an anti-inflammatory environment induced by minocycline reduces viral cytotoxicity during WNV infection in ex vivo CNS tissue. IMPORTANCE West Nile virus (WNV) causes substantial morbidity and mortality, with no specific therapeutic treatments available. Antiviral inflammatory responses are a crucial component of WNV pathology, and understanding how they are regulated is important for tailoring effective treatments. Proinflammatory responses during WNV infection have been extensively studied, but anti-inflammatory responses (and their potential protective and reparative capabilities) following WNV infection have not been investigated. Minocycline induced the expression of genes associated with the anti-inflammatory (M2) activation of CNS macrophages (microglia) in WNV-infected SCSC while inhibiting the expression of genes associated with proinflammatory (M1) macrophage activation and was protective for multiple CNS cell types, indicating its potential use as a therapeutic reagent. This ex vivo culture system can uniquely address the ability of CNS parenchymal cells (neurons, astrocytes, and microglia) to respond to minocycline and to modulate the inflammatory environment and cytotoxicity in response to WNV infection without peripheral immune cell involvement. Copyright © 2017 American Society for Microbiology.
Quick, Eamon D.; Seitz, Scott; Tyler, Kenneth L.
2017-01-01
ABSTRACT West Nile virus (WNV) is a neurotropic flavivirus that can cause significant neurological disease. Mouse models of WNV infection demonstrate that a proinflammatory environment is induced within the central nervous system (CNS) after WNV infection, leading to entry of activated peripheral immune cells. We utilized ex vivo spinal cord slice cultures (SCSC) to demonstrate that anti-inflammatory mechanisms may also play a role in WNV-induced pathology and/or recovery. Microglia are a type of macrophage that function as resident CNS immune cells. Similar to mouse models, infection of SCSC with WNV induces the upregulation of proinflammatory genes and proteins that are associated with microglial activation, including the microglial activation marker Iba1 and CC motif chemokines CCL2, CCL3, and CCL5. This suggests that microglia assume a proinflammatory phenotype in response to WNV infection similar to the proinflammatory (M1) activation that can be displayed by other macrophages. We now show that the WNV-induced expression of these and other proinflammatory genes was significantly decreased in the presence of minocycline, which has antineuroinflammatory properties, including the ability to inhibit proinflammatory microglial responses. Minocycline also caused a significant increase in the expression of anti-inflammatory genes associated with alternative anti-inflammatory (M2) macrophage activation, including interleukin 4 (IL-4), IL-13, and FIZZ1. Minocycline-dependent alterations to M1/M2 gene expression were associated with a significant increase in survival of neurons, microglia, and astrocytes in WNV-infected slices and markedly decreased levels of inducible nitric oxide synthase (iNOS). These results demonstrate that an anti-inflammatory environment induced by minocycline reduces viral cytotoxicity during WNV infection in ex vivo CNS tissue. IMPORTANCE West Nile virus (WNV) causes substantial morbidity and mortality, with no specific therapeutic treatments available. Antiviral inflammatory responses are a crucial component of WNV pathology, and understanding how they are regulated is important for tailoring effective treatments. Proinflammatory responses during WNV infection have been extensively studied, but anti-inflammatory responses (and their potential protective and reparative capabilities) following WNV infection have not been investigated. Minocycline induced the expression of genes associated with the anti-inflammatory (M2) activation of CNS macrophages (microglia) in WNV-infected SCSC while inhibiting the expression of genes associated with proinflammatory (M1) macrophage activation and was protective for multiple CNS cell types, indicating its potential use as a therapeutic reagent. This ex vivo culture system can uniquely address the ability of CNS parenchymal cells (neurons, astrocytes, and microglia) to respond to minocycline and to modulate the inflammatory environment and cytotoxicity in response to WNV infection without peripheral immune cell involvement. PMID:28878079
Sex Steroids, Adult Neurogenesis, and Inflammation in CNS Homeostasis, Degeneration, and Repair
Larson, Tracy A.
2018-01-01
Sex steroidal hormones coordinate the development and maintenance of tissue architecture in many organs, including the central nervous systems (CNS). Within the CNS, sex steroids regulate the morphology, physiology, and behavior of a wide variety of neural cells including, but not limited to, neurons, glia, endothelial cells, and immune cells. Sex steroids spatially and temporally control distinct molecular networks, that, in turn modulate neural activity, synaptic plasticity, growth factor expression and function, nutrient exchange, cellular proliferation, and apoptosis. Over the last several decades, it has become increasingly evident that sex steroids, often in conjunction with neuroinflammation, have profound impact on the occurrence and severity of neuropsychiatric and neurodegenerative disorders. Here, I review the foundational discoveries that established the regulatory role of sex steroids in the CNS and highlight recent advances toward elucidating the complex interaction between sex steroids, neuroinflammation, and CNS regeneration through adult neurogenesis. The majority of recent work has focused on neuroinflammatory responses following acute physical damage, chronic degeneration, or pharmacological insult. Few studies directly assess the role of immune cells in regulating adult neurogenesis under healthy, homeostatic conditions. As such, I also introduce tractable, non-traditional models for examining the role of neuroimmune cells in natural neuronal turnover, seasonal plasticity of neural circuits, and extreme CNS regeneration. PMID:29760681
Lemma, Siria A; Pasanen, Anna Kaisa; Haapasaari, Kirsi-Maria; Sippola, Antti; Sormunen, Raija; Soini, Ylermi; Jantunen, Esa; Koivunen, Petri; Salokorpi, Niina; Bloigu, Risto; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi
2016-05-01
Central nervous system (CNS) relapse occurs in around 5% of diffuse large B-cell lymphoma (DLBCL) cases. No biomarkers to identify high-risk patients have been discovered. We evaluated the expression of lymphocyte-guiding chemokine receptors in systemic and CNS lymphomas. Immunohistochemical staining for CXCR4, CXCR5, CCR7, CXCL12, and CXCL13 was performed on 89 tissue samples, including cases of primary central nervous system lymphoma (PCNSL), secondary CNS lymphoma (sCNSL), and systemic DLBCL. Also, 10 reactive lymph node samples were included. Immunoelectron microscopy was performed on two PCNSLs, one sCNSL, one systemic DLBCL, and one reactive lymph node samples, and staining was performed for CXCR4, CXCR5, CXCL12, and CXCL13. Chi-square test was used to determine correlations between clinical parameters, diagnostic groups, and chemokine receptor expression. Strong nuclear CXCR4 positivity correlated with systemic DLBCL, whereas strong cytoplasmic CXCR5 positivity correlated with CNS involvement (P = 0.003 and P = 0.039). Immunoelectron microscopy revealed a nuclear CXCR4 staining in reactive lymph node, compared with cytoplasmic and membranous localization seen in CNS lymphomas. We found that CNS lymphoma presented a chemokine receptor profile different from systemic disease. Our findings give new information on the CNS tropism of DLBCL and, if confirmed, may contribute to more effective targeting of CNS prophylaxis among patients with DLBCL. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Disubstituted thiourea derivatives and their activity on CNS: synthesis and biological evaluation.
Stefanska, Joanna; Szulczyk, Daniel; Koziol, Anna E; Miroslaw, Barbara; Kedzierska, Ewa; Fidecka, Sylwia; Busonera, Bernardetta; Sanna, Giuseppina; Giliberti, Gabriele; La Colla, Paolo; Struga, Marta
2012-09-01
A series of new thiourea derivatives of 1,2,4-triazole have been synthesized. The difference in structures of obtained compounds are directly connected with the kind of isothiocyanate (aryl/alkyl). The (1)H NMR, (13)C NMR, MS methods were used to confirm structures of obtained thiourea derivatives. The molecular structure of (1, 17) was determined by an X-ray analysis. Two of the new compounds (8 and 14) were tested for their pharmacological activity on animal central nervous system (CNS) in behavioural animal tests. The results presented in this work indicate the possible involvement of the serotonergic system in the activity of 8 and 14. In the case of 14 is also a possible link between its activity and the endogenous opioid system. All obtained compounds were tested for antibacterial activity against gram-positive cocci, gram-negative rods and antifungal activity. Compounds (1, 2, 5, 7, 9) showed significant inhibition against gram-positive cocci. Microbiological evaluation was carried out over 20 standard strains and 30 hospital strains. Selected compounds (1-13) were examined for cytotoxicity, antitumor, and anti-HIV activity. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... manner.\\8\\ \\5\\ CNS is an ongoing accounting system that nets today's Settling Trades with yesterday's... to be processed through NSCC's Continuous Net Settlement (``CNS'') system \\5\\ (and for CNS-eligible... 50737
Learning and Memory... and the Immune System
ERIC Educational Resources Information Center
Marin, Ioana; Kipnis, Jonathan
2013-01-01
The nervous system and the immune system are two main regulators of homeostasis in the body. Communication between them ensures normal functioning of the organism. Immune cells and molecules are required for sculpting the circuitry and determining the activity of the nervous system. Within the parenchyma of the central nervous system (CNS),…
Immunopathogenesis in Myasthenia Gravis and Neuromyelitis Optica
Wang, Zhen; Yan, Yaping
2017-01-01
Myasthenia gravis (MG) and neuromyelitis optica (NMO) are autoimmune channelopathies of the peripheral neuromuscular junction (NMJ) and central nervous system (CNS) that are mainly mediated by humoral immunity against the acetylcholine receptor (AChR) and aquaporin-4 (AQP4), respectively. The diseases share some common features, including genetic predispositions, environmental factors, the breakdown of tolerance, the collaboration of T cells and B cells, imbalances in T helper 1 (Th1)/Th2/Th17/regulatory T cells, aberrant cytokine and antibody secretion, and complement system activation. However, some aspects of the immune mechanisms are unique. Both targets (AChR and AQP4) are expressed in the periphery and CNS, but MG mainly affects the NMJ in the periphery outside of CNS, whereas NMO preferentially involves the CNS. Inflammatory cells, including B cells and macrophages, often infiltrate the thymus but not the target—muscle in MG, whereas the infiltration of inflammatory cells, mainly polymorphonuclear leukocytes and macrophages, in NMO, is always observed in the target organ—the spinal cord. A review of the common and discrepant characteristics of these two autoimmune channelopathies may expand our understanding of the pathogenic mechanism of both disorders and assist in the development of proper treatments in the future. PMID:29312313
Iijima, Takatoshi; Hidaka, Chiharu; Iijima, Yoko
2016-08-01
Alternative pre-mRNA splicing is a fundamental mechanism that generates molecular diversity from a single gene. In the central nervous system (CNS), key neural developmental steps are thought to be controlled by alternative splicing decisions, including the molecular diversity underlying synaptic wiring, plasticity, and remodeling. Significant progress has been made in understanding the molecular mechanisms and functions of alternative pre-mRNA splicing in neurons through studies in invertebrate systems; however, recent studies have begun to uncover the potential role of neuronal alternative splicing in the mammalian CNS. This article provides an overview of recent findings regarding the regulation and function of neuronal alternative splicing. In particular, we focus on the spatio-temporal regulation of neurexin, a synaptic adhesion molecule, by neuronal cell type-specific factors and neuronal activity, which are thought to be especially important for characterizing neural development and function within the mammalian CNS. Notably, there is increasing evidence that implicates the dysregulation of neuronal splicing events in several neurological disorders. Therefore, understanding the detailed mechanisms of neuronal alternative splicing in the mammalian CNS may provide plausible treatment strategies for these diseases. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
Cheng, Chialin; Fass, Daniel M; Folz-Donahue, Kat; MacDonald, Marcy E; Haggarty, Stephen J
2017-01-11
Reprogramming of human somatic cells into induced pluripotent stem (iPS) cells has greatly expanded the set of research tools available to investigate the molecular and cellular mechanisms underlying central nervous system (CNS) disorders. Realizing the promise of iPS cell technology for the identification of novel therapeutic targets and for high-throughput drug screening requires implementation of methods for the large-scale production of defined CNS cell types. Here we describe a protocol for generating stable, highly expandable, iPS cell-derived CNS neural progenitor cells (NPC) using multi-dimensional fluorescence activated cell sorting (FACS) to purify NPC defined by cell surface markers. In addition, we describe a rapid, efficient, and reproducible method for generating excitatory cortical-like neurons from these NPC through inducible expression of the pro-neural transcription factor Neurogenin 2 (iNgn2-NPC). Finally, we describe methodology for the use of iNgn2-NPC for probing human neuroplasticity and mechanisms underlying CNS disorders using high-content, single-cell-level automated microscopy assays. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
da Silva, Alexandre A.; do Carmo, Jussara M.; Kanyicska, Bela; Dubinion, John; Brandon, Elizabeth; Hall, John E.
2009-01-01
Previous studies suggest that activation of the CNS melanocortin system reduces appetite while increasing sympathetic activity and arterial pressure. The present study tested whether endogenous activity of the CNS melanocortin 3/4 receptors (MC3/4-R) contributes to elevated arterial pressure in the spontaneously hypertensive rat (SHR), a model of hypertension with increased sympathetic activity. A cannula was placed in the lateral ventricle of male SHR and Wistar (WKY) rats for chronic intracerebroventricular (ICV) infusions (0.5 μL/h). Mean arterial pressure (MAP) and heart rate (HR) were recorded 24 hour/d using telemetry. After 5-day control period, rats were infused with MC3/4-R antagonist (SHU-9119, 1 nmol/h-ICV) for 12 days, followed by 5-day posttreatment period. MC3/4-R antagonism increased food intake in SHR by 90% and in WKY by 125%, resulting in marked weight gain, insulin resistance, and hyperleptinemia in SHR and WKY. Despite weight gain, MC3/4-R antagonism reduced HR in SHR and WKY (≈40 bpm), while lowering MAP to a greater extent in SHR (−22±4 mm Hg) than WKY (−4±3 mm Hg). SHU9119 treatment failed to cause further reductions in MAP during chronic adrenergic blockade with propranolol and terazosin. These results suggest that endogenous activity of the CNS melanocortin system contributes to the maintenance of adrenergic tone and elevated arterial pressure in SHR even though mRNA levels for POMC and MC4R in the mediobasal hypothalamus were not increased compared to WKY. These results also support the hypothesis that weight gain does not raise arterial pressure in the absence of a functional MC3/4-R. PMID:18285617
Passos, Giordani Rodrigues Dos; Sato, Douglas Kazutoshi; Becker, Jefferson; Fujihara, Kazuo
2016-01-01
Several animal and human studies have implicated CD4+ T helper 17 (Th17) cells and their downstream pathways in the pathogenesis of central nervous system (CNS) autoimmunity in multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD), challenging the traditional Th1-Th2 paradigm. Th17 cells can efficiently cross the blood-brain barrier using alternate ways from Th1 cells, promote its disruption, and induce the activation of other inflammatory cells in the CNS. A number of environmental factors modulate the activity of Th17 pathways, so changes in the diet, exposure to infections, and other environmental factors can potentially change the risk of development of autoimmunity. Currently, new drugs targeting specific points of the Th17 pathways are already being tested in clinical trials and provide basis for the development of biomarkers to monitor disease activity. Herein, we review the key findings supporting the relevance of the Th17 pathways in the pathogenesis of MS and NMOSD, as well as their potential role as therapeutic targets in the treatment of immune-mediated CNS disorders. PMID:26941483
Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury
Overall, Christopher C.
2017-01-01
The meningeal space is occupied by a diverse repertoire of immune cells. Central nervous system (CNS) injury elicits a rapid immune response that affects neuronal survival and recovery, but the role of meningeal inflammation remains poorly understood. Here, we describe type 2 innate lymphocytes (ILC2s) as a novel cell type resident in the healthy meninges that are activated after CNS injury. ILC2s are present throughout the naive mouse meninges, though are concentrated around the dural sinuses, and have a unique transcriptional profile. After spinal cord injury (SCI), meningeal ILC2s are activated in an IL-33–dependent manner, producing type 2 cytokines. Using RNAseq, we characterized the gene programs that underlie the ILC2 activation state. Finally, addition of wild-type lung-derived ILC2s into the meningeal space of IL-33R−/− animals partially improves recovery after SCI. These data characterize ILC2s as a novel meningeal cell type that responds to SCI and could lead to new therapeutic insights for neuroinflammatory conditions. PMID:27994070
Zika Virus Selectively Kills Aggressive Human Embryonal CNS Tumor Cells In Vitro and In Vivo.
Kaid, Carolini; Goulart, Ernesto; Caires-Júnior, Luiz C; Araujo, Bruno H S; Soares-Schanoski, Alessandra; Bueno, Heloisa M S; Telles-Silva, Kayque A; Astray, Renato M; Assoni, Amanda F; Júnior, Antônio F R; Ventini, Daniella C; Puglia, Ana L P; Gomes, Roselane P; Zatz, Mayana; Okamoto, Oswaldo K
2018-06-15
Zika virus (ZIKV) is largely known for causing brain abnormalities due to its ability to infect neural progenitor stem cells during early development. Here, we show that ZIKV is also capable of infecting and destroying stem-like cancer cells from aggressive human embryonal tumors of the central nervous system (CNS). When evaluating the oncolytic properties of Brazilian Zika virus strain (ZIKV BR ) against human breast, prostate, colorectal, and embryonal CNS tumor cell lines, we verified a selective infection of CNS tumor cells followed by massive tumor cell death. ZIKV BR was more efficient in destroying embryonal CNS tumorspheres than normal stem cell neurospheres. A single intracerebroventricular injection of ZIKV BR in BALB/c nude mice bearing orthotopic human embryonal CNS tumor xenografts resulted in a significantly longer survival, decreased tumor burden, fewer metastasis, and complete remission in some animals. Tumor cells closely resembling neural stem cells at the molecular level with activated Wnt signaling were more susceptible to the oncolytic effects of ZIKV BR Furthermore, modulation of Wnt signaling pathway significantly affected ZIKV BR -induced tumor cell death and viral shedding. Altogether, these preclinical findings indicate that ZIKV BR could be an efficient agent to treat aggressive forms of embryonal CNS tumors and could provide mechanistic insights regarding its oncolytic effects. Significance: Brazilian Zika virus strain kills aggressive metastatic forms of human CNS tumors and could be a potential oncolytic agent for cancer therapy. Cancer Res; 78(12); 3363-74. ©2018 AACR . ©2018 American Association for Cancer Research.
Measles Fusion Machinery Is Dysregulated in Neuropathogenic Variants
Jurgens, Eric M.; Mathieu, Cyrille; Palermo, Laura M.; Hardie, Diana; Horvat, Branka
2015-01-01
ABSTRACT Paramyxoviruses, including the human pathogen measles virus (MV), enter host cells by fusing their viral envelope with the target cell membrane. This fusion process is driven by the concerted actions of the two viral envelope glycoproteins, the receptor binding protein (hemagglutinin [H]) and the fusion (F) protein. H attaches to specific proteinaceous receptors on host cells; once the receptor engages, H activates F to directly mediate lipid bilayer fusion during entry. In a recent MV outbreak in South Africa, several HIV-positive people died of MV central nervous system (CNS) infection. We analyzed the virus sequences from these patients and found that specific intrahost evolution of the F protein had occurred and resulted in viruses that are “CNS adapted.” A mutation in F of the CNS-adapted virus (a leucine-to-tryptophan change present at position 454) allows it to promote fusion with less dependence on engagement of H by the two known wild-type (wt) MV cellular receptors. This F protein is activated independently of H or the receptor and has reduced thermal stability and increased fusion activity compared to those of the corresponding wt F. These functional effects are the result of the single L454W mutation in F. We hypothesize that in the absence of effective cellular immunity, such as HIV infection, MV variants bearing altered fusion machinery that enabled efficient spread in the CNS underwent positive selection. PMID:25670774
The effects of ozone exposure and associated injury mechanisms on the central nervous system.
Martínez-Lazcano, Juan Carlos; González-Guevara, Edith; del Carmen Rubio, María; Franco-Pérez, Javier; Custodio, Verónica; Hernández-Cerón, Miguel; Livera, Carlos; Paz, Carlos
2013-01-01
Ozone (O3) is a component of photochemical smog, which is a major air pollutant and demonstrates properties that are harmful to health because of the toxic properties that are inherent to its powerful oxidizing capabilities. Environmental O3 exposure is associated with many symptoms related to respiratory disorders, which include loss of lung function, exacerbation of asthma, airway damage, and lung inflammation. The effects of O3 are not restricted to the respiratory system or function - adverse effects within the central nervous system (CNS) such as decreased cognitive response, decrease in motor activity, headaches, disturbances in the sleep-wake cycle, neuronal dysfunctions, cell degeneration, and neurochemical alterations have also been described; furthermore, it has also been proposed that O3 could have epigenetic effects. O3 exposure induces the reactive chemical species in the lungs, but the short half-life of these chemical species has led some authors to attribute the injurious mechanisms observed within the lungs to inflammatory processes. However, the damage to the CNS induced by O3 exposure is not well understood. In this review, the basic mechanisms of inflammation and activation of the immune system by O3 exposure are described and the potential mechanisms of damage, which include neuroinflammation and oxidative stress, and the signs and symptoms of disturbances within the CNS caused by environmental O3 exposure are discussed.
NASA Astrophysics Data System (ADS)
Wan, Xing; Wang, Hongjuan; Yu, Hao; Peng, Feng
2017-04-01
Uniform cobalt and nitrogen co-doped carbon nanospheres (CoN-CNS) with high specific surface area (865 m2 g-1) have been prepared by a simple but efficient method. The prepared CoN-CNS catalyst exhibits outstanding catalytic performance for the oxygen reduction reaction (ORR) in both alkaline and acidic electrolytes. In alkaline electrolyte, the prepared CoN-CNS has more positive half-wave potential and larger kinetic current density than commercial Pt/C. In acidic electrolyte, CoN-CNS also shows good ORR activity with high electron transfer number, its onset and half-wave potentials are all close to those of commercial carbon supported platinum catalyst (Pt/C). CoN-CNS catalyst shows more superior stability and higher methanol-tolerance than commercial Pt/C both in alkaline and in acidic electrolytes. The potassium thiocyanate-poisoning test further confirms that the cobalt-nitrogen active sites exist in CoN-CNS, which are dominating to endow high ORR catalytic activity in acidic electrolyte. This study develops a new method to prepare non-precious metal catalyst with excellent ORR performances for direct methanol fuel cells.
Ten Kulve, Jennifer S; Veltman, Dick J; van Bloemendaal, Liselotte; Barkhof, Frederik; Drent, Madeleine L; Diamant, Michaela; IJzerman, Richard G
2016-02-01
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are associated with reduced appetite and body weight. We investigated whether these effects could be mediated by the central nervous system (CNS). We performed a randomized crossover study in obese patients with type 2 diabetes (n = 20, mean age 59.3 ± 4.1 years, mean BMI 32 ± 4.7 kg/m(2)), consisting of two periods of 12-week treatment with either liraglutide 1.8 mg or insulin glargine. Using functional MRI, we determined the effects of treatment on CNS responses to viewing food pictures in the fasted condition and 30 min after meal intake. After 12 weeks, the decrease in HbA1c was larger with liraglutide versus insulin glargine (Δ-0.7% vs. -0.2%, P < 0.001). Body weight decreased during liraglutide versus insulin glargine (Δ-3.3 kg vs. 0.8 kg, P < 0.001). After 10 days, patients treated with liraglutide, compared with insulin glargine, showed decreased responses to food pictures in insula and putamen (P ≤ 0.02). In addition, liraglutide enhanced the satiating effect of meal intake on responses in putamen and amygdala (P ≤ 0.05). Differences between liraglutide and insulin glargine were not observed after 12 weeks. Compared with insulin, liraglutide decreased CNS activation significantly only after short-term treatment, suggesting that these effects of GLP-1RA on the CNS may contribute to the induction of weight loss, but not necessarily to its maintenance, in view of the absence of an effect of liraglutide on CNS activation in response to food pictures after longer-term treatment. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
McClain, Kenneth L; Picarsic, Jennifer; Chakraborty, Rikhia; Zinn, Daniel; Lin, Howard; Abhyankar, Harshal; Scull, Brooks; Shih, Albert; Lim, Karen Phaik Har; Eckstein, Olive; Lubega, Joseph; Peters, Tricia L; Olea, Walter; Burke, Thomas; Ahmed, Nabil; Hicks, M John; Tran, Brandon; Jones, Jeremy; Dauser, Robert; Jeng, Michael; Baiocchi, Robert; Schiff, Deborah; Goldman, Stanton; Heym, Kenneth M; Wilson, Harry; Carcamo, Benjamin; Kumar, Ashish; Rodriguez-Galindo, Carlos; Whipple, Nicholas S; Campbell, Patrick; Murdoch, Geoffrey; Kofler, Julia; Heales, Simon; Malone, Marian; Woltjer, Randy; Quinn, Joseph F; Orchard, Paul; Kruer, Michael C; Jaffe, Ronald; Manz, Markus G; Lira, Sergio A; Parsons, D Williams; Merad, Miriam; Man, Tsz-Kwong; Allen, Carl E
2018-06-15
Central nervous system Langerhans cell histiocytosis (CNS-LCH) brain involvement may include mass lesions and/or a neurodegenerative disease (LCH-ND) of unknown etiology. The goal of this study was to define the mechanisms of pathogenesis that drive CNS-LCH. Cerebrospinal fluid (CSF) biomarkers including CSF proteins and extracellular BRAFV600E DNA were analyzed in CSF from patients with CNS-LCH lesions compared with patients with brain tumors and other neurodegenerative conditions. Additionally, the presence of BRAFV600E was tested in peripheral mononuclear blood cells (PBMCs) as well as brain biopsies from LCH-ND patients, and the response to BRAF-V600E inhibitor was evaluated in 4 patients with progressive disease. Osteopontin was the only consistently elevated CSF protein in patients with CNS-LCH compared with patients with other brain pathologies. BRAFV600E DNA was detected in CSF of only 2/20 (10%) cases, both with LCH-ND and active lesions outside the CNS. However, BRAFV600E + PBMCs were detected with significantly higher frequency at all stages of therapy in LCH patients who developed LCH-ND. Brain biopsies of patients with LCH-ND demonstrated diffuse perivascular infiltration by BRAFV600E + cells with monocyte phenotype (CD14 + CD33 + CD163 + P2RY12 - ) and associated osteopontin expression. Three of 4 patients with LCH-ND treated with BRAF-V600E inhibitor experienced significant clinical and radiologic improvement. In LCH-ND patients, BRAFV600E + cells in PBMCs and infiltrating myeloid/monocytic cells in the brain is consistent with LCH-ND as an active demyelinating process arising from a mutated hematopoietic precursor from which LCH lesion CD207 + cells are also derived. Therapy directed against myeloid precursors with activated MAPK signaling may be effective for LCH-ND. Cancer 2018;124:2607-20. © 2018 American Cancer Society. © 2018 American Cancer Society.
Bertrand, Luc; Nair, Madhavan; Toborek, Michal
2016-01-01
Recent decades mark a great progress in the treatment of HIV infection. What was once a deadly disease is now a chronic infection. However, HIV-infected patients are prone to develop comorbidities, which severely affect their daily functions. For example, a large population of patients develop a variety of neurological and cognitive complications, called HIV associated neurological disorders (HAND). Despite efficient repression of viral replication in the periphery, evidence shows that the virus can remain active in the central nervous system (CNS). This low level of replication is believed to result in a progression of neurocognitive dysfunction in infected individuals. Insufficient viral inhibition in the brain results from the inability of several treatment drugs in crossing the blood-brain barrier (BBB) and reaching therapeutic concentrations in the CNS. The current manuscript discusses several strategies that are being developed to enable therapeutics to cross the BBB, including bypassing BBB, inhibition of efflux transporters, the use of active transporters present at the BBB, and nanotechnology. The increased concentration of therapeutics in the CNS is desirable to prevent viral replication; however, potential side effects of anti-retroviral drugs need also to be taken into consideration.
Adults with suspected central nervous system infection: A prospective study of diagnostic accuracy.
Khatib, Ula; van de Beek, Diederik; Lees, John A; Brouwer, Matthijs C
2017-01-01
To study the diagnostic accuracy of clinical and laboratory features in the diagnosis of central nervous system (CNS) infection and bacterial meningitis. We included consecutive adult episodes with suspected CNS infection who underwent cerebrospinal fluid (CSF) examination. The reference standard was the diagnosis classified into five categories: 1) CNS infection; 2) CNS inflammation without infection; 3) other neurological disorder; 4) non-neurological infection; and 5) other systemic disorder. Between 2012 and 2015, 363 episodes of suspected CNS infection were included. CSF examination showed leucocyte count >5/mm 3 in 47% of episodes. Overall, 89 of 363 episodes were categorized as CNS infection (25%; most commonly viral meningitis [7%], bacterial meningitis [7%], and viral encephalitis [4%]), 36 (10%) episodes as CNS inflammatory disorder, 111 (31%) as systemic infection, in 119 (33%) as other neurological disorder, and 8 (2%) as other systemic disorders. Diagnostic accuracy of individual clinical characteristics and blood tests for the diagnosis of CNS infection or bacterial meningitis was low. CSF leucocytosis differentiated best between bacterial meningitis and other diagnoses (area under the curve [AUC] 0.95) or any neurological infection versus other diagnoses (AUC 0.93). Clinical characteristics fail to differentiate between neurological infections and other diagnoses, and CSF analysis is the main contributor to the final diagnosis. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Strategies for drug delivery to the central nervous system by systemic route.
Kasinathan, Narayanan; Jagani, Hitesh V; Alex, Angel Treasa; Volety, Subrahmanyam M; Rao, J Venkata
2015-05-01
Delivery of a drug into the central nervous system (CNS) is considered difficult. Most of the drugs discovered over the past decade are biological, which are high in molecular weight and polar in nature. The delivery of such drugs across the blood-brain barrier presents problems. This review discusses some of the options available to reach the CNS by systemic route. The focus is mainly on the recent developments in systemic delivery of a drug to the CNS. Databases such as Scopus, Google scholar, Science Direct, SciFinder and online journals were referred for preparing this article including 89 references. There are at least nine strategies that could be adopted to achieve the required drug concentration in the CNS. The recent developments in drug delivery are very promising to deliver biologicals into the CNS.
Bohlen, Christopher J.; Bennett, F. Chris; Tucker, Andrew F.; Collins, Hannah Y.; Mulinyawe, Sara B.; Barres, Ben A.
2017-01-01
Summary Microglia, the resident macrophages of the central nervous system (CNS), engage in various CNS-specific functions that are critical for development and health. To better study microglia and the properties that distinguish them from other tissue macrophage populations, we have optimized serum-free culture conditions to permit robust survival of highly ramified adult microglia under defined-medium conditions. We find that astrocyte-derived factors prevent microglial death ex vivo and that this activity results from three primary components, CSF-1/IL-34, TGF-β2, and cholesterol. Using microglial cultures that have never been exposed to serum, we demonstrate a dramatic and lasting change in phagocytic capacity after serum exposure. Finally, we find that mature microglia rapidly lose signature gene expression after isolation, and that this loss can be reversed by engrafting cells back into an intact CNS environment. These data indicate that the specialized gene expression profile of mature microglia requires continuous instructive signaling from the intact CNS. PMID:28521131
Central nervous system involvement in pediatric rheumatic diseases: current concepts in treatment.
Duzova, Ali; Bakkaloglu, Aysin
2008-01-01
Central nervous system (CNS) manifestations are not rare in pediatric rheumatic diseases. They may be a relatively common feature of the disease, as in systemic lupus erythematosus (SLE) and Behçet's disease. Direct CNS involvement of a systemic rheumatic disease, primary CNS vasculitis, indirect involvement secondary to hypertension, hypoxia and metabolic changes, and drug associated adverse events may all result in CNS involvement. We have reviewed the CNS manifestations of SLE, Behçet's disease, Henoch-Schönlein purpura, polyarteritis nodosa, juvenile idiopathic arthritis, juvenile ankylosing spondylitis, familial Mediterranean fever, scleroderma, sarcoidosis, Wegener's granulomatosis, Takayasu's arteritis, CINCA syndrome, Kawasaki disease, and primary CNS vasculitis; and adverse CNS effects of anti-rheumatic drugs in pediatric patients. The manifestations are diverse; ranging from headache, seizures, chorea, changes in personality, depression, memory and concentration problems, cognitive impairment, cerebrovascular accidents to coma, and death. The value of cerebrospinal fluid (CSF) examination (pleocytosis, high level of protein), auto-antibodies in serum and CSF, electroencephalography, neuroimaging with computerized tomography, magnetic resonance imaging, SPECT, PET, and angiography depends on the disease. Brain biopsy is gold standard for the diagnosis of CNS vasculitis, however it may be inconclusive in 25% of cases. A thorough knowledge of the rheumatic diseases and therapy-related adverse events is mandatory for the management of a patient with rheumatic disease and CNS involvement. Severe CNS involvement is associated with poor prognosis, and high mortality rate. High dose steroid and cyclophosphamide (oral or intravenous) are first choice drugs in the treatment; plasmapheresis, IVIG, thalidomide, and intratechal treatment may be valuable in treatment-resistant, and serious cases.
NG2 glial cells regulate neuroimmunological responses to maintain neuronal function and survival.
Nakano, Masayuki; Tamura, Yasuhisa; Yamato, Masanori; Kume, Satoshi; Eguchi, Asami; Takata, Kumi; Watanabe, Yasuyoshi; Kataoka, Yosky
2017-02-14
NG2-expressing neural progenitor cells (i.e., NG2 glial cells) maintain their proliferative and migratory activities even in the adult mammalian central nervous system (CNS) and produce myelinating oligodendrocytes and astrocytes. Although NG2 glial cells have been observed in close proximity to neuronal cell bodies in order to receive synaptic inputs, substantive non-proliferative roles of NG2 glial cells in the adult CNS remain unclear. In the present study, we generated NG2-HSVtk transgenic rats and selectively ablated NG2 glial cells in the adult CNS. Ablation of NG2 glial cells produced defects in hippocampal neurons due to excessive neuroinflammation via activation of the interleukin-1 beta (IL-1β) pro-inflammatory pathway, resulting in hippocampal atrophy. Furthermore, we revealed that the loss of NG2 glial cell-derived hepatocyte growth factor (HGF) exacerbated these abnormalities. Our findings suggest that NG2 glial cells maintain neuronal function and survival via the control of neuroimmunological function.
Calderon, Tina M; Williams, Dionna W; Lopez, Lillie; Eugenin, Eliseo A; Cheney, Laura; Gaskill, Peter J; Veenstra, Mike; Anastos, Kathryn; Morgello, Susan; Berman, Joan W
2017-06-01
In human immunodeficiency virus-1 (HIV) infected individuals, substance abuse may accelerate the development and/or increase the severity of HIV associated neurocognitive disorders (HAND). It is proposed that CD14 + CD16 + monocytes mediate HIV entry into the central nervous system (CNS) and that uninfected and infected CD14 + CD16 + monocyte transmigration across the blood brain barrier (BBB) contributes to the establishment and propagation of CNS HIV viral reservoirs and chronic neuroinflammation, important factors in the development of HAND. The effects of substance abuse on the frequency of CD14 + CD16 + monocytes in the peripheral circulation and on the entry of these cells into the CNS during HIV neuropathogenesis are not known. PBMC from HIV infected individuals were analyzed by flow cytometry and we demonstrate that the frequency of peripheral blood CD14 + CD16 + monocytes in HIV infected substance abusers is increased when compared to those without active substance use. Since drug use elevates extracellular dopamine concentrations in the CNS, we examined the effects of dopamine on CD14 + CD16 + monocyte transmigration across our in vitro model of the human BBB. The transmigration of this monocyte subpopulation is increased by dopamine and the dopamine receptor agonist, SKF 38393, implicating D1-like dopamine receptors in the increase in transmigration elicited by this neurotransmitter. Thus, elevated extracellular CNS dopamine may be a novel common mechanism by which active substance use increases uninfected and HIV infected CD14 + CD16 + monocyte transmigration across the BBB. The influx of these cells into the CNS may increase viral seeding and neuroinflammation, contributing to the development of HIV associated neurocognitive impairments.
Cheng, Ying; Zhang, Qian; Meng, Qingshu; Xia, Tingting; Huang, Zhiying; Wang, Chunxia; Liu, Bin; Chen, Shanghai; Xiao, Fei; Du, Ying
2011-01-01
We previously showed that leucine deprivation decreases abdominal fat mass largely by increasing energy expenditure, as demonstrated by increased lipolysis in white adipose tissue (WAT) and uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT). The goal of the present study was to investigate the possible involvement of central nervous system (CNS) in this regulation and elucidate underlying molecular mechanisms. For this purpose, levels of genes and proteins related to lipolysis in WAT and UCP1 expression in BAT were analyzed in wild-type mice after intracerebroventricular administration of leucine or corticotrophin-releasing hormone antibodies, or in mice deleted for three β-adrenergic receptors, after being maintained on a leucine-deficient diet for 7 d. Here, we show that intracerebroventricular administration of leucine significantly attenuates abdominal fat loss and blocks activation of hormone sensitive lipase in WAT and induction of UCP1 in BAT in leucine-deprived mice. Furthermore, we provide evidence that leucine deprivation stimulates fat loss by increasing expression of corticotrophin-releasing hormone in the hypothalamus via activation of stimulatory G protein/cAMP/protein kinase A/cAMP response element-binding protein pathway. Finally, we show that the effect of leucine deprivation on fat loss is mediated by activation of the sympathetic nervous system. These results suggest that CNS plays an important role in regulating fat loss under leucine deprivation and thereby provide novel and important insights concerning the importance of CNS leucine in the regulation of energy homeostasis. PMID:21719534
NLR-Dependent Regulation of Inflammation in Multiple Sclerosis
Gharagozloo, Marjan; Gris, Katsiaryna V.; Mahvelati, Tara; Amrani, Abdelaziz; Lukens, John R.; Gris, Denis
2018-01-01
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) associated with inappropriate activation of lymphocytes, hyperinflammatory responses, demyelination, and neuronal damage. In the past decade, a number of biological immunomodulators have been developed that suppress the peripheral immune responses and slow down the progression of the disease. However, once the inflammation of the CNS has commenced, it can cause serious permanent neuronal damage. Therefore, there is a need for developing novel therapeutic approaches that control and regulate inflammatory responses within the CNS. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are intracellular regulators of inflammation expressed by many cell types within the CNS. They redirect multiple signaling pathways initiated by pathogens and molecules released by injured tissues. NLR family members include positive regulators of inflammation, such as NLRP3 and NLRC4 and anti-inflammatory NLRs, such as NLRX1 and NLRP12. They exert immunomodulatory effect at the level of peripheral immune responses, including antigen recognition and lymphocyte activation and differentiation. Also, NLRs regulate tissue inflammatory responses. Understanding the molecular mechanisms that are placed at the crossroad of innate and adaptive immune responses, such as NLR-dependent pathways, could lead to the discovery of new therapeutic targets. In this review, we provide a summary of the role of NLRs in the pathogenesis of MS. We also summarize how anti-inflammatory NLRs regulate the immune response within the CNS. Finally, we speculate the therapeutic potential of targeting NLRs in MS. PMID:29403486
Bailey-Bucktrout, Samantha L.; Caulkins, Sarah C.; Goings, Gwendolyn; Fischer, Jens A. A.; Dzionek, Andrzej; Miller, Stephen D.
2010-01-01
Plasmacytoid dendritic cells (pDC) have both stimulatory and regulatory effects on T cells. pDCs are a major CNS-infiltrating DC population during experimental autoimmune encephalomyelitis (EAE), but unlike myeloid DCs (mDC) have a minor role in T cell activation and epitope spreading. We show that depletion of pDCs during either the acute or relapse phases of EAE resulted in exacerbation of disease severity. pDC depletion significantly enhanced CNS but not peripheral CD4+ T cell activation, as well as IL-17 and IFN-γ production. Moreover, CNS pDCs suppressed CNS mDC-driven production of IL-17, IFN-γ and IL-10 in an IDO-independent manner. The data demonstrate that pDCs play a critical regulatory role in negatively regulating pathogenic CNS CD4+ T cell responses highlighting a new role for pDCs in inflammatory autoimmune disease. PMID:18453561
Talking back: Development of the olivocochlear efferent system.
Frank, Michelle M; Goodrich, Lisa V
2018-06-26
Developing sensory systems must coordinate the growth of neural circuitry spanning from receptors in the peripheral nervous system (PNS) to multilayered networks within the central nervous system (CNS). This breadth presents particular challenges, as nascent processes must navigate across the CNS-PNS boundary and coalesce into a tightly intermingled wiring pattern, thereby enabling reliable integration from the PNS to the CNS and back. In the auditory system, feedforward spiral ganglion neurons (SGNs) from the periphery collect sound information via tonotopically organized connections in the cochlea and transmit this information to the brainstem for processing via the VIII cranial nerve. In turn, feedback olivocochlear neurons (OCNs) housed in the auditory brainstem send projections into the periphery, also through the VIII nerve. OCNs are motor neuron-like efferent cells that influence auditory processing within the cochlea and protect against noise damage in adult animals. These aligned feedforward and feedback systems develop in parallel, with SGN central axons reaching the developing auditory brainstem around the same time that the OCN axons extend out toward the developing inner ear. Recent findings have begun to unravel the genetic and molecular mechanisms that guide OCN development, from their origins in a generic pool of motor neuron precursors to their specialized roles as modulators of cochlear activity. One recurrent theme is the importance of efferent-afferent interactions, as afferent SGNs guide OCNs to their final locations within the sensory epithelium, and efferent OCNs shape the activity of the developing auditory system. This article is categorized under: Nervous System Development > Vertebrates: Regional Development. © 2018 Wiley Periodicals, Inc.
FimH adhesin of Escherichia coli K1 type 1 fimbriae activates BV-2 microglia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jongseok; Shin, Sooan; Teng, C.-H.
2005-09-02
The generation of intense inflammation in the subarachnoid space in response to meningitis-causing bacteria contributes to brain dysfunction and neuronal injury in bacterial meningitis. Microglia, the major immune effector cells in the central nervous system (CNS), become activated by bacterial components to produce proinflammatory immune mediators. In this study, we showed that FimH adhesin, a tip component of type 1 fimbriae of meningitis-causing Escherichia coli K1, activated the murine microglial cell line, BV-2, which resulted in the production of nitric oxide and the release of tumor necrosis factor-{alpha}. Mitogen-activated protein kinases, ERK and p-38, and nuclear factor-{kappa}B were involved inmore » FimH adhesin-mediated microglial activation. These findings suggest that FimH adhesin contributes to the CNS inflammatory response by virtue of activating microglia in E. coli meningitis.« less
Dendrimer advances for the central nervous system delivery of therapeutics.
Xu, Leyuan; Zhang, Hao; Wu, Yue
2014-01-15
The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included.
Dendrimer Advances for the Central Nervous System Delivery of Therapeutics
2013-01-01
The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included. PMID:24274162
Cell intrinsic control of axon regeneration
Mar, Fernando M; Bonni, Azad; Sousa, Mónica M
2014-01-01
Although neurons execute a cell intrinsic program of axonal growth during development, following the establishment of connections, the developmental growth capacity declines. Besides environmental challenges, this switch largely accounts for the failure of adult central nervous system (CNS) axons to regenerate. Here, we discuss the cell intrinsic control of axon regeneration, including not only the regulation of transcriptional and epigenetic mechanisms, but also the modulation of local protein translation, retrograde and anterograde axonal transport, and microtubule dynamics. We further explore the causes underlying the failure of CNS neurons to mount a vigorous regenerative response, and the paradigms demonstrating the activation of cell intrinsic axon growth programs. Finally, we present potential mechanisms to support axon regeneration, as these may represent future therapeutic approaches to promote recovery following CNS injury and disease. PMID:24531721
A Novel Robust H∞ Filter Based on Krein Space Theory in the SINS/CNS Attitude Reference System.
Yu, Fei; Lv, Chongyang; Dong, Qianhui
2016-03-18
Owing to their numerous merits, such as compact, autonomous and independence, the strapdown inertial navigation system (SINS) and celestial navigation system (CNS) can be used in marine applications. What is more, due to the complementary navigation information obtained from two different kinds of sensors, the accuracy of the SINS/CNS integrated navigation system can be enhanced availably. Thus, the SINS/CNS system is widely used in the marine navigation field. However, the CNS is easily interfered with by the surroundings, which will lead to the output being discontinuous. Thus, the uncertainty problem caused by the lost measurement will reduce the system accuracy. In this paper, a robust H∞ filter based on the Krein space theory is proposed. The Krein space theory is introduced firstly, and then, the linear state and observation models of the SINS/CNS integrated navigation system are established reasonably. By taking the uncertainty problem into account, in this paper, a new robust H∞ filter is proposed to improve the robustness of the integrated system. At last, this new robust filter based on the Krein space theory is estimated by numerical simulations and actual experiments. Additionally, the simulation and experiment results and analysis show that the attitude errors can be reduced by utilizing the proposed robust filter effectively when the measurements are missing discontinuous. Compared to the traditional Kalman filter (KF) method, the accuracy of the SINS/CNS integrated system is improved, verifying the robustness and the availability of the proposed robust H∞ filter.
Treatment of HIV in the Central Nervous System.
Yilmaz, Aylin; Gisslén, Magnus
2014-02-01
Central nervous system (CNS) infection is an important part of systemic human immunodeficiency disease (HIV) infection. It is most often asymptomatic, but can sometimes lead to severe neurologic disease, particularly in advanced stages of immunosuppression. CNS HIV infection usually responds well to antiretroviral treatment, but there are concerns that treatment may not always be fully effective in treating or preventing milder CNS disease and that it, under certain circumstances, might be important to consider antiretroviral drug distribution and effects within the CNS. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
The physiological functions of central nervous system pericytes and a potential role in pain
Beazley-Long, Nicholas; Durrant, Alexandra M; Swift, Matthew N; Donaldson, Lucy F
2018-01-01
Central nervous system (CNS) pericytes regulate critical functions of the neurovascular unit in health and disease. CNS pericytes are an attractive pharmacological target for their position within the neurovasculature and for their role in neuroinflammation. Whether the function of CNS pericytes also affects pain states and nociceptive mechanisms is currently not understood. Could it be that pericytes hold the key to pain associated with CNS blood vessel dysfunction? This article reviews recent findings on the important physiological functions of CNS pericytes and highlights how these neurovascular functions could be linked to pain states. PMID:29623199
Khandekar, Melin J; Piotrowska, Zofia; Willers, Henning; Sequist, Lecia V
2018-04-27
The growth of genotype-directed targeted therapies, such as inhibitors of the epidermal growth factor receptor (EGFR), has revolutionized treatment for some patients with oncogene-addicted lung cancer. However, as systemic control for these patients has improved, brain metastases remain an important source of morbidity and mortality. Traditional treatment for brain metastases has been radiotherapy, either whole-brain radiation or stereotactic radiosurgery. The growing availability of drugs that can cross the blood-brain barrier and have activity in the central nervous system (CNS) has led to many studies investigating whether targeted therapy can be used in combination with or in lieu of radiation. In this review, we summarize the key literature about the incidence and nature of EGFR-mutant brain metastases (EGFR BMs), the data about the activity of EGFR inhibitors in the CNS, and whether they can be used as front-line therapy for brain metastases. Although initial use of tyrosine kinase inhibitors for EGFR BMs can often be an effective treatment strategy, multidisciplinary evaluation is critical, and prospective studies are needed to clarify which patients may benefit from early radiotherapy. Management of brain metastases in epidermal growth factor receptor (EGFR) mutant lung cancer is a common clinical problem. The question of whether to start initial therapy with an EGFR inhibitor or radiotherapy (either whole-brain radiotherapy or stereotactic radiosurgery) is controversial. The development of novel EGFR inhibitors with enhanced central nervous system (CNS) penetration is an important advance in the treatment of CNS disease. Multidisciplinary evaluation and evaluation of extracranial disease status are critical to choosing the best treatment option for each patient. © AlphaMed Press 2018.
ERIC Educational Resources Information Center
Reumann, Rebecca; Vierk, Ricardo; Zhou, Lepu; Gries, Frederice; Kraus, Vanessa; Mienert, Julia; Romswinkel, Eva; Morellini, Fabio; Ferrer, Isidre; Nicolini, Chiara; Fahnestock, Margaret; Rune, Gabriele; Glatzel, Markus; Galliciotti, Giovanna
2017-01-01
The serine protease inhibitor neuroserpin regulates the activity of tissue-type plasminogen activator (tPA) in the nervous system. Neuroserpin expression is particularly prominent at late stages of neuronal development in most regions of the central nervous system (CNS), whereas it is restricted to regions related to learning and memory in the…
Zheng, Changcheng; Liu, Xin; Zhu, Weibo; Cai, Xiaoyan; Wu, Jingsheng; Sun, Zimin
2014-06-01
The aim of this report was to investigate the tailored treatment strategies for isolated central nervous system (CNS) recurrence in adult patients with acute myeloid leukemia (AML). Isolated CNS recurrence was documented in 34 patients: there were 18, 6, and 10 patients with meningeal involvement type (type A), cranial nerve palsy type (type B), and myeloid sarcoma type (type C), respectively. For patients with type A, intrathecal chemotherapy was the predominant strategy. For type B, systemic HD-Ara-C with four cycles was the main treatment. For type C, cranial irradiation or craniospinal irradiation was adopted and two cycles of HD-Ara-C were given after the irradiation. The 5-year cumulative incidence of CNS recurrence was 12.8%. There was a significantly higher WBC count (32.6∼60.8 × 10(9)/l) in patients at first diagnosis who developed CNS recurrence (all of the three types) compared with patients with no CNS recurrence (10.1 × 10(9)/l) (P = 0.005). We found that a significantly more patients with AML-M5 and 11q23 abnormalities developed CNS recurrence in type A (P < 0.001, 0.005). Twenty-four out of 34 patients (70.6%) with CNS recurrence achieved CNS complete remission at a median of 58 days (range, 30-120). The 3-year disease-free survival and overall survival estimates for all CNS recurrence patients were 21.6 and 25.3%, respectively. This report indicates that the tailored CNS-directed strategy is an effective modality to treat CNS recurrence in adult AML, but further studies are needed to improve the long-term survival.
2016-07-15
Activity of Antidotal Oximes and to Enhance Undergraduate Research Training Across the Sciences The views, opinions and/or findings contained in this...to Examine CNS Activity of Antidotal Oximes and to Enhance Undergraduate Research Training Across the Sciences Report Title The project utilized...examining the ability of antidotal oximes to rescue organophosphate (OP)-induced CNS toxicity and training across the sciences and social sciences at
Chen, Yuan; Ding, Yun; Zhang, Zuming; Wang, Wen; Chen, Jun-Yuan; Ueno, Naoto; Mao, Bingyu
2011-12-20
The evolution of the central nervous system (CNS) is one of the most striking changes during the transition from invertebrates to vertebrates. As a major source of genetic novelties, gene duplication might play an important role in the functional innovation of vertebrate CNS. In this study, we focused on a group of CNS-biased genes that duplicated during early vertebrate evolution. We investigated the tempo-spatial expression patterns of 33 duplicate gene families and their orthologs during the embryonic development of the vertebrate Xenopus laevis and the cephalochordate Brachiostoma belcheri. Almost all the identified duplicate genes are differentially expressed in the CNS in Xenopus embryos, and more than 50% and 30% duplicate genes are expressed in the telencephalon and mid-hindbrain boundary, respectively, which are mostly considered as two innovations in the vertebrate CNS. Interestingly, more than 50% of the amphioxus orthologs do not show apparent expression in the CNS in amphioxus embryos as detected by in situ hybridization, indicating that some of the vertebrate CNS-biased duplicate genes might arise from non-CNS genes in invertebrates. Our data accentuate the functional contribution of gene duplication in the CNS evolution of vertebrate and uncover an invertebrate non-CNS history for some vertebrate CNS-biased duplicate genes. Copyright © 2011. Published by Elsevier Ltd.
Thyroid Hormone in the CNS: Contribution of Neuron-Glia Interaction.
Noda, Mami
2018-01-01
The endocrine system and the central nervous system (CNS) are intimately linked. Among hormones closely related to the nervous system, thyroid hormones (THs) are critical for the regulation of development and differentiation of neurons and neuroglia and hence for development and function of the CNS. T3 (3,3',5-triiodothyronine), an active form of TH, is important not only for neuronal development but also for differentiation of astrocytes and oligodendrocytes, and for microglial development. In adult brain, T3 affects glial morphology with sex- and age-dependent manner and therefore may affect their function, leading to influence on neuron-glia interaction. T3 is an important signaling factor that affects microglial functions such as migration and phagocytosis via complex mechanisms. Therefore, dysfunction of THs may impair glial function as well as neuronal function and thus disturb the brain, which may cause mental disorders. Investigations on molecular and cellular basis of hyperthyroidism and hypothyroidism will help us to understand changes in neuron-glia interaction and therefore consequent psychiatric symptoms. © 2018 Elsevier Inc. All rights reserved.
Woods, Tyson A; Du, Min; Carmody, Aaron; Peterson, Karin E
2015-12-30
Monocyte infiltration into the CNS is a hallmark of several viral infections of the central nervous system (CNS), including retrovirus infection. Understanding the factors that mediate monocyte migration in the CNS is essential for the development of therapeutics that can alter the disease process. In the current study, we found that neuropeptide Y (NPY) suppressed monocyte recruitment to the CNS in a mouse model of polytropic retrovirus infection. NPY(-/-) mice had increased incidence and kinetics of retrovirus-induced neurological disease, which correlated with a significant increase in monocytes in the CNS compared to wild-type mice. Both Ly6C(hi) inflammatory and Ly6C(lo) alternatively activated monocytes were increased in the CNS of NPY(-/-) mice following virus infection, suggesting that NPY suppresses the infiltration of both cell types. Ex vivo analysis of myeloid cells from brain tissue demonstrated that infiltrating monocytes expressed high levels of the NPY receptor Y2R. Correlating with the expression of Y2R on monocytes, treatment of NPY(-/-) mice with a truncated, Y2R-specific NPY peptide suppressed the incidence of retrovirus-induced neurological disease. These data demonstrate a clear role for NPY as a negative regulator of monocyte recruitment into the CNS and provide a new mechanism for suppression of retrovirus-induced neurological disease. Monocyte recruitment to the brain is associated with multiple neurological diseases. However, the factors that influence the recruitment of these cells to the brain are still not well understood. In the current study, we found that neuropeptide Y, a protein produced by neurons, affected monocyte recruitment to the brain during retrovirus infection. We show that mice deficient in NPY have increased influx of monocytes into the brain and that this increase in monocytes correlates with neurological-disease development. These studies provide a mechanism by which the nervous system, through the production of NPY, can suppress monocyte trafficking to the brain and reduce retrovirus-induced neurological disease. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Helminth parasitic infections of the central nervous system: a diagnostic approach.
Othman, Ahmad A; Bruschi, Fabrizio; Ganna, Ahmed A
2014-04-01
Helminth parasitic infections of the central nervous system (CNS) occur worldwide with high prevalence in tropical and subtropical countries. Clinical evaluation of patients is mandatory, and it is convenient to group the clinical manifestations into syndromes: for example space-occupying lesions, meningitis, and encephalitis. The history should focus on residence or travel to endemic areas, diet, activities, intercurrent medical conditions, and associated clinical clues. Direct parasitological diagnosis can be reached by cerebrospinal fluid and cerebral tissue examination either by microscopy, culture, or immunological techniques. Immunodiagnosis by detection of parasite antibodies or antigens in serum could provide indirect evidence of parasitic infections. In addition, various imaging and radiological techniques e.g., computed tomography (CT) scan and magnetic resonance imaging (MRI) complement the diagnostic work-up of CNS diseases. Finally, the helminthic CNS infections of global impact, such as schistosomiasis, neurotoxocariasis, Strongyloides infection, neurotrichinosis, neurocysticercosis, and echinococcosis will be briefly discussed as regards the principal clinical and diagnostic features.
Central nervous system event in patients with diffuse large B-cell lymphoma in the rituximab era.
Tomita, Naoto; Yokoyama, Masahiro; Yamamoto, Wataru; Watanabe, Reina; Shimazu, Yutaka; Masaki, Yasufumi; Tsunoda, Saburo; Hashimoto, Chizuko; Murayama, Kayoko; Yano, Takahiro; Okamoto, Rumiko; Kikuchi, Ako; Tamura, Kazuo; Sato, Kazuya; Sunami, Kazutaka; Shibayama, Hirohiko; Takimoto, Rishu; Ohshima, Rika; Hatta, Yoshihiro; Moriuchi, Yukiyoshi; Kinoshita, Tomohiro; Yamamoto, Masahide; Numata, Ayumi; Ishigatsubo, Yoshiaki; Takeuchi, Kengo
2012-02-01
Central nervous system (CNS) events, including CNS relapse and progression to CNS, are known to be serious complications in the clinical course of patients with lymphoma. This study aimed to evaluate the risk of CNS events in patients with diffuse large B-cell lymphoma in the rituximab era. We performed a retrospective survey of Japanese patients diagnosed with diffuse large B-cell lymphoma who underwent primary therapy with R-CHOP chemoimmunotherapy between September 2003 and December 2006. Patients who had received any prophylactic CNS treatment were excluded. Clinical data from 1221 patients were collected from 47 institutions. The median age of patients was 64 years (range, 15-91 years). We noted 82 CNS events (6.7%) and the cumulative 5-year probability of CNS events was 8.4%. Patients with a CNS event demonstrated significantly worse overall survival (P < 0.001). The 2-year overall survival rate after a CNS event was 27.1%. In a multivariate analysis, involvement of breast (relative risk [RR] 10.5), adrenal gland (RR 4.6) and bone (RR 2.0) were identified as independent risk factors for CNS events. We conclude that patients with these risk factors, in addition to patients with testicular involvement in whom CNS prophylaxis has been already justified, are at high risk for CNS events in the rituximab era. The efficacy and manner of CNS prophylaxis in patients for each involvement site should be evaluated further. © 2011 Japanese Cancer Association.
Vilar-Pereira, Glaucia; Silva, Andrea Alice da; Pereira, Isabela Resende; Silva, Rafael Rodrigues; Moreira, Otacílio Cruz; de Almeida, Luciana Rodrigues; de Souza, Amanda Santos; Rocha, Monica Santos; Lannes-Vieira, Joseli
2012-10-01
Inflammatory cytokines and microbe-borne immunostimulators have emerged as triggers of depressive behavior. Behavioral alterations affect patients chronically infected by the parasite Trypanosoma cruzi. We have previously shown that C3H/He mice present acute phase-restricted meningoencephalitis with persistent central nervous system (CNS) parasitism, whereas C57BL/6 mice are resistant to T. cruzi-induced CNS inflammation. In the present study, we investigated whether depression is a long-term consequence of acute CNS inflammation and a contribution of the parasite strain that infects the host. C3H/He and C57BL/6 mice were infected with the Colombian (type I) and Y (type II) T. cruzi strains. Forced-swim and tail-suspension tests were used to assess depressive-like behavior. Independent of the mouse lineage, the Colombian-infected mice showed significant increases in immobility times during the acute and chronic phases of infection. Therefore, T. cruzi-induced depression is independent of active or prior CNS inflammation. Furthermore, chronic depressive-like behavior was triggered only by the type I Colombian T. cruzi strain. Acute and chronic T. cruzi infection increased indoleamine 2,3-dioxygenase (IDO) expression in the CNS. Treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine abrogated the T. cruzi-induced depressive-like behavior. Moreover, treatment with the parasiticide drug benznidazole abrogated depression. Chronic T. cruzi infection of C57BL/6 mice increased tumor necrosis factor (TNF) expression systemically but not in the CNS. Importantly, TNF modulators (anti-TNF and pentoxifylline) reduced immobility. Therefore, direct or indirect parasite-induced immune dysregulation may contribute to chronic depressive disorder in T. cruzi infection, which opens a new therapeutic pathway to be explored. Copyright © 2012 Elsevier Inc. All rights reserved.
Dassanayake, Tharaka L; Michie, Patricia T; Jones, Alison; Carter, Gregory; Mallard, Trevor; Whyte, Ian
2012-08-01
Central nervous system depressant drugs (CNS-Ds) are known to impair cognitive functions. Overdose of these drugs is common, and most of the hospital-treated patients are discharged within 24 to 48 hours. No previous studies have examined whether they have residual impairment at the time of discharge. Our aim was to evaluate whether patients with CNS-D overdose are impaired in cognitive domains important in daily activities at that time. We compared visuomotor skills (Trail-Making Test A and Choice Reaction Time), executive functions (viz attentional set-shifting: Trail-Making Test B; and planning: Stockings of Cambridge Task from the Cambridge Neuropsychological Test Automated Battery), working memory (Letter-Number Sequencing), and impulsivity and decision making (Cambridge Neuropsychological Test Automated Battery Information Sampling) in 107 patients with CNS-D overdose (benzodiazepines, opioids, or antipsychotics) with a control group of 68 with non-CNS-D overdose (acetaminophen, selective serotonin reuptake inhibitors, and serotonin noradrenaline reuptake inhibitors) on discharge from hospital. Outcome measures were adjusted for demographic and clinical covariates in multivariate regression models. Compared with the controls, patients in the CNS-D group were significantly impaired in all domains: they had prolonged Trail-Making completion times and reaction times, poorer working memory and planning and were more impulsive in decision making. Their Stockings of Cambridge Task performance was comparable to that of the control group for simple problems but worsened with increasing task complexity. The results show that patients with CNS-D overdose could be impaired in multiple cognitive domains underlying everyday functioning even at the time they are deemed medically fit to be discharged. Such impairments could adversely affect social and professional lives of this relatively young population during the immediate postdischarge period.
Systemic Tolerance Mediated by Melanoma Brain Tumors is Reversible by Radiotherapy and Vaccination
Jackson, Christopher M.; Kochel, Christina M.; Nirschl, Christopher J.; Durham, Nicholas M.; Ruzevick, Jacob; Alme, Angela; Francica, Brian J.; Elias, Jimmy; Daniels, Andrew; Dubensky, Thomas W.; Lauer, Peter; Brockstedt, Dirk G.; Baxi, Emily G.; Calabresi, Peter A.; Taube, Janis M.; Pardo, Carlos A.; Brem, Henry; Pardoll, Drew M.; Lim, Michael; Drake, Charles G.
2016-01-01
Purpose Immune responses to antigens originating in the CNS are generally attenuated, since collateral damage can have devastating consequences. The significance of this finding for the efficacy of tumor-targeted immunotherapies is largely unknown. Experimental Design The B16 murine melanoma model was used to compare cytotoxic responses against established tumors in the CNS and in the periphery. Cytokine analysis of tissues from brain tumor-bearing mice detected elevated TGF-β secretion from microglia and in the serum and TGF-β signaling blockade reversed tolerance of tumor antigen-directed CD8 T cells. Additionally, a treatment regimen using focal radiation therapy and recombinant Listeria monocytogenes was evaluated for immunologic activity and efficacy in this model. Results CNS melanomas were more tolerogenic than equivalently progressed tumors outside the CNS as antigen-specific CD8 T cells were deleted and exhibited impaired cytotoxicity. Tumor-bearing mice had elevated serum levels of TGF-β; however, blocking TGF-β signaling with a small molecule inhibitor or a monoclonal antibody did not improve survival. Conversely, tumor antigen-specific vaccination in combination with focal radiation therapy reversed tolerance and improved survival. This treatment regimen was associated with increased polyfunctionality of CD8 T cells, elevated T effector to T regulatory cell ratios and decreased TGF-β secretion from microglia. Conclusions These data suggest that CNS tumors may impair systemic antitumor immunity and consequently accelerate cancer progression locally as well as outside the CNS while antitumor immunity may be restored by combining vaccination with radiation therapy. These findings are hypothesis-generating and warrant further study in more contemporary melanoma models as well as human trials. PMID:26490306
Campbell, Arezoo; Araujo, Jesus A; Li, Huihui; Sioutas, Constantinos; Kleinman, Michael
2009-08-01
Exposure to air particulate matter (PM) present in urban environments have been shown to induce systemic prooxidant and proinflammatory effects in apolipoprotein E knockout (ApoE-/-) mice and proinflammatory central nervous system (CNS) effects in BALB/c mice. We hypothesize that ApoE-/- mice would exhibit a greater propensity to develop PM-induced CNS effects due to their greater susceptibility to CNS inflammation. We studied the brains of ApoE-/- mice exposed in a previous study to concentrated air particles of different sizes (fine vs. ultrafine) or filtered-air to evaluate the effect of PM exposure on the development of CNS proinflammatory effects in a genetically susceptible background. This was important because, although the use of nano-sized materials opens an exciting potential for their use as diagnostic or therapeutic tools, not much is known about the possible CNS toxicity of these particles. Neuroinflammation has been shown to exacerbate progression of neurodegeneration. Since the onset and progression of idiopathic forms of neurodegenerative disorders are likely to be multifactorial and involve gene-environment interactions, we determined the possibility of particles in ambient air pollution to enhance neuroinflammation. Our results indicate that in the brain, there was significant modulation in the activation of the transcription factors NF-kappaB and AP-1 after exposure to the ultrafine fractions. Levels of two pro-inflammatory cytokines (TNF-alpha and IL-1alpha) were also increased in the brain of exposed animals and this was independent of the size fraction of PM. Since inflammatory processes have been shown to contribute to the pathology associated with neurodegenerative diseases, it will be important to further evaluate the role ambient particles may play in the potentiation of existing CNS damage and progression of neurodegenerative disorders.
Zhang, X; Brewer, L; Walcheck, B; Johnson, A; Pease, L R; Njenga, M K
2001-06-01
Mice with targeted deletion of L-selectin gene (L-sel(-/-)) were used to investigate the role of adhesion molecule in immunologic responses following virus infection in the central nervous system (CNS). L-Sel(-/-) mice from a resistant H-2(b) genetic background and parental wild-type H-2(b) (C57BL/6) mice were infected with Theiler's murine encephalomyelitis virus (TMEV) intracerebrally and the kinetics of virus replication and infiltration of immune cells in the CNS determined. The levels of infectious TMEV, as measured by plaque assay at 3, 7, 14, and 28 days after infection were between 4 and 6 log(10) PFU of virus per gram of CNS tissues at days 3 and 7 post-infection, and then decreased to undetectable levels by day 14 after infection in both strains of mice. The L-sel(-/-) mice had decreased numbers of CD8(+) T lymphocytes (17.72%+/-2.4) infiltrating into the CNS at 7 days post-infection when compared to wild-type mice (31.02%+/-7.5). In addition, the L-sel(-/-) mice had significantly lower levels of TMEV-specific serum IgG resulting in lower virus neutralizing activity of the serum when compared to wild-type mice. However, the L-sel(-/-) mice had 2.5-fold increase in B lymphocytes in the CNS (8.29%+/-1.1) when compared to wild-type mice (3.2%+/-0.4). Taken together, these data indicate that L-selectin plays a role in recruitment of B and CD8(+) T lymphocytes into the CNS following virus infection, which, however, did not affect the ability of the mice to clear TMEV infection.
Hinson, Shannon R.; Clift, Ian C.; Luo, Ningling; Kryzer, Thomas J.; Lennon, Vanda A.
2017-01-01
Aquaporin-4 (AQP4) water channel-specific IgG distinguishes neuromyelitis optica (NMO) from multiple sclerosis and causes characteristic immunopathology in which central nervous system (CNS) demyelination is secondary. Early events initiating the pathophysiological outcomes of IgG binding to astrocytic AQP4 are poorly understood. CNS lesions reflect events documented in vitro following IgG interaction with AQP4: AQP4 internalization, attenuated glutamate uptake, intramyelinic edema, interleukin-6 release, complement activation, inflammatory cell recruitment, and demyelination. Here, we demonstrate that AQP4 internalization requires AQP4-bound IgG to engage an astrocytic Fcγ receptor (FcγR). IgG-lacking Fc redistributes AQP4 within the plasma membrane and induces interleukin-6 release. However, AQP4 endocytosis requires an activating FcγR’s gamma subunit and involves astrocytic membrane loss of an inhibitory FcγR, CD32B. Interaction of the IgG–AQP4 complex with FcγRs triggers coendocytosis of the excitatory amino acid transporter 2 (EAAT2). Requirement of FcγR engagement for internalization of two astrocytic membrane proteins critical to CNS homeostasis identifies a complement-independent, upstream target for potential early therapeutic intervention in NMO. PMID:28461494
Aldoss, Ibrahim; Al Malki, Monzr M; Stiller, Tracey; Cao, Thai; Sanchez, James F; Palmer, Joycelynne; Forman, Stephen J; Pullarkat, Vinod
2016-03-01
Acute lymphoblastic leukemia (ALL) with a history of central nervous system (CNS) involvement, either at diagnosis or relapse, poses challenges when the decision is made to proceed with allogeneic hematopoietic cell transplantation (alloHCT), as there is no evidence-based consensus on the best peri-transplantation approach to reduce subsequent CNS relapse risk. Here, we retrospectively analyzed outcomes of 87 patients with ALL and a history of CNS involvement who later underwent alloHCT. Patients with pretransplantation CNS involvement had higher risk of CNS relapse after transplantation (2-year CNS relapse: 9.6% versus 1.4%, P < .0001), inferior event-free survival (EFS) (hazard ratio [HR], 1.52; P = .003), and worse overall survival (OS) (HR, 1.55; P = .003) compared with patients without pretransplantation CNS involvement (n = 543). There was no difference in post-transplantation CNS relapse, EFS, or OS among patients presenting with CNS involvement at diagnosis, those with isolated CNS relapse, and those with combined bone marrow and CNS relapse before HCT. Interestingly, neither pretransplantation cranial irradiation, use of total body irradiation-based conditioning, nor post-transplantation prophylactic intrathecal chemotherapy were associated with a reduction of CNS relapse risk after transplantation. Thus, among the patients in the cohort studied, there was no clear benefit of CNS-directed therapy in the peri-transplantation period among patients who had prior CNS involvement and underwent subsequent alloHCT. Copyright © 2016 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Saganuwan, Saganuwan A
2017-01-01
Central Nervous System (CNS) disorders are on increase perhaps due to genetic, enviromental, social and dietetic factors. Unfortunately, a large number of CNS drugs have adverse effects such as addiction, tolerance, psychological and physical dependence. In view of this, literature search was carried out with a view to identify functional chemical groups that may serve as lead molecules for synthesis of compounds that may have CNS activity. The search revealed that heterocycles that have heteroatoms such as nitrogen (N), sulphur (S) and oxygen (O) form the largest class of organic compounds. They replace carbon in a benzene ring to form pyridine. Compounds with furan, thiophene, pyrrole, pyridine, azole, imidazole, indole, purine, pyrimidine, esters, carboxylic acid, aldehyde, pyrylium, pyrone, pyrodine, barbituric acid, barbiturate, quinoline, quinolone, isoquinolone, coumarin, alkylpyridine, picoline, piperidine, diazine, carboxamide, flavonoid glycoside, oxindole, aminophenol, benzimidazole, benzoxazole, benzothiazole, and chromone chemical groups among others may have CNS effects ranging from depression passing through euphoria to convulsion. Examples of the compounds with the functional groups include but not limited to coal tar, pyridostigmine, pralidoxime, quinine, mefloquine, pyrilamine, pyronaridine, ciprofloxacin and piroxicam. A number of them can undergo keto-enol tautomerism. Chiral amines may be used for derivation of chiral carboxylic acids which are components of tautomers. Some tautomers may cause parkinsonism and Stevens Johnson syndrome. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The Meninges: New Therapeutic Targets For Multiple Sclerosis
Russi, Abigail E.; Brown, Melissa A.
2014-01-01
The CNS is largely comprised of non-regenerating cells, including neurons and myelin-producing oligodendrocytes, which are particularly vulnerable to immune cell mediated damage. To protect the CNS, mechanisms exist that normally restrict the transit of peripheral immune cells into the brain and spinal cord, conferring an “immune specialized” status. Thus, there has been a long-standing debate as to how these restrictions are overcome in several inflammatory diseases of the CNS, including multiple sclerosis (MS). In this review, we highlight the role of the meninges, tissues that surround and protect the CNS and enclose the cerebral spinal fluid, in promoting chronic inflammation that leads to neuronal damage. Although the meninges have traditionally been considered structures that provide physical protection for the brain and spinal cord, new data has established these tissues as sites of active immunity. It has been hypothesized that the meninges are important players in normal immunosurveillance of the CNS but also serve as initial sites of anti-myelin immune responses. The resulting robust meningeal inflammation elicits loss of localized blood barrier integrity and facilitates a large-scale influx of immune cells into the CNS parenchyma. We propose that targeting of the cells and molecules mediating these inflammatory responses within the meninges offers promising therapies for MS that are free from the constraints imposed by the blood brain barrier. Importantly, such therapies may avoid the systemic immunosuppression often associated with the existing treatments. PMID:25241937
Jacus, M.O.; Throm, S.L.; Turner, D.C.; Patel, Y.T.; Freeman, B.B.; Morfouace, M.; Boulos, N.; Stewart, C. F.
2014-01-01
The treatment of children with primary central nervous system (CNS) tumors continues to be a challenge despite recent advances in technology and diagnostics. In this overview, we describe our approach for identifying and evaluating active anticancer drugs through a process that enables rational translation from the lab to the clinic. The preclinical approach we discuss uses tumor subgroup-specific models of pediatric CNS tumors, cerebral microdialysis sampling of tumor extracellular fluid (tECF), and pharmacokinetic modeling and simulation to overcome challenges that currently hinder researchers in this field. This approach involves performing extensive systemic (plasma) and target site (CNS tumor) pharmacokinetic studies. Pharmacokinetic modeling and simulation of the data derived from these studies are then used to inform future decisions regarding drug administration, including dosage and schedule. Here, we also present how our approach was used to examine two FDA approved drugs, simvastatin and pemetrexed, as candidates for new therapies for pediatric CNS tumors. We determined that due to unfavorable pharmacokinetic characteristics and insufficient concentrations in tumor tissue in a mouse model of ependymoma, simvastatin would not be efficacious in further preclinical trials. In contrast to simvastatin, pemetrexed was advanced to preclinical efficacy studies after our studies determined that plasma exposures were similar to those in humans treated at similar tolerable dosages and adequate unbound concentrations were found in tumor tissue of medulloblastoma-bearing mice. Generally speaking, the high clinical failure rates for CNS drug candidates can be partially explained by the fact that therapies are often moved into clinical trials without extensive and rational preclinical studies to optimize the transition. Our approach addresses this limitation by using pharmacokinetic and pharmacodynamic modeling of data generated from appropriate in vivo models to support the rational testing and usage of innovative therapies in children with CNS tumors. PMID:24269626
Oikawa, Shino; Kai, Yuko; Tsuda, Masayuki; Ohata, Hisayuki; Mano, Asuka; Mizoguchi, Naoko; Sugama, Shuei; Nemoto, Takahiro; Suzuki, Kenji; Kurabayashi, Atsushi; Muramoto, Kazuyo; Kaneda, Makoto; Kakinuma, Yoshihiko
2016-11-01
We previously developed cardiac ventricle-specific choline acetyltransferase (ChAT) gene-overexpressing transgenic mice (ChAT tgm), i.e. an in vivo model of the cardiac non-neuronal acetylcholine (NNA) system or non-neuronal cardiac cholinergic system (NNCCS). By using this murine model, we determined that this system was responsible for characteristics of resistance to ischaemia, or hypoxia, via the modulation of cellular energy metabolism and angiogenesis. In line with our previous study, neuronal ChAT-immunoreactivity in the ChAT tgm brains was not altered from that in the wild-type (WT) mice brains; in contrast, the ChAT tgm hearts were the organs with the highest expression of the ChAT transgene. ChAT tgm showed specific traits in a central nervous system (CNS) phenotype, including decreased response to restraint stress, less depressive-like and anxiety-like behaviours and anti-convulsive effects, all of which may benefit the heart. These phenotypes, induced by the activation of cardiac NNCCS, were dependent on the vagus nerve, because vagus nerve stimulation (VS) in WT mice also evoked phenotypes similar to those of ChAT tgm, which display higher vagus nerve discharge frequency; in contrast, lateral vagotomy attenuated these traits in ChAT tgm to levels observed in WT mice. Furthermore, ChAT tgm induced several biomarkers of VS responsible for anti-convulsive and anti-depressive-like effects. These results suggest that the augmentation of the NNCCS transduces an effective and beneficial signal to the afferent pathway, which mimics VS. Therefore, the present study supports our hypothesis that activation of the NNCCS modifies CNS to a more stress-resistant state through vagus nerve activity. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Vegeto, Elisabetta; Benedusi, Valeria; Maggi, Adriana
2008-01-01
Recent studies highlight the prominent role played by estrogens in protecting the central nervous system (CNS) against the noxious consequences of a chronic inflammatory reaction. The neurodegenerative process of several CNS diseases, including Multiple Sclerosis, Alzheimer’s and Parkinson’s Diseases, is associated with the activation of microglia cells, which drive the resident inflammatory response. Chronically stimulated during neurodegeneration, microglia cells are thought to provide detrimental effects on surrounding neurons. The inhibitory activity of estrogens on neuroinflammation and specifically on microglia might thus be considered as a beneficial therapeutic opportunity for delaying the onset or progression of neurodegenerative diseases; in addition, understanding the peculiar activity of this female hormone on inflammatory signalling pathways will possibly lead to the development of selected anti-inflammatory molecules. This review summarises the evidence for the involvement of microglia in neuroinflammation and the anti-inflammatory activity played by estrogens specifically in microglia. PMID:18522863
Cannabinoids Modulate Neuronal Activity and Cancer by CB1 and CB2 Receptor-Independent Mechanisms
Soderstrom, Ken; Soliman, Eman; Van Dross, Rukiyah
2017-01-01
Cannabinoids include the active constituents of Cannabis or are molecules that mimic the structure and/or function of these Cannabis-derived molecules. Cannabinoids produce many of their cellular and organ system effects by interacting with the well-characterized CB1 and CB2 receptors. However, it has become clear that not all effects of cannabinoid drugs are attributable to their interaction with CB1 and CB2 receptors. Evidence now demonstrates that cannabinoid agents produce effects by modulating activity of the entire array of cellular macromolecules targeted by other drug classes, including: other receptor types; ion channels; transporters; enzymes, and protein- and non-protein cellular structures. This review summarizes evidence for these interactions in the CNS and in cancer, and is organized according to the cellular targets involved. The CNS represents a well-studied area and cancer is emerging in terms of understanding mechanisms by which cannabinoids modulate their activity. Considering the CNS and cancer together allow identification of non-cannabinoid receptor targets that are shared and divergent in both systems. This comparative approach allows the identified targets to be compared and contrasted, suggesting potential new areas of investigation. It also provides insight into the diverse sources of efficacy employed by this interesting class of drugs. Obtaining a comprehensive understanding of the diverse mechanisms of cannabinoid action may lead to the design and development of therapeutic agents with greater efficacy and specificity for their cellular targets. PMID:29066974
Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance.
López, Miguel; Varela, Luis; Vázquez, María J; Rodríguez-Cuenca, Sergio; González, Carmen R; Velagapudi, Vidya R; Morgan, Donald A; Schoenmakers, Erik; Agassandian, Khristofor; Lage, Ricardo; Martínez de Morentin, Pablo Blanco; Tovar, Sulay; Nogueiras, Rubén; Carling, David; Lelliott, Christopher; Gallego, Rosalía; Oresic, Matej; Chatterjee, Krishna; Saha, Asish K; Rahmouni, Kamal; Diéguez, Carlos; Vidal-Puig, Antonio
2010-09-01
Thyroid hormones have widespread cellular effects; however it is unclear whether their effects on the central nervous system (CNS) contribute to global energy balance. Here we demonstrate that either whole-body hyperthyroidism or central administration of triiodothyronine (T3) decreases the activity of hypothalamic AMP-activated protein kinase (AMPK), increases sympathetic nervous system (SNS) activity and upregulates thermogenic markers in brown adipose tissue (BAT). Inhibition of the lipogenic pathway in the ventromedial nucleus of the hypothalamus (VMH) prevents CNS-mediated activation of BAT by thyroid hormone and reverses the weight loss associated with hyperthyroidism. Similarly, inhibition of thyroid hormone receptors in the VMH reverses the weight loss associated with hyperthyroidism. This regulatory mechanism depends on AMPK inactivation, as genetic inhibition of this enzyme in the VMH of euthyroid rats induces feeding-independent weight loss and increases expression of thermogenic markers in BAT. These effects are reversed by pharmacological blockade of the SNS. Thus, thyroid hormone-induced modulation of AMPK activity and lipid metabolism in the hypothalamus is a major regulator of whole-body energy homeostasis.
Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance
López, Miguel; Varela, Luis; Vázquez, María J.; Rodríguez-Cuenca, Sergio; González, Carmen R.; Velagapudi, Vidya R.; Morgan, Donald A.; Schoenmakers, Erik; Agassandian, Khristofor; Lage, Ricardo; de Morentin, Pablo Blanco Martínez; Tovar, Sulay; Nogueiras, Rubén; Carling, David; Lelliott, Christopher; Gallego, Rosalía; Orešič, Matej; Chatterjee, Krishna; Saha, Asish K.; Rahmouni, Kamal; Diéguez, Carlos; Vidal-Puig, Antonio
2010-01-01
Thyroid hormones have widespread cellular effects; however it is unclear whether their effects on the central nervous system (CNS) contribute to global energy balance. Here, we demonstrate that either whole body hyperthyroidism or central administration of triiodothyronine (T3) decreases the activity of hypothalamic AMP-activated protein kinase (AMPK), increases sympathetic nervous system (SNS) activity and upregulates thermogenic markers in brown adipose tissue (BAT). Inhibition of the lipogenic pathway in the ventromedial nucleus of the hypothalamus (VMH) prevents CNS-mediated activation of BAT by thyroid hormone and reverses the weight loss associated with hyperthyroidism. Similarly inhibition of thyroid hormone receptors (TRs) in the VMH reverses the weight loss associated with hyperthyroidism. This regulatory mechanism depends on AMPK inactivation as genetic ablation of this enzyme in the VMH of euthyroid rats induces feeding-independent weight loss and increases expression of thermogenic markers in BAT. These effects are reversed by pharmacological blockade of the SNS. Thus, thyroid-hormone-induced modulation of AMPK activity and lipid metabolism in the hypothalamus is an important regulator of energy homeostasis. PMID:20802499
Kindred, John H; Tuulari, Jetro J; Simon, Stacey; Luckasen, Gary J; Bell, Christopher; Rudroff, Thorsten
2016-06-01
The purpose of this study was to determine the activity of brown adipose tissue (BAT) and the central nervous system (CNS) during cold exposure in young and older men. Two young, 24 and 21 years, and two older, 76 and 74 years, men participated in the study. Positron emission tomography images showed cold-induced BAT activity was absent in older men but clearly present in the clavicular region of the young men (Standardized Uptake Value: SUVmean: 3.12 and 3.71). Statistical parametric mapping revealed cortical brain activity was lower in the older men within areas of the frontal, parietal, temporal, and occipital lobes, and the thalamus (peak-level p uncorr < 0.036). Cervical spinal cord SUVmean values tended to be lower for older (SUVmean: 1.64 and 1.61) compared to young men (SUVmean: 1.91 and 1.71). These preliminary findings suggest lower BAT activity in older men may in part be due to lower CNS activity.
A Novel Robust H∞ Filter Based on Krein Space Theory in the SINS/CNS Attitude Reference System
Yu, Fei; Lv, Chongyang; Dong, Qianhui
2016-01-01
Owing to their numerous merits, such as compact, autonomous and independence, the strapdown inertial navigation system (SINS) and celestial navigation system (CNS) can be used in marine applications. What is more, due to the complementary navigation information obtained from two different kinds of sensors, the accuracy of the SINS/CNS integrated navigation system can be enhanced availably. Thus, the SINS/CNS system is widely used in the marine navigation field. However, the CNS is easily interfered with by the surroundings, which will lead to the output being discontinuous. Thus, the uncertainty problem caused by the lost measurement will reduce the system accuracy. In this paper, a robust H∞ filter based on the Krein space theory is proposed. The Krein space theory is introduced firstly, and then, the linear state and observation models of the SINS/CNS integrated navigation system are established reasonably. By taking the uncertainty problem into account, in this paper, a new robust H∞ filter is proposed to improve the robustness of the integrated system. At last, this new robust filter based on the Krein space theory is estimated by numerical simulations and actual experiments. Additionally, the simulation and experiment results and analysis show that the attitude errors can be reduced by utilizing the proposed robust filter effectively when the measurements are missing discontinuous. Compared to the traditional Kalman filter (KF) method, the accuracy of the SINS/CNS integrated system is improved, verifying the robustness and the availability of the proposed robust H∞ filter. PMID:26999153
NASA Astrophysics Data System (ADS)
Gardner, Gregory S.
This research dissertation summarizes research done on the topic of global air traffic control, to include technology, controlling world organizations and economic considerations. The International Civil Aviation Organization (ICAO) proposed communication, navigation, surveillance, air traffic management system (CNS/ATM) plan is the basis for the development of a single global CNS/ATM system concept as it is discussed within this study. Research will be evaluated on the efficacy of a single technology, Automatic Dependent Surveillance-Broadcast (ADS-B) within the scope of a single global CNS/ATM system concept. ADS-B has been used within the Federal Aviation Administration's (FAA) Capstone program for evaluation since the year 2000. The efficacy of ADS-B was measured solely by using National Transportation Safety Board (NTSB) data relating to accident and incident rates within the Alaskan airspace (AK) and that of the national airspace system (NAS).
Early oxytocin inhibition of salt intake after furosemide treatment in rats?
Core, Sheri L; Curtis, Kathleen S
2017-05-01
Body fluid homeostasis requires a complex suite of physiological and behavioral processes. Understanding of the role of the central nervous system (CNS) in integrating these processes has been advanced by research employing immunohistochemical techniques to assess responses to a variety of body fluid challenges. Such techniques have revealed sex/estrogen differences in CNS activation in response to hypotension and hypernatremia. In contrast, it has been difficult to conclusively identify specific CNS areas and neurotransmitter systems that are activated by hyponatremia using these techniques. In part, this difficulty is due to the temporal disconnect between the physiological effects of treatments commonly used to deplete body sodium and the behavioral response to such depletion. In some methods, sodium ingestion is delayed in association with increased oxytocin (OT), suggesting an inhibitory role for OT in sodium intake. Urinary sodium loss increases within an hour after treatment with furosemide, a natriuretic-diuretic, but sodium intake is delayed for 18-24h. Accordingly, we hypothesized that acute furosemide-induced sodium loss activates centrally-projecting OT neurons which provide an initial inhibition of sodium intake, and tested this hypothesis in ovariectomized Sprague-Dawley rats with or without estrogen using immunohistochemical methods. Neuronal activation in the hypothalamic paraventricular nuclei (PVN) after administration of furosemide corresponded to the timing of the physiological effects. The activation was not different in estrogen-treated rats, nor did estrogen alter the initial suppression of sodium intake. However, virtually no fos immunoreactive (fos-IR) neurons in the parvocellular PVN were also immunolabeled for OT. Thus, acute sodium loss after furosemide produces neural activation and an early inhibition of sodium intake that does not appear to involve activation of centrally-projecting OT neurons and is not influenced by estrogen. Copyright © 2017 Elsevier Inc. All rights reserved.
Bile Acid Signaling Pathways from the Enterohepatic Circulation to the Central Nervous System
Mertens, Kim L.; Kalsbeek, Andries; Soeters, Maarten R.; Eggink, Hannah M.
2017-01-01
Bile acids are best known as detergents involved in the digestion of lipids. In addition, new data in the last decade have shown that bile acids also function as gut hormones capable of influencing metabolic processes via receptors such as FXR (farnesoid X receptor) and TGR5 (Takeda G protein-coupled receptor 5). These effects of bile acids are not restricted to the gastrointestinal tract, but can affect different tissues throughout the organism. It is still unclear whether these effects also involve signaling of bile acids to the central nervous system (CNS). Bile acid signaling to the CNS encompasses both direct and indirect pathways. Bile acids can act directly in the brain via central FXR and TGR5 signaling. In addition, there are two indirect pathways that involve intermediate agents released upon interaction with bile acids receptors in the gut. Activation of intestinal FXR and TGR5 receptors can result in the release of fibroblast growth factor 19 (FGF19) and glucagon-like peptide 1 (GLP-1), both capable of signaling to the CNS. We conclude that when plasma bile acids levels are high all three pathways may contribute in signal transmission to the CNS. However, under normal physiological circumstances, the indirect pathway involving GLP-1 may evoke the most substantial effect in the brain. PMID:29163019
New experimental models of the blood-brain barrier for CNS drug discovery
Kaisar, Mohammad A.; Sajja, Ravi K.; Prasad, Shikha; Abhyankar, Vinay V.; Liles, Taylor; Cucullo, Luca
2017-01-01
Introduction The blood-brain barrier (BBB) is a dynamic biological interface which actively controls the passage of substances between the blood and the central nervous system (CNS). From a biological and functional standpoint, the BBB plays a crucial role in maintaining brain homeostasis inasmuch that deterioration of BBB functions are prodromal to many CNS disorders. Conversely, the BBB hinders the delivery of drugs targeting the brain to treat a variety of neurological diseases. Area covered This article reviews recent technological improvements and innovation in the field of BBB modeling including static and dynamic cell-based platforms, microfluidic systems and the use of stem cells and 3D printing technologies. Additionally, the authors laid out a roadmap for the integration of microfluidics and stem cell biology as a holistic approach for the development of novel in vitro BBB platforms. Expert opinion Development of effective CNS drugs has been hindered by the lack of reliable strategies to mimic the BBB and cerebrovascular impairments in vitro. Technological advancements in BBB modeling have fostered the development of highly integrative and quasi- physiological in vitro platforms to support the process of drug discovery. These advanced in vitro tools are likely to further current understanding of the cerebrovascular modulatory mechanisms. PMID:27782770
NASA Astrophysics Data System (ADS)
Popov, Dmitri; Jones, Jeffrey; Maliev, Slava
Key words: Cerebrovascular Acute Radiation Syndrome (Cv ARS), Radiation Neurotoxins (RNT), Neurotransmitters, Radiation Countermeasures, Antiradiation Vaccine (ArV), Antiradiation Blocking Antibodies, Antiradiation Antidote. Psychoneuroimmunology, Neurotoxicity. ABSTRACT: To review the role of Radiation Neurotoxins in triggering, developing of radiation induced central nervous system injury. Radiation Neurotoxins - rapidly acting blood toxic lethal agent, which activated after irradiation and concentrated, circulated in interstitial fluid, lymph, blood with interactions with cell membranes, receptors and cell compartments. Radiation Neurotoxins - biological molecules with high enzymatic activity and/or specific lipids and activated or modified after irradiation. The Radiation Neurotoxins induce increased permeability of blood vessels, disruption of the blood-brain barrier, blood-cerebrospinal fluid (CSF) barrier and developing severe disorder of blood macro- and micro-circulation. Principles of Radiation Psychoneuro-immunology and Psychoneuro-allergology were applied for determination of pathological processes developed after irradiation or selective administration of Radiation Neurotoxins to radiation naïve mammals. Effects of radiation and exposure to radiation can develop severe irreversible abnormalities of Central Nervous System, brain structures and functions. Antiradiation Vaccine - most effective, advanced methods of protection, prevention, mitigation and treatment and was used for of Acute Radiation Syndromes and elaboration of new technology for immune-prophylaxis and immune-protection against ϒ, Heavy Ion, Neutron irradiation. Results of experiments suggested that blocking, antitoxic, antiradiation antibodies can significantly reduce toxicity of Radiation Toxins. New advanced technology include active immune-prophylaxis with Antiradiation Vaccine and Antiradiation therapy that included specific blocking antibodies to Radiation Neurotoxins. Antiradiation Vaccine and Antiradiation IgG preparations - prospective effective antidote/countermeasure for ϒ-irradiation, heavy ions irradiation, neutron irradiation. Recommendations for treatment and immune-prophylaxis of CNS injury, induced by radiation, were proposed. Specific immune therapy and specific immune prophylaxis reduce symptoms of ACvRS. This manuscript summarizes the results of experiments and considering possibility for blocking toxicological mechanisms of action of Radiation and Radiation Neurotoxins and prevention or diminishing clinical signs of injury of CNS. Experimental data suggest that Antiradiation vaccine and Antiradiation IgG with specific antibodies to Radiation Neurotoxins, Cytotoxins protect CNS against high doses of radiation.
Baby, Santhosh M; Bogdanovich, Sasha; Willmann, Gabriel; Basu, Utpal; Lozynska, Olga; Khurana, Tejvir S
2010-03-01
Utrophin (Utrn) is the autosomal homolog of dystrophin, the Duchene Muscular Dystrophy (DMD) locus product and of therapeutic interest, as its overexpression can compensate dystrophin's absence. Utrn is transcribed by Utrn-A and -B promoters with mRNAs differing at their 5' ends. However, previous central nervous system (CNS) studies used C-terminal antibodies recognizing both isoforms. As this distinction may impact upregulation strategies, we generated Utrn-A and -B promoter-specific antibodies, Taqman Polymerase chain reaction (PCR)-based absolute copy number assays, and luciferase-reporter constructs to study CNS of normal and dystrophic mdx mice. Differential expression of Utrn-A and -B was noted in microdissected and capillary-enriched fractions. At the protein level, Utrn-B was predominantly expressed in vasculature and ependymal lining, whereas Utrn-A was expressed in neurons, astrocytes, choroid plexus and pia mater. mRNA quantification demonstrated matching patterns of differential expression; however, transcription-translation mismatch was noted for Utrn-B in caudal brain regions. Utrn-A and Utrn-B proteins were significantly upregulated in olfactory bulb and cerebellum of mdx brain. Differential promoter activity, mRNA and protein expressions were studied in cultured C2C12, bEnd3, neurons and astrocytes. Promoter activity ranking for Utrn-A and -B was neurons > astrocytes > C2C12 > bEnd3 and bEnd3 > astrocytes > neurons > C2C12, respectively. Our results identify promoter usage patterns for therapeutic targeting and define promoter-specific differential distribution of Utrn isoforms in normal and dystrophic CNS.
Neuroinfections caused by fungi.
Góralska, Katarzyna; Blaszkowska, Joanna; Dzikowiec, Magdalena
2018-05-21
Fungal infections of the central nervous system (FIs-CNS) have become significantly more common over the past 2 decades. Invasion of the CNS largely depends on the immune status of the host and the virulence of the fungal strain. Infections with fungi cause a significant morbidity in immunocompromised hosts, and the involvement of the CNS may lead to fatal consequences. One hundred and thirty-five articles on fungal neuroinfection in PubMed, Google Scholar, and Cochrane databases were selected for review using the following search words: "fungi and CNS mycoses", CNS fungal infections", "fungal brain infections", " fungal cerebritis", fungal meningitis", "diagnostics of fungal infections", and "treatment of CNS fungal infections". All were published in English with the majority in the period 2000-2018. This review focuses on the current knowledge of the epidemiology, clinical presentations, diagnosis, and treatment of selected FIs-CNS. The FIs-CNS can have various clinical presentations, mainly meningitis, encephalitis, hydrocephalus, cerebral abscesses, and stroke syndromes. The etiologic factors of neuroinfections are yeasts (Cryptococcus neoformans, Candida spp., Trichosporon spp.), moniliaceous moulds (Aspergillus spp., Fusarium spp.), Mucoromycetes (Mucor spp., Rhizopus spp.), dimorphic fungi (Blastomyces dermatitidis, Coccidioides spp., Histoplasma capsulatum), and dematiaceous fungi (Cladophialophora bantiana, Exophiala dermatitidis). Their common route of transmission is inhalation or inoculation from trauma or surgery, with subsequent hematogenous or contiguous spread. As the manifestations of FIs-CNS are often non-specific, their diagnosis is very difficult. A fast identification of the etiological factor of neuroinfection and the application of appropriate therapy are crucial in preventing an often fatal outcome. The choice of effective drug depends on its extent of CNS penetration and spectrum of activity. Pharmaceutical formulations of amphotericin B (AmB) (among others, deoxycholate-AmBd and liposomal L-AmB) have relatively limited distribution in the cerebrospinal fluid (CSF); however, their detectable therapeutic concentrations in the CNS makes them recommended drugs for the treatment of cryptococcal meningoencephalitis (AmBd with flucytosine) and CNS candidiasis (L-AmB) and mucormycosis (L-AmB). Voriconazole, a moderately lipophilic molecule with good CNS penetration, is recommended in the first-line therapy of CNS aspergillosis. Other triazoles, such as posaconazole and itraconazole, with negligible concentrations in the CSF are not considered effective drugs for therapy of CNS fungal neuroinfections. In contrast, clinical data have shown that a novel triazole, isavuconazole, achieved considerable efficacy for the treatment of some fungal neuroinfections. Echinocandins with relatively low or undetectable concentrations in the CSF do not play meaningful role in the treatment of FIs-CNS. Although the number of fungal species causing CNS mycosis is increasing, only some possess well-defined treatment standards (e.g., cryptococcal meningitis and CNS aspergillosis). The early diagnosis of fungal infection, accompanied by identification of the etiological factor, is needed to allow the selection of effective therapy in patients with FIs-CNS and limit their high mortality.
Lebar, R; Lubetzki, C; Vincent, C; Lombrail, P; Boutry, J M
1986-01-01
Autoantibodies with in-vitro demyelinating capacity induced in Hartley and strain 13 guinea pigs with homologous central nervous system (CNS) tissue were used to characterize the target autoantigen M2. Using the Dot Immunobinding technique, M2 was found to be a component of CNS myelin different from basic protein (BP) and from cerebroside. The expression of M2 on oligodendrocytes, cells known to produce CNS myelin, also confirmed that M2 was a component of CNS myelin. Furthermore, the autoradiography of immunoprecipitates formed with radiolabelled guinea pig myelin and analysed in sodium dodecyl sulphate gels showed that M2 was specific to CNS myelin and absent in peripheral nervous system (PNS) myelin. On electrophoresis M2 appeared as two CNS myelin protein bands at the 27 and 54 KD molecular weight levels, distinct from the major protein bands of proteolipid and BP. M2 bands were of glycoprotein nature, as was demonstrated by affinity chromatography of CNS myelin on wheat germ agglutinin (WGA)-Sepharose. A monoclonal antibody induced by BP-free CNS glycoproteins recognized the same bands as anti-M2 serum in guinea pig CNS myelin. This would imply that both M2 bands share common determinants. M2 bands similar to the above in guinea pig were also shown in rat, rabbit and bovine CNS myelin with guinea pig antibodies. The same type of anti-M2 antibodies were induced in rabbit immunized with homologous CNS tissue. Although only a minor component of myelin, M2 is strongly immunogenic compared to BP. M2 antigen could thus be the target of chronic demyelinating processes such as experimental allergic encephalomyelitis. Images Fig. 1 Figure 2 Fig. 3 Fig. 4 PMID:2434274
Evidence for a novel chemotactic C1q domain-containing factor in the leech nerve cord.
Tahtouh, Muriel; Croq, Françoise; Vizioli, Jacopo; Sautiere, Pierre-Eric; Van Camp, Christelle; Salzet, Michel; Daha, Mohamed R; Pestel, Joël; Lefebvre, Christophe
2009-02-01
In vertebrates, central nervous system (CNS) protection is dependent on many immune cells including microglial cells. Indeed, activated microglial cells are involved in neuroinflammation mechanisms by interacting with numerous immune factors. Unlike vertebrates, some lophotrochozoan invertebrates can fully repair their CNS following injury. In the medicinal leech Hirudo medicinalis, the recruitment of microglial cells at the lesion site is essential for sprouting of injured axons. Interestingly, a new molecule homologous to vertebrate C1q was characterized in leech, named HmC1q (for H. medicinalis) and detected in neurons and glial cells. In chemotaxis assays, leech microglial cells were demonstrated to respond to human C1q. The chemotactic activity was reduced when microglia was preincubated with signaling pathway inhibitors (Pertussis Toxin or wortmannin) or anti-human gC1qR antibody suggesting the involvement of gC1qR in C1q-mediated migration in leech. Assays using cells preincubated with NO chelator (cPTIO) showed that C1q-mediated migration was associated to NO production. Of interest, by using anti-HmC1q antibodies, HmC1q released in the culture medium was shown to exhibit a similar chemotactic effect on microglial cells as human C1q. In summary, we have identified, for the first time, a molecule homologous to mammalian C1q in leech CNS. Its chemoattractant activity on microglia highlights a new investigation field leading to better understand leech CNS repair mechanisms.
Cerebrospinal fluid biomarkers of simian immunodeficiency virus encephalitis
Bissel, Stephanie J.; Kofler, Julia; Nyaundi, Julia; Murphey-Corb, Michael; Wisniewski, Stephen R.; Wiley, Clayton A.
2016-01-01
Antiretroviral therapy has led to increased survival of HIV-infected patients but also increased prevalence of HIV-associated neurocognitive disorders. We previously identified YKL40 as a potential cerebrospinal fluid (CSF) biomarker of lentiviral central nervous system (CNS) disease in HIV-infected patients and in the macaque model of HIV encephalitis. The aim of this study was to define the specificity and sensitivity along with the predictive value of YKL40 as a biomarker of encephalitis and to assess its relationship to CSF viral load. CSF YKL40 and SIV RNA concentrations were analyzed over the course of infection in 19 SIV-infected pigtailed macaques and statistical analyses were performed to evaluate the relationship to encephalitis. Using these relationships, CSF alterations of 31 neuroimmune markers were studied pre-infection, during acute and asymptomatic infection, at the onset of encephalitis, and at necropsy. YKL40 CSF concentrations above 1122 ng/ml were found to be a specific and sensitive biomarker for the presence of encephalitis and were highly correlated with CSF viral load. Macaques that developed encephalitis had evidence of chronic CNS immune activation during early, asymptomatic, and end stages of infection. At the onset of encephalitis, CSF demonstrated a rise of neuroimmune markers associated with macrophage recruitment, activation and interferon response. CSF YKL40 concentration and viral load are valuable biomarkers to define the onset of encephalitis. Chronic CNS immune activation precedes the development of encephalitis while some responses suggest protection from CNS lentiviral disease. PMID:27059917
Biocompatability of carbon nanotubes with stem cells to treat CNS injuries.
Bokara, Kiran Kumar; Kim, Jong Youl; Lee, Young Il; Yun, Kyungeun; Webster, Tom J; Lee, Jong Eun
2013-06-01
Cases reporting traumatic injuries to the brain and spinal cord are extended range of disorders that affect a large percentage of the world's population. But, there are only few effective treatments available for central nervous system (CNS) injuries because the CNS is refractory to axonal regeneration and relatively inaccessible to many pharmacological treatments. The use of stem cell therapy in regenerative medicine has been extensively examined to replace lost cells during CNS injuries. But, given the complexity of CNS injuries oxidative stress, toxic byproducts, which prevails in the microenvironment during the diseased condition, may limit the survival of the transplanted stem cells affecting tissue regeneration and even longevity. Carbon nanotubes (CNT) are a new class of nanomaterials, which have been shown to be promising in different areas of nanomedicine for the prevention, diagnosis and therapy of certain diseases, including CNS diseases. In particular, the use of CNTs as substrates/scaffolds for supporting the stem cell differentiation has been an area of active research. Single-walled and multi-walled CNT's have been increasingly used as scaffolds for neuronal growth and more recently for neural stem cell growth and differentiation. This review summarizes recent research on the application of CNT-based materials to direct the differentiation of progenitor and stem cells toward specific neurons and to enhance axon regeneration and synaptogenesis for the effective treatment of CNS injuries. Nonetheless, accumulating data support the use of CNTs as a biocompatible and permissive substrate/scaffold for neural cells and such application holds great potential in neurological research.
Biocompatability of carbon nanotubes with stem cells to treat CNS injuries
Bokara, Kiran Kumar; Kim, Jong Youl; Lee, Young Il; Yun, Kyungeun; Webster, Tom J
2013-01-01
Cases reporting traumatic injuries to the brain and spinal cord are extended range of disorders that affect a large percentage of the world's population. But, there are only few effective treatments available for central nervous system (CNS) injuries because the CNS is refractory to axonal regeneration and relatively inaccessible to many pharmacological treatments. The use of stem cell therapy in regenerative medicine has been extensively examined to replace lost cells during CNS injuries. But, given the complexity of CNS injuries oxidative stress, toxic byproducts, which prevails in the microenvironment during the diseased condition, may limit the survival of the transplanted stem cells affecting tissue regeneration and even longevity. Carbon nanotubes (CNT) are a new class of nanomaterials, which have been shown to be promising in different areas of nanomedicine for the prevention, diagnosis and therapy of certain diseases, including CNS diseases. In particular, the use of CNTs as substrates/scaffolds for supporting the stem cell differentiation has been an area of active research. Single-walled and multi-walled CNT's have been increasingly used as scaffolds for neuronal growth and more recently for neural stem cell growth and differentiation. This review summarizes recent research on the application of CNT-based materials to direct the differentiation of progenitor and stem cells toward specific neurons and to enhance axon regeneration and synaptogenesis for the effective treatment of CNS injuries. Nonetheless, accumulating data support the use of CNTs as a biocompatible and permissive substrate/scaffold for neural cells and such application holds great potential in neurological research. PMID:23869255
Nishio, Makoto; Nakagawa, Kazuhiko; Mitsudomi, Tetsuya; Yamamoto, Nobuyuki; Tanaka, Tomohiro; Kuriki, Hiroshi; Zeaiter, Ali; Tamura, Tomohide
2018-07-01
We determined the central nervous system (CNS) efficacy of alectinib by calculating time to CNS progression and cumulative incidence rates (CIRs) of CNS progression, non-CNS progression and death in patients with anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer (NSCLC) enrolled in the J-ALEX phase III study. Japanese patients aged ≥20 years with ALK-positive NSCLC who were ALK inhibitor-naïve and chemotherapy-naïve, or who had received one previous chemotherapy regimen, were enrolled. Patients with treated or untreated asymptomatic CNS metastases were eligible. Treatment comprised oral alectinib 300 mg twice daily or crizotinib 250 mg twice daily until progressive disease, unacceptable toxicity, death or withdrawal. Imaging scans (computed tomography/magnetic resonance imaging) were taken at baseline and at regular intervals throughout the study. The CIRs for CNS progression, non-CNS progression and death were calculated for patients with and without baseline CNS metastases using a competing risks method. The hazard ratio for time to CNS progression in patients with and without baseline CNS metastases was 0.51 (95% confidence interval [CI]: 0.16-1.64; P = 0.2502) and 0.19 (95% CI: 0.07-0.53; P = 0.0004), respectively. The CIRs of CNS progression and non-CNS progression were lower in the alectinib group than in the crizotinib group at all time points. The 1-year CIRs of CNS progression were 16.8% and 5.9% with crizotinib and alectinib, respectively, and the 1-year CIRs of non-CNS progression were 38.4% and 17.5%, respectively. Comparable findings were obtained in patients with or without baseline CNS metastases. Alectinib appears to avert the progression of CNS metastases in patients with ALK-positive NSCLC and baseline CNS metastases, and to prevent the development of new CNS lesions in patients without baseline CNS disease. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Brain-Immune Interactions as the Basis of Gulf War Illness: Gulf War Illness Consortium (GWIC)
2014-10-01
neuroinflammation as an end result of initial glial activation and subsequent priming of glial responses that cause a chronic activation loop of...infection, or physical trauma—that mobilizes CNS defense systems via activation of glia, the brain’s primary immune response cells, and release of...oligodendrocytes Microglial Activation (cytokine signaling) Behavioral Effects (fatigue, pain, cognitive problems) Astrocyte Activation (cytokine signaling
Centralization of the deuterostome nervous system predates chordates.
Nomaksteinsky, Marc; Röttinger, Eric; Dufour, Héloïse D; Chettouh, Zoubida; Lowe, Chris J; Martindale, Mark Q; Brunet, Jean-François
2009-08-11
The origin of the chordate central nervous system (CNS) is unknown. One theory is that a CNS was present in the first bilaterian and that it gave rise to both the ventral cord of protostomes and the dorsal cord of deuterostomes. Another theory proposes that the chordate CNS arose by a dramatic process of dorsalization and internalization from a diffuse nerve net coextensive with the skin of the animal, such as enteropneust worms (Hemichordata, Ambulacraria) are supposed to have. We show here that juvenile and adult enteropneust worms in fact have a bona fide CNS, i.e., dense agglomerations of neurons associated with a neuropil, forming two cords, ventral and dorsal. The latter is internalized in the collar as a chordate-like neural tube. Contrary to previous assumptions, the greater part of the adult enteropneust skin is nonneural, although elements of the peripheral nervous system (PNS) are found there. We use molecular markers to show that several neuronal types are anatomically segregated in the CNS and PNS. These neuroanatomical features, whatever their homologies with the chordate CNS, imply that nervous system centralization predates the evolutionary separation of chordate and hemichordate lineages.
The Process and Regulatory Components of Inflammation in Brain Oncogenesis
Mostofa, A.G.M.; Punganuru, Surendra R.; Madala, Hanumantha Rao; Al-Obaide, Mohammad; Srivenugopal, Kalkunte S.
2017-01-01
Central nervous system tumors comprising the primary cancers and brain metastases remain the most lethal neoplasms and challenging to treat. Substantial evidence points to a paramount role for inflammation in the pathology leading to gliomagenesis, malignant progression and tumor aggressiveness in the central nervous system (CNS) microenvironment. This review summarizes the salient contributions of oxidative stress, interleukins, tumor necrosis factor-α(TNF-α), cyclooxygenases, and transcription factors such as signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and the associated cross-talks to the inflammatory signaling in CNS cancers. The roles of reactive astrocytes, tumor associated microglia and macrophages, metabolic alterations, microsatellite instability, O6-methylguanine DNA methyltransferase (MGMT) DNA repair and epigenetic alterations mediated by the isocitrate dehydrogenase 1 (IDH1) mutations have been discussed. The inflammatory pathways with relevance to the brain cancer treatments have been highlighted. PMID:28346397
Ziv, Yaniv; Schwartz, Michal
2008-11-01
Immune cells and immune molecules have recently been shown to support neurogenesis from neural stem and progenitor cells in the adult brain. This non-classical immune activity takes place constantly under normal physiological conditions and is extended under acute pathological conditions to include the attraction of progenitor cells and induction of neurogenesis in regions of the adult central nervous system (CNS) in which formation of new neurons does not normally occur. We suggest that the immune system should be viewed as a novel player in the adult neural stem cell niche and a coordinator of cell renewal processes after injury. We discuss these notions in light of the well-known facts that both immune-cell activity and cell renewal are inherently limited in the adult CNS and that immune and stem cells provide the body's mechanisms of repair.
Yi, Bin; Hu, Shousen; Zuo, Chuantao; Jiao, Fangyang; Lv, Jingrong; Chen, Dongye; Ma, Yufei; Chen, Jianyong; Mei, Ling; Wang, Xueling; Huang, Zhiwu; Wu, Hao
2016-01-01
Tinnitus is associated with neural hyperactivity in the central nervous system (CNS). Salicylate is a well-known ototoxic drug, and we induced tinnitus in rats using a model of long-term salicylate administration. The gap pre-pulse inhibition of acoustic startle test was used to infer tinnitus perception, and only rats in the chronic salicylate-treatment (14 days) group showed evidence of experiencing tinnitus. After small animal positron emission tomography scans were performed, we found that the metabolic activity of the inferior colliculus (IC), the auditory cortex (AC), and the hippocampus (HP) were significantly higher in the chronic treatment group compared with saline group (treated for 14 days), which was further supported by ultrastructural changes at the synapses. The alterations all returned to baseline 14 days after the cessation of salicylate-treatment (wash-out group), indicating that these changes were reversible. These findings indicate that long-term salicylate administration induces tinnitus, enhanced neural activity and synaptic ultrastructural changes in the IC, AC, and HP of rats due to neuroplasticity. Thus, an increased metabolic rate and synaptic transmission in specific areas of the CNS may contribute to the development of tinnitus. PMID:27068004
Early physiological abnormalities after simian immunodeficiency virus infection.
Horn, T F; Huitron-Resendiz, S; Weed, M R; Henriksen, S J; Fox, H S
1998-12-08
Central nervous system (CNS) damage and dysfunction are devastating consequences of HIV infection. Although the CNS is one of the initial targets for HIV infection, little is known about early viral-induced abnormalities that can affect CNS function. Here we report the detection of early physiological abnormalities in simian immunodeficiency virus-infected monkeys. The acute infection caused a disruption of the circadian rhythm manifested by rises in body temperature, observed in all five individuals between 1 and 2 weeks postinoculation (p.i.), accompanied by a reduction in daily motor activity to 50% of control levels. Animals remained hyperthermic at 1 and 2 months p.i. and returned to preinoculation temperatures at 3 months after viral inoculation. Although motor activity recovered to baseline values at 1 month p.i., activity levels then decreased to approximately 50% of preinoculation values over the next 2 months. Analysis of sensory-evoked responses 1 month p.i. revealed distinct infection-induced changes in auditory-evoked potential peak latencies that persisted at 3 months after viral inoculation. These early physiological abnormalities may precede the development of observable cognitive or motor deficiencies and can provide an assay to evaluate agents to prevent or alleviate neuronal dysfunction.
Early physiological abnormalities after simian immunodeficiency virus infection
Horn, Thomas F. W.; Huitron-Resendiz, Salvador; Weed, Michael R.; Henriksen, Steven J.; Fox, Howard S.
1998-01-01
Central nervous system (CNS) damage and dysfunction are devastating consequences of HIV infection. Although the CNS is one of the initial targets for HIV infection, little is known about early viral-induced abnormalities that can affect CNS function. Here we report the detection of early physiological abnormalities in simian immunodeficiency virus-infected monkeys. The acute infection caused a disruption of the circadian rhythm manifested by rises in body temperature, observed in all five individuals between 1 and 2 weeks postinoculation (p.i.), accompanied by a reduction in daily motor activity to 50% of control levels. Animals remained hyperthermic at 1 and 2 months p.i. and returned to preinoculation temperatures at 3 months after viral inoculation. Although motor activity recovered to baseline values at 1 month p.i., activity levels then decreased to approximately 50% of preinoculation values over the next 2 months. Analysis of sensory-evoked responses 1 month p.i. revealed distinct infection-induced changes in auditory-evoked potential peak latencies that persisted at 3 months after viral inoculation. These early physiological abnormalities may precede the development of observable cognitive or motor deficiencies and can provide an assay to evaluate agents to prevent or alleviate neuronal dysfunction. PMID:9844017
Sánchez Mainar, María; Weckx, Stefan
2014-01-01
Within ecosystems that are poor in carbohydrates, alternative substrates such as arginine may be of importance to coagulase-negative staphylococci (CNS). However, the versatility of arginine conversion in CNS remains largely uncharted. Therefore, a set of 86 strains belonging to 17 CNS species was screened for arginine deiminase (ADI), arginase, and nitric oxide synthase (NOS) activities, in view of their ecological relevance. In fermented meats, for instance, ADI could improve bacterial competitiveness, whereas NOS may serve as an alternative nitrosomyoglobin generator to nitrate and nitrite curing. About 80% of the strains were able to convert arginine, but considerable inter- and intraspecies heterogeneity regarding the extent and mechanism of conversion was found. Overall, ADI was the most commonly employed pathway, resulting in mixtures of ornithine and small amounts of citrulline. Under aerobic conditions, which are more relevant for skin-associated CNS communities, several strains shifted toward arginase activity, leading to the production of ornithine and urea. The obtained data indeed suggest that arginase occurs relatively more in CNS isolates from a dairy environment, whereas ADI seems to be more abundant in strains from a fermented meat background. With some exceptions, a reasonable match between phenotypic ADI and arginase activity and the presence of the encoding genes (arcA and arg) was found. With respect to the NOS pathway, however, only one strain (Staphylococcus haemolyticus G110) displayed phenotypic NOS-like activity under aerobic conditions, despite a wide prevalence of the NOS-encoding gene (nos) among CNS. Hence, the group of CNS displays a strain- and condition-dependent toolbox of arginine-converting mechanisms with potential implications for competitiveness and functionality. PMID:25281381
Glycoproteins Enrichment and LC-MS/MS Glycoproteomics in Central Nervous System Applications.
Zhu, Rui; Song, Ehwang; Hussein, Ahmed; Kobeissy, Firas H; Mechref, Yehia
2017-01-01
Proteins and glycoproteins play important biological roles in central nervous systems (CNS). Qualitative and quantitative evaluation of proteins and glycoproteins expression in CNS is critical to reveal the inherent biomolecular mechanism of CNS diseases. This chapter describes proteomic and glycoproteomic approaches based on liquid chromatography/tandem mass spectrometry (LC-MS or LC-MS/MS) for the qualitative and quantitative assessment of proteins and glycoproteins expressed in CNS. Proteins and glycoproteins, extracted by a mass spectrometry friendly surfactant from CNS samples, were subjected to enzymatic (tryptic) digestion and three down-stream analyses: (1) a nano LC system coupled with a high-resolution MS instrument to achieve qualitative proteomic profile, (2) a nano LC system combined with a triple quadrupole MS to quantify identified proteins, and (3) glycoprotein enrichment prior to LC-MS/MS analysis. Enrichment techniques can be applied to improve coverage of low abundant glycopeptides/glycoproteins. An example described in this chapter is hydrophilic interaction liquid chromatographic (HILIC) enrichment to capture glycopeptides, allowing efficient removal of peptides. The combination of three LC-MS/MS-based approaches is capable of the investigation of large-scale proteins and glycoproteins from CNS with an in-depth coverage, thus offering a full view of proteins and glycoproteins changes in CNS.
Epstein–Barr virus and multiple sclerosis: potential opportunities for immunotherapy
Pender, Michael P; Burrows, Scott R
2014-01-01
Multiple sclerosis (MS) is a common chronic inflammatory demyelinating disease of the central nervous system (CNS) causing progressive disability. Many observations implicate Epstein–Barr virus (EBV) in the pathogenesis of MS, namely universal EBV seropositivity, high anti-EBV antibody levels, alterations in EBV-specific CD8+ T-cell immunity, increased spontaneous EBV-induced transformation of peripheral blood B cells, increased shedding of EBV from saliva and accumulation of EBV-infected B cells and plasma cells in the brain. Several mechanisms have been postulated to explain the role of EBV in the development of MS including cross-reactivity between EBV and CNS antigens, bystander damage to the CNS by EBV-specific CD8+ T cells, activation of innate immunity by EBV-encoded small RNA molecules in the CNS, expression of αB-crystallin in EBV-infected B cells leading to a CD4+ T-cell response against oligodendrocyte-derived αB-crystallin and EBV infection of autoreactive B cells, which produce pathogenic autoantibodies and provide costimulatory survival signals to autoreactive T cells in the CNS. The rapidly accumulating evidence for a pathogenic role of EBV in MS provides ground for optimism that it might be possible to prevent and cure MS by effectively controlling EBV infection through vaccination, antiviral drugs or treatment with EBV-specific cytotoxic CD8+ T cells. Adoptive immunotherapy with in vitro-expanded autologous EBV-specific CD8+ T cells directed against viral latent proteins was recently used to treat a patient with secondary progressive MS. Following the therapy, there was clinical improvement, decreased disease activity on magnetic resonance imaging and reduced intrathecal immunoglobulin production. PMID:25505955
Communications, Navigation, and Surveillance Models in ACES: Design Implementation and Capabilities
NASA Technical Reports Server (NTRS)
Kubat, Greg; Vandrei, Don; Satapathy, Goutam; Kumar, Anil; Khanna, Manu
2006-01-01
Presentation objectives include: a) Overview of the ACES/CNS System Models Design and Integration; b) Configuration Capabilities available for Models and Simulations using ACES with CNS Modeling; c) Descriptions of recently added, Enhanced CNS Simulation Capabilities; and d) General Concepts Ideas that Utilize CNS Modeling to Enhance Concept Evaluations.
The endocannabinoid system and the brain.
Mechoulam, Raphael; Parker, Linda A
2013-01-01
The psychoactive constituent in cannabis, Δ(9)-tetrahydrocannabinol (THC), was isolated in the mid-1960s, but the cannabinoid receptors, CB1 and CB2, and the major endogenous cannabinoids (anandamide and 2-arachidonoyl glycerol) were identified only 20 to 25 years later. The cannabinoid system affects both central nervous system (CNS) and peripheral processes. In this review, we have tried to summarize research--with an emphasis on recent publications--on the actions of the endocannabinoid system on anxiety, depression, neurogenesis, reward, cognition, learning, and memory. The effects are at times biphasic--lower doses causing effects opposite to those seen at high doses. Recently, numerous endocannabinoid-like compounds have been identified in the brain. Only a few have been investigated for their CNS activity, and future investigations on their action may throw light on a wide spectrum of brain functions.
Paring down on Descartes: a review of brain noradrenaline and sympathetic nervous function.
Lambert, G W
2001-12-01
1. The conceptual framework of mind-body interaction can be traced back to the seminal observations of the French philosopher and mathematician René Descartes (1596-1650). Descartes succeeded in eliminating the soul's apparent physiological role and established the brain as the body's control centre. 2. While the pivotal role played by the central nervous system (CNS) in the maintenance of physiological and psychological health has long been recognized, the development of methods designed for the direct examination of human CNS processes has only recently come to fruition. 3. There exists a substantial body of evidence derived from clinical and experimental studies indicating that CNS monoaminergic cell groups, in particular those using noradrenaline as their neurotransmitter, participate in the excitatory regulation of the sympathetic nervous system and the development and maintenance of the hypertensive state. 4. In essential hypertension, particularly in younger patients, there occurs an activation of sympathetic nervous outflows to the kidneys, heart and skeletal muscle. The existence of a correlation between subcortical brain noradrenaline turnover and total body noradrenaline spillover to plasma, resting blood pressure and heart rate provides further support for the observation that elevated subcortical noradrenergic activity subserves a sympathoexcitatory role in the regulation of sympathetic preganglionic neurons of the thorocolumbar cord.
Hemangiopericytoma in the central nervous system. A study of eight cases.
Mekni, A; Kourda, J; Chelly, I; Ferchichi, L; Bellil, K; Hammouda, K B; Kchir, N; Zitouna, M; Khaldi, M; Haouet, S
2008-02-01
Most hemangiopericytomas (HPC) are located in the musculoskeletal system and the skin, while the location in the central nervous system (CNS) is rare. The latter represents 2 to 4% in large series of meningeal tumors, thus accounting for less than 1% of all CNS tumors. In the central nervous system, tumors with a hemangiopericytomatous histolopathological pattern can be either hemangiopericytomas or solitary fibrous tumors. CNS-HPCs have a relentless tendency for local recurrence and metastases outside the CNS. Metastasis can also appear many years after adequate treatment of the primary tumor. We present a pathological study of eight patients with CNS-HPC and compare our results with corresponding published data. The CNS-HPC group consisted of three males and five females with a mean age of 36.75 years. The tumors were supratentorial in four cases, infratentorial in two cases, tentorial in one case and located in the spinal cord in the last one. Histologically, CNS-HPCs were similar to their soft tissue counterparts. One case demonstrated increased cellularity, marked nuclear hyperchromasia and marked cellular pleomorphism with infiltration of the cerebellum. All patients underwent surgery with gross-total resection in all cases. No patients received postoperative radiation therapy. Only four patients recurred locally after six, seven and eight months, and five years. Our study presents the pathological features of CNS-HPC as a distinct entity from both meningioma and solitary fibrous tumors. A comparative review of literature with our results is discussed.
Aguirre, Adam; Maturana, Carola J; Harcha, Paloma A; Sáez, Juan C
2013-01-01
In the central nervous system (CNS), mastocytes and glial cells (microglia, astrocytes and oligodendrocytes) function as sensors of neuroinflammatory conditions, responding to stress triggers or becoming sensitized to subsequent proinflammatory challenges. The corticotropin-releasing hormone and glucocorticoids are critical players in stress-induced mastocyte degranulation and potentiation of glial inflammatory responses, respectively. Mastocytes and glial cells express different toll-like receptor (TLR) family members, and their activation via proinflammatory molecules can increase the expression of connexin hemichannels and pannexin channels in glial cells. These membrane pores are oligohexamers of the corresponding protein subunits located in the cell surface. They allow ATP release and Ca(2+) influx, which are two important elements of inflammation. Consequently, activated microglia and astrocytes release ATP and glutamate, affecting myelinization, neuronal development, and survival. Binding of ligands to TLRs induces a cascade of intracellular events leading to activation of several transcription factors that regulate the expression of many genes involved in inflammation. During pregnancy, the previous responses promoted by viral infections and other proinflammatory conditions are common and might predispose the offspring to develop psychiatric disorders and neurological diseases. Such disorders could eventually be potentiated by stress and might be part of the etiopathogenesis of CNS dysfunctions including autism spectrum disorders and schizophrenia.
Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene.
Ryner, L C; Goodwin, S F; Castrillon, D H; Anand, A; Villella, A; Baker, B S; Hall, J C; Taylor, B J; Wasserman, S A
1996-12-13
Sexual orientation and courtship behavior in Drosophila are regulated by fruitless (fru), the first gene in a branch of the sex-determination hierarchy functioning specifically in the central nervous system (CNS). The phenotypes of new fru mutants encompass nearly all aspects of male sexual behavior. Alternative splicing of fru transcripts produces sex-specific proteins belonging to the BTB-ZF family of transcriptional regulators. The sex-specific fru products are produced in only about 500 of the 10(5) neurons that comprise the CNS. The properties of neurons expressing these fru products suggest that fru specifies the fates or activities of neurons that carry out higher order control functions to elicit and coordinate the activities comprising male courtship behavior.
2011-01-01
The central nervous system (CNS) is the major area that is affected by aging. Alzheimer’s disease (AD), Parkinson’s disease (PD), brain cancer, and stroke are the CNS diseases that will cost trillions of dollars for their treatment. Achievement of appropriate blood–brain barrier (BBB) penetration is often considered a significant hurdle in the CNS drug discovery process. On the other hand, BBB penetration may be a liability for many of the non-CNS drug targets, and a clear understanding of the physicochemical and structural differences between CNS and non-CNS drugs may assist both research areas. Because of the numerous and challenging issues in CNS drug discovery and the low success rates, pharmaceutical companies are beginning to deprioritize their drug discovery efforts in the CNS arena. Prompted by these challenges and to aid in the design of high-quality, efficacious CNS compounds, we analyzed the physicochemical property and the chemical structural profiles of 317 CNS and 626 non-CNS oral drugs. The conclusions derived provide an ideal property profile for lead selection and the property modification strategy during the lead optimization process. A list of substructural units that may be useful for CNS drug design was also provided here. A classification tree was also developed to differentiate between CNS drugs and non-CNS oral drugs. The combined analysis provided the following guidelines for designing high-quality CNS drugs: (i) topological molecular polar surface area of <76 Å2 (25–60 Å2), (ii) at least one (one or two, including one aliphatic amine) nitrogen, (iii) fewer than seven (two to four) linear chains outside of rings, (iv) fewer than three (zero or one) polar hydrogen atoms, (v) volume of 740–970 Å3, (vi) solvent accessible surface area of 460–580 Å2, and (vii) positive QikProp parameter CNS. The ranges within parentheses may be used during lead optimization. One violation to this proposed profile may be acceptable. The chemoinformatics approaches for graphically analyzing multiple properties efficiently are presented. PMID:22267984
Dragone, Teresa; Cianciulli, Antonia; Calvello, Rosa; Porro, Chiara; Trotta, Teresa; Panaro, Maria Antonietta
2014-09-01
Brain damage or exposure to inflammatory agents provokes the activation of microglia and secretion of pro-inflammatory and neurotoxic mediators responsible for neuronal loss. Several lines of evidence show that resveratrol, a natural non-flavonoid polyphenol, may exert a neuroprotective action in neurodegenerative diseases. Suppressor of cytokine signaling (SOCS) proteins are a family of eight members expressed by immune cells and the central nervous system (CNS) cells, that regulate immune processes within the CNS, including microglia activation. We demonstrate that resveratrol had anti-inflammatory effects in murine N13 microglial cells stimulated with lipopolysaccharide (LPS), through up-regulating SOCS-1 expression. Interestingly, in SOCS-1-silenced cells resveratrol failed to play a protective role after LPS treatment. Our data demonstrate that resveratrol can impair microglia activation by activating a SOCS-1 mediated signaling pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cross-talk between KLF4 and STAT3 regulates axon regeneration
NASA Astrophysics Data System (ADS)
Qin, Song; Zou, Yuhua; Zhang, Chun-Li
2013-10-01
Cytokine-induced activation of signal transducer and activator of transcription 3 (STAT3) promotes the regrowth of damaged axons in the adult central nervous system (CNS). Here we show that KLF4 physically interacts with STAT3 upon cytokine-induced phosphorylation of tyrosine 705 (Y705) on STAT3. This interaction suppresses STAT3-dependent gene expression by blocking its DNA-binding activity. The deletion of KLF4 in vivo induces axon regeneration of adult retinal ganglion cells (RGCs) via Janus kinase (JAK)-STAT3 signalling. This regeneration can be greatly enhanced by exogenous cytokine treatment, or removal of an endogenous JAK-STAT3 pathway inhibitor called suppressor of cytokine signalling 3 (SOCS3). These findings reveal an unexpected cross-talk between KLF4 and activated STAT3 in the regulation of axon regeneration that might have therapeutic implications in promoting repair of injured adult CNS.
Primary CNS Lymphoma Treatment (PDQ®)—Health Professional Version
Primary central nervous system (CNS) lymphoma treatment options include radiation, chemotherapy, and corticosteroids. Get detailed information about the treatment of newly diagnosed and recurrent primary CNS lymphoma cancer in this clinician summary.
Electrophysiological Investigation of Different Methods of Anesthesia in Lobster and Crayfish
Fregin, Torsten; Bickmeyer, Ulf
2016-01-01
Objectives In search for methods of anesthesia of crustaceans, an implanted electrode into lobster and crayfish CNS enabled us to monitor signal propagation in the nerve system of animals undergoing different protocols. Results Cooling (tap water 0°C, sea water -1,8°C) and anesthesia with MgCl2 (10%) were both discarded as anesthetic procedures because responses to external stimuli were still detectable under treatment. Contrarily, bubbling the aquarium water with CO2 can be considered a “partially successful” anesthesia, because signal propagation is inhibited but before that the animals show discomfort. The procedure of “electro-stunning” induces epileptic-form seizures in the crustacean CNS (lobster, crayfish), which overlay but do not mitigate the response to external stimuli. After several minutes the activity declines before the nervous system starts to recover. A feasible way to sacrifice lobsters is to slowly raise the water temperature (1°C min-1), as all electrical activities in the CNS cease at temperatures above ~30°C, whereas below this temperature the animals do not show signs of stress or escape behavior (e.g. tail flips) in the warming water. Conclusion CO2 is efficient to anaesthetize lobster and crayfish but due to low pH in water is stressful to the animals previous to anesthesia. Electrical stunning induces epileptiform seizures but paralyses the animals and leads to a reversible decline of nerve system activity after seizure. Electric stunning or slowly warming just before preparation may meet ethical expectations regarding anaesthesia and to sacrifice crustaceans. PMID:27642755
Is the central nervous system a reservoir of HIV-1?
Gray, Lachlan R.; Roche, Michael; Flynn, Jacqueline K.; Wesselingh, Steve L.; Gorry, Paul R.; Churchill, Melissa J.
2014-01-01
Purpose of the review To summarize the evidence in the literature that supports the CNS as a viral reservoir for HIV-1 and to prioritise future research efforts. Recent findings HIV-1 DNA has been detected in brain tissue of patients with undetectable viral load or neurocognitive disorders, and is associated with long-lived cells such as astrocytes and microglia. In neurocognitively normal patients, HIV-1 can be found at high frequency in these cells (4% of astrocytes and 20% of macrophages). CNS cells have unique molecular mechanisms to suppress viral replication and induce latency, which include increased expression of dominant negative transcription factors and suppressive epigenetic factors. There is also evidence of continued inflammation in patients lacking a CNS viral load, suggesting the production and activity of viral neurotoxins (for example Tat). Summary Together, these findings provide evidence that the CNS can potentially act as a viral reservoir of HIV-1. However, the majority of these studies were performed in historical cohorts (absence of cART or presence of viral load) which do not reflect modern day patients (cART-treated and undetectable viral load). Future studies will need to examine patient samples with these characteristics to conclusively determine if the CNS represents a relevant and important viral reservoir. PMID:25203642
Fox, Howard S.; Weed, Michael R.; Huitron-Resendiz, Salvador; Baig, Jamal; Horn, Thomas F.W.; Dailey, Peter J.; Bischofberger, Norbert; Henriksen, Steven J.
2000-01-01
Simian immunodeficiency virus (SIV) infection of rhesus monkeys provides an excellent model of the central nervous system (CNS) consequences of HIV infection. To discern the relationship between viral load and abnormalities induced in the CNS by the virus, we infected animals with SIV and later instituted antiviral treatment to lower peripheral viral load. Measurement of sensory-evoked potentials, assessing CNS neuronal circuitry, revealed delayed latencies after infection that could be reversed by lowering viral load. Cessation of treatment led to the reappearance of these abnormalities. In contrast, the decline in general motor activity induced by SIV infection was unaffected by antiviral treatment. An acute increase in the level of the chemokine monocyte chemoattractant protein-1 (MCP-1) was found in the cerebrospinal fluid (CSF) relative to plasma in the infected animals at the peak of acute viremia, likely contributing to an early influx of immune cells into the CNS. Examination of the brains of the infected animals after return of the electrophysiological abnormalities revealed diverse viral and inflammatory findings. Although some of the physiological abnormalities resulting from SIV infection can be at least temporarily reversed by lowering viral load, the viral-host interactions initiated by infection may result in long-lasting changes in CNS-mediated functions. PMID:10880046
Fox, H S; Weed, M R; Huitron-Resendiz, S; Baig, J; Horn, T F; Dailey, P J; Bischofberger, N; Henriksen, S J
2000-07-01
Simian immunodeficiency virus (SIV) infection of rhesus monkeys provides an excellent model of the central nervous system (CNS) consequences of HIV infection. To discern the relationship between viral load and abnormalities induced in the CNS by the virus, we infected animals with SIV and later instituted antiviral treatment to lower peripheral viral load. Measurement of sensory-evoked potentials, assessing CNS neuronal circuitry, revealed delayed latencies after infection that could be reversed by lowering viral load. Cessation of treatment led to the reappearance of these abnormalities. In contrast, the decline in general motor activity induced by SIV infection was unaffected by antiviral treatment. An acute increase in the level of the chemokine monocyte chemoattractant protein-1 (MCP-1) was found in the cerebrospinal fluid (CSF) relative to plasma in the infected animals at the peak of acute viremia, likely contributing to an early influx of immune cells into the CNS. Examination of the brains of the infected animals after return of the electrophysiological abnormalities revealed diverse viral and inflammatory findings. Although some of the physiological abnormalities resulting from SIV infection can be at least temporarily reversed by lowering viral load, the viral-host interactions initiated by infection may result in long-lasting changes in CNS-mediated functions.
Baxter, Victoria K; Glowinski, Rebecca; Braxton, Alicia M; Potter, Michelle C; Slusher, Barbara S; Griffin, Diane E
2017-08-01
Infection of weanling C57BL/6 mice with the TE strain of Sindbis virus (SINV) causes nonfatal encephalomyelitis associated with hippocampal-based memory impairment that is partially prevented by treatment with 6-diazo-5-oxo-l-norleucine (DON), a glutamine antagonist (Potter et al., J Neurovirol 21:159, 2015). To determine the mechanism(s) of protection, lymph node and central nervous system (CNS) tissues from SINV-infected mice treated daily for 1 week with low (0.3mg/kg) or high (0.6mg/kg) dose DON were examined. DON treatment suppressed lymphocyte proliferation in cervical lymph nodes resulting in reduced CNS immune cell infiltration, inflammation, and cell death compared to untreated SINV-infected mice. Production of SINV-specific antibody and interferon-gamma were also impaired by DON treatment with a delay in virus clearance. Cessation of treatment allowed activation of the antiviral immune response and viral clearance, but revived CNS pathology, demonstrating the ability of the immune response to mediate both CNS damage and virus clearance. Copyright © 2017 Elsevier Inc. All rights reserved.
Zozulya, Alla L.; Ortler, Sonja; Lee, JangEun; Weidenfeller, Christian; Sandor, Matyas; Wiendl, Heinz; Fabry, Zsuzsanna
2010-01-01
Dendritic cells (DCs) appear in higher numbers within the CNS as a consequence of inflammation associated with autoimmune disorders, such as multiple sclerosis (MS), but the contribution of these cells to the outcome of disease is not yet clear. Here we show that stimulatory or tolerogenic functional states of intracerebral DCs regulate the systemic activation of neuroantigen-specific T cells, the recruitment of these cells into the CNS and the onset and progression of experimental autoimmune encephalomyelitis (EAE). Intracerebral microinjection of stimulatory DCs exacerbated the onset and clinical course of EAE, accompanied with an early T-cell infiltration and a decreased proportion of regulatory FoxP3-expressing cells in the brain. In contrast, the intracerebral microinjection of DCs modified by tumor necrosis factor alpha (TNF-α) induced their tolerogenic functional state and delayed or prevented EAE onset. This triggered the generation of interleukin 10 (IL-10)-producing neuroantigen-specific lymphocytes in the periphery and restricted IL-17 production in the CNS. Our findings suggest that DCs are a rate-limiting factor for neuroinflammation. PMID:19129392
A Peptide Targeting Inflammatory CNS Lesions in the EAE Rat Model of Multiple Sclerosis.
Boiziau, Claudine; Nikolski, Macha; Mordelet, Elodie; Aussudre, Justine; Vargas-Sanchez, Karina; Petry, Klaus G
2018-06-01
Multiple sclerosis is characterized by inflammatory lesions dispersed throughout the central nervous system (CNS) leading to severe neurological handicap. Demyelination, axonal damage, and blood brain barrier alterations are hallmarks of this pathology, whose precise processes are not fully understood. In the experimental autoimmune encephalomyelitis (EAE) rat model that mimics many features of human multiple sclerosis, the phage display strategy was applied to select peptide ligands targeting inflammatory sites in CNS. Due to the large diversity of sequences after phage display selection, a bioinformatics procedure called "PepTeam" designed to identify peptides mimicking naturally occurring proteins was used, with the goal to predict peptides that were not background noise. We identified a circular peptide CLSTASNSC called "Ph48" as an efficient binder of inflammatory regions of EAE CNS sections including small inflammatory lesions of both white and gray matter. Tested on human brain endothelial cells hCMEC/D3, Ph48 was able to bind efficiently when these cells were activated with IL1β to mimic inflammatory conditions. The peptide is therefore a candidate for further analyses of the molecular alterations in inflammatory lesions.
Increasing Physical Activity and Participation in People With Multiple Sclerosis: A Review.
Backus, Deborah
2016-09-01
Multiple sclerosis (MS) is a chronic progressive disease of the central nervous system (CNS) affecting >2.5 million people worldwide. Damage to neurons in the CNS causes various sensorimotor and cognitive symptoms, such as fatigue, pain, spasticity, memory deficits, and impairment of mobility. Until the late 1990s, it was believed that symptoms of MS would be worsened with physical exertion and people with MS were encouraged to limit physical activity and exertion. Not only has emerging evidence suggested that physical activity, including exercise, is safe for people with MS, there is also evidence that at least some of the disability that occurs after MS is due to secondary deconditioning from the sedentary lifestyle adopted because of the symptoms of MS, not just CNS damage alone. Therefore, not only is physical activity safe, it is also required for maintaining function and health in people with MS. The purpose of this article is to review the unique physical and social barriers to physical activity in people with MS, including those with moderate to severe disability who use a wheelchair or scooter for mobility. We will discuss how existing guidelines for physical activity may not meet the needs of people with MS and present evidence-based considerations for promoting physical activity in people with MS. Ultimately, the goal is to overcome the barriers to physical activity and improve health, participation, and quality of life in people with MS. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Jacobs, G D; Lubar, J F
1989-01-01
This study examined the effects of the relaxation response, elicited by autogenic training, on central nervous system (CNS) activity. We used computerized spectral analysis of EEG activity as a dependent measure. After baseline EEG data were obtained for all subjects, the experimental group practiced standard autogenic exercises for 15 experimental sessions with home practice. The control subjects received the same number of sessions under identical conditions, except that they listened to a pleasant radio show without home practice. Subjects were then posttested to assess the acute and chronic effects of autogenic training and the relaxation response on CNS activity. The results indicated significant acute effects differences between groups; the experimental group showed greater increases in theta and greater decreases in alpha percent total power. The results suggest that the relaxation response elicited by autogenic training produces significant acute changes in EEG activity and a characteristic spectral pattern; the results also suggest that focusing attention on a repetitive, internal stimulus is a key element in Benson's relaxation response model.
An overview on benzylisoquinoline derivatives with dopaminergic and serotonergic activities.
Cabedo, N; Berenguer, I; Figadère, B; Cortes, D
2009-01-01
Dopamine and serotonin are important neurotransmitters in the mammalian central nervous system (CNS) involved in numerous physiological and behavioural disorders such as schizophrenia, major depression, anxiety, Parkinson's and Huntington's diseases, and attention deficit hyperactivity disorder. Several natural and synthetic benzylisoquinoline derivatives have displayed affinity for dopamine and serotonin receptors in nanomolar or micromolar ranges. This review covers the last three decades of dopaminergic and serotonergic activities, and especially focuses on structure-activity relationships of natural and synthetic benzylisoquinoline derivatives. We have included aporphines, 1-benzyltetrahydroisoquinolines, bis-benzylisoquinolines, protoberberines, cularines and other structural analogues. Further molecular modelling calculations have been considered as important tools to not only obtain structural information of both neurotransmitter receptors, but to also identify their pharmacophore features. The development of selective potential ligands like benzylisoquinoline derivatives may help in the therapy of diseases related to CNS dysfunction.
The Glymphatic System in Central Nervous System Health and Disease: Past, Present, and Future.
Plog, Benjamin A; Nedergaard, Maiken
2018-01-24
The central nervous system (CNS) is unique in being the only organ system lacking lymphatic vessels to assist in the removal of interstitial metabolic waste products. Recent work has led to the discovery of the glymphatic system, a glial-dependent perivascular network that subserves a pseudolymphatic function in the brain. Within the glymphatic pathway, cerebrospinal fluid (CSF) enters the brain via periarterial spaces, passes into the interstitium via perivascular astrocytic aquaporin-4, and then drives the perivenous drainage of interstitial fluid (ISF) and its solute. Here, we review the role of the glymphatic pathway in CNS physiology, the factors known to regulate glymphatic flow, and the pathologic processes in which a breakdown of glymphatic CSF-ISF exchange has been implicated in disease initiation and progression. Important areas of future research, including manipulation of glymphatic activity aiming to improve waste clearance and therapeutic agent delivery, are also discussed.
Psychotropic drugs and bruxism.
Falisi, Giovanni; Rastelli, Claudio; Panti, Fabrizio; Maglione, Horacio; Quezada Arcega, Raul
2014-10-01
Sleep and awake bruxism is defined as 'a parafunctional activity including clenching, bracing, gnashing, and grinding of the teeth'. Some evidence suggests that bruxism may be caused by, or associated with, alterations in the CNS neurotransmission. Several classes of psychotropic drugs interfering with CNS activity may potentially contribute to bruxism. Thus, the purpose of this study was to examine relevant peer-reviewed papers to identify and describe the various classes of psychotropic substances that may cause, exacerbate or reduce bruxism as the result of their pharmacological action in CNS neurons. A literature search from 1980 to the present was performed using PubMed database. The term 'bruxism' was used in association with 'psychotropic', 'dopamine (DA)', 'serotonin', 'histamine', 'antipsychotics', 'antidepressants', 'antihistaminergics' and 'stimulants'. Studies on the effects of DA agonists (Levo-DOPA, psychostimulants) and antagonists (antipsychotics) identified a central role of DA in the pathogenesis of pharmacologically induced bruxism. Important information from studies on drugs acting on serotonin neurotransmission (antidepressants) was recognized. Other mechanisms involving different neurotransmitters are emerging. This is the case of antihistaminergic drugs which may induce bruxism as a consequence of their disinhibitory effect on the serotonergic system.
Boros, Akos; Somogyi, Ildikó; Engelmann, Péter; Lubics, Andrea; Reglodi, Dóra; Pollák, Edit; Molnár, László
2010-03-01
Pituitary adenylate cyclase activating polypeptide (PACAP)-like molecules have been shown to be present in cocoon albumin and in Eisenia fetida embryos at an early developmental stage (E1) by immunocytochemistry and radioimmunoassay. Here, we focus on detecting the stage at which PAC1 receptor (PAC1R)-like immunoreactivity first appears in germinal layers and structures, e.g., various parts of the central nervous system (CNS), in developing earthworm embryos. PAC1R-like immunoreactivity was revealed by Western blot and Far Western blot as early as the E2 developmental stage, occurring in the ectoderm and later in specific neurons of the developing CNS. Labeled CNS neurons were first seen in the supraesophageal ganglion (brain) and subsequently in the subesophageal and ventral nerve cord ganglia. Ultrastructurally, PAC1Rs were located mainly on plasma membranes and intracellular membranes, especially on cisternae of the endoplasmic reticulum. Therefore, PACAP-like compounds probably influence the differentiation of germinal layers (at least the ectoderm) and of some neurons and might act as signaling molecules during earthworm embryonic development.
Intracellular Protein Shuttling: A Mechanism Relevant for Myelin Repair in Multiple Sclerosis?
Göttle, Peter; Küry, Patrick
2015-01-01
A prominent feature of demyelinating diseases such as multiple sclerosis (MS) is the degeneration and loss of previously established functional myelin sheaths, which results in impaired signal propagation and axonal damage. However, at least in early disease stages, partial replacement of lost oligodendrocytes and thus remyelination occur as a result of resident oligodendroglial precursor cell (OPC) activation. These cells represent a widespread cell population within the adult central nervous system (CNS) that can differentiate into functional myelinating glial cells to restore axonal functions. Nevertheless, the spontaneous remyelination capacity in the adult CNS is inefficient because OPCs often fail to generate new oligodendrocytes due to the lack of stimulatory cues and the presence of inhibitory factors. Recent studies have provided evidence that regulated intracellular protein shuttling is functionally involved in oligodendroglial differentiation and remyelination activities. In this review we shed light on the role of the subcellular localization of differentiation-associated factors within oligodendroglial cells and show that regulation of intracellular localization of regulatory factors represents a crucial process to modulate oligodendroglial maturation and myelin repair in the CNS. PMID:26151843
PPAR agonists as therapeutics for CNS trauma and neurological diseases
Mandrekar-Colucci, Shweta; Sauerbeck, Andrew; Popovich, Phillip G.; McTigue, Dana M.
2013-01-01
Traumatic injury or disease of the spinal cord and brain elicits multiple cellular and biochemical reactions that together cause or are associated with neuropathology. Specifically, injury or disease elicits acute infiltration and activation of immune cells, death of neurons and glia, mitochondrial dysfunction, and the secretion of substrates that inhibit axon regeneration. In some diseases, inflammation is chronic or non-resolving. Ligands that target PPARs (peroxisome proliferator-activated receptors), a group of ligand-activated transcription factors, are promising therapeutics for neurologic disease and CNS injury because their activation affects many, if not all, of these interrelated pathologic mechanisms. PPAR activation can simultaneously weaken or reprogram the immune response, stimulate metabolic and mitochondrial function, promote axon growth and induce progenitor cells to differentiate into myelinating oligodendrocytes. PPAR activation has beneficial effects in many pre-clinical models of neurodegenerative diseases and CNS injury; however, the mechanisms through which PPARs exert these effects have yet to be fully elucidated. In this review we discuss current literature supporting the role of PPAR activation as a therapeutic target for treating traumatic injury and degenerative diseases of the CNS. PMID:24215544
Methamphetamine compromises gap junctional communication in astrocytes and neurons
Castellano, Paul; Nwagbo, Chisom; Martinez, Luis R.; Eugenin, Eliseo A.
2016-01-01
Methamphetamine (meth) is a central nervous system (CNS) stimulant that results in psychological and physical dependency. The long-term effects of meth within the CNS include neuronal plasticity changes, blood–brain barrier compromise, inflammation, electrical dysfunction, neuronal/glial toxicity, and an increased risk to infectious diseases including HIV. Most of the reported meth effects in the CNS are related to dysregulation of chemical synapses by altering the release and uptake of neurotransmitters, especially dopamine, norepinephrine, and epinephrine. However, little is known about the effects of meth on connexin (Cx) containing channels, such as gap junctions (GJ) and hemichannels (HC). We examined the effects of meth on Cx expression, function, and its role in NeuroAIDS. We found that meth altered Cx expression and localization, decreased GJ communication between neurons and astrocytes, and induced the opening of Cx43/Cx36 HC. Furthermore, we found that these changes in GJ and HC induced by meth treatment were mediated by activation of dopamine receptors, suggesting that dysregulation of dopamine signaling induced by meth is essential for GJ and HC compromise. Meth-induced changes in GJ and HC contributed to amplified CNS toxicity by dysregulating glutamate metabolism and increasing the susceptibility of neurons and astrocytes to bystander apoptosis induced by HIV. Together, our results indicate that connexin containing channels, GJ and HC, are essential in the pathogenesis of meth and increase the sensitivity of the CNS to HIV CNS disease. PMID:26953131
[Central nervous system relapse in diffuse large B cell lymphoma: Risk factors].
Sancho, Juan-Manuel; Ribera, Josep-Maria
2016-01-15
Central nervous system (CNS) involvement by lymphoma is a complication associated, almost invariably, with a poor prognosis. The knowledge of the risk factors for CNS relapse is important to determine which patients could benefit from prophylaxis. Thus, patients with very aggressive lymphomas (such as lymphoblastic lymphoma or Burkitt's lymphoma) must systematically receive CNS prophylaxis due to a high CNS relapse rate (25-30%), while in patients with indolent lymphoma (such as follicular lymphoma or marginal lymphoma) prophylaxis is unnecessary. However, the question about CNS prophylaxis in patients with diffuse large B-cell lymphoma (DLBCL), the most common type of lymphoma, remains controversial. The information available is extensive, mainly based on retrospective and heterogeneous studies. There seems that immunochemotherapy based on rituximab reduces the CNS relapse rate. On the other hand, patients with increased serum lactate dehydrogenase plus more than one extranodal involvement seem to have a higher risk of CNS relapse, but a prophylaxis strategy based only on the presence of these 2 factors does not prevent all CNS relapses. Patients with involvement of testes or breast have high risk of CNS relapse and prophylaxis is mandatory. Finally, CNS prophylaxis could be considered in patients with DLBCL and renal or epidural space involvement, as well as in those cases with MYC rearrangements, although additional studies are necessary. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.
CCL5-Glutamate Cross-Talk in Astrocyte-Neuron Communication in Multiple Sclerosis.
Pittaluga, Anna
2017-01-01
The immune system (IS) and the central nervous system (CNS) are functionally coupled, and a large number of endogenous molecules (i.e., the chemokines for the IS and the classic neurotransmitters for the CNS) are shared in common between the two systems. These interactions are key elements for the elucidation of the pathogenesis of central inflammatory diseases. In recent years, evidence has been provided supporting the role of chemokines as modulators of central neurotransmission. It is the case of the chemokines CCL2 and CXCL12 that control pre- and/or post-synaptically the chemical transmission. This article aims to review the functional cross-talk linking another endogenous pro-inflammatory factor released by glial cells, i.e., the chemokine Regulated upon Activation Normal T-cell Expressed and Secreted (CCL5) and the principal neurotransmitter in CNS (i.e., glutamate) in physiological and pathological conditions. In particular, the review discusses preclinical data concerning the role of CCL5 as a modulator of central glutamatergic transmission in healthy and demyelinating disorders. The CCL5-mediated control of glutamate release at chemical synapses could be relevant either to the onset of psychiatric symptoms that often accompany the development of multiple sclerosis (MS), but also it might indirectly give a rationale for the progression of inflammation and demyelination. The impact of disease-modifying therapies for the cure of MS on the endogenous availability of CCL5 in CNS will be also summarized. We apologize in advance for omission in our coverage of the existing literature.
Spencer, Brian; Potkar, Rewati; Metcalf, Jeff; Thrin, Ivy; Adame, Anthony; Rockenstein, Edward; Masliah, Eliezer
2016-01-22
Neuropeptide Y (NPY) is one of the most abundant protein transmitters in the central nervous system with roles in a variety of biological functions including: food intake, cardiovascular regulation, cognition, seizure activity, circadian rhythms, and neurogenesis. Reduced NPY and NPY receptor expression is associated with numerous neurodegenerative disorders including Alzheimer disease (AD). To determine whether replacement of NPY could ameliorate some of the neurodegenerative and behavioral pathology associated with AD, we generated a lentiviral vector expressing NPY fused to a brain transport peptide (apoB) for widespread CNS delivery in an APP-transgenic (tg) mouse model of AD. The recombinant NPY-apoB effectively reversed neurodegenerative pathology and behavioral deficits although it had no effect on accumulation of Aβ. The subgranular zone of the hippocampus showed a significant increase in proliferation of neural precursor cells without further differentiation into neurons. The neuroprotective and neurogenic effects of NPY-apoB appeared to involve signaling via ERK and Akt through the NPY R1 and NPY R2 receptors. Thus, widespread CNS-targeted delivery of NPY appears to be effective at reversing the neuronal and glial pathology associated with Aβ accumulation while also increasing NPC proliferation. Overall, increased delivery of NPY to the CNS for AD might be an effective therapy especially if combined with an anti-Aβ therapeutic. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Hauser, Kurt F; Knapp, Pamela E
2017-01-01
The endogenous opioid system, comprised of multiple opioid neuropeptide and receptor gene families, is highly expressed by developing neural cells and can significantly influence neuronal and glial maturation. In many central nervous system (CNS) regions, the expression of opioid peptides and receptors occurs only transiently during development, effectively disappearing with subsequent maturation only to reemerge under pathologic conditions, such as with inflammation or injury. Opiate drugs with abuse liability act to modify growth and development by mimicking the actions of endogenous opioids. Although typically mediated by μ-opioid receptors, opiate drugs can also act through δ- and κ-opioid receptors to modulate growth in a cell-type, region-specific, and developmentally regulated manner. Opioids act as biological response modifiers and their actions are highly contextual, plastic, modifiable, and influenced by other physiological processes or pathophysiological conditions, such as neuro-acquired immunodeficiency syndrome. To date, most studies have considered the acute effects of opiates on cellular maturation. For example, activating opioid receptors typically results in acute growth inhibition in both neurons and glia. However, with sustained opioid exposure, compensatory factors become operative, a concept that has been largely overlooked during CNS maturation. Accordingly, this article surveys prior studies on the effects of opiates on CNS maturation, and also suggests new directions for future research in this area. Identifying the cellular and molecular mechanisms underlying the adaptive responses to chronic opiate exposure (e.g., tolerance) during maturation is crucial toward understanding the consequences of perinatal opiate exposure on the CNS.
Gadgeel, Shirish; Shaw, Alice T; Barlesi, Fabrice; Crinò, Lucio; Yang, James Chih-Hsin; Dingemans, Anne-Marie C; Kim, Dong-Wan; de Marinis, Filippo; Schulz, Mathias; Liu, Shiyao; Gupta, Ravindra; Kotb, Ahmed; Ou, Sai-Hong Ignatius
2018-01-01
We evaluated the cumulative incidence rate (CIR) of central nervous system (CNS) and non-CNS progression in alectinib-treated patients with anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer (NSCLC) to determine the extent to which alectinib may treat or control CNS disease. Patients with crizotinib-pretreated locally advanced or metastatic disease received alectinib 600 mg orally twice daily in two phase II trials. All patients underwent baseline imaging and regular centrally reviewed scans. At 24 months, the CIR for CNS progression was lower in patients without vs with baseline CNS metastases (8.0 vs 43.9%). Patients with baseline CNS disease and prior radiotherapy had a higher CIR of CNS progression than radiotherapy-naive patients (50.5 vs 27.4%) and a lower CIR of non-CNS progression (25.8 vs 42.5%). Adverse events leading to withdrawal occurred in 5.9% and 6.7% of patients with and without baseline CNS metastases, respectively. This analysis indicates a potential role for alectinib in controlling and preventing CNS metastases.
Lemma, Siria A; Kuusisto, Milla; Haapasaari, Kirsi-Maria; Sormunen, Raija; Lehtinen, Tuula; Klaavuniemi, Tuula; Eray, Mine; Jantunen, Esa; Soini, Ylermi; Vasala, Kaija; Böhm, Jan; Salokorpi, Niina; Koivunen, Petri; Karihtala, Peeter; Vuoristo, Jussi; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi
2017-01-01
Abstract Central nervous system (CNS) relapse is a devastating complication that occurs in about 5% of diffuse large B-cell lymphoma (DLBCL) patients. Currently, there are no predictive biological markers. We wanted to study potential biomarkers of CNS tropism that play a role in adhesion, migration and/or in the regulation of inflammatory responses. The expression levels of ITGA10, CD44, PTEN, cadherin-11, CDH12, N-cadherin, P-cadherin, lactoferrin and E-cadherin were studied with IHC and IEM. GEP was performed to see whether found expressional changes are regulated at DNA/RNA level. IHC included 96 samples of primary CNS lymphoma (PCNSL), secondary CNS lymphoma (sCNSL) and systemic DLBCL (sDLBCL). IEM included two PCNSL, one sCNSL, one sDLBCL and one reactive lymph node samples. GEP was performed on two DLBCL samples, one with and one without CNS relapse. CNS disease was associated with enhanced expression of cytoplasmic and membranous ITGA10 and nuclear PTEN (P < 0.0005, P = 0.002, P = 0.024, respectively). sCNSL presented decreased membranous CD44 and nuclear and cytoplasmic cadherin-11 expressions (P = 0.001, P = 0.006, P = 0.048, respectively). In PCNSL lactoferrin expression was upregulated (P < 0.0005). IEM results were mainly supportive of the IHC results. In GEP CD44, cadherin-11, lactoferrin and E-cadherin were under-expressed in CNS disease. Our results are in line with previous studies, where gene expressions in extracellular matrix and adhesion-related pathways are altered in CNS lymphoma. This study gives new information on the DLBCL CNS tropism. If further verified, these markers might become useful in predicting CNS relapses. PMID:28854563
Vasconcelos, Andrea Rodrigues; Kinoshita, Paula Fernanda; Yshii, Lidia Mitiko; Marques Orellana, Ana Maria; Böhmer, Ana Elisa; de Sá Lima, Larissa; Alves, Rosana; Andreotti, Diana Zukas; Marcourakis, Tania; Scavone, Cristoforo; Kawamoto, Elisa Mitiko
2015-05-01
Chronic neuroinflammation is a common characteristic of neurodegenerative diseases, and lipopolysaccharide (LPS) signaling is linked to glutamate-nitric oxide-Na,K-ATPase isoforms pathway in central nervous system (CNS) and also causes neuroinflammation. Intermittent fasting (IF) induces adaptive responses in the brain that can suppress inflammation, but the age-related effect of IF on LPS modulatory influence on nitric oxide-Na,K-ATPase isoforms is unknown. This work compared the effects of LPS on the activity of α1,α2,3 Na,K-ATPase, nitric oxide synthase gene expression and/or activity, cyclic guanosine monophosphate, 3-nitrotyrosine-containing proteins, and levels of thiobarbituric acid-reactive substances in CNS of young and older rats submitted to the IF protocol for 30 days. LPS induced an age-related effect in neuronal nitric oxide synthase activity, cyclic guanosine monophosphate, and levels of thiobarbituric acid-reactive substances in rat hippocampus that was linked to changes in α2,3-Na,K-ATPase activity, 3-nitrotyrosine proteins, and inducible nitric oxide synthase gene expression. IF induced adaptative cellular stress-response signaling pathways reverting LPS effects in rat hippocampus of young and older rats. The results suggest that IF in both ages would reduce the risk for deficits on brain function and neurodegenerative disorders linked to inflammatory response in the CNS. Copyright © 2015 Elsevier Inc. All rights reserved.
Takeuchi, Hideyuki; Suzumura, Akio
2014-01-01
Microglia are macrophage-like resident immune cells that contribute to the maintenance of homeostasis in the central nervous system (CNS). Abnormal activation of microglia can cause damage in the CNS, and accumulation of activated microglia is a characteristic pathological observation in neurologic conditions such as trauma, stroke, inflammation, epilepsy, and neurodegenerative diseases. Activated microglia secrete high levels of glutamate, which damages CNS cells and has been implicated as a major cause of neurodegeneration in these conditions. Glutamate-receptor blockers and microglia inhibitors (e.g., minocycline) have been examined as therapeutic candidates for several neurodegenerative diseases; however, these compounds exerted little therapeutic benefit because they either perturbed physiological glutamate signals or suppressed the actions of protective microglia. The ideal therapeutic approach would hamper the deleterious roles of activated microglia without diminishing their protective effects. We recently found that abnormally activated microglia secrete glutamate via gap-junction hemichannels on the cell surface. Moreover, administration of gap-junction inhibitors significantly suppressed excessive microglial glutamate release and improved disease symptoms in animal models of neurologic conditions such as stroke, multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's disease. Recent evidence also suggests that neuronal and glial communication via gap junctions amplifies neuroinflammation and neurodegeneration. Elucidation of the precise pathologic roles of gap junctions and hemichannels may lead to a novel therapeutic strategies that can slow and halt the progression of neurodegenerative diseases. PMID:25228858
Whole body correction of mucopolysaccharidosis IIIA by intracerebrospinal fluid gene therapy
Haurigot, Virginia; Marcó, Sara; Ribera, Albert; Garcia, Miguel; Ruzo, Albert; Villacampa, Pilar; Ayuso, Eduard; Añor, Sònia; Andaluz, Anna; Pineda, Mercedes; García-Fructuoso, Gemma; Molas, Maria; Maggioni, Luca; Muñoz, Sergio; Motas, Sandra; Ruberte, Jesús; Mingozzi, Federico; Pumarola, Martí; Bosch, Fatima
2013-01-01
For most lysosomal storage diseases (LSDs) affecting the CNS, there is currently no cure. The BBB, which limits the bioavailability of drugs administered systemically, and the short half-life of lysosomal enzymes, hamper the development of effective therapies. Mucopolysaccharidosis type IIIA (MPS IIIA) is an autosomic recessive LSD caused by a deficiency in sulfamidase, a sulfatase involved in the stepwise degradation of glycosaminoglycan (GAG) heparan sulfate. Here, we demonstrate that intracerebrospinal fluid (intra-CSF) administration of serotype 9 adenoassociated viral vectors (AAV9s) encoding sulfamidase corrects both CNS and somatic pathology in MPS IIIA mice. Following vector administration, enzymatic activity increased throughout the brain and in serum, leading to whole body correction of GAG accumulation and lysosomal pathology, normalization of behavioral deficits, and prolonged survival. To test this strategy in a larger animal, we treated beagle dogs using intracisternal or intracerebroventricular delivery. Administration of sulfamidase-encoding AAV9 resulted in transgenic expression throughout the CNS and liver and increased sulfamidase activity in CSF. High-titer serum antibodies against AAV9 only partially blocked CSF-mediated gene transfer to the brains of dogs. Consistently, anti-AAV antibody titers were lower in CSF than in serum collected from healthy and MPS IIIA–affected children. These results support the clinical translation of this approach for the treatment of MPS IIIA and other LSDs with CNS involvement. PMID:23863627
Whole body correction of mucopolysaccharidosis IIIA by intracerebrospinal fluid gene therapy.
Haurigot, Virginia; Marcó, Sara; Ribera, Albert; Garcia, Miguel; Ruzo, Albert; Villacampa, Pilar; Ayuso, Eduard; Añor, Sònia; Andaluz, Anna; Pineda, Mercedes; García-Fructuoso, Gemma; Molas, Maria; Maggioni, Luca; Muñoz, Sergio; Motas, Sandra; Ruberte, Jesús; Mingozzi, Federico; Pumarola, Martí; Bosch, Fatima
2013-07-01
For most lysosomal storage diseases (LSDs) affecting the CNS, there is currently no cure. The BBB, which limits the bioavailability of drugs administered systemically, and the short half-life of lysosomal enzymes, hamper the development of effective therapies. Mucopolysaccharidosis type IIIA (MPS IIIA) is an autosomic recessive LSD caused by a deficiency in sulfamidase, a sulfatase involved in the stepwise degradation of glycosaminoglycan (GAG) heparan sulfate. Here, we demonstrate that intracerebrospinal fluid (intra-CSF) administration of serotype 9 adenoassociated viral vectors (AAV9s) encoding sulfamidase corrects both CNS and somatic pathology in MPS IIIA mice. Following vector administration, enzymatic activity increased throughout the brain and in serum, leading to whole body correction of GAG accumulation and lysosomal pathology, normalization of behavioral deficits, and prolonged survival. To test this strategy in a larger animal, we treated beagle dogs using intracisternal or intracerebroventricular delivery. Administration of sulfamidase-encoding AAV9 resulted in transgenic expression throughout the CNS and liver and increased sulfamidase activity in CSF. High-titer serum antibodies against AAV9 only partially blocked CSF-mediated gene transfer to the brains of dogs. Consistently, anti-AAV antibody titers were lower in CSF than in serum collected from healthy and MPS IIIA-affected children. These results support the clinical translation of this approach for the treatment of MPS IIIA and other LSDs with CNS involvement.
Preclinical profile of cabazitaxel
Vrignaud, Patricia; Semiond, Dorothée; Benning, Veronique; Beys, Eric; Bouchard, Hervé; Gupta, Sunil
2014-01-01
First-generation taxanes have changed the treatment paradigm for a wide variety of cancers, but innate or acquired resistance frequently limits their use. Cabazitaxel is a novel second-generation taxane developed to overcome such resistance. In vitro, cabazitaxel showed similar antiproliferative activity to docetaxel in taxane-sensitive cell lines and markedly greater activity in cell lines resistant to taxanes. In vivo, cabazitaxel demonstrated excellent antitumor activity in a broad spectrum of docetaxel-sensitive tumor xenografts, including a castration-resistant prostate tumor xenograft, HID28, where cabazitaxel exhibited greater efficacy than docetaxel. Importantly, cabazitaxel was also active against tumors with innate or acquired resistance to docetaxel, suggesting therapeutic potential for patients progressing following taxane treatment and those with docetaxel-refractory tumors. In patients with tumors of the central nervous system (CNS), and in patients with pediatric tumors, therapeutic success with first-generation taxanes has been limited. Cabazitaxel demonstrated greater antitumor activity than docetaxel in xenograft models of CNS disease and pediatric tumors, suggesting potential clinical utility in these special patient populations. Based on therapeutic synergism observed in an in vivo tumor model, cabazitaxel is also being investigated clinically in combination with cisplatin. Nonclinical evaluation of the safety of cabazitaxel in a range of animal species showed largely reversible changes in the bone marrow, lymphoid system, gastrointestinal tract, and male reproductive system. Preclinical safety signals of cabazitaxel were consistent with the previously reported safety profiles of paclitaxel and docetaxel. Clinical observations with cabazitaxel were consistent with preclinical results, and cabazitaxel is indicated, in combination with prednisone, for the treatment of patients with hormone-refractory metastatic prostate cancer previously treated with docetaxel. In conclusion, the demonstrated activity of cabazitaxel in tumors with innate or acquired resistance to docetaxel, CNS tumors, and pediatric tumors made this agent a candidate for further clinical evaluation in a broader range of patient populations compared with first-generation taxanes. PMID:25378905
ELECTROSTATIC CHARGE STIMULATES OXIDATIVE STRESS IN CNS MICROGLIA.
Nanometer size particles carry free radical activity on their surface and can create oxidative stress (OS)-mediated inflammatory changes upon impact. The oxidative burst signals the activation of phage-lineage cells such as peripheral macrophages, Kupffer cells and CNS microgl...
Chaverra, Marta; George, Lynn; Thorne, Julian; Grindeland, Andrea; Ueki, Yumi; Eiger, Steven; Cusick, Cassie; Babcock, A. Michael; Carlson, George A.
2017-01-01
ABSTRACT Hereditary sensory and autonomic neuropathies (HSANs) are a genetically and clinically diverse group of disorders defined by peripheral nervous system (PNS) dysfunction. HSAN type III, known as familial dysautonomia (FD), results from a single base mutation in the gene IKBKAP that encodes a scaffolding unit (ELP1) for a multi-subunit complex known as Elongator. Since mutations in other Elongator subunits (ELP2 to ELP4) are associated with central nervous system (CNS) disorders, the goal of this study was to investigate a potential requirement for Ikbkap in the CNS of mice. The sensory and autonomic pathophysiology of FD is fatal, with the majority of patients dying by age 40. While signs and pathology of FD have been noted in the CNS, the clinical and research focus has been on the sensory and autonomic dysfunction, and no genetic model studies have investigated the requirement for Ikbkap in the CNS. Here, we report, using a novel mouse line in which Ikbkap is deleted solely in the nervous system, that not only is Ikbkap widely expressed in the embryonic and adult CNS, but its deletion perturbs both the development of cortical neurons and their survival in adulthood. Primary cilia in embryonic cortical apical progenitors and motile cilia in adult ependymal cells are reduced in number and disorganized. Furthermore, we report that, in the adult CNS, both autonomic and non-autonomic neuronal populations require Ikbkap for survival, including spinal motor and cortical neurons. In addition, the mice developed kyphoscoliosis, an FD hallmark, indicating its neuropathic etiology. Ultimately, these perturbations manifest in a developmental and progressive neurodegenerative condition that includes impairments in learning and memory. Collectively, these data reveal an essential function for Ikbkap that extends beyond the peripheral nervous system to CNS development and function. With the identification of discrete CNS cell types and structures that depend on Ikbkap, novel strategies to thwart the progressive demise of CNS neurons in FD can be developed. PMID:28167615
C-peptide and Central Nervous System Complications in Diabetes
Li, Zhen-guo
2004-01-01
Substantial evidence collected from clinical data and experimental studies has indicated that CNS is not spared from diabetes complications. Impairments in CNS function are well documented in both type 1 and type 2 diabetic patients as well as in various animal models of diabetes, in terms of alterations in cognition, neuropsychology, neurobehavior, electrophysiology, structure, neurochemistry and apoptotic activities. These data suggest that primary diabetic encephalopathy exists as a definable diabetic complication. The mechanisms underlying this CNS complication are not clear. Experimental studies have suggested that neuronal apoptosis may play an important role in neuronal loss and impaired cognitive function. In diabetes multiple factors are responsible for neuronal apoptosis, such as a perturbed IGF system, hyperglycemia and the aging process itself. Recent data suggest that insulin/C-peptide deficiency may exert an eminent role. Administration of C-peptide partially corrects the perturbed IGF system in the brain and prevents neuronal apoptosis in hippocampus of type 1 diabetes. In neuroblastoma SH-SY5Y cells C-peptide provides a dose-dependent stimulation on cell proliferation and an anti-apoptotic effect as well. These studies provide a basis for administration of C-peptide as a potentially effective therapy for type 1 diabetes. PMID:15198373
A new clinical trial aims to determine whether nivolumab, an immune checkpoint inhibitor, can improve control of cancer for patients with several types of tumors of the central nervous system (CNS). The CNS is composed of the brain and spinal cord and the cause of most CNS tumors in adults is unknown. Learn more...
Peripherally derived FGF21 promotes remyelination in the central nervous system
Kuroda, Mariko; Maedera, Noriko; Koyama, Yoshihisa; Hamaguchi, Machika; Fujimura, Harutoshi; Konishi, Morichika; Itoh, Nobuyuki; Mochizuki, Hideki
2017-01-01
Demyelination in the central nervous system (CNS) leads to severe neurological deficits that can be partially reversed by spontaneous remyelination. Because the CNS is isolated from the peripheral milieu by the blood-brain barrier, remyelination is thought to be controlled by the CNS microenvironment. However, in this work we found that factors derived from peripheral tissue leak into the CNS after injury and promote remyelination in a murine model of toxin-induced demyelination. Mechanistically, leakage of circulating fibroblast growth factor 21 (FGF21), which is predominantly expressed by the pancreas, drives proliferation of oligodendrocyte precursor cells (OPCs) through interactions with β-klotho, an essential coreceptor of FGF21. We further confirmed that human OPCs expressed β-klotho and proliferated in response to FGF21 in vitro. Vascular barrier disruption is a common feature of many CNS disorders; thus, our findings reveal a potentially important role for the peripheral milieu in promoting CNS regeneration. PMID:28825598
The Secret Lives of Neurotrophin Receptors | Center for Cancer Research
Neurotrophins are a family of growth factors that are critical to the proper development and functioning of the nervous system. Neurotrophins activate a family of tyrosine receptor kinases (Trk), which typically initiate signaling cascades through phosphorylation. This axis is important for central nervous system (CNS) drug development efforts, ranging from pain management to
A Comparative Study of Successful Central Nervous System Drugs Using Molecular Modeling
ERIC Educational Resources Information Center
Kim, Hyosub; Sulaimon, Segun; Menezes, Sandra; Son, Anne; Menezes, Warren J. C.
2011-01-01
Molecular modeling is a powerful tool used for three-dimensional visualization and for exploring electrostatic forces involved in drug transport. This tool enhances student understanding of structure-property relationships, as well as actively engaging them in class. Molecular modeling of several central nervous system (CNS) drugs is used to…
Neuro-Coagulopathy: Blood Coagulation Factors in Central Nervous System Diseases.
De Luca, Ciro; Virtuoso, Assunta; Maggio, Nicola; Papa, Michele
2017-10-12
Blood coagulation factors and other proteins, with modulatory effects or modulated by the coagulation cascade have been reported to affect the pathophysiology of the central nervous system (CNS). The protease-activated receptors (PARs) pathway can be considered the central hub of this regulatory network, mainly through thrombin or activated protein C (aPC). These proteins, in fact, showed peculiar properties, being able to interfere with synaptic homeostasis other than coagulation itself. These specific functions modulate neuronal networks, acting both on resident (neurons, astrocytes, and microglia) as well as circulating immune system cells and the extracellular matrix. The pleiotropy of these effects is produced through different receptors, expressed in various cell types, in a dose- and time-dependent pattern. We reviewed how these pathways may be involved in neurodegenerative diseases (amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases), multiple sclerosis, ischemic stroke and post-ischemic epilepsy, CNS cancer, addiction, and mental health. These data open up a new path for the potential therapeutic use of the agonist/antagonist of these proteins in the management of several central nervous system diseases.
Kan, Min Hui; Yang, Ting; Fu, Hui Qun; Fan, Long; Wu, Yan; Terrando, Niccolò; Wang, Tian-Long
2016-01-01
Systemic inflammation, for example as a result of infection, often contributes to long-term complications. Neuroinflammation and cognitive decline are key hallmarks of several neurological conditions, including advance age. The contribution of systemic inflammation to the central nervous system (CNS) remains not fully understood. Using a model of peripheral endotoxemia with lipopolysaccharide (LPS) we investigated the role of nuclear factor-κB (NF-κB) activity in mediating long-term neuroinflammation and cognitive dysfunction in aged rats. Herein we describe the anti-inflammatory effects of pyrrolidine dithiocarbamate (PDTC), a selective NF-κB inhibitor, in modulating systemic cytokines including tumor necrosis factor (TNF)-α and interleukin-1β (IL-1β) and CNS markers after LPS exposure in aged rats. In the hippocampus, PDTC not only reduced neuroinflammation by modulating canonical NF-κB activity but also affected IL-1β expression in astrocytes. Parallel effects were observed on behavior and postsynaptic density-95 (PSD95), a marker of synaptic function. Taken together these changes improved acute and long-term cognitive function in aged rats after LPS exposure. PMID:27493629
Wasser, Beatrice; Pramanik, Gautam; Hess, Moritz; Klein, Matthias; Luessi, Felix; Dornmair, Klaus; Bopp, Tobias; Zipp, Frauke; Witsch, Esther
2016-12-01
The importance of CD11c + antigen-presenting cells (APCs) in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) is well accepted and the gate keeper function of perivascular CD11c + APCs has been demonstrated. CD11c can be expressed by APCs from external sources or by central nervous system (CNS) resident APCs such as microglia. Yet, changes in the gene expression pattern of CNS CD11c + APCs during disease are still unclear and differentially expressed genes might play a decisive role in EAE progression. Due to their low numbers in the diseased brain and due to the absence of considerable numbers in the healthy CNS, analysis of CNS CD11c + cells is technically difficult. To ask whether the CD11c + APC population contributes to remission of EAE disease, we used Illumina deep mRNA sequencing (RNA-Seq) and quantitative real time polymerase chain reaction (qRT-PCR) analyses to identify the transcriptome of CD11c + APCs during disease course. We identified a battery of genes that were significantly regulated during the exacerbation of the disease compared to remission and relapse. Three of these genes, Arginase-1, Chi3l3 and Ms4a8a, showed a higher expression at the exacerbation than at later time points during the disease, both in SJL/J and in C57BL/6 mice, and could be attributed to alternatively activated APCs. Expression of Arginase-1, Chi3l3 and Ms4a8a genes was linked to the disease phase of EAE rather than to disease score. Expression of these genes suggested that APCs resembling alternatively activated macrophages are involved during the first wave of neuroinflammation and can be directly associated with the disease progress.
Samantaray, Supriti; Knaryan, Varduhi H.; Patel, Kaushal S.; Mulholland, Patrick J.; Becker, Howard C.; Banik, Naren L.
2015-01-01
Chronic alcohol consumption causes multifaceted damage to the central nervous system (CNS), underlying mechanisms of which are gradually being unraveled. In our previous studies, activation of calpain, a calcium-activated neutral protease has been found to cause detrimental alterations in spinal motor neurons following ethanol (EtOH) exposure in vitro. However, it is not known whether calpain plays a pivotal role in chronic EtOH exposure-induced structural damage to CNS in vivo. To test the possible involvement of calpain in EtOH-associated neurodegenerative mechanisms the present investigation was conducted in a well-established mouse model of alcohol dependence - chronic intermittent EtOH (CIE) exposure and withdrawal. Our studies indicated significant loss of axonal proteins (neurofilament light and heavy, 50-60 %), myelin proteins (myelin basic protein, 20-40 % proteolipid protein, 25 %) and enzyme (2′, 3′-cyclic-nucleotide 3′-phosphodiesterase, 21-55 %) following CIE in multiple regions of brain including hippocampus, corpus callosum, cerebellum, and importantly in spinal cord. These CIE-induced deleterious effects escalated after withdrawal in each CNS region tested. Increased expression and activity of calpain along with enhanced ratio of active calpain to calpastatin (sole endogenous inhibitor) was observed after withdrawal compared to EtOH exposure. Pharmacological inhibition of calpain with calpeptin (25 μg/kg) prior to each EtOH vapor inhalation significantly attenuated damage to axons and myelin as demonstrated by immuno-profiles of axonal and myelin proteins, and Luxol Fast Blue staining. Calpain inhibition significantly protected the ultrastructural integrity of axons and myelin compared to control as confirmed by electron microscopy. Together, these findings confirm CIE exposure and withdrawal induced structural alterations in axons and myelin, predominantly after withdrawal and corroborate calpain inhibition as a potential protective strategy against EtOH associated CNS degeneration. PMID:26100335
Rb-Silva, Rita; Nobrega, Claudia; Reiriz, Eugénia; Almeida, Soraia; Sarmento-Castro, Rui; Correia-Neves, Margarida; Horta, Ana
2017-01-13
HIV-infected patients may present an unforeseen clinical worsening after initiating antiretroviral therapy known as immune reconstitution inflammatory syndrome (IRIS). This syndrome is characterized by a heightened inflammatory response toward infectious or non-infectious triggers, and it may affect different organs. Diagnosis of IRIS involving the central nervous system (CNS-IRIS) is challenging due to heterogeneous manifestations, absence of biomarkers to identify this condition, risk of long-term sequelae and high mortality. Hence, a deeper knowledge of CNS-IRIS pathogenesis is needed. A 37-year-old man was diagnosed with AIDS and cerebral toxoplasmosis. Anti-toxoplasma treatment was initiated immediately, followed by active antiretroviral therapy (HAART) 1 month later. At 2 months of HAART, he presented with progressive hyposensitivity of the right lower limb associated with brain and dorsal spinal cord lesions, compatible with paradoxical toxoplasmosis-associated CNS-IRIS, a condition with very few reported cases. A stereotactic biopsy was planned but was postponed based on its inherent risks. Patient showed clinical improvement with no requirement of corticosteroid therapy. Routine laboratorial analysis was complemented with longitudinal evaluation of blood T cell subsets at 0, 1, 2, 3 and 6 months upon HAART initiation. A control group composed by 9 HIV-infected patients from the same hospital but with no IRIS was analysed for comparison. The CNS-IRIS patient showed lower percentage of memory CD4 + T cells and higher percentage of activated CD4 + T cells at HAART initiation. The percentage of memory CD4 + T cells drastically increased at 1 month after HAART initiation and became higher in comparison to the control group until clinical recovery onset; the percentage of memory CD8 + T cells was consistently lower throughout follow-up. Interestingly, the percentage of regulatory T cells (Treg) on the CNS-IRIS patient reached a minimum around 1 month before symptoms onset. Although both stereotactic biopsies and steroid therapy might be of use in CNS-IRIS cases and should be considered for these patients, they might be unnecessary to achieve clinical improvement as shown in this case. Immunological characterization of more CNS-IRIS cases is essential to shed some light on the pathogenesis of this condition.
Pericytes of the neurovascular unit: Key functions and signaling pathways
Sweeney, Melanie D.; Ayyadurai, Shiva; Zlokovic, Berislav V.
2017-01-01
Pericytes are vascular mural cells embedded in the basement membrane of blood microvessels. They extend their processes along capillaries, pre-capillary arterioles, and post-capillary venules. The central nervous system (CNS) pericytes are uniquely positioned within the neurovascular unit between endothelial cells, astrocytes, and neurons. They integrate, coordinate, and process signals from their neighboring cells to generate diverse functional responses that are critical for CNS functions in health and disease including regulation of the blood-brain barrier permeability, angiogenesis, clearance of toxic metabolites, capillary hemodynamic responses, neuroinflammation, and stem cell activity. Here, we examine the key signaling pathways between pericytes and their neighboring endothelial cells, astrocytes, and neurons that control neurovascular functions. We also review the role of pericytes in different CNS disorders including rare monogenic diseases and complex neurological disorders such as Alzheimer's disease and brain tumors. Finally, we discuss directions for future studies. PMID:27227366
Death receptors DR6 and TROY regulate brain vascular development.
Tam, Stephen J; Richmond, David L; Kaminker, Joshua S; Modrusan, Zora; Martin-McNulty, Baby; Cao, Tim C; Weimer, Robby M; Carano, Richard A D; van Bruggen, Nick; Watts, Ryan J
2012-02-14
Signaling events that regulate central nervous system (CNS) angiogenesis and blood-brain barrier (BBB) formation are only beginning to be elucidated. By evaluating the gene expression profile of mouse vasculature, we identified DR6/TNFRSF21 and TROY/TNFRSF19 as regulators of CNS-specific angiogenesis in both zebrafish and mice. Furthermore, these two death receptors interact both genetically and physically and are required for vascular endothelial growth factor (VEGF)-mediated JNK activation and subsequent human brain endothelial sprouting in vitro. Increasing beta-catenin levels in brain endothelium upregulate DR6 and TROY, indicating that these death receptors are downstream target genes of Wnt/beta-catenin signaling, which has been shown to be required for BBB development. These findings define a role for death receptors DR6 and TROY in CNS-specific vascular development. Copyright © 2012 Elsevier Inc. All rights reserved.
Lee, JangEun; Ling, Changying; Kosmalski, Michelle M.; Hulseberg, Paul; Schreiber, Heidi A.; Sandor, Matyas; Fabry, Zsuzsanna
2010-01-01
To study whether cerebral mycobacterial infection induces granuloma and protective immunity similar to systemic infection, we intracerebrally infected mice with Mycobacterium bovis bacilli Calmette-Guerin. Granuloma and IFN-γ+CD4+ T cell responses are induced in the central nervous system (CNS) similar to periphery, but the presence of IFN-γIL-17 double-positive CD4+ T cells is unique to the CNS. The major CNS source of TNF-α is microglia, with modest production by CD4+ T cells and macrophage. Protective immunity is accompanied by accumulation of Foxp3+CD4+ T cells and PD-L2+ dendritic cells, suggesting that both inflammatory and anti-inflammatory responses develop in the CNS following mycobacterial infection. PMID:19535154
Torres-Salazar, Delany; Bittner, Stefan; Zozulya, Alla L.; Weidenfeller, Christian; Kotsiari, Alexandra; Stangel, Martin; Fahlke, Christoph; Wiendl, Heinz
2008-01-01
In multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), impairment of glial “Excitatory Amino Acid Transporters” (EAATs) together with an excess glutamate-release by invading immune cells causes excitotoxic damage of the central nervous system (CNS). In order to identify pathways to dampen excitotoxic inflammatory CNS damage, we assessed the effects of a β-lactam antibiotic, ceftriaxone, reported to enhance expression of glial EAAT2, in “Myelin Oligodendrocyte Glycoprotein” (MOG)-induced EAE. Ceftriaxone profoundly ameliorated the clinical course of murine MOG-induced EAE both under preventive and therapeutic regimens. However, ceftriaxone had impact neither on EAAT2 protein expression levels in several brain areas, nor on the radioactive glutamate uptake capacity in a mixed primary glial cell-culture and the glutamate-induced uptake currents in a mammalian cell line mediated by EAAT2. Moreover, the clinical effect of ceftriaxone was preserved in the presence of the EAAT2-specific transport inhibitor, dihydrokainate, while dihydrokainate alone caused an aggravated EAE course. This demonstrates the need for sufficient glial glutamate uptake upon an excitotoxic autoimmune inflammatory challenge of the CNS and a molecular target of ceftriaxone other than the glutamate transporter. Ceftriaxone treatment indirectly hampered T cell proliferation and proinflammatory INFγ and IL17 secretion through modulation of myelin-antigen presentation by antigen-presenting cells (APCs) e.g. dendritic cells (DCs) and reduced T cell migration into the CNS in vivo. Taken together, we demonstrate, that a β-lactam antibiotic attenuates disease course and severity in a model of autoimmune CNS inflammation. The mechanisms are reduction of T cell activation by modulation of cellular antigen-presentation and impairment of antigen-specific T cell migration into the CNS rather than or modulation of central glutamate homeostasis. PMID:18773080
Antiretroviral drug treatment of CNS HIV-1 infection.
Yilmaz, Aylin; Price, Richard W; Gisslén, Magnus
2012-02-01
The advent of combination antiretroviral treatment has had a profound impact on CNS HIV infection and its clinical complications, but neurological impairment still occurs in patients on systemically effective combination therapy, and in some patients it may be important to consider antiretroviral drug entry and effects within the CNS. There are now data on the CNS exposure for most antiretroviral drugs. This review focuses on the CNS pharmacokinetics and pharmacodynamics of antiretroviral drugs in humans, and also discusses controversies in this field.
Pentsova, Elena I.; Shah, Ronak H.; Tang, Jiabin; Boire, Adrienne; You, Daoqi; Briggs, Samuel; Omuro, Antonio; Lin, Xuling; Fleisher, Martin; Grommes, Christian; Panageas, Katherine S.; Meng, Fanli; Selcuklu, S. Duygu; Ogilvie, Shahiba; Distefano, Natalie; Shagabayeva, Larisa; Rosenblum, Marc; DeAngelis, Lisa M.; Viale, Agnes; Berger, Michael F.
2016-01-01
Purpose Cancer spread to the central nervous system (CNS) often is diagnosed late and is unresponsive to therapy. Mechanisms of tumor dissemination and evolution within the CNS are largely unknown because of limited access to tumor tissue. Materials and Methods We sequenced 341 cancer-associated genes in cell-free DNA from cerebrospinal fluid (CSF) obtained through routine lumbar puncture in 53 patients with suspected or known CNS involvement by cancer. Results We detected high-confidence somatic alterations in 63% (20 of 32) of patients with CNS metastases of solid tumors, 50% (six of 12) of patients with primary brain tumors, and 0% (zero of nine) of patients without CNS involvement by cancer. Several patients with tumor progression in the CNS during therapy with inhibitors of oncogenic kinases harbored mutations in the kinase target or kinase bypass pathways. In patients with glioma, the most common malignant primary brain tumor in adults, examination of cell-free DNA uncovered patterns of tumor evolution, including temozolomide-associated mutations. Conclusion The study shows that CSF harbors clinically relevant genomic alterations in patients with CNS cancers and should be considered for liquid biopsies to monitor tumor evolution in the CNS. PMID:27161972
CNS Macrophages Control Neurovascular Development via CD95L.
Chen, Si; Tisch, Nathalie; Kegel, Marcel; Yerbes, Rosario; Hermann, Robert; Hudalla, Hannes; Zuliani, Cecilia; Gülcüler, Gülce Sila; Zwadlo, Klara; von Engelhardt, Jakob; Ruiz de Almodóvar, Carmen; Martin-Villalba, Ana
2017-05-16
The development of neurons and vessels shares striking anatomical and molecular features, and it is presumably orchestrated by an overlapping repertoire of extracellular signals. CNS macrophages have been implicated in various developmental functions, including the morphogenesis of neurons and vessels. However, whether CNS macrophages can coordinately influence neurovascular development and the identity of the signals involved therein is unclear. Here, we demonstrate that activity of the cell surface receptor CD95 regulates neuronal and vascular morphogenesis in the post-natal brain and retina. Furthermore, we identify CNS macrophages as the main source of CD95L, and macrophage-specific deletion thereof reduces both neurovascular complexity and synaptic activity in the brain. CD95L-induced neuronal and vascular growth is mediated through src-family kinase (SFK) and PI3K signaling. Together, our study highlights a coordinated neurovascular development instructed by CNS macrophage-derived CD95L, and it underlines the importance of macrophages for the establishment of the neurovascular network during CNS development. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Mainger, Steve
2004-01-01
As NASA speculates on and explores the future of aviation, the technological and physical aspects of our environment increasing become hurdles that must be overcome for success. Research into methods for overcoming some of these selected hurdles have been purposed by several NASA research partners as concepts. The task of establishing a common evaluation environment was placed on NASA's Virtual Airspace Simulation Technologies (VAST) project (sub-project of VAMS), and they responded with the development of the Airspace Concept Evaluation System (ACES). As one examines the ACES environment from a communication, navigation or surveillance (CNS) perspective, the simulation parameters are built with assumed perfection in the transactions associated with CNS. To truly evaluate these concepts in a realistic sense, the contributions/effects of CNS must be part of the ACES. NASA Glenn Research Center (GRC) has supported the Virtual Airspace Modeling and Simulation (VAMS) project through the continued development of CNS models and analysis capabilities which supports the ACES environment. NASA GRC initiated the development a communications traffic loading analysis tool, called the Future Aeronautical Sub-network Traffic Emulator for Communications, Navigation and Surveillance (FASTE-CNS), as part of this support. This tool allows for forecasting of communications load with the understanding that, there is no single, common source for loading models used to evaluate the existing and planned communications channels; and that, consensus and accuracy in the traffic load models is a very important input to the decisions being made on the acceptability of communication techniques used to fulfill the aeronautical requirements. Leveraging off the existing capabilities of the FASTE-CNS tool, GRC has called for FASTE-CNS to have the functionality to pre- and post-process the simulation runs of ACES to report on instances when traffic density, frequency congestion or aircraft spacing/distance violations have occurred. The integration of these functions require that the CNS models used to characterize these avionic system be of higher fidelity and better consistency then is present in FASTE-CNS system. This presentation will explore the capabilities of FASTE-CNS with renewed emphasis on the enhancements being added to perform these processing functions; the fidelity and reliability of CNS models necessary to make the enhancements work; and the benchmarking of FASTE-CNS results to improve confidence for the results of the new processing capabilities.
Jeserich, G; Waehneldt, T V
1986-02-01
Peripheral nervous system (PNS) myelin from the rainbow trout (Salmo gairdneri) banded at a density of 0.38 M sucrose. The main myelin proteins consisted of (1) two basic proteins, BPa and BPb (11,500 and 13,000 MW, similar to those of trout central nervous system (CNS) myelin proteins BP1 and BP2), and (2) two glycosylated components, IPb (24,400 MW) and IPc (26,200 MW). IPc comigrated with trout CNS myelin protein IP2 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, whereas trout CNS myelin protein IP1 had a lower molecular weight (23,000). Following two-dimensional separation, however, both IPb and IPc from PNS showed two components; the more acidic component of IPc comigrated with IP2 from CNS. PNS tissue autolysis led to the formation of IPa (20,000 MW), consisting of two components in isoelectric focusing of which again the more acidic one comigrated with the CNS autolysis product IP0. Limited enzymatic digestion of isolated IP proteins from PNS and CNS led to closely similar degradation patterns, being most pronounced in the case of IP2 and IPc. Immunoblotting revealed that all IP components from trout PNS and CNS myelins reacted with antibodies to trout IP1 (CNS) and bovine P0 protein (PNS) whereas antibodies to rat PLP (CNS) were entirely unreactive. All BP components from trout PNS and CNS myelins bound to antibodies against human myelin basic protein. On the basis of these studies trout PNS and CNS myelins contain at least one common IP glycoprotein, whereas other members of the IP myelin protein family appear closely related. In the CNS myelin of trout the IP components appear to replace PLP.(ABSTRACT TRUNCATED AT 250 WORDS)
Fukushima, Kazuyuki; Miura, Yuji; Sawada, Kohei; Yamazaki, Kazuto; Ito, Masashi
2016-01-01
Using human cell models mimicking the central nervous system (CNS) provides a better understanding of the human CNS, and it is a key strategy to improve success rates in CNS drug development. In the CNS, neurons function as networks in which astrocytes play important roles. Thus, an assessment system of neuronal network functions in a co-culture of human neurons and astrocytes has potential to accelerate CNS drug development. We previously demonstrated that human hippocampus-derived neural stem/progenitor cells (HIP-009 cells) were a novel tool to obtain human neurons and astrocytes in the same culture. In this study, we applied HIP-009 cells to a multielectrode array (MEA) system to detect neuronal signals as neuronal network functions. We observed spontaneous firings of HIP-009 neurons, and validated functional formation of neuronal networks pharmacologically. By using this assay system, we investigated effects of several reference compounds, including agonists and antagonists of glutamate and γ-aminobutyric acid receptors, and sodium, potassium, and calcium channels, on neuronal network functions using firing and burst numbers, and synchrony as readouts. These results indicate that the HIP-009/MEA assay system is applicable to the pharmacological assessment of drug candidates affecting synaptic functions for CNS drug development. © 2015 Society for Laboratory Automation and Screening.
Mifepristone-inducible transgene expression in neural progenitor cells in vitro and in vivo
Hjelm, BE; Grunseich, C; Gowing, G; Avalos, P; Tian, J; Shelley, BC; Mooney, M; Narwani, K; Shi, Y; Svendsen, CN; Wolfe, JH; Fischbeck, KH; Pierson, TM
2016-01-01
Numerous gene and cell therapy strategies are being developed for the treatment of neurodegenerative disorders. Many of these strategies use constitutive expression of therapeutic transgenic proteins, and although functional in animal models of disease, this method is less likely to provide adequate flexibility for delivering therapy to humans. Ligand-inducible gene expression systems may be more appropriate for these conditions, especially within the central nervous system (CNS). Mifepristone’s ability to cross the blood–brain barrier makes it an especially attractive ligand for this purpose. We describe the production of a mifepristone-inducible vector system for regulated expression of transgenes within the CNS. Our inducible system used a lentivirus-based vector platform for the ex vivo production of mifepristone-inducible murine neural progenitor cells that express our transgenes of interest. These cells were processed through a series of selection steps to ensure that the cells exhibited appropriate transgene expression in a dose-dependent and temporally controlled manner with minimal background activity. Inducible cells were then transplanted into the brains of rodents, where they exhibited appropriate mifepristone-inducible expression. These studies detail a strategy for regulated expression in the CNS for use in the development of safe and efficient gene therapy for neurological disorders. PMID:26863047
Kang, Ting; Gao, Xiaoling; Chen, Jun
2014-01-01
The existence of blood-brain barrier (BBB) represents the most formidable challenge for drug delivery to the central nervous system (CNS). Modern breakthrough in biology offers multiple choices for overcoming this barrier but yields modest outcomes for clinical application due to various problems such as safety concerns, insufficient delivery efficiency and poor penetration. Cell penetrating peptides (CPPs) possessing powerful transmembrane capacity have been shown to be effective transport vectors for bioactive molecules and an attractive alternative to traditional active targeting approaches. However, the non-specificity of CPPs has hindered them from targeting a desired site of action. Promisingly, design of novel CPP-mediated nanoparticulate delivery systems with specific targeting property may extricate CPPs from the dilemma. In this review, both the traditional and novel applications of CPPs-based strategies for CNS drug delivery will be discussed.
Malecek, Mary-Kate; Petrich, Adam M; Rozell, Shaina; Chu, Benjamin; Trifilio, Steven; Galanina, Natalie; Maurer, Matthew; Farooq, Umar; Link, Brian K; Nowakowski, Grzegorz S; Nabhan, Chadi; Ayed, Ayed O
2017-11-01
Central nervous system (CNS) relapse in non-Hodgkin lymphoma (NHL) is a rare but serious complication that carries a poor prognosis. The use of infusional etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab (EPOCH-R) for frontline treatment of diffuse large B cell lymphoma (DLBCL) is increasing, though little is known about incidence of and risk factors for CNS relapse with this regimen PATIENTS AND METHODS: We completed a chart review of patients with NHL who received EPOCH-R as front line therapy. Data obtained included baseline and treatment characteristics including if patients received CNS directed therapy. We measured overall survival (OS), progression free survival (PFS), and progression to CNS involvement. We identified 223 patients who met the inclusion criteria, 72% had DLBCL. Of all the patients, 5.8% experienced CNS relapse, and 38.6% were treated with CNS prophylaxis. There was no difference in rate of CNS relapse, OS, or PFS between patients who had and had not received CNS prophylaxis. Patients whose serum lactate dehydrogenase was greater than twice the upper limit of normal at diagnosis and those with extranodal disease were significantly more likely to have CNS relapse (P = .0247 and 0.022, respectively) than their counterparts. The rate of CNS relapse in this patient population approaches 6%, not significantly different from reports on those receiving R-CHOP. The results of this study suggest that CNS prophylaxis might be more selectively used among patients treated with EPOCH-R with certain high-risk features. © 2017 Wiley Periodicals, Inc.
Presynaptic Active Zone Density during Development and Synaptic Plasticity.
Clarke, Gwenaëlle L; Chen, Jie; Nishimune, Hiroshi
2012-01-01
Neural circuits transmit information through synapses, and the efficiency of synaptic transmission is closely related to the density of presynaptic active zones, where synaptic vesicles are released. The goal of this review is to highlight recent insights into the molecular mechanisms that control the number of active zones per presynaptic terminal (active zone density) during developmental and stimulus-dependent changes in synaptic efficacy. At the neuromuscular junctions (NMJs), the active zone density is preserved across species, remains constant during development, and is the same between synapses with different activities. However, the NMJ active zones are not always stable, as exemplified by the change in active zone density during acute experimental manipulation or as a result of aging. Therefore, a mechanism must exist to maintain its density. In the central nervous system (CNS), active zones have restricted maximal size, exist in multiple numbers in larger presynaptic terminals, and maintain a constant density during development. These findings suggest that active zone density in the CNS is also controlled. However, in contrast to the NMJ, active zone density in the CNS can also be increased, as observed in hippocampal synapses in response to synaptic plasticity. Although the numbers of known active zone proteins and protein interactions have increased, less is known about the mechanism that controls the number or spacing of active zones. The following molecules are known to control active zone density and will be discussed herein: extracellular matrix laminins and voltage-dependent calcium channels, amyloid precursor proteins, the small GTPase Rab3, an endocytosis mechanism including synaptojanin, cytoskeleton protein spectrins and β-adducin, and a presynaptic web including spectrins. The molecular mechanisms that organize the active zone density are just beginning to be elucidated.
Presynaptic Active Zone Density during Development and Synaptic Plasticity
Clarke, Gwenaëlle L.; Chen, Jie; Nishimune, Hiroshi
2012-01-01
Neural circuits transmit information through synapses, and the efficiency of synaptic transmission is closely related to the density of presynaptic active zones, where synaptic vesicles are released. The goal of this review is to highlight recent insights into the molecular mechanisms that control the number of active zones per presynaptic terminal (active zone density) during developmental and stimulus-dependent changes in synaptic efficacy. At the neuromuscular junctions (NMJs), the active zone density is preserved across species, remains constant during development, and is the same between synapses with different activities. However, the NMJ active zones are not always stable, as exemplified by the change in active zone density during acute experimental manipulation or as a result of aging. Therefore, a mechanism must exist to maintain its density. In the central nervous system (CNS), active zones have restricted maximal size, exist in multiple numbers in larger presynaptic terminals, and maintain a constant density during development. These findings suggest that active zone density in the CNS is also controlled. However, in contrast to the NMJ, active zone density in the CNS can also be increased, as observed in hippocampal synapses in response to synaptic plasticity. Although the numbers of known active zone proteins and protein interactions have increased, less is known about the mechanism that controls the number or spacing of active zones. The following molecules are known to control active zone density and will be discussed herein: extracellular matrix laminins and voltage-dependent calcium channels, amyloid precursor proteins, the small GTPase Rab3, an endocytosis mechanism including synaptojanin, cytoskeleton protein spectrins and β-adducin, and a presynaptic web including spectrins. The molecular mechanisms that organize the active zone density are just beginning to be elucidated. PMID:22438837
Plant Derived Phytocompound, Embelin in CNS Disorders: A Systematic Review
Kundap, Uday P.; Bhuvanendran, Saatheeyavaane; Kumari, Yatinesh; Othman, Iekhsan; Shaikh, Mohd. Farooq
2017-01-01
A Central nervous system (CNS) disease is the one which affects either the spinal cord or brain and causing neurological or psychiatric complications. During the nineteenth century, modern medicines have occupied the therapy for many ailments and are widely used these days. Herbal medicines have often maintained popularity for historical and cultural reasons and also considered safer as they originate from natural sources. Embelin is a plant-based benzoquinone which is the major active constituent of the fruits of Embelia ribes Burm. It is an Indo-Malaysian species, extensively used in various traditional medicine systems for treating various diseases. Several natural products including quinone derivatives, which are considered to possess better safety and efficacy profile, are known for their CNS related activity. The bright orange hydroxybenzoquinone embelin-rich fruits of E. ribes have become popular in ethnomedicine. The present systematic review summarizes the effects of embelin on central nervous system and related diseases. A PRISMA model for systematic review was utilized for search. Various electronic databases such as Pubmed, Springer, Scopus, ScienceDirect, and Google Scholar were searched between January 2000 and February 2016. Based on the search criteria for the literature, 13 qualified articles were selected and discussed in this review. The results of the report showed that there is a lack of translational research and not a single study was found in human. This report gives embelin a further way to be explored in clinical trials for its safety and efficacy. PMID:28289385
Chronic caffeine ingestion causes microglia activation, but not proliferation in the healthy brain
Steger, Rob; Kamal, Arifa; Lutchman, Sara; Intrabartolo, Liliana; Sohail, Rabia; Brumberg, Joshua C.
2014-01-01
Caffeine is the most popular psychoactive drug in the world which contributes to behavioral and metabolic changes when ingested. Within the central nervous system (CNS), caffeine has a high affinity for A1 and A2a adenosine receptors. Serving as an antagonist, caffeine affects the ability for adenosine to bind to these receptors. Caffeine has been shown to alter neuronal functioning through increasing spontaneous firing. However, the effects of caffeine on non-neuronal cells in the CNS has been not been studied extensively. Microglia are one phenotype of non-neuronal glia within the CNS. Acting as phagocytes, they contribute to the immune defense system of the brain and express A1 and A2a adenosine receptors. Caffeine, therefore, may affect microglia. In order to test this hypothesis, CD-1 mice were randomly placed into one of three groups: control, low caffeine (0.3g/L water) and high caffeine (1.0g/L water) and were allowed to drink freely for 30 days. Following 30 days, brain sections were stained to reveal microglia. Morphological reconstructions and density measurements were examined in cortical and subcortical areas including the primary sensory cortex, primary motor cortex and striatum. Results indicate that microglial density throughout the brain is decreased in the caffeine groups as compared to the control. Caffeine also impacted microglia morphology shortening process length and decreasing branching. These results suggest that chronic caffeine ingestion has a systemic impact on microglia density and their activation. PMID:24881873
Dahl, Viktor; Peterson, Julia; Fuchs, Dietmar; Gisslen, Magnus; Palmer, Sarah; Price, Richard W.
2015-01-01
Objective and design Though combination antiretroviral therapy reduces the concentration of HIV-1 RNA in both plasma and cerebrospinal fluid (CSF) below the detection limit of clinical assays, low levels of HIV-1 RNA are frequently detectable in plasma using more sensitive assays. We examined the frequency and magnitude of persistent low-level HIV-1 RNA in CSF and its relation to the central nervous system (CNS) immune activation. Methods CSF and plasma HIV-1 RNA were measured using the single-copy assay with a detection limit of 0.3 copies/ml in 70 CSF and 68 plasma samples from 45 treated HIV-1-infected patients with less than 40 copies/ml of HIV-1 RNA in both fluids by standard clinical assays. We also measured CSF neopterin to assess intrathecal immune activation. Theoretical drug exposure was estimated using the CNS penetration-efficacy score of treatment regimens. Results CSF HIV-1 RNA was detected in 12 of the 70 CSF samples (17%) taken after up to 10 years of suppressive therapy, compared to 39 of the 68 plasma samples (57%) with a median concentration of less than 0.3 copies/ml in CSF compared to 0.3 copies/ml in plasma (P <0.0001). CSF samples with detectable HIV-1 RNA had higher CSF neopterin levels (mean 8.2 compared to 5.7 nmol/l; P =0.0085). Patients with detectable HIV-1 RNA in CSF did not differ in pretreatment plasma HIV-1 RNA levels, nadir CD4+ cell count or CNS penetration-efficacy score. Conclusion Low-level CSF HIV-1 RNA and its association with elevated CSF neopterin highlight the potential for the CNS to serve as a viral reservoir and for persistent infection to cause subclinical CNS injury. PMID:25022595
Dahl, Viktor; Peterson, Julia; Fuchs, Dietmar; Gisslen, Magnus; Palmer, Sarah; Price, Richard W
2014-09-24
Though combination antiretroviral therapy reduces the concentration of HIV-1 RNA in both plasma and cerebrospinal fluid (CSF) below the detection limit of clinical assays, low levels of HIV-1 RNA are frequently detectable in plasma using more sensitive assays. We examined the frequency and magnitude of persistent low-level HIV-1 RNA in CSF and its relation to the central nervous system (CNS) immune activation. CSF and plasma HIV-1 RNA were measured using the single-copy assay with a detection limit of 0.3 copies/ml in 70 CSF and 68 plasma samples from 45 treated HIV-1-infected patients with less than 40 copies/ml of HIV-1 RNA in both fluids by standard clinical assays. We also measured CSF neopterin to assess intrathecal immune activation. Theoretical drug exposure was estimated using the CNS penetration-efficacy score of treatment regimens. CSF HIV-1 RNA was detected in 12 of the 70 CSF samples (17%) taken after up to 10 years of suppressive therapy, compared to 39 of the 68 plasma samples (57%) with a median concentration of less than 0.3 copies/ml in CSF compared to 0.3 copies/ml in plasma (P < 0.0001). CSF samples with detectable HIV-1 RNA had higher CSF neopterin levels (mean 8.2 compared to 5.7 nmol/l; P = 0.0085). Patients with detectable HIV-1 RNA in CSF did not differ in pretreatment plasma HIV-1 RNA levels, nadir CD4 cell count or CNS penetration-efficacy score. Low-level CSF HIV-1 RNA and its association with elevated CSF neopterin highlight the potential for the CNS to serve as a viral reservoir and for persistent infection to cause subclinical CNS injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steel, Christina D.; Hahto, Suzanne M.; Ciavarra, Richard P., E-mail: ciavarrp@evms.ed
2009-04-25
Intranasal application of vesicular stomatitis virus (VSV) causes acute infection of the central nervous system (CNS). However, VSV encephalitis is not invariably fatal, suggesting that the CNS may contain a professional antigen-presenting cell (APC) capable of inducing or propagating a protective antiviral immune response. To examine this possibility, we first characterized the cellular elements that infiltrate the brain as well as the activation status of resident microglia in the brains of normal and transgenic mice acutely ablated of peripheral dendritic cells (DCs) in vivo. VSV encephalitis was characterized by a pronounced infiltrate of myeloid cells (CD45{sup high}CD11b{sup +}) and CD8{supmore » +} T cells containing a subset that was specific for the immunodominant VSV nuclear protein epitope. This T cell response correlated temporally with a rapid and sustained upregulation of MHC class I expression on microglia, whereas class II expression was markedly delayed. Ablation of peripheral DCs profoundly inhibited the inflammatory response as well as infiltration of virus-specific CD8{sup +} T cells. Unexpectedly, the VSV-induced interferon-gamma (IFN-gamma) response in the CNS remained intact in DC-deficient mice. Thus, both the inflammatory and certain components of the adaptive primary antiviral immune response in the CNS are dependent on peripheral DCs in vivo.« less
Peng, Liang; Parpura, Vladimir; Verkhratsky, Alexei
2014-01-01
Neuroglia of the central nervous system (CNS), represented by cells of neural (astrocytes, oligodendrocytes and NG2 glial cells) and myeloid (microglia) origins are fundamental for homeostasis of the nervous tissue. Astrocytes are critical for the development of the CNS, they are indispensable for synaptogenesis, and they define structural organisation of the nervous tissue, as well as the generation and maintenance of CNS-blood and cerebrospinal fluid-blood barriers. Astroglial cells control homeostasis of ions and neurotransmitters and provide neurones with metabolic support. Oligodendrocytes, through the process of myelination, as well as by homoeostatic support of axons provide for interneuronal connectivity. The NG2 cells receive direct synaptic inputs, and might be important elements of adult remyelination. Microglial cells, which originate from foetal macrophages invading the brain early in embryogenesis, shape the synaptic connections through removing of redundant synapses and phagocyting apoptotic neurones. Neuroglia also form the defensive system of the CNS through complex and context-specific programmes of activation, known as reactive gliosis. Many neurological diseases are associated with neurogliopathologies represented by asthenic and atrophic changes in glial cells that, through the loss or diminution of their homeostatic and defensive functions, assist evolution of pathology. Conceptually, neurological and psychiatric disorders can be regarded as failures of neuroglial homeostatic/ defensive responses, and, hence, glia represent a (much underappreciated) target for therapeutic intervention. PMID:25342938
Mycobacteria employ two different mechanisms to cross the blood-brain barrier.
van Leeuwen, Lisanne M; Boot, Maikel; Kuijl, Coen; Picavet, Daisy I; van Stempvoort, Gunny; van der Pol, Susanne M A; de Vries, Helga E; van der Wel, Nicole N; van der Kuip, Martijn; van Furth, A Marceline; van der Sar, Astrid M; Bitter, Wilbert
2018-05-10
Central nervous system (CNS) infection by Mycobacterium tuberculosis is one of the most devastating complications of tuberculosis, in particular in early childhood. In order to induce CNS infection, M. tuberculosis needs to cross specialised barriers protecting the brain. How M. tuberculosis crosses the blood-brain barrier (BBB) and enters the CNS is not well understood. Here, we use transparent zebrafish larvae and the closely related pathogen Mycobacterium marinum to answer this question. We show that in the early stages of development, mycobacteria rapidly infect brain tissue, either as free mycobacteria or within circulating macrophages. After the formation of a functionally intact BBB, the infiltration of brain tissue by infected macrophages is delayed, but not blocked, suggesting that crossing the BBB via phagocytic cells is one of the mechanisms used by mycobacteria to invade the CNS. Interestingly, depletion of phagocytic cells did not prevent M. marinum from infecting the brain tissue, indicating that free mycobacteria can independently cause brain infection. Detailed analysis showed that mycobacteria are able to cause vasculitis by extracellular outgrowth in the smaller blood vessels and by infecting endothelial cells. Importantly, we could show that this second mechanism is an active process that depends on an intact ESX-1 secretion system, which extends the role of ESX-1 secretion beyond the macrophage infection cycle. © 2018 The Authors Cellular Microbiology Published by John Wiley & Sons Ltd.
Peinado, Ana B; Rojo, Jesús J; Calderón, Francisco J; Maffulli, Nicola
2014-01-01
The anaerobic threshold (AT) has been one of the most studied of all physiological variables. Many authors have proposed the use of several markers to determine the moment at with the AT is reached. The present work discusses the physiological responses made to exercise - the measurement of which indicates the point at which the AT is reached - and how these responses might be controlled by the central nervous system. The detection of the AT having been reached is a sign for the central nervous system (CNS) to respond via an increase in efferent activity via the peripheral nervous system (PNS). An increase in CNS and PNS activities are related to changes in ventilation, cardiovascular function, and gland and muscle function. The directing action of the central command (CC) allows for the coordination of the autonomous and motor systems, suggesting that the AT can be identified in the many ways: changes in lactate, ventilation, plasma catecholamines, heart rate (HR), salivary amylase and muscular electrical activity. This change in response could be indicative that the organism would face failure if the exercise load continued to increase. To avoid this, the CC manages the efferent signals that show the organism that it is running out of homeostatic potential.
2014-01-01
The anaerobic threshold (AT) has been one of the most studied of all physiological variables. Many authors have proposed the use of several markers to determine the moment at with the AT is reached. The present work discusses the physiological responses made to exercise - the measurement of which indicates the point at which the AT is reached - and how these responses might be controlled by the central nervous system. The detection of the AT having been reached is a sign for the central nervous system (CNS) to respond via an increase in efferent activity via the peripheral nervous system (PNS). An increase in CNS and PNS activities are related to changes in ventilation, cardiovascular function, and gland and muscle function. The directing action of the central command (CC) allows for the coordination of the autonomous and motor systems, suggesting that the AT can be identified in the many ways: changes in lactate, ventilation, plasma catecholamines, heart rate (HR), salivary amylase and muscular electrical activity. This change in response could be indicative that the organism would face failure if the exercise load continued to increase. To avoid this, the CC manages the efferent signals that show the organism that it is running out of homeostatic potential. PMID:24818009
Sánchez Mainar, María; Leroy, Frédéric
2015-11-06
The cured colour of European raw fermented meats is usually achieved by nitrate-into-nitrite reduction by coagulase-negative staphylococci (CNS), subsequently generating nitric oxide to form the relatively stable nitrosomyoglobin pigment. The present study aimed at comparing this classical curing procedure, based on nitrate reductase activity, with a potential alternative colour formation mechanism, based on nitric oxide synthase (NOS) activity, under different acidification profiles. To this end, meat models with and without added nitrate were fermented with cultures of an acidifying strain (Lactobacillus sakei CTC 494) and either a nitrate-reducing Staphylococcus carnosus strain or a rare NOS-positive CNS strain (Staphylococcus haemolyticus G110), or by relying on the background microbiota. Satisfactory colour was obtained in the models prepared with added nitrate and S. carnosus. In the presence of nitrate but absence of added CNS, however, cured colour was only obtained when L. sakei CTC 494 was also omitted. This was ascribed to the pH dependency of the emerging CNS background microbiota, selecting for nitrate-reducing Staphylococcus equorum strains at mild acidification conditions but for Staphylococcus saprophyticus strains with poor colour formation capability when the pH decrease was more rapid. This reliance of colour formation on the composition of the background microbiota was further explored by a side experiment, demonstrating the heterogeneity in nitrate reduction of a set of 88 CNS strains from different species. Finally, in all batches prepared with S. haemolyticus G110, colour generation failed as the strain was systematically outcompeted by the background microbiota, even when imposing milder acidification profiles. Thus, when aiming at colour formation through CNS metabolism, technological processing can severely interfere with the composition and functionality of the meat-associated CNS communities, for both nitrate reductase and NOS activities. Several major bottlenecks, among which the rareness of phenotypic NOS activity in meat-compatible CNS, need to be considered, which is seriously questioning the relevance of this pathway in fermented meats. Copyright © 2015 Elsevier B.V. All rights reserved.
Dong, Hongquan; Zhang, Xiang; Wang, Yiming; Zhou, Xiqiao; Qian, Yanning; Zhang, Shu
2017-03-01
Brain inflammation has a critical role in the pathophysiology of brain diseases. Microglia, the resident immune cells in the brain, play an important role in brain inflammation, while brain mast cells are the "first responder" in the injury rather than microglia. Functional aspects of mast cell-microglia interactions remain poorly understood. Our results demonstrated that site-directed injection of the "mast cell degranulator" compound 48/80 (C48/80) in the hypothalamus induced mast cell degranulation, microglial activation, and inflammatory factor production, which initiated the acute brain inflammatory response. "Mast cell stabilizer" disodium cromoglycate (cromolyn) inhibited this effect, including decrease of inflammatory cytokines, reduced microglial activation, inhibition of MAPK and AKT pathways, and repression of protein expression of histamine receptor 1 (H 1 R), histamine receptor 4 (H 4 R), protease-activated receptor 2 (PAR2), and toll-like receptor 4 (TLR4) in microglia. We also demonstrated that C48/80 had no effect on microglial activation in mast cell-deficient Kit W-sh/W-sh mice. These results implicate that activated brain mast cells trigger microglial activation and stabilization of mast cell inhibits microglial activation-induced central nervous system (CNS) inflammation. Interactions between mast cells and microglia could constitute a new and unique therapeutic target for CNS immune inflammation-related diseases.
Costa, Rafael Carneiro; Orlando, Débora Ribeiro; Abreu, Camila Costa; Nakagaki, Karen Yumi Ribeiro; Mesquita, Leonardo Pereira; Nascimento, Lismara Castro; Silva, Aline Costa; Maiorka, Paulo César; Peconick, Ana Paula; Raymundo, Djeison Lutier; Varaschin, Mary Suzan
2014-12-14
Neospora caninum is an apicomplexan protozoan that is considered one of the main agents responsible for abortion in ruminants. The lesions found in the central nervous system (CNS) of aborted fetuses show multifocal necrosis, gliosis, and perivascular cuffs of mononuclear cells, but the inflammatory and glial cells have not been immunophenotypically characterized. The lesions in the CNS of infected adult animals have rarely been described. Therefore, in this study, we characterized the lesions, the immunophenotypes of the inflammatory and glial cells and the expression of MHC-II and PCNA in the CNS of goats infected with N. caninum. The CNS of eight aborted fetuses and six adult male goats naturally infected with N. caninum were analyzed with lectin histochemistry (RCA1) and immunohistochemistry (with anti-CD3, -CD79α, -GFAP, -MHC-II, and -PCNA antibodies). All animals were the offspring of dams naturally infected with N. caninum. The microscopic lesions in the CNS of the aborted fetuses consisted of perivascular cuffs composed mainly of macrophages (RCA1(+)), rare T lymphocytes (CD3(+)), and rare B lymphocytes (CD79α(+)). Multifocal necrosis surrounded by astrocytes (GFAP(+)), gliosis composed predominantly of monocytic-lineage cells (macrophages and microglia, RCA1(+)), and the cysts of N. caninum, related (or not) to the lesions were present. Similar lesions were found in four of the six male goats, and multinucleate giant cells related to focal gliosis were also found in three adult goats. Anti-GFAP immunostaining showed astrocytes characterizing areas of glial scarring. Cysts of N. caninum were found in three adult male goats. The presence of N. caninum was evaluated with histopathology, immunohistochemistry, and PCR. Immunohistochemistry demonstrated anti-PCNA labeling of macrophages and microglia in the perivascular cuffs and the expression of MHC-II by microglia and endothelial cells in the CNS of the aborted fetuses and adult male goats. Macrophages and microglia were the predominant inflammatory cells in the CNS of aborted fetuses and healthy adult male goats infected with N. caninum. Activated astrocytes were mainly associated with inflamed areas, suggesting that astrocytes were involved in the resolution of the lesions.
Hammer, Leslie A; Waldner, Hanspeter; Zagon, Ian S; McLaughlin, Patricia J
2016-01-01
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized by infiltrating myelin-reactive T lymphocytes and demyelinating lesions. Experimental autoimmune encephalomyelitis (EAE) is the animal model widely utilized to study MS. EAE is mediated by CD4(+) T cells and can be induced in EAE-susceptible mice through immunization with a myelin antigen, such as proteolipid protein 139-151 (PLP139-151) in SJL mice. In this PLP-induced EAE model, autoreactive CD4(+) T cells migrate from peripheral tissues into the CNS where they are reactivated resulting in CNS damage. Th1 and Th17 cells produce the pro-inflammatory cytokines IFNγ and IL-17, respectively, that have been shown to have pathogenic roles in EAE and MS. Anti-inflammatory Th2, IL-4 secreting cells, have been indicated to inhibit EAE exacerbation. However, given the inflammatory environment of EAE, Th2 effector cells are outnumbered by Th1/Th17 cells. Regulatory CD4(+) T cells suppress immune reactions and have been demonstrated to be dysfunctional in MS patients. Opioid growth factor (OGF), chemically termed [Met(5)]-enkephalin, is a negative growth factor that interacts with the OGF receptor. The OGF-OGFr axis can be activated through exogenous administration of OGF or a low dosage of naltrexone (LDN), an opioid antagonist. We have previously demonstrated that modulation of the OGF-OGFr axis results in alleviation from relapse-remitting EAE, and that CNS-infiltrating CD3(+) T cells are diminished with exogenous OGF or intermittent blockade with LDN administration. In this paper, we aimed to determine whether OGF or LDN alter the Th effector responses of CD4(+) T lymphocytes within the CNS in established EAE. We report in these studies that the numbers of CD4(+) T lymphocytes in the CNS of EAE mice are decreased following treatment with OGF for five days but not LDN. However, modulation of the OGF-OGFr axis did not result in changes to CD4(+) Th effector cell responses in the CNS of EAE mice. © 2016 by the Society for Experimental Biology and Medicine.
Central nervous system infection following allogeneic hematopoietic stem cell transplantation.
Hanajiri, Ryo; Kobayashi, Takeshi; Yoshioka, Kosuke; Watanabe, Daisuke; Watakabe, Kyoko; Murata, Yutaka; Hagino, Takeshi; Seno, Yasushi; Najima, Yuho; Igarashi, Aiko; Doki, Noriko; Kakihana, Kazuhiko; Sakamaki, Hisashi; Ohashi, Kazuteru
2017-03-01
Here, we described the clinical characteristics and outcomes of central nervous system (CNS) infections occurring after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in a single institution over the previous 6 years. Charts of 353 consecutive allogeneic transplant recipients were retrospectively reviewed for CNS infection. A total of 17 cases of CNS infection were identified at a median of 38 days (range, 10-1028 days) after allo-HSCT. Causative pathogens were human herpesvirus-6 (n=6), enterococcus (n=2), staphylococcus (n=2), streptococcus (n=2), varicella zoster virus (n=1), cytomegalovirus (n=1), John Cunningham virus (n=1), adenovirus (n=1), and Toxoplasma gondii (n=1). The cumulative incidence of CNS infection was 4.1% at 1 year and 5.5% at 5 years. Multivariate analysis revealed that high-risk disease status was a risk factor for developing CNS infection (p=.02), and that overall survival at 3 years after allo-HSCT was 33% in patients with CNS infection and 53% in those without CNS infection (p=.04). Copyright © 2016 King Faisal Specialist Hospital & Research Centre. Published by Elsevier Ltd. All rights reserved.
Gómez Roselló, E; Quiles Granado, A M; Laguillo Sala, G; Pedraza Gutiérrez, S
2018-02-23
Primary central nervous system (CNS) lymphomas are uncommon and their management differs significantly from that of other malignant tumors involving the CNS. This article explains how the imaging findings often suggest the diagnosis early. The typical findings in immunocompetent patients consist of a supratentorial intraaxial mass that enhances homogeneously. Other findings to evaluate include multifocality and incomplete ring enhancement. The differential diagnosis of primary CNS lymphomas should consider mainly other malignant tumors of the CNS such as glioblastomas or metastases. Primary CNS lymphomas tend to have less edema and less mass effect; they also tend to spare the adjacent cortex. Necrosis, hemorrhage, and calcification are uncommon in primary CNS lymphomas. Although the findings in morphologic sequences are characteristic, they are not completely specific and atypical types are sometimes encountered. Advanced imaging techniques such as diffusion or especially perfusion provide qualitative and quantitative data that play an important role in differentiating primary CNS lymphomas from other brain tumors. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Menasria, Rafik; Canivet, Coraline; Piret, Jocelyne; Gosselin, Jean; Boivin, Guy
2016-01-01
CCR2 is a chemokine receptor expressed on the surface of blood leukocytes, particularly «Ly6Chi» inflammatory monocytes and microglia. Signaling through this receptor is thought to influence the immune activity of microglia as well as monocytes egress from the bone marrow (BM) and their trafficking into the central nervous system (CNS) in several neurological diseases. During experimental herpes simplex virus 1 (HSV-1) encephalitis (HSE), CCR2 deficiency has been reported to exacerbate the outcome of the disease. However, the precise contribution of CCR2 expressed in cells of the CNS or peripheral monocytes in the protection against HSE remains unclear. To dissect the differential role of CCR2 during HSE, chimeric mice with receptor deficiency in the brain or blood cells were generated by transplanting wild-type (WT) C57BL/6 or CCR2-/- BM-derived cells in CCR2-/- (WT→CCR2-/-) and WT (CCR2-/-→WT) mice, respectively. Our results indicate that following intranasal infection with 1.2x106 plaque forming units of HSV-1, CCR2 deficiency in hematopoietic cells and, to a lesser extent, in CNS exacerbates the outcome of HSE. Mortality rates of CCR2-/- (71.4%) and CCR2-/-→WT (57.1%) mice were significantly higher than that of WT (15.3%; P<0.01 and P<0.05, respectively) but the difference did not reach statistical significance for WT→CCR2-/- animals (42.8%; P = 0.16). Both peripheral and CNS deficiencies in CCR2 resulted in increased infectious viral titers and wider dissemination of HSV antigens in the brain as well as an overproduction of inflammatory cytokines and chemokines including IL-1β, IL-6, CCL2, CCL3 and CCL5. Furthermore, CCR2 deficiency in the hematopoietic system altered monocytes egress from the BM and their recruitment to the CNS, which may contribute to the failure in HSV-1 containment. Collectively, these data suggest that CCR2 expressed on cells of CNS and especially on peripheral monocytes is important for the control of HSV-1 replication and inflammatory environment during experimental HSE.
Menasria, Rafik; Canivet, Coraline; Piret, Jocelyne; Gosselin, Jean; Boivin, Guy
2016-01-01
CCR2 is a chemokine receptor expressed on the surface of blood leukocytes, particularly «Ly6Chi» inflammatory monocytes and microglia. Signaling through this receptor is thought to influence the immune activity of microglia as well as monocytes egress from the bone marrow (BM) and their trafficking into the central nervous system (CNS) in several neurological diseases. During experimental herpes simplex virus 1 (HSV-1) encephalitis (HSE), CCR2 deficiency has been reported to exacerbate the outcome of the disease. However, the precise contribution of CCR2 expressed in cells of the CNS or peripheral monocytes in the protection against HSE remains unclear. To dissect the differential role of CCR2 during HSE, chimeric mice with receptor deficiency in the brain or blood cells were generated by transplanting wild-type (WT) C57BL/6 or CCR2-/- BM-derived cells in CCR2-/- (WT→CCR2-/-) and WT (CCR2-/-→WT) mice, respectively. Our results indicate that following intranasal infection with 1.2x106 plaque forming units of HSV-1, CCR2 deficiency in hematopoietic cells and, to a lesser extent, in CNS exacerbates the outcome of HSE. Mortality rates of CCR2-/- (71.4%) and CCR2-/-→WT (57.1%) mice were significantly higher than that of WT (15.3%; P<0.01 and P<0.05, respectively) but the difference did not reach statistical significance for WT→CCR2-/- animals (42.8%; P = 0.16). Both peripheral and CNS deficiencies in CCR2 resulted in increased infectious viral titers and wider dissemination of HSV antigens in the brain as well as an overproduction of inflammatory cytokines and chemokines including IL-1β, IL-6, CCL2, CCL3 and CCL5. Furthermore, CCR2 deficiency in the hematopoietic system altered monocytes egress from the BM and their recruitment to the CNS, which may contribute to the failure in HSV-1 containment. Collectively, these data suggest that CCR2 expressed on cells of CNS and especially on peripheral monocytes is important for the control of HSV-1 replication and inflammatory environment during experimental HSE. PMID:27930721
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahajan, Mani, E-mail: manimahajan86@gmail.com; Singla, Gourav, E-mail: gsinghla@gmail.com; Singh, K., E-mail: kusingh@thapar.edu
Carbon nanospheres of grape-like structure (CNS) with diameter ranging from 40 to 50 nm and wall thickness of 6–8 nm were synthesized by solvothermal route. The phase structure, morphology, microstructure, thermal stability, disorder and optical properties of synthesized CNS were investigated by various characterization techniques. The possible formation and growth mechanism for CNS were discussed on the basis of the in-build reaction conditions. The degradation study of organic pollutants (methylene blue) in UV light in the presence of synthesized CNS was done. The stability of the CNS in electrochemical performance was also discussed at the different potential window and comparedmore » its electrocatalytic activity with platinum supported on CNS which shows the better response for oxygen reduction reactions (ORR) at an optimized potential window (–0.2 to 1.0 V vs SCE). - Graphical abstract: A representative synthesis mechanism of carbon nano sphere (CNS) showing spherical morphology with its photo as well as electrocatalyst properties. - Highlights: • Carbon nanospheres (CNS) have been synthesized using in situ chemical-reduction route. • The bare CNS shows good luminescence and photocatalytic applications. • The Pt/CNS shows better electrochemical performance than the reported Pt/C.« less
Central nervous system relapse in peripheral T-cell lymphomas: a Swedish Lymphoma Registry study.
Ellin, Fredrik; Landström, Jenny; Jerkeman, Mats; Relander, Thomas
2015-07-02
Central nervous system (CNS) relapse in non-Hodgkin lymphoma (NHL) carries a very poor prognosis. Risk factors and outcome have been studied in aggressive B-cell lymphomas, but very little is known about the risk in peripheral T-cell lymphoma (PTCL). We aimed at analyzing risk factors for CNS involvement at first relapse or progression, as well as the outcome of these patients, in a large population-based cohort of patients with PTCL. Twenty-eight out of 625 patients (4.5%) developed CNS disease over time. In multivariable analysis, disease characteristics at diagnosis independently associated with an increased risk for later CNS involvement were involvement of more than 1 extranodal site (hazard ratio [HR], 2.60; 95% confidence interval [CI], 1.07-6.29; P = .035) and skin (HR, 3.51; 95% CI, 1.26-9.74; P = .016) and gastrointestinal involvement (HR, 3.06; 95% CI, 1.30-7.18; P = .010). The outcome of relapsed/refractory patients was very poor, and CNS involvement was not associated with a significantly worse outcome compared with relapsed/refractory patients without CNS involvement in multivariable analysis (HR, 1.6; 95% CI, 0.96-2.6; P = .074). The results from the present study indicate that CNS relapse in PTCL occurs at a frequency similar to what is seen in aggressive B-cell lymphomas, but the poor outcomes in relapse are largely driven by systemic rather than CNS disease. © 2015 by The American Society of Hematology.
Generation of Demyelination Models by Targeted Ablation of Oligodendrocytes in the Zebrafish CNS
Chung, Ah-Young; Kim, Pan-Soo; Kim, Suhyun; Kim, Eunmi; Kim, Dohyun; Jeong, Inyoung; Kim, Hwan-Ki; Ryu, Jae-Ho; Kim, Cheol-Hee; Choi, June; Seo, Jin-Ho; Park, Hae-Chul
2013-01-01
Demyelination is the pathological process by which myelin sheaths are lost from around axons, and is usually caused by a direct insult targeted at the oligodendrocytes in the vertebrate central nervous system (CNS). A demyelinated CNS is usually remyelinated by a population of oligodendrocyte progenitor cells, which are widely distributed throughout the adult CNS. However, myelin disruption and remyelination failure affect the normal function of the nervous system, causing human diseases such as multiple sclerosis. In spite of numerous studies aimed at understanding the remyelination process, many questions still remain unanswered. Therefore, to study remyelination mechanisms in vivo, a demyelination animal model was generated using a transgenic zebrafish system in which oligodendrocytes are conditionally ablated in the larval and adult CNS. In this transgenic system, bacterial nitroreductase enzyme (NTR), which converts the prodrug metronidazole (Mtz) into a cytotoxic DNA cross-linking agent, is expressed in oligodendrocyte lineage cells under the control of the mbp and sox10 promoter. Exposure of transgenic zebrafish to Mtz-containing media resulted in rapid ablation of oligodendrocytes and CNS demyelination within 48 h, but removal of Mtz medium led to efficient remyelination of the demyelinated CNS within 7 days. In addition, the demyelination and remyelination processes could be easily observed in living transgenic zebrafish by detecting the fluorescent protein, mCherry, indicating that this transgenic system can be used as a valuable animal model to study the remyelination process in vivo, and to conduct high-throughput primary screens for new drugs that facilitate remyelination. PMID:23807048
van der Velden, Vincent H J; de Launaij, Daphne; de Vries, Jeltje F; de Haas, Valerie; Sonneveld, Edwin; Voerman, Jane S A; de Bie, Maaike; Revesz, Tamas; Avigad, Smadar; Yeoh, Allen E J; Swagemakers, Sigrid M A; Eckert, Cornelia; Pieters, Rob; van Dongen, Jacques J M
2016-03-01
In childhood acute lymphoblastic leukaemia (ALL), central nervous system (CNS) involvement is rare at diagnosis (1-4%), but more frequent at relapse (~30%). Because of the significant late sequelae of CNS treatment, early identification of patients at risk of CNS relapse is crucial. Using microarray-analysis, we discovered multiple differentially expressed genes between B-cell precursor (BCP) ALL cells in bone marrow (BM) and BCP-ALL cells in cerebrospinal fluid (CSF) at the time of isolated CNS relapse. After confirmation by real-time quantitative polymerase chain reaction, selected genes (including SCD and SPP1) were validated at the protein level by flowcytometric analysis of BCP-ALL cells in CSF. Further flowcytometric validation showed that a subpopulation of BCP-ALL cells (>1%) with a 'CNS protein profile' (SCD positivity and increased SPP1 expression) was present in the BM at diagnosis in patients who later developed an isolated CNS relapse, whereas this subpopulation was <1% or absent in all other patients. These data indicate that the presence of a (small) subpopulation of BCP-ALL cells with a 'CNS protein profile' at diagnosis (particularly SCD-positivity) is associated with isolated CNS relapse. Such information can be used to design new diagnostic and treatment strategies that aim at prevention of CNS relapse with reduced toxicity. © 2015 John Wiley & Sons Ltd.
Petersen, Andrew J; Rimkus, Stacey A; Wassarman, David A
2012-03-13
To investigate the mechanistic basis for central nervous system (CNS) neurodegeneration in the disease ataxia-telangiectasia (A-T), we analyzed flies mutant for the causative gene A-T mutated (ATM). ATM encodes a protein kinase that functions to monitor the genomic integrity of cells and control cell cycle, DNA repair, and apoptosis programs. Mutation of the C-terminal amino acid in Drosophila ATM inhibited the kinase activity and caused neuron and glial cell death in the adult brain and a reduction in mobility and longevity. These data indicate that reduced ATM kinase activity is sufficient to cause neurodegeneration in A-T. ATM kinase mutant flies also had elevated expression of innate immune response genes in glial cells. ATM knockdown in glial cells, but not neurons, was sufficient to cause neuron and glial cell death, a reduction in mobility and longevity, and elevated expression of innate immune response genes in glial cells, indicating that a non-cell-autonomous mechanism contributes to neurodegeneration in A-T. Taken together, these data suggest that early-onset CNS neurodegeneration in A-T is similar to late-onset CNS neurodegeneration in diseases such as Alzheimer's in which uncontrolled inflammatory response mediated by glial cells drives neurodegeneration.
Adamson, D Cory; Rasheed, B Ahmed K; McLendon, Roger E; Bigner, Darell D
2010-01-01
Several different types of tumors, benign and malignant, have been identified in the central nervous system (CNS). The prognoses for these tumors are related to several factors, such as the age of the patient and the location and histology of the tumor. In adults, about half of all CNS tumors are malignant, whereas in pediatric patients, more than 75% are malignant. For most benign CNS tumors that require treatment, neurosurgeons can offer curative resections or at least provide significant relief from mass effect. Unfortunately, we still lack effective treatments for most primary and secondary malignant CNS tumors. However, the past decade has witnessed an explosion in the understanding of the early molecular events in malignant primary CNS tumors, and for the first time in history, oncologists are seeing that a plethora of new therapies targeting these molecular events are being tested in clinical trials. There is hope on the horizon for the fight against these deadly tumors. The distribution of CNS tumors by location has remained constant for numerous years. The majority of primary CNS tumors arise in the major cortical lobes. Twenty nine percent of primary CNS tumors arise from the dural meninges that encase the CNS structures. The vast majority of these are meningiomas, of which over 90% are benign. About 10% of primary CNS tumors are found in the sella turcica region, where the pituitary gland resides. Other much less common sites of primary CNS tumors include the pineal region, ventricular system, cerebellum, brain stem, cranial nerves, and spinal cord. The distribution of CNS tumors by histology has seen a slight increase in more malignant tumors over the past decade, possibly due to increased neuroimaging practices or environmental exposures. Arising from glial cells, gliomas represent over 36% of all primary CNS tumors and consist of astrocytomas, oligodendrogliomas, ependymomas, mixed gliomas, and neuroepithelial tumors. The benign meningiomas make up 32% of primary CNS tumors, followed by nerve sheath tumors and pituitary tumors. Primary CNS lymphomas, embryonal tumors, and craniopharyngiomas are uncommon. The most common gliomas are astrocytomas, and these tumors are typically classified by the World Health Organization (WHO) as Grades I through IV. Grade IV, the most malignant grade of astrocytoma, includes glioblastoma multiforme (GBM), the most common malignant primary CNS glioma in adults, which represents 51% of all CNS gliomas. GBM is unfortunately the most challenging to effectively treat and has the worst patient survival. This chapter is therefore primarily devoted to the current understanding of this topic. Here we describe the molecular and cellular events associated with malignant glioma initiation and progression. We also review the importance of glioma stem cell biology and tumor immunology in early gliomagenesis. In addition, we present a brief description of the most common malignant primary CNS glioma in pediatric patients - medulloblastoma, as well as familial cancer syndromes that include gliomas as part of the syndrome.
Whole Neuraxis Irradiation to Address Central Nervous System Relapse in High-Risk Neuroblastoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croog, Victoria J., E-mail: vcroog@sibley.or; Kramer, Kim; Cheung, Nai-Kong V.
Background: As systemic control of high-risk neuroblastoma (NB) has improved, relapse in the central nervous system (CNS) is an increasingly recognized entity that carries a grim prognosis. This study describes the use of craniospinal irradiation (CSI) for CNS relapse and compares outcomes to patients who received focal radiotherapy (RT). Methods: A retrospective query identified 29 children with NB treated at Memorial Sloan-Kettering Cancer Center since 1987 who received RT for CNS relapse. At CNS relapse, 16 patients received CSI (median dose, 2160cGy), and 13 received focal RT. Of those who underwent CSI, 14 (88%) received intra-Ommaya (IO) radioimmunotherapy (RIT); onemore » patient in the non-CSI cohort received IO-RIT. Results: Patient characteristics were similar between the groups. Time to CNS relapse was 20 and 17 months for the CSI and non-CSI cohorts, respectively. At a median follow-up of 28 months, 12 patients (75%) in the CSI group are alive without CNS disease, including two patients with isolated skeletal relapse. Another patient is alive without disease after a brain relapse was retreated with RT. Three patients died-one with no NB at autopsy, one of CNS disease, and one of systemic disease. The two patients who died of NB did not receive IO-RIT. All 13 patients in the non-CSI cohort died at a median of 8.8 months. Conclusions: Low-dose CSI together with IO-RIT provides durable CNS remissions and improved survival compared with focal RT and conventional therapies. Further evaluation of long-term NB survivors after CSI is warranted to determine the treatment consequences for this cohort.« less
Delivery of therapeutic peptides and proteins to the CNS.
Salameh, Therese S; Banks, William A
2014-01-01
Peptides and proteins have potent effects on the brain after their peripheral administration, suggesting that they may be good substrates for the development of CNS therapeutics. Major hurdles to such development include their relation to the blood-brain barrier (BBB) and poor pharmacokinetics. Some peptides cross the BBB by transendothelial diffusion and others cross in the blood-to-brain direction by saturable transporters. Some regulatory proteins are also transported across the BBB and antibodies can enter the CNS via the extracellular pathways. Glycoproteins and some antibody fragments can be taken up and cross the BBB by mechanisms related to adsorptive endocytosis/transcytosis. Many peptides and proteins are transported out of the CNS by saturable efflux systems and enzymatic activity in the blood, CNS, or BBB are substantial barriers to others. Both influx and efflux transporters are altered by various substances and in disease states. Strategies that manipulate these interactions between the BBB and peptides and proteins provide many opportunities for the development of therapeutics. Such strategies include increasing transendothelial diffusion of small peptides, upregulation of saturable influx transporters with allosteric regulators and other posttranslational means, use of vectors and other Trojan horse strategies, inhibition of efflux transporters including with antisense molecules, and improvement in pharmacokinetic parameters to overcome short half-lives, tissue sequestration, and enzymatic degradation. © 2014 Elsevier Inc. All rights reserved.
Chen, Maria F; Gill, Alexander J; Kolson, Dennis L
2014-11-01
The purpose of this study is to discuss why HIV-associated neurocognitive disorders (HAND) persist despite apparently effective HIV suppression by highly active antiretroviral therapy (ART). As many as 50% of HIV-infected individuals suffer from HAND despite ART suppression of HIV replication to apparently undetectable levels in most treated individuals. Prior to ART, HIV-associated dementia (HAD), the severest form of HAND, affected nearly 20% of infected individuals; HAD now affects only nearly 2% of ART-treated persons, although less severe HAND forms persist. Recent studies link persistent immune activation, inflammation and viral escape/blipping in ART-treated individuals, as well as comorbid conditions, to HIV disease progression and increased HAND risk. Despite sustained HIV suppression in most ART-treated individuals, indicated by routine plasma monitoring and occasional cerebrospinal fluid (CSF) monitoring, 'blips' of HIV replication are often detected with more frequent monitoring, thus challenging the concept of viral suppression. Although the causes of HIV blipping are unclear, CSF HIV blipping associates with neuroinflammation and, possibly, central nervous system (CNS) injury. The current theory that macrophage-tropic HIV strains within the CNS predominate in driving HAND and these associated factors is now also challenged. Protection of the CNS by ART is incomplete, probably due to combined effects of incomplete HIV suppression, persistent immune activation and host comorbidity factors. Adjunctive therapies to ART are necessary for more effective protection.
Central Nervous System Regulation of Brown Adipose Tissue
Morrison, Shaun F.; Madden, Christopher J.
2015-01-01
Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior. PMID:25428857
Yi, Hongjie; Huang, Guoyang; Zhang, Kun; Liu, Shulin; Xu, Weigang
2018-05-01
During diving, central nervous system oxygen toxicity may cause drowning or barotrauma, which has dramatically limited the working benefits of hyperbaric oxygen in underwater operations and clinical applications. The aim of this study is to understand the effects and the underlying mechanism of heat shock protein 70 on central nervous system oxygen toxicity and its mechanisms in vivo and in vitro. Rats were given geranylgeranylacetone (800 mg/kg) orally to induce hippocampal expression of heat shock protein 70 and then treated with hyperbaric oxygen. The time course of hippocampal heat shock protein 70 expression after geranylgeranylacetone administration was measured. Seizure latency and first electrical discharge were recorded to evaluate the effects of HSP70 on central nervous system oxygen toxicity. Effects of inhibitors of nitric oxide synthase and nuclear factor-κB on the seizure latencies and changes in nitric oxide, nitric oxide synthase, and nuclear factor-κB levels in the hippocampus tissues were examined. In cell experiments, hippocampal neurons were transfected with a virus vector carrying the heat shock protein 70 gene (H3445) before hyperbaric oxygen treatment. Cell viability, heat shock protein 70 expression, nitric oxide, nitric oxide synthase, and NF-κB levels in neurons were measured. The results showed that heat shock protein 70 expression significantly increased and peaked at 48 h after geranylgeranylacetone was given. Geranylgeranylacetone prolonged the first electrical discharge and seizure latencies, which was reversed by neuronal nitric oxide synthase, inducible nitric oxide synthase and NF-κB inhibitors. Nitric oxide, nitric oxide synthase, and inducible nitric oxide synthase levels in the hippocampus were significantly increased after hyperbaric oxygen exposure, but reversed by geranylgeranylacetone, while heat shock protein 70 inhibitor quercetin could inhibit this effect of geranylgeranylacetone. In the in vitro study, heat shock protein 70-overexpression decreased the nitric oxide, nitric oxide synthase, and inducible nitric oxide synthase levels as well as the cytoplasm/nucleus ratio of nuclear factor-κB and protected neurons from hyperbaric oxygen-induced cell injury. In conclusion, overexpression of heat shock protein 70 in hippocampal neurons may protect rats from central nervous system oxygen toxicity by suppression of neuronal nitric oxide synthase and inducible nitric oxide synthase-mediated nitric oxide production and translocation of nuclear factor-κB to nucleus. Impact statement Because the pathogenesis of central nervous system oxygen toxicity (CNS-OT) remains unclear, there are few interventions available. To develop an efficient strategy against CNS-OT, it is necessary to understand its pathogenesis and in particular, the relevant key factors involved. This study examined the protective effects of heat shock protein 70 (HSP70) on CNS-OT via in vivo and in vitro experiments. Our results indicated that overexpression of HSP70 in hippocampal neurons may protect rats from CNS-OT by suppression of nNOS and iNOS-mediated NO production and the activation of NF-κB. These findings contribute to clarification of the role of HSP70 in CNS-OT and provide us a potential novel target to prevent CNS-OT. Clarification of the involvement of NO, NOS and NF-κB provides new insights into the mechanism of CNS-OT and may help us to develop new approach against it by interfering these molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucas, John T., E-mail: jolucas@wakehealth.edu; Colmer, Hentry G.; White, Lance
Purpose: To estimate the hazard for neurologic (central nervous system, CNS) and nonneurologic (non-CNS) death associated with patient, treatment, and systemic disease status in patients receiving stereotactic radiosurgery after whole-brain radiation therapy (WBRT) failure, using a competing risk model. Patients and Methods: Of 757 patients, 293 experienced recurrence or new metastasis following WBRT. Univariate Cox proportional hazards regression identified covariates for consideration in the multivariate model. Competing risks multivariable regression was performed to estimate the adjusted hazard ratio (aHR) and 95% confidence interval (CI) for both CNS and non-CNS death after adjusting for patient, disease, and treatment factors. The resultantmore » model was converted into an online calculator for ease of clinical use. Results: The cumulative incidence of CNS and non-CNS death at 6 and 12 months was 20.6% and 21.6%, and 34.4% and 35%, respectively. Patients with melanoma histology (relative to breast) (aHR 2.7, 95% CI 1.5-5.0), brainstem location (aHR 2.1, 95% CI 1.3-3.5), and number of metastases (aHR 1.09, 95% CI 1.04-1.2) had increased aHR for CNS death. Progressive systemic disease (aHR 0.55, 95% CI 0.4-0.8) and increasing lowest margin dose (aHR 0.97, 95% CI 0.9-0.99) were protective against CNS death. Patients with lung histology (aHR 1.3, 95% CI 1.1-1.9) and progressive systemic disease (aHR 2.14, 95% CI 1.5-3.0) had increased aHR for non-CNS death. Conclusion: Our nomogram provides individual estimates of neurologic death after salvage stereotactic radiosurgery for patients who have failed prior WBRT, based on histology, neuroanatomical location, age, lowest margin dose, and number of metastases after adjusting for their competing risk of death from other causes.« less
ERIC Educational Resources Information Center
Peebles, K. A.; Price, T. J.
2012-01-01
Background: In most individuals, injury results in activation of peripheral nociceptors (pain-sensing neurons of the peripheral nervous system) and amplification of central nervous system (CNS) pain pathways that serve as a disincentive to continue harmful behaviour; however, this may not be the case in some developmental disorders that cause…
Guo, Xinzheng; Snider, William D; Chen, Bo
2016-03-14
Axons fail to regenerate after central nervous system (CNS) injury. Modulation of the PTEN/mTORC1 pathway in retinal ganglion cells (RGCs) promotes axon regeneration after optic nerve injury. Here, we report that AKT activation, downstream of Pten deletion, promotes axon regeneration and RGC survival. We further demonstrate that GSK3β plays an indispensable role in mediating AKT-induced axon regeneration. Deletion or inactivation of GSK3β promotes axon regeneration independently of the mTORC1 pathway, whereas constitutive activation of GSK3β reduces AKT-induced axon regeneration. Importantly, we have identified eIF2Bε as a novel downstream effector of GSK3β in regulating axon regeneration. Inactivation of eIF2Bε reduces both GSK3β and AKT-mediated effects on axon regeneration. Constitutive activation of eIF2Bε is sufficient to promote axon regeneration. Our results reveal a key role of the AKT-GSK3β-eIF2Bε signaling module in regulating axon regeneration in the adult mammalian CNS.
Peixoto, Herbenya; Roxo, Mariana; Röhrig, Teresa; Richling, Elke; Wang, Xiaojuan; Wink, Michael
2017-08-15
Background: Roasted seeds of Amazonian guarana ( Paullinia cupana var. sorbilis; Sapindaceae) are popular in South America due to their stimulant activity on the central nervous system (CNS). Rich in purine alkaloids, markedly caffeine, the seeds are extensively used in the Brazilian beverage industry for the preparation of soft drinks and as additives in energy drinks. Methods: To investigate the putative anti-aging and antioxidant activity of guarana, we used the model organism Caenorhabditis elegans . Chemical analyses were performed using high-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (ESI-MS/MS). Results: When tested in the model system Caenorhabditis elegans , the water extract from roasted guarana seeds enhanced resistance against oxidative stress, extended lifespan and attenuated aging markers such as muscle function decline and polyQ40 aggregation. Conclusions: In the current study, we demonstrate that guarana extracts can work as a powerful antioxidant in vivo; moreover, guarana extracts exhibit anti-aging properties. Our results suggest that the biological activities of guarana go beyond the extensively reported CNS stimulation.
Roxo, Mariana; Röhrig, Teresa; Richling, Elke
2017-01-01
Background: Roasted seeds of Amazonian guarana (Paullinia cupana var. sorbilis; Sapindaceae) are popular in South America due to their stimulant activity on the central nervous system (CNS). Rich in purine alkaloids, markedly caffeine, the seeds are extensively used in the Brazilian beverage industry for the preparation of soft drinks and as additives in energy drinks. Methods: To investigate the putative anti-aging and antioxidant activity of guarana, we used the model organism Caenorhabditis elegans. Chemical analyses were performed using high-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (ESI-MS/MS). Results: When tested in the model system Caenorhabditis elegans, the water extract from roasted guarana seeds enhanced resistance against oxidative stress, extended lifespan and attenuated aging markers such as muscle function decline and polyQ40 aggregation. Conclusions: In the current study, we demonstrate that guarana extracts can work as a powerful antioxidant in vivo; moreover, guarana extracts exhibit anti-aging properties. Our results suggest that the biological activities of guarana go beyond the extensively reported CNS stimulation. PMID:28930275
Evolution of bilaterian central nervous systems: a single origin?
2013-01-01
The question of whether the ancestral bilaterian had a central nervous system (CNS) or a diffuse ectodermal nervous system has been hotly debated. Considerable evidence supports the theory that a CNS evolved just once. However, an alternative view proposes that the chordate CNS evolved from the ectodermal nerve net of a hemichordate-like ancestral deuterostome, implying independent evolution of the CNS in chordates and protostomes. To specify morphological divisions along the anterior/posterior axis, this ancestor used gene networks homologous to those patterning three organizing centers in the vertebrate brain: the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer, and subsequent evolution of the vertebrate brain involved elaboration of these ancestral signaling centers; however, all or part of these signaling centers were lost from the CNS of invertebrate chordates. The present review analyzes the evidence for and against these theories. The bulk of the evidence indicates that a CNS evolved just once – in the ancestral bilaterian. Importantly, in both protostomes and deuterostomes, the CNS represents a portion of a generally neurogenic ectoderm that is internalized and receives and integrates inputs from sensory cells in the remainder of the ectoderm. The expression patterns of genes involved in medio/lateral (dorso/ventral) patterning of the CNS are similar in protostomes and chordates; however, these genes are not similarly expressed in the ectoderm outside the CNS. Thus, their expression is a better criterion for CNS homologs than the expression of anterior/posterior patterning genes, many of which (for example, Hox genes) are similarly expressed both in the CNS and in the remainder of the ectoderm in many bilaterians. The evidence leaves hemichordates in an ambiguous position – either CNS centralization was lost to some extent at the base of the hemichordates, or even earlier, at the base of the hemichordates + echinoderms, or one of the two hemichordate nerve cords is homologous to the CNS of protostomes and chordates. In any event, the presence of part of the genetic machinery for the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer in invertebrate chordates together with similar morphology indicates that these organizers were present, at least in part, at the base of the chordates and were probably elaborated upon in the vertebrate lineage. PMID:24098981
Mosaic serine proteases in the mammalian central nervous system.
Mitsui, Shinichi; Watanabe, Yoshihisa; Yamaguchi, Tatsuyuki; Yamaguchi, Nozomi
2008-01-01
We review the structure and function of three kinds of mosaic serine proteases expressed in the mammalian central nervous system (CNS). Mosaic serine proteases have several domains in the proenzyme fragment, which modulate proteolytic function, and a protease domain at the C-terminus. Spinesin/TMPRSS5 is a transmembrane serine protease whose presynaptic distribution on motor neurons in the spinal cord suggests that it is significant for neuronal plasticity. Cell type-specific alternative splicing gives this protease diverse functions by modulating its intracellular localization. Motopsin/PRSS12 is a mosaic protease, and loss of its function causes mental retardation. Recent reports indicate the significance of this protease for cognitive function. We mention the fibrinolytic protease, tissue plasminogen activator (tPA), which has physiological and pathological functions in the CNS.
Central nervous system infections and stroke -- a population-based analysis.
Chien, L-N; Chi, N-F; Hu, C-J; Chiou, H-Y
2013-10-01
Chronic central nervous system (CNS) infections have been found to associate with cerebrovascular complications. Acute CNS infections are more common than chronic CNS infections, but whether they could increase the risk of vascular diseases has not been studied. The study cohort comprised all adult patients with diagnoses of CNS infections from Taiwan National Health Insurance Research Database during 2000-2009 (n = 533). The comparison group were matched by age, sex, urbanization, diagnostic year, and vascular risk factors of cases (cases and controls = 1:5). Patients were tracked for at least 1 year. Kaplan-Meier analysis was used to compare the risk of stroke and acute myocardial infarction (AMI) after adjusting censoring subjects. After adjusting the patients demographic characteristics and comorbidities, the risk of patients with CNS infections developing stroke was 2.75-3.44 times greater than their comparison group. More than 70% of the stroke events were occurring within 1 year after CNS infections. The risk of AMI was not found as we compared patients with and without CNS infections. The population-based cohort study suggested that adult patients with CNS infections have higher risk to develop stroke but not AMI, and the risk is marked within a year after infections. © 2013 John Wiley & Sons A/S.
Microglia of the Aged Brain: Primed to be Activated and Resistant to Regulation
Norden, Diana M.; Godbout, Jonathan P.
2012-01-01
Innate immunity within the central nervous system (CNS) is primarily provided by resident microglia. Microglia are pivotal in immune surveillance and also facilitate the coordinated responses between the immune system and the brain. For example, microglia interpret and propagate inflammatory signals that are initiated in the periphery. This transient microglial activation helps mount the appropriate physiological and behavioral response following peripheral infection. With normal aging, however, microglia develop a more inflammatory phenotype. For instance, in several models of aging there are increased pro-inflammatory cytokines in the brain and increased expression of inflammatory receptors on microglia. This increased inflammatory status of microglia with aging is referred to as primed, reactive, or sensitized. A modest increase in the inflammatory profile of the CNS and altered microglial function in aging has behavioral and cognitive consequences. Nonetheless, there are major differences in microglial biology between young and old age when the immune system is challenged and microglia are activated. In this context, microglial activation is amplified and prolonged in the aged brain compared to adults. The cause of this amplified microglial activation may be related to impairments in several key regulatory systems with age that make it more difficult to resolve microglial activation. The consequences of impaired regulation and microglial hyper-activation following immune challenge are exaggerated neuroinflammation, sickness behavior, depressive-like behavior and cognitive deficits. Therefore the purpose of this review is to discuss the current understanding of age-associated microglial priming, consequences of priming and reactivity, and the impairments in regulatory systems that may underlie these age-related deficits. PMID:23039106
Neuroimmunomodulators in neuroborreliosis and Lyme encephalopathy.
Eckman, Elizabeth A; Pacheco-Quinto, Javier; Herdt, Aimee R; Halperin, John J
2018-01-11
Lyme encephalopathy, characterized by non-specific neurobehavioral symptoms including mild cognitive difficulties, may occur in patients with systemic Lyme disease and is often mistakenly attributed to CNS infection. Identical symptoms occur in innumerable other inflammatory states and may reflect the effect of systemic immune mediators on the CNS. Multiplex immunoassays were used to characterize the inflammatory profile in serum and CSF from Lyme and non-Lyme patients with a range of symptoms to determine if there are specific markers of active CNS infection (neuroborreliosis), or systemic inflammatory mediators associated with neurobehavioral syndromes. CSF CXCL13 was elevated dramatically in confirmed neuroborreliosis (n=8) and to a lesser extent in possible neuroborreliosis (n=11) and other neuroinflammatory conditions (n=44). Patients with Lyme (n=63) or non-Lyme (n=8) encephalopathy had normal CSF findings, but had elevated serum levels of IL-7, TSLP, IL-17A, IL-17F, and MIP-1α/CCL3. CSF CXCL13 is a sensitive and specific marker of neuroborreliosis in individuals with Borrelia-specific intrathecal antibody (ITAb) production. However, CXCL13 does not distinguish individuals strongly suspected of having neuroborreliosis, but lacking confirmatory ITAb, from those with other neuroinflammatory conditions. Patients with mild cognitive symptoms occurring during acute Lyme disease, and/or following appropriate treatment, have normal CSF but elevated serum levels of T-helper 17 markers and T-cell growth factors. These markers are also elevated in non-Lyme disease patients experiencing similar symptoms. Our results support that in the absence of CSF abnormalities, neurobehavioral symptoms are associated with systemic inflammation, not CNS infection or inflammation, and are not specific to Lyme disease. © The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
da Silva, Alexandre A.; do Carmo, Jussara M.; Freeman, J. Nathan; Tallam, Lakshmi S.; Hall, John E.
2009-01-01
OBJECTIVE We recently showed that leptin has powerful central nervous system (CNS)-mediated antidiabetic and cardiovascular actions. This study tested whether the CNS melanocortin system mediates these actions of leptin in diabetic rats. RESEARCH DESIGN AND METHODS A cannula was placed in the lateral ventricle of Sprague-Dawley rats for intracerebroventricular infusions, and arterial and venous catheters were implanted to measure mean arterial pressure (MAP) and heart rate 24 h/day and for intravenous infusions. After recovery from surgery for 8 days, rats were injected with streptozotocin (STZ), and 5 days later, either saline or the melanocortin 3 and 4 receptor (MC3/4R) antagonist SHU-9119 (1 nmol/h) was infused intracerebroventricularly for 17 days. Seven days after starting the antagonist, leptin (0.62 μg/h) was added to the intracerebroventricular infusion for 10 days. Another group of diabetic rats was infused with the MC3/4R agonist MTII (10 ng/h i.c.v.) for 12 days, followed by 7 days at 50 ng/h. RESULTS Induction of diabetes caused hyperphagia, hyperglycemia, and decreases in heart rate (−76 bpm) and MAP (−7 mmHg). Leptin restored appetite, blood glucose, heart rate, and MAP back to pre-diabetic values in vehicle-treated rats, whereas it had no effect in SHU-9119–treated rats. MTII infusions transiently reduced blood glucose and raised heart rate and MAP, which returned to diabetic values 5–7 days after starting the infusion. CONCLUSIONS Although a functional melanocortin system is necessary for the CNS-mediated antidiabetic and cardiovascular actions of leptin, chronic MC3/4R activation is apparently not sufficient to mimic these actions of leptin that may involve interactions of multiple pathways. PMID:19491210
Mechanisms of Hypothermia, Delayed Hyperthermia and Fever Following CNS Injury
Central nervous system (CNS) damage is often associated with robust body temperature changes, such as hypothermia and delayed hyperthermia. Hypothermia is one of the most common body temperature changes to CNS insults in rodents and is often associated with improved outcome. Alth...
Yamamoto, Tomoko; Hiroi, Atsuko; Osawa, Makiko; Shibata, Noriyuki
2014-01-01
The muscular dystrophies have been traditionally classified based mainly on clinical manifestation and mode of inheritance. Owing to the discoveries of causative genes, new terminologies derived from each gene, such as dystrophinopathy, α-dystroglycanopathy, sarcoglycanopathy and fukutinopathy, have also become common. Mutations of each gene may cause several clinical phenotypes. Some muscular dystrophies accompany central nervous system (CNS) lesions, especially in the congenital muscular dystrophies. Cobblestone lissencephaly (type II lissencephaly) is a well-known CNS malformation observed in severe forms of α-dystroglycanopathy. Moreover, CNS involvement has been reported in other muscular dystrophies, such as Duchenne muscular dystrophy. In this review, genes related to the muscular dystrophies associated with CNS lesions are briefly described along with the molecular characteristics of each gene and the pathomechanism of the CNS lesions. Understanding of both the clinicopathological characteristics of these CNS lesions and their molecular mechanisms is important for the diagnosis, care of patients, and development of new therapeutic strategies.
Formation of compact myelin is required for maturation of the axonal cytoskeleton
NASA Technical Reports Server (NTRS)
Brady, S. T.; Witt, A. S.; Kirkpatrick, L. L.; de Waegh, S. M.; Readhead, C.; Tu, P. H.; Lee, V. M.
1999-01-01
Although traditional roles ascribed to myelinating glial cells are structural and supportive, the importance of compact myelin for proper functioning of the nervous system can be inferred from mutations in myelin proteins and neuropathologies associated with loss of myelin. Myelinating Schwann cells are known to affect local properties of peripheral axons (de Waegh et al., 1992), but little is known about effects of oligodendrocytes on CNS axons. The shiverer mutant mouse has a deletion in the myelin basic protein gene that eliminates compact myelin in the CNS. In shiverer mice, both local axonal features like phosphorylation of cytoskeletal proteins and neuronal perikaryon functions like cytoskeletal gene expression are altered. This leads to changes in the organization and composition of the axonal cytoskeleton in shiverer unmyelinated axons relative to age-matched wild-type myelinated fibers, although connectivity and patterns of neuronal activity are comparable. Remarkably, transgenic shiverer mice with thin myelin sheaths display an intermediate phenotype indicating that CNS neurons are sensitive to myelin sheath thickness. These results indicate that formation of a normal compact myelin sheath is required for normal maturation of the neuronal cytoskeleton in large CNS neurons.
Vitamin D and remyelination in multiple sclerosis.
Matías-Guíu, J; Oreja-Guevara, C; Matias-Guiu, J A; Gomez-Pinedo, U
2018-04-01
Several studies have found an association between multiple sclerosis and vitamin D (VD) deficiency, which suggests that VD may play a role in the immune response. However, few studies have addressed its role in remyelination. The VD receptor and the enzymes transforming VD into metabolites which activate the VD receptor are expressed in central nervous system (CNS) cells, which suggests a potential effect of VD on the CNS. Both in vitro and animal model studies have shown that VD may play a role in myelination by acting on factors that influence the microenvironment which promotes both proliferation and differentiation of neural stem cells into oligodendrocyte progenitor cells and oligodendrocytes. It remains unknown whether the mechanisms of internalisation of VD in the CNS are synergistic with or antagonistic to the mechanisms that facilitate the entry of VD metabolites into immune cells. VD seems to play a role in the CNS and our hypothesis is that VD is involved in remyelination. Understanding the basic mechanisms of VD in myelination is necessary to manage multiple sclerosis patients with VD deficiency. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
P2X and P2Y receptors as possible targets of therapeutic manipulations in CNS illnesses.
Köles, Laszlo; Furst, Susanna; Illes, Peter
2005-03-01
Adenine and/or uridine nucleotide-sensitive receptors are classified into two types belonging to the ligand-gated ionotropic family (P2X) and the metabotropic, G-protein-coupled family (P2Y). In humans, seven different P2X receptors (P2X(1-7)) and eight different P2Y receptors (P2Y(1), P2Y(2), P2Y(4), P2Y(6), P2Y(11-14)) have been detected hitherto. All P2 receptors are expressed in the CNS, with the preferential expression of the P2X(2), P2X(4), P2X(6) and P2Y(1) receptors in neurons. In addition to the neurotransmitter and modulator functions, neurite outgrowth, proliferation of glial cells and the expression of transmitter receptors at target cells have also been suggested to be regulated by extracellular nucleotides in the nervous system. In spite of the expanding knowledge in the purinergic research field, the present therapeutic utilization of P2 receptor ligands is mostly related to peripheral diseases such as thromboembolic disorders and cystic fibrosis. In this review we provide some evidence that P2 receptors play an important role in the regulation of CNS functions related to hippocampal activity, the mesolimbic dopaminergic system and the nociceptive system. The role of purinergic receptors located on astrocytes/microglia and implications of these receptors for neurodegenerative/neuroinflammatory disorders, CNS injury and epilepsy will be highlighted as well. (c) 2005 Prous Science. All rights reserved.
Das, Narhari; Abdur Rahman, S. M.
2016-01-01
Purpose. The present study was designed to investigate the antinociceptive, anxiolytic, CNS depressant, and hypoglycemic effects of the naproxen metal complexes. Methods. The antinociceptive activity was evaluated by acetic acid-induced writhing method and radiant heat tail-flick method while anxiolytic activity was evaluated by elevated plus maze model. The CNS depressant activity of naproxen metal complexes was assessed using phenobarbitone-induced sleeping time test and the hypoglycemic test was performed using oral glucose tolerance test. Results. Metal complexes significantly (P < 0.001) reduced the number of abdominal muscle contractions induced by 0.7% acetic acid solution in a dose dependent manner. At the dose of 25 mg/kg body weight p.o. copper, cobalt, and zinc complexes exhibited higher antinociceptive activity having 59.15%, 60.56%, and 57.75% of writhing inhibition, respectively, than the parent ligand naproxen (54.93%). In tail-flick test, at both doses of 25 and 50 mg/kg, the copper, cobalt, silver, and zinc complexes showed higher antinociceptive activity after 90 minutes than the parent drug naproxen. In elevated plus maze (EPM) model the cobalt and zinc complexes of naproxen showed significant anxiolytic effects in dose dependent manner, while the copper, cobalt, and zinc complexes showed significant CNS depressant and hypoglycemic activity. Conclusion. The present study demonstrated that copper, cobalt, and zinc complexes possess higher antinociceptive, anxiolytic, CNS depressant, and hypoglycemic properties than the parent ligand. PMID:27478435
NEUROTROPHIC FACTORS IN COMBINATORIAL APPROACHES FOR SPINAL CORD REGENERATION
McCall, Julianne; Weidner, Norbert; Blesch, Armin
2012-01-01
Axonal regeneration is inhibited by a plethora of different mechanisms in the adult central nervous system (CNS). While neurotrophic factors have been shown to stimulate axonal growth in numerous animal models of nervous system injury, a lack of suitable growth substrates, an insufficient activation of neuron-intrinsic regenerative programs and extracellular inhibitors of regeneration limit the efficacy of neurotrophic factor delivery for anatomical and functional recovery after spinal cord injury. Thus, growth-stimulating factors will likely have to be combined with other treatment approaches to tap into the full potential of growth factor therapy for axonal regeneration. In addition, the temporal and spatial distribution of growth factors have to be tightly controlled to achieve biologically active concentrations, to allow for the chemotropic guidance of axons and to prevent adverse effects related to the widespread distribution of neurotrophic factors. Here, we will review the rationale for combinatorial treatments in axonal regeneration and summarize some recent progress in promoting axonal regeneration in the injured CNS using such approaches. PMID:22526621
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silverman, I.E.; Zeit, R.M.; Von Feldt, J.M.
1994-05-01
Systemic Lupus Erythematosis (SLE) commonly causes significant neuropsychiatric disorders. The purpose of this study was to review the brain SPECT studies of SLE patients with clinical evidence of CNS involvement and determine whether there is a correlation between the findings on SPECT images and the clinical manifestations of this serious phase of the disease. We enrolled 19 SLE patients and 12 normal controls in this study. The level of each patient`s disease activity was determined by the SLE Disease Activity Index (SLEDAI), an established method of scoring disease severity which is heavily weighted toward neuropsychiatric symptomatology, for 15 of themore » 19 SLE patients. The SLEDAI was calculated within a 10 day window of the date when the SPECT scan was obtained. SPECT scans were performed 30 minutes following the intravenous administration of 99mTc-HMPAO. Results are discussed.« less
Göbel, Kerstin; Pankratz, Susann; Asaridou, Chloi-Magdalini; Herrmann, Alexander M.; Bittner, Stefan; Merker, Monika; Ruck, Tobias; Glumm, Sarah; Langhauser, Friederike; Kraft, Peter; Krug, Thorsten F.; Breuer, Johanna; Herold, Martin; Gross, Catharina C.; Beckmann, Denise; Korb-Pap, Adelheid; Schuhmann, Michael K.; Kuerten, Stefanie; Mitroulis, Ioannis; Ruppert, Clemens; Nolte, Marc W.; Panousis, Con; Klotz, Luisa; Kehrel, Beate; Korn, Thomas; Langer, Harald F.; Pap, Thomas; Nieswandt, Bernhard; Wiendl, Heinz; Chavakis, Triantafyllos; Kleinschnitz, Christoph; Meuth, Sven G.
2016-01-01
Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. PMID:27188843
Nijland, Marcel; Jansen, Anne; Doorduijn, Jeanette K; Enting, Roelien H; Bromberg, Jacoline E C; Kluin-Nelemans, Hanneke C
2017-09-01
Central nervous system (CNS) involvement in systemic B-cell non-Hodgkin lymphoma (B-NHL) at diagnosis (sysCNS) is rare. We investigated the outcome of 21 patients with sysCNS, most commonly diffuse large B-cell lymphoma, treated with high dose methotrexate (HD-MTX) and R-CHOP. The median number of cycles of HD-MTX and R-CHOP was 4 (range 1-8) and 6 (range 0-8), respectively. Consolidative whole brain radiotherapy (WBRT) was given to 33% (7/21) patients. With a median follow-up of 44 months the 3-year progression free survival (PFS) and overall survival (OS) were 45% (95%CI 34-56%) and 49% (95%CI 38-60%), respectively. Over 90% of patients had an unfavorable international prognostic index score, reflected by treatment-related mortality of 19% (4/21) and relapse-related mortality of 28% (6/21). The outcome of these patients was, however, unexpectedly good when compared to secondary CNS relapses. Prospective studies are needed to define the optimal treatment for patients with sysCNS, but its rarity might be challenging.
Clinical nurse specialist education: actualizing the systems leadership competency.
Thompson, Cathy J; Nelson-Marten, Paula
2011-01-01
The purpose of this article was to show how sequenced educational strategies aid in the acquisition of systems leadership and change agent skills, as well as other essential skills for professional clinical nurse specialist (CNS) practice. Clinical nurse specialist education offers the graduate student both didactic and clinical experiences to help the student transition into the CNS role. Clinical nurse specialist faculty have a responsibility to prepare students for the realities of advanced practice. Systems leadership is an integral competency of CNS practice. The contemporary CNS is to be a leader in the translation of evidence into practice. To assist students to acquire this competency, all CNS students are expected to use research and other sources of evidence to identify, design, implement, and evaluate a specific practice change. Anecdotal comments from students completing the projects are offered. Student projects have been focused in acute and critical care, palliative care, and adult/gerontologic health clinical settings; community outreach has been the focus of a few change projects. Examples of student projects related to the systems leadership competency and correlated to the spheres of influence impacted are presented.
Cieśla, Andrzej; Pierzchała-Koziec, Krystyna; Mach, Tomasz; Garlicki, Aleksander; Bociaga-Jasik, Monika
2005-05-01
Assessment of met-enkephalin level in the cerebrospinal fluid (CSF) of patients with inflammatory process of the central nervous system (CNS) was performed to estimate the role of opioid system in viral and bacterial meningitis, and encephalitis. The met-enkephalin level, protein concentration and pleocytosis were analysed in the CSF of 53 patients with viral or bacterial meningitis, encephalitis, and in the control group of patients without inflammatory disease of the CNS. The biggest differences have been observed between the groups of patients with bacterial meningitis and those without inflammatory disease of the CNS, but they were statistically insignificant. There was a lack of correlation between met-enkephalin level and some factors of inflammatory process in CSF, such as pleocytosis and protein concentration. We have not revealed any correlation between etiological agent of CNS infection and opioid system of the brain. Despite the fact that, we observed in the study statistically insignificant changes, we suggest to continue investigations, including additional parameters which are characteristic for the CNS diseases.
Structural and functional features of central nervous system lymphatics
Louveau, Antoine; Smirnov, Igor; Keyes, Timothy J.; Eccles, Jacob D.; Rouhani, Sherin J.; Peske, J. David; Derecki, Noel C.; Castle, David; Mandell, James W.; Kevin, S. Lee; Harris, Tajie H.; Kipnis, Jonathan
2015-01-01
One of the characteristics of the CNS is the lack of a classical lymphatic drainage system. Although it is now accepted that the CNS undergoes constant immune surveillance that takes place within the meningeal compartment1–3, the mechanisms governing the entrance and exit of immune cells from the CNS remain poorly understood4–6. In searching for T cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the CSF, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the CNS. The discovery of the CNS lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and shed new light on the etiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction. PMID:26030524
Lemma, Siria A; Kuusisto, Milla; Haapasaari, Kirsi-Maria; Sormunen, Raija; Lehtinen, Tuula; Klaavuniemi, Tuula; Eray, Mine; Jantunen, Esa; Soini, Ylermi; Vasala, Kaija; Böhm, Jan; Salokorpi, Niina; Koivunen, Petri; Karihtala, Peeter; Vuoristo, Jussi; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi
2017-08-01
Central nervous system (CNS) relapse is a devastating complication that occurs in about 5% of diffuse large B-cell lymphoma (DLBCL) patients. Currently, there are no predictive biological markers. We wanted to study potential biomarkers of CNS tropism that play a role in adhesion, migration and/or in the regulation of inflammatory responses. The expression levels of ITGA10, CD44, PTEN, cadherin-11, CDH12, N-cadherin, P-cadherin, lactoferrin and E-cadherin were studied with IHC and IEM. GEP was performed to see whether found expressional changes are regulated at DNA/RNA level. IHC included 96 samples of primary CNS lymphoma (PCNSL), secondary CNS lymphoma (sCNSL) and systemic DLBCL (sDLBCL). IEM included two PCNSL, one sCNSL, one sDLBCL and one reactive lymph node samples. GEP was performed on two DLBCL samples, one with and one without CNS relapse. CNS disease was associated with enhanced expression of cytoplasmic and membranous ITGA10 and nuclear PTEN (P < 0.0005, P = 0.002, P = 0.024, respectively). sCNSL presented decreased membranous CD44 and nuclear and cytoplasmic cadherin-11 expressions (P = 0.001, P = 0.006, P = 0.048, respectively). In PCNSL lactoferrin expression was upregulated (P < 0.0005). IEM results were mainly supportive of the IHC results. In GEP CD44, cadherin-11, lactoferrin and E-cadherin were under-expressed in CNS disease. Our results are in line with previous studies, where gene expressions in extracellular matrix and adhesion-related pathways are altered in CNS lymphoma. This study gives new information on the DLBCL CNS tropism. If further verified, these markers might become useful in predicting CNS relapses. © The Author 2017. Published by Oxford University Press.
Central nervous system filariasis masquerading as a glioma: case report.
Shrivastava, Adesh; Arora, Prateek; Khare, Akriti; Goel, Garima; Kapoor, Neelkamal
2017-09-01
Filariasis, an endemic zoonosis in the Southeast Asia region, has been reported to affect various organs as well as the central nervous system (CNS). Inflammatory reactions mimicking those from neoplastic lesions clinically and radiologically have been reported in the breast and urinary bladder. To date, a CNS manifestation of filarial infestation has been reported in the form of meningoencephalitis. The authors here present an interesting case of a young man presenting in status epilepticus, which on radiological evaluation appeared to be a glioma. However, postoperative histopathological examination changed the provisional diagnosis to a filarial infection of the CNS mimicking a primary CNS neoplasm.
Hypothalamic control of energy and glucose metabolism.
Sisley, Stephanie; Sandoval, Darleen
2011-09-01
The central nervous system (CNS), generally accepted to regulate energy homeostasis, has been implicated in the metabolic perturbations that either cause or are associated with obesity. Normally, the CNS receives hormonal, metabolic, and neuronal input to assure adequate energy levels and maintain stable energy homeostasis. Recent evidence also supports that the CNS uses these same inputs to regulate glucose homeostasis and this aspect of CNS regulation also becomes impaired in the face of dietary-induced obesity. This review focuses on the literature surrounding hypothalamic regulation of energy and glucose homeostasis and discusses how dysregulation of this system may contribute to obesity and T2DM.
A Dialogue between the Immune System and Brain, Spoken in the Language of Serotonin
2012-01-01
Neuropsychiatric disorders have long been linked to both immune system activation and alterations in serotonin (5-HT) signaling. In the CNS, the contributions of 5-HT modulate a broad range of targets, most notably, hypothalamic, limbic and cortical circuits linked to the control of mood and mood disorders. In the periphery, many are aware of the production and actions of 5-HT in the gut but are unaware that the molecule and its receptors are also present in the immune system where evidence suggests they contribute to the both innate and adaptive responses. In addition, there is clear evidence that the immune system communicates to the brain via both humoral and neuronal mechanisms, and that CNS 5-HT neurons are a direct or indirect target for these actions. Following a brief primer on the immune system, we describe our current understanding of the synthesis, release, and actions of 5-HT in modulating immune function, including the expression of 5-HT biosynthetic enzymes, receptors, and transporters that are typically studied with respect to the roles in the CNS. We then orient our presentation to recent findings that pro-inflammatory cytokines can modulate CNS 5-HT signaling, leading to a conceptualization that among the many roles of 5-HT in the body is an integrated physiological and behavioral response to inflammatory events and pathogens. From this perspective, altered 5-HT/immune conversations are likely to contribute to risk for neurobehavioral disorders historically linked to compromised 5-HT function or ameliorated by 5-HT targeted medications, including depression and anxiety disorders, obsessive-compulsive disorder (OCD), and autism. Our review raises the question as to whether genetic variation impacting 5-HT signaling genes may contribute to maladaptive behavior as much through perturbed immune system modulation as through altered brain mechanisms. Conversely, targeting the immune system for therapeutic development may provide an important opportunity to treat mental illness. PMID:23336044
Interaction between Tat and Drugs of Abuse during HIV-1 Infection and Central Nervous System Disease
Maubert, Monique E.; Pirrone, Vanessa; Rivera, Nina T.; Wigdahl, Brian; Nonnemacher, Michael R.
2016-01-01
In many individuals, drug abuse is intimately linked with HIV-1 infection. In addition to being associated with one-third of all HIV-1 infections in the United States, drug abuse also plays a role in disease progression and severity in HIV-1-infected patients, including adverse effects on the central nervous system (CNS). Specific systems within the brain are known to be damaged in HIV-1-infected individuals and this damage is similar to that observed in drug abuse. Even in the era of anti-retroviral therapy (ART), CNS pathogenesis occurs with HIV-1 infection, with a broad range of cognitive impairment observed, collectively referred to as HIV-1-associated neurocognitive disorders (HAND). A number of HIV-1 proteins (Tat, gp120, Nef, Vpr) have been implicated in the etiology of pathogenesis and disease as a result of the biologic activity of the extracellular form of each of the proteins in a number of tissues, including the CNS, even in ART-suppressed patients. In this review, we have made Tat the center of attention for a number of reasons. First, it has been shown to be synthesized and secreted by HIV-1-infected cells in the CNS, despite the most effective suppression therapies available to date. Second, Tat has been shown to alter the functions of several host factors, disrupting the molecular and biochemical balance of numerous pathways contributing to cellular toxicity, dysfunction, and death. In addition, the advantages and disadvantages of ART suppression with regard to controlling the genesis and progression of neurocognitive impairment are currently under debate in the field and are yet to be fully determined. In this review, we discuss the individual and concerted contributions of HIV-1 Tat, drug abuse, and ART with respect to damage in the CNS, and how these factors contribute to the development of HAND in HIV-1-infected patients. PMID:26793168
Miralles, Pilar; Berenguer, Juan; Ribera, Josep-Maria
2010-09-18
With the widespread use of highly active antiretroviral therapy (HAART) the incidence of systemic non-Hodgkin lymphoma (NHL) in patients infected with the Human Immunodeficiency Virus (HIV) has declined. HAART has also modified the clinical manifestations of these tumors, with a lower frequency of involvement of the central nervous system (CNS). Currently, the frequency of meningeal involvement at the time of diagnosis of NHL in HIV-infected patients varies between 3% and 5%. These figures are similar to those observed among immunocompetent hosts. The diagnosis of meningeal lymphoma relies in clinical findings, imaging techniques, and cerebrospinal fluid (CSF) examination. Flow cytometry is a diagnostic technique with a higher sensitivity and specificity than conventional cytology for the diagnosis of meningeal lymphoma. However, flow cytometry is not yet considered to be the gold standard for this purpose. Until recently, most experts recommended neuromeningeal prophylaxis for all HIV-infected patients with aggressive NHL. However, at present this prophylaxis is recommended only in patients with higher risk of CNS relapse according to different sites of involvement, stage and histological subtype. There are different regimens of prophylaxis and treatment for meningeal lymphoma. The drugs most commonly used for this purpose are methotrexate and cytosine arabinoside. However, there are other alternatives such as liposomal cytosine arabinoside that requires fewer spinal taps for drug administration and whose results are very promising. In summary, in the context of an effective HAART, HIV infected patients with NHL have a frequency of CNS involvement by lymphoma similar to that found among immunocompetent hosts. Consequently, indications and regimens for CNS prophylaxis in HIV-infected patients with NHL should not be different than those employed in the general population. Universal CNS prophylaxis should be reserved for the few patients unable to receive an effective HAART. Copyright © 2009 Elsevier España, S.L. All rights reserved.
Gonzalez-Angulo, Ana M.
2013-01-01
Metastasis to the central nervous system (CNS) is a devastating neurological complication of systemic cancer. Brain metastases from breast cancer have been documented to occur in approximately 10%–16% of cases over the natural course of the disease with leptomeningeal metastases occurring in approximately 2%–5% of cases of breast cancer. CNS metastases among women with breast cancer tend to occur among those who are younger, have larger tumors, and have a more aggressive histological subtype such as the triple negative and HER2-positive subtypes. Treatment of CNS metastases involves various combinations of whole brain radiation therapy, surgery, stereotactic radiosurgery, and chemotherapy. We will discuss the progress made in the treatment and prevention of breast cancer-associated CNS metastases and will delve into the biological underpinnings of CNS metastases including evaluating the role of breast tumor subtype on the incidence, natural history, prognostic outcome, and impact of therapeutic efficacy. PMID:23740934
Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route
Munster, Vincent J.; Prescott, Joseph B.; Bushmaker, Trenton; Long, Dan; Rosenke, Rebecca; Thomas, Tina; Scott, Dana; Fischer, Elizabeth R.; Feldmann, Heinz; de Wit, Emmie
2012-01-01
Encephalitis is a hallmark of Nipah virus (NiV) infection in humans. The exact route of entry of NiV into the central nervous system (CNS) is unknown. Here, we performed a spatio-temporal analysis of NiV entry into the CNS of hamsters. NiV initially predominantly targeted the olfactory epithelium in the nasal turbinates. From there, NiV infected neurons were visible extending through the cribriform plate into the olfactory bulb, providing direct evidence of rapid CNS entry. Subsequently, NiV disseminated to the olfactory tubercle and throughout the ventral cortex. Transmission electron microscopy on brain tissue showed extravasation of plasma cells, neuronal degeneration and nucleocapsid inclusions in affected tissue and axons, providing further evidence for axonal transport of NiV. NiV entry into the CNS coincided with the occurrence of respiratory disease, suggesting that the initial entry of NiV into the CNS occurs simultaneously with, rather than as a result of, systemic virus replication. PMID:23071900
Swamydas, Muthulekha; Rodriguez, Carlos A.; Lim, Jean K.; Mendez, Laura M.; Fink, Danielle L.; Hsu, Amy P.; Zhai, Bing; Karauzum, Hatice; Mikelis, Constantinos M.; Rose, Stacey R.; Ferre, Elise M. N.; Yockey, Lynne; Lemberg, Kimberly; Kuehn, Hye Sun; Rosenzweig, Sergio D.; Lin, Xin; Chittiboina, Prashant; Datta, Sandip K.; Belhorn, Thomas H.; Weimer, Eric T.; Hernandez, Michelle L.; Hohl, Tobias M.; Kuhns, Douglas B.; Lionakis, Michail S.
2015-01-01
Candida is the most common human fungal pathogen and causes systemic infections that require neutrophils for effective host defense. Humans deficient in the C-type lectin pathway adaptor protein CARD9 develop spontaneous fungal disease that targets the central nervous system (CNS). However, how CARD9 promotes protective antifungal immunity in the CNS remains unclear. Here, we show that a patient with CARD9 deficiency had impaired neutrophil accumulation and induction of neutrophil-recruiting CXC chemokines in the cerebrospinal fluid despite uncontrolled CNS Candida infection. We phenocopied the human susceptibility in Card9 -/- mice, which develop uncontrolled brain candidiasis with diminished neutrophil accumulation. The induction of neutrophil-recruiting CXC chemokines is significantly impaired in infected Card9 -/- brains, from both myeloid and resident glial cellular sources, whereas cell-intrinsic neutrophil chemotaxis is Card9-independent. Taken together, our data highlight the critical role of CARD9-dependent neutrophil trafficking into the CNS and provide novel insight into the CNS fungal susceptibility of CARD9-deficient humans. PMID:26679537
Neuropeptide Y Has a Protective Role during Murine Retrovirus-Induced Neurological Disease▿
Du, Min; Butchi, Niranjan B.; Woods, Tyson; Morgan, Timothy W.; Peterson, Karin E.
2010-01-01
Viral infections in the central nervous system (CNS) can lead to neurological disease either directly by infection of neurons or indirectly through activation of glial cells and production of neurotoxic molecules. Understanding the effects of virus-mediated insults on neuronal responses and neurotrophic support is important in elucidating the underlying mechanisms of viral diseases of the CNS. In the current study, we examined the expression of neurotrophin- and neurotransmitter-related genes during infection of mice with neurovirulent polytropic retrovirus. In this model, virus-induced neuropathogenesis is indirect, as the virus predominantly infects macrophages and microglia and does not productively infect neurons or astrocytes. Virus infection is associated with glial cell activation and the production of proinflammatory cytokines in the CNS. In the current study, we identified increased expression of neuropeptide Y (NPY), a pleiotropic growth factor which can regulate both immune cells and neuronal cells, as a correlate with neurovirulent virus infection. Increased levels of Npy mRNA were consistently associated with neurological disease in multiple strains of mice and were induced only by neurovirulent, not avirulent, virus infection. NPY protein expression was primarily detected in neurons near areas of virus-infected cells. Interestingly, mice deficient in NPY developed neurological disease at a faster rate than wild-type mice, indicating a protective role for NPY. Analysis of NPY-deficient mice indicated that NPY may have multiple mechanisms by which it influences virus-induced neurological disease, including regulating the entry of virus-infected cells into the CNS. PMID:20702619
Clinical Applications Involving CNS Gene Transfer
Kantor, Boris; McCown, Thomas; Leone, Paola; Gray, Steven J.
2015-01-01
Diseases of the central nervous system (CNS) have traditionally been the most difficult to treat by traditional pharmacological methods, due mostly to the blood–brain barrier and the difficulties associated with repeated drug administration targeting the CNS. Viral vector gene transfer represents a way to permanently provide a therapeutic protein within the nervous system after a single administration, whether this be a gene replacement strategy for an inherited disorder or a disease-modifying protein for a disease such as Parkinson's. Gene therapy approaches for CNS disorders has evolved considerably over the last two decades. Although a breakthrough treatment has remained elusive, current strategies are now considerably safer and potentially much more effective. This chapter will explore the past, current, and future status of CNS gene therapy, focusing on clinical trials utilizing adeno-associated virus and lentiviral vectors. PMID:25311921
Comparative study of topological indices of macro/supramolecular RNA complex networks.
Agüero-Chapín, Guillermín; Antunes, Agostinho; Ubeira, Florencio M; Chou, Kuo-Chen; González-Díaz, Humberto
2008-11-01
RNA function annotation is often based on alignment to a previously studied template. In contrast to the study of proteins, there are not many alignment-free methods to predict RNA functions if alignment fails. The use of topological indices (TIs) of RNA complex networks (CNs) to find quantitative structure-activity relationships (QSAR) may be an alternative to incorporate secondary structure or sequence-to-sequence similarity. Here, we introduce new QSAR-like techniques using RNA macromolecular CNs (mmCNs), where nodes are nucleotides, or RNA supramolecular CNs (smCNs), where nodes are RNA sequences. We studied a data set of 198 sequences including 18S-rRNAs (important phylogenetic molecular biomarkers). We constructed three types of RNA mmCNs: sequence-linear (SL), Cartesian-lattice (CL), and sequence-folding CNs (SF-CNs) and two smCNs: sequence-sequence disagreement CN (SSD) and sequence-sequence similarity (SSS-smCN). We reported the first comparative QSAR study with all these CIs and CNs, which includes: (i) spectral moments ( ( i )micro d ( w)) of SL-mmCNs (accuracy = 75.3%), (ii) electrostatic CIs (xi d ) of CL-mmCNs (>90%), (iii) thermodynamic parameters (Delta G, Delta H, Delta S, and T m) of SF-mmCNs (64.7%), (iv) disagreement-distribution moments ( M k ) of the SSD-smCN (79.3%), and (v) node centralities of the SSD-smCN (78.0%). Furthermore, we reported the experimental isolation of a new RNA sequence from Psidum guajava leaf tissue and its QSAR and BLAST prediction to illustrate the practical use of these methods. We also investigated the use of these CNs to explore rRNA diversity on bacteria, plants, and parasites from the Dactylogyrus genus. The HPL-mmCNs model was the best of all found. All the CNs and TIs, except SF-mmCNs, were introduced here by the first time for the QSAR study of RNA, which allowed a comparative study for RNA classification.
Forst, Thomas; Smith, Terry; Schütte, Klemens; Marcus, Paul; Pfützner, Andreas
2007-01-01
What is already known about this subject Despite encouraging effects of N-methyl-D-aspartate (NMDA) receptor antagonists in reducing neuropathic pain of different aetiologies, the clinical use of these agents has been limited by their mainly psychotropic side-effects. In a recent study in healthy volunteers, CNS 5161, a novel noncompetetive NMDA receptor antagonist, was well tolerated up to a dosage of 2000 µg without psychotropic side-effects. This is the first study to evaluate the maximal tolerated dosage of CNS 5161 and to gain experience about the analgesic effect of CNS 5161 in patients with different pain syndromes. What this study adds In patients with neuropathic pain CNS 5161 is well tolerated up to a dosage of 500 µg with the most common side-effect of increasing blood pressure, mild visual disturbances and headaches. While no therapeutic effect can be observed in a dosage up to 250 µg, treatment with 500 µg CNS 5161 provides some indications of analgesic activity. It appears that this effect occurs predominantly in patients with diabetic neuropathy. Aims The purpose of the current study was to establish the safety and maximal tolerated dose of CNS 5161 HCl. Methods Forty patients with chronic neuropathic pain (23 male, 17 female) were treated with escalating dosages of CNS 5161. All adverse events to study drug, blood pressure, heart rate, ECG, drug level and clinical laboratory values were monitored. Actual pain was measured on a 100-mm visual analogue scale (VAS) and ordinal verbal pain scores. Results The most commonly occurring nervous system disorder was headache, which was found more often during placebo than during CNS 5161 HCl treatment. Visual disturbances were experienced by 16.7% of patients receiving 250 µg and by 33.3% receiving 500 µg CNS 5161 HCl, but not during placebo treatment. An increase in blood pressure was observed in 8.3% of patients receiving 250 µg and in 50% of patients receiving 500 µg CNS 5161 HCl, compared with 15.4% during placebo treatment. The study was abandoned after two patients entered the 750 µg cohort due to a sustained systolic blood pressure response. Although this study was underpowered for the confirmation of efficacy, some indications of greater pain relief after 500 µg CNS 5161 compared with placebo could be observed (change in VAS between baseline and 12 h 10 ± 22 mm vs. 2 ± 19 mm; P = 0.11). Conclusions CNS 5161 HCl was reasonably well tolerated up to 500 µg. The most common adverse events were hypertension, headache and mild visual disorders. PMID:17391323
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amano, Masayuki; Salcedo-Gómez, Pedro Miguel; Zhao, Rui
We here report that GRL-10413, a novel non-peptidic HIV-1 protease inhibitor (PI) containing a modified P1 moiety and a sulfonamide isostere, is highly active against laboratory HIV-1 strains and primary clinical isolates (EC 50: 0.00035 - 0.0018 μM) with minimal cytotoxicity (CC 50: 35.7 μM). GRL-10413 blocked the infectivity and replication of HIV-1 NL4-3variants selected by up to 5 μM concentrations of atazanavir, lopinavir, or amprenavir (EC 50: 0.0021 - 0.0023 μM). GRL-10413 also maintained its strong antiviral activity against multi-drug-resistant clinical HIV-1 variants isolated from patients, who no longer responded to various antiviral regimens after long-term antiretroviral therapy. Themore » development of resistance against GRL-10413 was significantly delayed compared to that of APV. In addition, GRL-10413 showed a favorable central nervous system (CNS) penetration property as assessed with anin vitroblood brain barrier (BBB) reconstruction system. Analysis of the crystal structure of HIV-1 protease in complex with GRL-10413 demonstrated that the modified P1 moiety of GRL-10413 has a greater hydrophobic surface area and makes greater van der Waals contacts with active-site amino acids of protease than in the case of darunavir. Moreover, the chlorine substituent in the P1 moiety interacts with protease in two distinct configurations. The present data demonstrate that GRL-10413 has desirable features for treating patients infected with wild-type and/or multi-drug-resistant HIV-1 variants with favorable CNS-penetration capability and that the newly modified P1-moiety may confer desirable features in designing novel anti-HIV-1 PIs.« less
The noradrenaline precursor L-DOPS reduces pathology in a mouse model of Alzheimer’s disease
Kalinin, Sergey; Polak, Paul E.; Lin, Shao Xia; Sakharkar, Amul J.; Pandey, Subhash C.; Feinstein, Douglas L.
2013-01-01
Damage to noradrenergic neurons in the locus coeruleus (LC) is a hallmark of Alzheimer’s disease (AD) and may contribute to disease progression. In 5xFAD transgenic mice, which accumulate amyloid burden at early ages, the LC undergoes stress as evidenced by increased astrocyte activation, neuronal hypertrophy, reduced levels of LC-enriched messenger RNAs (mRNAs), and increased inflammatory gene expression. Central nervous system (CNS) noradrenaline (NA) levels in 5-month-old male 5xFAD mice were increased using the NA precursor L-threo-3,4-dihydroxyphenylserine (L-DOPS). After 1 month, L-DOPS treatment improved learning in the Morris water maze test compared with vehicle-treated mice. L-DOPS increased CNS NA levels, and average latency times in the water maze test were inversely correlated to NA levels. L-DOPS reduced astrocyte activation and Thioflavin-S staining; increased mRNA levels of neprilysin and insulin degrading enzyme, and of several neurotrophins; and increased brain-derived neurotrophic factor protein levels. These data demonstrate the presence of LC stress in a robust mouse model of AD, and suggest that raising CNS NA levels could provide benefit in AD. PMID:21705113
The noradrenaline precursor L-DOPS reduces pathology in a mouse model of Alzheimer's disease.
Kalinin, Sergey; Polak, Paul E; Lin, Shao Xia; Sakharkar, Amul J; Pandey, Subhash C; Feinstein, Douglas L
2012-08-01
Damage to noradrenergic neurons in the locus coeruleus (LC) is a hallmark of Alzheimer's disease (AD) and may contribute to disease progression. In 5xFAD transgenic mice, which accumulate amyloid burden at early ages, the LC undergoes stress as evidenced by increased astrocyte activation, neuronal hypertrophy, reduced levels of LC-enriched messenger RNAs (mRNAs), and increased inflammatory gene expression. Central nervous system (CNS) noradrenaline (NA) levels in 5-month-old male 5xFAD mice were increased using the NA precursor L-threo-3,4-dihydroxyphenylserine (L-DOPS). After 1 month, L-DOPS treatment improved learning in the Morris water maze test compared with vehicle-treated mice. L-DOPS increased CNS NA levels, and average latency times in the water maze test were inversely correlated to NA levels. L-DOPS reduced astrocyte activation and Thioflavin-S staining; increased mRNA levels of neprilysin and insulin degrading enzyme, and of several neurotrophins; and increased brain-derived neurotrophic factor protein levels. These data demonstrate the presence of LC stress in a robust mouse model of AD, and suggest that raising CNS NA levels could provide benefit in AD. Copyright © 2012 Elsevier Inc. All rights reserved.
Cowles, Martis W; Omuro, Kerilyn C; Stanley, Brianna N; Quintanilla, Carlo G; Zayas, Ricardo M
2014-10-01
Members of the COE family of transcription factors are required for central nervous system (CNS) development. However, the function of COE in the post-embryonic CNS remains largely unknown. An excellent model for investigating gene function in the adult CNS is the freshwater planarian. This animal is capable of regenerating neurons from an adult pluripotent stem cell population and regaining normal function. We previously showed that planarian coe is expressed in differentiating and mature neurons and that its function is required for proper CNS regeneration. Here, we show that coe is essential to maintain nervous system architecture and patterning in intact (uninjured) planarians. We took advantage of the robust phenotype in intact animals to investigate the genetic programs coe regulates in the CNS. We compared the transcriptional profiles of control and coe RNAi planarians using RNA sequencing and identified approximately 900 differentially expressed genes in coe knockdown animals, including 397 downregulated genes that were enriched for nervous system functional annotations. Next, we validated a subset of the downregulated transcripts by analyzing their expression in coe-deficient planarians and testing if the mRNAs could be detected in coe+ cells. These experiments revealed novel candidate targets of coe in the CNS such as ion channel, neuropeptide, and neurotransmitter genes. Finally, to determine if loss of any of the validated transcripts underscores the coe knockdown phenotype, we knocked down their expression by RNAi and uncovered a set of coe-regulated genes implicated in CNS regeneration and patterning, including orthologs of sodium channel alpha-subunit and pou4. Our study broadens the knowledge of gene expression programs regulated by COE that are required for maintenance of neural subtypes and nervous system architecture in adult animals.
Martín-Palomeque, Guillermo; Castro-Ortiz, Antonio; Pamplona-Valenzuela, Pilar; Saiz-Sepúlveda, Miguel Á; Cabañes-Martínez, Lidia; López, Jaime R
2017-01-01
Although large amplitude evoked potentials (EPs) are typically associated with progressive myoclonic epilepsy patients, giant EPs imply central nervous system (CNS) hyperexcitability and can be seen in various nonepileptic disorders. We performed a retrospective chart review including history, physical examination, imaging and diagnostic studies of nonepileptic patients with large amplitude somatosensory evoked potentials (SSEPs) and visual evoked potentials (VEPs) during 2007 to 2013. Large amplitude EPs were defined as follows: VEPs (N75-P100) >18 μV; and SSEPs (N20-P25) >6.4 μV. Recording montage for VEPs was Oz-Cz and SSEPs C3'/C4'-Fz. Fifty-two patients (33 females, 19 males; age range, 9-90 years) were identified. No CNS pathology was detected in 7 patients. All remaining patients were diagnosed with new CNS disorders including: vascular (37%); myelopathies (13%); demyelinating (11%); space occupying lesions (8.7%); syringomyelia (8.7%); hydrocephalus (6.5%); Vitamin B-12 deficiency (4.3%); multiple system atrophy (4.3%); and toxins (2.2%). This study supports the notion that large amplitude EP implies CNS hyperexcitability and CNS disease. These results confirm the utility of EP studies in patients with suspected CNS pathology.
Hayes, Lisa; Malhotra, Prashant
2014-01-01
Central nervous system (CNS) infections can have various presentations including Cerebrovascular accidents (CVA) which may go unrecognized as a presentation of infection. We describe three cases of different CNS infections complicated by CVA. Case 1 describes a 27-year-old man, presenting with symptoms consistent with a transient ischemic attack found to have racemose neurocysticercosis. Case 2 describes a 55-year-old man with low grade fevers for 4 weeks accompanied by visual and gait disturbances and delayed speech diagnosed with multiple small left thalamocapsular and superior cerebellar infarcts secondary to cryptococcal meningitis. The third case describes a man with pneumococcal meningitis complicated by cerebellar infarcts. CNS vascular compromise secondary to infections may be due to vasculitis, an immune-mediated parainfectious process causing vasospasm or thrombosis, or a hypercoagulable state with endothelial dysfunction. Patients with CVAs are at risk for aspiration pneumonia, urinary tract infections (especially catheter related) and other nosocomial infections and their clinical presentation may be very similar to CNS infections. The cases described demonstrate that CNS infections need to be considered in the differential diagnosis of CVAs presenting with fevers. The signs and symptoms of non-CNS infections associated with CVAs may be clinically indistinguishable from those of CNS infections. The outcomes of untreated CNS infections are extremely poor. It is thus imperative to have a high index of suspicion for CNS infection when evaluating CVAs with fevers or other signs of infection.
Hayes, Lisa; Malhotra, Prashant
2014-01-01
Introduction Central nervous system (CNS) infections can have various presentations including Cerebrovascular accidents (CVA) which may go unrecognized as a presentation of infection. We describe three cases of different CNS infections complicated by CVA. Presentation Case 1 describes a 27-year-old man, presenting with symptoms consistent with a transient ischemic attack found to have racemose neurocysticercosis. Case 2 describes a 55-year-old man with low grade fevers for 4 weeks accompanied by visual and gait disturbances and delayed speech diagnosed with multiple small left thalamocapsular and superior cerebellar infarcts secondary to cryptococcal meningitis. The third case describes a man with pneumococcal meningitis complicated by cerebellar infarcts. Discussion CNS vascular compromise secondary to infections may be due to vasculitis, an immune-mediated parainfectious process causing vasospasm or thrombosis, or a hypercoagulable state with endothelial dysfunction. Patients with CVAs are at risk for aspiration pneumonia, urinary tract infections (especially catheter related) and other nosocomial infections and their clinical presentation may be very similar to CNS infections. Conclusion The cases described demonstrate that CNS infections need to be considered in the differential diagnosis of CVAs presenting with fevers. The signs and symptoms of non-CNS infections associated with CVAs may be clinically indistinguishable from those of CNS infections. The outcomes of untreated CNS infections are extremely poor. It is thus imperative to have a high index of suspicion for CNS infection when evaluating CVAs with fevers or other signs of infection. PMID:26839779
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, A.L.; Goodsall, A.L.; Sedgwick, J.D.
1995-05-01
Ramified microglia in the adult central nervous system (CNS) are the principal glial element up-regulating MHC class I and II expression in response to inflammatory events or neuronal damage. A proportion of these cells also express MHC class II constitutively in the normal CNS. The role of microglia as APCs for CD4{sup +} cells extravasating into the CNS remains undefined. In this study, using irradiation bone marrow chimeras in CD45-congenic rats, the phenotype CD45{sup low}CD11b/c{sup +} is shown to identify microglial cells specifically within the CNS. Highly purified populations of microglia and nonmicroglial but CNS-associated macrophages (CD45{sup high}CD11b/c{sup +}) havemore » been obtained directly from the adult CNS, by using flow cytometric sorting. Morphologically, freshly isolated microglia vs other CNS macrophages are quite distinct. Of the two populations recovered from the normal CNS, it is the minority CD45{sup high}CD11 b/c{sup +} transitional macrophage population, and not microglia, that is the effective APC for experimental autoimmune encephalomyelitis-inducing CD4{sup +} myelin basic protein (MBP)-reactive T cells. CD45{sup high}CD11b/c{sup +} CNS macrophages also stimulate MBP-reactive T cells without addition of MBP to culture suggesting presentation of endogenous Ag. This is the first study in which microglia vs other CNS macrophages have been analyzed for APC ability directly from the CNS, with substantial cross-contamination between the two populations eliminated. The heterogeneity of these populations in terms of APC function is clearly demonstrated. Evidence is still lacking that adult CNS microglia have the capacity to interact with and stimulate CD4{sup +} T cells to proliferate or secrete IL-2. 60 refs., 6 figs., 1 tab.« less
Kano, Yasuhiro; Kodaira, Minori; Ushiki, Atsuhito; Kosaka, Makoto; Yamada, Mitsunori; Shingu, Kunihiko; Nishihara, Hiroshi; Hanaoka, Masayuki; Sekijima, Yoshiki
2017-09-15
A 49-year-old man presented with gradually progressive aphasia one month after being diagnosed with acquired immunodeficiency syndrome (AIDS). Brain magnetic resonance imaging showed multiple brain lesions with punctate and linear enhancement. A polymerase chain reaction detected Epstein-Barr virus (EBV) in the patient's cerebrospinal fluid. A diagnosis of isolated central nervous system lymphomatoid granulomatosis (CNS-LYG) was made based on the brain biopsy findings. The complete remission of CNS-LYG was achieved by anti-retroviral therapy (ART) alone. In the present case, the development of AIDS-associated CNS-LYG was considered to have been initiated by the reactivation of EBV in the CNS under immunosuppressive conditions. The patient's condition improved with the reconstitution of the patient's immune system.
Nanomedicines for the Treatment of CNS Diseases.
Reynolds, Jessica L; Mahato, Ram I
2017-03-01
Targeting and delivering macromolecular therapeutics to the central nervous system (CNS) has been a major challenge. The blood-brain barrier (BBB) is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Therefore, much effort has been channelled into improving transport of therapeutics across the BBB and into the CNS including the use of nanoparticles. In this thematic issue, several reviews and original research are presented that address "Nanomedicines for CNS Diseases." The articles in this issue are concentrated on either CNS-HIV disease or CNS tumors. In regards to CNS-HIV disease, there are two reviews that discuss the role of nanoparticles for improving the delivery of HIV therapeutics to the CNS. In addition, there are two original articles focusing on therapies for CNS-HIV, one of them uses nanoparticles for delivery of siRNA specific to a key protein in autophagy to microglia, and another discusses nanoparticle delivery of a soluble mediator to suppress neuroinflammation. Furthermore, a comprehensive review about gene therapy for CNS neurological diseases is also included. Finally, this issue also includes review articles on enhanced drug targeting to CNS tumors. These articles include a review on the use of nanoparticles for CNS tumors, a review on functionalization (ligands) of nanoparticles for drug targeting to the brain tumor by overcoming BBB, and the final review discusses the use of macrophages as a delivery vehicle to CNS tumors. This thematic issue provides a wealth of knowledge on using nanomedicines for CNS diseases.
Horta-Baas, Gabriel; Guerrero-Soto, Omar; Barile-Fabris, Leonor
2013-01-01
Infections in patients with systemic lupus erythematosus cause significant morbidity. Infection due to Listeria monocytogenes (LM) is considered an opportunistic disease, and has been published on rare occasions in patients with SLE. To review the presentation of listeria infections in the central nervous system (CNS) in SLE patients. We conducted a literature review, selecting cases with central nervous system infection and confirmation of LM infection through culture. Twenty six cases are described. The most common presentation was meningitis, with meningoencephalitis and brain abscesses being less frequent. The predisposing factors are: use of glucocorticoids, immunosuppressants, renal replacement therapy and the activity flares. CNS infection by listeria is rare and sometimes fatal. The atypical presentation may lead to a delay in diagnosis and appropriate treatment. L. monocytogenes should be included in the differential diagnosis of patients with SLE with neurological manifestations. Copyright © 2013 Elsevier España, S.L. All rights reserved.
NASA Astrophysics Data System (ADS)
Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.
2004-01-01
Exposure to heavy particles can affect the functioning of the central nervous system (CNS), particularly the dopaminergic system. In turn, the radiation-induced disruption of dopaminergic function affects a variety of behaviors that are dependent upon the integrity of this system, including motor behavior (upper body strength), amphetamine (dopamine)-mediated taste aversion learning, and operant conditioning (fixed-ratio bar pressing). Although the relationships between heavy particle irradiation and the effects of exposure depend, to some extent, upon the specific behavioral or neurochemical endpoint under consideration, a review of the available research leads to the hypothesis that the endpoints mediated by the CNS have certain characteristics in common. These include: (1) a threshold, below which there is no apparent effect; (2) the lack of a dose-response relationship, or an extremely steep dose-response curve, depending on the particular endpoint; and (3) the absence of recovery of function, such that the heavy particle-induced behavioral and neural changes are present when tested up to one year following exposure. The current report reviews the data relevant to the degree to which these characteristics are common to neurochemical and behavioral endpoints that are mediated by the effects of exposure to heavy particles on CNS activity.
NASA Technical Reports Server (NTRS)
Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.
2004-01-01
Exposure to heavy particles can affect the functioning of the central nervous system (CNS), particularly the dopaminergic system. In turn, the radiation-induced disruption of dopaminergic function affects a variety of behaviors that are dependent upon the integrity of this system, including motor behavior (upper body strength), amphetamine (dopamine)-mediated taste aversion learning, and operant conditioning (fixed-ratio bar pressing). Although the relationships between heavy particle irradiation and the effects of exposure depend, to some extent, upon the specific behavioral or neurochemical endpoint under consideration, a review of the available research leads to the hypothesis that the endpoints mediated by the CNS have certain characteristics in common. These include: (1) a threshold, below which there is no apparent effect; (2) the lack of a dose-response relationship, or an extremely steep dose-response curve, depending on the particular endpoint; and (3) the absence of recovery of function, such that the heavy particle-induced behavioral and neural changes are present when tested up to one year following exposure. The current report reviews the data relevant to the degree to which these characteristics are common to neurochemical and behavioral endpoints that are mediated by the effects of exposure to heavy particles on CNS activity. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Requirements for an Integrated UAS CNS Architecture
NASA Technical Reports Server (NTRS)
Templin, Fred L.; Jain, Raj; Sheffield, Greg; Taboso-Ballesteros, Pedro; Ponchak, Denise
2017-01-01
Communications, Navigation and Surveillance (CNS) requirements must be developed in order to establish a CNS architecture supporting Unmanned Air Systems integration in the National Air Space (UAS in the NAS). These requirements must address cybersecurity, future communications, satellite-based navigation and APNT, and scalable surveillance and situational awareness. CNS integration, consolidation and miniaturization requirements are also important to support the explosive growth in small UAS deployment. Air Traffic Management (ATM) must also be accommodated to support critical Command and Control (C2) for Air Traffic Controllers (ATC). This document therefore presents UAS CNS requirements that will guide the architecture.
NCI-CONNECT - Comprehensive Oncology Network Evaluating Rare CNS Tumors | Center for Cancer Research
NCI-CONNECT: Comprehensive Oncology Network Evaluating Rare CNS Tumors Purpose NCI-CONNECT aims to advance the understanding of rare adult central nervous system (CNS) cancers by establishing and fostering patient-advocacy-provider partnerships and networks to improve approaches to care and treatment.
Requirements for an Integrated UAS CNS Architecture
NASA Technical Reports Server (NTRS)
Templin, Fred; Jain, Raj; Sheffield, Greg; Taboso, Pedro; Ponchak, Denise
2017-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating revolutionary and advanced universal, reliable, always available, cyber secure and affordable Communication, Navigation, Surveillance (CNS) options for all altitudes of UAS operations. In Spring 2015, NASA issued a Call for Proposals under NASA Research Announcements (NRA) NNH15ZEA001N, Amendment 7 Subtopic 2.4. Boeing was selected to conduct a study with the objective to determine the most promising candidate technologies for Unmanned Air Systems (UAS) air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. The overall objectives are to develop UAS CNS requirements and then develop architectures that satisfy the requirements for UAS in both controlled and uncontrolled air space. This contract is funded under NASAs Aeronautics Research Mission Directorates (ARMD) Aviation Operations and Safety Program (AOSP) Safe Autonomous Systems Operations (SASO) project and proposes technologies for the Unmanned Air Systems Traffic Management (UTM) service. Communications, Navigation and Surveillance (CNS) requirements must be developed in order to establish a CNS architecture supporting Unmanned Air Systems integration in the National Air Space (UAS in the NAS). These requirements must address cybersecurity, future communications, satellite-based navigation APNT, and scalable surveillance and situational awareness. CNS integration, consolidation and miniaturization requirements are also important to support the explosive growth in small UAS deployment. Air Traffic Management (ATM) must also be accommodated to support critical Command and Control (C2) for Air Traffic Controllers (ATC). This document therefore presents UAS CNS requirements that will guide the architecture.
Systemic inflammation induces axon injury during brain inflammation.
Moreno, Beatriz; Jukes, John-Paul; Vergara-Irigaray, Nuria; Errea, Oihana; Villoslada, Pablo; Perry, V Hugh; Newman, Tracey A
2011-12-01
Axon injury is a key contributor to the progression of disability in multiple sclerosis (MS). Systemic infections, which frequently precede relapses in MS, have been linked to clinical progression in Alzheimer's disease. There is evidence of a role for the innate immune system in MS lesions, as axonal injury is associated with macrophage activation. We hypothesize that systemic inflammation leads to enhanced axonal damage in MS as a consequence of innate immune system activation. Monophasic experimental allergic encephalomyelitis (EAE) was induced in a cohort of Lewis rats. The animals received a systemic challenge with either an inflammagen (lipopolysaccharide [LPS]) or saline as a control, at 1, 3, or 6 weeks into the remission phase of the disease. The clinical outcome, cellular recruitment to lesions, degree of tissue damage, and cytokine profiles were measured. We found that systemic inflammation activates the central nervous system (CNS) innate immune response and results in a switch in the macrophage/microglia phenotype. This switch was accompanied by inducible nitric oxide synthase (iNOS) and interleukin-1β (IL-1β) expression and increased axon injury. This increased injury occurred independently of the re-emergence of overt clinical signs. Our evidence indicates that microglia/macrophages, associated with lesions, respond to circulating cytokines, produced in response to an inflammatory event outside the CNS, by producing immune mediators that lead to tissue damage. This has implications for people with MS, in which prevention and stringent management of systemic infectious diseases may slow disease progression. Copyright © 2011 American Neurological Association.
Neuronal assemblies within the Central Nervous System (CNS) produce spontaneous or stimulus-evoked electrophysiological activity that can be monitored and quantified in terms of action potential patterns. Such patterns provide a sensitive endpoint to detect effects of chemicals, ...
Neuronopathic Lysosomal Storage Diseases: Clinical and Pathologic Findings
ERIC Educational Resources Information Center
Prada, Carlos E.; Grabowski, Gregory A.
2013-01-01
Background: The lysosomal--autophagocytic system diseases (LASDs) affect multiple body systems including the central nervous system (CNS). The progressive CNS pathology has its onset at different ages, leading to neurodegeneration and early death. Methods: Literature review provided insight into the current clinical neurological findings,…
Hur, Eun-Mi; Lee, Byoung Dae
2014-12-01
Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs) are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS) are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.
Freedman, Rachel A; Gelman, Rebecca S; Wefel, Jeffrey S; Melisko, Michelle E; Hess, Kenneth R; Connolly, Roisin M; Van Poznak, Catherine H; Niravath, Polly A; Puhalla, Shannon L; Ibrahim, Nuhad; Blackwell, Kimberly L; Moy, Beverly; Herold, Christina; Liu, Minetta C; Lowe, Alarice; Agar, Nathalie Y R; Ryabin, Nicole; Farooq, Sarah; Lawler, Elizabeth; Rimawi, Mothaffar F; Krop, Ian E; Wolff, Antonio C; Winer, Eric P; Lin, Nancy U
2016-03-20
Evidence-based treatments for metastatic, human epidermal growth factor receptor 2 (HER2)-positive breast cancer in the CNS are limited. Neratinib is an irreversible inhibitor of erbB1, HER2, and erbB4, with promising activity in HER2-positive breast cancer; however, its activity in the CNS is unknown. We evaluated the efficacy of treatment with neratinib in patients with HER2-positive breast cancer brain metastases in a multicenter, phase II open-label trial. Eligible patients were those with HER2-positive brain metastases (≥ 1 cm in longest dimension) who experienced progression in the CNS after one or more line of CNS-directed therapy, such as whole-brain radiotherapy, stereotactic radiosurgery, and/or surgical resection. Patients received neratinib 240 mg orally once per day, and tumors were assessed every two cycles. The primary endpoint was composite CNS objective response rate (ORR), requiring all of the following: ≥ 50% reduction in volumetric sum of target CNS lesions and no progression of non-target lesions, new lesions, escalating corticosteroids, progressive neurologic signs/symptoms, or non-CNS progression--the threshold for success was five of 40 responders. Forty patients were enrolled between February 2012 and June 2013; 78% of patients had previous whole-brain radiotherapy. Three women achieved a partial response (CNS objective response rate, 8%; 95% CI, 2% to 22%). The median number of cycles received was two (range, one to seven cycles), with a median progression-free survival of 1.9 months. Five women received six or more cycles. The most common grade ≥ 3 event was diarrhea (occurring in 21% of patients taking prespecified loperamide prophylaxis and 28% of those without prophylaxis). Patients in the study experienced a decreased quality of life over time. Although neratinib had low activity and did not meet our threshold for success, 12.5% of patients received six or more cycles. Studies combining neratinib with chemotherapy in patients with CNS disease are ongoing. © 2016 by American Society of Clinical Oncology.
Gelman, Rebecca S.; Wefel, Jeffrey S.; Melisko, Michelle E.; Hess, Kenneth R.; Connolly, Roisin M.; Van Poznak, Catherine H.; Niravath, Polly A.; Puhalla, Shannon L.; Ibrahim, Nuhad; Blackwell, Kimberly L.; Moy, Beverly; Herold, Christina; Liu, Minetta C.; Lowe, Alarice; Agar, Nathalie Y.R.; Ryabin, Nicole; Farooq, Sarah; Lawler, Elizabeth; Rimawi, Mothaffar F.; Krop, Ian E.; Wolff, Antonio C.; Winer, Eric P.; Lin, Nancy U.
2016-01-01
Purpose Evidence-based treatments for metastatic, human epidermal growth factor receptor 2 (HER2)–positive breast cancer in the CNS are limited. Neratinib is an irreversible inhibitor of erbB1, HER2, and erbB4, with promising activity in HER2-positive breast cancer; however, its activity in the CNS is unknown. We evaluated the efficacy of treatment with neratinib in patients with HER2-positive breast cancer brain metastases in a multicenter, phase II open-label trial. Patients and Methods Eligible patients were those with HER2-positive brain metastases (≥ 1 cm in longest dimension) who experienced progression in the CNS after one or more line of CNS-directed therapy, such as whole-brain radiotherapy, stereotactic radiosurgery, and/or surgical resection. Patients received neratinib 240 mg orally once per day, and tumors were assessed every two cycles. The primary endpoint was composite CNS objective response rate (ORR), requiring all of the following: ≥50% reduction in volumetric sum of target CNS lesions and no progression of non-target lesions, new lesions, escalating corticosteroids, progressive neurologic signs/symptoms, or non-CNS progression—the threshold for success was five of 40 responders. Results Forty patients were enrolled between February 2012 and June 2013; 78% of patients had previous whole-brain radiotherapy. Three women achieved a partial response (CNS objective response rate, 8%; 95% CI, 2% to 22%). The median number of cycles received was two (range, one to seven cycles), with a median progression-free survival of 1.9 months. Five women received six or more cycles. The most common grade ≥ 3 event was diarrhea (occurring in 21% of patients taking prespecified loperamide prophylaxis and 28% of those without prophylaxis). Patients in the study experienced a decreased quality of life over time. Conclusion Although neratinib had low activity and did not meet our threshold for success, 12.5% of patients received six or more cycles. Studies combining neratinib with chemotherapy in patients with CNS disease are ongoing. PMID:26834058
Najera, Julia A; Bustamante, Eduardo A; Bortell, Nikki; Morsey, Brenda; Fox, Howard S; Ravasi, Timothy; Marcondes, Maria Cecilia Garibaldi
2016-04-23
Methamphetamine (Meth) abuse is a major health problem linked to the aggravation of HIV- associated complications, especially within the Central Nervous System (CNS). Within the CNS, Meth has the ability to modify the activity/function of innate immune cells and increase brain viral loads. Here, we examined changes in the gene expression profile of neuron-free microglial cell preparations isolated from the brain of macaques infected with the Simian Immunodeficiency Virus (SIV), a model of neuroAIDS, and exposed to Meth. We aimed to identify molecular patterns triggered by Meth that could explain the detection of higher brain viral loads and the development of a pro-inflammatory CNS environment in the brain of infected drug abusers. We found that Meth alone has a strong effect on the transcription of genes associated with immune pathways, particularly inflammation and chemotaxis. Systems analysis led to a strong correlation between Meth exposure and enhancement of molecules associated with chemokines and chemokine receptors, especially CXCR4 and CCR5, which function as co-receptors for viral entry. The increase in CCR5 expression was confirmed in the brain in correlation with increased brain viral load. Meth enhances the availability of CCR5-expressing cells for SIV in the brain, in correlation with increased viral load. This suggests that Meth is an important factor in the susceptibility to the infection and to the aggravated CNS inflammatory pathology associated with SIV in macaques and HIV in humans.
Evidence Report: Risk of Acute and Late Central Nervous System Effects from Radiation Exposure
NASA Technical Reports Server (NTRS)
Nelson, Gregory A.; Simonsen, Lisa; Huff, Janice L.
2016-01-01
Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays (GCR) and solar particle events (SPE) are concerns for human exploration of space. Acute CNS risks may include: altered cognitive function, reduced motor function, and behavioral changes, all of which may affect performance and human health. Late CNS risks may include neurological disorders such as Alzheimer's disease (AD), dementia and premature aging. Although detrimental CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and 9 protons) for cancer and are supported by experimental evidence showing neurocognitive and behavioral effects in animal models, the significance of these results on the morbidity to astronauts has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not possible for CNS risks. Research specific to the spaceflight environment using animal and cell models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk and to establish validity of the current permissible exposure limits (PELs). In addition, the impact of radiation exposure in combination with individual sensitivity or other space flight factors, as well as assessment of the need for biological/pharmaceutical countermeasures, will be considered after further definition of CNS risk occurs.
Evidence Report: Risk of Acute and Late Central Nervous System Effects from Radiation Exposure
NASA Technical Reports Server (NTRS)
Nelson, Gregory A.; Simonsen, Lisa; Huff, Janice L.
2015-01-01
Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays (GCR) and solar particle events (SPE) are a documented concern for human exploration of space. Acute CNS risks include: altered cognitive function, reduced motor function, and behavioral changes, all of which may affect performance and human health. Late CNS risks include neurological disorders such as Alzheimer's disease (AD), dementia and premature aging. Although detrimental CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and protons) for cancer and are supported by experimental evidence showing neurocognitive and behavioral effects in animal models, the significance of these results on the morbidity to astronauts has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not possible for CNS risks. Research specific to the spaceflight environment using animal and cell models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk and to establish validity of the current permissible exposure limits (PELs). In addition, the impact of radiation exposure in combination with individual sensitivity or other space flight factors, as well as assessment of the need for biological/pharmaceutical countermeasures, will be considered after further definition of CNS risk occurs.
Qiao, Jingda; Zou, Xiaolu; Lai, Duo; Yan, Ying; Wang, Qi; Li, Weicong; Deng, Shengwen; Xu, Hanhong; Gu, Huaiyu
2014-07-01
Azadirachtin is a botanical pesticide, which possesses conspicuous biological actions such as insecticidal, anthelmintic, antifeedancy, antimalarial effects as well as insect growth regulation. Deterrent for chemoreceptor functions appears to be the main mechanism involved in the potent biological actions of Azadirachtin, although the cytotoxicity and subtle changes to skeletal muscle physiology may also contribute to its insecticide responses. In order to discover the effects of Azadirachtin on the central nervous system (CNS), patch-clamp recording was applied to Drosophila melanogaster, which has been widely used in neurological research. Here, we describe the electrophysiological properties of a local neuron located in the suboesophageal ganglion region of D. melanogaster using the whole brain. The patch-clamp recordings suggested that Azadirachtin modulates the properties of cholinergic miniature excitatory postsynaptic current (mEPSC) and calcium currents, which play important roles in neural activity of the CNS. The frequency of mEPSC and the peak amplitude of the calcium currents significantly decreased after application of Azadirachtin. Our study indicates that Azadirachtin can interfere with the insect's CNS via inhibition of excitatory cholinergic transmission and partly blocking the calcium channel. © 2013 Society of Chemical Industry.
Language disorders in children with central nervous system injury
Dennis, Maureen
2011-01-01
Children with injury to the central nervous system (CNS) exhibit a variety of language disorders that have been described by members of different disciplines, in different journals, using different descriptors and taxonomies. This paper is an overview of language deficits in children with CNS injury, whether congenital or acquired after a period of normal development. It first reviews the principal CNS conditions associated with language disorders in childhood. It then describes a functional taxonomy of language, with examples of the phenomenology and neurobiology of clinical deficits in children with CNS insults. Finally, it attempts to situate language in the broader realm of cognition and in current theoretical accounts of embodied cognition. PMID:20397297
Pericyte function in the physiological central nervous system.
Muramatsu, Rieko; Yamashita, Toshihide
2014-01-01
Damage to the central nervous system (CNS) leads to disruption of the vascular network, causing vascular dysfunction. Vascular dysfunction is the major event in the pathogenesis of CNS diseases and is closely associated with the severity of neuronal dysfunction. The suppression of vascular dysfunction has been considered a promising avenue to limit damage to the CNS, leading to efforts to clarify the cellular and molecular basis of vascular homeostasis maintenance. A reduction of trophic support and oxygen delivery due to circulatory insufficiency has long been regarded as a major cause of vascular damage. Moreover, recent studies provide a new perspective on the importance of the structural stability of blood vessels in CNS diseases. This updated article discusses emerging information on the key role of vascular integrity in CNS diseases, specially focusing on pericyte function. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Gassas, Adam; Krueger, Joerg; Alvi, Saima; Sung, Lillian; Hitzler, Johanne; Lieberman, Lani
2014-12-01
Despite the success of central nervous system (CNS) directed therapy in pediatric acute lymphoblastic leukemia (ALL), relapse involving the CNS continues to be observed in 5-10% of children when utilizing standard intrathecal prophylactic chemotherapy. While most pediatric ALL treatment protocols mandate regular lumbar punctures (LP) for the intrathecal injection of chemotherapy, the value of routine cytological analysis of cerebrospinal fluid (CSF) during therapy is unknown. Our objective was to assess the diagnostic value of routine CSF analysis during ALL therapy. To allow for at least 10 years of follow up from ALL diagnosis, children (0-18 years) with ALL diagnosed and treated at SickKids, Toronto, Canada between 1994-2004 were studied. Medical records of patients with CNS relapse were examined to determine whether CNS relapse was diagnosed based on cytology of a routinely obtained CSF sample, a CSF sample obtained because of signs and symptoms or a CSF sample obtained after the diagnosis of a bone marrow relapse. Of 494 children treated for ALL, 31 (6.6%) developed a relapse of ALL involving the CNS. Twenty-two had an isolated CNS relapse and nine had a combined bone marrow and CNS relapse. Among patients with isolated CNS relapse, 73% (16/22) were diagnosed based on routine CSF samples obtained from asymptomatic children. Conversely, 89% (8/9) of children with combined bone marrow and CNS relapse presented with symptoms and signs that prompted CSF examination. Routine CSF examination at the time of LP for intrathecal chemotherapy is useful in detecting CNS relapse. © 2014 Wiley Periodicals, Inc.
Beneficial effects of exercise and its molecular mechanisms on depression in rats
Zheng, Hang; Liu, Yanyou; Li, Wei; Yang, Bo; Chen, Dengbang; Wang, Xiaojia; Jiang, Zhou; Wang, Hongxing; Wang, Zhengrong; Cornelisson, G.; Halberg, F.
2008-01-01
Exercise showed the beneficial effects on mental health in depressed sufferers, whereas, its underlying mechanisms remained unresolved. This study utilized the chronic unpredictable stress (CNS) animal model of depression to evaluate the effects of exercise on depressive behaviors and spatial performance in rats. Furthermore, we tested the hypothesis that the capacity of exercise to reverse the harmful effects of CNS was relative to the hypothalamo–pituitary–adrenal (HPA) system and brain-derived neurotrophic factor (BDNF) in the hippocampus. Animal groups were exposed to CNS for 4 weeks with and without access to voluntary wheel running. Stressed rats consumed significantly less of a 1% sucrose solution during CNS and exhibited a significant decrease in open field behavior. On the other hand, they showed impaired spatial performance in Morris water maze test 2 weeks after the end of CNS. Further, CNS significantly decreased hippocampal BDNF mRNA levels. However, voluntary exercise improved or even reversed these harmful behavioral effects in stressed rats. Furthermore, exercise counteracted a decrease in hippocampal BDNF mRNA caused by CNS. In addition, we also found that CMS alone increased circulating corticosterone (CORT) significantly and decreased hippocampal glucocorticoid receptor (GR) mRNA. At the same time, exercise alone increased CORT moderately and did not affect hippocampal GR mRNA levels. While, when both CNS and exercise were combined, exercise reduced the increase of CORT and the decrease of GR caused by CMS. The results demonstrated that: (1) exercise reversed the harmful effects of CNS on mood and spatial performance in rats and (2) the behavioral changes induced by exercise and/or CNS might be associated with hippocampal BDNF levels, and in addition, the HPA system might play different roles in the two different processes. PMID:16290283
The clinical nurse specialist in an Irish hospital.
Wickham, Sheelagh
2011-01-01
This study was set in an acute Irish health care setting and aimed to explore the activity of the clinical nurse specialist (CNS) in this setting. Quantitative methodology, using a valid and reliable questionnaire, provided descriptive statistics that gave accurate data on the total population of CNSs in the health care setting. The study was set in an acute-care 750-bed hospital that had 25 CNSs in practice. The sample consisted of all 25 CNSs who are the total population of CNSs working in the acute health care institution. The findings show the CNS to be active in the roles of researcher, educator, communicator, change agent, leader, and clinical specialist, but the level of activity varies between different roles. There is variety in the activity of CNSs in the various roles and to what extent they enact the role. The findings merit further study on CNS role activity and possible variables that influence role activity.
Collett, Garen A; Song, Kangwon; Jaramillo, Carlos A; Potter, Jennifer S; Finley, Erin P; Pugh, Mary Jo
The increase in the quantities of central nervous system (CNS)-acting medications prescribed has coincided with increases in overdose mortality, suicide-related behaviors, and unintentional deaths in military personnel deployed in support of the wars in Iraq and Afghanistan. Data on the extent and impact of prescribing multiple CNS drugs among Iraq and Afghanistan Veterans (IAVs) are sparse. We sought to identify the characteristics of IAVs with CNS polypharmacy and examine the association of CNS polypharmacy with drug overdose and suicide-related behaviors controlling for known risk factors. This cross-sectional cohort study examined national data of Iraq and Afghanistan Veterans ( N = 311,400) who used the Veterans Health Administration (VHA) during the fiscal year 2011. CNS polypharmacy was defined as five or more CNS-acting medications; drug/alcohol overdose and suicide-related behaviors were identified using ICD-9-CM codes. Demographic and clinical characteristics associated with CNS polypharmacy were identified using a multivariable logistic regression model. We found that 25,546 (8.4 %) of Iraq and Afghanistan Veterans had CNS polypharmacy. Those with only post-traumatic stress disorder (PTSD) (adjusted odds ratio (AOR) 6.50, 99 % confidence interval (CI) 5.96-7.10), only depression (AOR 6.42, 99 % CI 5.86-7.04), co-morbid PTSD and depression (AOR 12.98, 99 % CI 11.97-14.07), and co-morbid traumatic brain injury (TBI), PTSD, and depression (AOR 15.30, 99 % CI 14.00-16.73) had the highest odds of CNS polypharmacy. After controlling for these co-morbid conditions, CNS polypharmacy was significantly associated with drug/alcohol overdose and suicide-related behavior. CNS polypharmacy was most strongly associated with PTSD, depression, and TBI, and independently associated with overdose and suicide-related behavior after controlling for known risk factors. These findings suggest that CNS polypharmacy may be used as an indicator of risk for adverse outcomes. Further research should evaluate whether CNS polypharmacy may be used as a trigger for evaluation of the current care provided to these individuals.
Collett, Garen A; Song, Kangwon; Jaramillo, Carlos A; Potter, Jennifer S; Finley, Erin P; Pugh, Mary Jo
2016-03-01
The increase in the quantities of central nervous system (CNS)-acting medications prescribed has coincided with increases in overdose mortality, suicide-related behaviors, and unintentional deaths in military personnel deployed in support of the wars in Iraq and Afghanistan. Data on the extent and impact of prescribing multiple CNS drugs among Iraq and Afghanistan Veterans (IAVs) are sparse. We sought to identify the characteristics of IAVs with CNS polypharmacy and examine the association of CNS polypharmacy with drug overdose and suicide-related behaviors controlling for known risk factors. This cross-sectional cohort study examined national data of Iraq and Afghanistan Veterans (N = 311,400) who used the Veterans Health Administration (VHA) during the fiscal year 2011. CNS polypharmacy was defined as five or more CNS-acting medications; drug/alcohol overdose and suicide-related behaviors were identified using ICD-9-CM codes. Demographic and clinical characteristics associated with CNS polypharmacy were identified using a multivariable logistic regression model. We found that 25,546 (8.4 %) of Iraq and Afghanistan Veterans had CNS polypharmacy. Those with only post-traumatic stress disorder (PTSD) (adjusted odds ratio (AOR) 6.50, 99 % confidence interval (CI) 5.96-7.10), only depression (AOR 6.42, 99 % CI 5.86-7.04), co-morbid PTSD and depression (AOR 12.98, 99 % CI 11.97-14.07), and co-morbid traumatic brain injury (TBI), PTSD, and depression (AOR 15.30, 99 % CI 14.00-16.73) had the highest odds of CNS polypharmacy. After controlling for these co-morbid conditions, CNS polypharmacy was significantly associated with drug/alcohol overdose and suicide-related behavior. CNS polypharmacy was most strongly associated with PTSD, depression, and TBI, and independently associated with overdose and suicide-related behavior after controlling for known risk factors. These findings suggest that CNS polypharmacy may be used as an indicator of risk for adverse outcomes. Further research should evaluate whether CNS polypharmacy may be used as a trigger for evaluation of the current care provided to these individuals.
Novel agents in CNS myeloma treatment.
Gozzetti, Alessandro; Cerase, Alfonso
2014-01-01
Central nervous system localization of multiple myeloma (CNS-MM) accounts for about 1% of all MM.Treatment is still unsatisfactory. Many treatments have been described in the literature: chemotherapy (CHT), intrathecal therapy (IT), and radiotherapy (RT), with survivals reported between one month and six months. Recent drugs such as the immunomodulatory drugs (IMiDs) and proteasome inhibitors (bortezomib) have changed the treatment of patients with MM, both younger and older, with a significant improvement in response and survival. The activity of new drugs in CNSMM has been reported but is still not well known. Bortezomib does not cross the blood brain barrier (BBB), and IMID’s seem to have only a minimal crossover. The role of novel agents in CNS MM management will be discussed as well as the potential role of other new immunomodulatory drugs (pomalidomide) and proteasome inhibitors that seem to cross the BBB and hold promise into the treatment of this rare and still incurable localization of the disease.
ROCK in CNS: Different Roles of Isoforms and Therapeutic Target for Neurodegenerative Disorders.
Chong, Cheong-Meng; Ai, Nana; Lee, Simon Ming-Yuen
2017-01-01
Rho-associated protein kinase (ROCK) is a serine-threonine kinase originally identified as a crucial regulator of actin cytoskeleton. Recent studies have defined new functions of ROCK as a critical component of diverse signaling pathways in neurons. In addition, inhibition of ROCK causes several biological events such as increase of neurite outgrowth, axonal regeneration, and activation of prosurvival Akt. Thus, it has attracted scientist's strong attentions and considered ROCK as a promising therapeutic target for the treatment of neurodegenerative disorders including Alzheimer disease, Parkinson's disease, Huntington';s disease, multiple sclerosis, and amyotrophic lateral sclerosis. However, ROCK has two highly homologous isoforms, ROCK1 and ROCK2. Accumulated evidences indicate that ROCK1 and ROCK2 might involve in distinct cellular functions in central nervous system (CNS) and neurodegenerative processes. This review summarizes recent updates regarding ROCK isoformspecific functions in CNS and the progress of ROCK inhibitors in preclinical studies for neurodegenerative diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Schulz, Steffen; Haueisen, Jens; Bär, Karl-Juergen; Voss, Andreas
2018-06-22
The new interdisciplinary field of network physiology is getting more and more into the focus of interest in medicine. The autonomic nervous system (ANS) dysfunction is well described in schizophrenia (SZO). However, the linear and nonlinear coupling between the ANS and central nervous system (CNS) is only partly addressed until now. This coupling can be assumed as a feedback-feedforward network, reacting with flexible and adaptive responses to internal and external factors. Approach: For the first time, in this study, we investigated linear and nonlinear short-term central-cardiorespiratory couplings of 17 patients suffering from paranoid schizophrenia (SZO) in comparison to 17 age-gender matched healthy subjects (CON) analyzing heart rate (HR), respiration (RESP) and the power of frontal EEG activity (PEEG). The objective is to determine how the different regulatory aspects of the CNS-ANS compose the central-cardiorespiratory network (CCRN). To quantify these couplings within the CCRN the normalized short time partial directed coherence (NSTPDC) and the new multivariate high-resolution joint symbolic dynamics (mHRJSD) were applied. Main results: We found that the CCRN in SZO is characterized as a bidirectional one, with stronger central driving mechanisms (PEEG→HR) towards HR regulation than vice versa, and with stronger respiratory influence (RESP→PEEG) on central activity than vice versa. This suggests that the central-cardiorespiratory process (closed-loop) is mainly focusing on adapting the HR via the sinoatrial node than focusing on respiratory regulation. On the other side, the feedback-loop from ANS to CNS is strongly dominated via respiratory activity. Significance: We could demonstrate a considerably significantly different central-cardiorespiratory network structure in schizophrenia with strong central influence on the cardiac system and a strong respiratory influence on the central nervous system. Moreover, this study provides a more in-depth understanding of the interplay of the central and autonomic regulatory network in healthy subjects and schizophrenic patients. . © 2018 Institute of Physics and Engineering in Medicine.
Kaushik, Deepak K; Gupta, Malvika; Das, Sulagna; Basu, Anirban
2010-10-15
Activation of microglia, the resident macrophages of the central nervous system (CNS), is the hallmark of neuroinflammation in neurodegenerative diseases and other pathological conditions associated with CNS infection. The activation of microglia is often associated with bystander neuronal death. Nuclear factor-κB (NF-κB) is one of the important transcription factors known to be associated with microglial activation which upregulates the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (Cox-2) and other pro-inflammatory cytokines. Recent studies have focused on the role of Krüppel-like factor 4 (Klf4), one of the zinc-finger transcription factors, in mediating inflammation. However, these studies were limited to peripheral system and its role in CNS is not understood. Our studies focused on the possible role of Klf4 in mediating CNS inflammation. For in vitro studies, mouse microglial BV-2 cell lines were treated with 500 ng/ml Salmonella enterica lipopolysacchride (LPS). Brain tissues were isolated from BALB/c mice administered with 5 mg/kg body weight of LPS. Expressions of Klf4, Cox-2, iNOS and pNF-κB were evaluated using western blotting, quantitative real time PCR, and reverse transcriptase polymerase chain reactions (RT-PCRs). Klf4 knockdown was carried out using SiRNA specific for Klf4 mRNA and luciferase assays and electromobility shift assay (EMSA) were performed to study the interaction of Klf4 to iNOS promoter elements in vitro. Co-immunoprecipitation of Klf4 and pNF-κB was done in order to study a possible interaction between the two transcription factors. LPS stimulation increased Klf4 expression in microglial cells in a time- and dose-dependent manner. Knockdown of Klf4 resulted in decreased levels of the pro-inflammatory cytokines TNF-α, MCP-1 and IL-6, along with a significant decrease in iNOS and Cox-2 expression. NO production also decreased as a result of Klf4 knockdown. We found that Klf4 can potentially interact with pNF-κB and is important for iNOS and Cox-2 promoter activity in vitro. These studies demonstrate the role of Klf4 in microglia in mediating neuroinflammation in response to the bacterial endotoxin LPS.
Sirvent, Nicolas; Suciu, Stefan; Rialland, Xavier; Millot, Frédéric; Benoit, Yves; Plantaz, Dominique; Ferster, Alice; Robert, Alain; Lutz, Patrick; Nelken, Brigitte; Plouvier, Emmanuel; Norton, Lucilia; Bertrand, Yves; Otten, Jacques
2011-01-01
To evaluate the prognostic significance of the initial cerebro-spinal fluid (CSF) involvement of children with ALL enrolled from 1989 to 1996 in the EORTC 58881 trial. Patients (2025) were categorised according to initial central nervous system (CNS) status: CNS-1 (CNS negative, n=1866), CNS-2 (<5 leucocytes/mm(3), CSF with blasts, n=50), CNS-3 (CNS positive, n=49), TLP+ (TLP with blasts, n=60). CNS-directed therapy consisted in intravenous (i.v.) methotrexate (5 g/sqm) in 4-10 courses, and intrathecal methotrexate injections (10-20), according to CNS status. Cranial irradiation was omitted in all patients. In the CNS1, TLP+, CNS2 and CNS3 group the 8-year EFS rate (SE%) was 69.7% (1.1%), 68.8% (6.2%), 71.3% (6.5%) and 68.3% (6.2%), respectively. The 8-year incidence of isolated CNS relapse (SE%) was 3.4% (0.4%), 1.7% (1.7%), 6.1% (3.5%) and 9.4% (4.5%), respectively, whereas the 8-year isolated or combined CNS relapse incidence was 7.6% (0.6%), 3.5% (2.4%), 10.2% (4.4%) and 11.7% (5.0%), respectively. Patients with CSF blasts had a higher rate of initial bad risk features. Multivariate analysis indicated that presence of blasts in the CSF had no prognostic value: (i) for EFS and OS; (ii) for isolated and isolated or combined CNS relapse; WBC count<25 × 10(9)/L and Medac E-coli asparaginase treatment were each related to a lower CNS relapse risk. The presence of initial CNS involvement has no prognostic significance in EORTC 58881. Intensification of CNS-directed chemotherapy, without CNS radiation, is an effective treatment of initial meningeal leukaemic involvement. Copyright © 2010 Elsevier Ltd. All rights reserved.
Abdullahi, Wazir; Davis, Thomas P; Ronaldson, Patrick T
2017-07-01
Drug delivery to the central nervous system (CNS) is greatly limited by the blood-brain barrier (BBB). Physical and biochemical properties of the BBB have rendered treatment of CNS diseases, including those with a hypoxia/reoxygenation (H/R) component, extremely difficult. Targeting endogenous BBB transporters from the ATP-binding cassette (ABC) superfamily (i.e., P-glycoprotein (P-gp)) or from the solute carrier (SLC) family (i.e., organic anion transporting polypeptides (OATPs in humans; Oatps in rodents)) has been suggested as a strategy that can improve delivery of drugs to the brain. With respect to P-gp, direct pharmacological inhibition using small molecules or selective regulation by targeting intracellular signaling pathways has been explored. These approaches have been largely unsuccessful due to toxicity issues and unpredictable pharmacokinetics. Therefore, our laboratory has proposed that optimization of CNS drug delivery, particularly for treatment of diseases with an H/R component, can be achieved by targeting Oatp isoforms at the BBB. As the major drug transporting Oatp isoform, Oatp1a4 has demonstrated blood-to-brain transport of substrate drugs with neuroprotective properties. Furthermore, our laboratory has shown that targeting Oatp1a4 regulation (i.e., TGF-β signaling mediated via the ALK-1 and ALK-5 transmembrane receptors) represents an opportunity to control Oatp1a4 functional expression for the purpose of delivering therapeutics to the CNS. In this review, we will discuss limitations of targeting P-gp-mediated transport activity and the advantages of targeting Oatp-mediated transport. Through this discussion, we will also provide critical information on novel approaches to improve CNS drug delivery by targeting endogenous uptake transporters expressed at the BBB.
P-glycoprotein trafficking as a therapeutic target to optimize CNS drug delivery.
Davis, Thomas P; Sanchez-Covarubias, Lucy; Tome, Margaret E
2014-01-01
The primary function of the blood-brain barrier (BBB)/neurovascular unit is to protect the central nervous system (CNS) from potentially harmful xenobiotic substances and maintain CNS homeostasis. Restricted access to the CNS is maintained via a combination of tight junction proteins as well as a variety of efflux and influx transporters that limits the transcellular and paracellular movement of solutes. Of the transporters identified at the BBB, P-glycoprotein (P-gp) has emerged as the transporter that is the greatest obstacle to effective CNS drug delivery. In this chapter, we provide data to support intracellular protein trafficking of P-gp within cerebral capillary microvessels as a potential target for improved drug delivery. We show that pain-induced changes in P-gp trafficking are associated with changes in P-gp's association with caveolin-1, a key scaffolding/trafficking protein that colocalizes with P-gp at the luminal membrane of brain microvessels. Changes in colocalization with the phosphorylated and nonphosphorylated forms of caveolin-1, by pain, are accompanied by dynamic changes in the distribution, relocalization, and activation of P-gp "pools" between microvascular endothelial cell subcellular compartments. Since redox-sensitive processes may be involved in signaling disassembly of higher-order structures of P-gp, we feel that manipulating redox signaling, via specific protein targeting at the BBB, may protect disulfide bond integrity of P-gp reservoirs and control trafficking to the membrane surface, providing improved CNS drug delivery. The advantage of therapeutic drug "relocalization" of a protein is that the physiological impact can be modified, temporarily or long term, despite pathology-induced changes in gene transcription. © 2014 Elsevier Inc. All rights reserved.
Myelin damage and repair in pathologic CNS: challenges and prospects
Alizadeh, Arsalan; Dyck, Scott M.; Karimi-Abdolrezaee, Soheila
2015-01-01
Injury to the central nervous system (CNS) results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells and neural stem/progenitor cells contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal. Emerging evidence indicates that optimal remyelination is restricted by multiple factors including (i) low levels of factors that promote oligodendrogenesis; (ii) cell death among newly generated oligodendrocytes, (iii) inhibitory factors in the post-injury milieu that impede remyelination, and (iv) deficient expression of key growth factors essential for proper re-construction of a highly organized myelin sheath. Considering these challenges, over the past several years, a number of cell-based strategies have been developed to optimize remyelination therapeutically. Outcomes of these basic and preclinical discoveries are promising and signify the importance of remyelination as a mechanism for improving functions in CNS injuries. In this review, we provide an overview on: (1) the precise organization of myelinated axons and the reciprocal axo-myelin interactions that warrant properly balanced physiological activities within the CNS; (2) underlying cause of demyelination and the structural and functional consequences of demyelination in axons following injury and disease; (3) the endogenous mechanisms of oligodendrocyte replacement; (4) the modulatory role of reactive astrocytes and inflammatory cells in remyelination; and (5) the current status of cell-based therapies for promoting remyelination. Careful elucidation of the cellular and molecular mechanisms of demyelination in the pathologic CNS is a key to better understanding the impact of remyelination for CNS repair. PMID:26283909
O'Brien, Carleigh A; Overall, Christopher; Konradt, Christoph; O'Hara Hall, Aisling C; Hayes, Nikolas W; Wagage, Sagie; John, Beena; Christian, David A; Hunter, Christopher A; Harris, Tajie H
2017-05-15
Regulatory T cells (Tregs) play an important role in the CNS during multiple infections, as well as autoimmune inflammation, but the behavior of this cell type in the CNS has not been explored. In mice, infection with Toxoplasma gondii leads to a Th1-polarized parasite-specific effector T cell response in the brain. Similarly, Tregs in the CNS during T. gondii infection are Th1 polarized, as exemplified by their T-bet, CXCR3, and IFN-γ expression. Unlike effector CD4 + T cells, an MHC class II tetramer reagent specific for T. gondii did not recognize Tregs isolated from the CNS. Likewise, TCR sequencing revealed minimal overlap in TCR sequence between effector T cells and Tregs in the CNS. Whereas effector T cells are found in the brain parenchyma where parasites are present, Tregs were restricted to the meninges and perivascular spaces. The use of intravital imaging revealed that activated CD4 + T cells within the meninges were highly migratory, whereas Tregs moved more slowly and were found in close association with CD11c + cells. To test whether the behavior of Tregs in the meninges is influenced by interactions with CD11c + cells, mice were treated with anti-LFA-1 Abs to reduce the number of CD11c + cells in this space. The anti-LFA-1 treatment led to fewer contacts between Tregs and the remaining CD11c + cells and increased the speed of Treg migration. These data suggest that Tregs are anatomically restricted within the CNS, and their interaction with CD11c + populations regulates their local behavior during T. gondii infection. Copyright © 2017 by The American Association of Immunologists, Inc.
The Therapeutic Potential of Targeting Substance P/NK-1R Interactions in Inflammatory CNS Disorders
Johnson, M. Brittany; Young, Ada D.; Marriott, Ian
2017-01-01
The inflammatory responses of resident central nervous system (CNS) cells are now known to play a critical role in the initiation and progression of an array of infectious and sterile neuroinflammatory disorders such as meningitis, encephalitis, Parkinson’s disease, Alzheimer’s disease and multiple sclerosis (MS). Regulating glial inflammatory responses in a timely manner is therefore critical in preserving normal CNS functions. The neuropeptide substance P is produced at high levels within the CNS and its selective receptor, the neurokinin 1 receptor (NK-1R), is abundantly expressed by neurons and is present on glial cell types including microglia and astrocytes. In addition to its functions as a neurotransmitter in the perception of pain and its essential role in gut motility, this tachykinin is widely recognized to exacerbate inflammation at peripheral sites including the skin, gastrointestinal tract and the lungs. Recently, a number of studies have identified a role for substance P and NK-1R interactions in neuroinflammation and described the ability of this neuropeptide to alter the immune functions of activated microglia and astrocytes. In this review article, we describe the expression of substance P and its receptor by resident CNS cells, and we discuss the ability of this neuropeptide to exacerbate the inflammatory responses of glia and immune cells that are recruited to the brain during neurodegenerative diseases. In addition, we discuss the available data indicating that the NK-1R-mediated augmentation of such responses appears to be detrimental during microbial infection and some sterile neurodegenerative disorders, and propose the repurposed use of NK-1R antagonists, of a type that are currently approved as anti-emetic and anti-anxiolytic agents, as an adjunct therapy to ameliorate the inflammatory CNS damage in these conditions. PMID:28101005
Krishnan, Shekhar; Wade, Rachel; Moorman, Anthony V; Mitchell, Chris; Kinsey, Sally E; Eden, TOB; Parker, Catriona; Vora, Ajay; Richards, Sue; Saha, Vaskar
2009-01-01
Despite the success of contemporary treatment protocols in childhood acute lymphoblastic leukaemia (ALL), relapse within the central nervous system (CNS) remains a challenge. To better understand this phenomenon, we have analysed the changes in incidence and pattern of CNS relapses in 5564 children enrolled on four successive MRC-ALL trials between 1985 and 2001. Changes in the incidence and pattern of CNS relapses were examined and the relationship with patient characteristics assessed. Factors affecting post-relapse outcome were determined. Overall, relapses declined by 49%. Decreases occurred primarily in non-CNS and combined relapses with a progressive shift towards later (≥30 months from diagnosis) relapses (p<0·0001). Although isolated CNS relapses declined, the proportional incidence and timing of relapse remained unchanged. Age and presenting white cell count were risk factors for CNS relapse. On multivariate analysis, the time to relapse and the trial period influenced post-relapse outcomes. Relapse trends differed within biological subtypes. In ETV6-RUNX1 ALL, relapse patterns mirrored overall trends while in High Hyperdiploidy ALL, these appear to have plateaued over the latter two trial periods. Intensive systemic and intrathecal chemotherapy have decreased the overall CNS relapse rates and changed the patterns of recurrence. The heterogeneity of therapeutic response in the biological subtypes suggests room for further optimisation using currently available chemotherapy. PMID:20016529
Neuronal Rap1 regulates energy balance, glucose homeostasis, and leptin actions
USDA-ARS?s Scientific Manuscript database
The Central Nervous System (CNS) contributes to obesity and metabolic disease; however, the underlying neurobiological pathways remain to be fully established. Here, we show that the small GTPase Rap1 is expressed in multiple hypothalamic nuclei that control whole-body metabolism and is activated in...
Neuroinflammation as Fuel for Axonal Regeneration in the Injured Vertebrate Central Nervous System
Van houcke, Jessie
2017-01-01
Damage to the central nervous system (CNS) is one of the leading causes of morbidity and mortality in elderly, as repair after lesions or neurodegenerative disease usually fails because of the limited capacity of CNS regeneration. The causes underlying this limited regenerative potential are multifactorial, but one critical aspect is neuroinflammation. Although classically considered as harmful, it is now becoming increasingly clear that inflammation can also promote regeneration, if the appropriate context is provided. Here, we review the current knowledge on how acute inflammation is intertwined with axonal regeneration, an important component of CNS repair. After optic nerve or spinal cord injury, inflammatory stimulation and/or modification greatly improve the regenerative outcome in rodents. Moreover, the hypothesis of a beneficial role of inflammation is further supported by evidence from adult zebrafish, which possess the remarkable capability to repair CNS lesions and even restore functionality. Lastly, we shed light on the impact of aging processes on the regenerative capacity in the CNS of mammals and zebrafish. As aging not only affects the CNS, but also the immune system, the regeneration potential is expected to further decline in aged individuals, an element that should definitely be considered in the search for novel therapeutic strategies. PMID:28203046
Oliveira, Valéria da Costa; Boechat, Viviane Cardoso; Mendes Junior, Artur Augusto Velho; Madeira, Maria de Fátima; Ferreira, Luiz Claudio; Figueiredo, Fabiano Borges; Campos, Monique Paiva; de Carvalho Rodrigues, Francisco das Chagas; Carvalhaes de Oliveira, Raquel de Vasconcellos; Amendoeira, Maria Regina Reis; Menezes, Rodrigo Caldas
2017-01-01
Zoonotic visceral leishmaniasis is caused by the protozoan Leishmania infantum and little is known about the occurrence and pathogenesis of this parasite in the CNS. The aims of this study were to evaluate the occurrence, viability and load of L. infantum in the CNS, and to identify the neurological histological alterations associated with this protozoan and its co-infections in naturally infected dogs. Forty-eight Leishmania-seropositive dogs from which L. infantum was isolated after necropsy were examined. Cerebrospinal fluid (CSF) samples were analyzed by parasitological culture, quantitative real-time PCR (qPCR) and the rapid immunochromatographic Dual Path Platform test. Brain, spinal cord and spleen samples were submitted to parasitological culture, qPCR, and histological techniques. Additionally, anti-Toxoplasma gondii and anti-Ehrlichia canis antibodies in serum and distemper virus antigens in CSF were investigated. None of the dogs showed neurological signs. All dogs tested positive for L. infantum in the CNS. Viable forms of L. infantum were isolated from CSF, brain and spinal cord in 25% of the dogs. Anti-L. infantum antibodies were detected in CSF in 61% of 36 dogs. Inflammatory histological alterations were observed in the CNS of 31% of the animals; of these, 66% were seropositive for E. canis and/or T. gondii. Amastigote forms were associated with granulomatous non-suppurative encephalomyelitis in a dog without evidence of co-infections. The highest frequency of L. infantum DNA was observed in the brain (98%), followed by the spinal cord (96%), spleen (95%), and CSF (50%). The highest L. infantum load in CNS was found in the spinal cord. These results demonstrate that L. infantum can cross the blood-brain barrier, spread through CSF, and cause active infection in the entire CNS of dogs. Additionally, L. infantum can cause inflammation in the CNS that can lead to neurological signs with progression of the disease.
Oliveira, Valéria da Costa; Boechat, Viviane Cardoso; Mendes Junior, Artur Augusto Velho; Madeira, Maria de Fátima; Ferreira, Luiz Claudio; Figueiredo, Fabiano Borges; Campos, Monique Paiva; de Carvalho Rodrigues, Francisco das Chagas; Carvalhaes de Oliveira, Raquel de Vasconcellos; Amendoeira, Maria Regina Reis
2017-01-01
Zoonotic visceral leishmaniasis is caused by the protozoan Leishmania infantum and little is known about the occurrence and pathogenesis of this parasite in the CNS. The aims of this study were to evaluate the occurrence, viability and load of L. infantum in the CNS, and to identify the neurological histological alterations associated with this protozoan and its co-infections in naturally infected dogs. Forty-eight Leishmania-seropositive dogs from which L. infantum was isolated after necropsy were examined. Cerebrospinal fluid (CSF) samples were analyzed by parasitological culture, quantitative real-time PCR (qPCR) and the rapid immunochromatographic Dual Path Platform test. Brain, spinal cord and spleen samples were submitted to parasitological culture, qPCR, and histological techniques. Additionally, anti-Toxoplasma gondii and anti-Ehrlichia canis antibodies in serum and distemper virus antigens in CSF were investigated. None of the dogs showed neurological signs. All dogs tested positive for L. infantum in the CNS. Viable forms of L. infantum were isolated from CSF, brain and spinal cord in 25% of the dogs. Anti-L. infantum antibodies were detected in CSF in 61% of 36 dogs. Inflammatory histological alterations were observed in the CNS of 31% of the animals; of these, 66% were seropositive for E. canis and/or T. gondii. Amastigote forms were associated with granulomatous non-suppurative encephalomyelitis in a dog without evidence of co-infections. The highest frequency of L. infantum DNA was observed in the brain (98%), followed by the spinal cord (96%), spleen (95%), and CSF (50%). The highest L. infantum load in CNS was found in the spinal cord. These results demonstrate that L. infantum can cross the blood-brain barrier, spread through CSF, and cause active infection in the entire CNS of dogs. Additionally, L. infantum can cause inflammation in the CNS that can lead to neurological signs with progression of the disease. PMID:28419136
Gisslén, Magnus; Price, Richard W; Andreasson, Ulf; Norgren, Niklas; Nilsson, Staffan; Hagberg, Lars; Fuchs, Dietmar; Spudich, Serena; Blennow, Kaj; Zetterberg, Henrik
2016-01-01
Cerebrospinal fluid (CSF) neurofilament light chain protein (NFL) is a sensitive marker of neuronal injury in a variety of neurodegenerative conditions, including the CNS dysfunction injury that is common in untreated HIV infection. However, an important limitation is the requirement for lumbar puncture. For this reason, a sensitive and reliable blood biomarker of CNS injury would represent a welcome advance in both clinical and research settings. To explore whether plasma concentrations of NFL might be used to detect CNS injury in HIV infection, an ultrasensitive Single molecule array (Simoa) immunoassay was developed. Using a cross-sectional design, we measured NFL in paired CSF and plasma samples from 121 HIV-infected subjects divided into groups according to stage of their systemic disease, presence of overt HIV-associated dementia (HAD), and after antiretroviral treatment (ART)-induced viral suppression. HIV-negative controls were also examined. Plasma and CSF NFL concentrations were very highly correlated (r = 0.89, P < 0.0001). While NFL was more than 50-fold lower plasma than CSF it was within the quantifiable range of the new plasma assay in all subjects, including the HIV negatives and the HIV positives with normal CSF NFL concentrations. The pattern of NFL changes were almost identical in plasma and CSF, both exhibiting similar age-related increases in concentrations along with highest values in HAD and substantial elevations in ART-naïve neuroasymptomatic subjects with low blood CD4(+) T cells. These results show that plasma NFL may prove a valuable tool to evaluate ongoing CNS injury in HIV infection that may be applied in the clinic and in research settings to assess the presence if active CNS injury. Because CSF NFL is also elevated in a variety of other CNS disorders, sensitive measures of plasma NFL may similarly prove useful in other settings.
Gisslén, Magnus; Price, Richard W.; Andreasson, Ulf; Norgren, Niklas; Nilsson, Staffan; Hagberg, Lars; Fuchs, Dietmar; Spudich, Serena; Blennow, Kaj; Zetterberg, Henrik
2015-01-01
Background Cerebrospinal fluid (CSF) neurofilament light chain protein (NFL) is a sensitive marker of neuronal injury in a variety of neurodegenerative conditions, including the CNS dysfunction injury that is common in untreated HIV infection. However, an important limitation is the requirement for lumbar puncture. For this reason, a sensitive and reliable blood biomarker of CNS injury would represent a welcome advance in both clinical and research settings. Methods To explore whether plasma concentrations of NFL might be used to detect CNS injury in HIV infection, an ultrasensitive Single molecule array (Simoa) immunoassay was developed. Using a cross-sectional design, we measured NFL in paired CSF and plasma samples from 121 HIV-infected subjects divided into groups according to stage of their systemic disease, presence of overt HIV-associated dementia (HAD), and after antiretroviral treatment (ART)-induced viral suppression. HIV-negative controls were also examined. Findings Plasma and CSF NFL concentrations were very highly correlated (r = 0.89, P < 0.0001). While NFL was more than 50-fold lower plasma than CSF it was within the quantifiable range of the new plasma assay in all subjects, including the HIV negatives and the HIV positives with normal CSF NFL concentrations. The pattern of NFL changes were almost identical in plasma and CSF, both exhibiting similar age-related increases in concentrations along with highest values in HAD and substantial elevations in ART-naïve neuroasymptomatic subjects with low blood CD4+ T cells. Interpretation These results show that plasma NFL may prove a valuable tool to evaluate ongoing CNS injury in HIV infection that may be applied in the clinic and in research settings to assess the presence if active CNS injury. Because CSF NFL is also elevated in a variety of other CNS disorders, sensitive measures of plasma NFL may similarly prove useful in other settings. PMID:26870824
Kano, Yasuhiro; Kodaira, Minori; Ushiki, Atsuhito; Kosaka, Makoto; Yamada, Mitsunori; Shingu, Kunihiko; Nishihara, Hiroshi; Hanaoka, Masayuki; Sekijima, Yoshiki
2017-01-01
A 49-year-old man presented with gradually progressive aphasia one month after being diagnosed with acquired immunodeficiency syndrome (AIDS). Brain magnetic resonance imaging showed multiple brain lesions with punctate and linear enhancement. A polymerase chain reaction detected Epstein-Barr virus (EBV) in the patient's cerebrospinal fluid. A diagnosis of isolated central nervous system lymphomatoid granulomatosis (CNS-LYG) was made based on the brain biopsy findings. The complete remission of CNS-LYG was achieved by anti-retroviral therapy (ART) alone. In the present case, the development of AIDS-associated CNS-LYG was considered to have been initiated by the reactivation of EBV in the CNS under immunosuppressive conditions. The patient's condition improved with the reconstitution of the patient's immune system. PMID:28824078
Chemokines and chemokine receptors: new actors in neuroendocrine regulations.
Rostène, William; Guyon, Alice; Kular, Lara; Godefroy, David; Barbieri, Federica; Bajetto, Adriana; Banisadr, Ghazal; Callewaere, Céline; Conductier, Gregory; Rovère, Carole; Mélik-Parsadaniantz, Stéphane; Florio, Tullio
2011-01-01
Chemokines are small secreted proteins that chemoattract and activate immune and non-immune cells. Their role in the immune system is well-known, and it has recently been suggested that they may also play a role in the central nervous system (CNS). Indeed, they do not only act as immunoinflammatory mediators in the brain but they also act as potential modulators in neurotransmission. Although we are only beginning to be aware of the implication of chemokines in neuroendocrine functions, this review aims at summarizing what is known in that booming field of research. First we describe the expression of chemokines and their receptors in the CNS with a focus on the hypothalamo-pituitary system. Secondly, we present what is known on some chemokines in the regulation of neuroendocrine functions such as cell migration, stress, thermoregulation, drinking and feeding as well as anterior pituitary functions. We suggest that chemokines provide a fine modulatory tuning system of neuroendocrine regulations. Copyright © 2010 Elsevier Inc. All rights reserved.
The Therapeutic Potential of Insulin-Like Growth Factor-1 in Central Nervous System Disorders
Costales, Jesse; Kolevzon, Alexander
2016-01-01
Central nervous system (CNS) development is a finely tuned process that relies on multiple factors and intricate pathways to ensure proper neuronal differentiation, maturation, and connectivity. Disruption of this process can cause significant impairments in CNS functioning and lead to debilitating disorders that impact motor and language skills, behavior, and cognitive functioning. Recent studies focused on understanding the underlying cellular mechanisms of neurodevelopmental disorders have identified a crucial role for insulin-like growth factor-1 (IGF-1) in normal CNS development. Work in model systems has demonstrated rescue of pathophysiological and behavioral abnormalities when IGF-1 is administered, and several clinical studies have shown promise of efficacy in disorders of the CNS, including autism spectrum disorder (ASD). In this review, we explore the molecular pathways and downstream effects of IGF-1 and summarize the results of completed and ongoing pre-clinical and clinical trials using IGF-1 as a pharmacologic intervention in various CNS disorders. This aim of this review is to provide evidence for the potential of IGF-1 as a treatment for neurodevelopmental disorders and ASD. PMID:26780584
The risk of central nervous system relapses in patients with peripheral T-cell lymphoma
Fanale, Michelle A.; Miranda, Roberto N.; Noorani, Mansoor; Westin, Jason R.; Nastoupil, Loretta J.; Hagemeister, Fredrick B.; Fayad, Luis E.; Romaguera, Jorge E.; Samaniego, Felipe; Turturro, Francesco; Lee, Hun J.; Neelapu, Sattva S.; Rodriguez, M. Alma; Wang, Michael; Fowler, Nathan H.; Davis, Richard E.; Medeiros, L. Jeffrey; Oki, Yasuhiro
2018-01-01
We performed a retrospective analysis to identify risk factors and survival outcome for central nervous system (CNS) relapse of peripheral T-cell lymphoma (PTCL) by histologic type. Records of 600 PTCL patients diagnosed between 1999 and 2014 were analyzed including PTCL not otherwise specified (PTCL-NOS, 174 patients), angoimmunoblastic T-cell lymphoma (AITL, 144), ALK+anaplastic large cell lymphoma (ALCL, 74), ALK-ALCL (103), extranodal NK-cell lymphoma (ENKL, 54), or others (51). With a median follow up of 57 months, 13 patients (4 PTCL-NOS, 1 AITL, 4 ALK+ALCL, 2 ALK-ALCL, 2 ENKL) experienced CNS relapse. One-year and 5-year cumulative incidence of CNS relapse were 1.5% (95%CI: 0.7–2.8%) and 2.1% (95%CI: 1.1–3.5%), respectively. The 5-year cumulative incidence of CNS relapse was 1.8% in PTCL-NOS, 0.7% in AITL, 5.4% in ALK+ALCL, 2.1% in ALK-ALCL and 3.7% in ENKL. Extranodal involvement >1 site was the only significant factor associated with higher chance of CNS relapse (HR: 4.9, 95%CI: 1.6–15.0, p = 0.005). Patients with ALK+ALCL who had extranodal involvement >1 (N = 19) had very high risk of CNS relapse with one year cumulative incidence of 17% (95%CI: 4%-37%), all occurring within six months after diagnosis. All patients with CNS relapse eventually died (median, 1.5 months; range, 0.1–10.1 months). CNS relapse in patients with PTCL is rare event but the risk varies by subtype. ALK+ALCL patients with extranodal involvement >1 site have a very high risk of early CNS relapse, and thus evaluation of CNS involvement at the time of diagnosis and possible CNS-directed prophylaxis may be considered. PMID:29538376
Chihara, D; Asano, N; Ohmachi, K; Nishikori, M; Okamoto, M; Sawa, M; Sakai, R; Okoshi, Y; Tsukamoto, N; Yakushijin, Y; Nakamura, S; Kinoshita, T; Ogura, M; Suzuki, R
2015-05-01
Central nervous system (CNS) relapse is an uncommon but challenging complication in patients with mantle cell lymphoma (MCL). Survival after CNS relapse is extremely poor. Identification of high-risk populations is therefore critical in determining patients who might be candidates for a prophylactic approach. A total of 608 patients (median age, 67 years; range 22-92) with MCL newly diagnosed between 1994 and 2012 were evaluated. Pretreatment characteristics and treatment regimens were evaluated for their association with CNS relapse by competing risk regression analysis. None of the patients received intrathecal prophylaxis. Overall, 33 patients (5.4%) experienced CNS relapse during a median follow-up of 42.7 months. Median time from diagnosis to CNS relapse was 20.3 months (range: 2.2-141.3 months). Three-year cumulative incidence of CNS relapse was 5.6% [95% confidence interval (95% CI) 3.7% to 8.0%]. Univariate analysis revealed several risk factors including blastoid variant, leukemic presentation, high-risk MCL International Prognostic Index and high Ki-67 (proliferation marker). Multivariate analyses revealed that Ki-67 ≥ 30 was the only significant risk factor for CNS relapse (hazard ratio: 6.0, 95% CI 1.9-19.4, P = 0.003). Two-year cumulative incidence of CNS relapse in patients with Ki-67 ≥ 30 was 25.4% (95% CI 13.5-39.1), while that in the patients with Ki-67 < 30 was 1.6% (95% CI 0.4-4.2). None of the treatment modalities, including rituximab, high-dose cytarabine, high-dose methotrexate or consolidative autologous stem-cell transplant, were associated with a lower incidence of CNS relapse. Survival after CNS relapse was poor, with median survival time of 8.3 months. There was no significant difference in the survival by the site of CNS involvement. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Ribas, Vinicius T.; Costa, Marcos R.
2017-01-01
Limited axon regeneration in the injured adult mammalian central nervous system (CNS) usually results in irreversible functional deficits. Both the presence of extrinsic inhibitory molecules at the injury site and the intrinsically low capacity of adult neurons to grow axons are responsible for the diminished capacity of regeneration in the adult CNS. Conversely, in the embryonic CNS, neurons show a high regenerative capacity, mostly due to the expression of genes that positively control axon growth and downregulation of genes that inhibit axon growth. A better understanding of the role of these key genes controlling pro-regenerative mechanisms is pivotal to develop strategies to promote robust axon regeneration following adult CNS injury. Genetic manipulation techniques have been widely used to investigate the role of specific genes or a combination of different genes in axon regrowth. This review summarizes a myriad of studies that used genetic manipulations to promote axon growth in the injured CNS. We also review the roles of some of these genes during CNS development and suggest possible approaches to identify new candidate genes. Finally, we critically address the main advantages and pitfalls of gene-manipulation techniques, and discuss new strategies to promote robust axon regeneration in the mature CNS. PMID:28824380
Umezu, Toyoshi
2012-06-01
Although plant-derived essential oils (EOs) have been used to treat various mental disorders, their central nervous system (CNS) acting effects have not been clarified. The present study compared the effects of 20 kinds of EOs with the effects of already-known CNS acting drugs to examine whether the EOs exhibited CNS stimulant-like effects, CNS depressant-like effects, or neither. All agents were tested using a discrete shuttle-type conditioned avoidance task in mice. Essential oils of peppermint and chamomile exhibited CNS stimulant-like effects; that is, they increased the response rate (number of shuttlings/min) of the avoidance response. Linden also increased the response rate, however, the effect was not dose-dependent. In contrast, EOs of orange, grapefruit, and cypress exhibited CNS depressant-like effects; that is, they decreased the response rate of the avoidance response. Essential oils of eucalyptus and rose decreased the avoidance rate (number of avoidance responses/number of avoidance trials) without affecting the response rate, indicating that they may exhibit some CNS acting effects. Essential oils of 12 other plants, including juniper, patchouli, geranium, jasmine, clary sage, neroli, lavender, lemon, ylang-ylang, niaouli, vetivert and frankincense had no effect on the avoidance response in mice. Copyright © 2011 John Wiley & Sons, Ltd.
González-Barca, E; Canales, M; Salar, A; Ferreiro-Martínez, J J; Ferrer-Bordes, S; García-Marco, J A; Sánchez-Blanco, J J; García-Frade, J; Peñalver, J; Bello-López, J L; Sancho, J M; Caballero, D
2016-05-01
The dissemination in the central nervous system (CNS) is an uncommon but fatal complication occurring in patients with diffuse large B-cell lymphoma (DLBCL). Standard prophylaxis has been demonstrated to reduce CNS relapse and improve survival rates. Intrathecal (IT) liposomal cytarabine allows maintaining elevated drug levels in the cerebrospinal fluid for an extended period of time. Data on the efficacy and safety of liposomal cytarabine as CNS prophylaxis in patients with DLBCL are still insufficient. The objective of the present study was to evaluate the effectiveness and safety of the prophylaxis with IT liposomal cytarabine in prevention of CNS relapse in high-risk patients with DLBCL who were included in a trial of first line systemic therapy with 6 cycles of dose-dense R-CHOP every 14 days. Twenty-four (18.6 %) out of 129 patients were identified to have risk factors for CNS involvement, defined as follows: >30 % bone marrow infiltration, testes infiltration, retroperitoneal mass ≥10 cm, Waldeyer ring, or bulky cervical nodes involvement. Liposomal cytarabine (50 mg) was administered by lumbar puncture the first day of the 1st, 2nd, and 6th cycle of R-CHOP14 scheme. Among 70 IT infusions, grade 3-4 adverse events reported were headache (one patient) and nausea/vomiting (one patient). With a median follow-up of 40.1 months, no CNS involvement by DLBCL was observed in any patient. In conclusion, IT liposomal cytarabine is safe, feasible, and effective for CNS prophylaxis, causing few associated risks and little discomfort to patients with DLBCL.
Alnasser, Yossef; Kambhampati, Siva P; Nance, Elizabeth; Rajbhandari, Labchan; Shrestha, Shiva; Venkatesan, Arun; Kannan, Rangaramanujam M; Kannan, Sujatha
2018-04-27
Polyamidoamine (PAMAM) dendrimers are multifunctional nanoparticles with tunable physicochemical features, making them promising candidates for targeted drug delivery in the central nervous system (CNS). Systemically administered dendrimers have been shown to localize in activated glial cells, which mediate neuroinflammation in the CNS. These dendrimers delivered drugs specifically to activated microglia, producing significant neurological improvements in multiple brain injury models, including in a neonatal rabbit model of cerebral palsy. To gain further insight into the mechanism of dendrimer cell uptake, we utilized an in vitro model of primary glial cells isolated from newborn rabbits to assess the differences in hydroxyl-terminated generation 4 PAMAM dendrimer (D4-OH) uptake by activated and non-activated glial cells. We used fluorescently-labelled D4-OH (D-Cy5) as a tool for investigating the mechanism of dendrimer uptake. D4-OH PAMAM dendrimer uptake was determined by fluorescence quantification using confocal microscopy and flow cytometry. Our results indicate that although microglial cells in the mixed cell population demonstrate early uptake of dendrimers in this in vitro system, activated microglia take up more dendrimer compared to resting microglia. Astrocytes showed delayed and limited uptake. We also illustrated the differences in mechanism of uptake between resting and activated microglia using different pathway inhibitors. Both resting and activated microglia primarily employed endocytotic pathways, which are enhanced in activated microglial cells. Additionally, we demonstrated that hydroxyl terminated dendrimers are taken up by primary microglia using other mechanisms including pinocytosis, caveolae, and aquaporin channels for dendrimer uptake.
Frishman-Levy, Liron; Izraeli, Shai
2017-01-01
Central nervous system acute lymphoblastic leukaemia (CNS-ALL) is a major clinical problem. CNS-directed 'prophylactic' chemo- or radio - therapy is associated with significant early and long-term toxicity. Moreover, greater than a third of the relapses occur in the CNS. To design specific, more effective and less toxic therapy and for personalized precise adjustment of prophylactic therapy there is a need for better understanding of the biology of this disease. Specifically, the precise neurotropic mechanisms of ALL are currently unclear, as is the pathogenesis of CNS relapse. Here we review and contrast the recent findings with earlier studies of pathogenesis of CNS leukaemia. We also describe the challenges in research of this devastating complication of ALL. © 2016 John Wiley & Sons Ltd.
Mutnal, Manohar B; Schachtele, Scott J; Hu, Shuxian; Lokensgard, James R
2013-07-31
Highly active antiretroviral therapy (HAART) restores inflammatory immune responses in AIDS patients which may unmask previous subclinical infections or paradoxically exacerbate symptoms of opportunistic infections. In resource-poor settings, 25% of patients receiving HAART may develop CNS-related immune reconstitution inflammatory syndrome (IRIS). Here we describe a reliable mouse model to study underlying immunopathological mechanisms of CNS-IRIS. Utilizing our HSV brain infection model and mice with MAIDS, we investigated the effect of immune reconstitution on MAIDS mice harboring opportunistic viral brain infection. Using multi-color flow cytometry, we quantitatively measured the cellular infiltrate and microglial activation. Infection with the LP-BM5 retroviral mixture was found to confer susceptibility to herpes simplex virus (HSV)-1 brain infection to normally-resistant C57BL/6 mice. Increased susceptibility to brain infection was due to severe immunodeficiency at 8 wks p.i. and a marked increase in programmed death-1 (PD-1) expression on CD4+ and CD8+ T-cells. Both T-cell loss and opportunistic brain infection were associated with high level PD-1 expression because PD-1-knockout mice infected with LP-BM5 did not exhibit lymphopenia and retained resistance to HSV-1. In addition, HSV-infection of MAIDS mice stimulated peripheral immune cell infiltration into the brain and its ensuing microglial activation. Interestingly, while opportunistic herpes virus brain infection of C57BL/6 MAIDS mice was not itself lethal, when T-cell immunity was reconstituted through adoptive transfer of virus-specific CD3+ T-cells, it resulted in significant mortality among recipients. This immune reconstitution-induced mortality was associated with exacerbated neuroinflammation, as determined by MHC class II expression on resident microglia and elevated levels of Th1 cytokines in the brain. Taken together, these results indicate development of an immune reconstitution disease within the central nervous system (CNS-IRD). Experimental immune reconstitution disease of the CNS using T-cell repopulation of lymphopenic murine hosts harboring opportunistic brain infections may help elucidate neuroimmunoregulatory networks that produce CNS-IRIS in patients initiating HAART.
Noncongenital central nervous system infections in children: radiology review.
Acosta, Jorge Humberto Davila; Rantes, Claudia Isabel Lazarte; Arbelaez, Andres; Restrepo, Feliza; Castillo, Mauricio
2014-06-01
Infections of the central nervous system (CNS) are a very common worldwide health problem in childhood with significant morbidity and mortality. In children, viruses are the most common cause of CNS infections, followed by bacterial etiology, and less frequent due to mycosis and other causes. Noncomplicated meningitis is easier to recognize clinically; however, complications of meningitis such as abscesses, infarcts, venous thrombosis, or extra-axial empyemas are difficult to recognize clinically, and imaging plays a very important role on this setting. In addition, it is important to keep in mind that infectious process adjacent to the CNS such as mastoiditis can develop by contiguity in an infectious process within the CNS. We display the most common causes of meningitis and their complications.
Temperature-controlled optical stimulation of the rat prostate cavernous nerves
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Hutchens, Thomas C.; McClain, Michael A.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2013-06-01
Optical nerve stimulation (ONS) may be useful as a diagnostic tool for intraoperative identification and preservation of the prostate cavernous nerves (CN), responsible for erectile function, during prostate cancer surgery. Successful ONS requires elevating the nerve temperature to within a narrow range (˜42 to 47°C) for nerve activation without thermal damage to the nerve. This preliminary study explores a prototype temperature-controlled optical nerve stimulation (TC-ONS) system for maintaining a constant (±1°C) nerve temperature during short-term ONS of the rat prostate CNs. A 150-mW, 1455-nm diode laser was operated in continuous-wave mode, with and without temperature control, during stimulation of the rat CNs for 15 to 30 s through a fiber optic probe with a 1-mm-diameter spot. A microcontroller opened and closed an in-line mechanical shutter in response to an infrared sensor, with a predetermined temperature set point. With TC-ONS, higher laser power settings were used to rapidly and safely elevate the CNs to a temperature necessary for a fast intracavernous pressure response, while also preventing excessive temperatures that would otherwise cause thermal damage to the nerve. With further development, TC-ONS may provide a rapid, stable, and safe method for intraoperative identification and preservation of the prostate CNs.
Sex-specific control of CNS autoimmunity by p38 MAPK signaling in myeloid cells
Krementsov, Dimitry N.; Noubade, Rajkumar; Dragon, Julie A.; Otsu, Kinya; Rincon, Mercedes; Teuscher, Cory
2013-01-01
Objective Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS), characterized by a global increasing incidence driven by relapsing-remitting disease in females. p38 MAP kinase (MAPK) has been described as a key regulator of inflammatory responses in autoimmunity, but its role in the sexual dimorphism in MS or MS models remains unexplored. Methods Toward this end, we used experimental autoimmune encephalomyelitis (EAE), the principal animal model of MS, combined with pharmacologic and genetic inhibition of p38 MAPK activity and transcriptomic analyses. Results Pharmacologic inhibition of p38 MAPK selectively ameliorated EAE in female mice. Conditional deletion studies demonstrated that p38α signaling in macrophages/myeloid cells, but not T cells or dendritic cells, recapitulated this sexual dimorphism. Analysis of CNS inflammatory infiltrates showed that female, but not male mice lacking p38α in myeloid cells exhibited reduced immune cell activation compared with controls, while peripheral T cell priming was unaffected in both sexes. Transcriptomic analyses of myeloid cells revealed differences in p38α-controlled transcripts comprising female- and male-specific gene modules, with greater p38α dependence of pro-inflammatory gene expression in females. Interpretation Our findings demonstrate a key role for p38α in myeloid cells in CNS autoimmunity and uncover important molecular mechanisms underlying sex differences in disease pathogenesis. Taken together, our results suggest that the p38 MAPK signaling pathway represents a novel target for much needed disease modifying therapies for MS. PMID:24027119
Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned
Gudi, Viktoria; Gingele, Stefan; Skripuletz, Thomas; Stangel, Martin
2014-01-01
Although astrogliosis and microglia activation are characteristic features of multiple sclerosis (MS) and other central nervous system (CNS) lesions the exact functions of these events are not fully understood. Animal models help to understand the complex interplay between the different cell types of the CNS and uncover general mechanisms of damage and repair of myelin sheaths. The so called cuprizone model is a toxic model of demyelination in the CNS white and gray matter, which lacks an autoimmune component. Cuprizone induces apoptosis of mature oligodendrocytes that leads to a robust demyelination and profound activation of both astrocytes and microglia with regional heterogeneity between different white and gray matter regions. Although not suitable to study autoimmune mediated demyelination, this model is extremely helpful to elucidate basic cellular and molecular mechanisms during de- and particularly remyelination independently of interactions with peripheral immune cells. Phagocytosis and removal of damaged myelin seems to be one of the major roles of microglia in this model and it is well known that removal of myelin debris is a prerequisite of successful remyelination. Furthermore, microglia provide several signals that support remyelination. The role of astrocytes during de- and remyelination is not well defined. Both supportive and destructive functions have been suggested. Using the cuprizone model we could demonstrate that there is an important crosstalk between astrocytes and microglia. In this review we focus on the role of glial reactions and interaction in the cuprizone model. Advantages and limitations of as well as its potential therapeutic relevance for the human disease MS are critically discussed in comparison to other animal models. PMID:24659953
The Use of Central Nervous System Active Drugs During Pregnancy
Källén, Bengt; Borg, Natalia; Reis, Margareta
2013-01-01
CNS-active drugs are used relatively often during pregnancy. Use during early pregnancy may increase the risk of a congenital malformation; use during the later part of pregnancy may be associated with preterm birth, intrauterine growth disturbances and neonatal morbidity. There is also a possibility that drug exposure can affect brain development with long-term neuropsychological harm as a result. This paper summarizes the literature on such drugs used during pregnancy: opioids, anticonvulsants, drugs used for Parkinson’s disease, neuroleptics, sedatives and hypnotics, antidepressants, psychostimulants, and some other CNS-active drugs. In addition to an overview of the literature, data from the Swedish Medical Birth Register (1996–2011) are presented. The exposure data are either based on midwife interviews towards the end of the first trimester or on linkage with a prescribed drug register. An association between malformations and maternal use of anticonvulsants and notably valproic acid is well known from the literature and also demonstrated in the present study. Some other associations between drug exposure and outcome were found. PMID:24275849
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farahani, H.; Hasan, M.
1992-02-01
The biochemical response to controlled inhalation of nitrogen dioxide (NO2) was studied in 18 male guinea pigs. Animals were exposed to 2.5, 5.0, and 10 ppm NO2 for 2h daily for 35 consecutive days, and the results compared with six control animals exposed to filtered air for 2h daily for same period. Five biochemical parameters, including triglyceride, free fatty acids, esterified fatty acid, ganglioside and lipase activity were measured immediately after the last day of exposure. At 2.5 ppm NO2 inhalation no significant changes occurred in any region of the central nervous system (CNS). While as the dose concentration wasmore » increased to 5 and 10 ppm nitrogen dioxide, significant dose-related alteration were observed in the levels of triglyceride, free fatty acid, esterified fatty acid, ganglioside and lipase activity in the different regions of the guinea pig CNS.« less
Yang, Zhaoyang; Zhang, Aifeng; Duan, Hongmei; Zhang, Sa; Hao, Peng; Ye, Keqiang; Sun, Yi E.; Li, Xiaoguang
2015-01-01
Neural stem cells (NSCs) in the adult mammalian central nervous system (CNS) hold the key to neural regeneration through proper activation, differentiation, and maturation, to establish nascent neural networks, which can be integrated into damaged neural circuits to repair function. However, the CNS injury microenvironment is often inhibitory and inflammatory, limiting the ability of activated NSCs to differentiate into neurons and form nascent circuits. Here we report that neurotrophin-3 (NT3)-coupled chitosan biomaterial, when inserted into a 5-mm gap of completely transected and excised rat thoracic spinal cord, elicited robust activation of endogenous NSCs in the injured spinal cord. Through slow release of NT3, the biomaterial attracted NSCs to migrate into the lesion area, differentiate into neurons, and form functional neural networks, which interconnected severed ascending and descending axons, resulting in sensory and motor behavioral recovery. Our study suggests that enhancing endogenous neurogenesis could be a novel strategy for treatment of spinal cord injury. PMID:26460015
Nagase, Hiroyuki; Omae, Naoki; Omori, Akiko; Nakagawasai, Osamu; Tadano, Takeshi; Yokosuka, Akihito; Sashida, Yutaka; Mimaki, Yoshihiro; Yamakuni, Tohru; Ohizumi, Yasushi
2005-12-02
cAMP response element (CRE) transcription is dysregulated in neurodegenerative disorders in the central nervous system (CNS), including polyglutamine diseases. As the first step to find natural compounds with protective action against neurodegeneration in the CNS, we here examined whether six citrus flavonoids, namely nobiletin, 5-demethylnobiletin, tangeretin, sinensetin, 6-demethoxytangeretin, and 6-demethoxynobiletin, stimulated CRE-dependent transcription and induced neurite outgrowth in PC12D cells. Among the compounds, nobiletin most potently enhanced CRE-dependent transcription and neurite outgrowth by activating ERK/MAP kinase-dependent signalling to increase CREB phosphorylation. The transcription and neurite outgrowth were stimulated by nobiletin in a concentration-dependent manner, with a strong correlation between them. Furthermore, a 11-day oral administration of nobiletin rescued impaired memory in olfactory-bulbectomized mice documented to be accompanied by a cholinergic neurodegeneration. These results suggest that nobiletin with the activity to improve impaired memory may become a potential leading compound for drug development for neurodegenerative disorders exhibiting the dysregulated CRE-dependent transcription.
Lin, Yi-Tsung; Liu, Chia-Jen; Chen, Tzeng-Ji; Fung, Chang-Phone
2012-01-01
Taiwan is endemic for pyogenic liver abscess (PLA). Septic ocular or central nervous system (CNS) complications derived from PLA can result in catastrophic disability. We investigated the epidemiology and long-term prognosis of PLA patients with septic ocular or CNS complications over an 8-year period. We extracted 21,307 patients with newly diagnosed PLA from a nationwide health registry in Taiwan between 2000 and 2007. The frequency of and risk factors for PLA with septic ocular or CNS complications were determined. The 2-year survival of these patients was compared between those with and without septic ocular or CNS complications. Septic ocular or CNS complications accounted for 2.1% of all PLA patients. Age and the Charlson comorbidity index were significantly lower in PLA patients with ocular or CNS complications than those without. Diabetes and age <65 years were independent predictors of septic ocular or CNS complications. The 2-year mortality of patients with septic ocular or CNS complications was similar to those without complications (24.8% vs. 27.5%, p = 0.502). However, among patients <65 years old and a Charlson index ≤ 1, the 2-year mortality was significantly higher in those with than without complications (18.6% vs. 11.8%, p = 0.001). Physicians should recognize that catastrophic disability due to ocular or neurological complications from PLA could lead to a poor long-term prognosis, and should follow-up these patients more closely.
Buckman, Laura B; Hasty, Alyssa H; Flaherty, David K; Buckman, Christopher T; Thompson, Misty M; Matlock, Brittany K; Weller, Kevin; Ellacott, Kate L J
2014-01-01
Obesity is associated with chronic low-grade inflammation in peripheral tissues caused, in part, by the recruitment of inflammatory monocytes into adipose tissue. Studies in rodent models have also shown increased inflammation in the central nervous system (CNS) during obesity. The goal of this study was to determine whether obesity is associated with recruitment of peripheral immune cells into the CNS. To do this we used a bone marrow chimerism model to track the entry of green-fluorescent protein (GFP) labeled peripheral immune cells into the CNS. Flow cytometry was used to quantify the number of GFP(+) immune cells recruited into the CNS of mice fed a high-fat diet compared to standard chow fed controls. High-fat feeding resulted in obesity associated with a 30% increase in the number of GFP(+) cells in the CNS compared to control mice. Greater than 80% of the GFP(+) cells recruited to the CNS were also CD45(+) CD11b(+) indicating that the GFP(+) cells displayed characteristics of microglia/macrophages. Immunohistochemistry further confirmed the increase in GFP(+) cells in the CNS of the high-fat fed group and also indicated that 93% of the recruited cells were found in the parenchyma and had a stellate morphology. These findings indicate that peripheral immune cells can be recruited to the CNS in obesity and may contribute to the inflammatory response. Copyright © 2013 Elsevier Inc. All rights reserved.
Ramasamy, Seetha; Chin, Sek Peng; Sukumaran, Sri Devi; Buckle, Michael James Christopher; Kiew, Lik Voon; Chung, Lip Yong
2015-01-01
Bacopa monnieri has been used in Ayurvedic medicine to improve memory and cognition. The active constituent responsible for its pharmacological effects is bacoside A, a mixture of dammarane-type triterpenoid saponins containing sugar chains linked to a steroid aglycone skeleton. Triterpenoid saponins have been reported to be transformed in vivo to metabolites that give better biological activity and pharmacokinetic characteristics. Thus, the activities of the parent compounds (bacosides), aglycones (jujubogenin and pseudojujubogenin) and their derivatives (ebelin lactone and bacogenin A1) were compared using a combination of in silico and in vitro screening methods. The compounds were docked into 5-HT1A, 5-HT2A, D1, D2, M1 receptors and acetylcholinesterase (AChE) using AutoDock and their central nervous system (CNS) drug-like properties were determined using Discovery Studio molecular properties and ADMET descriptors. The compounds were screened in vitro using radioligand receptor binding and AChE inhibition assays. In silico studies showed that the parent bacosides were not able to dock into the chosen CNS targets and had poor molecular properties as a CNS drug. In contrast, the aglycones and their derivatives showed better binding affinity and good CNS drug-like properties, were well absorbed through the intestines and had good blood brain barrier (BBB) penetration. Among the compounds tested in vitro, ebelin lactone showed binding affinity towards M1 (Ki = 0.45 μM) and 5-HT2A (4.21 μM) receptors. Bacoside A and bacopaside X (9.06 μM) showed binding affinity towards the D1 receptor. None of the compounds showed any inhibitory activity against AChE. Since the stimulation of M1 and 5-HT2A receptors has been implicated in memory and cognition and ebelin lactone was shown to have the strongest binding energy, highest BBB penetration and binding affinity towards M1 and 5-HT2A receptors, we suggest that B. monnieri constituents may be transformed in vivo to the active form before exerting their pharmacological activity. PMID:25965066
Ramasamy, Seetha; Chin, Sek Peng; Sukumaran, Sri Devi; Buckle, Michael James Christopher; Kiew, Lik Voon; Chung, Lip Yong
2015-01-01
Bacopa monnieri has been used in Ayurvedic medicine to improve memory and cognition. The active constituent responsible for its pharmacological effects is bacoside A, a mixture of dammarane-type triterpenoid saponins containing sugar chains linked to a steroid aglycone skeleton. Triterpenoid saponins have been reported to be transformed in vivo to metabolites that give better biological activity and pharmacokinetic characteristics. Thus, the activities of the parent compounds (bacosides), aglycones (jujubogenin and pseudojujubogenin) and their derivatives (ebelin lactone and bacogenin A1) were compared using a combination of in silico and in vitro screening methods. The compounds were docked into 5-HT1A, 5-HT2A, D1, D2, M1 receptors and acetylcholinesterase (AChE) using AutoDock and their central nervous system (CNS) drug-like properties were determined using Discovery Studio molecular properties and ADMET descriptors. The compounds were screened in vitro using radioligand receptor binding and AChE inhibition assays. In silico studies showed that the parent bacosides were not able to dock into the chosen CNS targets and had poor molecular properties as a CNS drug. In contrast, the aglycones and their derivatives showed better binding affinity and good CNS drug-like properties, were well absorbed through the intestines and had good blood brain barrier (BBB) penetration. Among the compounds tested in vitro, ebelin lactone showed binding affinity towards M1 (Ki = 0.45 μM) and 5-HT2A (4.21 μM) receptors. Bacoside A and bacopaside X (9.06 μM) showed binding affinity towards the D1 receptor. None of the compounds showed any inhibitory activity against AChE. Since the stimulation of M1 and 5-HT2A receptors has been implicated in memory and cognition and ebelin lactone was shown to have the strongest binding energy, highest BBB penetration and binding affinity towards M1 and 5-HT2A receptors, we suggest that B. monnieri constituents may be transformed in vivo to the active form before exerting their pharmacological activity.
Devine, William G; Diaz-Gonzalez, Rosario; Ceballos-Perez, Gloria; Rojas, Domingo; Satoh, Takashi; Tear, Westley; Ranade, Ranae M; Barros-Álvarez, Ximena; Hol, Wim G J; Buckner, Frederick S; Navarro, Miguel; Pollastri, Michael P
2017-03-10
Human African trypanosomiasis is a neglected tropical disease that is lethal if left untreated. Existing therapeutics have limited efficacy and severe associated toxicities. 2-(2-(((3-((1H-Benzo[d]imidazol-2-yl)amino)propyl)amino)methyl)-4,6-dichloro-1H-indol-1-yl)ethan-1-ol (NEU-1053) has recently been identified from a high-throughput screen of >42,000 compounds as a highly potent and fast-acting trypanocidal agent capable of curing a bloodstream infection of Trypanosoma brucei in mice. We have designed a library of analogues to probe the structure-activity relationship and improve the predicted central nervous system (CNS) exposure of NEU-1053. We report the activity of these inhibitors of T. brucei, the efficacy of NEU-1053 in a murine CNS model of infection, and identification of the target of NEU-1053 via X-ray crystallography.
Interaction of Plant Extracts with Central Nervous System Receptors
Lundstrom, Kenneth; Pham, Huyen Thanh; Dinh, Long Doan
2017-01-01
Background: Plant extracts have been used in traditional medicine for the treatment of various maladies including neurological diseases. Several central nervous system receptors have been demonstrated to interact with plant extracts and components affecting the pharmacology and thereby potentially playing a role in human disease and treatment. For instance, extracts from Hypericum perforatum (St. John’s wort) targeted several CNS receptors. Similarly, extracts from Piper nigrum, Stephania cambodica, and Styphnolobium japonicum exerted inhibition of agonist-induced activity of the human neurokinin-1 receptor. Methods: Different methods have been established for receptor binding and functional assays based on radioactive and fluorescence-labeled ligands in cell lines and primary cell cultures. Behavioral studies of the effect of plant extracts have been conducted in rodents. Plant extracts have further been subjected to mood and cognition studies in humans. Results: Mechanisms of action at molecular and cellular levels have been elucidated for medicinal plants in support of standardization of herbal products and identification of active extract compounds. In several studies, plant extracts demonstrated affinity to a number of CNS receptors in parallel indicating the complexity of this interaction. In vivo studies showed modifications of CNS receptor affinity and behavioral responses in animal models after treatment with medicinal herbs. Certain plant extracts demonstrated neuroprotection and enhanced cognitive performance, respectively, when evaluated in humans. Noteworthy, the penetration of plant extracts and their protective effect on the blood-brain-barrier are discussed. Conclusion: The affinity of plant extracts and their isolated compounds for CNS receptors indicates an important role for medicinal plants in the treatment of neurological disorders. Moreover, studies in animal and human models have confirmed a scientific basis for the application of medicinal herbs. However, additional investigations related to plant extracts and their isolated compounds, as well as their application in animal models and the conducting of clinical trials, are required. PMID:28930228
Tang, Xiaolong; Liang, Yong; Zhu, Yongqiang; Xie, Chunmei; Yao, Aixia; Chen, Li; Jiang, Qinglin; Liu, Tingting; Wang, Xiaoyu; Qian, Yunyun; Wei, Jia; Ni, Wenxuan; Dai, Jingjing; Jiang, Zhenyou; Hou, Wei
2015-01-01
Fatal fungal infections in central nervous system (CNS) can occur through hematogenous spread or direct extension. At present, hydrophobic amphotericin B (AMB) is the most effective antifungal drug in clinical trials. However, AMB is hydrophobic and therefore penetrates poorly into the CNS, and therapeutic levels of AMB are hard to achieve. The transferrin receptor (TfR/CD71) located at the blood-brain barrier mediates transferrin transcytosis. In order to enhance the receptor-mediated delivery of AMB into CNS with therapeutic level, an anti-TfR antibody (OX26)-modified AMB-loaded PLA (poly[lactic acid])-PEG (polyethylene glycol)-based micellar drug delivery system was constructed. The prepared OX26-modified AMB-loaded nanoparticles (OX26-AMB-NPs) showed significant reduction of CNS fungal burden and an increase of mouse survival time. In conclusion, OX26-AMB-NPs represent a promising novel drug delivery system for intracerebral fungal infection.
García-Gea, Consuelo; Martínez-Colomer, Joan; Antonijoan, Rosa M; Valiente, Román; Barbanoj, Manuel-José
2008-12-01
Peripheral anti-H1 and central nervous system (CNS) activities after single (day 1) and repeated (day 7) administrations of increasing doses of bilastine (BIL) were assessed in 20 healthy volunteers throughout a crossover, randomized, double-blind, placebo (PLA)-controlled study. Repeated doses of BIL 20, 40, or 80 mg and hydroxyzine 25 mg (HYD) as positive standard were administered on 7 consecutive days. Before and at several time points after drug intake, skin reactivity to the intradermal injection of histamine, objective tests of psychomotor performance, and subjective mood scales were evaluated. All active treatments led to a significant and similar reduction in the wheal reaction in relation to PLA after both the single (P < 0.001) and repeated administrations (P < 0.001). No delay was observed in the onset of its peripheral activity after the first dose of BIL as compared with HYD. No tolerance or sensitization was seen when comparing acute and repetitive assessments. Central nervous system effects showed that HYD induced the greatest psychomotor impairment (P < 0.05). Repeated HYD intake showed a lower number of significant alterations in comparison to acute administration. Bilastine 80 mg also showed some impairment (P < 0.05). Subjectively, the only active treatment that could not be differentiated from PLA was BIL 20 mg. Hydroxyzine 25 mg showed the greatest differentiation (P < 0.01). A clear dissociation between peripheral anti-H1 and CNS activity was found after BIL treatment. Significant and sustained peripheral H1-blocking effects were observed after both single and repeated administrations of the therapeutic dose of 20 mg BIL. The 40-mg dose of BIL produced subjective report of sedation, whereas unwanted objective CNS side effects were observed only with the 80-mg dose.
Carlson, Karen-Sue B.; Nguyen, Lan; Schwartz, Kat; Lawrence, Daniel A.; Schwartz, Bradford S.
2016-01-01
Tissue-type plasminogen activator (t-PA), initially characterized for its critical role in fibrinolysis, also has key functions in both physiologic and pathologic processes in the CNS. Neuroserpin (NSP) is a t-PA specific serine protease inhibitor (serpin) found almost exclusively in the CNS that regulates t-PA’s proteolytic activity and protects against t-PA mediated seizure propagation and blood–brain barrier disruption. This report demonstrates that NSP inhibition of t-PA varies profoundly as a function of pH within the biologically relevant pH range for the CNS, and reflects the stability, rather than the formation of NSP: t-PA acyl-enzyme complexes. Moreover, NSP differentiates between the zymogen-like single chain form (single chain t-PA, sct-PA) and the mature protease form (two chain t-PA, tct-PA) of t-PA, demonstrating different pH profiles for protease inhibition, different pH ranges over which catalytic deacylation occurs, and different pH dependent profiles of deacylation rates for each form of t-PA. NSP’s pH dependent inhibition of t-PA is not accounted for by differential acylation, and is specific for the NSP-t-PA serpin-protease pair. These results demonstrate a novel mechanism for the differential regulation of the two forms of t-PA in the CNS, and suggest a potential specific regulatory role for CNS pH in controlling t-PA proteolytic activity. PMID:27378851
NASA Astrophysics Data System (ADS)
Jenkins, J. Logan; Kao, Chris C.; Cayce, Jonathan M.; Mahadevan-Jansen, Anita; Jansen, E. Duco
2017-02-01
Infrared neural modulation (INM) is a label-free method for eliciting neural activity with high spatial selectivity in mammalian models. While there has been an emphasis on INM research towards applications in the peripheral nervous system and the central nervous system (CNS), the biophysical mechanisms by which INM occurs remains largely unresolved. In the rat CNS, INM has been shown to elicit and inhibit neural activity, evoke calcium signals that are dependent on glutamate transients and astrocytes, and modulate inhibitory GABA currents. So far, in vivo experiments have been restricted to layers I and II of the rat cortex which consists mainly of astrocytes, inhibitory neurons, and dendrites from deeper excitatory neurons owing to strong absorption of light in these layers. Deeper cortical layers (III-VI) have vastly different cell type composition, consisting predominantly of excitatory neurons which can be targeted for therapies such as deep brain stimulation. The neural responses to infrared light of deeper cortical cells have not been well defined. Acute thalamocortical brain slices will allow us to analyze the effects of INS on various components of the cortex, including different cortical layers and cell populations. In this study, we present the use of photoablation with an erbium:YAG laser to reduce the thickness of the dead cell zone near the cutting surface of brain slices. This technique will allow for more optical energy to reach living cells, which should contribute the successful transduction of pulsed infrared light to neural activity. In the future, INM-induced neural responses will lead to a finer characterization of the parameter space for the neuromodulation of different cortical cell types and may contribute to understanding the cell populations that are important for allowing optical stimulation of neurons in the CNS.
Analysis of Minocycline as a Radioprotectant
NASA Astrophysics Data System (ADS)
Mehrotra, Shalini
Exposure to radiation is increasing in a variety of settings including space exploration, diagnostic medical procedures and radiotherapy. Cells of the hematopoietic system, such as white blood cells (WBC), are especially sensitive to radiation and their decline can result in Acute Radiation Syndrome (ARS). Radiotherapy is often used for cancers of the central nervous system (CNS), but includes the risk for normal tissue damage, often leading to cognitive impairment. The literature suggests that
Cebrià, Francesc; Newmark, Phillip A
2005-08-01
Conserved axon guidance mechanisms are essential for proper wiring of the nervous system during embryogenesis; however, the functions of these cues in adults and during regeneration remain poorly understood. Because freshwater planarians can regenerate a functional central nervous system (CNS) from almost any portion of their body, they are useful models in which to study the roles of guidance cues during neural regeneration. Here, we characterize two netrin homologs and one netrin receptor family member from Schmidtea mediterranea. RNAi analyses indicate that Smed-netR (netrin receptor) and Smed-netrin2 are required for proper CNS regeneration and that Smed-netR may mediate the response to Smed-netrin2. Remarkably, Smed-netR and Smed-netrin2 are also required in intact planarians to maintain the proper patterning of the CNS. These results suggest a crucial role for guidance cues, not only in CNS regeneration but also in maintenance of neural architecture.
Gao, Yuping; Jiang, Jiyao; Liu, Qiang
2014-01-01
Primary central nervous system (CNS) germ cell tumors (GCTs) are a rare heterogeneous group of lesions, which the clinicopathological features have a marked degree of heterogeneity comparing with that of gonadal GCTs. Accurately diagnosing CNS GCTs might be extremely difficult and requires immunohistochemical verification. This study was to investigate the biological feature of CNS GCTs and diagnostic value of immunohistochemical markers OCT3/4, C-kit, PLAP, and CD30 in CNS GCTs. A retrospective study was performed on 34 patients with CNS germ cell tumors between 1990 and 2014. 34 CNS GCTs account for 9.2% of all primary CNS neoplasms. The sellar region (35.3%) and pineal gland (17.6%) were the most common sites of intracranial GCTs. Hydrocephalus (82.4%) and diplopia (46.9%) were the two most common clinical presentations. The most common histological subtypes were germinoma (67.6%). PLAP, c-kit, OCT3/4 were highly expressed in gernimomas. CD30 and CK AE1/3 stainings were positive in embryonal carcinoma. Yolk sac tumor component showed positive staining for AFP and CK AE1/3. β-HCG staining was positive in choriocarcinoma and STGC. Patients with mature teratomas and germinomas had a better prognosis (a 5-year survival rate) than those with embryonal carcinoma and choriocarcinoma (a 5-year survival rates were 0). Our finding suggest that the incidences of primary CNS GCTs are higher in South China than in the West, but mixed GCTs are uncommon in our study. The judicious use of a panel of selected markers is helpful in diagnosing and predicting the prognosis for CNS GCTs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, G.R.; Merchant, K.; Gibb, J.W.
1986-03-05
The authors have previously reported that multiple high doses of methamphetamine (METH) alter neuronal monoamine metabolism and release. Recently, Hokfelt et al. showed that neurotensin, a tridecapeptide, has neurotransmitter properties which may be involved with DA neuronal activity. In the present study they investigated the possible effects of METH on the CNS neurotensin system. Five doses of METH (15 mg/kg) were administered every 6 h; control and treated rats were sacrificed 18 h after the last dose and concentrations of neurotensin-like immuno-reactivity (NTLI) were measured by radioimmunoassay. NTLI was elevated 200-300% in the nucleus accumbens, neostriatum, and substantia nigra; 30-40%more » increases in NTLI were measured in the hippocampus and hypothalamus. No change was observed in amygdala, A-10 or periaqueductal gray. In contrast to the above measured areas, the frontal lobe and olfactory bulb showed decreases of 25-35%. These findings demonstrate that METH treatment alters the activities of several CNS neurotensin systems, possibly due to the influence of this drug on DA pathways. The variability in the type and magnitude of these responses suggests that DA and neurotensin systems interact by more than one mechanism.« less
Meisingset, Tore Wergeland; Ricca, Alessandra; Neri, Margherita; Sonnewald, Ursula; Gritti, Angela
2013-07-01
Globoid cell leukodystrophy (GLD) or Krabbe disease is a lysosomal storage disorder caused by genetic defects in the expression and activity of galactosylceramidase, a key enzyme in the catabolism of myelin-enriched sphingolipids. While there are several histologic, biochemical, and functional studies on GLD, correlations between morphologic and biochemical alterations in central nervous system (CNS) tissues during disease progression are lacking. Here, we combined immunohistochemistry and metabolic analysis using (1)H and (13)C magnetic resonance (MR) spectra of spinal cord, cerebellum, and forebrain to investigate glial-neuronal metabolic interactions and dysfunction in a GLD murine model that recapitulates the human pathology. In order to assess the temporal- and region-dependent disease progression and the potential metabolic correlates, we investigated CNS tissues at mildly symptomatic and fully symptomatic stages of the disease. When compared with age-matched controls, GLD mice showed glucose hypometabolism, alterations in neurotransmitter content, N-acetylaspartate, N-acetylaspartylglutamate, and osmolytes levels. Notably, age- and region-dependent patterns of metabolic disturbances were in close agreement with the progression of astrogliosis, microglia activation, apoptosis, and neurodegeneration. We suggest that MR spectroscopy could be used in vivo to monitor disease progression, as well as ex vivo and in vivo to provide criteria for the outcome of experimental therapies.
Animal Models of Resistance Exercise and their Application to Neuroscience Research
Strickland, Justin C.; Smith, Mark A.
2016-01-01
Background Numerous studies have demonstrated that participation in regular resistance exercise (e.g., strength training) is associated with improvements in mental health, memory, and cognition. However, less is known about the neurobiological mechanisms mediating these effects. The goal of this mini-review is to describe and evaluate the available animal models of resistance exercise that may prove useful for examining CNS activity. New Method Various models have been developed to examine resistance exercise in laboratory animals. Comparison with Existing Methods Resistance exercise models vary in how the resistance manipulation is applied, either through direct stimulation of the muscle (e.g., in situ models) or through behavior maintained by operant contingencies (e.g., whole organism models). Each model presents distinct advantages and disadvantages for examining central nervous system (CNS) activity, and consideration of these attributes is essential for the future investigation of underlying neurobiological substrates. Results Potential neurobiological mechanisms mediating the effects of resistance exercise on pain, anxiety, memory, and drug use have been efficiently and effectively investigated using resistance exercise models that minimize stress and maximize the relative contribution of resistance over aerobic factors. Conclusions Whole organism resistance exercise models that (1) limit the use of potentially stressful stimuli and (2) minimize the contribution of aerobic factors will be critical for examining resistance exercise and CNS function. PMID:27498037
USDA-ARS?s Scientific Manuscript database
Mitragyna speciosa (Kratom) is a popular herb in Southeast Asia which is traditionally used to treat withdrawal symptoms associated with opiate addiction. Mitragynine, 7-hydroxymitragynine and mitraphylline are reported to be the central nervous system (CNS) active alkaloids which bind to the opiat...
ERIC Educational Resources Information Center
Sadowsky, Cristina L.; McDonald, John W.
2009-01-01
Physical rehabilitation following spinal cord injury-related paralysis has traditionally focused on teaching compensatory techniques, thus enabling the individual to achieve day-to-day function despite significant neurological deficits. But the concept of an irreparable central nervous system (CNS) is slowly being replaced with evidence related to…
2001-05-01
audio-visual aids. Rapid correction methods of the pilot’s performance capacity: * psychosomatic self-management; * rational psychotherapy; * music ... therapy ; * central nervous system (CNS) electro-tranquilization; * sauna; * hydrotherapy; * manual therapy; 10-3 * recreational therapy (active rest
Air pollution is linked to central nervous system (CNS) disease, but the mechanisms responsible are poorly understood. Rats exposed to Diesel Exhaust (DE, 2.0,0.5, and 0 mg/m3) by inhalation over 4 weeks demonstrated elevated levels of whole brain IL-6 protein, nitrated proteins,...
Szymusiak, Magdalena; Hu, Xiaoyu; Leon Plata, Paola A; Ciupinski, Paulina; Wang, Zaijie Jim; Liu, Ying
2016-09-10
Curcumin is a bioactive molecule extracted from Turmeric roots that has been recognized to possess a wide variety of important biological activities. Despite its great pharmacological activities, curcumin is highly hydrophobic, which results in poor bioavailability. We have formulated this hydrophobic compound into stable polymeric nanoparticles (nano-curcumin) to enhance its oral absorption. Pharmacokinetic analysis after oral delivery of nano-curcumin in mice demonstrated approximately 20-fold reduction in dose requirement when compared to unformulated curcumin to achieve comparable plasma and central nervous system (CNS) tissue concentrations. This investigation corroborated our previous study of curcumin functionality of attenuating opioid tolerance and dependence, which shows equivalent efficacy of low-dose (20mg/kg) nano-curcumin and high-dose (400mg/kg) pure curcumin in mice. Furthermore, the highly selective and validated liquid chromatography-mass spectrometry (LC-MS) method was developed to quantify curcumin glucuronide, the major metabolite of curcumin. The results suggest that the presence of curcumin in the CNS is essential for prevention and reversal of opioid tolerance and dependence. Copyright © 2016 Elsevier B.V. All rights reserved.
Portugal, Camila C; Socodato, Renato; Canedo, Teresa; Silva, Cátia M; Martins, Tânia; Coreixas, Vivian S M; Loiola, Erick C; Gess, Burkhard; Röhr, Dominik; Santiago, Ana R; Young, Peter; Minshall, Richard D; Paes-de-Carvalho, Roberto; Ambrósio, António F; Relvas, João B
2017-03-28
Vitamin C is essential for the development and function of the central nervous system (CNS). The plasma membrane sodium-vitamin C cotransporter 2 (SVCT2) is the primary mediator of vitamin C uptake in neurons. SVCT2 specifically transports ascorbate, the reduced form of vitamin C, which acts as a reducing agent. We demonstrated that ascorbate uptake through SVCT2 was critical for the homeostasis of microglia, the resident myeloid cells of the CNS that are essential for proper functioning of the nervous tissue. We found that depletion of SVCT2 from the plasma membrane triggered a proinflammatory phenotype in microglia and resulted in microglia activation. Src-mediated phosphorylation of caveolin-1 on Tyr 14 in microglia induced the internalization of SVCT2. Ascorbate treatment, SVCT2 overexpression, or blocking SVCT2 internalization prevented the activation of microglia. Overall, our work demonstrates the importance of the ascorbate transport system for microglial homeostasis and hints that dysregulation of ascorbate transport might play a role in neurological disorders. Copyright © 2017, American Association for the Advancement of Science.
Ariza, Lorena; Giménez-Llort, Lydia; Cubizolle, Aurélie; Pagès, Gemma; García-Lareu, Belén; Serratrice, Nicolas; Cots, Dan; Thwaite, Rosemary; Chillón, Miguel; Kremer, Eric J.
2014-01-01
Abstract Canine adenovirus type 2 vectors (CAV-2) are promising tools to treat global central nervous system (CNS) disorders because of their preferential transduction of neurons and efficient retrograde axonal transport. Here we tested the potential of a helper-dependent CAV-2 vector expressing β-glucuronidase (HD-RIGIE) in a mouse model of mucopolysaccharidosis type VII (MPS VII), a lysosomal storage disease caused by deficiency in β-glucuronidase activity. MPS VII leads to glycosaminoglycan accumulation into enlarged vesicles in peripheral tissues and the CNS, resulting in peripheral and neuronal dysfunction. After intracranial administration of HD-RIGIE, we show long-term expression of β-glucuronidase that led to correction of neuropathology around the injection site and in distal areas. This phenotypic correction correlated with a decrease in secondary-elevated lysosomal enzyme activity and glycosaminoglycan levels, consistent with global biochemical correction. Moreover, HD-RIGIE-treated mice show significant cognitive improvement. Thus, injections of HD-CAV-2 vectors in the brain allow a global and sustained expression and may have implications for brain therapy in patients with lysosomal storage disease. PMID:24299455
The Effects of Different Factors on the Behavior of Neural Stem Cells
Huang, Lixiang
2017-01-01
The repair of central nervous system (CNS) injury has been a worldwide problem in the biomedical field. How to reduce the damage to the CNS and promote the reconstruction of the damaged nervous system structure and function recovery has always been the concern of nerve tissue engineering. Multiple differentiation potentials of neural stem cell (NSC) determine the application value for the repair of the CNS injury. Thus, how to regulate the behavior of NSCs becomes the key to treating the CNS injury. So far, a large number of researchers have devoted themselves to searching for a better way to regulate the behavior of NSCs. This paper summarizes the effects of different factors on the behavior of NSCs in the past 10 years, especially on the proliferation and differentiation of NSCs. The final purpose of this review is to provide a more detailed theoretical basis for the clinical repair of the CNS injury by nerve tissue engineering. PMID:29358957
Shen, Chunying; Ying, Hongmei; Lu, Xueguan; Hu, Chaosu
2017-12-01
Central nervous system (CNS) metastases are rarely seen in patients with nasopharyngeal carcinoma (NPC). Two NPC patients developed CNS metastases were collected in Fudan University Shanghai Cancer Center. The medical records were reviewed to document patients' characteristics, treatment, and outcomes. In addition, we also provide an overview of the literature concerning this scenario. Both patients were staged T4N1M0 with pathologically confirmed CNS metastases from nasopharyngeal carcinoma. After the completion of initial chemoradiotherapy, metastases to CNS including brain and/or spine occurred during follow-up. Surgical resection combined with palliative chemoradiation was offered to alleviate the symptoms. Although multiple treatment modalities were given, both patients succumbed to disease progression. The mechanism for CNS metastases is postulated through hematogenous route or cerebral spinal fluid spread. Good symptoms amelioration can be achieved with aggressive treatments such as surgery followed by palliative chemoradiation, but prognoses are ominous due to systematic disease dissemination.
Schoderboeck, Lucia; Adzemovic, Milena; Nicolussi, Eva-Maria; Crupinschi, Claudia; Hochmeister, Sonja; Fischer, Marie-Therese; Lassmann, Hans; Bradl, Monika
2013-01-01
Early in postnatal development, the immature central nervous system (CNS) is more susceptible to inflammation than its adult counterpart. We show here that this “window of susceptibility” is characterized by the presence of leaky vessels in the CNS, and by a global chemokine expression profile which is clearly distinct from the one observed in the adult CNS and has three important characteristics. First, it contains chemokines with known roles in the differentiation and maturation of glia and neurons. Secondly, these chemokines have been described before in inflammatory lesions of the CNS, where they are important for the recruitment of monocytes and T cells. And last, the chemokine profile is shaped by pathological changes like oligodendrocyte stress and attempts of myelin repair. Changes in the chemokine expression profile along with a leaky blood brain barrier pave the ground for an accelerated development of CNS inflammation. PMID:19520164
Type17 T-cells in Central Nervous System Autoimmunity and Tumors
Okada, Hideho; Khoury, Samia J.
2012-01-01
Interleukin-17 (IL-17) producing Type17 T-cells, specifically T-helper (Th)17 cells reactive to central nervous system (CNS) autoantigens, manifest a higher migratory capability to the CNS parenchyma compared with other T-cell subpopulations due to their ability to penetrate the blood brain barrier (BBB). In the field of cancer immunotherapy, there are now a number of cell therapy approaches including early studies using T-cells transduced with chimeric antigen receptors in hematologic malignancy, suggesting that the use of T-cells or genetically modified T-cells could have a significant role in effective cancer therapy. However, the successful application of this strategy in solid tumors, such as CNS tumors, requires careful consideration of critical factors to improve the tumor-homing of T-cells. The current review is dedicated to discuss recent findings on the role of Type17 T-cells in CNS autoimmunity and cancer. The insight gained from these findings may lead to the development of novel therapeutic and prophylactic strategies for CNS autoimmunity and tumors. PMID:22454247
LRP-1-mediated intracellular antibody delivery to the Central Nervous System
NASA Astrophysics Data System (ADS)
Tian, Xiaohe; Nyberg, Sophie; S. Sharp, Paul; Madsen, Jeppe; Daneshpour, Nooshin; Armes, Steven P.; Berwick, Jason; Azzouz, Mimoun; Shaw, Pamela; Abbott, N. Joan; Battaglia, Giuseppe
2015-07-01
The blood-brain barrier (BBB) is by far the most important target in developing new approaches to improve delivery of drugs and diagnostic tools into the Central Nervous System (CNS). Here we report the engineering of pH- sensitive polymersomes (synthetic vesicles formed by amphiphilic copolymers) that exploit endogenous transport mechanisms to traverse the BBB, enabling delivery of large macromolecules into both the CNS parenchyma and CNS cells. We achieve this by targeting the Low Density Lipoprotein Receptor-Related Protein 1 (LRP-1) receptor. We show that LRP-1 is associated with endothelial transcytosis that does not involve acidification of cargo in membrane-trafficking organelles. By contrast, this receptor is also associated with traditional endocytosis in CNS cells, thus aiding the delivery of relevant cargo within their cytosol. We prove this using IgG as a model cargo, thus demonstrating that the combination of appropriate targeting combined with pH-sensitive polymersomes enables the efficient delivery of macromolecules into CNS cells.
Cerebrospinal Fluid HIV Escape from Antiretroviral Therapy.
Ferretti, Francesca; Gisslen, Magnus; Cinque, Paola; Price, Richard W
2015-06-01
CNS infection is a nearly constant facet of systemic CNS infection and is generally well controlled by suppressive systemic antiretroviral therapy (ART). However, there are instances when HIV can be detected in the cerebrospinal fluid (CSF) despite suppression of plasma viruses below the clinical limits of measurement. We review three types of CSF viral escape: asymptomatic, neuro-symptomatic, and secondary. The first, asymptomatic CSF escape, is seemingly benign and characterized by lack of discernable neurological deterioration or subsequent CNS disease progression. Neuro-symptomatic CSF escape is an uncommon, but important, entity characterized by new or progressive CNS disease that is critical to recognize clinically because of its management implications. Finally, secondary CSF escape, which may be even more uncommon, is defined by an increase of CSF HIV replication in association with a concomitant non-HIV infection, as a consequence of the local inflammatory response. Understanding these CSF escape settings not only is important for clinical diagnosis and management but also may provide insight into the CNS HIV reservoir.
Luethy, Lauren N.; Erickson, Andrea K; Jesudhasan, Palmy R.; Ikizler, Mine; Dermody, Terence S.; Pfeiffer, Julie K.
2015-01-01
Neurotropic viruses initiate infection in peripheral tissues prior to entry into the central nervous system (CNS). However, mechanisms of dissemination are not completely understood. We used genetically marked viruses to compare dissemination of poliovirus, yellow fever virus 17D (YFV-17D), and reovirus type 3 Dearing in mice from a hind limb intramuscular inoculation site to the sciatic nerve, spinal cord, and brain. While YFV-17D likely entered the CNS via blood, poliovirus and reovirus likely entered the CNS by transport through the sciatic nerve to the spinal cord. We found that dissemination was inefficient in adult immune-competent mice for all three viruses, particularly reovirus. Dissemination of all viruses was more efficient in immune-deficient mice. Although poliovirus and reovirus both accessed the CNS by transit through the sciatic nerve, stimulation of neuronal transport by muscle damage enhanced dissemination only of poliovirus. Our results suggest that these viruses access the CNS using different pathways. PMID:26479325
NASA Astrophysics Data System (ADS)
Rabin, B.; Joseph, J.; Shukitt-Hale, B.
Exposure to heavy particles can affect the functioning of the central nervous system (CNS), particularly the dopaminergic system. In turn, the radiation- induced disruption of dopaminergic function disrupts a variety of behaviors that are dependent upon the integrity of the dopaminergic system, including motor behavior (upper body strength), amphetamine (dopamine)-mediated taste aversion learning, spatial learning and memory (Morris water maze), and operant conditioning (fixed-ratio bar pressing). Although the relationships between heavy particle irradiation and the effects of exposure depend, to some extent, upon the specific behavioral or neurochemical endpoint under consideration, a review of the available research leads to the hypothesis that the endpoints mediated by the CNS have certain characteristics in common. These include: (1) a threshold, below which there is no apparent effect; (2) the lack of a dose-response relationship, or an extremely steep dose-response curve, depending on the particular endpoint; and (3) the absence of recovery of function, such that the heavy particle-induced behavioral and neural changes are present when tested up to one year following exposure. The current presentation will review the data relevant to the degree to which these characteristics are in fact common to neurochemical and behavioral endpoints that are mediated by the effects of exposure to heavy particles on CNS activity. Supported by N.A.S.A. Grant NAG9-1190.
Thermoresponsive Copolypeptide Hydrogel Vehicles for Central Nervous System Cell Delivery.
Zhang, Shanshan; Burda, Joshua E; Anderson, Mark A; Zhao, Ziru; Ao, Yan; Cheng, Yin; Sun, Yi; Deming, Timothy J; Sofroniew, Michael V
2015-08-10
Biomaterial vehicles have the potential to facilitate cell transplantation in the central nervous system (CNS). We have previously shown that highly tunable ionic diblock copolypeptide hydrogels (DCH) can provide sustained release of hydrophilic and hydrophobic molecules in the CNS. Here, we show that recently developed non-ionic and thermoresponsive DCH called DCH T exhibit excellent cytocompatibility. Neural stem cell (NSC) suspensions in DCH T were easily injected as liquids at room temperature. DCH T with a viscosity tuned to prevent cell sedimentation and clumping significantly increased the survival of NSC passed through injection cannulae. At body temperature, DCH T self-assembled into hydrogels with a stiffness tuned to that of CNS tissue. After injection in vivo , DCH T significantly increased by three-fold the survival of NSC grafted into healthy CNS. In injured CNS, NSC injected as suspensions in DCH T distributed well in non-neural lesion cores, integrated with healthy neural cells at lesion perimeters and supported regrowing host nerve fibers. Our findings show that non-ionic DCH T have numerous advantageous properties that make them useful tools for in vivo delivery of cells and molecules in the CNS for experimental investigations and potential therapeutic strategies.
Zhang, Shanshan; Anderson, Mark A.; Ao, Yan; Khakh, Baljit S.; Fan, Jessica; Deming, Timothy J.; Sofroniew, Michael V.
2014-01-01
Many hydrophobic small molecules are available to regulate gene expression and other cellular functions. Locally restricted application of such molecules in the central nervous system (CNS) would be desirable in many experimental and therapeutic settings, but is limited by a lack of innocuous vehicles able to load and easily deliver hydrophobic cargo. Here, we tested the potential for diblock copolypeptide hydrogels (DCH) to serve as such vehicles. In vitro tests on loading and release were conducted with cholesterol and the anti-cancer agent, temozolomide (TMZ). Loading of hydrophobic cargo modified DCH physical properties such as stiffness and viscosity, but these could readily be tuned to desired ranges by modifying DCH concentration, amino acid composition or chain lengths. Different DCH formulations exhibited different loading capacities and different rates of release. For example, comparison of different DCH with increasing alanine contents showed corresponding increases in both cargo loading capacity and time for cargo release. In vivo tests were conducted with tamoxifen, a small synthetic hydrophobic molecule widely used to regulate transgene expression. Tamoxifen released from DCH depots injected into healthy or injured CNS efficiently activated reporter gene expression in a locally restricted manner in transgenic mice. These findings demonstrate the facile and predictable tunability of DCH to achieve a wide range of loading capacities and release profiles of hydrophobic cargos while retaining CNS compatible physical properties. In addition, the findings show that DCH depots injected into the CNS can efficiently deliver small hydrophobic molecules that regulate gene expression in local cells. PMID:24314556