Sample records for system cns development

  1. Airspace Concept Evaluation System (ACES), Concept Simulations using Communication, Navigation and Surveillance (CNS) System Models

    NASA Technical Reports Server (NTRS)

    Kubat, Greg; Vandrei, Don

    2006-01-01

    Project Objectives include: a) CNS Model Development; b Design/Integration of baseline set of CNS Models into ACES; c) Implement Enhanced Simulation Capabilities in ACES; d) Design and Integration of Enhanced (2nd set) CNS Models; and e) Continue with CNS Model Integration/Concept evaluations.

  2. Ascidians as excellent chordate models for studying the development of the nervous system during embryogenesis and metamorphosis.

    PubMed

    Sasakura, Yasunori; Mita, Kaoru; Ogura, Yosuke; Horie, Takeo

    2012-04-01

    The swimming larvae of the chordate ascidians possess a dorsal hollowed central nervous system (CNS), which is homologous to that of vertebrates. Despite the homology, the ascidian CNS consists of a countable number of cells. The simple nervous system of ascidians provides an excellent experimental system to study the developmental mechanisms of the chordate nervous system. The neural fate of the cells consisting of the ascidian CNS is determined in both autonomous and non-autonomous fashion during the cleavage stage. The ascidian neural plate performs the morphogenetic movement of neural tube closure that resembles that in vertebrate neural tube formation. Following neurulation, the CNS is separated into five distinct regions, whose homology with the regions of vertebrate CNS has been discussed. Following their larval stage, ascidians undergo a metamorphosis and become sessile adults. The metamorphosis is completed quickly, and therefore the metamorphosis of ascidians is a good experimental system to observe the reorganization of the CNS during metamorphosis. A recent study has shown that the major parts of the larval CNS remain after the metamorphosis to form the adult CNS. In contrast to such a conserved manner of CNS reorganization, most larval neurons disappear during metamorphosis. The larval glial cells in the CNS are the major source for the formation of the adult CNS, and some of the glial cells produce adult neurons. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  3. Vascular, glial, and lymphatic immune gateways of the central nervous system.

    PubMed

    Engelhardt, Britta; Carare, Roxana O; Bechmann, Ingo; Flügel, Alexander; Laman, Jon D; Weller, Roy O

    2016-09-01

    Immune privilege of the central nervous system (CNS) has been ascribed to the presence of a blood-brain barrier and the lack of lymphatic vessels within the CNS parenchyma. However, immune reactions occur within the CNS and it is clear that the CNS has a unique relationship with the immune system. Recent developments in high-resolution imaging techniques have prompted a reassessment of the relationships between the CNS and the immune system. This review will take these developments into account in describing our present understanding of the anatomical connections of the CNS fluid drainage pathways towards regional lymph nodes and our current concept of immune cell trafficking into the CNS during immunosurveillance and neuroinflammation. Cerebrospinal fluid (CSF) and interstitial fluid are the two major components that drain from the CNS to regional lymph nodes. CSF drains via lymphatic vessels and appears to carry antigen-presenting cells. Interstitial fluid from the CNS parenchyma, on the other hand, drains to lymph nodes via narrow and restricted basement membrane pathways within the walls of cerebral capillaries and arteries that do not allow traffic of antigen-presenting cells. Lymphocytes targeting the CNS enter by a two-step process entailing receptor-mediated crossing of vascular endothelium and enzyme-mediated penetration of the glia limitans that covers the CNS. The contribution of the pathways into and out of the CNS as initiators or contributors to neurological disorders, such as multiple sclerosis and Alzheimer's disease, will be discussed. Furthermore, we propose a clear nomenclature allowing improved precision when describing the CNS-specific communication pathways with the immune system.

  4. Strategies for drug delivery to the central nervous system by systemic route.

    PubMed

    Kasinathan, Narayanan; Jagani, Hitesh V; Alex, Angel Treasa; Volety, Subrahmanyam M; Rao, J Venkata

    2015-05-01

    Delivery of a drug into the central nervous system (CNS) is considered difficult. Most of the drugs discovered over the past decade are biological, which are high in molecular weight and polar in nature. The delivery of such drugs across the blood-brain barrier presents problems. This review discusses some of the options available to reach the CNS by systemic route. The focus is mainly on the recent developments in systemic delivery of a drug to the CNS. Databases such as Scopus, Google scholar, Science Direct, SciFinder and online journals were referred for preparing this article including 89 references. There are at least nine strategies that could be adopted to achieve the required drug concentration in the CNS. The recent developments in drug delivery are very promising to deliver biologicals into the CNS.

  5. The familial dysautonomia disease gene IKBKAP is required in the developing and adult mouse central nervous system

    PubMed Central

    Chaverra, Marta; George, Lynn; Thorne, Julian; Grindeland, Andrea; Ueki, Yumi; Eiger, Steven; Cusick, Cassie; Babcock, A. Michael; Carlson, George A.

    2017-01-01

    ABSTRACT Hereditary sensory and autonomic neuropathies (HSANs) are a genetically and clinically diverse group of disorders defined by peripheral nervous system (PNS) dysfunction. HSAN type III, known as familial dysautonomia (FD), results from a single base mutation in the gene IKBKAP that encodes a scaffolding unit (ELP1) for a multi-subunit complex known as Elongator. Since mutations in other Elongator subunits (ELP2 to ELP4) are associated with central nervous system (CNS) disorders, the goal of this study was to investigate a potential requirement for Ikbkap in the CNS of mice. The sensory and autonomic pathophysiology of FD is fatal, with the majority of patients dying by age 40. While signs and pathology of FD have been noted in the CNS, the clinical and research focus has been on the sensory and autonomic dysfunction, and no genetic model studies have investigated the requirement for Ikbkap in the CNS. Here, we report, using a novel mouse line in which Ikbkap is deleted solely in the nervous system, that not only is Ikbkap widely expressed in the embryonic and adult CNS, but its deletion perturbs both the development of cortical neurons and their survival in adulthood. Primary cilia in embryonic cortical apical progenitors and motile cilia in adult ependymal cells are reduced in number and disorganized. Furthermore, we report that, in the adult CNS, both autonomic and non-autonomic neuronal populations require Ikbkap for survival, including spinal motor and cortical neurons. In addition, the mice developed kyphoscoliosis, an FD hallmark, indicating its neuropathic etiology. Ultimately, these perturbations manifest in a developmental and progressive neurodegenerative condition that includes impairments in learning and memory. Collectively, these data reveal an essential function for Ikbkap that extends beyond the peripheral nervous system to CNS development and function. With the identification of discrete CNS cell types and structures that depend on Ikbkap, novel strategies to thwart the progressive demise of CNS neurons in FD can be developed. PMID:28167615

  6. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics.

    PubMed

    Louveau, Antoine; Plog, Benjamin A; Antila, Salli; Alitalo, Kari; Nedergaard, Maiken; Kipnis, Jonathan

    2017-09-01

    Recent discoveries of the glymphatic system and of meningeal lymphatic vessels have generated a lot of excitement, along with some degree of skepticism. Here, we summarize the state of the field and point out the gaps of knowledge that should be filled through further research. We discuss the glymphatic system as a system that allows CNS perfusion by the cerebrospinal fluid (CSF) and interstitial fluid (ISF). We also describe the recently characterized meningeal lymphatic vessels and their role in drainage of the brain ISF, CSF, CNS-derived molecules, and immune cells from the CNS and meninges to the peripheral (CNS-draining) lymph nodes. We speculate on the relationship between the two systems and their malfunction that may underlie some neurological diseases. Although much remains to be investigated, these new discoveries have changed our understanding of mechanisms underlying CNS immune privilege and CNS drainage. Future studies should explore the communications between the glymphatic system and meningeal lymphatics in CNS disorders and develop new therapeutic modalities targeting these systems.

  7. Enhancing communication by using the Coordinated Care Classification System.

    PubMed

    O'Neal, P V; Kozeny, D K; Garland, P P; Gaunt, S M; Gordon, S C

    1998-07-01

    Because of the changes in our healthcare system, some clinical nurse specialists (CNSs) are having to expand their traditional roles of clinician, educator, consultant, leader, and researcher to include case management activities. The CNSs at Promina Gwinnett Health System in Lawrenceville, Georgia, have combined CNS and case manager activities and have adopted the title "CNS/Outcomes Coordinator." The CNS/Outcomes Coordinator is responsible for coordinating patient care, promoting team collaboration, and facilitating communication. To inform the healthcare team of the CNS/Outcomes Coordinator's patient responsibilities, the CNS/Outcomes Coordinators developed a Coordinated Care Classification System. This article describes how coordinating patient care, promoting team collaboration, and facilitating communication can be enhanced by the use of a classification system.

  8. Establishment of a Human Neuronal Network Assessment System by Using a Human Neuron/Astrocyte Co-Culture Derived from Fetal Neural Stem/Progenitor Cells.

    PubMed

    Fukushima, Kazuyuki; Miura, Yuji; Sawada, Kohei; Yamazaki, Kazuto; Ito, Masashi

    2016-01-01

    Using human cell models mimicking the central nervous system (CNS) provides a better understanding of the human CNS, and it is a key strategy to improve success rates in CNS drug development. In the CNS, neurons function as networks in which astrocytes play important roles. Thus, an assessment system of neuronal network functions in a co-culture of human neurons and astrocytes has potential to accelerate CNS drug development. We previously demonstrated that human hippocampus-derived neural stem/progenitor cells (HIP-009 cells) were a novel tool to obtain human neurons and astrocytes in the same culture. In this study, we applied HIP-009 cells to a multielectrode array (MEA) system to detect neuronal signals as neuronal network functions. We observed spontaneous firings of HIP-009 neurons, and validated functional formation of neuronal networks pharmacologically. By using this assay system, we investigated effects of several reference compounds, including agonists and antagonists of glutamate and γ-aminobutyric acid receptors, and sodium, potassium, and calcium channels, on neuronal network functions using firing and burst numbers, and synchrony as readouts. These results indicate that the HIP-009/MEA assay system is applicable to the pharmacological assessment of drug candidates affecting synaptic functions for CNS drug development. © 2015 Society for Laboratory Automation and Screening.

  9. Tailored central nervous system-directed treatment strategy for isolated CNS recurrence of adult acute myeloid leukemia.

    PubMed

    Zheng, Changcheng; Liu, Xin; Zhu, Weibo; Cai, Xiaoyan; Wu, Jingsheng; Sun, Zimin

    2014-06-01

    The aim of this report was to investigate the tailored treatment strategies for isolated central nervous system (CNS) recurrence in adult patients with acute myeloid leukemia (AML). Isolated CNS recurrence was documented in 34 patients: there were 18, 6, and 10 patients with meningeal involvement type (type A), cranial nerve palsy type (type B), and myeloid sarcoma type (type C), respectively. For patients with type A, intrathecal chemotherapy was the predominant strategy. For type B, systemic HD-Ara-C with four cycles was the main treatment. For type C, cranial irradiation or craniospinal irradiation was adopted and two cycles of HD-Ara-C were given after the irradiation. The 5-year cumulative incidence of CNS recurrence was 12.8%. There was a significantly higher WBC count (32.6∼60.8 × 10(9)/l) in patients at first diagnosis who developed CNS recurrence (all of the three types) compared with patients with no CNS recurrence (10.1 × 10(9)/l) (P = 0.005). We found that a significantly more patients with AML-M5 and 11q23 abnormalities developed CNS recurrence in type A (P < 0.001, 0.005). Twenty-four out of 34 patients (70.6%) with CNS recurrence achieved CNS complete remission at a median of 58 days (range, 30-120). The 3-year disease-free survival and overall survival estimates for all CNS recurrence patients were 21.6 and 25.3%, respectively. This report indicates that the tailored CNS-directed strategy is an effective modality to treat CNS recurrence in adult AML, but further studies are needed to improve the long-term survival.

  10. Predicting Drug Concentration‐Time Profiles in Multiple CNS Compartments Using a Comprehensive Physiologically‐Based Pharmacokinetic Model

    PubMed Central

    Yamamoto, Yumi; Välitalo, Pyry A.; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; van den Berg, Dirk‐Jan; Hartman, Robin; Wong, Yin Cheong; Danhof, Meindert; van Hasselt, John G. C.

    2017-01-01

    Drug development targeting the central nervous system (CNS) is challenging due to poor predictability of drug concentrations in various CNS compartments. We developed a generic physiologically based pharmacokinetic (PBPK) model for prediction of drug concentrations in physiologically relevant CNS compartments. System‐specific and drug‐specific model parameters were derived from literature and in silico predictions. The model was validated using detailed concentration‐time profiles from 10 drugs in rat plasma, brain extracellular fluid, 2 cerebrospinal fluid sites, and total brain tissue. These drugs, all small molecules, were selected to cover a wide range of physicochemical properties. The concentration‐time profiles for these drugs were adequately predicted across the CNS compartments (symmetric mean absolute percentage error for the model prediction was <91%). In conclusion, the developed PBPK model can be used to predict temporal concentration profiles of drugs in multiple relevant CNS compartments, which we consider valuable information for efficient CNS drug development. PMID:28891201

  11. Dendrimer advances for the central nervous system delivery of therapeutics.

    PubMed

    Xu, Leyuan; Zhang, Hao; Wu, Yue

    2014-01-15

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included.

  12. Dendrimer Advances for the Central Nervous System Delivery of Therapeutics

    PubMed Central

    2013-01-01

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included. PMID:24274162

  13. CNS development: an overview

    NASA Technical Reports Server (NTRS)

    Nowakowski, R. S.; Hayes, N. L.

    1999-01-01

    The basic principles of the development of the central nervous system (CNS) are reviewed, and their implications for both normal and abnormal development of the brain are discussed. The goals of this review are (a) to provide a set of concepts to aid in understanding the variety of complex processes that occur during CNS development, (b) to illustrate how these concepts contribute to our knowledge of the normal anatomy of the adult brain, and (c) to provide a basis for understanding how modifications of normal developmental processes by traumatic injury, by environmental or experiential influences, or by genetic variations may lead to modifications in the resultant structure and function of the adult CNS.

  14. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.

    PubMed

    Sturm, Dominik; Orr, Brent A; Toprak, Umut H; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J; Balasubramanian, Gnanaprakash; Worst, Barbara C; Pajtler, Kristian W; Brabetz, Sebastian; Johann, Pascal D; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M; Remke, Marc; Phillips, Joanna J; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C; Schniederjan, Matthew J; Santi, Mariarita; Buccoliero, Anna M; Dahiya, Sonika; Kramm, Christof M; von Bueren, André O; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S; Taylor, Michael D; Jones, Chris; Jabado, Nada; Karajannis, Matthias A; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M; Ellison, David W; Korshunov, Andrey; Kool, Marcel

    2016-02-25

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. CARD9-Dependent Neutrophil Recruitment Protects against Fungal Invasion of the Central Nervous System

    PubMed Central

    Swamydas, Muthulekha; Rodriguez, Carlos A.; Lim, Jean K.; Mendez, Laura M.; Fink, Danielle L.; Hsu, Amy P.; Zhai, Bing; Karauzum, Hatice; Mikelis, Constantinos M.; Rose, Stacey R.; Ferre, Elise M. N.; Yockey, Lynne; Lemberg, Kimberly; Kuehn, Hye Sun; Rosenzweig, Sergio D.; Lin, Xin; Chittiboina, Prashant; Datta, Sandip K.; Belhorn, Thomas H.; Weimer, Eric T.; Hernandez, Michelle L.; Hohl, Tobias M.; Kuhns, Douglas B.; Lionakis, Michail S.

    2015-01-01

    Candida is the most common human fungal pathogen and causes systemic infections that require neutrophils for effective host defense. Humans deficient in the C-type lectin pathway adaptor protein CARD9 develop spontaneous fungal disease that targets the central nervous system (CNS). However, how CARD9 promotes protective antifungal immunity in the CNS remains unclear. Here, we show that a patient with CARD9 deficiency had impaired neutrophil accumulation and induction of neutrophil-recruiting CXC chemokines in the cerebrospinal fluid despite uncontrolled CNS Candida infection. We phenocopied the human susceptibility in Card9 -/- mice, which develop uncontrolled brain candidiasis with diminished neutrophil accumulation. The induction of neutrophil-recruiting CXC chemokines is significantly impaired in infected Card9 -/- brains, from both myeloid and resident glial cellular sources, whereas cell-intrinsic neutrophil chemotaxis is Card9-independent. Taken together, our data highlight the critical role of CARD9-dependent neutrophil trafficking into the CNS and provide novel insight into the CNS fungal susceptibility of CARD9-deficient humans. PMID:26679537

  16. The Processing of Airspace Concept Evaluations Using FASTE-CNS as a Pre- or Post-Simulation CNS Analysis Tool

    NASA Technical Reports Server (NTRS)

    Mainger, Steve

    2004-01-01

    As NASA speculates on and explores the future of aviation, the technological and physical aspects of our environment increasing become hurdles that must be overcome for success. Research into methods for overcoming some of these selected hurdles have been purposed by several NASA research partners as concepts. The task of establishing a common evaluation environment was placed on NASA's Virtual Airspace Simulation Technologies (VAST) project (sub-project of VAMS), and they responded with the development of the Airspace Concept Evaluation System (ACES). As one examines the ACES environment from a communication, navigation or surveillance (CNS) perspective, the simulation parameters are built with assumed perfection in the transactions associated with CNS. To truly evaluate these concepts in a realistic sense, the contributions/effects of CNS must be part of the ACES. NASA Glenn Research Center (GRC) has supported the Virtual Airspace Modeling and Simulation (VAMS) project through the continued development of CNS models and analysis capabilities which supports the ACES environment. NASA GRC initiated the development a communications traffic loading analysis tool, called the Future Aeronautical Sub-network Traffic Emulator for Communications, Navigation and Surveillance (FASTE-CNS), as part of this support. This tool allows for forecasting of communications load with the understanding that, there is no single, common source for loading models used to evaluate the existing and planned communications channels; and that, consensus and accuracy in the traffic load models is a very important input to the decisions being made on the acceptability of communication techniques used to fulfill the aeronautical requirements. Leveraging off the existing capabilities of the FASTE-CNS tool, GRC has called for FASTE-CNS to have the functionality to pre- and post-process the simulation runs of ACES to report on instances when traffic density, frequency congestion or aircraft spacing/distance violations have occurred. The integration of these functions require that the CNS models used to characterize these avionic system be of higher fidelity and better consistency then is present in FASTE-CNS system. This presentation will explore the capabilities of FASTE-CNS with renewed emphasis on the enhancements being added to perform these processing functions; the fidelity and reliability of CNS models necessary to make the enhancements work; and the benchmarking of FASTE-CNS results to improve confidence for the results of the new processing capabilities.

  17. Requirements for an Integrated UAS CNS Architecture

    NASA Technical Reports Server (NTRS)

    Templin, Fred; Jain, Raj; Sheffield, Greg; Taboso, Pedro; Ponchak, Denise

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating revolutionary and advanced universal, reliable, always available, cyber secure and affordable Communication, Navigation, Surveillance (CNS) options for all altitudes of UAS operations. In Spring 2015, NASA issued a Call for Proposals under NASA Research Announcements (NRA) NNH15ZEA001N, Amendment 7 Subtopic 2.4. Boeing was selected to conduct a study with the objective to determine the most promising candidate technologies for Unmanned Air Systems (UAS) air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. The overall objectives are to develop UAS CNS requirements and then develop architectures that satisfy the requirements for UAS in both controlled and uncontrolled air space. This contract is funded under NASAs Aeronautics Research Mission Directorates (ARMD) Aviation Operations and Safety Program (AOSP) Safe Autonomous Systems Operations (SASO) project and proposes technologies for the Unmanned Air Systems Traffic Management (UTM) service. Communications, Navigation and Surveillance (CNS) requirements must be developed in order to establish a CNS architecture supporting Unmanned Air Systems integration in the National Air Space (UAS in the NAS). These requirements must address cybersecurity, future communications, satellite-based navigation APNT, and scalable surveillance and situational awareness. CNS integration, consolidation and miniaturization requirements are also important to support the explosive growth in small UAS deployment. Air Traffic Management (ATM) must also be accommodated to support critical Command and Control (C2) for Air Traffic Controllers (ATC). This document therefore presents UAS CNS requirements that will guide the architecture.

  18. Altered development of the brain after focal herpesvirus infection of the central nervous system.

    PubMed

    Koontz, Thad; Bralic, Marina; Tomac, Jelena; Pernjak-Pugel, Ester; Bantug, Glen; Jonjic, Stipan; Britt, William J

    2008-02-18

    Human cytomegalovirus infection of the developing central nervous system (CNS) is a major cause of neurological damage in newborn infants and children. To investigate the pathogenesis of this human infection, we developed a mouse model of infection in the developing CNS. Intraperitoneal inoculation of newborn animals with murine cytomegalovirus resulted in virus replication in the liver followed by virus spread to the brain. Virus infection of the CNS was associated with the induction of inflammatory responses, including the induction of a large number of interferon-stimulated genes and histological evidence of focal encephalitis with recruitment of mononuclear cells to foci containing virus-infected cells. The morphogenesis of the cerebellum was delayed in infected animals. The defects in cerebellar development in infected animals were generalized and, although correlated temporally with virus replication and CNS inflammation, spatially unrelated to foci of virus-infected cells. Specific defects included decreased granular neuron proliferation and migration, expression of differentiation markers, and activation of neurotrophin receptors. These findings suggested that in the developing CNS, focal virus infection and induction of inflammatory responses in resident and infiltrating mononuclear cells resulted in delayed cerebellar morphogenesis.

  19. Altered development of the brain after focal herpesvirus infection of the central nervous system

    PubMed Central

    Koontz, Thad; Bralic, Marina; Tomac, Jelena; Pernjak-Pugel, Ester; Bantug, Glen; Jonjic, Stipan; Britt, William J.

    2008-01-01

    Human cytomegalovirus infection of the developing central nervous system (CNS) is a major cause of neurological damage in newborn infants and children. To investigate the pathogenesis of this human infection, we developed a mouse model of infection in the developing CNS. Intraperitoneal inoculation of newborn animals with murine cytomegalovirus resulted in virus replication in the liver followed by virus spread to the brain. Virus infection of the CNS was associated with the induction of inflammatory responses, including the induction of a large number of interferon-stimulated genes and histological evidence of focal encephalitis with recruitment of mononuclear cells to foci containing virus-infected cells. The morphogenesis of the cerebellum was delayed in infected animals. The defects in cerebellar development in infected animals were generalized and, although correlated temporally with virus replication and CNS inflammation, spatially unrelated to foci of virus-infected cells. Specific defects included decreased granular neuron proliferation and migration, expression of differentiation markers, and activation of neurotrophin receptors. These findings suggested that in the developing CNS, focal virus infection and induction of inflammatory responses in resident and infiltrating mononuclear cells resulted in delayed cerebellar morphogenesis. PMID:18268036

  20. Central nervous system infections and stroke -- a population-based analysis.

    PubMed

    Chien, L-N; Chi, N-F; Hu, C-J; Chiou, H-Y

    2013-10-01

    Chronic central nervous system (CNS) infections have been found to associate with cerebrovascular complications. Acute CNS infections are more common than chronic CNS infections, but whether they could increase the risk of vascular diseases has not been studied. The study cohort comprised all adult patients with diagnoses of CNS infections from Taiwan National Health Insurance Research Database during 2000-2009 (n = 533). The comparison group were matched by age, sex, urbanization, diagnostic year, and vascular risk factors of cases (cases and controls = 1:5). Patients were tracked for at least 1 year. Kaplan-Meier analysis was used to compare the risk of stroke and acute myocardial infarction (AMI) after adjusting censoring subjects. After adjusting the patients demographic characteristics and comorbidities, the risk of patients with CNS infections developing stroke was 2.75-3.44 times greater than their comparison group. More than 70% of the stroke events were occurring within 1 year after CNS infections. The risk of AMI was not found as we compared patients with and without CNS infections. The population-based cohort study suggested that adult patients with CNS infections have higher risk to develop stroke but not AMI, and the risk is marked within a year after infections. © 2013 John Wiley & Sons A/S.

  1. Evidence toward an expanded international civil aviation organization (ICAO) concept of a single unified global communication navigation surveillance air traffic management (CNS/ATM) system: A quantitative analysis of ADS-B technology within a CNS/ATM system

    NASA Astrophysics Data System (ADS)

    Gardner, Gregory S.

    This research dissertation summarizes research done on the topic of global air traffic control, to include technology, controlling world organizations and economic considerations. The International Civil Aviation Organization (ICAO) proposed communication, navigation, surveillance, air traffic management system (CNS/ATM) plan is the basis for the development of a single global CNS/ATM system concept as it is discussed within this study. Research will be evaluated on the efficacy of a single technology, Automatic Dependent Surveillance-Broadcast (ADS-B) within the scope of a single global CNS/ATM system concept. ADS-B has been used within the Federal Aviation Administration's (FAA) Capstone program for evaluation since the year 2000. The efficacy of ADS-B was measured solely by using National Transportation Safety Board (NTSB) data relating to accident and incident rates within the Alaskan airspace (AK) and that of the national airspace system (NAS).

  2. Intracerebral Mycobacterium bovis bacilli Calmette-Guerin infection-induced immune responses in the CNS 1

    PubMed Central

    Lee, JangEun; Ling, Changying; Kosmalski, Michelle M.; Hulseberg, Paul; Schreiber, Heidi A.; Sandor, Matyas; Fabry, Zsuzsanna

    2010-01-01

    To study whether cerebral mycobacterial infection induces granuloma and protective immunity similar to systemic infection, we intracerebrally infected mice with Mycobacterium bovis bacilli Calmette-Guerin. Granuloma and IFN-γ+CD4+ T cell responses are induced in the central nervous system (CNS) similar to periphery, but the presence of IFN-γIL-17 double-positive CD4+ T cells is unique to the CNS. The major CNS source of TNF-α is microglia, with modest production by CD4+ T cells and macrophage. Protective immunity is accompanied by accumulation of Foxp3+CD4+ T cells and PD-L2+ dendritic cells, suggesting that both inflammatory and anti-inflammatory responses develop in the CNS following mycobacterial infection. PMID:19535154

  3. Evolution of vertebrate central nervous system is accompanied by novel expression changes of duplicate genes.

    PubMed

    Chen, Yuan; Ding, Yun; Zhang, Zuming; Wang, Wen; Chen, Jun-Yuan; Ueno, Naoto; Mao, Bingyu

    2011-12-20

    The evolution of the central nervous system (CNS) is one of the most striking changes during the transition from invertebrates to vertebrates. As a major source of genetic novelties, gene duplication might play an important role in the functional innovation of vertebrate CNS. In this study, we focused on a group of CNS-biased genes that duplicated during early vertebrate evolution. We investigated the tempo-spatial expression patterns of 33 duplicate gene families and their orthologs during the embryonic development of the vertebrate Xenopus laevis and the cephalochordate Brachiostoma belcheri. Almost all the identified duplicate genes are differentially expressed in the CNS in Xenopus embryos, and more than 50% and 30% duplicate genes are expressed in the telencephalon and mid-hindbrain boundary, respectively, which are mostly considered as two innovations in the vertebrate CNS. Interestingly, more than 50% of the amphioxus orthologs do not show apparent expression in the CNS in amphioxus embryos as detected by in situ hybridization, indicating that some of the vertebrate CNS-biased duplicate genes might arise from non-CNS genes in invertebrates. Our data accentuate the functional contribution of gene duplication in the CNS evolution of vertebrate and uncover an invertebrate non-CNS history for some vertebrate CNS-biased duplicate genes. Copyright © 2011. Published by Elsevier Ltd.

  4. The Therapeutic Potential of Insulin-Like Growth Factor-1 in Central Nervous System Disorders

    PubMed Central

    Costales, Jesse; Kolevzon, Alexander

    2016-01-01

    Central nervous system (CNS) development is a finely tuned process that relies on multiple factors and intricate pathways to ensure proper neuronal differentiation, maturation, and connectivity. Disruption of this process can cause significant impairments in CNS functioning and lead to debilitating disorders that impact motor and language skills, behavior, and cognitive functioning. Recent studies focused on understanding the underlying cellular mechanisms of neurodevelopmental disorders have identified a crucial role for insulin-like growth factor-1 (IGF-1) in normal CNS development. Work in model systems has demonstrated rescue of pathophysiological and behavioral abnormalities when IGF-1 is administered, and several clinical studies have shown promise of efficacy in disorders of the CNS, including autism spectrum disorder (ASD). In this review, we explore the molecular pathways and downstream effects of IGF-1 and summarize the results of completed and ongoing pre-clinical and clinical trials using IGF-1 as a pharmacologic intervention in various CNS disorders. This aim of this review is to provide evidence for the potential of IGF-1 as a treatment for neurodevelopmental disorders and ASD. PMID:26780584

  5. Can injured adult CNS axons regenerate by recapitulating development?

    PubMed

    Hilton, Brett J; Bradke, Frank

    2017-10-01

    In the adult mammalian central nervous system (CNS), neurons typically fail to regenerate their axons after injury. During development, by contrast, neurons extend axons effectively. A variety of intracellular mechanisms mediate this difference, including changes in gene expression, the ability to form a growth cone, differences in mitochondrial function/axonal transport and the efficacy of synaptic transmission. In turn, these intracellular processes are linked to extracellular differences between the developing and adult CNS. During development, the extracellular environment directs axon growth and circuit formation. In adulthood, by contrast, extracellular factors, such as myelin and the extracellular matrix, restrict axon growth. Here, we discuss whether the reactivation of developmental processes can elicit axon regeneration in the injured CNS. © 2017. Published by The Company of Biologists Ltd.

  6. CNS drug development: part III: future directions.

    PubMed

    Preskorn, Sheldon H

    2011-01-01

    This column, the third in a series on central nervous system (CNS) drug development, discusses advances during the first decade of the 21st century and directions the field may take in the next 10 years. By identifying many possible new drug targets, the human genome project has created the potential to develop novel central nervous system (CNS) drugs with new mechanisms of action. At the same time, this proliferation of possible new targets has complicated the drug development process, since research has not yet provided guidance as to which targets may be most fruitful. This and other factors (eg, increasing regulatory requirements) have increased the cost and complexity of the drug development process. In addition, as more is learned about the biology of psychiatric illnesses, syndromes may be subdivided into more specific entities that are better understood from a pathophysiological and pathoetiological perspective. This is likely to lead to development of more targeted treatments focused on underlying causes of illness as well as prevention. The development of drugs for Alzheimer's disease is discussed as a possible model for future CNS drug development. We are at the beginning of an era when it is likely that the way in which CNS drugs are developed will need to be rethought, which will call for flexibility and creativity on the part of both drug developers and clinical researchers.

  7. Activation of Intrinsic Immune Responses and Microglial Phagocytosis in an Ex Vivo Spinal Cord Slice Culture Model of West Nile Virus Infection

    PubMed Central

    Quick, Eamon D.; Leser, J. Smith; Tyler, Kenneth L.

    2014-01-01

    ABSTRACT West Nile virus (WNV) is a neurotropic flavivirus that causes significant neuroinvasive disease involving the brain and/or spinal cord. Experimental mouse models of WNV infection have established the importance of innate and adaptive immune responses in controlling the extent and severity of central nervous system (CNS) disease. However, differentiating between immune responses that are intrinsic to the CNS and those that are dependent on infiltrating inflammatory cells has proven difficult. We used a murine ex vivo spinal cord slice culture (SCSC) model to determine the innate immune processes specific to the CNS during WNV infections. By 7 days after ex vivo infection of SCSCs, the majority of neurons and a substantial percentage of astrocytes were infected with WNV, resulting in apoptotic cell death and astrogliosis. Microglia, the resident immune cells of the CNS, were activated by WNV infection, as exemplified by their amoeboid morphology, the development of filopodia and lamellipodia, and phagocytosis of WNV-infected cells and debris. Microglial cell activation was concomitant with increased expression of proinflammatory cytokines and chemokines, including CXCL10, CXCL1, CCL5, CCL3, CCL2, tumor necrosis factor alpha (TNF-α), TNF-related apoptosis-inducing ligand (TRAIL), and interleukin-6 (IL-6). The application of minocycline, an inhibitor of neuroinflammation, altered the WNV-induced proinflammatory cytokine/chemokine expression profile, with inhibited production of CCL5, CCL2, and IL-6. Our findings establish that CNS-resident cells have the capacity to initiate a robust innate immune response against WNV infection in the absence of infiltrating inflammatory cells and systemic immune responses. IMPORTANCE There are no specific treatments of proven efficacy available for WNV neuroinvasive disease. A better understanding of the pathogenesis of WNV CNS infection is crucial for the rational development of novel therapies. Development of a spinal cord slice culture (SCSC) model facilitates the study of WNV pathogenesis and allows investigation of the intrinsic immune responses of the CNS. Our studies demonstrate that robust CNS innate immune responses, including microglial activation and proinflammatory cytokine/chemokine production, develop independently of contributions from the peripheral immune system and CNS-infiltrating inflammatory cells. PMID:25165111

  8. The “window of susceptibility” for inflammation in the immature central nervous system is characterized by a leaky blood brain barrier and the local expression of inflammatory chemokines

    PubMed Central

    Schoderboeck, Lucia; Adzemovic, Milena; Nicolussi, Eva-Maria; Crupinschi, Claudia; Hochmeister, Sonja; Fischer, Marie-Therese; Lassmann, Hans; Bradl, Monika

    2013-01-01

    Early in postnatal development, the immature central nervous system (CNS) is more susceptible to inflammation than its adult counterpart. We show here that this “window of susceptibility” is characterized by the presence of leaky vessels in the CNS, and by a global chemokine expression profile which is clearly distinct from the one observed in the adult CNS and has three important characteristics. First, it contains chemokines with known roles in the differentiation and maturation of glia and neurons. Secondly, these chemokines have been described before in inflammatory lesions of the CNS, where they are important for the recruitment of monocytes and T cells. And last, the chemokine profile is shaped by pathological changes like oligodendrocyte stress and attempts of myelin repair. Changes in the chemokine expression profile along with a leaky blood brain barrier pave the ground for an accelerated development of CNS inflammation. PMID:19520164

  9. Nature, nurture, and microbes: The development of multiple sclerosis.

    PubMed

    Wekerle, H

    2017-11-01

    This paper argues that multiple sclerosis (MS) is the result of an autoimmune attack against components of the central nervous system (CNS). The effector cells involved in the pathogenic process are CNS-autoreactive T cells present in the healthy immune system in a resting state. Upon activation, these cells cross the blood-brain barrier and attack the CNS target tissue. Recent evidence indicates that autoimmune activation may happen in the intestine, following an interaction of bacterial components of the gut flora with local CNS autoreactive T cells. The consequences of this concept are discussed. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology.

    PubMed

    Marques, Andrea Horvath; Bjørke-Monsen, Anne-Lise; Teixeira, Antônio L; Silverman, Marni N

    2015-08-18

    Evidence suggests that maternal and fetal immune dysfunction may impact fetal brain development and could play a role in neurodevelopmental disorders, although the definitive pathophysiological mechanisms are still not completely understood. Stress, malnutrition and physical inactivity are three maternal behavioral lifestyle factors that can influence immune and central nervous system (CNS) functions in both the mother and fetus, and may therefore, increase risk for neurodevelopmental/psychiatric disorders. First, we will briefly review some aspects of maternal-fetal immune system interactions and development of immune tolerance. Second, we will discuss the bidirectional communication between the immune system and CNS and the pathways by which immune dysfunction could contribute to neurodevelopmental disorders. Third, we will discuss the effects of prenatal stress and malnutrition (over and undernutrition) on perinatal programming of the CNS and immune system, and how this might influence neurodevelopment. Finally, we will discuss the beneficial impact of physical fitness during pregnancy on the maternal-fetal unit and infant and how regular physical activity and exercise can be an effective buffer against stress- and inflammatory-related disorders. Although regular physical activity has been shown to promote neuroplasticity and an anti-inflammatory state in the adult, there is a paucity of studies evaluating its impact on CNS and immune function during pregnancy. Implementing stress reduction, proper nutrition and ample physical activity during pregnancy and the childbearing period may be an efficient strategy to counteract the impact of maternal stress and malnutrition/obesity on the developing fetus. Such behavioral interventions could have an impact on early development of the CNS and immune system and contribute to the prevention of neurodevelopmental and psychiatric disorders. Further research is needed to elucidate this relationship and the underlying mechanisms of protection. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Gene Manipulation Strategies to Identify Molecular Regulators of Axon Regeneration in the Central Nervous System

    PubMed Central

    Ribas, Vinicius T.; Costa, Marcos R.

    2017-01-01

    Limited axon regeneration in the injured adult mammalian central nervous system (CNS) usually results in irreversible functional deficits. Both the presence of extrinsic inhibitory molecules at the injury site and the intrinsically low capacity of adult neurons to grow axons are responsible for the diminished capacity of regeneration in the adult CNS. Conversely, in the embryonic CNS, neurons show a high regenerative capacity, mostly due to the expression of genes that positively control axon growth and downregulation of genes that inhibit axon growth. A better understanding of the role of these key genes controlling pro-regenerative mechanisms is pivotal to develop strategies to promote robust axon regeneration following adult CNS injury. Genetic manipulation techniques have been widely used to investigate the role of specific genes or a combination of different genes in axon regrowth. This review summarizes a myriad of studies that used genetic manipulations to promote axon growth in the injured CNS. We also review the roles of some of these genes during CNS development and suggest possible approaches to identify new candidate genes. Finally, we critically address the main advantages and pitfalls of gene-manipulation techniques, and discuss new strategies to promote robust axon regeneration in the mature CNS. PMID:28824380

  12. Requirements for an Integrated UAS CNS Architecture

    NASA Technical Reports Server (NTRS)

    Templin, Fred L.; Jain, Raj; Sheffield, Greg; Taboso-Ballesteros, Pedro; Ponchak, Denise

    2017-01-01

    Communications, Navigation and Surveillance (CNS) requirements must be developed in order to establish a CNS architecture supporting Unmanned Air Systems integration in the National Air Space (UAS in the NAS). These requirements must address cybersecurity, future communications, satellite-based navigation and APNT, and scalable surveillance and situational awareness. CNS integration, consolidation and miniaturization requirements are also important to support the explosive growth in small UAS deployment. Air Traffic Management (ATM) must also be accommodated to support critical Command and Control (C2) for Air Traffic Controllers (ATC). This document therefore presents UAS CNS requirements that will guide the architecture.

  13. Incidence and Outcomes of Central Nervous System Hemophagocytic Lymphohistiocytosis Relapse after Reduced-Intensity Conditioning Hematopoietic Stem Cell Transplantation.

    PubMed

    Lounder, Dana T; Khandelwal, Pooja; Chandra, Sharat; Jordan, Michael B; Kumar, Ashish R; Grimley, Michael S; Davies, Stella M; Bleesing, Jack J; Marsh, Rebecca A

    2017-05-01

    Hemophagocytic lymphohistiocytosis (HLH) is an immune regulatory disorder that commonly presents with central nervous system (CNS) involvement. The only cure for genetic HLH is hematopoietic stem cell transplantation (HSCT), typically treated with reduced-intensity conditioning (RIC) regimens. We sought to estimate the incidence of CNS relapse after RIC HSCT, determine risk factors, and evaluate outcomes. We performed a retrospective chart review of 94 consecutive children and young adults with primary HLH who received RIC HSCT. CNS relapse within 1 year after transplantation was diagnosed by review of clinical symptoms, cerebral spinal fluid (CSF), and radiologic findings. Four (4.25%) patients developed symptoms of possible CNS HLH after HSCT and 3 patients were diagnosed. Eight patients underwent screening lumbar puncture because of history of active CNS disease at the onset of the conditioning regimen and 4 had evidence of continued disease. The overall incidence of CNS relapse and continued CNS disease after RIC HSCT was 8%. All patients with CNS disease after HSCT responded to CNS-directed therapy. Whole blood donor chimerism at the time of CNS relapse was low at 1% to 34%, but it remained high at 88% to 100% for patients with continued CNS disease. Overall survival for patients with CNS relapse was 50%, compared with 75% for patients without CNS disease (P = .079). Our data suggest that a low level of donor chimerism or active CNS disease at the time of transplantation increase the risk of CNS HLH after HSCT. Surveillance CSF evaluation after allogeneic RIC HSCT should be considered in patients with risk factors and CNS-directed treatment should be initiated if appropriate. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  14. Imaging in Central Nervous System Drug Discovery.

    PubMed

    Gunn, Roger N; Rabiner, Eugenii A

    2017-01-01

    The discovery and development of central nervous system (CNS) drugs is an extremely challenging process requiring large resources, timelines, and associated costs. The high risk of failure leads to high levels of risk. Over the past couple of decades PET imaging has become a central component of the CNS drug-development process, enabling decision-making in phase I studies, where early discharge of risk provides increased confidence to progress a candidate to more costly later phase testing at the right dose level or alternatively to kill a compound through failure to meet key criteria. The so called "3 pillars" of drug survival, namely; tissue exposure, target engagement, and pharmacologic activity, are particularly well suited for evaluation by PET imaging. This review introduces the process of CNS drug development before considering how PET imaging of the "3 pillars" has advanced to provide valuable tools for decision-making on the critical path of CNS drug development. Finally, we review the advances in PET science of biomarker development and analysis that enable sophisticated drug-development studies in man. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. NEURONAL ACTION ON THE DEVELOPING BLOOD VESSEL PATTERN

    PubMed Central

    James, Jennifer M.; Mukouyama, Yoh-suke

    2011-01-01

    The nervous system relies on a highly specialized network of blood vessels for development and neuronal survival. Recent evidence suggests that both the central and peripheral nervous systems (CNS and PNS) employ multiple mechanisms to shape the vascular tree to meet its specific metabolic demands, such as promoting nerve-artery alignment in the PNS or the development the blood brain barrier in the CNS. In this article we discuss how the nervous system directly influences blood vessel patterning resulting in neuro-vascular congruence that is maintained throughout development and in the adult. PMID:21978864

  16. Viral Oncolytic Therapeutics for Neoplastic Meningitis

    DTIC Science & Technology

    2012-07-01

    the central nervous system (CNS). While several novel molecular approaches are being developed, many of them require delivery of macromolecu- lar or...nonhuman primates. Keywords PET Imaging . Pharmacokinetics . Biopharmaceuticals . Macromolecules . Brain . Central nervous system . Drug delivery...Iodine-124 Introduction The leptomeningeal route to the central nervous system (CNS) starts from drug administration (injection or in- fusion) into the

  17. Video Views and Reviews: Neurulation and the Fashioning of the Vertebrate Central Nervous System

    ERIC Educational Resources Information Center

    Watters, Christopher

    2006-01-01

    The central nervous system (CNS) is the first adult organ system to appear during vertebrate development, and the process of its emergence is commonly called neurulation. Such biological "urgency" is perhaps not surprising given the structural and functional complexity of the CNS and the importance of neural function to adaptive behavior and…

  18. Language disorders in children with central nervous system injury

    PubMed Central

    Dennis, Maureen

    2011-01-01

    Children with injury to the central nervous system (CNS) exhibit a variety of language disorders that have been described by members of different disciplines, in different journals, using different descriptors and taxonomies. This paper is an overview of language deficits in children with CNS injury, whether congenital or acquired after a period of normal development. It first reviews the principal CNS conditions associated with language disorders in childhood. It then describes a functional taxonomy of language, with examples of the phenomenology and neurobiology of clinical deficits in children with CNS insults. Finally, it attempts to situate language in the broader realm of cognition and in current theoretical accounts of embodied cognition. PMID:20397297

  19. The Complete Remission of Acquired Immunodeficiency Syndrome-associated Isolated Central Nervous System Lymphomatoid Granulomatosis: A Case Report and Review of the Literature.

    PubMed

    Kano, Yasuhiro; Kodaira, Minori; Ushiki, Atsuhito; Kosaka, Makoto; Yamada, Mitsunori; Shingu, Kunihiko; Nishihara, Hiroshi; Hanaoka, Masayuki; Sekijima, Yoshiki

    2017-09-15

    A 49-year-old man presented with gradually progressive aphasia one month after being diagnosed with acquired immunodeficiency syndrome (AIDS). Brain magnetic resonance imaging showed multiple brain lesions with punctate and linear enhancement. A polymerase chain reaction detected Epstein-Barr virus (EBV) in the patient's cerebrospinal fluid. A diagnosis of isolated central nervous system lymphomatoid granulomatosis (CNS-LYG) was made based on the brain biopsy findings. The complete remission of CNS-LYG was achieved by anti-retroviral therapy (ART) alone. In the present case, the development of AIDS-associated CNS-LYG was considered to have been initiated by the reactivation of EBV in the CNS under immunosuppressive conditions. The patient's condition improved with the reconstitution of the patient's immune system.

  20. Microglia in CNS development: Shaping the brain for the future.

    PubMed

    Mosser, Coralie-Anne; Baptista, Sofia; Arnoux, Isabelle; Audinat, Etienne

    Microglial cells are the resident macrophages of the central nervous system (CNS) and are mainly known for their roles in neuropathologies. However, major recent developments have revealed that these immune cells actively interact with neurons in physiological conditions and can modulate the fate and functions of synapses. Originating from myeloid precursors born in the yolk sac, microglial cells invade the CNS during early embryonic development. As a consequence they can potentially influence neuronal proliferation, migration and differentiation as well as the formation and maturation of neuronal networks, thereby contributing to the entire shaping of the CNS. We review here recent evidence indicating that microglial cells are indeed involved in crucial steps of the CNS development, including neuronal survival and apoptosis, axonal growth, migration of neurons, pruning of supernumerary synapses and functional maturation of developing synapses. We also discuss current hypotheses proposing that diverting microglial cells of their physiological functions, by promoting the expression of an immune phenotype during development, may be central to neurodevelopmental disorders such as autism, schizophrenia and epilepsy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Central nervous system infection following allogeneic hematopoietic stem cell transplantation.

    PubMed

    Hanajiri, Ryo; Kobayashi, Takeshi; Yoshioka, Kosuke; Watanabe, Daisuke; Watakabe, Kyoko; Murata, Yutaka; Hagino, Takeshi; Seno, Yasushi; Najima, Yuho; Igarashi, Aiko; Doki, Noriko; Kakihana, Kazuhiko; Sakamaki, Hisashi; Ohashi, Kazuteru

    2017-03-01

    Here, we described the clinical characteristics and outcomes of central nervous system (CNS) infections occurring after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in a single institution over the previous 6 years. Charts of 353 consecutive allogeneic transplant recipients were retrospectively reviewed for CNS infection. A total of 17 cases of CNS infection were identified at a median of 38 days (range, 10-1028 days) after allo-HSCT. Causative pathogens were human herpesvirus-6 (n=6), enterococcus (n=2), staphylococcus (n=2), streptococcus (n=2), varicella zoster virus (n=1), cytomegalovirus (n=1), John Cunningham virus (n=1), adenovirus (n=1), and Toxoplasma gondii (n=1). The cumulative incidence of CNS infection was 4.1% at 1 year and 5.5% at 5 years. Multivariate analysis revealed that high-risk disease status was a risk factor for developing CNS infection (p=.02), and that overall survival at 3 years after allo-HSCT was 33% in patients with CNS infection and 53% in those without CNS infection (p=.04). Copyright © 2016 King Faisal Specialist Hospital & Research Centre. Published by Elsevier Ltd. All rights reserved.

  2. The muscular dystrophies associated with central nervous system lesions: a brief review from a standpoint of the localization and function of causative genes.

    PubMed

    Yamamoto, Tomoko; Hiroi, Atsuko; Osawa, Makiko; Shibata, Noriyuki

    2014-01-01

    The muscular dystrophies have been traditionally classified based mainly on clinical manifestation and mode of inheritance. Owing to the discoveries of causative genes, new terminologies derived from each gene, such as dystrophinopathy, α-dystroglycanopathy, sarcoglycanopathy and fukutinopathy, have also become common. Mutations of each gene may cause several clinical phenotypes. Some muscular dystrophies accompany central nervous system (CNS) lesions, especially in the congenital muscular dystrophies. Cobblestone lissencephaly (type II lissencephaly) is a well-known CNS malformation observed in severe forms of α-dystroglycanopathy. Moreover, CNS involvement has been reported in other muscular dystrophies, such as Duchenne muscular dystrophy. In this review, genes related to the muscular dystrophies associated with CNS lesions are briefly described along with the molecular characteristics of each gene and the pathomechanism of the CNS lesions. Understanding of both the clinicopathological characteristics of these CNS lesions and their molecular mechanisms is important for the diagnosis, care of patients, and development of new therapeutic strategies.

  3. The microbiome: stress, health and disease.

    PubMed

    Moloney, Rachel D; Desbonnet, Lieve; Clarke, Gerard; Dinan, Timothy G; Cryan, John F

    2014-02-01

    Bacterial colonisation of the gut plays a major role in postnatal development and maturation of key systems that have the capacity to influence central nervous system (CNS) programming and signaling, including the immune and endocrine systems. Individually, these systems have been implicated in the neuropathology of many CNS disorders and collectively they form an important bidirectional pathway of communication between the microbiota and the brain in health and disease. Regulation of the microbiome-brain-gut axis is essential for maintaining homeostasis, including that of the CNS. Moreover, there is now expanding evidence for the view that commensal organisms within the gut play a role in early programming and later responsivity of the stress system. Research has focused on how the microbiota communicates with the CNS and thereby influences brain function. The routes of this communication are not fully elucidated but include neural, humoral, immune and metabolic pathways. This view is underpinned by studies in germ-free animals and in animals exposed to pathogenic bacterial infections, probiotic agents or antibiotics which indicate a role for the gut microbiota in the regulation of mood, cognition, pain and obesity. Thus, the concept of a microbiome-brain-gut axis is emerging which suggests that modulation of the gut microflora may be a tractable strategy for developing novel therapeutics for complex stress-related CNS disorders where there is a huge unmet medical need.

  4. Drug Delivery to CNS: Challenges and Opportunities with Emphasis on Biomaterials Based Drug Delivery Strategies.

    PubMed

    Khambhla, Ekta; Shah, Viral; Baviskar, Kalpesh

    2016-01-01

    The current epoch has witnessed a lifestyle impregnated with stress, which is a major cause of several neurological disorders. High morbidity and mortality rate due to neurological diseases and disorders have generated a huge social impact. Despite voluminous research, patients suffering from fatal and/or debilitating CNS diseases such as brain tumors, HIV, encephalopathy, Alzheimer's, epilepsy, Parkinson's, migraine and multiple sclerosis outnumbered those suffering from systemic cancer or heart diseases. The brain being a highly sensitive neuronal organ, has evolved with vasculature barriers, which regulates the efflux and influx of substances to CNS. Treatment of CNS diseases/disorders is challenging because of physiologic, metabolic and biochemical obstacles created by these barriers which comprise mainly of BBB and BCFB. The inability of achieving therapeutically active concentration has become the bottleneck level difficulty, hampering the therapeutic efficiency of several promising drug candidates for CNS related disorders. Parallel maturation of an effective CNS drug delivery strategy with CNS drug discovery is the need of the hour. Recently, the focus of the pharmaceutical community has aggravated in the direction of developing novel and more efficient drug delivery systems, giving the potential of more effective and safer CNS therapies. The present review outlines several hurdles in drug delivery to the CNS along with ideal physicochemical properties desired in drug substance/formulation for CNS delivery. The review also focuses on different conventional and novel strategies for drug delivery to the CNS. The article also assesses and emphasizes on possible benefits of biomaterial based formulations for drug delivery to the CNS.

  5. Basic Concepts of CNS Development.

    ERIC Educational Resources Information Center

    Nowakowski, R. S.

    1987-01-01

    The goals of this review are to: (1) provide a set of concepts to aid in the understanding of complex processes which occur during central nervous system (CNS) development; (2) illustrate how they contribute to our knowlege of adult brain anatomy; and (3) delineate how modifications of normal developmental processes may affect the structure and…

  6. Microtubule-Targeting Agents Enter the Central Nervous System (CNS): Double-edged Swords for Treating CNS Injury and Disease.

    PubMed

    Hur, Eun-Mi; Lee, Byoung Dae

    2014-12-01

    Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs) are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS) are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.

  7. Natural Host Genetic Resistance to Lentiviral CNS Disease: A Neuroprotective MHC Class I Allele in SIV-Infected Macaques

    PubMed Central

    Mankowski, Joseph L.; Queen, Suzanne E.; Fernandez, Caroline S.; Tarwater, Patrick M.; Karper, Jami M.; Adams, Robert J.; Kent, Stephen J.

    2008-01-01

    Human immunodeficiency virus (HIV) infection frequently causes neurologic disease even with anti-retroviral treatment. Although associations between MHC class I alleles and acquired immunodeficiency syndrome (AIDS) have been reported, the role MHC class I alleles play in restricting development of HIV-induced organ-specific diseases, including neurologic disease, has not been characterized. This study examined the relationship between expression of the MHC class I allele Mane-A*10 and development of lentiviral-induced central nervous system (CNS) disease using a well-characterized simian immunodeficiency (SIV)/pigtailed macaque model. The risk of developing CNS disease (SIV encephalitis) was 2.5 times higher for animals that did not express the MHC class I allele Mane-A*10 (P = 0.002; RR = 2.5). Animals expressing the Mane-A*10 allele had significantly lower amounts of activated macrophages, SIV RNA, and neuronal dysfunction in the CNS than Mane-A*10 negative animals (P<0.001). Mane-A*10 positive animals with the highest CNS viral burdens contained SIV gag escape mutants at the Mane-A*10-restricted KP9 epitope in the CNS whereas wild type KP9 sequences dominated in the brain of Mane-A*10 negative animals with comparable CNS viral burdens. These concordant findings demonstrate that particular MHC class I alleles play major neuroprotective roles in lentiviral-induced CNS disease. PMID:18978944

  8. The Complete Remission of Acquired Immunodeficiency Syndrome-associated Isolated Central Nervous System Lymphomatoid Granulomatosis: A Case Report and Review of the Literature

    PubMed Central

    Kano, Yasuhiro; Kodaira, Minori; Ushiki, Atsuhito; Kosaka, Makoto; Yamada, Mitsunori; Shingu, Kunihiko; Nishihara, Hiroshi; Hanaoka, Masayuki; Sekijima, Yoshiki

    2017-01-01

    A 49-year-old man presented with gradually progressive aphasia one month after being diagnosed with acquired immunodeficiency syndrome (AIDS). Brain magnetic resonance imaging showed multiple brain lesions with punctate and linear enhancement. A polymerase chain reaction detected Epstein-Barr virus (EBV) in the patient's cerebrospinal fluid. A diagnosis of isolated central nervous system lymphomatoid granulomatosis (CNS-LYG) was made based on the brain biopsy findings. The complete remission of CNS-LYG was achieved by anti-retroviral therapy (ART) alone. In the present case, the development of AIDS-associated CNS-LYG was considered to have been initiated by the reactivation of EBV in the CNS under immunosuppressive conditions. The patient's condition improved with the reconstitution of the patient's immune system. PMID:28824078

  9. Noncongenital central nervous system infections in children: radiology review.

    PubMed

    Acosta, Jorge Humberto Davila; Rantes, Claudia Isabel Lazarte; Arbelaez, Andres; Restrepo, Feliza; Castillo, Mauricio

    2014-06-01

    Infections of the central nervous system (CNS) are a very common worldwide health problem in childhood with significant morbidity and mortality. In children, viruses are the most common cause of CNS infections, followed by bacterial etiology, and less frequent due to mycosis and other causes. Noncomplicated meningitis is easier to recognize clinically; however, complications of meningitis such as abscesses, infarcts, venous thrombosis, or extra-axial empyemas are difficult to recognize clinically, and imaging plays a very important role on this setting. In addition, it is important to keep in mind that infectious process adjacent to the CNS such as mastoiditis can develop by contiguity in an infectious process within the CNS. We display the most common causes of meningitis and their complications.

  10. Analysis of central nervous system efficacy in the J-ALEX study of alectinib versus crizotinib in ALK-positive non-small-cell lung cancer.

    PubMed

    Nishio, Makoto; Nakagawa, Kazuhiko; Mitsudomi, Tetsuya; Yamamoto, Nobuyuki; Tanaka, Tomohiro; Kuriki, Hiroshi; Zeaiter, Ali; Tamura, Tomohide

    2018-07-01

    We determined the central nervous system (CNS) efficacy of alectinib by calculating time to CNS progression and cumulative incidence rates (CIRs) of CNS progression, non-CNS progression and death in patients with anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer (NSCLC) enrolled in the J-ALEX phase III study. Japanese patients aged ≥20 years with ALK-positive NSCLC who were ALK inhibitor-naïve and chemotherapy-naïve, or who had received one previous chemotherapy regimen, were enrolled. Patients with treated or untreated asymptomatic CNS metastases were eligible. Treatment comprised oral alectinib 300 mg twice daily or crizotinib 250 mg twice daily until progressive disease, unacceptable toxicity, death or withdrawal. Imaging scans (computed tomography/magnetic resonance imaging) were taken at baseline and at regular intervals throughout the study. The CIRs for CNS progression, non-CNS progression and death were calculated for patients with and without baseline CNS metastases using a competing risks method. The hazard ratio for time to CNS progression in patients with and without baseline CNS metastases was 0.51 (95% confidence interval [CI]: 0.16-1.64; P = 0.2502) and 0.19 (95% CI: 0.07-0.53; P = 0.0004), respectively. The CIRs of CNS progression and non-CNS progression were lower in the alectinib group than in the crizotinib group at all time points. The 1-year CIRs of CNS progression were 16.8% and 5.9% with crizotinib and alectinib, respectively, and the 1-year CIRs of non-CNS progression were 38.4% and 17.5%, respectively. Comparable findings were obtained in patients with or without baseline CNS metastases. Alectinib appears to avert the progression of CNS metastases in patients with ALK-positive NSCLC and baseline CNS metastases, and to prevent the development of new CNS lesions in patients without baseline CNS disease. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND

    PubMed Central

    Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.

    2013-01-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305

  12. New cellular markers at diagnosis are associated with isolated central nervous system relapse in paediatric B-cell precursor acute lymphoblastic leukaemia.

    PubMed

    van der Velden, Vincent H J; de Launaij, Daphne; de Vries, Jeltje F; de Haas, Valerie; Sonneveld, Edwin; Voerman, Jane S A; de Bie, Maaike; Revesz, Tamas; Avigad, Smadar; Yeoh, Allen E J; Swagemakers, Sigrid M A; Eckert, Cornelia; Pieters, Rob; van Dongen, Jacques J M

    2016-03-01

    In childhood acute lymphoblastic leukaemia (ALL), central nervous system (CNS) involvement is rare at diagnosis (1-4%), but more frequent at relapse (~30%). Because of the significant late sequelae of CNS treatment, early identification of patients at risk of CNS relapse is crucial. Using microarray-analysis, we discovered multiple differentially expressed genes between B-cell precursor (BCP) ALL cells in bone marrow (BM) and BCP-ALL cells in cerebrospinal fluid (CSF) at the time of isolated CNS relapse. After confirmation by real-time quantitative polymerase chain reaction, selected genes (including SCD and SPP1) were validated at the protein level by flowcytometric analysis of BCP-ALL cells in CSF. Further flowcytometric validation showed that a subpopulation of BCP-ALL cells (>1%) with a 'CNS protein profile' (SCD positivity and increased SPP1 expression) was present in the BM at diagnosis in patients who later developed an isolated CNS relapse, whereas this subpopulation was <1% or absent in all other patients. These data indicate that the presence of a (small) subpopulation of BCP-ALL cells with a 'CNS protein profile' at diagnosis (particularly SCD-positivity) is associated with isolated CNS relapse. Such information can be used to design new diagnostic and treatment strategies that aim at prevention of CNS relapse with reduced toxicity. © 2015 John Wiley & Sons Ltd.

  13. Development of a Physiologically-Based Pharmacokinetic Model of the Rat Central Nervous System

    PubMed Central

    Badhan, Raj K. Singh; Chenel, Marylore; Penny, Jeffrey I.

    2014-01-01

    Central nervous system (CNS) drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF), choroidal epithelial and total cerebrospinal fluid (CSF) compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain) and CSF:plasma ratio (CSF:Plasmau) using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways. PMID:24647103

  14. Alectinib induced CNS radiation necrosis in an ALK+NSCLC patient with a remote (7 years) history of brain radiation.

    PubMed

    Ou, Sai-Hong Ignatius; Weitz, Michael; Jalas, John R; Kelly, Daniel F; Wong, Vanessa; Azada, Michele C; Quines, Oliver; Klempner, Samuel J

    2016-06-01

    Alectinib is a second generation ALK inhibitor that has significant clinical activity in central nervous system (CNS) metastases in anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC). Pseudoprogression (PsP) due to radiation necrosis during alecitnib treatment of central nervous system (CNS) metastases from ALK-rearranged NSCLC as been reported. Hence, distinguishing radiation-related PsP from alectinib-induced radiographic changes is important to avoid erroneous early trial discontinuation and abandonment of an effective treatment. However, it remains difficult to assess casuality of radiation necrosis is related to recent direct radiation or induced by alectinib treatment or both. It is also unknown how long from previous radiation can alectinib still induce radiation necrosis. Here we reported a crizotinib-refractory ALK-positive NSCLC patient who develop radiation necrosis in one of his metastatic CNS lesions after approximately 12 months of alectinib treatment who otherwise had on-going CNS response on alectinib. His most recent radiation to his CNS metastases was 7 years prior to the start of alectinib. This case illustrates that in the setting of pror CNS radiation, given the significant clinical activity of alectinib in CNS metastases in ALK-positive NSCLC patients the risk of CNS radiation necrosis remains long after previous radiation to the CNS metastases has been completed and can occur after durable response of treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Neonatal Systemic AAV Induces Tolerance to CNS Gene Therapy in MPS I Dogs and Nonhuman Primates

    PubMed Central

    Hinderer, Christian; Bell, Peter; Louboutin, Jean-Pierre; Zhu, Yanqing; Yu, Hongwei; Lin, Gloria; Choa, Ruth; Gurda, Brittney L; Bagel, Jessica; O'Donnell, Patricia; Sikora, Tracey; Ruane, Therese; Wang, Ping; Tarantal, Alice F; Casal, Margret L; Haskins, Mark E; Wilson, James M

    2015-01-01

    The potential host immune response to a nonself protein poses a fundamental challenge for gene therapies targeting recessive diseases. We demonstrate in both dogs and nonhuman primates that liver-directed gene transfer using an adeno-associated virus (AAV) vector in neonates induces a persistent state of immunological tolerance to the transgene product, substantially improving the efficacy of subsequent vector administration targeting the central nervous system (CNS). We applied this approach to a canine model of mucopolysaccharidosis type I (MPS I), a progressive neuropathic lysosomal storage disease caused by deficient activity of the enzyme α-l-iduronidase (IDUA). MPS I dogs treated systemically in the first week of life with a vector expressing canine IDUA did not develop antibodies against the enzyme and exhibited robust expression in the CNS upon intrathecal AAV delivery at 1 month of age, resulting in complete correction of brain storage lesions. Newborn rhesus monkeys treated systemically with AAV vector expressing human IDUA developed tolerance to the transgene, resulting in high cerebrospinal fluid (CSF) IDUA expression and no antibody induction after subsequent CNS gene therapy. These findings suggest that inducing tolerance to the transgene product during a critical period in immunological development can improve the efficacy and safety of gene therapy. PMID:26022732

  16. Neonatal Systemic AAV Induces Tolerance to CNS Gene Therapy in MPS I Dogs and Nonhuman Primates.

    PubMed

    Hinderer, Christian; Bell, Peter; Louboutin, Jean-Pierre; Zhu, Yanqing; Yu, Hongwei; Lin, Gloria; Choa, Ruth; Gurda, Brittney L; Bagel, Jessica; O'Donnell, Patricia; Sikora, Tracey; Ruane, Therese; Wang, Ping; Tarantal, Alice F; Casal, Margret L; Haskins, Mark E; Wilson, James M

    2015-08-01

    The potential host immune response to a nonself protein poses a fundamental challenge for gene therapies targeting recessive diseases. We demonstrate in both dogs and nonhuman primates that liver-directed gene transfer using an adeno-associated virus (AAV) vector in neonates induces a persistent state of immunological tolerance to the transgene product, substantially improving the efficacy of subsequent vector administration targeting the central nervous system (CNS). We applied this approach to a canine model of mucopolysaccharidosis type I (MPS I), a progressive neuropathic lysosomal storage disease caused by deficient activity of the enzyme α-l-iduronidase (IDUA). MPS I dogs treated systemically in the first week of life with a vector expressing canine IDUA did not develop antibodies against the enzyme and exhibited robust expression in the CNS upon intrathecal AAV delivery at 1 month of age, resulting in complete correction of brain storage lesions. Newborn rhesus monkeys treated systemically with AAV vector expressing human IDUA developed tolerance to the transgene, resulting in high cerebrospinal fluid (CSF) IDUA expression and no antibody induction after subsequent CNS gene therapy. These findings suggest that inducing tolerance to the transgene product during a critical period in immunological development can improve the efficacy and safety of gene therapy.

  17. Central nervous system relapse in peripheral T-cell lymphomas: a Swedish Lymphoma Registry study.

    PubMed

    Ellin, Fredrik; Landström, Jenny; Jerkeman, Mats; Relander, Thomas

    2015-07-02

    Central nervous system (CNS) relapse in non-Hodgkin lymphoma (NHL) carries a very poor prognosis. Risk factors and outcome have been studied in aggressive B-cell lymphomas, but very little is known about the risk in peripheral T-cell lymphoma (PTCL). We aimed at analyzing risk factors for CNS involvement at first relapse or progression, as well as the outcome of these patients, in a large population-based cohort of patients with PTCL. Twenty-eight out of 625 patients (4.5%) developed CNS disease over time. In multivariable analysis, disease characteristics at diagnosis independently associated with an increased risk for later CNS involvement were involvement of more than 1 extranodal site (hazard ratio [HR], 2.60; 95% confidence interval [CI], 1.07-6.29; P = .035) and skin (HR, 3.51; 95% CI, 1.26-9.74; P = .016) and gastrointestinal involvement (HR, 3.06; 95% CI, 1.30-7.18; P = .010). The outcome of relapsed/refractory patients was very poor, and CNS involvement was not associated with a significantly worse outcome compared with relapsed/refractory patients without CNS involvement in multivariable analysis (HR, 1.6; 95% CI, 0.96-2.6; P = .074). The results from the present study indicate that CNS relapse in PTCL occurs at a frequency similar to what is seen in aggressive B-cell lymphomas, but the poor outcomes in relapse are largely driven by systemic rather than CNS disease. © 2015 by The American Society of Hematology.

  18. Knowledge-Based, Central Nervous System (CNS) Lead Selection and Lead Optimization for CNS Drug Discovery

    PubMed Central

    2011-01-01

    The central nervous system (CNS) is the major area that is affected by aging. Alzheimer’s disease (AD), Parkinson’s disease (PD), brain cancer, and stroke are the CNS diseases that will cost trillions of dollars for their treatment. Achievement of appropriate blood–brain barrier (BBB) penetration is often considered a significant hurdle in the CNS drug discovery process. On the other hand, BBB penetration may be a liability for many of the non-CNS drug targets, and a clear understanding of the physicochemical and structural differences between CNS and non-CNS drugs may assist both research areas. Because of the numerous and challenging issues in CNS drug discovery and the low success rates, pharmaceutical companies are beginning to deprioritize their drug discovery efforts in the CNS arena. Prompted by these challenges and to aid in the design of high-quality, efficacious CNS compounds, we analyzed the physicochemical property and the chemical structural profiles of 317 CNS and 626 non-CNS oral drugs. The conclusions derived provide an ideal property profile for lead selection and the property modification strategy during the lead optimization process. A list of substructural units that may be useful for CNS drug design was also provided here. A classification tree was also developed to differentiate between CNS drugs and non-CNS oral drugs. The combined analysis provided the following guidelines for designing high-quality CNS drugs: (i) topological molecular polar surface area of <76 Å2 (25–60 Å2), (ii) at least one (one or two, including one aliphatic amine) nitrogen, (iii) fewer than seven (two to four) linear chains outside of rings, (iv) fewer than three (zero or one) polar hydrogen atoms, (v) volume of 740–970 Å3, (vi) solvent accessible surface area of 460–580 Å2, and (vii) positive QikProp parameter CNS. The ranges within parentheses may be used during lead optimization. One violation to this proposed profile may be acceptable. The chemoinformatics approaches for graphically analyzing multiple properties efficiently are presented. PMID:22267984

  19. Thiazole containing Heterocycles with CNS activity.

    PubMed

    Kalal, Priyanka; Gandhi, Divyani; Prajapat, Prakash; Agarwal, Shikha

    2017-07-24

    Thiazoles are promising scaffolds in the area of medicinal and pharmaceutical chemistry and have accounted to show different pharmacophoric properties. For the last years, thiazole derivatives have focused too much attention to develop different new CNS active agents. It has been broadly used to generate diverse therapeutic agents against various CNS targets. Histamine H3 receptors are seriously involved in the pathophysiology of numerous disorders of the central nervous system. The literature survey has been done using different database from peer-reviewed journals. The quality of repossessed papers was evaluated using standard tools. The details of important papers were described to focus on the potency of thiazole containing heterocycles with CNS activity. Eighty nine papers were included in the review indicating thiazole containing heterocycles with CNS activity. (1) to (30) papers included different thiazole derivatives impregnated withCNS activity. Different CNS agents have been shown in references (37) to (56). The remaining papers have been searched for anticonvulsant agents (57) to (78) and other miscellaneous activities from (79) to (89). A detailed investigation has been carried out on thiazoles and its derivatives to judge its efficacy to overcome several CNS disorders. This article covers the recent updates of thiazole and its derivative with CNS activity already present in literature and will definitely provide a better platform for the production and development of potent thiazole based CNS vigorous drugs in near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Development of the central nervous system in the larvacean Oikopleura dioica and the evolution of the chordate brain.

    PubMed

    Cañestro, Cristian; Bassham, Susan; Postlethwait, John

    2005-09-15

    In non-vertebrate chordates, central nervous system (CNS) development has been studied in only two taxa, the Cephalochordata and a single Class (Ascidiacea) of the morphologically diverse Urochordata. To understand development and molecular regionalization of the brain in a different deeply diverging chordate clade, we isolated and determined the expression patterns of orthologs of vertebrate CNS markers (otxa, otxb, otxc, pax6, pax2/5/8a, pax2/5/8b, engrailed, and hox1) in Oikopleura dioica (Subphylum Urochordata, Class Larvacea). The three Oikopleura otx genes are expressed similarly to vertebrate Otx paralogs, demonstrating that trans-homologs converged on similar evolutionary outcomes by independent neo- or subfunctionalization processes during the evolution of the two taxa. This work revealed that the Oikopleura CNS possesses homologs of the vertebrate forebrain, hindbrain, and spinal cord, but not the midbrain. Comparing larvacean gene expression patterns to published results in ascidians disclosed important developmental differences and similarities that suggest mechanisms of development likely present in their last common ancestor. In contrast to ascidians, the lack of a radical reorganization of the CNS as larvaceans become adults allows us to relate embryonic gene expression patterns to three subdivisions of the adult anterior brain. Our study of the Oikopleura brain provides new insights into chordate CNS evolution: first, the absence of midbrain is a urochordate synapomorphy and not a peculiarity of ascidians, perhaps resulting from their drastic CNS metamorphosis; second, there is no convincing evidence for a homolog of a midbrain-hindbrain boundary (MHB) organizer in urochordates; and third, the expression pattern of "MHB-genes" in the urochordate hindbrain suggests that they function in the development of specific neurons rather than in an MHB organizer.

  1. Regulation of Microglia Identity from an Epigenetic and Transcriptomic Point of View.

    PubMed

    Eggen, Bart J L; Boddeke, Erik W G M; Kooistra, Susanne M

    2017-12-14

    Microglia have long been recognized as the endogenous innate immune elements in the central nervous system (CNS) parenchyma. Besides fulfilling local immune-related functions, they provide cross-talk between the CNS and the immune system at large. In the adult CNS, microglia are involved in maintaining brain homeostasis, modulating synaptic transmission and clearance of apoptotic cells. During embryonic development, microglia are responsible for the removal of supernumerary synapses and neurons, and neuronal network formation. The full scale of their potential abilities has been highlighted by improvements in microglia isolation methods, the development of genetically tagged mouse models, advanced imaging technologies and the application of next-generation sequencing in recent years. Genome-wide expression analysis of relatively pure microglia populations from both mouse and human CNS tissues has thereby greatly contributed to our knowledge of their biology; what defines them under homeostatic conditions and how microglia respond to processes like aging and CNS disease? How and to what degree beneficial functions of microglia can be restored in the aged or diseased brain will be the key issue to be addressed in future research. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Field emission study of carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Zhao, Xin

    Recently, carbon nanosheets (CNS), a novel nanostructure, were developed in our laboratory as a field emission source for high emission current. To characterize, understand and improve the field emission properties of CNS, a ultra-high vacuum surface analysis system was customized to conduct relevant experimental research in four distinct areas. The system includes Auger electron spectroscopy (AES), field emission energy spectroscopy (FEES), field emission I-V testing, and thermal desorption spectroscopy (TDS). Firstly, commercial Mo single tips were studied to calibrate the customized system. AES and FEES experiments indicate that a pyramidal nanotip of Ca and O elements formed on the Mo tip surface by field induced surface diffusion. Secondly, field emission I-V testing on CNS indicates that the field emission properties of pristine nanosheets are impacted by adsorbates. For instance, in pristine samples, field emission sources can be built up instantaneously and be characterized by prominent noise levels and significant current variations. However, when CNS are processed via conditioning (run at high current), their emission properties are greatly improved and stabilized. Furthermore, only H2 desorbed from the conditioned CNS, which indicates that only H adsorbates affect emission. Thirdly, the TDS study on nanosheets revealed that the predominant locations of H residing in CNS are sp2 hybridized C on surface and bulk. Fourthly, a fabricating process was developed to coat low work function ZrC on nanosheets for field emission enhancement. The carbide triple-peak in the AES spectra indicated that Zr carbide formed, but oxygen was not completely removed. The Zr(CxOy) coating was dispersed as nanobeads on the CNS surface. Although the work function was reduced, the coated CNS emission properties were not improved due to an increased beta factor. Further analysis suggest that for low emission current (<1 uA), the H adsorbates affect emission by altering the work function. In high emission current (>10 uA), thermal, ionic or electronic transition effects may occur, which differently affect the field emission process.

  3. Development of the retinotectal system in the direct-developing frog Eleutherodactylus coqui in comparison with other anurans

    PubMed Central

    Schlosser, Gerhard

    2008-01-01

    Background Frogs primitively have a biphasic life history with an aquatic larva (tadpole) and a usually terrestrial adult. However, direct developing frogs of the genus Eleutherodactylus have lost a free living larval stage. Many larval structures never form during development of Eleutherodactylus, while limbs, spinal cord, and an adult-like cranial musculoskeletal system develop precociously. Results Here, I compare growth and differentiation of the retina and tectum and development of early axon tracts in the brain between Eleutherodactylus coqui and the biphasically developing frogs Discoglossus pictus, Physalaemus pustulosus, and Xenopus laevis using morphometry, immunohistochemical detection of proliferating cell nuclear antigen (PCNA) and acetylated tubulin, biocytin tracing, and in situ hybridization for NeuroD. Findings of the present study indicate that retinotectal development was greatly altered during evolution of Eleutherodactlyus mostly due to acceleration of cell proliferation and growth in retina and tectum. However, differentiation of retina, tectum, and fiber tracts in the embryonic brain proceed along a conserved slower schedule and remain temporally coordinated with each other in E. coqui. Conclusion These findings reveal a mosaic pattern of changes in the development of the central nervous system (CNS) during evolution of the direct developing genus Eleutherodactylus. Whereas differentiation events in directly interconnected parts of the CNS such as retina, tectum, and brain tracts remained coordinated presumably due to their interdependent development, they were dissociated from proliferation control and from differentiation events in other parts of the CNS such as the spinal cord. This suggests that mosaic evolutionary changes reflect the modular character of CNS development. PMID:18573199

  4. Convection-enhanced delivery to the central nervous system.

    PubMed

    Lonser, Russell R; Sarntinoranont, Malisa; Morrison, Paul F; Oldfield, Edward H

    2015-03-01

    Convection-enhanced delivery (CED) is a bulk flow-driven process. Its properties permit direct, homogeneous, targeted perfusion of CNS regions with putative therapeutics while bypassing the blood-brain barrier. Development of surrogate imaging tracers that are co-infused during drug delivery now permit accurate, noninvasive real-time tracking of convective infusate flow in nervous system tissues. The potential advantages of CED in the CNS over other currently available drug delivery techniques, including systemic delivery, intrathecal and/or intraventricular distribution, and polymer implantation, have led to its application in research studies and clinical trials. The authors review the biophysical principles of convective flow and the technology, properties, and clinical applications of convective delivery in the CNS.

  5. Treatment patterns, clinical outcomes and health care costs associated with HER2-positive breast cancer with central nervous system metastases: a French multicentre observational study.

    PubMed

    Baffert, Sandrine; Cottu, Paul; Kirova, Youlia M; Mercier, Florence; Simondi, Cécile; Bachelot, Thomas; Le Rhun, Emilie; Levy, Christelle; Gutierrez, Maya; Madranges, Nicolas; Moldovan, Cristian; Coudert, Bruno; Spaëth, Dominique; Serin, Daniel; Cotté, François-Emery; Benjamin, Laure; Maillard, Cathie; Laulhere-Vigneau, Sabine; Durand-Zaleski, Isabelle

    2013-10-31

    The population of patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) who develop central nervous system (CNS) metastases is growing. Treatment strategies in this population are highly diverse. The objective of the study was to assess health care costs for the management of HER2 positive BC with CNS metastases. This multicentre, retrospective, observational study was conducted on HER2-positive BC patients diagnosed with CNS metastases between 2006 and 2008. Data were extracted from patient medical records to estimate health care resource use. A partitioned estimator was used to adjust censoring costs by use of the Kaplan-Meier survival estimate. 218 patients were included and costs were estimated for 200 patients. The median time to detection of CNS metastases was 37.6 months. The first metastatic event involved the CNS in 39 patients, and this was the unique first metastatic site in 31 of these patients. Two years following diagnosis of CNS metastases, 70.3% of patients had died. The mean per capita cost of HER2-positive BC with CNS metastases in the first year following diagnosis was €35,735 [95% CI: 31,716-39,898]. The proportion of costs attributed to expensive drugs and those arising from hospitalisation were in the same range. A range of individualised disease management strategies are used in HER2-positive BC patients with CNS metastases and the treatments used in the first months following diagnosis are expensive. The understanding of cost drivers may help optimise healthcare expenditure and inform the development of appropriate prevention policies.

  6. Role of Academic Drug Discovery in the Quest for New CNS Therapeutics.

    PubMed

    Yokley, Brian H; Hartman, Matthew; Slusher, Barbara S

    2017-03-15

    There was a greater than 50% decline in central nervous system (CNS) drug discovery and development programs by major pharmaceutical companies from 2009 to 2014. This decline was paralleled by a rise in the number of university led drug discovery centers, many in the CNS area, and a growth in the number of public-private drug discovery partnerships. Diverse operating models have emerged as the academic drug discovery centers adapt to this changing ecosystem.

  7. NOGO-A induction and localization during chick brain development indicate a role disparate from neurite outgrowth inhibition

    PubMed Central

    Caltharp, Shelley A; Pira, Charmaine U; Mishima, Noboru; Youngdale, Erik N; McNeill, David S; Liwnicz, Boleslaw H; Oberg, Kerby C

    2007-01-01

    Background Nogo-A, a myelin-associated protein, inhibits neurite outgrowth and abates regeneration in the adult vertebrate central nervous system (CNS) and may play a role in maintaining neural pathways once established. However, the presence of Nogo-A during early CNS development is counterintuitive and hints at an additional role for Nogo-A beyond neurite inhibition. Results We isolated chicken NOGO-A and determined its sequence. A multiple alignment of the amino acid sequence across divergent species, identified five previously undescribed, Nogo-A specific conserved regions that may be relevant for development. NOGO gene transcripts (NOGO-A, NOGO-B and NOGO-C) were differentially expressed in the CNS during development and a second NOGO-A splice variant was identified. We further localized NOGO-A expression during key phases of CNS development by in situ hybridization. CNS-associated NOGO-A was induced coincident with neural plate formation and up-regulated by FGF in the transformation of non-neural ectoderm into neural precursors. NOGO-A expression was diffuse in the neuroectoderm during the early proliferative phase of development, and migration, but localized to large projection neurons of the optic tectum and tectal-associated nuclei during architectural differentiation, lamination and network establishment. Conclusion These data suggest Nogo-A plays a functional role in the determination of neural identity and/or differentiation and also appears to play a later role in the networking of large projection neurons during neurite formation and synaptogenesis. These data indicate that Nogo-A is a multifunctional protein with additional roles during CNS development that are disparate from its later role of neurite outgrowth inhibition in the adult CNS. PMID:17433109

  8. Identification of single nucleotide polymorphisms of the PI3K-AKT-mTOR pathway as a risk factor of central nervous system metastasis in metastatic breast cancer.

    PubMed

    Le Rhun, Emilie; Bertrand, Nicolas; Dumont, Aurélie; Tresch, Emmanuelle; Le Deley, Marie-Cécile; Mailliez, Audrey; Preusser, Matthias; Weller, Michael; Revillion, Françoise; Bonneterre, Jacques

    2017-12-01

    The PI3K-AKT-mTOR pathway may be involved in the development of central nervous system (CNS) metastasis from breast cancer. Accordingly, herein we explored whether single nucleotide polymorphisms (SNPs) of this pathway are associated with altered risk of CNS metastasis formation in metastatic breast cancer patients. The GENEOM study (NCT00959556) included blood sample collection from breast cancer patients treated in the neoadjuvant, adjuvant or metastatic setting. We identified patients with CNS metastases for comparison with patients without CNS metastasis, defined as either absence of neurological symptoms or normal brain magnetic resonance imaging (MRI) before death or during 5-year follow-up. Eighty-eight SNPs of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian (or mechanistic) target of rapamycin (mTOR) pathway genes were selected for analysis: AKT1 (17 SNPs), AKT2 (4), FGFR1 (2), mTOR (7), PDK1 (4), PI3KR1 (11), PI3KCA (20), PTEN (17), RPS6KB1 (6). Of 342 patients with metastases, 207 fulfilled the inclusion criteria: One-hundred-and-seven patients remained free of CNS metastases at last follow-up or date of death whereas 100 patients developed CNS metastases. Among clinical parameters, hormonal and human epidermal growth factor receptor-2 (HER2) status as well as vascular tumour emboli was associated with risk of CNS metastasis. Only PI3KR1-rs706716 was associated with CNS metastasis in univariate analysis after Bonferroni correction (p < 0.00085). Multivariate analysis showed associations between AKT1-rs3803304, AKT2-rs3730050, PDK1-rs11686903 and PI3KR1-rs706716 and CNS metastasis . PI3KR1-rs706716 may be associated with CNS metastasis in metastatic breast cancer patients and could be included in a predictive composite score to detect early CNS metastasis irrespective of breast cancer subtype. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Antiviral Type I and Type III Interferon Responses in the Central Nervous System

    PubMed Central

    Sorgeloos, Frédéric; Kreit, Marguerite; Hermant, Pascale; Lardinois, Cécile; Michiels, Thomas

    2013-01-01

    The central nervous system (CNS) harbors highly differentiated cells, such as neurons that are essential to coordinate the functions of complex organisms. This organ is partly protected by the blood-brain barrier (BBB) from toxic substances and pathogens carried in the bloodstream. Yet, neurotropic viruses can reach the CNS either by crossing the BBB after viremia, or by exploiting motile infected cells as Trojan horses, or by using axonal transport. Type I and type III interferons (IFNs) are cytokines that are critical to control early steps of viral infections. Deficiencies in the IFN pathway have been associated with fatal viral encephalitis both in humans and mice. Therefore, the IFN system provides an essential protection of the CNS against viral infections. Yet, basal activity of the IFN system appears to be low within the CNS, likely owing to the toxicity of IFN to this organ. Moreover, after viral infection, neurons and oligodendrocytes were reported to be relatively poor IFN producers and appear to keep some susceptibility to neurotropic viruses, even in the presence of IFN. This review addresses some trends and recent developments concerning the role of type I and type III IFNs in: i) preventing neuroinvasion and infection of CNS cells; ii) the identity of IFN-producing cells in the CNS; iii) the antiviral activity of ISGs; and iv) the activity of viral proteins of neurotropic viruses that target the IFN pathway. PMID:23503326

  10. Antiviral type I and type III interferon responses in the central nervous system.

    PubMed

    Sorgeloos, Frédéric; Kreit, Marguerite; Hermant, Pascale; Lardinois, Cécile; Michiels, Thomas

    2013-03-15

    The central nervous system (CNS) harbors highly differentiated cells, such as neurons that are essential to coordinate the functions of complex organisms. This organ is partly protected by the blood-brain barrier (BBB) from toxic substances and pathogens carried in the bloodstream. Yet, neurotropic viruses can reach the CNS either by crossing the BBB after viremia, or by exploiting motile infected cells as Trojan horses, or by using axonal transport. Type I and type III interferons (IFNs) are cytokines that are critical to control early steps of viral infections. Deficiencies in the IFN pathway have been associated with fatal viral encephalitis both in humans and mice. Therefore, the IFN system provides an essential protection of the CNS against viral infections. Yet, basal activity of the IFN system appears to be low within the CNS, likely owing to the toxicity of IFN to this organ. Moreover, after viral infection, neurons and oligodendrocytes were reported to be relatively poor IFN producers and appear to keep some susceptibility to neurotropic viruses, even in the presence of IFN. This review addresses some trends and recent developments concerning the role of type I and type III IFNs in: i) preventing neuroinvasion and infection of CNS cells; ii) the identity of IFN-producing cells in the CNS; iii) the antiviral activity of ISGs; and iv) the activity of viral proteins of neurotropic viruses that target the IFN pathway.

  11. Nasopharyngeal carcinoma with central nervous system metastases: Two case reports and a review of the literature.

    PubMed

    Shen, Chunying; Ying, Hongmei; Lu, Xueguan; Hu, Chaosu

    2017-12-01

    Central nervous system (CNS) metastases are rarely seen in patients with nasopharyngeal carcinoma (NPC). Two NPC patients developed CNS metastases were collected in Fudan University Shanghai Cancer Center. The medical records were reviewed to document patients' characteristics, treatment, and outcomes. In addition, we also provide an overview of the literature concerning this scenario. Both patients were staged T4N1M0 with pathologically confirmed CNS metastases from nasopharyngeal carcinoma. After the completion of initial chemoradiotherapy, metastases to CNS including brain and/or spine occurred during follow-up. Surgical resection combined with palliative chemoradiation was offered to alleviate the symptoms. Although multiple treatment modalities were given, both patients succumbed to disease progression. The mechanism for CNS metastases is postulated through hematogenous route or cerebral spinal fluid spread. Good symptoms amelioration can be achieved with aggressive treatments such as surgery followed by palliative chemoradiation, but prognoses are ominous due to systematic disease dissemination.

  12. Type17 T-cells in Central Nervous System Autoimmunity and Tumors

    PubMed Central

    Okada, Hideho; Khoury, Samia J.

    2012-01-01

    Interleukin-17 (IL-17) producing Type17 T-cells, specifically T-helper (Th)17 cells reactive to central nervous system (CNS) autoantigens, manifest a higher migratory capability to the CNS parenchyma compared with other T-cell subpopulations due to their ability to penetrate the blood brain barrier (BBB). In the field of cancer immunotherapy, there are now a number of cell therapy approaches including early studies using T-cells transduced with chimeric antigen receptors in hematologic malignancy, suggesting that the use of T-cells or genetically modified T-cells could have a significant role in effective cancer therapy. However, the successful application of this strategy in solid tumors, such as CNS tumors, requires careful consideration of critical factors to improve the tumor-homing of T-cells. The current review is dedicated to discuss recent findings on the role of Type17 T-cells in CNS autoimmunity and cancer. The insight gained from these findings may lead to the development of novel therapeutic and prophylactic strategies for CNS autoimmunity and tumors. PMID:22454247

  13. LRP-1-mediated intracellular antibody delivery to the Central Nervous System

    NASA Astrophysics Data System (ADS)

    Tian, Xiaohe; Nyberg, Sophie; S. Sharp, Paul; Madsen, Jeppe; Daneshpour, Nooshin; Armes, Steven P.; Berwick, Jason; Azzouz, Mimoun; Shaw, Pamela; Abbott, N. Joan; Battaglia, Giuseppe

    2015-07-01

    The blood-brain barrier (BBB) is by far the most important target in developing new approaches to improve delivery of drugs and diagnostic tools into the Central Nervous System (CNS). Here we report the engineering of pH- sensitive polymersomes (synthetic vesicles formed by amphiphilic copolymers) that exploit endogenous transport mechanisms to traverse the BBB, enabling delivery of large macromolecules into both the CNS parenchyma and CNS cells. We achieve this by targeting the Low Density Lipoprotein Receptor-Related Protein 1 (LRP-1) receptor. We show that LRP-1 is associated with endothelial transcytosis that does not involve acidification of cargo in membrane-trafficking organelles. By contrast, this receptor is also associated with traditional endocytosis in CNS cells, thus aiding the delivery of relevant cargo within their cytosol. We prove this using IgG as a model cargo, thus demonstrating that the combination of appropriate targeting combined with pH-sensitive polymersomes enables the efficient delivery of macromolecules into CNS cells.

  14. Evaluation of a TaqMan Array Card for Detection of Central Nervous System Infections.

    PubMed

    Onyango, Clayton O; Loparev, Vladimir; Lidechi, Shirley; Bhullar, Vinod; Schmid, D Scott; Radford, Kay; Lo, Michael K; Rota, Paul; Johnson, Barbara W; Munoz, Jorge; Oneko, Martina; Burton, Deron; Black, Carolyn M; Neatherlin, John; Montgomery, Joel M; Fields, Barry

    2017-07-01

    Infections of the central nervous system (CNS) are often acute, with significant morbidity and mortality. Routine diagnosis of such infections is limited in developing countries and requires modern equipment in advanced laboratories that may be unavailable to a number of patients in sub-Saharan Africa. We developed a TaqMan array card (TAC) that detects multiple pathogens simultaneously from cerebrospinal fluid. The 21-pathogen CNS multiple-pathogen TAC (CNS-TAC) assay includes two parasites ( Balamuthia mandrillaris and Acanthamoeba ), six bacterial pathogens ( Streptococcus pneumonia e, Haemophilus influenzae , Neisseria meningitidis , Mycoplasma pneumoniae , Mycobacterium tuberculosis , and Bartonella ), and 13 viruses (parechovirus, dengue virus, Nipah virus, varicella-zoster virus, mumps virus, measles virus, lyssavirus, herpes simplex viruses 1 and 2, Epstein-Barr virus, enterovirus, cytomegalovirus, and chikungunya virus). The card also includes human RNase P as a nucleic acid extraction control and an internal manufacturer control, GAPDH (glyceraldehyde-3-phosphate dehydrogenase). This CNS-TAC assay can test up to eight samples for all 21 agents within 2.5 h following nucleic acid extraction. The assay was validated for linearity, limit of detection, sensitivity, and specificity by using either live viruses (dengue, mumps, and measles viruses) or nucleic acid material (Nipah and chikungunya viruses). Of 120 samples tested by individual real-time PCR, 35 were positive for eight different targets, whereas the CNS-TAC assay detected 37 positive samples across nine different targets. The CNS-TAC assays showed 85.6% sensitivity and 96.7% specificity. Therefore, the CNS-TAC assay may be useful for outbreak investigation and surveillance of suspected neurological disease. Copyright © 2017 American Society for Microbiology.

  15. COE loss-of-function analysis reveals a genetic program underlying maintenance and regeneration of the nervous system in planarians.

    PubMed

    Cowles, Martis W; Omuro, Kerilyn C; Stanley, Brianna N; Quintanilla, Carlo G; Zayas, Ricardo M

    2014-10-01

    Members of the COE family of transcription factors are required for central nervous system (CNS) development. However, the function of COE in the post-embryonic CNS remains largely unknown. An excellent model for investigating gene function in the adult CNS is the freshwater planarian. This animal is capable of regenerating neurons from an adult pluripotent stem cell population and regaining normal function. We previously showed that planarian coe is expressed in differentiating and mature neurons and that its function is required for proper CNS regeneration. Here, we show that coe is essential to maintain nervous system architecture and patterning in intact (uninjured) planarians. We took advantage of the robust phenotype in intact animals to investigate the genetic programs coe regulates in the CNS. We compared the transcriptional profiles of control and coe RNAi planarians using RNA sequencing and identified approximately 900 differentially expressed genes in coe knockdown animals, including 397 downregulated genes that were enriched for nervous system functional annotations. Next, we validated a subset of the downregulated transcripts by analyzing their expression in coe-deficient planarians and testing if the mRNAs could be detected in coe+ cells. These experiments revealed novel candidate targets of coe in the CNS such as ion channel, neuropeptide, and neurotransmitter genes. Finally, to determine if loss of any of the validated transcripts underscores the coe knockdown phenotype, we knocked down their expression by RNAi and uncovered a set of coe-regulated genes implicated in CNS regeneration and patterning, including orthologs of sodium channel alpha-subunit and pou4. Our study broadens the knowledge of gene expression programs regulated by COE that are required for maintenance of neural subtypes and nervous system architecture in adult animals.

  16. Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System.

    PubMed

    Ren, Xiaoyuan; Zou, Lili; Zhang, Xu; Branco, Vasco; Wang, Jun; Carvalho, Cristina; Holmgren, Arne; Lu, Jun

    2017-11-01

    The thioredoxin (Trx) and glutathione (GSH) systems play important roles in maintaining the redox balance in the brain, a tissue that is prone to oxidative stress due to its high-energy demand. These two disulfide reductase systems are active in various areas of the brain and are considered to be critical antioxidant systems in the central nervous system (CNS). Various neuronal disorders have been characterized to have imbalanced redox homeostasis. Recent Advances: In addition to their detrimental effects, recent studies have highlighted that reactive oxygen species/reactive nitrogen species (ROS/RNS) act as critical signaling molecules by modifying thiols in proteins. The Trx and GSH systems, which reversibly regulate thiol modifications, regulate redox signaling involved in various biological events in the CNS. In this review, we focus on the following: (i) how ROS/RNS are produced and mediate signaling in CNS; (ii) how Trx and GSH systems regulate redox signaling by catalyzing reversible thiol modifications; (iii) how dysfunction of the Trx and GSH systems causes alterations of cellular redox signaling in human neuronal diseases; and (iv) the effects of certain small molecules that target thiol-based signaling pathways in the CNS. Further study on the roles of thiol-dependent redox systems in the CNS will improve our understanding of the pathogenesis of many human neuronal disorders and also help to develop novel protective and therapeutic strategies against neuronal diseases. Antioxid. Redox Signal. 27, 989-1010.

  17. Observing the work of the Clinical Nurse Specialist: a pilot study.

    PubMed

    Darmody, Julie V

    2005-01-01

    The Clinical Nurse Specialist (CNS) is an advanced practice nurse (APN) with graduate preparation as a clinical expert within a specialty area of nursing practice. There is a need for information about the work of the CNS in order to link CNS activities to outcomes and costs of care. To describe the work of the CNS in the acute care setting using the National Association of Clinical Nurse Specialists (NACNS) model as an organizing framework. Descriptive pilot study of the work of the CNS in acute care. A 500-bed academic medical center located in the Midwestern United States. Five masters-prepared APNs in a unit-based CNS role. Direct observation and time study were used to record activities and time for 4 hours with each CNS (n = 5) for a total of 20 hours of observation. CNS activity and time within each practice domain included patient/client (30%), nursing (44%), organization/system (10%), and other activities (16%). Specific activities observed were linked to possible outcomes in the NACNS framework. The NACNS model provided a useful framework for developing a data collection tool that can be used in a larger study that analyzes the work of the acute care CNS. Describing the work of the CNS is an important preliminary step to measuring outcomes and costs of care.

  18. Immune System Activation and Depression: Roles of Serotonin in the Central Nervous System and Periphery.

    PubMed

    Robson, Matthew J; Quinlan, Meagan A; Blakely, Randy D

    2017-05-17

    Serotonin (5-hydroxytryptamine, 5-HT) has long been recognized as a key contributor to the regulation of mood and anxiety and is strongly associated with the etiology of major depressive disorder (MDD). Although more known for its roles within the central nervous system (CNS), 5-HT is recognized to modulate several key aspects of immune system function that may contribute to the development of MDD. Copious amounts of research have outlined a connection between alterations in immune system function, inflammation status, and MDD. Supporting this connection, peripheral immune activation results in changes in the function and/or expression of many components of 5-HT signaling that are associated with depressive-like phenotypes. How 5-HT is utilized by the immune system to effect CNS function and ultimately behaviors related to depression is still not well understood. This Review summarizes the evidence that immune system alterations related to depression affect CNS 5-HT signaling that can alter MDD-relevant behaviors and that 5-HT regulates immune system signaling within the CNS and periphery. We suggest that targeting the interrelationships between immune and 5-HT signaling may provide more effective treatments for subsets of those suffering from inflammation-associated MDD.

  19. Thermoresponsive Copolypeptide Hydrogel Vehicles for Central Nervous System Cell Delivery.

    PubMed

    Zhang, Shanshan; Burda, Joshua E; Anderson, Mark A; Zhao, Ziru; Ao, Yan; Cheng, Yin; Sun, Yi; Deming, Timothy J; Sofroniew, Michael V

    2015-08-10

    Biomaterial vehicles have the potential to facilitate cell transplantation in the central nervous system (CNS). We have previously shown that highly tunable ionic diblock copolypeptide hydrogels (DCH) can provide sustained release of hydrophilic and hydrophobic molecules in the CNS. Here, we show that recently developed non-ionic and thermoresponsive DCH called DCH T exhibit excellent cytocompatibility. Neural stem cell (NSC) suspensions in DCH T were easily injected as liquids at room temperature. DCH T with a viscosity tuned to prevent cell sedimentation and clumping significantly increased the survival of NSC passed through injection cannulae. At body temperature, DCH T self-assembled into hydrogels with a stiffness tuned to that of CNS tissue. After injection in vivo , DCH T significantly increased by three-fold the survival of NSC grafted into healthy CNS. In injured CNS, NSC injected as suspensions in DCH T distributed well in non-neural lesion cores, integrated with healthy neural cells at lesion perimeters and supported regrowing host nerve fibers. Our findings show that non-ionic DCH T have numerous advantageous properties that make them useful tools for in vivo delivery of cells and molecules in the CNS for experimental investigations and potential therapeutic strategies.

  20. Thyroid Hormone in the CNS: Contribution of Neuron-Glia Interaction.

    PubMed

    Noda, Mami

    2018-01-01

    The endocrine system and the central nervous system (CNS) are intimately linked. Among hormones closely related to the nervous system, thyroid hormones (THs) are critical for the regulation of development and differentiation of neurons and neuroglia and hence for development and function of the CNS. T3 (3,3',5-triiodothyronine), an active form of TH, is important not only for neuronal development but also for differentiation of astrocytes and oligodendrocytes, and for microglial development. In adult brain, T3 affects glial morphology with sex- and age-dependent manner and therefore may affect their function, leading to influence on neuron-glia interaction. T3 is an important signaling factor that affects microglial functions such as migration and phagocytosis via complex mechanisms. Therefore, dysfunction of THs may impair glial function as well as neuronal function and thus disturb the brain, which may cause mental disorders. Investigations on molecular and cellular basis of hyperthyroidism and hypothyroidism will help us to understand changes in neuron-glia interaction and therefore consequent psychiatric symptoms. © 2018 Elsevier Inc. All rights reserved.

  1. Diagnosis of central nervous system relapse of pediatric acute lymphoblastic leukemia: Impact of routine cytological CSF analysis at the time of intrathecal chemotherapy.

    PubMed

    Gassas, Adam; Krueger, Joerg; Alvi, Saima; Sung, Lillian; Hitzler, Johanne; Lieberman, Lani

    2014-12-01

    Despite the success of central nervous system (CNS) directed therapy in pediatric acute lymphoblastic leukemia (ALL), relapse involving the CNS continues to be observed in 5-10% of children when utilizing standard intrathecal prophylactic chemotherapy. While most pediatric ALL treatment protocols mandate regular lumbar punctures (LP) for the intrathecal injection of chemotherapy, the value of routine cytological analysis of cerebrospinal fluid (CSF) during therapy is unknown. Our objective was to assess the diagnostic value of routine CSF analysis during ALL therapy. To allow for at least 10 years of follow up from ALL diagnosis, children (0-18 years) with ALL diagnosed and treated at SickKids, Toronto, Canada between 1994-2004 were studied. Medical records of patients with CNS relapse were examined to determine whether CNS relapse was diagnosed based on cytology of a routinely obtained CSF sample, a CSF sample obtained because of signs and symptoms or a CSF sample obtained after the diagnosis of a bone marrow relapse. Of 494 children treated for ALL, 31 (6.6%) developed a relapse of ALL involving the CNS. Twenty-two had an isolated CNS relapse and nine had a combined bone marrow and CNS relapse. Among patients with isolated CNS relapse, 73% (16/22) were diagnosed based on routine CSF samples obtained from asymptomatic children. Conversely, 89% (8/9) of children with combined bone marrow and CNS relapse presented with symptoms and signs that prompted CSF examination. Routine CSF examination at the time of LP for intrathecal chemotherapy is useful in detecting CNS relapse. © 2014 Wiley Periodicals, Inc.

  2. Microparticles: A New Perspective in Central Nervous System Disorders

    PubMed Central

    Schindler, Stephanie M.; Little, Jonathan P.

    2014-01-01

    Microparticles (MPs) are a heterogeneous population of small cell-derived vesicles, ranging in size from 0.1 to 1 μm. They contain a variety of bioactive molecules, including proteins, biolipids, and nucleic acids, which can be transferred between cells without direct cell-to-cell contact. Consequently, MPs represent a novel form of intercellular communication, which could play a role in both physiological and pathological processes. Growing evidence indicates that circulating MPs contribute to the development of cancer, inflammation, and autoimmune and cardiovascular diseases. Most cell types of the central nervous system (CNS) have also been shown to release MPs, which could be important for neurodevelopment, CNS maintenance, and pathologies. In disease, levels of certain MPs appear elevated; therefore, they may serve as biomarkers allowing for the development of new diagnostic tools for detecting the early stages of CNS pathologies. Quantification and characterization of MPs could also provide useful information for making decisions on treatment options and for monitoring success of therapies, particularly for such difficult-to-treat diseases as cerebral malaria, multiple sclerosis, and Alzheimer's disease. Overall, studies on MPs in the CNS represent a novel area of research, which promises to expand the knowledge on the mechanisms governing some of the physiological and pathophysiological processes of the CNS. PMID:24860829

  3. Marijuana, Spice ‘herbal high’, and early neural development: implications for rescheduling and legalization

    PubMed Central

    Psychoyos, Delphine; Vinod, K. Yaragudri

    2014-01-01

    Marijuana is the most widely used illicit drug by pregnant women in the world. In utero exposure to Δ9-tetrahydrocannabinol (Δ9-THC), a major psychoactive component of marijuana, is associated with an increased risk for anencephaly and neurobehavioural deficiencies in the offspring, including attention deficit hyperactivity disorder (ADHD), learning disabilities, and memory impairment. Recent studies demonstrate that the developing central nervous system (CNS) is susceptible to the effects of Δ9-THC and other cannabimimetics, including the psychoactive ingredients of the branded product ‘Spice’ branded products. These exocannabinoids interfere with the function of an endocannabinoid (eCB) system, present in the developing CNS from E12.5 (week 5 of gestation in humans), and required for proliferation, migration, and differentiation of neurons. Until recently, it was not known whether the eCB system is also present in the developing CNS during the initial stages of its ontogeny, i.e. from E7.0 onwards (week 2 of gestation in humans), and if so, whether this system is also susceptible to the action of exocannabinoids. Here, we review current data, in which the presence of an eCB system during the initial stage of development of the CNS is demonstrated. Furthermore, we focus on recent advances on the effect of canabimimetics on early gestation. The relevance of these findings and potential adverse developmental consequences of in utero exposure to ‘high potency’ marijuana, Spice branded products and/or cannabinoid research chemicals during this period is discussed. Finally, we address the implication of these findings in terms of the potential dangers of synthetic cannabinoid use during pregnancy, and the ongoing debate over legalization of marijuana. PMID:22887867

  4. HIV-1 Proteins, Tat and gp120, Target the Developing Dopamine System

    PubMed Central

    Fitting, Sylvia; Booze, Rosemarie M.; Mactutus, Charles F.

    2015-01-01

    In 2014, 3.2 million children (< 15 years of age) were estimated to be living with HIV and AIDS worldwide, with the 240,000 newly infected children in the past year, i.e., another child infected approximately every two minutes [1]. The primary mode of HIV infection is through mother-to-child transmission (MTCT), occurring either in utero, intrapartum, or during breastfeeding. The effects of HIV-1 on the central nervous system (CNS) are putatively accepted to be mediated, in part, via viral proteins, such as Tat and gp120. The current review focuses on the targets of HIV-1 proteins during the development of the dopamine (DA) system, which appears to be specifically susceptible in HIV-1-infected children. Collectively, the data suggest that the DA system is a clinically relevant target in chronic HIV-1 infection, is one of the major targets in pediatric HIV-1 CNS infection, and may be specifically susceptible during development. The present review discusses the development of the DA system, follows the possible targets of the HIV-1 proteins during the development of the DA system, and suggests potential therapeutic approaches. By coupling our growing understanding of the development of the CNS with the pronounced age-related differences in disease progression, new light may be shed on the neurological and neurocognitive deficits that follow HIV-1 infection. PMID:25613135

  5. Searching for the Origin through Central Nervous System: A Review and Thought which Related to Microgravity, Evolution, Big Bang Theory and Universes, Soul and Brainwaves, Greater Limbic System and Seat of the Soul.

    PubMed

    Idris, Zamzuri

    2014-07-01

    Cerebrospinal fluid (CSF) serves buoyancy. The buoyancy thought to play crucial role in many aspects of the central nervous system (CNS). Weightlessness is produced mainly by the CSF. This manuscript is purposely made to discuss its significance which thought contributing towards an ideal environment for the CNS to develop and function normally. The idea of microgravity environment for the CNS is supported not only by the weightlessness concept of the brain, but also the noted anatomical position of the CNS. The CNS is positioned in bowing position (at main cephalic flexure) which is nearly similar to an astronaut in a microgravity chamber, fetus in the amniotic fluid at early gestation, and animals and plants in the ocean or on the land. Therefore, this microgravity position can bring us closer to the concept of origin. The hypothesis on 'the origin' based on the microgravity were explored and their similarities were identified including the brainwaves and soul. Subsequently a review on soul was made. Interestingly, an idea from Leonardo da Vinci seems in agreement with the notion of seat of the soul at the greater limbic system which has a distinctive feature of "from God back to God".

  6. Tissue factor pathway inhibitor-2: a novel gene involved in zebrafish central nervous system development.

    PubMed

    Zhang, Yanli; Wang, Lina; Zhou, Wenhao; Wang, Huijun; Zhang, Jin; Deng, Shanshan; Li, Weihua; Li, Huawei; Mao, Zuohua; Ma, Duan

    2013-09-01

    Tissue factor pathway inhibitor-2 (Tfpi-2) is an important serine protease inhibitor in the extracellular matrix (ECM), but its precise physiological significance remains unknown. This work is part of a series of studies intended to investigate functional roles of Tfpi-2 and explore the underlying molecular mechanisms. First, we cloned and identified zebrafish Tfpi-2 (zTfpi-2) as an evolutionarily conserved protein essential for zebrafish development. We also demonstrated that ztfpi-2 is mainly expressed in the central nervous system (CNS) of zebrafish, and embryonic depletion of ztfpi-2 caused severe CNS defects. In addition, changes of neural markers, including pax2a, egr2b, huC, ngn1, gfap and olig2, confirmed the presence of developmental abnormalities in the relevant regions of ztfpi-2 morphants. Using microarray analysis, we found that members of the Notch pathway, especially her4 and mib, which mediate lateral inhibition in CNS development, were also downregulated. Intriguingly, both her4 and mib were able to partially rescue the ztfpi-2 morphant phenotype. Furthermore, Morpholino knockdown of ztfpi-2 resulted in upregulation of neuronal markers while downregulation of glial markers, providing evidence that the Notch pathway is probably involved in ztfpi-2-mediated CNS development. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Central nervous system complications of non-Hodgkin's lymphoma. The potential role for prophylactic therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, R.C.; Howser, D.M.; Anderson, T.

    1979-03-01

    In 38 patients with non-Hodgkin's lymphoma, involvement of the central nervous system (CNS) by malignant lymphoma developed during an eight year period. All patients had lymphomatous meningitis; clinical involvement of the spinal nerves or cranial nerves suggested the diagnosis. Spinal fluid was abnormal in 97% of the patients although a positive cytology could be documented in only 67% by lumbar puncture. The histology in 82% of the patients was diffuse. Involvement of the CNS in nodular lymphoma was uncommon (3%), and the histology in virtually all of these patients had converted to diffuse. At the time of diagnosis of CNSmore » disease, 95% of the patients had other evidence of advanced disease; 66% had bone marrow involvement. In only 18% of the patients did CNS disease develop while they werin clinical remission. Eighty-five percent of the patients treated with whole brain irradiation and intrathecal chemotherapy had a good clinical response. Knowledge of these risk factors permits definition of a group of patients who may benefit from CNS prophylaxis.« less

  8. Central Nervous System Vasculitis

    MedlinePlus

    ... of Vasculitis / Central Nervous System (CNS) Vasculitis Central Nervous System (CNS) Vasculitis Swap out your current Facebook Profile ... Facebook personal page. Replace with this image. Central nervous system (CNS) vasculitis is inflammation of blood vessel walls ...

  9. 77 FR 61033 - Self-Regulatory Organizations; National Securities Clearing Corporation; Order Approving Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... an ongoing accounting system that nets each day's Settling Trades with the prior day's Closing... Continuous Net Settlement (``CNS'') system \\5\\ (and for CNS-eligible items that are designated to be... value through the CNS system. Non-CNS eligible items, however, are assigned a market value pursuant to...

  10. Hedgehog signaling regulates gene expression in planarian glia.

    PubMed

    Wang, Irving E; Lapan, Sylvain W; Scimone, M Lucila; Clandinin, Thomas R; Reddien, Peter W

    2016-09-09

    Hedgehog signaling is critical for vertebrate central nervous system (CNS) development, but its role in CNS biology in other organisms is poorly characterized. In the planarian Schmidtea mediterranea, hedgehog (hh ) is expressed in medial cephalic ganglia neurons, suggesting a possible role in CNS maintenance or regeneration. We performed RNA sequencing of planarian brain tissue following RNAi of hh and patched (ptc) , which encodes the Hh receptor. Two misregulated genes, intermediate filament-1 (if-1 ) and calamari (cali ), were expressed in a previously unidentified non-neural CNS cell type. These cells expressed orthologs of astrocyte-associated genes involved in neurotransmitter uptake and metabolism, and extended processes enveloping regions of high synapse concentration. We propose that these cells are planarian glia. Planarian glia were distributed broadly, but only expressed if-1 and cali in the neuropil near hh + neurons. Planarian glia and their regulation by Hedgehog signaling present a novel tractable system for dissection of glia biology.

  11. Neuroinvasion and Inflammation in Viral Central Nervous System Infections

    PubMed Central

    Schroten, Horst

    2016-01-01

    Neurotropic viruses can cause devastating central nervous system (CNS) infections, especially in young children and the elderly. The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) have been described as relevant sites of entry for specific viruses as well as for leukocytes, which are recruited during the proinflammatory response in the course of CNS infection. In this review, we illustrate examples of established brain barrier models, in which the specific reaction patterns of different viral families can be analyzed. Furthermore, we highlight the pathogen specific array of cytokines and chemokines involved in immunological responses in viral CNS infections. We discuss in detail the link between specific cytokines and chemokines and leukocyte migration profiles. The thorough understanding of the complex and interrelated inflammatory mechanisms as well as identifying universal mediators promoting CNS inflammation is essential for the development of new diagnostic and treatment strategies. PMID:27313404

  12. Longitudinal Association Between Human Parechovirus Central Nervous System Infection And Gross-motor Neurodevelopment in Young Children.

    PubMed

    van Hinsbergh, Ted M T; Elbers, Roy G; van Furth, Marceline A M; Obihara, Charlie C C

    2018-03-27

    A paucity of studies investigated the association between human parechovirus (HPeV) central nervous system (CNS) infection and motor and neurocognitive development of children. This study describes the gross-motor function (GMF) in young children during 24 months after HPeV-CNS-infection compared with children in whom no pathogen was detected. GMF of children was assessed with alberta infant motor scale, bayley scales of infant and toddler development or movement assessment battery for children. We conducted multivariate analyses and adjusted for age at onset, maternal education and time from infection. Of 91 included children, aged at onset <24 months, 11 had HPeV-CNS-infection and in 47 no pathogen was detected. Nineteen children were excluded due to the presence of other infection, preterm birth or genetic disorder and in 14 children parents refused to consent for participation. We found no longitudinal association between HPeV-CNS-infection and GMF (β = -0.53; 95%CI =-1.18 to 0.07; P = 0.11). At 6 months, children with HPeV-CNS-infection had suspect GMF delay compared with the non-pathogen group (mean difference = 1.12; 95%CI =-1.96 to -0.30; P = 0.03). This difference disappeared during 24 months follow-up and, after adjustment for age at onset, both groups scored within the normal range for age. Maternal education and time from infection did not have any meaningful influence. We found no longitudinal association between HPeV-CNS-infection and GMF during the first 24 months follow-up. Children with HPeV-CNS-infection showed a suspect GMF delay at 6 months follow-up. This normalized during 24 month follow-up.

  13. Restoration of central nervous system alpha-N-acetylglucosaminidase activity and therapeutic benefits in mucopolysaccharidosis IIIB mice by a single intracisternal recombinant adeno-associated viral type 2 vector delivery.

    PubMed

    Fu, Haiyan; DiRosario, Julianne; Kang, Lu; Muenzer, Joseph; McCarty, Douglas M

    2010-07-01

    Finding efficient central nervous system (CNS) delivery approaches has been the major challenge facing therapeutic development for treating diseases with global neurological manifestation, such as mucopolysaccharidosis (MPS) IIIB, a lysosomal storage disease, caused by autosomal recessive defect of alpha-N-acetylglucosaminidase (NaGlu). Previously, we developed an approach, intracisternal (i.c.) injection, to deliver recombinant adeno-associated viral (rAAV) vector to the CNS of mice, leading to a widespread periventricular distribution of transduction. In the present study, we delivered rAAV2 vector expressing human NaGlu into the CNS of MPS IIIB mice by an i.c. injection approach, to test its therapeutic efficacy and feasibility for treating the neurological manifestation of the disease. We demonstrated significant functional neurological benefits of a single i.c. vector infusion in adult MPS IIIB mice. The treatment slowed the disease progression by mediating widespread recombinant NaGlu expression in the CNS, resulting in the reduction of brain lysosomal storage pathology, significantly improved cognitive function and prolonged survival. However, persisting motor function deficits suggested that pathology in areas outside the CNS contributes to the MPS IIIB behavioral phenotype. The therapeutic benefit of i.c. rAAV2 delivery was dose-dependent and could be attribute solely to the CNS transduction because the procedure did not lead to detectable transduction in somatic tissues. A single IC rAAV2 gene delivery is functionally beneficial for treating the CNS disease of MPS IIIB in mice. It is immediately clinically translatable, with the potential of improving the quality of life for patients with MPS IIIB.

  14. Risk of tumor transmission after thoracic allograft transplantation from adult donors with central nervous system neoplasm-A UNOS database study.

    PubMed

    Hynes, Conor F; Ramakrishnan, Karthik; Alfares, Fahad A; Endicott, Kendal M; Hammond-Jack, Katrina; Zurakowski, David; Jonas, Richard A; Nath, Dilip S

    2017-04-01

    We analyzed the UNOS database to better define the risk of transmission of central nervous system (CNS) tumors from donors to adult recipients of thoracic organs. Data were procured from the Standard Transplant Analysis and Research dataset files. Donors with CNS tumors were identified, and recipients from these donors comprised the study group (Group I). The remaining recipients of organs from donors who did not have CNS tumors formed the control group (Group II). Incidence of recipient CNS tumors, donor-related malignancies, and overall survival were calculated and compared in addition to multivariable logistic regression. A cohort of 58 314 adult thoracic organ recipients were included, of which 337 received organs from donors who had documented CNS tumors (Group I). None of these recipients developed CNS tumors at a median follow-up of 72 months (IR: 30-130 months). Although overall mortality in terms of the percentage was higher in Group I than Group II (163/320=51% vs 22 123/52 691=42%), Kaplan-Meier curves indicate no significant difference in the time to death between the two groups (P=.92). There is little risk of transmission of the common nonaggressive CNS tumors to recipients of thoracic organs. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. The adverse effects of air pollution on the nervous system.

    PubMed

    Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H; Genc, Kursad

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health.

  16. The Adverse Effects of Air Pollution on the Nervous System

    PubMed Central

    Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H.; Genc, Kursad

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health. PMID:22523490

  17. Talking back: Development of the olivocochlear efferent system.

    PubMed

    Frank, Michelle M; Goodrich, Lisa V

    2018-06-26

    Developing sensory systems must coordinate the growth of neural circuitry spanning from receptors in the peripheral nervous system (PNS) to multilayered networks within the central nervous system (CNS). This breadth presents particular challenges, as nascent processes must navigate across the CNS-PNS boundary and coalesce into a tightly intermingled wiring pattern, thereby enabling reliable integration from the PNS to the CNS and back. In the auditory system, feedforward spiral ganglion neurons (SGNs) from the periphery collect sound information via tonotopically organized connections in the cochlea and transmit this information to the brainstem for processing via the VIII cranial nerve. In turn, feedback olivocochlear neurons (OCNs) housed in the auditory brainstem send projections into the periphery, also through the VIII nerve. OCNs are motor neuron-like efferent cells that influence auditory processing within the cochlea and protect against noise damage in adult animals. These aligned feedforward and feedback systems develop in parallel, with SGN central axons reaching the developing auditory brainstem around the same time that the OCN axons extend out toward the developing inner ear. Recent findings have begun to unravel the genetic and molecular mechanisms that guide OCN development, from their origins in a generic pool of motor neuron precursors to their specialized roles as modulators of cochlear activity. One recurrent theme is the importance of efferent-afferent interactions, as afferent SGNs guide OCNs to their final locations within the sensory epithelium, and efferent OCNs shape the activity of the developing auditory system. This article is categorized under: Nervous System Development > Vertebrates: Regional Development. © 2018 Wiley Periodicals, Inc.

  18. An autopsy case of chronic active Epstein-Barr virus infection (CAEBV): distribution of central nervous system (CNS) lesions.

    PubMed

    Kobayashi, Zen; Tsuchiya, Kuniaki; Takahashi, Makoto; Yokota, Osamu; Sasaki, Atsushi; Bhunchet, Ekapot; Arai, Tetsuaki; Akiyama, Haruhiko; Kamoshita, Masaharu; Kotera, Minoru; Mizusawa, Hidehiro

    2008-12-15

    A 27-year-old Japanese man developed recurrent respiratory and central nervous system (CNS) symptoms, and hemophagocytic syndromes with a clinical course of 6 years. CT demonstrated multiple nodular lesions in the bilateral lungs, and MRI revealed multiple abnormal intensity areas in the brain and spinal cord. Cerebrospinal fluid (CSF) examination disclosed mild pleocytosis and the presence of Epstein-Barr virus (EBV)-DNA detected by polymerase chain reaction (PCR). The patient died of a hemorrhagic shock associated with a hemophagocytic syndrome. A postmortem study revealed massive hemorrhage in the abdominal cavity and iliopsoas muscles, as well as diffuse infiltration of lymphocytes and/or macrophages into the lungs, liver, kidneys, spleen, cardiac muscle, bone marrow, and CNS. The severe involvement was demonstrated in the CNS, especially in the spinal cord and brainstem. The CD3 positive cells of the brainstem were EBV-encoded RNA 1 positive. This is the first autopsy case of chronic active EBV infection (CAEBV) in which severe and extensive CNS involvement was demonstrated.

  19. Data Quality Monitoring in Clinical Trials: Has It Been Worth It? An Evaluation and Prediction of the Future by All Stakeholders

    PubMed Central

    Kalali, Amir; West, Mark; Walling, David; Hilt, Dana; Engelhardt, Nina; Alphs, Larry; Loebel, Antony; Vanover, Kim; Atkinson, Sarah; Opler, Mark; Sachs, Gary; Nations, Kari; Brady, Chris

    2016-01-01

    This paper summarizes the results of the CNS Summit Data Quality Monitoring Workgroup analysis of current data quality monitoring techniques used in central nervous system (CNS) clinical trials. Based on audience polls conducted at the CNS Summit 2014, the panel determined that current techniques used to monitor data and quality in clinical trials are broad, uncontrolled, and lack independent verification. The majority of those polled endorse the value of monitoring data. Case examples of current data quality methodology are presented and discussed. Perspectives of pharmaceutical companies and trial sites regarding data quality monitoring are presented. Potential future developments in CNS data quality monitoring are described. Increased utilization of biomarkers as objective outcomes and for patient selection is considered to be the most impactful development in data quality monitoring over the next 10 years. Additional future outcome measures and patient selection approaches are discussed. PMID:27413584

  20. [Tumors of the central nervous system].

    PubMed

    Alegría-Loyola, Marco Antonio; Galnares-Olalde, Javier Andrés; Mercado, Moisés

    2017-01-01

    Central nervous system (CNS) tumors constitute a heterogeneous group of neoplasms that share a considerable morbidity and mortality rate. Recent advances in the underlying oncogenic mechanisms of these tumors have led to new classification systems, which, in turn, allow for a better diagnostic approach and therapeutic planning. Most of these neoplasms occur sporadically and several risk factors have been found to be associated with their development, such as exposure to ionizing radiation or electromagnetic fields and the concomitant presence of conditions like diabetes, hypertension and Parkinson's disease. A relatively minor proportion of primary CNS tumors occur in the context of hereditary syndromes. The purpose of this review is to analyze the etiopathogenesis, clinical presentation, diagnosis and therapy of CNS tumors with particular emphasis in the putative risk factors mentioned above.

  1. Central nervous system involvement in AIDS-related lymphomas.

    PubMed

    Barta, Stefan K; Joshi, Jitesh; Mounier, Nicolas; Xue, Xiaonan; Wang, Dan; Ribera, Josep-Maria; Navarro, Jose-Tomas; Hoffmann, Christian; Dunleavy, Kieron; Little, Richard F; Wilson, Wyndham H; Spina, Michele; Galicier, Lionel; Noy, Ariela; Sparano, Joseph A

    2016-06-01

    Central nervous system (CNS) involvement is reportedly more common in acquired immunodeficiency syndrome (AIDS)-related lymphomas (ARL). We describe factors and outcomes associated with CNS involvement at baseline (CNS(B) ) and relapse (CNS(R) ) in 886 patients with newly diagnosed ARL. Of 886 patients, 800 received either intrathecal (IT) therapy for CNS(B) or IT prophylaxis. CNS(B) was found in 13%. CNS(B) was not associated with reduced overall survival (OS). There was no difference in the prevalence of CNS(B) between the pre-combination antiretroviral therapy (cART) and cART eras. 5·3% of patients experienced CNS(R) at a median of 4·2 months after diagnosis (12% if CNS(B) ; 4% if not). Median OS after CNS(R) was 1·6 months. On multivariate analysis, only CNS(B) [hazard ratio (HR) 3·68, P = 0·005] and complete response to initial therapy (HR 0·14, P < 0·0001) were significantly associated with CNS(R) . When restricted to patients without CNS(B) , IT CNS prophylaxis with 3 vs. 1 agent did not significantly impact the risk of CNS(R) . Despite IT CNS prophylaxis, 5% of patients experienced CNS(R) . Our data confirms that CNS(R) in ARL occurs early and has a poor outcome. Complete response to initial therapy was associated with a reduced frequency of CNS(R) . Although CNS(B) conferred an increased risk for CNS(R) , it did not impact OS. © 2016 John Wiley & Sons Ltd.

  2. Considerations for an Integrated UAS CNS Architecture

    NASA Technical Reports Server (NTRS)

    Templin, Fred L.; Jain, Raj; Sheffield, Greg; Taboso-Bellesteros, Pedro; Ponchak, Denise

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating revolutionary and advanced universal, reliable, always available, cyber secure and affordable Communication, Navigation, Surveillance (CNS) options for all altitudes of UAS operations. In Spring 2015, NASA issued a Call for Proposals under NASA Research Announcements (NRA) NNH15ZEA001N, Amendment 7 Subtopic 2.4. Boeing was selected to conduct a study with the objective to determine the most promising candidate technologies for Unmanned Air Systems (UAS) air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. The overall objectives are to develop UAS CNS requirements and then develop architectures that satisfy the requirements for UAS in both controlled and uncontrolled air space. This contract is funded under NASAs Aeronautics Research Mission Directorates (ARMD) Aviation Operations and Safety Program (AOSP) Safe Autonomous Systems Operations (SASO) project and proposes technologies for the Unmanned Air Systems Traffic Management (UTM) service.There is a need for accommodating large-scale populations of Unmanned Air Systems (UAS) in the national air space. Scale obviously impacts capacity planning for Communication, Navitation, and Surveillance (CNS) technologies. For example, can wireless communications data links provide the necessary capacity for accommodating millions of small UASs (sUAS) nationwide? Does the communications network provide sufficient Internet Protocol (IP) address space to allow air traffic control to securely address both UAS teams as a whole as well as individual UAS within each team? Can navigation and surveillance approaches assure safe route planning and safe separation of vehicles even in crowded skies?Our objective is to identify revolutionary and advanced CNS alternatives supporting UASs operating at all altitudes and in all airspace while accurately navigating in the absence of navigational aids. These CNS alternatives must be reliable, redundant, always available, cyber-secure, and affordable for all types of vehicles including small UAS to large transport category aircraft. The approach will identify CNS technology candidates that can meet the needs of the range of UAS missions to specific air traffic management applications where they will be most beneficial and cost effective.

  3. Considerations for an Integrated UAS CNS Architecture

    NASA Technical Reports Server (NTRS)

    Templin, Fred L.; Jain, Raj; Sheffield, Greg; Taboso-Bellesteros, Pedro; Ponchak, Denise

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating revolutionary and advanced universal, reliable, always available, cyber secure and affordable Communication, Navigation, Surveillance (CNS) options for all altitudes of UAS operations. In Spring 2015, NASA issued a Call for Proposals under NASA Research Announcements (NRA) NNH15ZEA001N, Amendment 7 Subtopic 2.4. Boeing was selected to conduct a study with the objective to determine the most promising candidate technologies for Unmanned Air Systems (UAS) air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. The overall objectives are to develop UAS CNS requirements and then develop architectures that satisfy the requirements for UAS in both controlled and uncontrolled air space. This contract is funded under NASAs Aeronautics Research Mission Directorates (ARMD) Aviation Operations and Safety Program (AOSP) Safe Autonomous Systems Operations (SASO) project and proposes technologies for the Unmanned Air Systems Traffic Management (UTM) service.There is a need for accommodating large-scale populations of Unmanned Air Systems (UAS) in the national air space. Scale obviously impacts capacity planning for Communication, Navigation, and Surveillance (CNS) technologies. For example, can wireless communications data links provide the necessary capacity for accommodating millions of small UASs (sUAS) nationwide? Does the communications network provide sufficient Internet Protocol (IP) address space to allow air traffic control to securely address both UAS teams as a whole as well as individual UAS within each team? Can navigation and surveillance approaches assure safe route planning and safe separation of vehicles even in crowded skies?Our objective is to identify revolutionary and advanced CNS alternatives supporting UASs operating at all altitudes and in all airspace while accurately navigating in the absence of navigational aids. These CNS alternatives must be reliable, redundant, always available, cyber-secure, and affordable for all types of vehicles including small UAS to large transport category aircraft. The approach will identify CNS technology candidates that can meet the needs of the range of UAS missions to specific air traffic management applications where they will be most beneficial and cost effective.

  4. The impact of clinical nurse specialists on clinical pathways in the application of evidence-based practice.

    PubMed

    Gurzick, Martha; Kesten, Karen S

    2010-01-01

    The purpose of this article was to address the call for evidence-based practice through the development of clinical pathways and to assert the role of the clinical nurse specialist (CNS) as a champion in clinical pathway implementation. In the current health care system, providing quality of care while maintaining cost-effectiveness is an ever-growing battle that institutions face. The CNS's role is central to meeting these demands. An extensive literature review has been conducted to validate the use of clinical pathways as a means of improving patient outcomes. This literature also suggests that clinical pathways must be developed, implemented, and evaluated utilizing validated methods including the use of best practice standards. Execution of clinical pathways should include a clinical expert, who has the ability to look at the system as a whole and can facilitate learning and change by employing a multitude of competencies while maintaining a sphere of influence over patient and families, nurses, and the system. The CNS plays a pivotal role in influencing effective clinical pathway development, implementation, utilization, and ongoing evaluation to ensure improved patient outcomes and reduced costs. This article expands upon the call for evidence-based practice through the utilization of clinical pathways to improve patient outcomes and reduce costs and stresses the importance of the CNS as a primary figure for ensuring proper pathway development, implementation, and ongoing evaluation. Copyright 2010 Elsevier Inc. All rights reserved.

  5. The effect of glia-glia interactions on oligodendrocyte precursor cell biology during development and in demyelinating diseases

    PubMed Central

    Clemente, Diego; Ortega, María Cristina; Melero-Jerez, Carolina; de Castro, Fernando

    2013-01-01

    Oligodendrocyte precursor cells (OPCs) originate in specific areas of the developing central nervous system (CNS). Once generated, they migrate towards their destinations where they differentiate into mature oligodendrocytes. In the adult, 5–8% of all cells in the CNS are OPCs, cells that retain the capacity to proliferate, migrate, and differentiate into oligodendrocytes. Indeed, these endogenous OPCs react to damage in demyelinating diseases, like multiple sclerosis (MS), representing a key element in spontaneous remyelination. In the present work, we review the specific interactions between OPCs and other glial cells (astrocytes, microglia) during CNS development and in the pathological scenario of MS. We focus on: (i) the role of astrocytes in maintaining the homeostasis and spatial distribution of different secreted cues that determine OPC proliferation, migration, and differentiation during CNS development; (ii) the role of microglia and astrocytes in the redistribution of iron, which is crucial for myelin synthesis during CNS development and for myelin repair in MS; (iii) how microglia secrete different molecules, e.g., growth factors, that favor the recruitment of OPCs in acute phases of MS lesions; and (iv) how astrocytes modify the extracellular matrix in MS lesions, affecting the ability of OPCs to attempt spontaneous remyelination. Together, these issues demonstrate how both astroglia and microglia influence OPCs in physiological and pathological situations, reinforcing the concept that both development and neural repair are complex and global phenomena. Understanding the molecular and cellular mechanisms that control OPC survival, proliferation, migration, and differentiation during development, as well as in the mature CNS, may open new opportunities in the search for reparative therapies in demyelinating diseases like MS. PMID:24391545

  6. Nanomedicine in Central Nervous System (CNS) Disorders: A Present and Future Prospective

    PubMed Central

    Soni, Shringika; Ruhela, Rakesh Kumar; Medhi, Bikash

    2016-01-01

    Purpose: For the past few decades central nervous system disorders were considered as a major strike on human health and social system of developing countries. The natural therapeutic methods for CNS disorders limited for many patients. Moreover, nanotechnology-based drug delivery to the brain may an exciting and promising platform to overcome the problem of BBB crossing. In this review, first we focused on the role of the blood-brain barrier in drug delivery; and second, we summarized synthesis methods of nanomedicine and their role in different CNS disorder. Method: We reviewed the PubMed databases and extracted several kinds of literature on neuro nanomedicines using keywords, CNS disorders, nanomedicine, and nanotechnology. The inclusion criteria included chemical and green synthesis methods for synthesis of nanoparticles encapsulated drugs and, their in-vivo and in-vitro studies. We excluded nanomedicine gene therapy and nanomaterial in brain imaging. Results: In this review, we tried to identify a highly efficient method for nanomedicine synthesis and their efficacy in neuronal disorders. SLN and PNP encapsulated drugs reported highly efficient by easily crossing BBB. Although, these neuro-nanomedicine play significant role in therapeutics but some metallic nanoparticles reported the adverse effect on developing the brain. Conclusion: Although impressive advancement has made via innovative potential drug development, but their efficacy is still moderate due to limited brain permeability. To overcome this constraint,powerful tool in CNS therapeutic intervention provided by nanotechnology-based drug delivery methods. Due to its small and biofunctionalization characteristics, nanomedicine can easily penetrate and facilitate the drug through the barrier. But still, understanding of their toxicity level, optimization and standardization are a long way to go. PMID:27766216

  7. Bortezomib-related neuropathy may mask CNS relapse in multiple myeloma: A call for diligence.

    PubMed

    Abid, Muhammad Bilal; De Mel, Sanjay; Abid, Muhammad Abbas; Tan, Kong Bing; Chng, Wee Joo

    2016-07-02

    Neuropathy is a common adverse effect of bortezomib. Isolated central nervous system (CNS) relapse in MM remains exceedingly rare and carries a dismal prognosis. We present an unusual case of bortezomib related neuropathy masking a CNS relapse of MM. A 57-year-old female was diagnosed with standard-risk MM with clinical and cytogenetic features not typically associated with CNS involvement. She was treated with 4 cycles of bortezomib/cyclophosphamide/dexamethasone (VCD) and achieved a VGPR, after which she underwent an autologous stem cell transplant (ASCT) followed by bortezomib maintenance. Six months after ASCT she developed symptoms suggestive of peripheral neuropathy which was attributed to bortezomib. However the symptoms persisted despite discontinuation of bortezomib. Imaging and cerebrospinal fluid analysis subsequently confirmed a CNS relapse. CNS involvement in MM (CNS-MM) is uncommon and is considered an aggressive disease. Recently published literature has reported biomarkers with prognostic potential. However, isolated CNS relapse is even less common; an event which carries a very poor prognosis. Given the heterogeneous neurologic manifestations associated with MM, clinical suspicion may be masked by confounding factors such as bortezomib-based therapy. The disease may further remain incognito if the patient does not exhibit any of the high risk features and biomarkers associated with CNS involvement. In the era of proteasome inhibitor (PtdIns)/immunomodulator (IMID)-based therapy for MM which carries neurologic adverse effects, it is prudent to consider CNS relapse early. This case further highlights the need for more robust biomarkers to predict CNS relapse and use of newer novel agents which demonstrate potential for CNS penetration.

  8. [Roles of Aquaporins in Brain Disorders].

    PubMed

    Yasui, Masato

    2015-06-01

    Aquaporin (AQP) is a water channel protein that is expressed in the cell membranes. AQPs are related to several kinds of human diseases such as cataract. In the mammalian central nervous system (CNS), AQP4 is specifically expressed in the astrocyte membranes lining the perivascular and periventricular structures. AQP4 plays a role in the development of brain edema associated with certain brain disorders. Neuromyelitis optica (NMO) is a demyelinating disorder, and patients with NMO develop autoimmune antibodies against AQP4 in their serum. Therefore, AQP4 is involved in NMO pathogenesis. A new concept referred to as "glymphatic pathway" has been recently proposed to explain the lymphatic system in the CNS. Dysfunction of the "glymphatic pathway" may cause several neurodegenerative diseases and mood disorders. Importantly, AQP4 may play a role in the "glymphatic pathway". Further investigation of AQP4 in CNS disorders is necessary, and a new drug against AQP4 is expected.

  9. Biomaterial Scaffolds in Regenerative Therapy of the Central Nervous System

    PubMed Central

    Tan, Hong

    2018-01-01

    The central nervous system (CNS) is the most important section of the nervous system as it regulates the function of various organs. Injury to the CNS causes impairment of neurological functions in corresponding sites and further leads to long-term patient disability. CNS regeneration is difficult because of its poor response to treatment and, to date, no effective therapies have been found to rectify CNS injuries. Biomaterial scaffolds have been applied with promising results in regeneration medicine. They also show great potential in CNS regeneration for tissue repair and functional recovery. Biomaterial scaffolds are applied in CNS regeneration predominantly as hydrogels and biodegradable scaffolds. They can act as cellular supportive scaffolds to facilitate cell infiltration and proliferation. They can also be combined with cell therapy to repair CNS injury. This review discusses the categories and progression of the biomaterial scaffolds that are applied in CNS regeneration. PMID:29805977

  10. Central nervous system-specific knockout of steroidogenic factor 1 results in increased anxiety-like behavior.

    PubMed

    Zhao, Liping; Kim, Ki Woo; Ikeda, Yayoi; Anderson, Kimberly K; Beck, Laurel; Chase, Stephanie; Tobet, Stuart A; Parker, Keith L

    2008-06-01

    Steroidogenic factor 1 (SF-1) plays key roles in adrenal and gonadal development, expression of pituitary gonadotropins, and development of the ventromedial hypothalamic nucleus (VMH). If kept alive by adrenal transplants, global knockout (KO) mice lacking SF-1 exhibit delayed-onset obesity and decreased locomotor activity. To define specific roles of SF-1 in the VMH, we used the Cre-loxP system to inactivate SF-1 in a central nervous system (CNS)-specific manner. These mice largely recapitulated the VMH structural defect seen in mice lacking SF-1 in all tissues. In multiple behavioral tests, mice with CNS-specific KO of SF-1 had significantly more anxiety-like behavior than wild-type littermates. The CNS-specific SF-1 KO mice had diminished expression or altered distribution in the mediobasal hypothalamus of several genes whose expression has been linked to stress and anxiety-like behavior, including brain-derived neurotrophic factor, the type 2 receptor for CRH (Crhr2), and Ucn 3. Moreover, transfection and EMSAs support a direct role of SF-1 in Crhr2 regulation. These findings reveal important roles of SF-1 in the hypothalamic expression of key regulators of anxiety-like behavior, providing a plausible molecular basis for the behavioral effect of CNS-specific KO of this nuclear receptor.

  11. Nanowired Drug Delivery Across the Blood-Brain Barrier in Central Nervous System Injury and Repair.

    PubMed

    Sharma, Aruna; Menon, Preeti; Muresanu, Dafin F; Ozkizilcik, Asya; Tian, Z Ryan; Lafuente, José V; Sharma, Hari S

    2016-01-01

    The blood-brain barrier (BBB) is a physiological regulator of transport of essential items from blood to brain for the maintenance of homeostasis of the central nervous system (CNS) within narrow limits. The BBB is also responsible for export of harmful or metabolic products from brain to blood to keep the CNS fluid microenvironment healthy. However, noxious insults to the brain caused by trauma, ischemia or environmental/chemical toxins alter the BBB function to small as well as large molecules e.g., proteins. When proteins enter the CNS fluid microenvironment, development of brain edema occurs due to altered osmotic balance between blood and brain. On the other hand, almost all neurodegenerative diseases and traumatic insults to the CNS and subsequent BBB dysfunction lead to edema formation and cell injury. To treat these brain disorders suitable drug therapy reaching their brain targets is needed. However, due to edema formation or only a focal disruption of the BBB e.g., around brain tumors, many drugs are unable to reach their CNS targets in sufficient quantity. This results in poor therapeutic outcome. Thus, new technology such as nanodelivery is needed for drugs to reach their CNS targets and be effective. In this review, use of nanowires as a possible novel tool to enhance drug delivery into the CNS in various disease models is discussed based on our investigations. These data show that nanowired delivery of drugs may have superior neuroprotective ability to treat several CNS diseases effectively indicating their role in future therapeutic strategies.

  12. Nanotechnology—novel therapeutics for CNS disorders

    PubMed Central

    Srikanth, Maya; Kessler, John A.

    2013-01-01

    Research into treatments for diseases of the CNS has made impressive strides in the past few decades, but therapeutic options are limited for many patients with CNS disorders. Nanotechnology has emerged as an exciting and promising new means of treating neurological disease, with the potential to fundamentally change the way we approach CNS-targeted therapeutics. Molecules can be nanoengineered to cross the blood–brain barrier, target specific cell or signalling systems, respond to endogenous stimuli, or act as vehicles for gene delivery, or as a matrix to promote axon elongation and support cell survival. The wide variety of available nanotechnologies allows the selection of a nanoscale material with the characteristics best suited to the therapeutic challenges posed by an individual CNS disorder. In this Review, we describe recent advances in the development of nanotechnology for the treatment of neurological disorders—in particular, neurodegenerative disease and malignant brain tumours—and for the promotion of neuroregeneration. PMID:22526003

  13. Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical wnt signaling.

    PubMed

    Zhou, Yulian; Nathans, Jeremy

    2014-10-27

    Canonical Wnt signaling in endothelial cells (ECs) is required for vascularization of the central nervous system (CNS) and for formation and maintenance of barrier properties unique to CNS vasculature. Gpr124 is an orphan member of the adhesion G protein-coupled receptor family that is expressed in ECs and is essential for CNS angiogenesis and barrier formation via an unknown mechanism. Using canonical Wnt signaling assays in cell culture and genetic loss- and gain-of-function experiments in mice, we show that Gpr124 functions as a coactivator of Wnt7a- and Wnt7b-stimulated canonical Wnt signaling via a Frizzled receptor and Lrp coreceptor and that Gpr124-stimulated signaling functions in concert with Norrin/Frizzled4 signaling to control CNS vascular development. These experiments identify Gpr124 as a ligand-specific coactivator of canonical Wnt signaling.

  14. Glutamate and Neurodegenerative Disease

    NASA Astrophysics Data System (ADS)

    Schaeffer, Eric; Duplantier, Allen

    As the main excitatory neurotransmitter in the mammalian central nervous system, glutamate is critically involved in most aspects of CNS function. Given this critical role, it is not surprising that glutamatergic dysfunction is associated with many CNS disorders. In this chapter, we review the literature that links aberrant glutamate neurotransmission with CNS pathology, with a focus on neurodegenerative diseases. The biology and pharmacology of the various glutamate receptor families are discussed, along with data which links these receptors with neurodegenerative conditions. In addition, we review progress that has been made in developing small molecule modulators of glutamate receptors and transporters, and describe how these compounds have helped us understand the complex pharmacology of glutamate in normal CNS function, as well as their potential for the treatment of neurodegenerative diseases.

  15. Colloidal stability of superparamagnetic iron oxide nanoparticles in the central nervous system: a review.

    PubMed

    Champagne, Pierre-Olivier; Westwick, Harrison; Bouthillier, Alain; Sawan, Mohamad

    2018-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) consist of nanosized metallic-based particles with unique magnetic properties. Their potential in both diagnostic and therapeutic applications in the CNS is at the source of an expanding body of the literature in recent years. Colloidal stability of nanoparticles represents their ability to resist aggregation and is a central aspect for the use of SPION in biological environment such as the CNS. This review gives a comprehensive update of the recent developments and knowledge on the determinants of colloidal stability of SPIONs in the CNS. Factors leading to aggregate formation and the repercussions of colloidal instability of SPION are reviewed in detail pertaining to their use in the CNS.

  16. Developing Extracellular Matrix Technology to Treat Retinal or Optic Nerve Injury

    PubMed Central

    van der Merwe, Yolandi

    2015-01-01

    Abstract Adult mammalian CNS neurons often degenerate after injury, leading to lost neurologic functions. In the visual system, retinal or optic nerve injury often leads to retinal ganglion cell axon degeneration and irreversible vision loss. CNS axon degeneration is increasingly linked to the innate immune response to injury, which leads to tissue-destructive inflammation and scarring. Extracellular matrix (ECM) technology can reduce inflammation, while increasing functional tissue remodeling, over scarring, in various tissues and organs, including the peripheral nervous system. However, applying ECM technology to CNS injuries has been limited and virtually unstudied in the visual system. Here we discuss advances in deriving fetal CNS-specific ECMs, like fetal porcine brain, retina, and optic nerve, and fetal non-CNS-specific ECMs, like fetal urinary bladder, and the potential for using tissue-specific ECMs to treat retinal or optic nerve injuries in two platforms. The first platform is an ECM hydrogel that can be administered as a retrobulbar, periocular, or even intraocular injection. The second platform is an ECM hydrogel and polymer “biohybrid” sheet that can be readily shaped and wrapped around a nerve. Both platforms can be tuned mechanically and biochemically to deliver factors like neurotrophins, immunotherapeutics, or stem cells. Since clinical CNS therapies often use general anti-inflammatory agents, which can reduce tissue-destructive inflammation but also suppress tissue-reparative immune system functions, tissue-specific, ECM-based devices may fill an important need by providing naturally derived, biocompatible, and highly translatable platforms that can modulate the innate immune response to promote a positive functional outcome. PMID:26478910

  17. Impact of Cranial Irradiation Added to Intrathecal Conditioning in Hematopoietic Cell Transplantation in Adult Acute Myeloid Leukemia With Central Nervous System Involvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayadev, Jyoti S.; Department of Radiation Oncology University of California-Davis Medical Center, Davis, CA; Douglas, James G., E-mail: drjay@u.washington.ed

    Purpose: Neither the prognostic importance nor the appropriate management of central nervous system (CNS) involvement is known for patients with acute myeloid leukemia (AML) undergoing hematopoietic cell transplantation (HCT). We examined the impact of a CNS irradiation boost to standard intrathecal chemotherapy (ITC). Methods and Materials: From 1995 to 2005, a total of 648 adult AML patients received a myeloablative HCT: 577 patients were CNS negative (CNS-), and 71 were CNS positive (CNS+). Of the 71 CNS+ patients, 52 received intrathecal chemotherapy alone (CNS+ITC), and 19 received ITC plus an irradiation boost (CNS+RT). Results: The CNS-, CNS+ITC, and CNS+RT patientsmore » had 1- and 5-year relapse-free survivals (RFS) of 43% and 35%, 15% and 6%, and 37% and 32%, respectively. CNS+ITC patients had a statistically significant worse RFS compared with CNS- patients (hazard ratio [HR], 2.65; 95% confidence interval [CI], 2.0-3.6; p < 0.0001). CNS+RT patients had improved relapse free survival over that of CNS+ITC patients (HR, 0.45; 95% CI, 0.2-0.8; p = 0.01). The 1- and 5-year overall survivals (OS) of patients with CNS-, CNS+ITC, and CNS+RT, were 50% and 38%, 21% and 6%, and 53% and 42%, respectively. The survival of CNS+RT were significantly better than CNS+ITC patients (p = 0.004). After adjusting for known risk factors, CNS+RT patients had a trend toward lower relapse rates and reduced nonrelapse mortality. Conclusions: CNS+ AML is associated with a poor prognosis. The role of a cranial irradiation boost to intrathecal chemotherapy appears to mitigate the risk of CNS disease, and needs to be further investigated to define optimal treatment strategies.« less

  18. New experimental models of the blood-brain barrier for CNS drug discovery

    PubMed Central

    Kaisar, Mohammad A.; Sajja, Ravi K.; Prasad, Shikha; Abhyankar, Vinay V.; Liles, Taylor; Cucullo, Luca

    2017-01-01

    Introduction The blood-brain barrier (BBB) is a dynamic biological interface which actively controls the passage of substances between the blood and the central nervous system (CNS). From a biological and functional standpoint, the BBB plays a crucial role in maintaining brain homeostasis inasmuch that deterioration of BBB functions are prodromal to many CNS disorders. Conversely, the BBB hinders the delivery of drugs targeting the brain to treat a variety of neurological diseases. Area covered This article reviews recent technological improvements and innovation in the field of BBB modeling including static and dynamic cell-based platforms, microfluidic systems and the use of stem cells and 3D printing technologies. Additionally, the authors laid out a roadmap for the integration of microfluidics and stem cell biology as a holistic approach for the development of novel in vitro BBB platforms. Expert opinion Development of effective CNS drugs has been hindered by the lack of reliable strategies to mimic the BBB and cerebrovascular impairments in vitro. Technological advancements in BBB modeling have fostered the development of highly integrative and quasi- physiological in vitro platforms to support the process of drug discovery. These advanced in vitro tools are likely to further current understanding of the cerebrovascular modulatory mechanisms. PMID:27782770

  19. Performance Enhancement of a USV INS/CNS/DVL Integration Navigation System Based on an Adaptive Information Sharing Factor Federated Filter

    PubMed Central

    Wang, Qiuying; Cui, Xufei; Li, Yibing; Ye, Fang

    2017-01-01

    To improve the ability of autonomous navigation for Unmanned Surface Vehicles (USVs), multi-sensor integrated navigation based on Inertial Navigation System (INS), Celestial Navigation System (CNS) and Doppler Velocity Log (DVL) is proposed. The CNS position and the DVL velocity are introduced as the reference information to correct the INS divergence error. The autonomy of the integrated system based on INS/CNS/DVL is much better compared with the integration based on INS/GNSS alone. However, the accuracy of DVL velocity and CNS position are decreased by the measurement noise of DVL and bad weather, respectively. Hence, the INS divergence error cannot be estimated and corrected by the reference information. To resolve the problem, the Adaptive Information Sharing Factor Federated Filter (AISFF) is introduced to fuse data. The information sharing factor of the Federated Filter is adaptively adjusted to maintaining multiple component solutions usable as back-ups, which can improve the reliability of overall system. The effectiveness of this approach is demonstrated by simulation and experiment, the results show that for the INS/CNS/DVL integrated system, when the DVL velocity accuracy is decreased and the CNS cannot work under bad weather conditions, the INS/CNS/DVL integrated system can operate stably based on the AISFF method. PMID:28165369

  20. Performance Enhancement of a USV INS/CNS/DVL Integration Navigation System Based on an Adaptive Information Sharing Factor Federated Filter.

    PubMed

    Wang, Qiuying; Cui, Xufei; Li, Yibing; Ye, Fang

    2017-02-03

    To improve the ability of autonomous navigation for Unmanned Surface Vehicles (USVs), multi-sensor integrated navigation based on Inertial Navigation System (INS), Celestial Navigation System (CNS) and Doppler Velocity Log (DVL) is proposed. The CNS position and the DVL velocity are introduced as the reference information to correct the INS divergence error. The autonomy of the integrated system based on INS/CNS/DVL is much better compared with the integration based on INS/GNSS alone. However, the accuracy of DVL velocity and CNS position are decreased by the measurement noise of DVL and bad weather, respectively. Hence, the INS divergence error cannot be estimated and corrected by the reference information. To resolve the problem, the Adaptive Information Sharing Factor Federated Filter (AISFF) is introduced to fuse data. The information sharing factor of the Federated Filter is adaptively adjusted to maintaining multiple component solutions usable as back-ups, which can improve the reliability of overall system. The effectiveness of this approach is demonstrated by simulation and experiment, the results show that for the INS/CNS/DVL integrated system, when the DVL velocity accuracy is decreased and the CNS cannot work under bad weather conditions, the INS/CNS/DVL integrated system can operate stably based on the AISFF method.

  1. Searching for the Origin through Central Nervous System: A Review and Thought which Related to Microgravity, Evolution, Big Bang Theory and Universes, Soul and Brainwaves, Greater Limbic System and Seat of the Soul

    PubMed Central

    IDRIS, Zamzuri

    2014-01-01

    Cerebrospinal fluid (CSF) serves buoyancy. The buoyancy thought to play crucial role in many aspects of the central nervous system (CNS). Weightlessness is produced mainly by the CSF. This manuscript is purposely made to discuss its significance which thought contributing towards an ideal environment for the CNS to develop and function normally. The idea of microgravity environment for the CNS is supported not only by the weightlessness concept of the brain, but also the noted anatomical position of the CNS. The CNS is positioned in bowing position (at main cephalic flexure) which is nearly similar to an astronaut in a microgravity chamber, fetus in the amniotic fluid at early gestation, and animals and plants in the ocean or on the land. Therefore, this microgravity position can bring us closer to the concept of origin. The hypothesis on ‘the origin’ based on the microgravity were explored and their similarities were identified including the brainwaves and soul. Subsequently a review on soul was made. Interestingly, an idea from Leonardo da Vinci seems in agreement with the notion of seat of the soul at the greater limbic system which has a distinctive feature of “from God back to God”. PMID:25977615

  2. CENTRAL NERVOUS SYSTEM INFECTION DURING IMMUNOSUPPRESSION

    PubMed Central

    Zunt, Joseph R.

    2009-01-01

    The central nervous system (CNS) is susceptible to bacterial, viral, and fungal infections. Suppression of the immune system by human immunodeficiency virus (HIV) infection or immunosuppressive therapy after transplantation increases susceptibility to CNS infection and modifies the presentation, diagnosis, and recommended treatment of various CNS infections. This chapter discusses how suppression of the host immune status modifies the presentation, diagnosis, and treatment of selected CNS infections. PMID:11754299

  3. Evolving Character of Chronic Central Nervous System HIV Infection

    PubMed Central

    Price, Richard W.; Spudich, Serena S.; Peterson, Julia; Joseph, Sarah; Fuchs, Dietmar; Zetterberg, Henrik; Gisslén, Magnus; Swanstrom, Ronald

    2014-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) begins early in systemic infection and continues throughout its untreated course. Despite a common cerebrospinal fluid inflammatory response, it is usually neurologically asymptomatic for much of this course, but can evolve in some individuals to HIV-associated dementia (HAD), a severe encephalopathy with characteristic cognitive and motor dysfunction. While widespread use of combination antiretroviral therapy (ART) has led to a marked decline in both the CNS infection and its neurologic severe consequence, HAD continues to afflict individuals presenting with advanced systemic infection in the developed world and a larger number in resource-poor settings where ART is more restricted. Additionally, milder CNS injury and dysfunction have broader prevalence, including in those treated with ART. Here we review the history and evolving nomenclature of HAD, its viral pathogenesis, clinical presentation and diagnosis, and treatment. PMID:24715483

  4. Evolving character of chronic central nervous system HIV infection.

    PubMed

    Price, Richard W; Spudich, Serena S; Peterson, Julia; Joseph, Sarah; Fuchs, Dietmar; Zetterberg, Henrik; Gisslén, Magnus; Swanstrom, Ronald

    2014-02-01

    Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) begins early in systemic infection and continues throughout its untreated course. Despite a common cerebrospinal fluid inflammatory response, it is usually neurologically asymptomatic for much of this course, but can evolve in some individuals to HIV-associated dementia (HAD), a severe encephalopathy with characteristic cognitive and motor dysfunction. While widespread use of combination antiretroviral therapy (ART) has led to a marked decline in both the CNS infection and its neurologic severe consequence, HAD continues to afflict individuals presenting with advanced systemic infection in the developed world and a larger number in resource-poor settings where ART is more restricted. Additionally, milder CNS injury and dysfunction have broader prevalence, including in those treated with ART. Here we review the history and evolving nomenclature of HAD, its viral pathogenesis, clinical presentation and diagnosis, and treatment. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. Wireless Channel Characterization in the Airport Surface Environment

    NASA Technical Reports Server (NTRS)

    Neville, Joshua T.

    2004-01-01

    Given the anticipated increase in air traffic in the coming years, modernization of the National Airspace System (NAS) is a necessity. Part of this modernization effort will include updating current communication, navigation, and surveillance (CNS) systems to deal with the increased traffic as well as developing advanced CNS technologies for the systems. An example of such technology is the integrated CNS (ICNS) network being developed by the Advanced CNS Architecture and Systems Technology (ACAST) group for use in the airport surface environment. The ICNS network would be used to convey voice/data between users in a secure and reliable manner. The current surface system only supports voice and does so through an obsolete physical infrastructure. The old system is vulnerable to outages and costly to maintain. The proposed ICNS network will include a wireless radio link. To ensure optimal performance, a thorough and accurate characterization of the channel across which the link would operate is necessary. The channel is the path the signal takes from the transmitter to the receiver and is prone to various forms of interference. Channel characterization involves a combination of analysis, simulation, and measurement. My work this summer was divided into four tasks. The first task required compiling and reviewing reference material that dealt with the characterization and modeling of aeronautical channels. The second task involved developing a systematic approach that could be used to group airports into classes, e.g. small airfields, medium airports, large open airports, large cluttered airports, etc. The third task consisted of implementing computer simulations of existing channel models. The fourth task entailed measuring possible interference sources in the airport surface environment via a spectrum analyzer.

  6. A Common Communications, Navigation and Surveillance Infrastructure for Accommodating Space Vehicles in the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    VanSuetendael, RIchard; Hayes, Alan; Birr, Richard

    2008-01-01

    Suborbital space flight and space tourism are new potential markets that could significantly impact the National Airspace System (NAS). Numerous private companies are developing space flight capabilities to capture a piece of an emerging commercial space transportation market. These entrepreneurs share a common vision that sees commercial space flight as a profitable venture. Additionally, U.S. space exploration policy and national defense will impose significant additional demands on the NAS. Air traffic service providers must allow all users fair access to limited airspace, while ensuring that the highest levels of safety, security, and efficiency are maintained. The FAA's Next Generation Air Transportation System (NextGen) will need to accommodate spacecraft transitioning to and from space through the NAS. To accomplish this, space and air traffic operations will need to be seamlessly integrated under some common communications, navigation and surveillance (CNS) infrastructure. As part of NextGen, the FAA has been developing the Automatic Dependent Surveillance Broadcast (ADS-B) which utilizes the Global Positioning System (GPS) to track and separate aircraft. Another key component of NextGen, System-Wide Information Management/ Network Enabled Operations (SWIM/NEO), is an open architecture network that will provide NAS data to various customers, system tools and applications. NASA and DoD are currently developing a space-based range (SBR) concept that also utilizes GPS, communications satellites and other CNS assets. The future SBR will have very similar utility for space operations as ADS-B and SWIM has for air traffic. Perhaps the FAA, NASA, and DoD should consider developing a common space-based CNS infrastructure to support both aviation and space transportation operations. This paper suggests specific areas of research for developing a CNS infrastructure that can accommodate spacecraft and other new types of vehicles as an integrated part of NextGen.

  7. Virus signaling and apoptosis in the central nervous system infection.

    PubMed

    Perkins, Dana

    2005-09-01

    Viruses target the central nervous system (CNS) incidentally, due to complications of systemic infection, or specifically, by ascending via the axons of peripheral and cranial nerves. In the CNS, viruses cause acute disease (viz. encephalitis), latent infections or neurodegenerative pathology. Causation of acute disease or immune-mediated pathology, and virus involvement in the etiology of chronic neurodegenerative diseases depends, at least in part, on the ability to commander signaling pathways. Better understanding of these virus-host cell interactions will help identify molecular targets for the development of improved therapeutic strategies.

  8. Non-Viral Nucleic Acid Delivery Strategies to the Central Nervous System

    PubMed Central

    Tan, James-Kevin Y.; Sellers, Drew L.; Pham, Binhan; Pun, Suzie H.; Horner, Philip J.

    2016-01-01

    With an increased prevalence and understanding of central nervous system (CNS) injuries and neurological disorders, nucleic acid therapies are gaining promise as a way to regenerate lost neurons or halt disease progression. While more viral vectors have been used clinically as tools for gene delivery, non-viral vectors are gaining interest due to lower safety concerns and the ability to deliver all types of nucleic acids. Nevertheless, there are still a number of barriers to nucleic acid delivery. In this focused review, we explore the in vivo challenges hindering non-viral nucleic acid delivery to the CNS and the strategies and vehicles used to overcome them. Advantages and disadvantages of different routes of administration including: systemic injection, cerebrospinal fluid injection, intraparenchymal injection and peripheral administration are discussed. Non-viral vehicles and treatment strategies that have overcome delivery barriers and demonstrated in vivo gene transfer to the CNS are presented. These approaches can be used as guidelines in developing synthetic gene delivery vectors for CNS applications and will ultimately bring non-viral vectors closer to clinical application. PMID:27847462

  9. Laboratory models for central nervous system tumor stem cell research.

    PubMed

    Khan, Imad Saeed; Ehtesham, Moneeb

    2015-01-01

    Central nervous system (CNS) tumors are complex organ systems comprising of a neoplastic component with associated vasculature, inflammatory cells, and reactive cellular and extracellular components. Research has identified a subset of cells in CNS tumors that portray defining properties of neural stem cells, namely, that of self-renewal and multi-potency. Growing evidence suggests that these tumor stem cells (TSC) play an important role in the maintenance and growth of the tumor. Furthermore, these cells have also been shown to be refractory to conventional therapy and may be crucial for tumor recurrence and metastasis. Current investigations are focusing on isolating these TSC from CNS tumors to investigate their unique biological processes. This understanding will help identify and develop more effective and comprehensive treatment strategies. This chapter provides an overview of some of the most commonly used laboratory models for CNSTSC research.

  10. Dynamic of CSF and serum biomarkers in HIV-1 subtype C encephalitis with CNS genetic compartmentalization-case study.

    PubMed

    de Almeida, Sergio M; Rotta, Indianara; Ribeiro, Clea E; Oliveira, Michelli F; Chaillon, Antoine; de Pereira, Ana Paula; Cunha, Ana Paula; Zonta, Marise; Bents, Joao França; Raboni, Sonia M; Smith, Davey; Letendre, Scott; Ellis, Ronald J

    2017-06-01

    Despite the effective suppression of viremia with antiretroviral therapy, HIV can still replicate in the central nervous system (CNS). This was a longitudinal study of the cerebrospinal fluid (CSF) and serum dynamics of several biomarkers related to inflammation, the blood-brain barrier, neuronal injury, and IgG intrathecal synthesis in serial samples of CSF and serum from a patient infected with HIV-1 subtype C with CNS compartmentalization.The phylogenetic analyses of plasma and CSF samples in an acute phase using next-generation sequencing and F-statistics analysis of C2-V3 haplotypes revealed distinct compartmentalized CSF viruses in paired CSF and peripheral blood mononuclear cell samples. The CSF biomarker analysis in this patient showed that symptomatic CSF escape is accompanied by CNS inflammation, high levels of cell and humoral immune biomarkers, CNS barrier dysfunction, and an increase in neuronal injury biomarkers with demyelization. Independent and isolated HIV replication can occur in the CNS, even in HIV-1 subtype C, leading to compartmentalization and development of quasispecies distinct from the peripheral plasma. These immunological aspects of the HIV CNS escape have not been described previously. To our knowledge, this is the first report of CNS HIV escape and compartmentalization in HIV-1 subtype C.

  11. Central Nervous System Fibrosis Is Associated with Fibrocyte-Like Infiltrates

    PubMed Central

    Aldrich, Amy; Kielian, Tammy

    2011-01-01

    Fibrotic wall formation is essential for limiting pathogen dissemination during brain abscess development. However, little is known about the regulation of fibrotic processes in the central nervous system (CNS). Most CNS injury responses are associated with hypertrophy of resident astrocytes, a process termed reactive gliosis. Studies of fibrosis outside the CNS have identified two bone marrow–derived cell types, fibrocytes and alternatively activated M2 macrophages, as key mediators of fibrosis. The current study used bone marrow chimeras generated from green fluorescent protein transgenic mice to evaluate the appearance of these cell types and whether bone marrow–derived cells were capable of acquiring fibrotic characteristics during brain abscess development. Immunofluorescence staining revealed partial overlap between green fluorescent protein, α-smooth muscle actin, and procollagen, suggesting that a population of cells forming the brain abscess capsule originate from a bone marrow precursor. In addition, the influx of fibrocyte-like cells into brain abscesses immediately preceded the onset of fibrotic encapsulation. Fibrotic wall formation was also associated with increased numbers of alternatively activated M2 microglia and macrophages. To our knowledge, this is the first study demonstrating that bone marrow–derived infiltrates are capable of expressing fibrotic molecules during CNS inflammation. PMID:22015460

  12. Spatio-temporal regulations and functions of neuronal alternative RNA splicing in developing and adult brains.

    PubMed

    Iijima, Takatoshi; Hidaka, Chiharu; Iijima, Yoko

    2016-08-01

    Alternative pre-mRNA splicing is a fundamental mechanism that generates molecular diversity from a single gene. In the central nervous system (CNS), key neural developmental steps are thought to be controlled by alternative splicing decisions, including the molecular diversity underlying synaptic wiring, plasticity, and remodeling. Significant progress has been made in understanding the molecular mechanisms and functions of alternative pre-mRNA splicing in neurons through studies in invertebrate systems; however, recent studies have begun to uncover the potential role of neuronal alternative splicing in the mammalian CNS. This article provides an overview of recent findings regarding the regulation and function of neuronal alternative splicing. In particular, we focus on the spatio-temporal regulation of neurexin, a synaptic adhesion molecule, by neuronal cell type-specific factors and neuronal activity, which are thought to be especially important for characterizing neural development and function within the mammalian CNS. Notably, there is increasing evidence that implicates the dysregulation of neuronal splicing events in several neurological disorders. Therefore, understanding the detailed mechanisms of neuronal alternative splicing in the mammalian CNS may provide plausible treatment strategies for these diseases. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  13. Stability of Lentiviral Vector-Mediated Transgene Expression in the Brain in the Presence of Systemic Antivector Immune Responses

    PubMed Central

    ABORDO-ADESIDA, EVELYN; FOLLENZI, ANTONIA; BARCIA, CARLOS; SCIASCIA, SANDRA; CASTRO, MARIA G.; NALDINI, LUIGI; LOWENSTEIN, PEDRO R.

    2009-01-01

    Lentiviral vectors are promising tools for gene therapy in the CNS. It is therefore important to characterize their interactions with the immune system in the CNS. This work characterizes transgene expression and brain inflammation in the presence or absence of immune responses generated after systemic immunization with lentiviral vectors. We characterized transduction with SIN-LV vectors in the CNS. A dose—response curve using SIN-LV-GFP demonstrated detectable transgene expression in the striatum at a dose of 102, and maximum expression at 106, transducing units of lentiviral vector, with minimal increase in inflammatory markers between the lowest and highest dose of vector injected. Our studies demonstrate that injection of a lentiviral vector into the CNS did not cause a measurable inflammatory response. Systemic immunization after CNS injection, with the lentiviral vector expressing the same transgene as a vector injected into the CNS, caused a decrease in transgene expression in the CNS, concomitantly with an infiltration of inflammatory cells into the CNS parenchyma at the injection site. However, peripheral immunization with a lentiviral vector carrying a different transgene did not diminish transgene expression, or cause CNS inflammation. Systemic immunization preceding injection of lentiviral vectors into the CNS determined that preexisting antilentiviral immunity, regardless of the transgene, did not affect transgene expression. Furthermore, we showed that the transgene, but not the virion or vector components, is responsible for providing antigenic epitopes to the activated immune system, on systemic immunization with lentivirus. Low immunogenicity and prolonged transgene expression in the presence of preexisting lentiviral immunity are encouraging data for the future use of lentiviral vectors in CNS gene therapy. In summary, the lentiviral vectors tested induced undetectable activation of innate immune responses, and stimulation of adaptive immune responses against lentiviral vectors was effective in causing a decrease in transgene expression only if the immune response was directed against the transgene. A systemic immune response against vector components alone did not cause brain inflammation, possibly because vector-derived epitopes were not being presented in the CNS. PMID:15960605

  14. Bortezomib-related neuropathy may mask CNS relapse in multiple myeloma: A call for diligence

    PubMed Central

    Abid, Muhammad Bilal; De Mel, Sanjay; Abid, Muhammad Abbas; Tan, Kong Bing; Chng, Wee Joo

    2016-01-01

    ABSTRACT Background: Neuropathy is a common adverse effect of bortezomib. Isolated central nervous system (CNS) relapse in MM remains exceedingly rare and carries a dismal prognosis. We present an unusual case of bortezomib related neuropathy masking a CNS relapse of MM. Case presentation: A 57-year-old female was diagnosed with standard-risk MM with clinical and cytogenetic features not typically associated with CNS involvement. She was treated with 4 cycles of bortezomib/cyclophosphamide/dexamethasone (VCD) and achieved a VGPR, after which she underwent an autologous stem cell transplant (ASCT) followed by bortezomib maintenance. Six months after ASCT she developed symptoms suggestive of peripheral neuropathy which was attributed to bortezomib. However the symptoms persisted despite discontinuation of bortezomib. Imaging and cerebrospinal fluid analysis subsequently confirmed a CNS relapse. Discussion: CNS involvement in MM (CNS-MM) is uncommon and is considered an aggressive disease. Recently published literature has reported biomarkers with prognostic potential. However, isolated CNS relapse is even less common; an event which carries a very poor prognosis. Given the heterogeneous neurologic manifestations associated with MM, clinical suspicion may be masked by confounding factors such as bortezomib-based therapy. The disease may further remain incognito if the patient does not exhibit any of the high risk features and biomarkers associated with CNS involvement. Conclusion: In the era of proteasome inhibitor (PtdIns)/immunomodulator (IMID)-based therapy for MM which carries neurologic adverse effects, it is prudent to consider CNS relapse early. This case further highlights the need for more robust biomarkers to predict CNS relapse and use of newer novel agents which demonstrate potential for CNS penetration. PMID:27105248

  15. Opiate Drugs with Abuse Liability Hijack the Endogenous Opioid System to Disrupt Neuronal and Glial Maturation in the Central Nervous System.

    PubMed

    Hauser, Kurt F; Knapp, Pamela E

    2017-01-01

    The endogenous opioid system, comprised of multiple opioid neuropeptide and receptor gene families, is highly expressed by developing neural cells and can significantly influence neuronal and glial maturation. In many central nervous system (CNS) regions, the expression of opioid peptides and receptors occurs only transiently during development, effectively disappearing with subsequent maturation only to reemerge under pathologic conditions, such as with inflammation or injury. Opiate drugs with abuse liability act to modify growth and development by mimicking the actions of endogenous opioids. Although typically mediated by μ-opioid receptors, opiate drugs can also act through δ- and κ-opioid receptors to modulate growth in a cell-type, region-specific, and developmentally regulated manner. Opioids act as biological response modifiers and their actions are highly contextual, plastic, modifiable, and influenced by other physiological processes or pathophysiological conditions, such as neuro-acquired immunodeficiency syndrome. To date, most studies have considered the acute effects of opiates on cellular maturation. For example, activating opioid receptors typically results in acute growth inhibition in both neurons and glia. However, with sustained opioid exposure, compensatory factors become operative, a concept that has been largely overlooked during CNS maturation. Accordingly, this article surveys prior studies on the effects of opiates on CNS maturation, and also suggests new directions for future research in this area. Identifying the cellular and molecular mechanisms underlying the adaptive responses to chronic opiate exposure (e.g., tolerance) during maturation is crucial toward understanding the consequences of perinatal opiate exposure on the CNS.

  16. Endovascular brain intervention and mapping in a dog experimental model using magnetically-guided micro-catheter technology.

    PubMed

    Kara, Tomas; Leinveber, Pavel; Vlasin, Michal; Jurak, Pavel; Novak, Miroslav; Novak, Zdenek; Chrastina, Jan; Czechowicz, Krzysztof; Belehrad, Milos; Asirvatham, Samuel J

    2014-06-01

    Despite the substantial progress that has been achieved in interventional cardiology and cardiac electrophysiology, endovascular intervention for the diagnosis and treatment of central nervous system (CNS) disorders such as stroke, epilepsy and CNS malignancy is still limited, particularly due to highly tortuous nature of the cerebral arterial and venous system. Existing interventional devices and techniques enable only limited and complicated access especially into intra-cerebral vessels. The aim of this study was to develop a micro-catheter magnetically-guided technology specifically designed for endovascular intervention and mapping in deep CNS vascular structures. Mapping of electrical brain activity was performed via the venous system on an animal dog model with the support of the NIOBE II system. A novel micro-catheter specially designed for endovascular interventions in the CNS, with the support of the NIOBE II technology, was able to reach safely deep intra-cerebral venous structures and map the electrical activity there. Such structures are not currently accessible using standard catheters. This is the first study demonstrating successful use of a new micro-catheter in combination with NIOBE II technology for endovascular intervention in the brain.

  17. Current State and Future Perspectives in QSAR Models to Predict Blood- Brain Barrier Penetration in Central Nervous System Drug R&D.

    PubMed

    Morales, Juan F; Montoto, Sebastian Scioli; Fagiolino, Pietro; Ruiz, Maria E

    2017-01-01

    The Blood-Brain Barrier (BBB) is a physical and biochemical barrier that restricts the entry of certain drugs to the Central Nervous System (CNS), while allowing the passage of others. The ability to predict the permeability of a given molecule through the BBB is a key aspect in CNS drug discovery and development, since neurotherapeutic agents with molecular targets in the CNS should be able to cross the BBB, whereas peripherally acting agents should not, to minimize the risk of CNS adverse effects. In this review we examine and discuss QSAR approaches and current availability of experimental data for the construction of BBB permeability predictive models, focusing on the modeling of the biorelevant parameter unbound partitioning coefficient (Kp,uu). Emphasis is made on two possible strategies to overcome the current limitations of in silico models: considering the prediction of brain penetration as a multifactorial problem, and increasing experimental datasets through accurate and standardized experimental techniques.

  18. Hedgehog signaling regulates gene expression in planarian glia

    PubMed Central

    Wang, Irving E; Lapan, Sylvain W; Scimone, M Lucila; Clandinin, Thomas R; Reddien, Peter W

    2016-01-01

    Hedgehog signaling is critical for vertebrate central nervous system (CNS) development, but its role in CNS biology in other organisms is poorly characterized. In the planarian Schmidtea mediterranea, hedgehog (hh) is expressed in medial cephalic ganglia neurons, suggesting a possible role in CNS maintenance or regeneration. We performed RNA sequencing of planarian brain tissue following RNAi of hh and patched (ptc), which encodes the Hh receptor. Two misregulated genes, intermediate filament-1 (if-1) and calamari (cali), were expressed in a previously unidentified non-neural CNS cell type. These cells expressed orthologs of astrocyte-associated genes involved in neurotransmitter uptake and metabolism, and extended processes enveloping regions of high synapse concentration. We propose that these cells are planarian glia. Planarian glia were distributed broadly, but only expressed if-1 and cali in the neuropil near hh+ neurons. Planarian glia and their regulation by Hedgehog signaling present a novel tractable system for dissection of glia biology. DOI: http://dx.doi.org/10.7554/eLife.16996.001 PMID:27612382

  19. Targeting brain metastases in ALK-rearranged non-small-cell lung cancer.

    PubMed

    Zhang, Isabella; Zaorsky, Nicholas G; Palmer, Joshua D; Mehra, Ranee; Lu, Bo

    2015-10-01

    The incidence of brain metastases has increased as a result of improved systemic control and advances in imaging. However, development of novel therapeutics with CNS activity has not advanced at the same rate. Research on molecular markers has revealed many potential targets for antineoplastic agents, and a particularly important aberration is translocation in the ALK gene, identified in non-small-cell lung cancer (NSCLC). ALK inhibitors have shown systemic efficacy against ALK-rearranged NSCLC in many clinical trials, but the effectiveness of crizotinib in CNS disease is limited by poor blood-brain barrier penetration and acquired drug resistance. In this Review, we discuss potential pathways to target ALK-rearranged brain metastases, including next generation ALK inhibitors with greater CNS penetration and mechanisms to overcome resistance. Other important mechanisms to control CNS disease include targeting pathways downstream of ALK phosphorylation, increasing the permeability of the blood-brain barrier, modifying the tumour microenvironment, and adding concurrent radiotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Inherited tertiary hypothyroidism in Sprague-Dawley rats.

    PubMed

    Stoica, George; Lungu, Gina; Xie, Xueyi; Abbott, Louise C; Stoica, Heidi M; Jaques, John T

    2007-05-07

    Thyroid hormones (THs) are important in the development and maturation of the central nervous system (CNS). The significant actions of THs during CNS development occur at the time when TH levels are lower than those in the mother and the hypothalamic-thyroid (HPT) axis is not fully functional. In the developing rat nervous system, primarily the cerebellum, the first three postnatal weeks represent a period of significant sensitivity to thyroid hormones. This study presents a spontaneous, inherited recessive hypothyroidism in Sprague-Dawley rats with devastating functional consequences to the development of the CNS. The clinical signs develop around 14 day's postnatal (dpn) and are characterized by ataxia, spasticity, weight loss and hypercholesterolemia. The afflicted rats died at 30 days due to severe neurological deficits. The deterioration affects the entire CNS and is characterized by progressive neuronal morphological and biochemical changes, demyelination and astrogliosis. The cerebellum, brain stem, neocortex, hippocampus and adrenal gland medulla appear to be most affected. Thyroid Stimulating Hormone (TSH), T3 and T4 levels were significantly lower in hypothyroid rats than control. Immunohistochemistry and RT-PCR demonstrated a reduction of Thyrotropin Releasing Hormone (TRH) in the hypothalamus of hypothyroid rats. The weight of both thyroid and pituitary glands were significantly less in hypothyroid rats than the corresponding normal littermate controls. Transmission electron microscopy demonstrates consistent postsynaptic dendritic, synaptic and spine alterative changes in the brain of hypothyroid rats. These data suggest that we discovered a tertiary form of inherited hypothyroidism involving the hypothalamus.

  1. Allogeneic stem cell transplantation for adult patients with acute lymphoblastic leukemia who had central nervous system involvement: a study from the Adult ALL Working Group of the Japan Society for Hematopoietic Cell Transplantation.

    PubMed

    Shigematsu, Akio; Kako, Shinichi; Mitsuhashi, Kenjiro; Iwato, Koji; Uchida, Naoyuki; Kanda, Yoshinobu; Fukuda, Takahiro; Sawa, Masashi; Senoo, Yasushi; Ogawa, Hiroyasu; Miyamura, Koichi; Takada, Satoru; Nagamura-Inoue, Tokiko; Morishima, Yasuo; Ichinohe, Tatsuo; Atsuta, Yoshiko; Mizuta, Shuichi; Tanaka, Junji

    2017-06-01

    The prognosis for adult acute lymphoblastic leukemia (ALL) patients with central nervous system (CNS) involvement (CNS+) who received allogeneic hematopoietic stem cell transplantation (allo-SCT) remains unclear. We retrospectively compared the outcomes of allo-SCT for patients with CNS involvement and for patients without CNS involvement (CNS-) using a database in Japan. The eligibility criteria for this study were as follows: diagnosis of ALL, aged more than 16 years, allo-SCT between 2005 and 2012, and first SCT. Data for 2582 patients including 136 CNS+ patients and 2446 CNS- patients were used for analyses. As compared with CNS- patients, CNS+ patients were younger, had worse disease status at SCT and had poorer performance status (PS) at SCT (P < 0.01). Incidence of relapse was higher in CNS+ patients (P = 0.02), and incidence of CNS relapse was also higher (P < 0.01). The probability of 3-year overall survival (OS) was better in CNS- patients (P < 0.01) by univariate analysis. However, in patients who received SCT in CR, there was no difference in the probability of OS between CNS+ and CNS- patients (P = 0.38) and CNS involvement did not have an unfavorable effect on OS by multivariate analysis. CNS+ patients who achieved CR showed OS comparable to that of CNS- patients.

  2. Molecular parallels between neural and vascular development.

    PubMed

    Eichmann, Anne; Thomas, Jean-Léon

    2013-01-01

    The human central nervous system (CNS) features a network of ~400 miles of blood vessels that receives >20% of the body's cardiac output and uses most of its blood glucose. Many human diseases, including stroke, retinopathy, and cancer, are associated with the biology of CNS blood vessels. These vessels originate from extrinsic cell populations, including endothelial cells and pericytes that colonize the CNS and interact with glia and neurons to establish the blood-brain barrier and control cerebrovascular exchanges. Neurovascular interactions also play important roles in adult neurogenic niches, which harbor a unique population of neural stem cells that are intimately associated with blood vessels. We here review the cellular and molecular mechanisms required to establish the CNS vascular network, with a special focus on neurovascular interactions and the functions of vascular endothelial growth factors.

  3. A method to predict different mechanisms for blood-brain barrier permeability of CNS activity compounds in Chinese herbs using support vector machine.

    PubMed

    Jiang, Ludi; Chen, Jiahua; He, Yusu; Zhang, Yanling; Li, Gongyu

    2016-02-01

    The blood-brain barrier (BBB), a highly selective barrier between central nervous system (CNS) and the blood stream, restricts and regulates the penetration of compounds from the blood into the brain. Drugs that affect the CNS interact with the BBB prior to their target site, so the prediction research on BBB permeability is a fundamental and significant research direction in neuropharmacology. In this study, we combed through the available data and then with the help of support vector machine (SVM), we established an experiment process for discovering potential CNS compounds and investigating the mechanisms of BBB permeability of them to advance the research in this field four types of prediction models, referring to CNS activity, BBB permeability, passive diffusion and efflux transport, were obtained in the experiment process. The first two models were used to discover compounds which may have CNS activity and also cross the BBB at the same time; the latter two were used to elucidate the mechanism of BBB permeability of those compounds. Three optimization parameter methods, Grid Search, Genetic Algorithm (GA), and Particle Swarm Optimization (PSO), were used to optimize the SVM models. Then, four optimal models were selected with excellent evaluation indexes (the accuracy, sensitivity and specificity of each model were all above 85%). Furthermore, discrimination models were utilized to study the BBB properties of the known CNS activity compounds in Chinese herbs and this may guide the CNS drug development. With the relatively systematic and quick approach, the application rationality of traditional Chinese medicines for treating nervous system disease in the clinical practice will be improved.

  4. Cytokine and chemokine expression in the central nervous system associated with protective cell-mediated immunity against Cryptococcus neoformans.

    PubMed

    Uicker, William C; Doyle, Hester A; McCracken, James P; Langlois, Mary; Buchanan, Kent L

    2005-02-01

    Cryptococcus neoformans is a yeast that causes cryptococcosis, a life-threatening disease that develops following inhalation and dissemination of the organisms. C. neoformans has a predilection for the central nervous system (CNS) and mortality is most frequently associated with meningoencephalitis. Susceptibility to cryptococcosis is increased in patients with deficiencies in cell-mediated immunity (CMI). Because cryptococcal CNS infections are associated with mortality and diagnosis of cryptococcosis is often not made until after dissemination to the CNS, a better understanding of host defense mechanisms against C. neoformans in the CNS is needed to design improved therapies for immunocompromised individuals suffering from cryptococcosis. Using a mouse model, we previously described a protective cell-mediated immune response induced in the periphery that limited the growth of C. neoformans in the CNS. In the current investigation, we examined cytokine and chemokine expression in the CNS to identify factors important in achieving protective immunity. We observed increased expression of IL-1beta, TNF-alpha, IFN-gamma, MCP-1, RANTES, and IP-10 in C. neoformans-infected brains of immune mice compared to control mice suggesting that these cytokines and chemokines are associated with the protective immune response. Furthermore, the Th1-type cytokines TNF-alpha and IFN-gamma, but not the Th2 cytokines IL-4 and IL-5, were secreted at significantly higher levels in C. neoformans-infected brains of immune mice compared to control mice. Our results demonstrate that cytokines and chemokines associated with CMI are produced following infection in the CNS of immunized mice, and the expression of these factors correlates with protection against C. neoformans in the CNS.

  5. Neuropeptide Y Negatively Influences Monocyte Recruitment to the Central Nervous System during Retrovirus Infection.

    PubMed

    Woods, Tyson A; Du, Min; Carmody, Aaron; Peterson, Karin E

    2015-12-30

    Monocyte infiltration into the CNS is a hallmark of several viral infections of the central nervous system (CNS), including retrovirus infection. Understanding the factors that mediate monocyte migration in the CNS is essential for the development of therapeutics that can alter the disease process. In the current study, we found that neuropeptide Y (NPY) suppressed monocyte recruitment to the CNS in a mouse model of polytropic retrovirus infection. NPY(-/-) mice had increased incidence and kinetics of retrovirus-induced neurological disease, which correlated with a significant increase in monocytes in the CNS compared to wild-type mice. Both Ly6C(hi) inflammatory and Ly6C(lo) alternatively activated monocytes were increased in the CNS of NPY(-/-) mice following virus infection, suggesting that NPY suppresses the infiltration of both cell types. Ex vivo analysis of myeloid cells from brain tissue demonstrated that infiltrating monocytes expressed high levels of the NPY receptor Y2R. Correlating with the expression of Y2R on monocytes, treatment of NPY(-/-) mice with a truncated, Y2R-specific NPY peptide suppressed the incidence of retrovirus-induced neurological disease. These data demonstrate a clear role for NPY as a negative regulator of monocyte recruitment into the CNS and provide a new mechanism for suppression of retrovirus-induced neurological disease. Monocyte recruitment to the brain is associated with multiple neurological diseases. However, the factors that influence the recruitment of these cells to the brain are still not well understood. In the current study, we found that neuropeptide Y, a protein produced by neurons, affected monocyte recruitment to the brain during retrovirus infection. We show that mice deficient in NPY have increased influx of monocytes into the brain and that this increase in monocytes correlates with neurological-disease development. These studies provide a mechanism by which the nervous system, through the production of NPY, can suppress monocyte trafficking to the brain and reduce retrovirus-induced neurological disease. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Aging Microglia—Phenotypes, Functions and Implications for Age-Related Neurodegenerative Diseases

    PubMed Central

    Spittau, Björn

    2017-01-01

    Aging of the central nervous system (CNS) is one of the major risk factors for the development of neurodegenerative pathologies such as Parkinson’s disease (PD) and Alzheimer’s disease (AD). The molecular mechanisms underlying the onset of AD and especially PD are not well understood. However, neuroinflammatory responses mediated by microglia as the resident immune cells of the CNS have been reported for both diseases. The unique nature and developmental origin of microglia causing microglial self-renewal and telomere shortening led to the hypothesis that these CNS-specific innate immune cells become senescent. Age-dependent and senescence-driven impairments of microglia functions and responses have been suggested to play essential roles during onset and progression of neurodegenerative diseases. This review article summarizes the current knowledge of microglia phenotypes and functions in the aging CNS and further discusses the implications of these age-dependent microglia changes for the development and progression of AD and PD as the most common neurodegenerative diseases. PMID:28659790

  7. Detection of central nervous system leukemia in children with acute lymphoblastic leukemia by real-time polymerase chain reaction.

    PubMed

    Pine, Sharon R; Yin, Changhong; Matloub, Yousif H; Sabaawy, Hatem E; Sandoval, Claudio; Levendoglu-Tugal, Oya; Ozkaynak, M Fevzi; Jayabose, Somasundaram

    2005-02-01

    Accurate detection of central nervous system (CNS) involvement in children with newly diagnosed acute lymphoblastic leukemia (ALL) could have profound prognostic and therapeutic implications. We examined various cerebrospinal fluid (CSF) preservation methods to yield adequate DNA stability for polymerase chain reaction (PCR) analysis and developed a quantitative real-time PCR assay to detect occult CNS leukemia. Sixty CSF specimens were maintained in several storage conditions for varying amounts of time, and we found that preserving CSF in 1:1 serum-free RPMI tissue culture medium offers the best stability of DNA for PCR analysis. Sixty CSF samples (30 at diagnosis and 30 at the end of induction therapy) from 30 children with ALL were tested for CNS leukemic involvement by real-time PCR using patient-specific antigen receptor gene rearrangement primers. Six of thirty patient diagnosis samples were PCR-positive at levels ranging from 0.5 to 66% leukemic blasts in the CSF. Four of these patients had no clinical or cytomorphological evidence of CNS leukemia involvement at that time. All 30 CSF samples drawn at the end of induction therapy were PCR-negative. The data indicate that real-time PCR analysis of CSF is an excellent tool to assess occult CNS leukemia involvement in patients with ALL and can possibly be used to refine CNS status classification.

  8. Allogeneic stem cell transplantation in children with acute lymphoblastic leukemia after isolated central nervous system relapse: our experiences and review of the literature.

    PubMed

    Yoshihara, T; Morimoto, A; Kuroda, H; Imamura, T; Ishida, H; Tsunamoto, K; Naya, M; Hibi, S; Todo, S; Imashuku, S

    2006-01-01

    The prognosis of patients with acute lymphoblastic leukemia (ALL) and central nervous system (CNS) relapse has historically been very poor. Although chemo-radiotherapy has improved outcomes, some patients still have a poor prognosis after CNS relapse. Therefore, allogeneic hematopoietic stem cell transplantation (allo-SCT) has recently become an option for treatment of CNS leukemia; however, information, particularly on the long-term outcome of transplant recipients, is limited. We performed allo-SCT in eight pediatric patients with ALL (n=7) or T-cell type non-Hodgkin's lymphoma (n=1), who had isolated CNS relapse. All patients survived for a median of 70.5 (range, 13-153) months after SCT. Sequelae developed late in some patients: mental retardation (IQ=47) in one patient, severe alopecia in two patients, limited chronic graft-versus-host-disease in three patients, and amenorrhea and/or hypothyroidism in three patients. Except for a pre-school child with post transplant CNS relapse, six out of seven patients show normal school/social performance. Our results clearly indicate a high cure rate of isolated CNS relapse by allo-SCT in pediatric lymphoid malignancies; however, there needs to be further studies to determine which are the appropriate candidates for transplantation and what is the best transplant regimen to achieve high cure rate and maintain good quality of life.

  9. Detection of Central Nervous System Leukemia in Children with Acute Lymphoblastic Leukemia by Real-Time Polymerase Chain Reaction

    PubMed Central

    Pine, Sharon R.; Yin, Changhong; Matloub, Yousif H.; Sabaawy, Hatem E.; Sandoval, Claudio; Levendoglu-Tugal, Oya; Ozkaynak, M. Fevzi; Jayabose, Somasundaram

    2005-01-01

    Accurate detection of central nervous system (CNS) involvement in children with newly diagnosed acute lymphoblastic leukemia (ALL) could have profound prognostic and therapeutic implications. We examined various cerebrospinal fluid (CSF) preservation methods to yield adequate DNA stability for polymerase chain reaction (PCR) analysis and developed a quantitative real-time PCR assay to detect occult CNS leukemia. Sixty CSF specimens were maintained in several storage conditions for varying amounts of time, and we found that preserving CSF in 1:1 serum-free RPMI tissue culture medium offers the best stability of DNA for PCR analysis. Sixty CSF samples (30 at diagnosis and 30 at the end of induction therapy) from 30 children with ALL were tested for CNS leukemic involvement by real-time PCR using patient-specific antigen receptor gene rearrangement primers. Six of thirty patient diagnosis samples were PCR-positive at levels ranging from 0.5 to 66% leukemic blasts in the CSF. Four of these patients had no clinical or cytomorphological evidence of CNS leukemia involvement at that time. All 30 CSF samples drawn at the end of induction therapy were PCR-negative. The data indicate that real-time PCR analysis of CSF is an excellent tool to assess occult CNS leukemia involvement in patients with ALL and can possibly be used to refine CNS status classification. PMID:15681484

  10. Thyroid hormones states and brain development interactions.

    PubMed

    Ahmed, Osama M; El-Gareib, A W; El-Bakry, A M; Abd El-Tawab, S M; Ahmed, R G

    2008-04-01

    The action of thyroid hormones (THs) in the brain is strictly regulated, since these hormones play a crucial role in the development and physiological functioning of the central nervous system (CNS). Disorders of the thyroid gland are among the most common endocrine maladies. Therefore, the objective of this study was to identify in broad terms the interactions between thyroid hormone states or actions and brain development. THs regulate the neuronal cytoarchitecture, neuronal growth and synaptogenesis, and their receptors are widely distributed in the CNS. Any deficiency or increase of them (hypo- or hyperthyroidism) during these periods may result in an irreversible impairment, morphological and cytoarchitecture abnormalities, disorganization, maldevelopment and physical retardation. This includes abnormal neuronal proliferation, migration, decreased dendritic densities and dendritic arborizations. This drastic effect may be responsible for the loss of neurons vital functions and may lead, in turn, to the biochemical dysfunctions. This could explain the physiological and behavioral changes observed in the animals or human during thyroid dysfunction. It can be hypothesized that the sensitive to the thyroid hormones is not only remarked in the neonatal period but also prior to birth, and THs change during the development may lead to the brain damage if not corrected shortly after the birth. Thus, the hypothesis that neurodevelopmental abnormalities might be related to the thyroid hormones is plausible. Taken together, the alterations of neurotransmitters and disturbance in the GABA, adenosine and pro/antioxidant systems in CNS due to the thyroid dysfunction may retard the neurogenesis and CNS growth and the reverse is true. In general, THs disorder during early life may lead to distortions rather than synchronized shifts in the relative development of several central transmitter systems that leads to a multitude of irreversible morphological and biochemical abnormalities (pathophysiology). Thus, further studies need to be done to emphasize this concept.

  11. Particulate matter induced enhancement of inflammatory markers in the brains of apolipoprotein E knockout mice.

    PubMed

    Campbell, Arezoo; Araujo, Jesus A; Li, Huihui; Sioutas, Constantinos; Kleinman, Michael

    2009-08-01

    Exposure to air particulate matter (PM) present in urban environments have been shown to induce systemic prooxidant and proinflammatory effects in apolipoprotein E knockout (ApoE-/-) mice and proinflammatory central nervous system (CNS) effects in BALB/c mice. We hypothesize that ApoE-/- mice would exhibit a greater propensity to develop PM-induced CNS effects due to their greater susceptibility to CNS inflammation. We studied the brains of ApoE-/- mice exposed in a previous study to concentrated air particles of different sizes (fine vs. ultrafine) or filtered-air to evaluate the effect of PM exposure on the development of CNS proinflammatory effects in a genetically susceptible background. This was important because, although the use of nano-sized materials opens an exciting potential for their use as diagnostic or therapeutic tools, not much is known about the possible CNS toxicity of these particles. Neuroinflammation has been shown to exacerbate progression of neurodegeneration. Since the onset and progression of idiopathic forms of neurodegenerative disorders are likely to be multifactorial and involve gene-environment interactions, we determined the possibility of particles in ambient air pollution to enhance neuroinflammation. Our results indicate that in the brain, there was significant modulation in the activation of the transcription factors NF-kappaB and AP-1 after exposure to the ultrafine fractions. Levels of two pro-inflammatory cytokines (TNF-alpha and IL-1alpha) were also increased in the brain of exposed animals and this was independent of the size fraction of PM. Since inflammatory processes have been shown to contribute to the pathology associated with neurodegenerative diseases, it will be important to further evaluate the role ambient particles may play in the potentiation of existing CNS damage and progression of neurodegenerative disorders.

  12. Chondroitin sulfates and their binding molecules in the central nervous system.

    PubMed

    Djerbal, L; Lortat-Jacob, H; Kwok, Jcf

    2017-06-01

    Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases.

  13. Area 51: How do Acanthamoeba invade the central nervous system?

    PubMed

    Siddiqui, Ruqaiyyah; Emes, Richard; Elsheikha, Hany; Khan, Naveed Ahmed

    2011-05-01

    Acanthamoeba granulomatous encephalitis generally develops as a result of haematogenous spread, but it is unclear how circulating amoebae enter the central nervous system (CNS) and cause inflammation. At present, the mechanisms which Acanthamoeba use to invade this incredibly well-protected area of the CNS and produce infection are not well understood. In this paper, we propose two key virulence factors: mannose-binding protein and extracellular serine proteases as key players in Acanthamoeba traversal of the blood-brain barrier leading to neuronal injury. Both molecules should provide excellent opportunities as potential targets in the rational development of therapeutic interventions against Acanthamoeba encephalitis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Acute Myeloid Leukemia With Central Nervous System Involvement in Children: Experience From the French Protocol Analysis ELAM02.

    PubMed

    Felix, Arthur; Leblanc, Thierry; Petit, Arnaud; Nelkem, Brigitte; Bertrand, Yves; Gandemer, Virginie; Sirvent, Anne; Paillard, Catherine; Schmitt, Claudine; Rohrlich, Pierre Simon; Fenneteau, Odile; Ragu, Christine; Michel, Gerard; Auvrignon, Anne; Baruchel, André; Leverger, Guy

    2018-01-01

    Central nervous system (CNS) involvement at diagnosis of pediatric acute myeloid leukemia (AML) is not considered as an independent prognostic factor. This study describes the prognostic value of pediatric AML with CNS involvement at diagnosis. Pediatric patients were treated for de novo AML in the French multicenter trial ELAM02. Lumbar puncture was carried out in the first week, and the treatment was adapted to the CNS status. No patient received CNS radiotherapy. The patients were classified into 2 groups: CNS+ and CNS-. Of the 438 patients, 16% (n=70) had CNS involvement at diagnosis, and 29% showed clinical signs. The patients with CNS disease were younger (40% were below 2 y old), had a higher white blood cell count (median of 45 vs. 13 G/L), and had M4 and M5 morphologies. The complete remission rate was similar at 92.8% for CNS+ and 88.5% for CNS-. There was no significant difference between the CNS+ and the CNS- group in overall survival (76% and 71%, respectively) and event-free survival (57% and 52%, respectively). Regarding the occurrence of first relapse, the CNS+ group had a higher combined relapse rate of 26.1% compared with 10% for the CNS- group. The results indicate that CNS involvement at diagnosis of pediatric AML is not an independent prognostic factor. Triple intrathecal chemotherapy combined with high-dose intravenous cytarabine should be the first-line treatment for CNS disease.

  15. Developmental therapeutics for patients with breast cancer and central nervous system metastasis: current landscape and future perspectives.

    PubMed

    Costa, R; Carneiro, B A; Wainwright, D A; Santa-Maria, C A; Kumthekar, P; Chae, Y K; Gradishar, W J; Cristofanilli, M; Giles, F J

    2017-01-01

    Breast cancer is the second-leading cause of metastatic disease in the central nervous system (CNS). Recent advances in the biological understanding of breast cancer have facilitated an unprecedented increase of survival in a subset of patients presenting with metastatic breast cancer. Patients with HER2 positive (HER2+) or triple negative breast cancer are at highest risk of developing CNS metastasis, and typically experience a poor prognosis despite treatment with local and systemic therapies. Among the obstacles ahead in the realm of developmental therapeutics for breast cancer CNS metastasis is the improvement of our knowledge on its biological nuances and on the interaction of the blood–brain barrier with new compounds. This article reviews recent discoveries related to the underlying biology of breast cancer brain metastases, clinical progress to date and suggests rational approaches for investigational therapies.

  16. Investigation on navigation patterns of inertial/celestial integrated systems

    NASA Astrophysics Data System (ADS)

    Luo, Dacheng; Liu, Yan; Liu, Zhiguo; Jiao, Wei; Wang, Qiuyan

    2014-11-01

    It is known that Strapdown Inertial Navigation System (SINS), Global Navigation Satellite System (GNSS) and Celestial Navigation System (CNS) can complement each other's advantages. The SINS/CNS integrated system, which has the characteristics of strong autonomy, high accuracy and good anti-jamming, is widely used in military and civilian applications. Similar to SINS/GNSS integrated system, the SINS/CNS integrated system can also be divided into three kinds according to the difference of integrating depth, i.e., loosely coupled pattern, tightly coupled pattern and deeply coupled pattern. In this paper, the principle and characteristics of each pattern of SINS/CNS system are analyzed. Based on the comparison of these patterns, a novel deeply coupled SINS/CNS integrated navigation scheme is proposed. The innovation of this scheme is that a new star pattern matching method aided by SINS information is put forward. Thus the complementary features of these two subsystems are reflected.

  17. Similar chemokine receptor profiles in lymphomas with central nervous system involvement - possible biomarkers for patient selection for central nervous system prophylaxis, a retrospective study.

    PubMed

    Lemma, Siria A; Pasanen, Anna Kaisa; Haapasaari, Kirsi-Maria; Sippola, Antti; Sormunen, Raija; Soini, Ylermi; Jantunen, Esa; Koivunen, Petri; Salokorpi, Niina; Bloigu, Risto; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi

    2016-05-01

    Central nervous system (CNS) relapse occurs in around 5% of diffuse large B-cell lymphoma (DLBCL) cases. No biomarkers to identify high-risk patients have been discovered. We evaluated the expression of lymphocyte-guiding chemokine receptors in systemic and CNS lymphomas. Immunohistochemical staining for CXCR4, CXCR5, CCR7, CXCL12, and CXCL13 was performed on 89 tissue samples, including cases of primary central nervous system lymphoma (PCNSL), secondary CNS lymphoma (sCNSL), and systemic DLBCL. Also, 10 reactive lymph node samples were included. Immunoelectron microscopy was performed on two PCNSLs, one sCNSL, one systemic DLBCL, and one reactive lymph node samples, and staining was performed for CXCR4, CXCR5, CXCL12, and CXCL13. Chi-square test was used to determine correlations between clinical parameters, diagnostic groups, and chemokine receptor expression. Strong nuclear CXCR4 positivity correlated with systemic DLBCL, whereas strong cytoplasmic CXCR5 positivity correlated with CNS involvement (P = 0.003 and P = 0.039). Immunoelectron microscopy revealed a nuclear CXCR4 staining in reactive lymph node, compared with cytoplasmic and membranous localization seen in CNS lymphomas. We found that CNS lymphoma presented a chemokine receptor profile different from systemic disease. Our findings give new information on the CNS tropism of DLBCL and, if confirmed, may contribute to more effective targeting of CNS prophylaxis among patients with DLBCL. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Integrating in Silico and in Vitro Approaches To Predict Drug Accessibility to the Central Nervous System.

    PubMed

    Zhang, Yan-Yan; Liu, Houfu; Summerfield, Scott G; Luscombe, Christopher N; Sahi, Jasminder

    2016-05-02

    Estimation of uptake across the blood-brain barrier (BBB) is key to designing central nervous system (CNS) therapeutics. In silico approaches ranging from physicochemical rules to quantitative structure-activity relationship (QSAR) models are utilized to predict potential for CNS penetration of new chemical entities. However, there are still gaps in our knowledge of (1) the relationship between marketed human drug derived CNS-accessible chemical space and preclinical neuropharmacokinetic (neuroPK) data, (2) interpretability of the selected physicochemical descriptors, and (3) correlation of the in vitro human P-glycoprotein (P-gp) efflux ratio (ER) and in vivo rodent unbound brain-to-blood ratio (Kp,uu), as these are assays routinely used to predict clinical CNS exposure, during drug discovery. To close these gaps, we explored the CNS druglike property boundaries of 920 market oral drugs (315 CNS and 605 non-CNS) and 846 compounds (54 CNS drugs and 792 proprietary GlaxoSmithKline compounds) with available rat Kp,uu data. The exact permeability coefficient (Pexact) and P-gp ER were determined for 176 compounds from the rat Kp,uu data set. Receiver operating characteristic curves were performed to evaluate the predictive power of human P-gp ER for rat Kp,uu. Our data demonstrates that simple physicochemical rules (most acidic pKa ≥ 9.5 and TPSA < 100) in combination with P-gp ER < 1.5 provide mechanistic insights for filtering BBB permeable compounds. For comparison, six classification modeling methods were investigated using multiple sets of in silico molecular descriptors. We present a random forest model with excellent predictive power (∼0.75 overall accuracy) using the rat neuroPK data set. We also observed good concordance between the structural interpretation results and physicochemical descriptor importance from the Kp,uu classification QSAR model. In summary, we propose a novel, hybrid in silico/in vitro approach and an in silico screening model for the effective development of chemical series with the potential to achieve optimal CNS exposure.

  19. Early wound site seeding in a patient with CNS high-grade neuroepithelial tumor with BCOR alteration: A case report.

    PubMed

    Kirkman, Matthew A; Pickles, Jessica C; Fairchild, Amy R; Avery, Aimee; Pietsch, Torsten; Jacques, Thomas S; Aquilina, Kristian

    2018-05-30

    Advances in molecular profiling have facilitated the emergence of newly defined entities of central nervous system tumor, including CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR). Relatively little is known about the clinical behaviour of these newly-characterized tumors. We describe a pediatric male patient with CNS HGNET-BCOR who developed seeding of the tumor into the site of the surgical wound within months of surgery for resection of a residual posterior fossa tumor. This case emphasises three important points. First, CNS HGNET-BCOR can be aggressive tumors that necessitate close clinical and radiological surveillance. Second, surveillance imaging in such cases should incorporate the surgical incision site into the field of view, and this should be closely scrutinised to ensure the timely detection of wound site seeding. Third, wound site seeding may still occur despite the use of meticulous surgical techniques. Copyright © 2018. Published by Elsevier Inc.

  20. CNS infections in patients with hematological disorders (including allogeneic stem-cell transplantation)—Guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO)

    PubMed Central

    Schmidt-Hieber, M.; Silling, G.; Schalk, E.; Heinz, W.; Panse, J.; Penack, O.; Christopeit, M.; Buchheidt, D.; Meyding-Lamadé, U.; Hähnel, S.; Wolf, H. H.; Ruhnke, M.; Schwartz, S.; Maschmeyer, G.

    2016-01-01

    Infections of the central nervous system (CNS) are infrequently diagnosed in immunocompetent patients, but they do occur in a significant proportion of patients with hematological disorders. In particular, patients undergoing allogeneic hematopoietic stem-cell transplantation carry a high risk for CNS infections of up to 15%. Fungi and Toxoplasma gondii are the predominant causative agents. The diagnosis of CNS infections is based on neuroimaging, cerebrospinal fluid examination and biopsy of suspicious lesions in selected patients. However, identification of CNS infections in immunocompromised patients could represent a major challenge since metabolic disturbances, side-effects of antineoplastic or immunosuppressive drugs and CNS involvement of the underlying hematological disorder may mimic symptoms of a CNS infection. The prognosis of CNS infections is generally poor in these patients, albeit the introduction of novel substances (e.g. voriconazole) has improved the outcome in distinct patient subgroups. This guideline has been developed by the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO) with the contribution of a panel of 14 experts certified in internal medicine, hematology/oncology, infectious diseases, intensive care, neurology and neuroradiology. Grades of recommendation and levels of evidence were categorized by using novel criteria, as recently published by the European Society of Clinical Microbiology and Infectious Diseases. PMID:27052648

  1. 77 FR 50736 - Self-Regulatory Organizations; National Securities Clearing Corporation; Notice of Filing of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... manner.\\8\\ \\5\\ CNS is an ongoing accounting system that nets today's Settling Trades with yesterday's... to be processed through NSCC's Continuous Net Settlement (``CNS'') system \\5\\ (and for CNS-eligible... 50737

  2. Cell fate control in the developing central nervous system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie, E-mail: Fanie.Barnabe-Heider@ki.se

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatmentsmore » of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals.« less

  3. Synaptogenesis in the CNS: An Odyssey from Wiring Together to Firing Together

    PubMed Central

    Munno, David W; Syed, Naweed I

    2003-01-01

    To acquire a better comprehension of nervous system function, it is imperative to understand how synapses are assembled during development and subsequently altered throughout life. Despite recent advances in the fields of neurodevelopment and synaptic plasticity, relatively little is known about the mechanisms that guide synapse formation in the central nervous system (CNS). Although many structural components of the synaptic machinery are pre-assembled prior to the arrival of growth cones at the site of their potential targets, innumerable changes, central to the proper wiring of the brain, must subsequently take place through contact-mediated cell-cell communications. Identification of such signalling molecules and a characterization of various events underlying synaptogenesis are pivotal to our understanding of how a brain cell completes its odyssey from ‘wiring together to firing together’. Here we attempt to provide a comprehensive overview that pertains directly to the cellular and molecular mechanisms of selection, formation and refinement of synapses during the development of the CNS in both vertebrates and invertebrates. PMID:12897180

  4. Identification of a Peptide for Systemic Brain Delivery of a Morpholino Oligonucleotide in Mouse Models of Spinal Muscular Atrophy

    PubMed Central

    Shabanpoor, Fazel; Hammond, Suzan M; Abendroth, Frank; Hazell, Gareth; Wood, Matthew J.A.

    2017-01-01

    Splice-switching antisense oligonucleotides are emerging treatments for neuromuscular diseases, with several splice-switching oligonucleotides (SSOs) currently undergoing clinical trials such as for Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA). However, the development of systemically delivered antisense therapeutics has been hampered by poor tissue penetration and cellular uptake, including crossing of the blood–brain barrier (BBB) to reach targets in the central nervous system (CNS). For SMA application, we have investigated the ability of various BBB-crossing peptides for CNS delivery of a splice-switching phosphorodiamidate morpholino oligonucleotide (PMO) targeting survival motor neuron 2 (SMN2) exon 7 inclusion. We identified a branched derivative of the well-known ApoE (141–150) peptide, which as a PMO conjugate was capable of exon inclusion in the CNS following systemic administration, leading to an increase in the level of full-length SMN2 transcript. Treatment of newborn SMA mice with this peptide-PMO (P-PMO) conjugate resulted in a significant increase in the average lifespan and gains in weight, muscle strength, and righting reflexes. Systemic treatment of adult SMA mice with this newly identified P-PMO also resulted in small but significant increases in the levels of SMN2 pre-messenger RNA (mRNA) exon inclusion in the CNS and peripheral tissues. This work provides proof of principle for the ability to select new peptide paradigms to enhance CNS delivery and activity of a PMO SSO through use of a peptide-based delivery platform for the treatment of SMA potentially extending to other neuromuscular and neurodegenerative diseases. PMID:28118087

  5. Whole-central nervous system functional imaging in larval Drosophila

    PubMed Central

    Lemon, William C.; Pulver, Stefan R.; Höckendorf, Burkhard; McDole, Katie; Branson, Kristin; Freeman, Jeremy; Keller, Philipp J.

    2015-01-01

    Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord. PMID:26263051

  6. PROGRESS AND PROBLEMS IN THE APPLICATION OF FOCUSED ULTRASOUND FOR BLOOD-BRAIN BARRIER DISRUPTION

    PubMed Central

    Vykhodtseva, Natalia; McDannold, Nathan; Hynynen, Kullervo

    2008-01-01

    Advances in neuroscience have resulted in the development of new diagnostic and therapeutic agents for potential use in the central nervous system (CNS). However, the ability to deliver the majority of these agents to the brain is limited by the blood–brain barrier (BBB), a specialized structure of the blood vessel wall that hampers transport and diffusion from the blood to the brain. Many CNS disorders could be treated with drugs, enzymes, genes, or large-molecule biotechnological products such as recombinant proteins, if they could cross the BBB. This article reviews the problems of the BBB presence in treating the vast majority of CNS diseases and the efforts to circumvent the BBB through the design of new drugs and the development of more sophisticated delivery methods. Recent advances in the development of noninvasive, targeted drug delivery by MRI-guided ultrasound-induced BBB disruption are also summarized. PMID:18511095

  7. Death receptors DR6 and TROY regulate brain vascular development.

    PubMed

    Tam, Stephen J; Richmond, David L; Kaminker, Joshua S; Modrusan, Zora; Martin-McNulty, Baby; Cao, Tim C; Weimer, Robby M; Carano, Richard A D; van Bruggen, Nick; Watts, Ryan J

    2012-02-14

    Signaling events that regulate central nervous system (CNS) angiogenesis and blood-brain barrier (BBB) formation are only beginning to be elucidated. By evaluating the gene expression profile of mouse vasculature, we identified DR6/TNFRSF21 and TROY/TNFRSF19 as regulators of CNS-specific angiogenesis in both zebrafish and mice. Furthermore, these two death receptors interact both genetically and physically and are required for vascular endothelial growth factor (VEGF)-mediated JNK activation and subsequent human brain endothelial sprouting in vitro. Increasing beta-catenin levels in brain endothelium upregulate DR6 and TROY, indicating that these death receptors are downstream target genes of Wnt/beta-catenin signaling, which has been shown to be required for BBB development. These findings define a role for death receptors DR6 and TROY in CNS-specific vascular development. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Role of the Cellular Prion Protein in Oligodendrocyte Precursor Cell Proliferation and Differentiation in the Developing and Adult Mouse CNS

    PubMed Central

    Bribián, Ana; Gavín, Rosalina; Reina, Manuel; García-Verdugo, José Manuel; Torres, Juan María; de Castro, Fernando; del Río, José Antonio

    2012-01-01

    There are numerous studies describing the signaling mechanisms that mediate oligodendrocyte precursor cell (OPC) proliferation and differentiation, although the contribution of the cellular prion protein (PrPc) to this process remains unclear. PrPc is a glycosyl-phosphatidylinositol (GPI)-anchored glycoprotein involved in diverse cellular processes during the development and maturation of the mammalian central nervous system (CNS). Here we describe how PrPc influences oligodendrocyte proliferation in the developing and adult CNS. OPCs that lack PrPc proliferate more vigorously at the expense of a delay in differentiation, which correlates with changes in the expression of oligodendrocyte lineage markers. In addition, numerous NG2-positive cells were observed in cortical regions of adult PrPc knockout mice, although no significant changes in myelination can be seen, probably due to the death of surplus cells. PMID:22529900

  9. The therapeutic effects of Rho-ROCK inhibitors on CNS disorders

    PubMed Central

    Kubo, Takekazu; Yamaguchi, Atsushi; Iwata, Nobuyoshi; Yamashita, Toshihide

    2008-01-01

    Rho-kinase (ROCK) is a serine/threonine kinase and one of the major downstream effectors of the small GTPase Rho. The Rho-ROCK pathway is involved in many aspects of neuronal functions including neurite outgrowth and retraction. The Rho-ROCK pathway becomes an attractive target for the development of drugs for treating central nervous system (CNS) disorders, since it has been recently revealed that this pathway is closely related to the pathogenesis of several CNS disorders such as spinal cord injuries, stroke, and Alzheimer’s disease (AD). In the adult CNS, injured axons regenerate poorly due to the presence of myelin-associated axonal growth inhibitors such as myelin-associated glycoprotein (MAG), Nogo, oligodendrocyte-myelin glycoprotein (OMgp), and the recently identified repulsive guidance molecule (RGM). The effects of these inhibitors are reversed by blockade of the Rho-ROCK pathway in vitro, and the inhibition of this pathway promotes axonal regeneration and functional recovery in the injured CNS in vivo. In addition, the therapeutic effects of the Rho-ROCK inhibitors have been demonstrated in animal models of stroke. In this review, we summarize the involvement of the Rho-ROCK pathway in CNS disorders such as spinal cord injuries, stroke, and AD and also discuss the potential of Rho-ROCK inhibitors in the treatment of human CNS disorders. PMID:18827856

  10. Epidemiology of pediatric primary malignant central nervous system tumors in Iran: a 10 year report of National Cancer Registry.

    PubMed

    Beygi, Sara; Saadat, Soheil; Jazayeri, Seyed Behzad; Rahimi-Movaghar, Vafa

    2013-08-01

    CNS tumors are the leading cause of cancer related deaths among children and adolescents. Nonetheless, the incidence of pediatric CNS tumors in developing countries is poorly understood. We aimed to provide epidemiologic features of primary malignant CNS tumors in Iranian children 0-19 years of age using National Cancer Registry (NCR) data bank. The data recorded by NCR over a 10 year period (2000-2010) were reviewed. Of 1948 tumor cases, 93.3% were located in brain, 5.1% were found in the spinal cord & cauda equina, and 1.6% affected cranial nerves and other parts of the nervous system. The overall average annual age specific incidence rate was 1.43 per 100,000. Males were more likely to develop CNS tumors (1.65 per 100,000) compared to females (1.21 per 100,000, p<0.01). Children under 5 years of age had the highest age specific incidence rate (1.86 per 100,000). Astrocytic tumors with the incidence rate of 0.61 per 100,000 were the most frequent specific histology followed by embryonal (0.38 per 100,000), and ependymal tumors (0.10 per 100,000). With regard to the histological distribution of tumors, some unique features including the high proportion of unspecified malignant neoplasms (7.6%) were noted. The overall incidence rate was markedly lower than western findings. Major differences were also observed in incidence rates of specific histologies. Although the discrepancies may be attributable to diversity in classification schemes and registration practices, a real ethnic and geographical variation in predisposition to development of pediatric CNS cancers is strongly suggested. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Prophylactic central nervous system therapy in childhood acute lymphatic leukemia. Effect of poor-risk patients on the results.

    PubMed

    Virag, I; Kende, G; Agahai, E; Ramot, B

    1976-11-01

    The results of treatment in a group of 50 children with acute lymphatic leukemia are summarized. A comparison was made between those who received prophylactic central nervous systen (CNS) therapy on attaining complete remission and those who did not. Although none of the prophylactically treated children developed CNS leukemia, the expected prolongation of median complete remission time was not achieved. It was found that there was a high percentage of poor-risk patients in the CNS-treated group, and these patients relapsed early in the course of the disease. The prevention of CNS leukemia, a late complication of the disease, did not change the natural course of the disease in poor-risk patients. A need exists for new treatment protocols aimed at better control of the disease in these poor-risk cases.

  12. Molecular Parallels between Neural and Vascular Development

    PubMed Central

    Eichmann, Anne; Thomas, Jean-Léon

    2013-01-01

    The human central nervous system (CNS) features a network of ∼400 miles of blood vessels that receives >20% of the body’s cardiac output and uses most of its blood glucose. Many human diseases, including stroke, retinopathy, and cancer, are associated with the biology of CNS blood vessels. These vessels originate from extrinsic cell populations, including endothelial cells and pericytes that colonize the CNS and interact with glia and neurons to establish the blood–brain barrier and control cerebrovascular exchanges. Neurovascular interactions also play important roles in adult neurogenic niches, which harbor a unique population of neural stem cells that are intimately associated with blood vessels. We here review the cellular and molecular mechanisms required to establish the CNS vascular network, with a special focus on neurovascular interactions and the functions of vascular endothelial growth factors. PMID:23024177

  13. Ionotropic Glutamate Receptors & CNS Disorders

    PubMed Central

    Bowie, Derek

    2008-01-01

    Disorders of the central nervous system (CNS) are complex disease states that represent a major challenge for modern medicine. Although etiology is often unknown, it is established that multiple factors such as defects in genetics and/or epigenetics, the environment as well as imbalance in neurotransmitter receptor systems are all at play in determining an individual’s susceptibility to disease. Gene therapy is currently not available and therefore, most conditions are treated with pharmacological agents that modify neurotransmitter receptor signaling. Here, I provide a review of ionotropic glutamate receptors (iGluRs) and the roles they fulfill in numerous CNS disorders. Specifically, I argue that our understanding of iGluRs has reached a critical turning point to permit, for the first time, a comprehensive re-evaluation of their role in the cause of disease. I illustrate this by highlighting how defects in AMPA receptor trafficking are important to Fragile X mental retardation and ectopic expression of kainate (KA) receptor synapses contributes to the pathology of temporal lobe epilepsy. Finally, I discuss how parallel advances in studies of other neurotransmitter systems may allow pharmacologists to work towards a cure for many CNS disorders rather than developing drugs to treat their symptoms. PMID:18537642

  14. Hydrogels Derived from Central Nervous System Extracellular Matrix

    PubMed Central

    Medberry, Christopher J.; Crapo, Peter M.; Siu, Bernard F.; Carruthers, Christopher A.; Wolf, Matthew T.; Nagarkar, Shailesh P.; Agrawal, Vineet; Jones, Kristen E.; Kelly, Jeremy; Johnson, Scott A.; Velankar, Sachin S.; Watkins, Simon C.; Modo, Michel

    2012-01-01

    Biologic scaffolds composed of extracellular matrix (ECM) are commonly used repair devices in preclinical and clinical settings; however the use of these scaffolds for peripheral and central nervous system (CNS) repair has been limited. Biologic scaffolds developed from brain and spinal cord tissue have recently been described, yet the conformation of the harvested ECM limits therapeutic utility. An injectable CNS-ECM derived hydrogel capable of in vivo polymerization and conformation to irregular lesion geometries may aid in tissue reconstruction efforts following complex neurologic trauma. The objectives of the present study were to develop hydrogel forms of brain and spinal cord ECM and compare the resulting biochemical composition, mechanical properties, and neurotrophic potential of a brain derived cell line to a non-CNS-ECM hydrogel, urinary bladder matrix. Results showed distinct differences between compositions of brain ECM, spinal cord ECM, and urinary bladder matrix. The rheologic modulus of spinal cord ECM hydrogel was greater than that of brain ECM and urinary bladder matrix. All ECMs increased the number of cells expressing neurites, but only brain ECM increased neurite length, suggesting a possible tissue-specific effect. All hydrogels promoted three-dimensional uni- or bi-polar neurite outgrowth following 7 days in culture. These results suggest that CNS-ECM hydrogels may provide supportive scaffolding to promote in vivo axonal repair. PMID:23158935

  15. Delivery of therapeutic peptides and proteins to the CNS.

    PubMed

    Salameh, Therese S; Banks, William A

    2014-01-01

    Peptides and proteins have potent effects on the brain after their peripheral administration, suggesting that they may be good substrates for the development of CNS therapeutics. Major hurdles to such development include their relation to the blood-brain barrier (BBB) and poor pharmacokinetics. Some peptides cross the BBB by transendothelial diffusion and others cross in the blood-to-brain direction by saturable transporters. Some regulatory proteins are also transported across the BBB and antibodies can enter the CNS via the extracellular pathways. Glycoproteins and some antibody fragments can be taken up and cross the BBB by mechanisms related to adsorptive endocytosis/transcytosis. Many peptides and proteins are transported out of the CNS by saturable efflux systems and enzymatic activity in the blood, CNS, or BBB are substantial barriers to others. Both influx and efflux transporters are altered by various substances and in disease states. Strategies that manipulate these interactions between the BBB and peptides and proteins provide many opportunities for the development of therapeutics. Such strategies include increasing transendothelial diffusion of small peptides, upregulation of saturable influx transporters with allosteric regulators and other posttranslational means, use of vectors and other Trojan horse strategies, inhibition of efflux transporters including with antisense molecules, and improvement in pharmacokinetic parameters to overcome short half-lives, tissue sequestration, and enzymatic degradation. © 2014 Elsevier Inc. All rights reserved.

  16. A comparison of human natural monoclonal antibodies and aptamer conjugates for promotion of CNS remyelination: where are we now and what comes next?

    PubMed

    Perwein, Maria K; Smestad, John A; Warrington, Arthur E; Heider, Robin M; Kaczor, Mark W; Maher, Louis J; Wootla, Bharath; Kunbaz, Ahmad; Rodriguez, Moses

    2018-05-01

    Multiple sclerosis (MS) is a chronic and progressive inflammatory demyelinating disease of the human central nervous system (CNS) and is the most common disabling neurological condition in young adults, resulting in severe neurological defects. No curative or long-term progression-inhibiting therapy has yet been developed. However, recent investigation has revealed potential strategies that do not merely modulate potentially pathogenic autoimmune responses, but stimulate remyelination within CNS lesions. Areas covered: We discuss the history and development of natural human IgM-isotype immunoglobulins (HIgMs) and recently-identified aptamer-conjugates that have been shown to enhance endogenous myelin repair in animal models of demyelination by acting on myelin-producing oligodendrocytes (OLs) or oligodendrocyte progenitor cells (OPCs) within CNS lesions. We also discuss future development aims and applications for these important novel technologies. Expert opinion: Aptamer conjugate Myaptavin-3064 and recombinant human IgM-isotype antibody rHIgM22 regenerate CNS myelin, thereby reducing axonal degeneration and offering the potential of recovery from MS relapses, reversal of disability and prevention of disease progression. Advancement of these technologies into the clinic for MS treatment is therefore a top priority. It remains unclear to what extent the therapeutic modalities of remyelinating antibodies and aptamers may synergize with other currently-approved therapies to yield enhanced therapeutic effects.

  17. Femoral-facial syndrome with malformations in the central nervous system.

    PubMed

    Leal, Evelia; Macías-Gómez, Nelly; Rodríguez, Lisa; Mercado, F Miguel; Barros-Núñez, Patricio

    2003-01-01

    The femoral hypoplasia-unusual facies syndrome (FFS) is a very rare association of femoral and facial abnormalities. Maternal diabetes mellitus has been mainly involved as the causal agent. We report the second case of FFS with anomalies in the central nervous system (CNS) including corticosubcortical atrophy, colpocephaly, partial agenesis of corpus callosum, hypoplasia of the falx cerebri and absent septum pellucidum. The psychomotor development has been normal. We propose that the CNS defects observed in these patients are part of the spectrum of abnormalities in the FFS.

  18. Regulation of lipid metabolism by energy availability: a role for the central nervous system.

    PubMed

    Nogueiras, R; López, M; Diéguez, C

    2010-03-01

    The central nervous system (CNS) is crucial in the regulation of energy homeostasis. Many neuroanatomical studies have shown that the white adipose tissue (WAT) is innervated by the sympathetic nervous system, which plays a critical role in adipocyte lipid metabolism. Therefore, there are currently numerous reports indicating that signals from the CNS control the amount of fat by modulating the storage or oxidation of fatty acids. Importantly, some CNS pathways regulate adipocyte metabolism independently of food intake, suggesting that some signals possess alternative mechanisms to regulate energy homeostasis. In this review, we mainly focus on how neuronal circuits within the hypothalamus, such as leptin- ghrelin-and resistin-responsive neurons, as well as melanocortins, neuropeptide Y, and the cannabinoid system exert their actions on lipid metabolism in peripheral tissues such as WAT, liver or muscle. Dissecting the complicated interactions between peripheral signals and neuronal circuits regulating lipid metabolism might open new avenues for the development of new therapies preventing and treating obesity and its associated cardiometabolic sequelae.

  19. Adults with suspected central nervous system infection: A prospective study of diagnostic accuracy.

    PubMed

    Khatib, Ula; van de Beek, Diederik; Lees, John A; Brouwer, Matthijs C

    2017-01-01

    To study the diagnostic accuracy of clinical and laboratory features in the diagnosis of central nervous system (CNS) infection and bacterial meningitis. We included consecutive adult episodes with suspected CNS infection who underwent cerebrospinal fluid (CSF) examination. The reference standard was the diagnosis classified into five categories: 1) CNS infection; 2) CNS inflammation without infection; 3) other neurological disorder; 4) non-neurological infection; and 5) other systemic disorder. Between 2012 and 2015, 363 episodes of suspected CNS infection were included. CSF examination showed leucocyte count >5/mm 3 in 47% of episodes. Overall, 89 of 363 episodes were categorized as CNS infection (25%; most commonly viral meningitis [7%], bacterial meningitis [7%], and viral encephalitis [4%]), 36 (10%) episodes as CNS inflammatory disorder, 111 (31%) as systemic infection, in 119 (33%) as other neurological disorder, and 8 (2%) as other systemic disorders. Diagnostic accuracy of individual clinical characteristics and blood tests for the diagnosis of CNS infection or bacterial meningitis was low. CSF leucocytosis differentiated best between bacterial meningitis and other diagnoses (area under the curve [AUC] 0.95) or any neurological infection versus other diagnoses (AUC 0.93). Clinical characteristics fail to differentiate between neurological infections and other diagnoses, and CSF analysis is the main contributor to the final diagnosis. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  20. Health-Related Quality of Life of Adolescent and Young Adult Survivors of Central Nervous System Tumors: Identifying Domains From a Survivor Perspective.

    PubMed

    Kuhlthau, Karen; Luff, Donna; Delahaye, Jennifer; Wong, Alicia; Yock, Torunn; Huang, Mary; Park, Elyse R

    2015-01-01

    This article uses qualitative methods to describe the domains of health-related quality of life (HRQoL) that adolescent and young adult (AYA) survivors of central nervous system (CNS) tumors identify as important. Survivors clearly attributed aspects of their current HRQoL to their disease or its treatment. We identified 7 key domains of AYA CNS tumor survivorship: physical health, social well-being, mental health, cognitive functioning, health behaviors, sexual and reproductive health, and support systems. Although most aspects of HRQoL that survivors discussed represented new challenges, there were several areas where survivors pointed out positive outcomes. There is a need for a HRQoL tool designed for this population of survivors, given their unique treatment and survivorship experience. Aspects of HRQoL related to cognition, sexual and reproductive health, health behaviors, and support systems are not typically included in generic HRQoL tools but should be assessed for this population. Developing HRQoL measurement instruments that capture the most significant aspects of HRQoL will improve the ability to track HRQoL in AYA CNS tumor survivors and in the long-term management of common sequelae from CNS tumors and their treatments. © 2015 by Association of Pediatric Hematology/Oncology Nurses.

  1. Central nervous system involvement in pediatric rheumatic diseases: current concepts in treatment.

    PubMed

    Duzova, Ali; Bakkaloglu, Aysin

    2008-01-01

    Central nervous system (CNS) manifestations are not rare in pediatric rheumatic diseases. They may be a relatively common feature of the disease, as in systemic lupus erythematosus (SLE) and Behçet's disease. Direct CNS involvement of a systemic rheumatic disease, primary CNS vasculitis, indirect involvement secondary to hypertension, hypoxia and metabolic changes, and drug associated adverse events may all result in CNS involvement. We have reviewed the CNS manifestations of SLE, Behçet's disease, Henoch-Schönlein purpura, polyarteritis nodosa, juvenile idiopathic arthritis, juvenile ankylosing spondylitis, familial Mediterranean fever, scleroderma, sarcoidosis, Wegener's granulomatosis, Takayasu's arteritis, CINCA syndrome, Kawasaki disease, and primary CNS vasculitis; and adverse CNS effects of anti-rheumatic drugs in pediatric patients. The manifestations are diverse; ranging from headache, seizures, chorea, changes in personality, depression, memory and concentration problems, cognitive impairment, cerebrovascular accidents to coma, and death. The value of cerebrospinal fluid (CSF) examination (pleocytosis, high level of protein), auto-antibodies in serum and CSF, electroencephalography, neuroimaging with computerized tomography, magnetic resonance imaging, SPECT, PET, and angiography depends on the disease. Brain biopsy is gold standard for the diagnosis of CNS vasculitis, however it may be inconclusive in 25% of cases. A thorough knowledge of the rheumatic diseases and therapy-related adverse events is mandatory for the management of a patient with rheumatic disease and CNS involvement. Severe CNS involvement is associated with poor prognosis, and high mortality rate. High dose steroid and cyclophosphamide (oral or intravenous) are first choice drugs in the treatment; plasmapheresis, IVIG, thalidomide, and intratechal treatment may be valuable in treatment-resistant, and serious cases.

  2. Glial Biomarkers in Human Central Nervous System Disease

    PubMed Central

    Garden, Gwenn A.; Campbell, Brian M.

    2017-01-01

    There is a growing understanding that aberrant GLIA function is an underlying factor in psychiatric and neurological disorders. As drug discovery efforts begin to focus on glia-related targets, a key gap in knowledge includes the availability of validated biomarkers to help determine which patients suffer from dysfunction of glial cells or who may best respond by targeting glia-related drug mechanisms. Biomarkers are biological variables with a significant relationship to parameters of disease states and can be used as surrogate markers of disease pathology, progression, and/or responses to drug treatment. For example, imaging studies of the CNS enable localization and characterization of anatomical lesions without the need to isolate tissue for biopsy. Many biomarkers of disease pathology in the CNS involve assays of glial cell function and/or response to injury. Each major glia subtype (oligodendroglia, astroglia and microglia) are connected to a number of important and useful biomarkers. Here, we describe current and emerging glial based biomarker approaches for acute CNS injury and the major categories of chronic nervous system dysfunction including neurodegenerative, neuropsychiatric, neoplastic, and autoimmune disorders of the CNS. These descriptions are highlighted in the context of how biomarkers are employed to better understand the role of glia in human CNS disease and in the development of novel therapeutic treatments. PMID:27228454

  3. Electromagnetic field and brain development.

    PubMed

    Kaplan, Suleyman; Deniz, Omur Gulsum; Önger, Mehmet Emin; Türkmen, Aysın Pınar; Yurt, Kıymet Kübra; Aydın, Işınsu; Altunkaynak, Berrin Zuhal; Davis, Devra

    2016-09-01

    Rapid advances in technology involve increased exposures to radio-frequency/microwave radiation from mobile phones and other wireless transmitting devices. As cell phones are held close to the head during talking and often stored next to the reproductive organs, studies are mostly focused on the brain. In fact, more research is especially needed to investigate electromagnetic field (EMF)'s effects on the central nervous system (CNS). Several studies clearly demonstrate that EMF emitted by cell phones could affect a range of body systems and functions. Recent work has demonstrated that EMF inhibit the formation and differentiation of neural stem cells during embryonic development and also affect reproductive and neurological health of adults that have undergone prenatal exposure. The aim of this review is to discuss the developing CNS and explain potential impacts of EMF on this system. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. VIIP: Central Nervous System (CNS) Modeling

    NASA Technical Reports Server (NTRS)

    Vera, Jerry; Mulugeta, Lealem; Nelson, Emily; Raykin, Julia; Feola, Andrew; Gleason, Rudy; Samuels, Brian; Ethier, C. Ross; Myers, Jerry

    2015-01-01

    Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome. It has been hypothesized that the headward shift of cerebrospinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn may then induce VIIP syndrome through interaction with various biomechanical pathways. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the related IWS works submitted by Nelson et al., Feola et al. and Ethier et al.

  5. Leptin sustains spontaneous remyelination in the adult central nervous system

    PubMed Central

    Matoba, Ken; Muramatsu, Rieko; Yamashita, Toshihide

    2017-01-01

    Demyelination is a common feature of many central nervous system (CNS) diseases and is associated with neurological impairment. Demyelinated axons are spontaneously remyelinated depending on oligodendrocyte development, which mainly involves molecules expressed in the CNS environment. In this study, we found that leptin, a peripheral hormone secreted from adipocytes, promoted the proliferation of oligodendrocyte precursor cells (OPCs). Leptin increased the OPC proliferation via in vitro phosphorylation of extracellular signal regulated kinase (ERK); whereas leptin neutralization inhibited OPC proliferation and remyelination in a mouse model of toxin-induced demyelination. The OPC-specific leptin receptor long isoform (LepRb) deletion in mice inhibited both OPC proliferation and remyelination in the response to demyelination. Intrathecal leptin administration increased OPC proliferation. These results demonstrated a novel molecular mechanism by which leptin sustained OPC proliferation and remyelination in a pathological CNS. PMID:28091609

  6. [Complex stimulation of the locomotor and psycholingual develop- ment of children with perinatal lesions of the central nervous system].

    PubMed

    Skvortsov, I A; Khavkhun, L A; Ustinova, E V; I'lin, L B

    1989-01-01

    In 121 children with perinatal CNS damage a combined therapy was performed including, besides routine drug treatment, imitation stimulation of age-matched posture-++-tonic attitudes and motor skills, metameric reflexotherapy aimed at the CNS region lesioned, magnetotherapy, electric laser puncture targeted at correction of dysfunctioning brain structures. Treatment efficiency was controlled by the brain "development profile" derived from formalized neurological and neuropsychological investigations, and electroneuromyography. The efficiency of the therapy was considerably decreased by the 3rd semester of life.

  7. Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity.

    PubMed

    Nogueiras, Ruben; Pérez-Tilve, Diego; Veyrat-Durebex, Christelle; Morgan, Donald A; Varela, Luis; Haynes, William G; Patterson, James T; Disse, Emmanuel; Pfluger, Paul T; López, Miguel; Woods, Stephen C; DiMarchi, Richard; Diéguez, Carlos; Rahmouni, Kamal; Rohner-Jeanrenaud, Françoise; Tschöp, Matthias H

    2009-05-06

    We investigated a possible role of the central glucagon-like peptide (GLP-1) receptor system as an essential brain circuit regulating adiposity through effects on nutrient partitioning and lipid metabolism independent from feeding behavior. Both lean and diet-induced obesity mice were used for our experiments. GLP-1 (7-36) amide was infused in the brain for 2 or 7 d. The expression of key enzymes involved in lipid metabolism was measured by real-time PCR or Western blot. To test the hypothesis that the sympathetic nervous system may be responsible for informing adipocytes about changes in CNS GLP-1 tone, we have performed direct recording of sympathetic nerve activity combined with experiments in genetically manipulated mice lacking beta-adrenergic receptors. Intracerebroventricular infusion of GLP-1 in mice directly and potently decreases lipid storage in white adipose tissue. These effects are independent from nutrient intake. Such CNS control of adipocyte metabolism was found to depend partially on a functional sympathetic nervous system. Furthermore, the effects of CNS GLP-1 on adipocyte metabolism were blunted in diet-induced obese mice. The CNS GLP-1 system decreases fat storage via direct modulation of adipocyte metabolism. This CNS GLP-1 control of adipocyte lipid metabolism appears to be mediated at least in part by the sympathetic nervous system and is independent of parallel changes in food intake and body weight. Importantly, the CNS GLP-1 system loses the capacity to modulate adipocyte metabolism in obese states, suggesting an obesity-induced adipocyte resistance to CNS GLP-1.

  8. Transcriptome Analysis of the Octopus vulgaris Central Nervous System

    PubMed Central

    Zhang, Xiang; Mao, Yong; Huang, Zixia; Qu, Meng; Chen, Jun; Ding, Shaoxiong; Hong, Jingni; Sun, Tiantian

    2012-01-01

    Background Cephalopoda are a class of Mollusca species found in all the world's oceans. They are an important model organism in neurobiology. Unfortunately, the lack of neuronal molecular sequences, such as ESTs, transcriptomic or genomic information, has limited the development of molecular neurobiology research in this unique model organism. Results With high-throughput Illumina Solexa sequencing technology, we have generated 59,859 high quality sequences from 12,918,391 paired-end reads. Using BLASTx/BLASTn, 12,227 contigs have blast hits in the Swissprot, NR protein database and NT nucleotide database with E-value cutoff 1e−5. The comparison between the Octopus vulgaris central nervous system (CNS) library and the Aplysia californica/Lymnaea stagnalis CNS ESTs library yielded 5.93%/13.45% of O. vulgaris sequences with significant matches (1e−5) using BLASTn/tBLASTx. Meanwhile the hit percentage of the recently published Schistocerca gregaria, Tilapia or Hirudo medicinalis CNS library to the O. vulgaris CNS library is 21.03%–46.19%. We constructed the Phylogenetic tree using two genes related to CNS function, Synaptotagmin-7 and Synaptophysin. Lastly, we demonstrated that O. vulgaris may have a vertebrate-like Blood-Brain Barrier based on bioinformatic analysis. Conclusion This study provides a mass of molecular information that will contribute to further molecular biology research on O. vulgaris. In our presentation of the first CNS transcriptome analysis of O. vulgaris, we hope to accelerate the study of functional molecular neurobiology and comparative evolutionary biology. PMID:22768275

  9. A Novel Robust H∞ Filter Based on Krein Space Theory in the SINS/CNS Attitude Reference System.

    PubMed

    Yu, Fei; Lv, Chongyang; Dong, Qianhui

    2016-03-18

    Owing to their numerous merits, such as compact, autonomous and independence, the strapdown inertial navigation system (SINS) and celestial navigation system (CNS) can be used in marine applications. What is more, due to the complementary navigation information obtained from two different kinds of sensors, the accuracy of the SINS/CNS integrated navigation system can be enhanced availably. Thus, the SINS/CNS system is widely used in the marine navigation field. However, the CNS is easily interfered with by the surroundings, which will lead to the output being discontinuous. Thus, the uncertainty problem caused by the lost measurement will reduce the system accuracy. In this paper, a robust H∞ filter based on the Krein space theory is proposed. The Krein space theory is introduced firstly, and then, the linear state and observation models of the SINS/CNS integrated navigation system are established reasonably. By taking the uncertainty problem into account, in this paper, a new robust H∞ filter is proposed to improve the robustness of the integrated system. At last, this new robust filter based on the Krein space theory is estimated by numerical simulations and actual experiments. Additionally, the simulation and experiment results and analysis show that the attitude errors can be reduced by utilizing the proposed robust filter effectively when the measurements are missing discontinuous. Compared to the traditional Kalman filter (KF) method, the accuracy of the SINS/CNS integrated system is improved, verifying the robustness and the availability of the proposed robust H∞ filter.

  10. CNS response to osimertinib in patients with T790M-positive advanced NSCLC: pooled data from two phase II trials.

    PubMed

    Goss, G; Tsai, C-M; Shepherd, F A; Ahn, M-J; Bazhenova, L; Crinò, L; de Marinis, F; Felip, E; Morabito, A; Hodge, R; Cantarini, M; Johnson, M; Mitsudomi, T; Jänne, P A; Yang, J C-H

    2018-03-01

    Central nervous system (CNS) metastases are common in patients with non-small-cell lung cancer (NSCLC). Osimertinib has shown systemic efficacy in patients with CNS metastases, and early clinical evidence shows efficacy in the CNS. To evaluate osimertinib activity further, we present a pre-specified subgroup analysis of CNS response using pooled data from two phase II studies: AURA extension (NCT01802632) and AURA2 (NCT02094261). Patients with T790M-positive advanced NSCLC, who had progressed following prior epidermal growth factor receptor-tyrosine kinase inhibitor treatment, received osimertinib 80 mg od (n = 411). Patients with stable, asymptomatic CNS metastases were eligible for enrolment; prior CNS treatment was allowed. Patients with ≥1 measurable CNS lesion (per RECIST 1.1) on baseline brain scan by blinded independent central neuroradiology review (BICR) were included in the evaluable for CNS response set (cEFR). The primary outcome for this CNS analysis was CNS objective response rate (ORR) by BICR; secondary outcomes included CNS duration of response, disease control rate (DCR) and progression-free survival (PFS). Of 128 patients with CNS metastases on baseline brain scans, 50 were included in the cEFR. Confirmed CNS ORR and DCR were 54% [27/50; 95% confidence interval (CI) 39-68] and 92% (46/50; 95% CI 81-98), respectively. CNS response was observed regardless of prior radiotherapy to the brain. Median CNS duration of response (22% maturity) was not reached (range, 1-15 months); at 9 months, 75% (95% CI 53-88) of patients were estimated to remain in response. Median follow-up for CNS PFS was 11 months; median CNS PFS was not reached (95% CI, 7, not calculable). The safety profile observed in the cEFR was consistent with the overall patient population. Osimertinib demonstrated clinically meaningful efficacy against CNS metastases, with a high DCR, encouraging ORR, and safety profile consistent with that reported previously. NCT01802632; NCT02094261.

  11. Get It through Your Thick Head: Emerging Principles in Neuroimmunology and Neurovirology Redefine Central Nervous System "Immune Privilege".

    PubMed

    Solomos, Andreas C; Rall, Glenn F

    2016-04-20

    The central nervous system (CNS) coordinates all aspects of life, autonomic and sentient, though how it has evolved to contend with pathogenic infections remains, to a great degree, a mystery. The skull and cerebrospinal fluid (CSF) provide protection from blunt force contacts, and it was once thought that the blood-brain barrier (BBB) was a fortress that restricted pathogen entry and limited inflammation. Recent studies, however, have caused a revision of this viewpoint: the CNS is monitored by blood-borne lymphocytes, but can use alternative strategies to prevent or resolve many pathogenic challenges. In this Review, we discuss emerging principles that indicate how the CNS is immunologically unique from peripheral tissues. We focus on developments that include glymphatics, recently characterized brain lymphatic vessels, distinctions in innate and adaptive immune strategies, novel points of entry for neurotropic viruses, and, finally, how the periphery can influence CNS homeostasis and immune responses within the brain. Collectively, these attributes demand a re-evaluation of immunity in the brain: not privileged, but distinct.

  12. CNS angiogenesis and barriergenesis occur simultaneously.

    PubMed

    Umans, Robyn A; Henson, Hannah E; Mu, Fangzhou; Parupalli, Chaithanyarani; Ju, Bensheng; Peters, Jennifer L; Lanham, Kevin A; Plavicki, Jessica S; Taylor, Michael R

    2017-05-15

    The blood-brain barrier (BBB) plays a vital role in the central nervous system (CNS). A comprehensive understanding of BBB development has been hampered by difficulties in observing the differentiation of brain endothelial cells (BECs) in real-time. Here, we generated two transgenic zebrafish line, Tg(glut1b:mCherry) and Tg(plvap:EGFP), to serve as in vivo reporters of BBB development. We showed that barriergenesis (i.e. the induction of BEC differentiation) occurs immediately as endothelial tips cells migrate into the brain parenchyma. Using the Tg(glut1b:mCherry) transgenic line, we performed a genetic screen and identified a zebrafish mutant with a nonsense mutation in gpr124, a gene known to play a role in CNS angiogenesis and BBB development. We also showed that our transgenic plvap:EGFP line, a reporter of immature brain endothelium, is initially expressed in newly formed brain endothelial cells, but subsides during BBB maturation. Our results demonstrate the ability to visualize the in vivo differentiation of brain endothelial cells into the BBB phenotype and establish that CNS angiogenesis and barriergenesis occur simultaneously. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Innate host barriers to viral trafficking and population diversity: Lessons learned from poliovirus

    PubMed Central

    Pfeiffer, Julie K.

    2011-01-01

    Poliovirus is an error-prone enteric virus spread by the fecal-oral route, and rarely invades the central nervous system (CNS). However, in the rare instances when poliovirus invades the CNS, the resulting damage to motor neurons is striking and often permanent. In the pre-vaccine era, it is likely that most individuals within an epidemic community were infected; however, only 0.5% of infected individuals developed paralytic poliomyelitis. Paralytic poliomyelitis terrified the public and initiated a huge research effort, which was rewarded with two outstanding vaccines. During research to develop the vaccines, many questions were asked: Why did certain people develop paralysis? How does the virus move from the gut to the CNS? What limits viral trafficking to the CNS in the vast majority of infected individuals? Despite over 100 years of poliovirus research, many of these questions remain unanswered. The goal of this chapter is to review our knowledge of how poliovirus moves within and between hosts, how host barriers limit viral movement, how viral population dynamics impact viral fitness and virulence, and to offer hypotheses to explain the rare incidence of paralytic poliovirus disease. PMID:20951871

  14. Ecrg4 expression and its product augurin in the choroid plexus: impact on fetal brain development, cerebrospinal fluid homeostasis and neuroprogenitor cell response to CNS injury

    PubMed Central

    2011-01-01

    Background The content and composition of cerebrospinal fluid (CSF) is determined in large part by the choroid plexus (CP) and specifically, a specialized epithelial cell (CPe) layer that responds to, synthesizes, and transports peptide hormones into and out of CSF. Together with ventricular ependymal cells, these CPe relay homeostatic signals throughout the central nervous system (CNS) and regulate CSF hydrodynamics. One new candidate signal is augurin, a newly recognized 14 kDa protein that is encoded by esophageal cancer related gene-4 (Ecrg4), a putative tumor suppressor gene whose presence and function in normal tissues remains unexplored and enigmatic. The aim of this study was to explore whether Ecrg4 and its product augurin, can be implicated in CNS development and the response to CNS injury. Methods Ecrg4 gene expression in CNS and peripheral tissues was studied by in situ hybridization and quantitative RT-PCR. Augurin, the protein encoded by Ecrg4, was detected by immunoblotting, immunohistochemistry and ELISA. The biological consequence of augurin over-expression was studied in a cortical stab model of rat CNS injury by intra-cerebro-ventricular injection of an adenovirus vector containing the Ecrg4 cDNA. The biological consequences of reduced augurin expression were evaluated by characterizing the CNS phenotype caused by Ecrg4 gene knockdown in developing zebrafish embryos. Results Gene expression and immunohistochemical analyses revealed that, the CP is a major source of Ecrg4 in the CNS and that Ecrg4 mRNA is predominantly localized to choroid plexus epithelial (CPe), ventricular and central canal cells of the spinal cord. After a stab injury into the brain however, both augurin staining and Ecrg4 gene expression decreased precipitously. If the loss of augurin was circumvented by over-expressing Ecrg4 in vivo, BrdU incorporation by cells in the subependymal zone decreased. Inversely, gene knockdown of Ecrg4 in developing zebrafish embryos caused increased proliferation of GFAP-positive cells and induced a dose-dependent hydrocephalus-like phenotype that could be rescued by co-injection of antisense morpholinos with Ecrg4 mRNA. Conclusion An unusually elevated expression of the Ecrg4 gene in the CP implies that its product, augurin, plays a role in CP-CSF-CNS function. The results are all consistent with a model whereby an injury-induced decrease in augurin dysinhibits target cells at the ependymal-subependymal interface. We speculate that the ability of CP and ependymal epithelium to alter the progenitor cell response to CNS injury may be mediated, in part by Ecrg4. If so, the canonic control of its promoter by DNA methylation may implicate epigenetic mechanisms in neuroprogenitor fate and function in the CNS. PMID:21349154

  15. Treatment of HIV in the Central Nervous System.

    PubMed

    Yilmaz, Aylin; Gisslén, Magnus

    2014-02-01

    Central nervous system (CNS) infection is an important part of systemic human immunodeficiency disease (HIV) infection. It is most often asymptomatic, but can sometimes lead to severe neurologic disease, particularly in advanced stages of immunosuppression. CNS HIV infection usually responds well to antiretroviral treatment, but there are concerns that treatment may not always be fully effective in treating or preventing milder CNS disease and that it, under certain circumstances, might be important to consider antiretroviral drug distribution and effects within the CNS. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Strategies for Utilizing Neuroimaging Biomarkers in CNS Drug Discovery and Development: CINP/JSNP Working Group Report.

    PubMed

    Suhara, Tetsuya; Chaki, Shigeyuki; Kimura, Haruhide; Furusawa, Makoto; Matsumoto, Mitsuyuki; Ogura, Hiroo; Negishi, Takaaki; Saijo, Takeaki; Higuchi, Makoto; Omura, Tomohiro; Watanabe, Rira; Miyoshi, Sosuke; Nakatani, Noriaki; Yamamoto, Noboru; Liou, Shyh-Yuh; Takado, Yuhei; Maeda, Jun; Okamoto, Yasumasa; Okubo, Yoshiaki; Yamada, Makiko; Ito, Hiroshi; Walton, Noah M; Yamawaki, Shigeto

    2017-04-01

    Despite large unmet medical needs in the field for several decades, CNS drug discovery and development has been largely unsuccessful. Biomarkers, particularly those utilizing neuroimaging, have played important roles in aiding CNS drug development, including dosing determination of investigational new drugs (INDs). A recent working group was organized jointly by CINP and Japanese Society of Neuropsychopharmacology (JSNP) to discuss the utility of biomarkers as tools to overcome issues of CNS drug development.The consensus statement from the working group aimed at creating more nuanced criteria for employing biomarkers as tools to overcome issues surrounding CNS drug development. To accomplish this, a reverse engineering approach was adopted, in which criteria for the utilization of biomarkers were created in response to current challenges in the processes of drug discovery and development for CNS disorders. Based on this analysis, we propose a new paradigm containing 5 distinct tiers to further clarify the use of biomarkers and establish new strategies for decision-making in the context of CNS drug development. Specifically, we discuss more rational ways to incorporate biomarker data to determine optimal dosing for INDs with novel mechanisms and targets, and propose additional categorization criteria to further the use of biomarkers in patient stratification and clinical efficacy prediction. Finally, we propose validation and development of new neuroimaging biomarkers through public-private partnerships to further facilitate drug discovery and development for CNS disorders. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  17. Career readiness, developmental work personality and age of onset in young adult central nervous system survivors.

    PubMed

    Strauser, David; Wagner, Stacia; Wong, Alex W K; O'Sullivan, Deidre

    2013-04-01

    The primary purpose of this paper is to undertake foundational research in the area of career readiness, work personality and age of onset with young adult central nervous system (CNS) survivors. Participants for this study consisted of 43 individuals whose age range from 18 to 30 (M = 21.64, SD = 3.46), an average age of brain tumor onset of 9.50 years (SD = 4.73) and average years off of treatment of 7.25 years (SD = 5.80). Packets were distributed to survivors who were participating in a psychosocial cancer treatment program. Participants completed multiple career instruments and a demographic form. Differences between groups and among the variables were examined and size effect sizes were analyzed. Young adult CNS survivors had significantly lower levels of work personality and career readiness when compared to young adult non-cancer survivors with CNS cancer with those between the ages of 6 and 12 reported significantly lower levels when compared to individuals diagnosed before age 6 and after the age of 13. Young adult CNS survivors at an increased risk for having lower levels of work personality and career readiness then a norm group comparison. Age of onset (between 6 and 12) may be at significant risk factor for developing poor or dysfunctional work and career behaviors. • Young adults with central nervous system (CNS) cancer are at particular risk for experiencing difficulties related to career and employment. • Work personality and career readiness are two constructs that have been found to be related to one's ability to meet the demands of work. • Young adult CNS cancer survivors have lower levels of work personality and career readiness. • Individuals diagnosed between the ages of 6 and 12 may be at particular risk and may need specific vocational rehabilitation interventions. • The results of this study point to the need for comprehensive career and vocational services for young adult CNS cancer survivors.

  18. The physiological functions of central nervous system pericytes and a potential role in pain

    PubMed Central

    Beazley-Long, Nicholas; Durrant, Alexandra M; Swift, Matthew N; Donaldson, Lucy F

    2018-01-01

    Central nervous system (CNS) pericytes regulate critical functions of the neurovascular unit in health and disease. CNS pericytes are an attractive pharmacological target for their position within the neurovasculature and for their role in neuroinflammation. Whether the function of CNS pericytes also affects pain states and nociceptive mechanisms is currently not understood. Could it be that pericytes hold the key to pain associated with CNS blood vessel dysfunction? This article reviews recent findings on the important physiological functions of CNS pericytes and highlights how these neurovascular functions could be linked to pain states. PMID:29623199

  19. Endothelial β-Catenin Signaling Is Required for Maintaining Adult Blood-Brain Barrier Integrity and CNS Homeostasis

    PubMed Central

    Tran, Khiem A.; Zhang, Xianming; Predescu, Dan; Huang, Xiaojia; Machado, Roberto F.; Göthert, Joachim R.; Malik, Asrar B.; Valyi-Nagy, Tibor; Zhao, You-Yang

    2015-01-01

    Background The blood-brain barrier (BBB) formed by brain endothelial cells (ECs) interconnected by tight junctions (TJs) is essential for the homeostasis of the central nervous system (CNS). Although studies have shown the importance of various signaling molecules in BBB formation during development, little is known about the molecular basis regulating the integrity of the adult BBB. Methods and Results Using a mouse model with tamoxifen-inducible EC-restricted disruption of ctnnb1 (iCKO), here we show that endothelial β-catenin signaling is essential for maintaining BBB integrity and CNS homeostasis in adult. The iCKO mice developed severe seizures accompanied by neuronal injury, multiple brain petechial hemorrhages, and CNS inflammation, and all died postictal. Disruption of endothelial β-catenin induced BBB breakdown and downregulation of specific TJ proteins Claudin-1 and -3 in adult brain ECs. The clinical relevance of the data is indicated by the observation of decreased expression of Claudin-1 and nuclear β-catenin in brain ECs of hemorrhagic lesions of hemorrhagic stroke patients. Conclusion These results demonstrate the prerequisite role of endothelial β-catenin in maintaining the integrity of adult BBB. The results suggest that BBB dysfunction secondary to defective β-catenin transcription activity is a key pathogenic factor in hemorrhagic stroke, seizure activity and CNS inflammation. PMID:26538583

  20. Penetration of equine leukocytes by merozoites of Sarcocystis neurona.

    PubMed

    Lindsay, David S; Mitchell, Sheila M; Yang, Jibing; Dubey, J P; Gogal, Robert M; Witonsky, Sharon G

    2006-06-15

    Horses are considered accidental hosts for Sarcocystis neurona and they often develop severe neurological disease when infected with this parasite. Schizont stages develop in the central nervous system (CNS) and cause the neurological lesions associated with equine protozoal myeloencephalitis. The present study was done to examine the ability of S. neurona merozoites to penetrate and develop in equine peripheral blood leukocytes. These infected host cells might serve as a possible transport mechanism into the CNS. S. neurona merozoites penetrated equine leukocytes within 5 min of co-culture. Infected leukocytes were usually monocytes. Infected leukocytes were present up to the final day of examination at 3 days. Up to three merozoites were present in an infected monocyte. No development to schizont stages was observed. All stages observed were in the host cell cytoplasm. We postulate that S. neurona merozoites may cross the blood brain barrier hidden inside leukocytes. Once inside the CNS these merozoites can egress and invade additional cells and cause encephalitis.

  1. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner.

    PubMed

    Clarke, G; Grenham, S; Scully, P; Fitzgerald, P; Moloney, R D; Shanahan, F; Dinan, T G; Cryan, J F

    2013-06-01

    Bacterial colonisation of the intestine has a major role in the post-natal development and maturation of the immune and endocrine systems. These processes are key factors underpinning central nervous system (CNS) signalling. Regulation of the microbiome-gut-brain axis is essential for maintaining homeostasis, including that of the CNS. However, there is a paucity of data pertaining to the influence of microbiome on the serotonergic system. Germ-free (GF) animals represent an effective preclinical tool to investigate such phenomena. Here we show that male GF animals have a significant elevation in the hippocampal concentration of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid, its main metabolite, compared with conventionally colonised control animals. Moreover, this alteration is sex specific in contrast with the immunological and neuroendocrine effects which are evident in both sexes. Concentrations of tryptophan, the precursor of serotonin, are increased in the plasma of male GF animals, suggesting a humoral route through which the microbiota can influence CNS serotonergic neurotransmission. Interestingly, colonisation of the GF animals post weaning is insufficient to reverse the CNS neurochemical consequences in adulthood of an absent microbiota in early life despite the peripheral availability of tryptophan being restored to baseline values. In addition, reduced anxiety in GF animals is also normalised following restoration of the intestinal microbiota. These results demonstrate that CNS neurotransmission can be profoundly disturbed by the absence of a normal gut microbiota and that this aberrant neurochemical, but not behavioural, profile is resistant to restoration of a normal gut flora in later life.

  2. How Stem Cells Speak with Host Immune Cells in Inflammatory Brain Diseases

    PubMed Central

    Pluchino, Stefano; Cossetti, Chiara

    2014-01-01

    Advances in stem cell biology have raised great expectations that diseases and injuries of the central nervous system (CNS) may be ameliorated by the development of non-hematopoietic stem cell medicines. Yet, the application of adult stem cells as CNS therapeutics is challenging and the interpretation of some of the outcomes ambiguous. In fact, the initial idea that stem cell transplants work only via structural cell replacement has been challenged by the observation of consistent cellular signaling between the graft and the host. Cellular signaling is the foundation of coordinated actions and flexible responses, and arises via networks of exchanging and interacting molecules that transmit patterns of information between cells. Sustained stem cell graft-to-host communication leads to remarkable trophic effects on endogenous brain cells and beneficial modulatory actions on innate and adaptive immune responses in vivo, ultimately promoting the healing of the injured CNS. Among a number of adult stem cell types, mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs) are being extensively investigated for their ability to signal to the immune system upon transplantation in experimental CNS diseases. Here, we focus on the main cellular signaling pathways that grafted MSCs and NPCs use to establish a therapeutically relevant cross talk with host immune cells, while examining the role of inflammation in regulating some of the bidirectionality of these communications. We propose that the identification of the players involved in stem cell signaling might contribute to the development of innovative, high clinical impact therapeutics for inflammatory CNS diseases. PMID:23633288

  3. Epstein-Barr virus (EBV) load in cerebrospinal fluid and peripheral blood of patients with EBV-associated central nervous system diseases after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Liu, Q-F; Ling, Y-W; Fan, Z-P; Jiang, Q-L; Sun, J; Wu, X-L; Zhao, J; Wei, Q; Zhang, Y; Yu, G-P; Wu, M-Q; Feng, R

    2013-08-01

    To evaluate the diagnostic and prognostic utility of monitoring the Epstein-Barr virus (EBV) load in the cerebrospinal fluid (CSF) and peripheral blood for the patients with EBV-associated central nervous system (CNS) diseases after allogeneic hematopoietic stem cell transplantation (allo-HSCT), 172 patients undergoing allo-HSCT were enrolled in the study. The EBV DNA levels of blood were monitored regularly in recipients of transplants for 3 years post transplantation. The EBV DNA levels of CSF were monitored in patients with EBV-associated CNS diseases before the treatment and at different points following the treatment. Post-transplant EBV-associated diseases developed in 27 patients, including 12 patients with EBV-associated CNS diseases. The 3-year cumulative incidences of EBV-associated diseases and EBV-associated CNS diseases were 19.5 ± 3.5% and 8.6 ± 2.4%, respectively. Patients with EBV-associated diseases showed higher loads of EBV DNA in their blood compared with patients with EBV DNA-emia. No difference was seen between the EBV DNA levels of blood in patients with CNS involvement and patients without CNS involvement. The EBV DNA loads of blood increased 3-14 days before the clinical manifestations of EBV-associated diseases emerged. The EBV DNA loads of CSF were higher than that of blood in patients with EBV-associated CNS diseases. In 12 patients with EBV-associated CNS diseases, EBV DNA levels were declining in both blood and CSF with the control of diseases, and the EBV DNA loads of CSF decreased faster than that of blood in 5 patients who responded to treatment, and the EBV DNA levels of CSF increased in 5 patients who were unresponsive to treatment. On multivariate analysis, the use of anti-thymocyte globulin and intensified conditioning regimens were independent risk factors for EBV-associated diseases and EBV-associated CNS diseases. EBV-associated CNS diseases are not rare after allo-HSCT. The EBV DNA loads of CSF could act as an important indicator, but the EBV DNA loads of blood could not, for the diagnosis, prognosis, and therapeutic evaluation of EBV-associated CNS diseases. © 2013 John Wiley & Sons A/S.

  4. Central nervous system medication use and incident mobility limitation in community elders: the Health, Aging, and Body Composition study.

    PubMed

    Boudreau, Robert M; Hanlon, Joseph T; Roumani, Yazan F; Studenski, Stephanie A; Ruby, Christine M; Wright, Rollin M; Hilmer, Sarah N; Shorr, Ronald I; Bauer, Douglas C; Simonsick, Eleanor M; Newman, Anne B

    2009-10-01

    To evaluate whether CNS medication use in older adults was associated with a higher risk of future incident mobility limitation. This 5-year longitudinal cohort study included 3055 participants from the health, aging and body composition (Health ABC) study who were well-functioning at baseline. CNS medication use (benzodiazepine and opioid receptor agonists, antipsychotics, and antidepressants) was determined yearly (except year 4) during in-home or in-clinic interviews. Summated standardized daily doses (low, medium, and high) and duration of CNS drug use were computed. Incident mobility limitation was operationalized as two consecutive self-reports of having any difficulty walking 1/4 mile or climbing 10 steps without resting every 6 months after baseline. Multivariable Cox proportional hazard analyses were conducted adjusting for demographics, health behaviors, health status, and common indications for CNS medications. Each year at least 13.9% of participants used a CNS medication. By year 6, overall 49% had developed incident mobility limitation. In multivariable models, CNS medication users compared to never users showed a higher risk for incident mobility limitation (adjusted hazard ratio (Adj. HR) 1.28; 95% confidence interval (CI) 1.12-1.47). Similar findings of increased risk were seen in analyses examining dose- and duration-response relationships. CNS medication use is independently associated with an increased risk of future incident mobility limitation in community dwelling elderly. Further studies are needed to determine the impact of reducing CNS medication exposure on mobility problems. 2009 John Wiley & Sons, Ltd.

  5. Central nervous system event in patients with diffuse large B-cell lymphoma in the rituximab era.

    PubMed

    Tomita, Naoto; Yokoyama, Masahiro; Yamamoto, Wataru; Watanabe, Reina; Shimazu, Yutaka; Masaki, Yasufumi; Tsunoda, Saburo; Hashimoto, Chizuko; Murayama, Kayoko; Yano, Takahiro; Okamoto, Rumiko; Kikuchi, Ako; Tamura, Kazuo; Sato, Kazuya; Sunami, Kazutaka; Shibayama, Hirohiko; Takimoto, Rishu; Ohshima, Rika; Hatta, Yoshihiro; Moriuchi, Yukiyoshi; Kinoshita, Tomohiro; Yamamoto, Masahide; Numata, Ayumi; Ishigatsubo, Yoshiaki; Takeuchi, Kengo

    2012-02-01

    Central nervous system (CNS) events, including CNS relapse and progression to CNS, are known to be serious complications in the clinical course of patients with lymphoma. This study aimed to evaluate the risk of CNS events in patients with diffuse large B-cell lymphoma in the rituximab era. We performed a retrospective survey of Japanese patients diagnosed with diffuse large B-cell lymphoma who underwent primary therapy with R-CHOP chemoimmunotherapy between September 2003 and December 2006. Patients who had received any prophylactic CNS treatment were excluded. Clinical data from 1221 patients were collected from 47 institutions. The median age of patients was 64 years (range, 15-91 years). We noted 82 CNS events (6.7%) and the cumulative 5-year probability of CNS events was 8.4%. Patients with a CNS event demonstrated significantly worse overall survival (P < 0.001). The 2-year overall survival rate after a CNS event was 27.1%. In a multivariate analysis, involvement of breast (relative risk [RR] 10.5), adrenal gland (RR 4.6) and bone (RR 2.0) were identified as independent risk factors for CNS events. We conclude that patients with these risk factors, in addition to patients with testicular involvement in whom CNS prophylaxis has been already justified, are at high risk for CNS events in the rituximab era. The efficacy and manner of CNS prophylaxis in patients for each involvement site should be evaluated further. © 2011 Japanese Cancer Association.

  6. AhR-deficiency as a cause of demyelinating disease and inflammation.

    PubMed

    Juricek, Ludmila; Carcaud, Julie; Pelhaitre, Alice; Riday, Thorfinn T; Chevallier, Aline; Lanzini, Justine; Auzeil, Nicolas; Laprévote, Olivier; Dumont, Florent; Jacques, Sebastien; Letourneur, Frank; Massaad, Charbel; Agulhon, Cendra; Barouki, Robert; Beraneck, Mathieu; Coumoul, Xavier

    2017-08-29

    The Aryl hydrocarbon Receptor(AhR) is among the most important receptors which bind pollutants; however it also regulates signaling pathways independently of such exposure. We previously demonstrated that AhR is expressed during development of the central nervous system(CNS) and that its deletion leads to the occurrence of a congenital nystagmus. Objectives of the present study are to decipher the origin of these deficits, and to identify the role of the AhR in the development of the CNS. We show that the AhR-knockout phenotype develops during early infancy together with deficits in visual-information-processing which are associated with an altered optic nerve myelin sheath, which exhibits modifications in its lipid composition and in the expression of myelin-associated-glycoprotein(MAG), a cell adhesion molecule involved in myelin-maintenance and glia-axon interaction. In addition, we show that the expression of pro-inflammatory cytokines is increased in the impaired optic nerve and confirm that inflammation is causally related with an AhR-dependent decreased expression of MAG. Overall, our findings demonstrate the role of the AhR as a physiological regulator of myelination and inflammatory processes in the developing CNS. It identifies a mechanism by which environmental pollutants might influence CNS myelination and suggest AhR as a relevant drug target for demyelinating diseases.

  7. Implications and Management of Central Nervous System Involvement before Allogeneic Hematopoietic Cell Transplantation in Acute Lymphoblastic Leukemia.

    PubMed

    Aldoss, Ibrahim; Al Malki, Monzr M; Stiller, Tracey; Cao, Thai; Sanchez, James F; Palmer, Joycelynne; Forman, Stephen J; Pullarkat, Vinod

    2016-03-01

    Acute lymphoblastic leukemia (ALL) with a history of central nervous system (CNS) involvement, either at diagnosis or relapse, poses challenges when the decision is made to proceed with allogeneic hematopoietic cell transplantation (alloHCT), as there is no evidence-based consensus on the best peri-transplantation approach to reduce subsequent CNS relapse risk. Here, we retrospectively analyzed outcomes of 87 patients with ALL and a history of CNS involvement who later underwent alloHCT. Patients with pretransplantation CNS involvement had higher risk of CNS relapse after transplantation (2-year CNS relapse: 9.6% versus 1.4%, P < .0001), inferior event-free survival (EFS) (hazard ratio [HR], 1.52; P = .003), and worse overall survival (OS) (HR, 1.55; P = .003) compared with patients without pretransplantation CNS involvement (n = 543). There was no difference in post-transplantation CNS relapse, EFS, or OS among patients presenting with CNS involvement at diagnosis, those with isolated CNS relapse, and those with combined bone marrow and CNS relapse before HCT. Interestingly, neither pretransplantation cranial irradiation, use of total body irradiation-based conditioning, nor post-transplantation prophylactic intrathecal chemotherapy were associated with a reduction of CNS relapse risk after transplantation. Thus, among the patients in the cohort studied, there was no clear benefit of CNS-directed therapy in the peri-transplantation period among patients who had prior CNS involvement and underwent subsequent alloHCT. Copyright © 2016 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  8. In Vitro Cerebrovascular Modeling in the 21st Century: Current and Prospective Technologies

    PubMed Central

    Palmiotti, Christopher A.; Prasad, Shikha; Naik, Pooja; Abul, Kaisar MD; Sajja, Ravi K.; Achyuta, Anilkumar H.; Cucullo, Luca

    2014-01-01

    The blood-brain barrier (BBB) maintains the brain homeostasis and dynamically responds to events associated with systemic and/or rheological impairments (e.g., inflammation, ischemia) including the exposure to harmful xenobiotics. Thus, understanding the BBB physiology is crucial for the resolution of major central nervous system CNS) disorders challenging both health care providers and the pharmaceutical industry. These challenges include drug delivery to the brain, neurological disorders, toxicological studies, and biodefense. Studies aimed at advancing our understanding of CNS diseases and promoting the development of more effective therapeutics are primarily performed in laboratory animals. However, there are major hindering factors inherent to in vivo studies such as cost, limited throughput and translational significance to humans. These factors promoted the development of alternative in vitro strategies for studying the physiology and pathophysiology of the BBB in relation to brain disorders as well as screening tools to aid in the development of novel CNS drugs. Herein, we provide a detailed review including pros and cons of current and prospective technologies for modelling the BBB in vitro including ex situ, cell based and computational (in silico) models. A special section is dedicated to microfluidic systems including micro-BBB, BBB-on-a-chip, Neurovascular Unit-on-a-Chip and Synthetic Microvasculature Blood-Brain Barrier. PMID:25098812

  9. In vitro cerebrovascular modeling in the 21st century: current and prospective technologies.

    PubMed

    Palmiotti, Christopher A; Prasad, Shikha; Naik, Pooja; Abul, Kaisar M D; Sajja, Ravi K; Achyuta, Anilkumar H; Cucullo, Luca

    2014-12-01

    The blood-brain barrier (BBB) maintains the brain homeostasis and dynamically responds to events associated with systemic and/or rheological impairments (e.g., inflammation, ischemia) including the exposure to harmful xenobiotics. Thus, understanding the BBB physiology is crucial for the resolution of major central nervous system CNS) disorders challenging both health care providers and the pharmaceutical industry. These challenges include drug delivery to the brain, neurological disorders, toxicological studies, and biodefense. Studies aimed at advancing our understanding of CNS diseases and promoting the development of more effective therapeutics are primarily performed in laboratory animals. However, there are major hindering factors inherent to in vivo studies such as cost, limited throughput and translational significance to humans. These factors promoted the development of alternative in vitro strategies for studying the physiology and pathophysiology of the BBB in relation to brain disorders as well as screening tools to aid in the development of novel CNS drugs. Herein, we provide a detailed review including pros and cons of current and prospective technologies for modelling the BBB in vitro including ex situ, cell based and computational (in silico) models. A special section is dedicated to microfluidic systems including micro-BBB, BBB-on-a-chip, Neurovascular Unit-on-a-Chip and Synthetic Microvasculature Blood-brain Barrier.

  10. Encapsulated oligodendrocyte precursor cell fate is dependent on PDGF-AA release kinetics in a 3D microparticle-hydrogel drug delivery system.

    PubMed

    Pinezich, Meghan R; Russell, Lauren N; Murphy, Nicholas P; Lampe, Kyle J

    2018-04-16

    Biomaterial drug delivery systems (DDS) can be used to regulate growth factor release and combat the limited intrinsic regeneration capabilities of central nervous system (CNS) tissue following injury and disease. Of particular interest are systems that aid in oligodendrocyte regeneration, as oligodendrocytes generate myelin which surrounds neuronal axons and helps transmit signals throughout the CNS. Oligodendrocyte precursor cells (OPCs) are found in small numbers in the adult CNS, but are unable to effectively differentiate following CNS injury. Delivery of signaling molecules can initiate a favorable OPC response, such as proliferation or differentiation. Here, we investigate the delivery of one such molecule, platelet derived growth factor-AA (PDGF-AA), from poly(lactic-co-glycolic) acid microparticles to OPCs in a 3D polyethylene glycol-based hydrogel. The goal of this DDS was to better understand the relationship between PDGF-AA release kinetics and OPC fate. The system approximates native brain tissue stiffness, while incorporating PDGF-AA under seven different delivery scenarios. Within this DDS, supply of PDGF-AA followed by PDGF-AA withdrawal caused OPCs to upregulate gene expression of myelin basic protein (MBP) by factors of 1.6-9.2, whereas continuous supply of PDGF-AA caused OPCs to remain proliferative. At the protein expression level, we observed an upregulation in O1, a marker for mature oligodendrocytes. Together, these results show that burst release followed by withdrawal of PDGF-AA from a hydrogel DDS stimulates survival, proliferation, and differentiation of OPCs in vitro. Our results could inform the development of improved neural regeneration strategies that incorporate delivery of PDGF-AA to the injured CNS. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.

  11. CNS Anticancer Drug Discovery and Development Conference White Paper

    PubMed Central

    Levin, Victor A.; Tonge, Peter J.; Gallo, James M.; Birtwistle, Marc R.; Dar, Arvin C.; Iavarone, Antonio; Paddison, Patrick J.; Heffron, Timothy P.; Elmquist, William F.; Lachowicz, Jean E.; Johnson, Ted W.; White, Forest M.; Sul, Joohee; Smith, Quentin R.; Shen, Wang; Sarkaria, Jann N.; Samala, Ramakrishna; Wen, Patrick Y.; Berry, Donald A.; Petter, Russell C.

    2015-01-01

    Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric “Accelerating Drug Discovery and Development for Brain Tumors,” further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward. PMID:26403167

  12. The blood-brain barrier and nasal drug delivery to the central nervous system.

    PubMed

    Miyake, Marcel Menon; Bleier, Benjamin S

    2015-01-01

    The blood-brain barrier (BBB) is a highly efficient system that separates the central nervous system (CNS) from general circulation and promotes selective transport of molecules that are essential for brain function. However, it also limits the distribution of systemically administered therapeutics to the brain; therefore, there is a restricted number of drugs available for the treatment of brain disorders. Several drug-targeting strategies have been developed to attempt to bypass the BBB, but none has proved sufficiently effective in reaching the brain. The objective of this study is to generally review these strategies of drug administration to the CNS. Noninvasive methods of drug delivery, such as chemical and biologic transport systems, do not represent a feasible platform, whereas for most drugs, it is still not possible to achieve therapeutic levels within the brain tissue after intravenous or oral administration, and the use of higher potency or more concentrated doses may cause serious toxic side effects. Direct intrathecal drug delivery through a catheter into the CNS also presents several problems. Intranasal drug delivery is a potential alternative method due to the direct transport into the cerebrospinal fluid (CSF) compartment along the olfactory pathway, but the study's conclusions are controversial. An endoscopic intranasal surgical procedure using established skull base surgery reconstruction techniques based on the use of a nasal mucosa surgical flap as the only obstacle between the nose and the subarachnoid space has appeared as a potential solution to increase the absorption of intranasal drugs to the CNS. Despite extensive efforts to develop new techniques to cross the BBB, none has proved sufficiently effective in reaching the brain, whereas minimizing adverse effects and the endoscopic mucosal grafting technique offers new potential promise.

  13. Enhanced Analgesic Responses After Preferential Delivery of Morphine and Fentanyl to the Olfactory Epithelium in Rats

    PubMed Central

    Hoekman, John D.; Ho, Rodney J.Y.

    2011-01-01

    Background Centrally acting opioid analgesics such as morphine and fentanyl are effective, but their efficacy is often limited by a delayed response or side effects resulting from systemic first-pass before reaching the brain and the central nervous system (CNS). It is generally accepted that drugs applied to the nasal cavity can directly access the brain and the CNS, which could provide therapeutic advantages such as rapid onset and lower systemic exposure. The olfactory region of the nasal cavity has been implicated in facilitating this direct nose-to-CNS transfer. If the fraction of opioid administered to the olfactory region could be improved, there could be a larger fraction of drug directly delivered to the CNS, mediating greater therapeutic benefit. Methods We have developed a pressurized olfactory delivery (POD) device to consistently and non-invasively deposit a majority of drug on the olfactory region of the nasal cavity in Sprague-Dawley rats. Using the tail-flick latency test and analysis of plasma and CNS tissue drug exposure, we compared distribution and efficacy of the opioids morphine and fentanyl administered to the nasal olfactory region with the POD device or the nasal respiratory region with nose drops or systemically via intraperitoneal (IP) injection. Results Compared to nose drop, POD administration of morphine resulted in significantly higher overall therapeutic effect (AUCeffect) without a significant increase in plasma drug exposure (AUCplasma). POD delivery of morphine resulted in a nose-to-CNS direct transport percentage of 38–55%. POD delivery of fentanyl led to a faster (5 min vs. 10 min) and more intense analgesic effect compared to nasal respiratory administration. Unlike IP injection or nose drop administration, both morphine and fentanyl given by the POD device to olfactory nasal epithelium exhibited clockwise [plasma] versus effect hysteresis after nasal POD administration, consistent with direct nose-to-CNS drug transport mechanism. Conclusions Deposition of opioids to the olfactory region within the nasal cavity could have a significant impact on drug distribution and pharmacodynamic effect, and thus should be considered into account in future nasally administered opioid studies. PMID:21709146

  14. Transgenic Mice with Increased Astrocyte Expression of IL-6 Show Altered Effects of Acute Ethanol on Synaptic Function

    PubMed Central

    Hernandez, Ruben V.; Puro, Alana C.; Manos, Jessica C.; Huitron-Resendiz, Salvador; Reyes, Kenneth C.; Liu, Kevin; Vo, Khanh; Roberts, Amanda J.; Gruol, Donna L.

    2015-01-01

    A growing body of evidence has revealed that resident cells of the central nervous system (CNS), and particularly the glial cells, comprise a neuroimmune system that serves a number of functions in the normal CNS and during adverse conditions. Cells of the neuroimmune system regulate CNS functions through the production of signaling factors, referred to as neuroimmune factors. Recent studies show that ethanol can activate cells of the neuroimmune system, resulting in the elevated production of neuroimmune factors, including the cytokine interleukin-6 (IL-6). Here we analyzed the consequences of this CNS action of ethanol using transgenic mice that express elevated levels of IL-6 through increased astrocyte expression (IL-6-tg) to model the increased IL-6 expression that occurs with ethanol use. Results show that increased IL-6 expression induces neuroadaptive changes that alter the effects of ethanol. In hippocampal slices from non-transgenic (non-tg) littermate control mice, synaptically evoked dendritic field excitatory postsynaptic potential (fEPSP) and somatic population spike (PS) at the Schaffer collateral to CA1 pyramidal neuron synapse were reduced by acute ethanol (20 or 60 mM). In contrast, acute ethanol enhanced the fEPSP and PS in hippocampal slices from IL-6 tg mice. Long-term synaptic plasticity of the fEPSP (i.e., LTP) showed the expected dose-dependent reduction by acute ethanol in non-tg hippocampal slices, whereas LTP in the IL-6 tg hippocampal slices was resistant to this depressive effect of acute ethanol. Consistent with altered effects of acute ethanol on synaptic function in the IL-6 tg mice, EEG recordings showed a higher level of CNS activity in the IL-6 tg mice than in the non-tg mice during the period of withdrawal from an acute high dose of ethanol. These results suggest a potential role for neuroadaptive effects of ethanol-induced astrocyte production of IL-6 as a mediator or modulator of the actions of ethanol on the CNS, including persistent changes in CNS function that contribute to cognitive dysfunction and the development of alcohol dependence. PMID:26707655

  15. Dopamine Increases CD14+CD16+ Monocyte Transmigration across the Blood Brain Barrier: Implications for Substance Abuse and HIV Neuropathogenesis.

    PubMed

    Calderon, Tina M; Williams, Dionna W; Lopez, Lillie; Eugenin, Eliseo A; Cheney, Laura; Gaskill, Peter J; Veenstra, Mike; Anastos, Kathryn; Morgello, Susan; Berman, Joan W

    2017-06-01

    In human immunodeficiency virus-1 (HIV) infected individuals, substance abuse may accelerate the development and/or increase the severity of HIV associated neurocognitive disorders (HAND). It is proposed that CD14 + CD16 + monocytes mediate HIV entry into the central nervous system (CNS) and that uninfected and infected CD14 + CD16 + monocyte transmigration across the blood brain barrier (BBB) contributes to the establishment and propagation of CNS HIV viral reservoirs and chronic neuroinflammation, important factors in the development of HAND. The effects of substance abuse on the frequency of CD14 + CD16 + monocytes in the peripheral circulation and on the entry of these cells into the CNS during HIV neuropathogenesis are not known. PBMC from HIV infected individuals were analyzed by flow cytometry and we demonstrate that the frequency of peripheral blood CD14 + CD16 + monocytes in HIV infected substance abusers is increased when compared to those without active substance use. Since drug use elevates extracellular dopamine concentrations in the CNS, we examined the effects of dopamine on CD14 + CD16 + monocyte transmigration across our in vitro model of the human BBB. The transmigration of this monocyte subpopulation is increased by dopamine and the dopamine receptor agonist, SKF 38393, implicating D1-like dopamine receptors in the increase in transmigration elicited by this neurotransmitter. Thus, elevated extracellular CNS dopamine may be a novel common mechanism by which active substance use increases uninfected and HIV infected CD14 + CD16 + monocyte transmigration across the BBB. The influx of these cells into the CNS may increase viral seeding and neuroinflammation, contributing to the development of HIV associated neurocognitive impairments.

  16. Neurodevelopmental effects of insulin-like growth factor signaling

    PubMed Central

    O’Kusky, John; Ye, Ping

    2012-01-01

    Insulin-like growth factor (IGF) signaling greatly impacts the development and growth of the central nervous system (CNS). IGF-I and IGF-II, two ligands of the IGF system, exert a wide variety of actions both during development and in adulthood, promoting the survival and proliferation of neural cells. The IGFs also influence the growth and maturation of neural cells, augmenting dendritic growth and spine formation, axon outgrowth, synaptogenesis, and myelination. Specific IGF actions, however, likely depend on cell type, developmental stage, and local microenvironmental milieu within the brain. Emerging research also indicates that alterations in IGF signaling likely contribute to the pathogenesis of some neurological disorders. This review summarizes experimental studies and shed light on the critical roles of IGF signaling, as well as its mechanisms, during CNS development. PMID:22710100

  17. Oxygen Toxicity and Special Operations Forces Diving: Hidden and Dangerous

    PubMed Central

    Wingelaar, Thijs T.; van Ooij, Pieter-Jan A. M.; van Hulst, Rob A.

    2017-01-01

    In Special Operations Forces (SOF) closed-circuit rebreathers with 100% oxygen are commonly utilized for covert diving operations. Exposure to high partial pressures of oxygen (PO2) could cause damage to the central nervous system (CNS) and pulmonary system. Longer exposure time and higher PO2 leads to faster development of more serious pathology. Exposure to a PO2 above 1.4 ATA can cause CNS toxicity, leading to a wide range of neurologic complaints including convulsions. Pulmonary oxygen toxicity develops over time when exposed to a PO2 above 0.5 ATA and can lead to inflammation and fibrosis of lung tissue. Oxygen can also be toxic for the ocular system and may have systemic effects on the inflammatory system. Moreover, some of the effects of oxygen toxicity are irreversible. This paper describes the pathophysiology, epidemiology, signs and symptoms, risk factors and prediction models of oxygen toxicity, and their limitations on SOF diving. PMID:28790955

  18. Rapid and efficient crossing blood-brain barrier: Hydrophobic drug delivery system based on propionylated amylose helix nanoclusters.

    PubMed

    Gao, Wei; Liu, Yongchun; Jing, Guixia; Li, Ke; Zhao, Yuan; Sha, Baoyong; Wang, Qiang; Wu, Daocheng

    2017-01-01

    A novel strategy of rapid transport across the blood-brain barrier (BBB) via phosphatidylethanolamine-triggered release is developed through both molecular dynamics (MD) simulation and experiments. Hydrophobic drugs, namely, propofol, iodine, and 1,1'-dioctadecyltetramethyl indotricarbocyanine iodide, were loaded with propionylated amylose helix (HLPAH) nanoclusters to form PLPAH, ILPAH, and DLPAH nanoclusters, respectively. These clusters were subjected to MD simulation, structure measurement, in vitro triggered study, in vivo DLPAH imaging, and analysis of PLPAH sedative effects on rabbits. Results indicated that HLPAH nanoclusters were initially located on the BBB, and the helix was unfolded to release the loaded hydrophobic drugs. The released drugs crossed the BBB and performed their functions in the central nervous system (CNS) through concentration gradient and hydrophobicity. This mechanism of HLPAH across the BBB featured high membrane permeability and specificity, rapid onset, short maintenance, rapid recovery, and lower dosage of drugs. Hence, this novel strategy is very meaningful for the development of CNS drug carriers and the proposed system could be used to improve the therapeutic effects of CNS diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A Novel Robust H∞ Filter Based on Krein Space Theory in the SINS/CNS Attitude Reference System

    PubMed Central

    Yu, Fei; Lv, Chongyang; Dong, Qianhui

    2016-01-01

    Owing to their numerous merits, such as compact, autonomous and independence, the strapdown inertial navigation system (SINS) and celestial navigation system (CNS) can be used in marine applications. What is more, due to the complementary navigation information obtained from two different kinds of sensors, the accuracy of the SINS/CNS integrated navigation system can be enhanced availably. Thus, the SINS/CNS system is widely used in the marine navigation field. However, the CNS is easily interfered with by the surroundings, which will lead to the output being discontinuous. Thus, the uncertainty problem caused by the lost measurement will reduce the system accuracy. In this paper, a robust H∞ filter based on the Krein space theory is proposed. The Krein space theory is introduced firstly, and then, the linear state and observation models of the SINS/CNS integrated navigation system are established reasonably. By taking the uncertainty problem into account, in this paper, a new robust H∞ filter is proposed to improve the robustness of the integrated system. At last, this new robust filter based on the Krein space theory is estimated by numerical simulations and actual experiments. Additionally, the simulation and experiment results and analysis show that the attitude errors can be reduced by utilizing the proposed robust filter effectively when the measurements are missing discontinuous. Compared to the traditional Kalman filter (KF) method, the accuracy of the SINS/CNS integrated system is improved, verifying the robustness and the availability of the proposed robust H∞ filter. PMID:26999153

  20. Intracranial cerebral artery disease as a risk factor for central nervous system complications of coronary artery bypass graft surgery.

    PubMed

    Yoon, B W; Bae, H J; Kang, D W; Lee, S H; Hong, K S; Kim, K B; Park, B J; Roh, J K

    2001-01-01

    Although extracranial carotid artery disease (ECAD) is accepted as a risk factor for central nervous system (CNS) complications after coronary artery bypass graft (CABG) surgery, it remains to be clarified whether intracranial cerebral artery disease (ICAD) may also increase the risk. We conducted a prospective study to elucidate the relation between ICAD and CNS complications after CABG surgery. We prospectively studied 201 patients undergoing nonemergency isolated CABG surgery during a 39-month period (from March 1995 to June 1998). Each patient was evaluated before surgery with neurological examination, transcranial Doppler, and carotid duplex ultrasonography. Magnetic resonance angiography was used to determine the presence and severity of ECAD and ICAD in patients with abnormal findings on clinical examination, carotid duplex ultrasonography, or transcranial Doppler. Patients were followed after surgery and evaluated for the development of CNS complications. Association between CNS complications and their potential predictors was analyzed. One hundred nine patients (54.2%) were found to have ECAD and/or ICAD. ECAD alone was found in 48 patients (23.9%), ICAD alone in 33 (16.4%), and both ECAD and ICAD in 28 (13.9%). Fifty-one patients (25.4%) had single or multiple CNS complications: 23 (11.4%) had delirium; 18 (9.0%) had hypoxic-metabolic encephalopathy; 7 (3.5%) had stroke; and 7 (3. 5%) had seizure. In multivariate analysis, ICAD was found to have an independent association with the development of CNS complications (prevalence OR, 2.28; 95% CI, 1.04 to 5.01) after controlling for covariates including age, occurrence of intraoperative events, and reoperation. The joint effect of ECAD and ICAD was also statistically significant and stronger than ICAD alone (prevalence OR, 3.87; 95% CI, 1.80 to 6.52). Our results suggest that ICAD may be an independent risk factor for CNS complications after CABG surgery. These results support pre-CABG evaluation of the intracranial arteries for the risk assessment of CABG surgery, at least in black and Asian patients, in whom there may be a higher prevalence of intracranial arterial stenosis.

  1. Modeling the control of the central nervous system over the cardiovascular system using support vector machines.

    PubMed

    Díaz, José; Acosta, Jesús; González, Rafael; Cota, Juan; Sifuentes, Ernesto; Nebot, Àngela

    2018-02-01

    The control of the central nervous system (CNS) over the cardiovascular system (CS) has been modeled using different techniques, such as fuzzy inductive reasoning, genetic fuzzy systems, neural networks, and nonlinear autoregressive techniques; the results obtained so far have been significant, but not solid enough to describe the control response of the CNS over the CS. In this research, support vector machines (SVMs) are used to predict the response of a branch of the CNS, specifically, the one that controls an important part of the cardiovascular system. To do this, five models are developed to emulate the output response of five controllers for the same input signal, the carotid sinus blood pressure (CSBP). These controllers regulate parameters such as heart rate, myocardial contractility, peripheral and coronary resistance, and venous tone. The models are trained using a known set of input-output response in each controller; also, there is a set of six input-output signals for testing each proposed model. The input signals are processed using an all-pass filter, and the accuracy performance of the control models is evaluated using the percentage value of the normalized mean square error (MSE). Experimental results reveal that SVM models achieve a better estimation of the dynamical behavior of the CNS control compared to others modeling systems. The main results obtained show that the best case is for the peripheral resistance controller, with a MSE of 1.20e-4%, while the worst case is for the heart rate controller, with a MSE of 1.80e-3%. These novel models show a great reliability in fitting the output response of the CNS which can be used as an input to the hemodynamic system models in order to predict the behavior of the heart and blood vessels in response to blood pressure variations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The nanomaterial toolkit for neuroengineering

    NASA Astrophysics Data System (ADS)

    Shah, Shreyas

    2016-10-01

    There is a growing interest in developing effective tools to better probe the central nervous system (CNS), to understand how it works and to treat neural diseases, injuries and cancer. The intrinsic complexity of the CNS has made this a challenging task for decades. Yet, with the extraordinary recent advances in nanotechnology and nanoscience, there is a general consensus on the immense value and potential of nanoscale tools for engineering neural systems. In this review, an overview of specialized nanomaterials which have proven to be the most effective tools in neuroscience is provided. After a brief background on the prominent challenges in the field, a variety of organic and inorganic-based nanomaterials are described, with particular emphasis on the distinctive properties that make them versatile and highly suitable in the context of the CNS. Building on this robust nano-inspired foundation, the rational design and application of nanomaterials can enable the generation of new methodologies to greatly advance the neuroscience frontier.

  3. Advanced diffusion MRI and biomarkers in the central nervous system: a new approach.

    PubMed

    Martín Noguerol, T; Martínez Barbero, J P

    The introduction of diffusion-weighted sequences has revolutionized the detection and characterization of central nervous system (CNS) disease. Nevertheless, the assessment of diffusion studies of the CNS is often limited to qualitative estimation. Moreover, the pathophysiological complexity of the different entities that affect the CNS cannot always be correctly explained through classical models. The development of new models for the analysis of diffusion sequences provides numerous parameters that enable a quantitative approach to both diagnosis and prognosis as well as to monitoring the response to treatment; these parameters can be considered potential biomarkers of health and disease. In this update, we review the physical bases underlying diffusion studies and diffusion tensor imaging, advanced models for their analysis (intravoxel coherent motion and kurtosis), and the biological significance of the parameters derived. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. T-bet-dependent NKp46+ innate lymphoid cells regulate the onset of TH17-induced neuroinflammation.

    PubMed

    Kwong, Brandon; Rua, Rejane; Gao, Yuanyuan; Flickinger, John; Wang, Yan; Kruhlak, Michael J; Zhu, Jinfang; Vivier, Eric; McGavern, Dorian B; Lazarevic, Vanja

    2017-10-01

    The transcription factor T-bet has been associated with increased susceptibility to systemic and organ-specific autoimmunity, but the mechanism by which T-bet expression promotes neuroinflammation remains unknown. In this study, we demonstrate a cardinal role of T-bet-dependent NKp46 + innate lymphoid cells (ILCs) in the initiation of CD4 + T H 17-mediated neuroinflammation. Loss of T-bet specifically in NKp46 + ILCs profoundly impaired the ability of myelin-reactive T H 17 cells to invade central nervous system (CNS) tissue and protected the mice from autoimmunity. T-bet-dependent NKp46 + ILCs localized in the meninges and acted as chief coordinators of meningeal inflammation by inducing the expression of proinflammatory cytokines, chemokines and matrix metalloproteinases, which together facilitated T cell entry into CNS parenchyma. Our findings uncover a detrimental role of T-bet-dependent NKp46 + ILCs in the development of CNS autoimmune disease.

  5. Folate and epigenetic mechanisms in neural tube development and defects.

    PubMed

    Meethal, Sivan Vadakkadath; Hogan, Kirk J; Mayanil, Chandra S; Iskandar, Bermans J

    2013-09-01

    Multiple genetic and epigenetic factors involved in central nervous system (CNS) development influence the incidence of neural tube defects (NTDs). The beneficial effect of periconceptional folic acid on NTD prevention denotes a vital role for the single-carbon biochemical pathway in NTD genesis. Indeed, NTDs are associated with polymorphisms in a diversity of genes that encode folate pathway enzymes. Recent evidence suggests that CNS development and function, and consequently NTDs, are also associated with epigenetic mechanisms, many of which participate in the folate cycle and its input and output pathways. We provide an overview with select examples drawn from the authors' research.

  6. Solving the Blood-Brain Barrier Challenge for the Effective Treatment of HIV Replication in the Central Nervous System.

    PubMed

    Bertrand, Luc; Nair, Madhavan; Toborek, Michal

    2016-01-01

    Recent decades mark a great progress in the treatment of HIV infection. What was once a deadly disease is now a chronic infection. However, HIV-infected patients are prone to develop comorbidities, which severely affect their daily functions. For example, a large population of patients develop a variety of neurological and cognitive complications, called HIV associated neurological disorders (HAND). Despite efficient repression of viral replication in the periphery, evidence shows that the virus can remain active in the central nervous system (CNS). This low level of replication is believed to result in a progression of neurocognitive dysfunction in infected individuals. Insufficient viral inhibition in the brain results from the inability of several treatment drugs in crossing the blood-brain barrier (BBB) and reaching therapeutic concentrations in the CNS. The current manuscript discusses several strategies that are being developed to enable therapeutics to cross the BBB, including bypassing BBB, inhibition of efflux transporters, the use of active transporters present at the BBB, and nanotechnology. The increased concentration of therapeutics in the CNS is desirable to prevent viral replication; however, potential side effects of anti-retroviral drugs need also to be taken into consideration.

  7. The M2 autoantigen of central nervous system myelin, a glycoprotein present in oligodendrocyte membrane.

    PubMed Central

    Lebar, R; Lubetzki, C; Vincent, C; Lombrail, P; Boutry, J M

    1986-01-01

    Autoantibodies with in-vitro demyelinating capacity induced in Hartley and strain 13 guinea pigs with homologous central nervous system (CNS) tissue were used to characterize the target autoantigen M2. Using the Dot Immunobinding technique, M2 was found to be a component of CNS myelin different from basic protein (BP) and from cerebroside. The expression of M2 on oligodendrocytes, cells known to produce CNS myelin, also confirmed that M2 was a component of CNS myelin. Furthermore, the autoradiography of immunoprecipitates formed with radiolabelled guinea pig myelin and analysed in sodium dodecyl sulphate gels showed that M2 was specific to CNS myelin and absent in peripheral nervous system (PNS) myelin. On electrophoresis M2 appeared as two CNS myelin protein bands at the 27 and 54 KD molecular weight levels, distinct from the major protein bands of proteolipid and BP. M2 bands were of glycoprotein nature, as was demonstrated by affinity chromatography of CNS myelin on wheat germ agglutinin (WGA)-Sepharose. A monoclonal antibody induced by BP-free CNS glycoproteins recognized the same bands as anti-M2 serum in guinea pig CNS myelin. This would imply that both M2 bands share common determinants. M2 bands similar to the above in guinea pig were also shown in rat, rabbit and bovine CNS myelin with guinea pig antibodies. The same type of anti-M2 antibodies were induced in rabbit immunized with homologous CNS tissue. Although only a minor component of myelin, M2 is strongly immunogenic compared to BP. M2 antigen could thus be the target of chronic demyelinating processes such as experimental allergic encephalomyelitis. Images Fig. 1 Figure 2 Fig. 3 Fig. 4 PMID:2434274

  8. Mifepristone-inducible transgene expression in neural progenitor cells in vitro and in vivo

    PubMed Central

    Hjelm, BE; Grunseich, C; Gowing, G; Avalos, P; Tian, J; Shelley, BC; Mooney, M; Narwani, K; Shi, Y; Svendsen, CN; Wolfe, JH; Fischbeck, KH; Pierson, TM

    2016-01-01

    Numerous gene and cell therapy strategies are being developed for the treatment of neurodegenerative disorders. Many of these strategies use constitutive expression of therapeutic transgenic proteins, and although functional in animal models of disease, this method is less likely to provide adequate flexibility for delivering therapy to humans. Ligand-inducible gene expression systems may be more appropriate for these conditions, especially within the central nervous system (CNS). Mifepristone’s ability to cross the blood–brain barrier makes it an especially attractive ligand for this purpose. We describe the production of a mifepristone-inducible vector system for regulated expression of transgenes within the CNS. Our inducible system used a lentivirus-based vector platform for the ex vivo production of mifepristone-inducible murine neural progenitor cells that express our transgenes of interest. These cells were processed through a series of selection steps to ensure that the cells exhibited appropriate transgene expression in a dose-dependent and temporally controlled manner with minimal background activity. Inducible cells were then transplanted into the brains of rodents, where they exhibited appropriate mifepristone-inducible expression. These studies detail a strategy for regulated expression in the CNS for use in the development of safe and efficient gene therapy for neurological disorders. PMID:26863047

  9. Centralization of the deuterostome nervous system predates chordates.

    PubMed

    Nomaksteinsky, Marc; Röttinger, Eric; Dufour, Héloïse D; Chettouh, Zoubida; Lowe, Chris J; Martindale, Mark Q; Brunet, Jean-François

    2009-08-11

    The origin of the chordate central nervous system (CNS) is unknown. One theory is that a CNS was present in the first bilaterian and that it gave rise to both the ventral cord of protostomes and the dorsal cord of deuterostomes. Another theory proposes that the chordate CNS arose by a dramatic process of dorsalization and internalization from a diffuse nerve net coextensive with the skin of the animal, such as enteropneust worms (Hemichordata, Ambulacraria) are supposed to have. We show here that juvenile and adult enteropneust worms in fact have a bona fide CNS, i.e., dense agglomerations of neurons associated with a neuropil, forming two cords, ventral and dorsal. The latter is internalized in the collar as a chordate-like neural tube. Contrary to previous assumptions, the greater part of the adult enteropneust skin is nonneural, although elements of the peripheral nervous system (PNS) are found there. We use molecular markers to show that several neuronal types are anatomically segregated in the CNS and PNS. These neuroanatomical features, whatever their homologies with the chordate CNS, imply that nervous system centralization predates the evolutionary separation of chordate and hemichordate lineages.

  10. An intrepreneurial innovative role: integration of the clinical nurse specialist and infection prevention professional.

    PubMed

    Pintar, Paula A

    2013-01-01

    Hospital quality and financial sustainability rely on reducing healthcare-associated events/infections, length of stay, and readmissions. This project focused on designing an integrated role for the clinical nurse specialist (CNS) and the infection prevention professional (IPP) to proactively manage the delivery of evidence-based practice to high-risk surgical patients. The healthcare industry is in the midst of a paradigm shift driven by changing health policy focusing on quality indicators, patient satisfaction, and lowering costs. Coupled with these indicators is the expectation and responsibility to provide evidence-based practice at all levels of the healthcare continuum. This paradigm shift places healthcare facilities in a very competitive atmosphere as they rally for the revenue of a fixed payer mix. A literature search using CINHAL, PubMed, and the CNS national listserve databases was completed to identify if there was any previously written information available on an integrated role of the CNS/IPP. An online business plan template was used to communicate the significance, implications, and return on organizational investment to practice with establishing this role. Chronic health conditions such as diabetes, hypertension, congestive heart failure, and colonization with multidrug-resistant organisms can place patients at an increased risk for developing a surgical site infection or complications. The CNS/IPP will proactively manage these risk factors, including the patient and family in a preventive care model to manage the acute inpatient high-risk surgical patient. Care management will include coordinated, collaborative, and consultative follow-up by the CNS/IPP in the acute care, long-term care facilities, and home settings. The infection prevention skill set brings a level of clinical expertise that makes a unique CNS. The IPP is immersed in using epidemiological principles that examine the impact of comorbidities and the added risk that can contribute to developing a surgical site infection. This CNS/IPP incorporates the CNS Spheres of Influence Model and the Association of Professionals in Infection Prevention Competency Model. This combination advanced practice nurse uses a nurse-managed model of care focused on patient/family education, prevention, and self-care management. Therefore, this specific and specialized practice will bring value to the organization by improving financial outcomes through reducing infections, readmission rates, and length of stay. By providing this level of focused care, patient satisfaction will improve and system financial stability will be supported by decreasing hospital readmissions, length of stay, and other hospital-acquired conditions that the surgical candidate is prone to developing. The critical juncture in healthcare is providing opportunities for innovation by examining the CNS role and considering the feasibility of pairing it with the infection preventionist skills. This pairing provides an unprecedented opportunity to improve patient outcomes across the continuum of care. This provider has the ability to influence the Centers for Medicare and Medicaid Services quality indicators in a positive way by using implementation science to partner with system/organization stakeholders that focuses on prevention rather than reactive care processes. The dynamic trends in healthcare continue to drive "intrepreneurial," innovative, and creative ways of thinking; provide clinical practice that has the ability to perform nimbly; and maintain a proactive vision to provide quality care to a diverse patient population. This CNS/IPP role meets the dynamic proactive planning that will shift with patient, system, and nursing needs to deliver cost-effective managed care to improve the health of our patients.

  11. Neurotoxic Profiles of HIV, Psychostimulant Drugs of Abuse, and their Concerted Effect on the Brain: Current Status of Dopamine System Vulnerability in NeuroAIDS

    PubMed Central

    Ferris, Mark J.; Mactutus, Charles F.; Booze, Rosemarie M.

    2008-01-01

    There are roughly 30 to 40 million HIV infected individuals in the world as of December 2007, and drug abuse directly contributes to one-third of all HIV-infections in the United States. Antiretroviral therapy has increased the lifespan of HIV-seropositives, but CNS function often remains diminished, effectively decreasing quality of life. A modest proportion may develop HIV-associated dementia, the severity and progression of which is increased with drug abuse. HIV and drugs of abuse in the CNS target subcortical brain structures and DA systems in particular. This toxicity is mediated by a number of neurotoxic mechanisms, including but not limited to, aberrant immune response and oxidative stress. Therefore, novel therapeutic strategies must be developed that can address a wide variety of disparate neurotoxic mechanisms and apoptotic cascades. This paper reviews the research pertaining to the where, what, and how of HIV and cocaine/methamphetamine toxicity in the CNS. Specifically, where these toxins most affect the brain, what aspects of the virus are neurotoxic, and how these toxins mediate neurotoxicity. PMID:18430470

  12. Efficacy of alectinib in central nervous system metastases in crizotinib-resistant ALK-positive non-small-cell lung cancer: Comparison of RECIST 1.1 and RANO-HGG criteria.

    PubMed

    Gandhi, Leena; Ou, Sai-Hong Ignatius; Shaw, Alice T; Barlesi, Fabrice; Dingemans, Anne-Marie C; Kim, Dong-Wan; Camidge, D Ross; Hughes, Brett G M; Yang, James C-H; de Castro, Javier; Crino, Lucio; Léna, Hervé; Do, Pascal; Golding, Sophie; Bordogna, Walter; Zeaiter, Ali; Kotb, Ahmed; Gadgeel, Shirish

    2017-09-01

    Central nervous system (CNS) progression is common in patients with anaplastic lymphoma kinase-positive (ALK+) non-small-cell lung cancer (NSCLC) receiving crizotinib. Next-generation ALK inhibitors have shown activity against CNS metastases, but accurate assessment of response and progression is vital. Data from two phase II studies in crizotinib-refractory ALK+ NSCLC were pooled to examine the CNS efficacy of alectinib, a CNS-active ALK inhibitor, using Response Evaluation Criteria in Solid Tumours (RECIST version 1.1) and Response Assessment in Neuro-Oncology high-grade glioma (RANO-HGG) criteria. Both studies enrolled patients aged ≥18 years who had previously received crizotinib. NP28761 was conducted in North America and NP28673 was a global study. All patients received 600 mg oral alectinib twice daily and had baseline CNS imaging. CNS response for those with baseline CNS metastases was determined by an independent review committee. Baseline measurable CNS disease was identified in 50 patients by RECIST and 43 by RANO-HGG. CNS objective response rate was 64.0% by RECIST (95% confidence interval [CI]: 49.2-77.1; 11 CNS complete responses [CCRs]) and 53.5% by RANO-HGG (95% CI: 37.7-68.8; eight CCRs). CNS responses were durable, with consistent estimates of median duration of 10.8 months with RECIST and 11.1 months with RANO-HGG. Of the 39 patients with measurable CNS disease by both RECIST and RANO-HGG, only three (8%) had CNS progression according to one criteria but not the other (92% concordance rate). Alectinib demonstrated promising efficacy in the CNS for ALK+ NSCLC patients pretreated with crizotinib, regardless of the assessment criteria used. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Leading change: evidence-based transition.

    PubMed

    Lewis, Brennan; Allen, Stephanie

    2015-01-01

    The purpose of this article was to provide a framework for evidence-based transition of patient populations within an acute care pediatric institution. Transition within a hospital is foreseeable, given the ever-changing needs of the patients within an evolving healthcare system. These changes include moving patient populations because of expansion, renovation, or cohorting similar patient diagnoses to provide care across a continuum. Over the past 1 to 2 years, Children's Health Children's Medical Center Dallas has experienced a wide variety of transition. To provide a smooth transition for patients and families into new care areas resulting in a healthy work environment for all team members. The planning phase for patient population moves, and transition should address key aspects to include physical location and care flow, supplies and equipment, staffing model and human resources (HR), education and orientation, change process and integrating teams, and family preparation. It is imperative to consider these aspects in order for transitions within a healthcare system to be successful. During a time of such transitions, the clinical nurse specialist (CNS) is a highly valuable team member offering a unique perspective and methodological approach, which is central to the new initiative's overall success. The themes addressed in this article on evidence-based transition are organized according to the CNS spheres of influence: system/organization, patient/family, and nursing. An evidence-based transition plan was developed and implemented successfully with the support from the CNS for 3 patient populations. Organizational leadership gained an increased awareness of the CNS role at the conclusion of each successful transition. The CNS plays a pivotal role as clinical experts and proponents of evidence-based practice and effects change in the system/organization, nursing, and patient/family spheres of influence. While transitions can be a source of stress for leaders and bedside staff, it is also a time that allows for growth and new opportunities for staff and may result in development of a healthier work environment. The CNS is able to provide leadership while working collaboratively to oversee the moves with a forward-thinking approach. There are key components to consider during times of transition. These include (1) organize, plan, and improve work efficiencies during a construction build; (2) identify the key elements for improvement in nurse and patient satisfaction; (3) develop or maintain healthy work environment standards; (4) establish adequate staffing levels and staff education to successfully care for patient populations following transition; and (5) support the staff and patients during transition.

  14. CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery

    PubMed Central

    2012-01-01

    Background Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). In the murine experimental autoimmune encephalomyelitis (EAE) model of MS, T regulatory (Treg) cell therapy has proved to be beneficial, but generation of stable CNS-targeting Tregs needs further development. Here, we propose gene engineering to achieve CNS-targeting Tregs from naïve CD4 cells and demonstrate their efficacy in the EAE model. Methods CD4+ T cells were modified utilizing a lentiviral vector system to express a chimeric antigen receptor (CAR) targeting myelin oligodendrocyte glycoprotein (MOG) in trans with the murine FoxP3 gene that drives Treg differentiation. The cells were evaluated in vitro for suppressive capacity and in C57BL/6 mice to treat EAE. Cells were administered by intranasal (i.n.) cell delivery. Results The engineered Tregs demonstrated suppressive capacity in vitro and could efficiently access various regions in the brain via i.n cell delivery. Clinical score 3 EAE mice were treated and the engineered Tregs suppressed ongoing encephalomyelitis as demonstrated by reduced disease symptoms as well as decreased IL-12 and IFNgamma mRNAs in brain tissue. Immunohistochemical markers for myelination (MBP) and reactive astrogliosis (GFAP) confirmed recovery in mice treated with engineered Tregs compared to controls. Symptom-free mice were rechallenged with a second EAE-inducing inoculum but remained healthy, demonstrating the sustained effect of engineered Tregs. Conclusion CNS-targeting Tregs delivered i.n. localized to the CNS and efficiently suppressed ongoing inflammation leading to diminished disease symptoms. PMID:22647574

  15. Application of dental nanomaterials: potential toxicity to the central nervous system.

    PubMed

    Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin

    2015-01-01

    Nanomaterials are defined as materials with one or more external dimensions with a size of 1-100 nm. Such materials possess typical nanostructure-dependent properties (eg, chemical, biological, optical, mechanical, and magnetic), which may differ greatly from the properties of their bulk counterparts. In recent years, nanomaterials have been widely used in the production of dental materials, particularly in light polymerization composite resins and bonding systems, coating materials for dental implants, bioceramics, endodontic sealers, and mouthwashes. However, the dental applications of nanomaterials yield not only a significant improvement in clinical treatments but also growing concerns regarding their biosecurity. The brain is well protected by the blood-brain barrier (BBB), which separates the blood from the cerebral parenchyma. However, in recent years, many studies have found that nanoparticles (NPs), including nanocarriers, can transport through the BBB and locate in the central nervous system (CNS). Because the CNS may be a potential target organ of the nanomaterials, it is essential to determine the neurotoxic effects of NPs. In this review, possible dental nanomaterials and their pathways into the CNS are discussed, as well as related neurotoxicity effects underlying the in vitro and in vivo studies. Finally, we analyze the limitations of the current testing methods on the toxicological effects of nanomaterials. This review contributes to a better understanding of the nano-related risks to the CNS as well as the further development of safety assessment systems.

  16. Glycoproteins Enrichment and LC-MS/MS Glycoproteomics in Central Nervous System Applications.

    PubMed

    Zhu, Rui; Song, Ehwang; Hussein, Ahmed; Kobeissy, Firas H; Mechref, Yehia

    2017-01-01

    Proteins and glycoproteins play important biological roles in central nervous systems (CNS). Qualitative and quantitative evaluation of proteins and glycoproteins expression in CNS is critical to reveal the inherent biomolecular mechanism of CNS diseases. This chapter describes proteomic and glycoproteomic approaches based on liquid chromatography/tandem mass spectrometry (LC-MS or LC-MS/MS) for the qualitative and quantitative assessment of proteins and glycoproteins expressed in CNS. Proteins and glycoproteins, extracted by a mass spectrometry friendly surfactant from CNS samples, were subjected to enzymatic (tryptic) digestion and three down-stream analyses: (1) a nano LC system coupled with a high-resolution MS instrument to achieve qualitative proteomic profile, (2) a nano LC system combined with a triple quadrupole MS to quantify identified proteins, and (3) glycoprotein enrichment prior to LC-MS/MS analysis. Enrichment techniques can be applied to improve coverage of low abundant glycopeptides/glycoproteins. An example described in this chapter is hydrophilic interaction liquid chromatographic (HILIC) enrichment to capture glycopeptides, allowing efficient removal of peptides. The combination of three LC-MS/MS-based approaches is capable of the investigation of large-scale proteins and glycoproteins from CNS with an in-depth coverage, thus offering a full view of proteins and glycoproteins changes in CNS.

  17. NG2-expressing cells as oligodendrocyte progenitors in the normal and demyelinated adult central nervous system

    PubMed Central

    Polito, Annabella; Reynolds, Richard

    2005-01-01

    The mammalian adult central nervous system (CNS) is known to respond rapidly to demyelinating insults by regenerating oligodendrocytes for remyelination from a dividing precursor population. A widespread population of cells exists within the adult CNS that is thought to belong to the oligodendrocyte lineage, but which do not express proteins characteristic of mature myelinating oligodendrocytes, such as myelin basic protein (MBP) and 2,3-cyclic nucleotide 3-phosphodiesterase (CNP). Instead, these cells have phenotypic characteristics of a more immature stage of the oligodendrocyte lineage. They express the NG2 chondroitin sulphate proteoglycan, in addition to O4 and the platelet-derived growth factor α-receptor, all widely accepted as markers for oligodendrocyte progenitor cells (OPCs) throughout development. However, NG2+ cells residing in the adult CNS do not resemble embryonic or neonatal NG2+ cells in terms of their morphology or proliferation characteristics, but instead represent a unique type of glial cell that has the ability to react rapidly to CNS damage. In this review, we present the evidence that adult NG2+ cells are part of the oligodendrocyte lineage and are capable of giving rise to new oligodendrocytes under both normal and demyelinating conditions. We also review the literature that these cells may have multiple functional roles within the adult CNS, notwithstanding their primary role as OPCs. PMID:16367798

  18. The role of microbiome in central nervous system disorders

    PubMed Central

    Wang, Yan; Kasper, Lloyd H.

    2014-01-01

    Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders. PMID:24370461

  19. Targeting the brain--surmounting or bypassing the blood-brain barrier.

    PubMed

    Potschka, Heidrun

    2010-01-01

    The constituents of the blood-brain barrier, including its efflux transporter system, can efficiently limit brain penetration of potential CNS therapeutics. Effective extrusion from the brain by transporters is a frequent reason for the pharmaceutical industry to exclude novel compounds from further development for CNS therapeutics. Moreover, high transporter expression levels that are present in individual patients or may be generally associated with the pathophysiology seem to be a major cause of therapeutic failure in a variety of CNS diseases including brain tumors, epilepsy, brain HIV infection, and psychiatric disorders. Increasing knowledge of the structure and function of the blood-brain barrier creates a basis for the development of strategies which aim to enhance brain uptake of beneficial pharmaceutical compounds. The different strategies discussed in this review aim to modulate blood-brain barrier function or to bypass constituents of the blood-brain barrier.

  20. Communications, Navigation, and Surveillance Models in ACES: Design Implementation and Capabilities

    NASA Technical Reports Server (NTRS)

    Kubat, Greg; Vandrei, Don; Satapathy, Goutam; Kumar, Anil; Khanna, Manu

    2006-01-01

    Presentation objectives include: a) Overview of the ACES/CNS System Models Design and Integration; b) Configuration Capabilities available for Models and Simulations using ACES with CNS Modeling; c) Descriptions of recently added, Enhanced CNS Simulation Capabilities; and d) General Concepts Ideas that Utilize CNS Modeling to Enhance Concept Evaluations.

  1. Sex Steroids, Adult Neurogenesis, and Inflammation in CNS Homeostasis, Degeneration, and Repair

    PubMed Central

    Larson, Tracy A.

    2018-01-01

    Sex steroidal hormones coordinate the development and maintenance of tissue architecture in many organs, including the central nervous systems (CNS). Within the CNS, sex steroids regulate the morphology, physiology, and behavior of a wide variety of neural cells including, but not limited to, neurons, glia, endothelial cells, and immune cells. Sex steroids spatially and temporally control distinct molecular networks, that, in turn modulate neural activity, synaptic plasticity, growth factor expression and function, nutrient exchange, cellular proliferation, and apoptosis. Over the last several decades, it has become increasingly evident that sex steroids, often in conjunction with neuroinflammation, have profound impact on the occurrence and severity of neuropsychiatric and neurodegenerative disorders. Here, I review the foundational discoveries that established the regulatory role of sex steroids in the CNS and highlight recent advances toward elucidating the complex interaction between sex steroids, neuroinflammation, and CNS regeneration through adult neurogenesis. The majority of recent work has focused on neuroinflammatory responses following acute physical damage, chronic degeneration, or pharmacological insult. Few studies directly assess the role of immune cells in regulating adult neurogenesis under healthy, homeostatic conditions. As such, I also introduce tractable, non-traditional models for examining the role of neuroimmune cells in natural neuronal turnover, seasonal plasticity of neural circuits, and extreme CNS regeneration. PMID:29760681

  2. Hemangiopericytoma in the central nervous system. A study of eight cases.

    PubMed

    Mekni, A; Kourda, J; Chelly, I; Ferchichi, L; Bellil, K; Hammouda, K B; Kchir, N; Zitouna, M; Khaldi, M; Haouet, S

    2008-02-01

    Most hemangiopericytomas (HPC) are located in the musculoskeletal system and the skin, while the location in the central nervous system (CNS) is rare. The latter represents 2 to 4% in large series of meningeal tumors, thus accounting for less than 1% of all CNS tumors. In the central nervous system, tumors with a hemangiopericytomatous histolopathological pattern can be either hemangiopericytomas or solitary fibrous tumors. CNS-HPCs have a relentless tendency for local recurrence and metastases outside the CNS. Metastasis can also appear many years after adequate treatment of the primary tumor. We present a pathological study of eight patients with CNS-HPC and compare our results with corresponding published data. The CNS-HPC group consisted of three males and five females with a mean age of 36.75 years. The tumors were supratentorial in four cases, infratentorial in two cases, tentorial in one case and located in the spinal cord in the last one. Histologically, CNS-HPCs were similar to their soft tissue counterparts. One case demonstrated increased cellularity, marked nuclear hyperchromasia and marked cellular pleomorphism with infiltration of the cerebellum. All patients underwent surgery with gross-total resection in all cases. No patients received postoperative radiation therapy. Only four patients recurred locally after six, seven and eight months, and five years. Our study presents the pathological features of CNS-HPC as a distinct entity from both meningioma and solitary fibrous tumors. A comparative review of literature with our results is discussed.

  3. Zika Virus Selectively Kills Aggressive Human Embryonal CNS Tumor Cells In Vitro and In Vivo.

    PubMed

    Kaid, Carolini; Goulart, Ernesto; Caires-Júnior, Luiz C; Araujo, Bruno H S; Soares-Schanoski, Alessandra; Bueno, Heloisa M S; Telles-Silva, Kayque A; Astray, Renato M; Assoni, Amanda F; Júnior, Antônio F R; Ventini, Daniella C; Puglia, Ana L P; Gomes, Roselane P; Zatz, Mayana; Okamoto, Oswaldo K

    2018-06-15

    Zika virus (ZIKV) is largely known for causing brain abnormalities due to its ability to infect neural progenitor stem cells during early development. Here, we show that ZIKV is also capable of infecting and destroying stem-like cancer cells from aggressive human embryonal tumors of the central nervous system (CNS). When evaluating the oncolytic properties of Brazilian Zika virus strain (ZIKV BR ) against human breast, prostate, colorectal, and embryonal CNS tumor cell lines, we verified a selective infection of CNS tumor cells followed by massive tumor cell death. ZIKV BR was more efficient in destroying embryonal CNS tumorspheres than normal stem cell neurospheres. A single intracerebroventricular injection of ZIKV BR in BALB/c nude mice bearing orthotopic human embryonal CNS tumor xenografts resulted in a significantly longer survival, decreased tumor burden, fewer metastasis, and complete remission in some animals. Tumor cells closely resembling neural stem cells at the molecular level with activated Wnt signaling were more susceptible to the oncolytic effects of ZIKV BR Furthermore, modulation of Wnt signaling pathway significantly affected ZIKV BR -induced tumor cell death and viral shedding. Altogether, these preclinical findings indicate that ZIKV BR could be an efficient agent to treat aggressive forms of embryonal CNS tumors and could provide mechanistic insights regarding its oncolytic effects. Significance: Brazilian Zika virus strain kills aggressive metastatic forms of human CNS tumors and could be a potential oncolytic agent for cancer therapy. Cancer Res; 78(12); 3363-74. ©2018 AACR . ©2018 American Association for Cancer Research.

  4. Primary CNS Lymphoma Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Primary central nervous system (CNS) lymphoma treatment options include radiation, chemotherapy, and corticosteroids. Get detailed information about the treatment of newly diagnosed and recurrent primary CNS lymphoma cancer in this clinician summary.

  5. Stress-Induced Microglia Activation and Monocyte Trafficking to the Brain Underlie the Development of Anxiety and Depression.

    PubMed

    Ramirez, Karol; Fornaguera-Trías, Jaime; Sheridan, John F

    2017-01-01

    Psychosocial stress is capable of causing immune dysregulation and increased neuroinflammatory signaling by repeated activation of the neuroendocrine and autonomic systems that may contribute to the development of anxiety and depression. The stress model of repeated social defeat (RSD) recapitulates many of the stress-driven alterations in the neuroimmune system seen in humans experiencing repeated forms of stress and associated affective disorders. For example, RSD-induced neuronal and microglia activation corresponds with sympathetic outflow to the peripheral immune system and increased ability of bone marrow derived myeloid progenitor cells (MPC) to redistribute throughout the body, including to the central nervous system (CNS), reinforcing stress-associated behaviors. An overview of the neuroendocrine, immunological, and behavioral stress-induced responses will be reviewed in this chapter using RSD to illustrate the mechanisms leading to stress-related alterations in inflammation in both the periphery and CNS, and stress-related changes in behavioral responses.

  6. Reported toxicity in 1486 liquid detergent capsule exposures to the UK National Poisons Information Service 2009-2012, including their ophthalmic and CNS effects.

    PubMed

    Williams, Hayley; Jones, Stephen; Wood, Kelly; Scott, Robert A H; Eddleston, Michael; Thomas, Simon H L; Thompson, John Paul; Vale, J Allister

    2014-02-01

    CONTEXT. Data on the ophthalmic and central nervous system (CNS) adverse effects of liquid detergent capsules (liquid laundry pods) are limited. OBJECTIVE. To ascertain the reported toxicity of liquid detergent capsules, particularly their ophthalmic and CNS adverse effects, in a large case series. METHODS. Between 1 May 2009 and 30 July 2012 the UK National Poisons Information Service collected prospectively 1509 telephone enquiries (involving 1486 exposures) relating to liquid detergent capsules. RESULTS. The majority of patients (95.6%) were children aged less than 5. Exposure to these products occurred mainly as a result of ingestion alone (n = 1215; 81.8%), with eye contact alone (n = 110; 7.4%), and skin contact alone (n = 20; 1.3%) being less common; multiple routes of exposure were involved in 141 (9.5%) cases. Following ocular exposure (n = 212), features suggesting conjunctivitis (n = 145; 68.4%) and corneal ulceration (n = 6; 2.8%) developed. The most common features reported following ingestion alone were nausea and vomiting (n = 721; 59.3%), followed by coughing (n = 53; 4.4%), drowsiness/CNS depression (n = 49; 42 of these were children were aged 2 years or less) and foaming at the mouth (n = 47; 3.9%). A rash occurred in 22 patients where ingestion was considered to be the route of exposure. Twenty patients were exposed via the dermal route alone and developed erythema (n = 9), rash (n = 6) and burn (n = 3). CONCLUSIONS. Ocular exposure to liquid detergent capsules may lead to conjunctivitis and corneal ulceration; detergent ingestion may result in central nervous system (CNS)depression. Greater consumer awareness is required to reduce injury from liquid detergent capsules, particularly that involving the eye.

  7. Reorganization of the human central nervous system.

    PubMed

    Schalow, G; Zäch, G A

    2000-10-01

    The key strategies on which the discovery of the functional organization of the central nervous system (CNS) under physiologic and pathophysiologic conditions have been based included (1) our measurements of phase and frequency coordination between the firings of alpha- and gamma-motoneurons and secondary muscle spindle afferents in the human spinal cord, (2) knowledge on CNS reorganization derived upon the improvement of the functions of the lesioned CNS in our patients in the short-term memory and the long-term memory (reorganization), and (3) the dynamic pattern approach for re-learning rhythmic coordinated behavior. The theory of self-organization and pattern formation in nonequilibrium systems is explicitly related to our measurements of the natural firing patterns of sets of identified single neurons in the human spinal premotor network and re-learned coordinated movements following spinal cord and brain lesions. Therapy induced cell proliferation, and maybe, neurogenesis seem to contribute to the host of structural changes during the process of re-learning of the lesioned CNS. So far, coordinated functions like movements could substantially be improved in every of the more than 100 patients with a CNS lesion by applying coordination dynamic therapy. As suggested by the data of our patients on re-learning, the human CNS seems to have a second integrative strategy for learning, re-learning, storing and recalling, which makes an essential contribution of the functional plasticity following a CNS lesion. A method has been developed by us for the simultaneous recording with wire electrodes of extracellular action potentials from single human afferent and efferent nerve fibres of undamaged sacral nerve roots. A classification scheme of the nerve fibres in the human peripheral nervous system (PNS) could be set up in which the individual classes of nerve fibres are characterized by group conduction velocities and group nerve fibre diameters. Natural impulse patterns of several identified single afferent and efferent nerve fibres (motoneuron axons) were extracted from multi-unit impulse patterns, and human CNS functions could be analyzed under physiologic and pathophysiologic conditions. With our discovery of premotor spinal oscillators it became possible to judge upon CNS neuronal network organization based on the firing patterns of these spinal oscillators and their driving afferents. Since motoneurons fire occasionally for low activation and oscillatory for high activation, the coherent organization of subnetworks to generate macroscopic function is very complex and for the time being, may be best described by the theory of coordination dynamics. Since oscillatory firing has also been observed by us in single motor unit firing patterns measured electromyographically, it seems possible to follow up therapeutic intervention in patients with spinal cord and brain lesions not only based on the activity levels and phases of motor programs during locomotion but also based on the physiologic and pathophysiologic firing patterns and recruitment of spinal oscillators. The improvement of the coordination dynamics of the CNS can be partly measured directly by rhythmicity upon the patient performing rhythmic movements coordinated up to milliseconds. Since rhythmic dynamic, coordinated, stereotyped movements are mainly located in the spinal cord and only little supraspinal drive is necessary to initiate, maintain, and terminate them, rhythmic, dynamic, coordinated movements were used in therapy to enforce reorganization of the lesioned CNS by improving the self-organization and relative coordination of spinal oscillators (and their interactions with occasionally firing motoneurons) which became pathologic in their firing following CNS lesion. Paraparetic, tetraparetic spinal cord and brain-lesioned patients re-learned running and other movements by an oscillator formation and coordination dynamic therapy. Our development in neurorehabilitation is in accordance with those of theoretical and computational neurosciences which deal with the self-organization of neuronal networks. In particular, jumping on a springboard 'in-phase' and in 'anti-phase' to re-learn phase relations of oscillator coupling can be understood in the framework of the Haken-Kelso-Bunz coordination dynamic model. By introducing broken symmetry, intention, learning and spasticity in the landscape of the potential function of the integrated CNS activity, the change in self-organization becomes understandable. Movement patterns re-learned by oscillator formation and coordination dynamic therapy evolve from reorganization and regeneration of the lesioned CNS by cooperative and competitive interplay between intrinsic coordination dynamics, extrinsic therapy related inputs with physiologic re-afferent input, including intention, motivation, supervised learning, interpersonal coordination, and genetic constraints including neurogenesis. (ABSTRACT TRUNCATED)

  8. Novel Roles for Immune Molecules in Neural Development: Implications for Neurodevelopmental Disorders

    PubMed Central

    Garay, Paula A.; McAllister, A. Kimberley

    2010-01-01

    Although the brain has classically been considered “immune-privileged”, current research suggests an extensive communication between the immune and nervous systems in both health and disease. Recent studies demonstrate that immune molecules are present at the right place and time to modulate the development and function of the healthy and diseased central nervous system (CNS). Indeed, immune molecules play integral roles in the CNS throughout neural development, including affecting neurogenesis, neuronal migration, axon guidance, synapse formation, activity-dependent refinement of circuits, and synaptic plasticity. Moreover, the roles of individual immune molecules in the nervous system may change over development. This review focuses on the effects of immune molecules on neuronal connections in the mammalian central nervous system – specifically the roles for MHCI and its receptors, complement, and cytokines on the function, refinement, and plasticity of geniculate, cortical and hippocampal synapses, and their relationship to neurodevelopmental disorders. These functions for immune molecules during neural development suggest that they could also mediate pathological responses to chronic elevations of cytokines in neurodevelopmental disorders, including autism spectrum disorders (ASD) and schizophrenia. PMID:21423522

  9. Immunopathogenesis in Myasthenia Gravis and Neuromyelitis Optica

    PubMed Central

    Wang, Zhen; Yan, Yaping

    2017-01-01

    Myasthenia gravis (MG) and neuromyelitis optica (NMO) are autoimmune channelopathies of the peripheral neuromuscular junction (NMJ) and central nervous system (CNS) that are mainly mediated by humoral immunity against the acetylcholine receptor (AChR) and aquaporin-4 (AQP4), respectively. The diseases share some common features, including genetic predispositions, environmental factors, the breakdown of tolerance, the collaboration of T cells and B cells, imbalances in T helper 1 (Th1)/Th2/Th17/regulatory T cells, aberrant cytokine and antibody secretion, and complement system activation. However, some aspects of the immune mechanisms are unique. Both targets (AChR and AQP4) are expressed in the periphery and CNS, but MG mainly affects the NMJ in the periphery outside of CNS, whereas NMO preferentially involves the CNS. Inflammatory cells, including B cells and macrophages, often infiltrate the thymus but not the target—muscle in MG, whereas the infiltration of inflammatory cells, mainly polymorphonuclear leukocytes and macrophages, in NMO, is always observed in the target organ—the spinal cord. A review of the common and discrepant characteristics of these two autoimmune channelopathies may expand our understanding of the pathogenic mechanism of both disorders and assist in the development of proper treatments in the future. PMID:29312313

  10. [Competencies and professional profile of the advanced practice nurse].

    PubMed

    del Barrio-Linares, M

    2014-01-01

    The advanced practice nurse can foster the development of innovative approaches in the design of patient, families and community care. This study has aimed to explain the importance of the advanced practice nurse, especially that of the clinical nurse specialist (CNS), within the care setting and to go deeper into the knowledge of this nursing profile. A review of the literature. The following databases were used: CINAHL, PubMed and Medline. Search terms were 'clinical nurse specialist,' 'implementation,' and 'advanced practice nursing.' The sample included 24 publications. A synthesis of the findings generated a summary of the competencies of CNS and their definitions, with some examples in their daily practice and the outcome on its 3 spheres of influences: patients and families, staff and organization. CNS emerges in the health systems in order to improve the outcomes in the patients, staff and the organization per se because of its competence as an agent of change and transformational leader National policies and national strategies are needed to implement CNS on the Master's level in the Spanish National Health System given the evidence-based improvement in the care standards. Copyright © 2012 Elsevier España, S.L. y SEEIUC. All rights reserved.

  11. Differential Virulence and Pathogenesis of West Nile Viruses

    PubMed Central

    Donadieu, Emilie; Bahuon, Céline; Lowenski, Steeve; Zientara, Stéphan; Coulpier, Muriel; Lecollinet, Sylvie

    2013-01-01

    West Nile virus (WNV) is a neurotropic flavivirus that cycles between mosquitoes and birds but that can also infect humans, horses, and other vertebrate animals. In most humans, WNV infection remains subclinical. However, 20%–40% of those infected may develop WNV disease, with symptoms ranging from fever to meningoencephalitis. A large variety of WNV strains have been described worldwide. Based on their genetic differences, they have been classified into eight lineages; the pathogenic strains belong to lineages 1 and 2. Ten years ago, Beasley et al. (2002) found that dramatic differences exist in the virulence and neuroinvasion properties of lineage 1 and lineage 2 WNV strains. Further insights on how WNV interacts with its hosts have recently been gained; the virus acts either at the periphery or on the central nervous system (CNS), and these observed differences could help explain the differential virulence and neurovirulence of WNV strains. This review aims to summarize the current state of knowledge on factors that trigger WNV dissemination and CNS invasion as well as on the inflammatory response and CNS damage induced by WNV. Moreover, we will discuss how WNV strains differentially interact with the innate immune system and CNS cells, thus influencing WNV pathogenesis. PMID:24284878

  12. Differential virulence and pathogenesis of West Nile viruses.

    PubMed

    Donadieu, Emilie; Bahuon, Céline; Lowenski, Steeve; Zientara, Stéphan; Coulpier, Muriel; Lecollinet, Sylvie

    2013-11-22

    West Nile virus (WNV) is a neurotropic flavivirus that cycles between mosquitoes and birds but that can also infect humans, horses, and other vertebrate animals. In most humans, WNV infection remains subclinical. However, 20%-40% of those infected may develop WNV disease, with symptoms ranging from fever to meningoencephalitis. A large variety of WNV strains have been described worldwide. Based on their genetic differences, they have been classified into eight lineages; the pathogenic strains belong to lineages 1 and 2. Ten years ago, Beasley et al. (2002) found that dramatic differences exist in the virulence and neuroinvasion properties of lineage 1 and lineage 2 WNV strains. Further insights on how WNV interacts with its hosts have recently been gained; the virus acts either at the periphery or on the central nervous system (CNS), and these observed differences could help explain the differential virulence and neurovirulence of WNV strains. This review aims to summarize the current state of knowledge on factors that trigger WNV dissemination and CNS invasion as well as on the inflammatory response and CNS damage induced by WNV. Moreover, we will discuss how WNV strains differentially interact with the innate immune system and CNS cells, thus influencing WNV pathogenesis.

  13. CNS Macrophages Control Neurovascular Development via CD95L.

    PubMed

    Chen, Si; Tisch, Nathalie; Kegel, Marcel; Yerbes, Rosario; Hermann, Robert; Hudalla, Hannes; Zuliani, Cecilia; Gülcüler, Gülce Sila; Zwadlo, Klara; von Engelhardt, Jakob; Ruiz de Almodóvar, Carmen; Martin-Villalba, Ana

    2017-05-16

    The development of neurons and vessels shares striking anatomical and molecular features, and it is presumably orchestrated by an overlapping repertoire of extracellular signals. CNS macrophages have been implicated in various developmental functions, including the morphogenesis of neurons and vessels. However, whether CNS macrophages can coordinately influence neurovascular development and the identity of the signals involved therein is unclear. Here, we demonstrate that activity of the cell surface receptor CD95 regulates neuronal and vascular morphogenesis in the post-natal brain and retina. Furthermore, we identify CNS macrophages as the main source of CD95L, and macrophage-specific deletion thereof reduces both neurovascular complexity and synaptic activity in the brain. CD95L-induced neuronal and vascular growth is mediated through src-family kinase (SFK) and PI3K signaling. Together, our study highlights a coordinated neurovascular development instructed by CNS macrophage-derived CD95L, and it underlines the importance of macrophages for the establishment of the neurovascular network during CNS development. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. [Central nervous system relapse in diffuse large B cell lymphoma: Risk factors].

    PubMed

    Sancho, Juan-Manuel; Ribera, Josep-Maria

    2016-01-15

    Central nervous system (CNS) involvement by lymphoma is a complication associated, almost invariably, with a poor prognosis. The knowledge of the risk factors for CNS relapse is important to determine which patients could benefit from prophylaxis. Thus, patients with very aggressive lymphomas (such as lymphoblastic lymphoma or Burkitt's lymphoma) must systematically receive CNS prophylaxis due to a high CNS relapse rate (25-30%), while in patients with indolent lymphoma (such as follicular lymphoma or marginal lymphoma) prophylaxis is unnecessary. However, the question about CNS prophylaxis in patients with diffuse large B-cell lymphoma (DLBCL), the most common type of lymphoma, remains controversial. The information available is extensive, mainly based on retrospective and heterogeneous studies. There seems that immunochemotherapy based on rituximab reduces the CNS relapse rate. On the other hand, patients with increased serum lactate dehydrogenase plus more than one extranodal involvement seem to have a higher risk of CNS relapse, but a prophylaxis strategy based only on the presence of these 2 factors does not prevent all CNS relapses. Patients with involvement of testes or breast have high risk of CNS relapse and prophylaxis is mandatory. Finally, CNS prophylaxis could be considered in patients with DLBCL and renal or epidural space involvement, as well as in those cases with MYC rearrangements, although additional studies are necessary. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  15. Cumulative incidence rates for CNS and non-CNS progression in two phase II studies of alectinib in ALK-positive NSCLC.

    PubMed

    Gadgeel, Shirish; Shaw, Alice T; Barlesi, Fabrice; Crinò, Lucio; Yang, James Chih-Hsin; Dingemans, Anne-Marie C; Kim, Dong-Wan; de Marinis, Filippo; Schulz, Mathias; Liu, Shiyao; Gupta, Ravindra; Kotb, Ahmed; Ou, Sai-Hong Ignatius

    2018-01-01

    We evaluated the cumulative incidence rate (CIR) of central nervous system (CNS) and non-CNS progression in alectinib-treated patients with anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer (NSCLC) to determine the extent to which alectinib may treat or control CNS disease. Patients with crizotinib-pretreated locally advanced or metastatic disease received alectinib 600 mg orally twice daily in two phase II trials. All patients underwent baseline imaging and regular centrally reviewed scans. At 24 months, the CIR for CNS progression was lower in patients without vs with baseline CNS metastases (8.0 vs 43.9%). Patients with baseline CNS disease and prior radiotherapy had a higher CIR of CNS progression than radiotherapy-naive patients (50.5 vs 27.4%) and a lower CIR of non-CNS progression (25.8 vs 42.5%). Adverse events leading to withdrawal occurred in 5.9% and 6.7% of patients with and without baseline CNS metastases, respectively. This analysis indicates a potential role for alectinib in controlling and preventing CNS metastases.

  16. Integrin alpha 10, CD44, PTEN, cadherin-11 and lactoferrin expressions are potential biomarkers for selecting patients in need of central nervous system prophylaxis in diffuse large B-cell lymphoma

    PubMed Central

    Lemma, Siria A; Kuusisto, Milla; Haapasaari, Kirsi-Maria; Sormunen, Raija; Lehtinen, Tuula; Klaavuniemi, Tuula; Eray, Mine; Jantunen, Esa; Soini, Ylermi; Vasala, Kaija; Böhm, Jan; Salokorpi, Niina; Koivunen, Petri; Karihtala, Peeter; Vuoristo, Jussi; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi

    2017-01-01

    Abstract Central nervous system (CNS) relapse is a devastating complication that occurs in about 5% of diffuse large B-cell lymphoma (DLBCL) patients. Currently, there are no predictive biological markers. We wanted to study potential biomarkers of CNS tropism that play a role in adhesion, migration and/or in the regulation of inflammatory responses. The expression levels of ITGA10, CD44, PTEN, cadherin-11, CDH12, N-cadherin, P-cadherin, lactoferrin and E-cadherin were studied with IHC and IEM. GEP was performed to see whether found expressional changes are regulated at DNA/RNA level. IHC included 96 samples of primary CNS lymphoma (PCNSL), secondary CNS lymphoma (sCNSL) and systemic DLBCL (sDLBCL). IEM included two PCNSL, one sCNSL, one sDLBCL and one reactive lymph node samples. GEP was performed on two DLBCL samples, one with and one without CNS relapse. CNS disease was associated with enhanced expression of cytoplasmic and membranous ITGA10 and nuclear PTEN (P < 0.0005, P = 0.002, P = 0.024, respectively). sCNSL presented decreased membranous CD44 and nuclear and cytoplasmic cadherin-11 expressions (P = 0.001, P = 0.006, P = 0.048, respectively). In PCNSL lactoferrin expression was upregulated (P < 0.0005). IEM results were mainly supportive of the IHC results. In GEP CD44, cadherin-11, lactoferrin and E-cadherin were under-expressed in CNS disease. Our results are in line with previous studies, where gene expressions in extracellular matrix and adhesion-related pathways are altered in CNS lymphoma. This study gives new information on the DLBCL CNS tropism. If further verified, these markers might become useful in predicting CNS relapses. PMID:28854563

  17. Potential involvement of the extracranial venous system in central nervous system disorders and aging

    PubMed Central

    2013-01-01

    Background The role of the extracranial venous system in the pathology of central nervous system (CNS) disorders and aging is largely unknown. It is acknowledged that the development of the venous system is subject to many variations and that these variations do not necessarily represent pathological findings. The idea has been changing with regards to the extracranial venous system. Discussion A range of extracranial venous abnormalities have recently been reported, which could be classified as structural/morphological, hemodynamic/functional and those determined only by the composite criteria and use of multimodal imaging. The presence of these abnormalities usually disrupts normal blood flow and is associated with the development of prominent collateral circulation. The etiology of these abnormalities may be related to embryologic developmental arrest, aging or other comorbidities. Several CNS disorders have been linked to the presence and severity of jugular venous reflux. Another composite criteria-based vascular condition named chronic cerebrospinal venous insufficiency (CCSVI) was recently introduced. CCSVI is characterized by abnormalities of the main extracranial cerebrospinal venous outflow routes that may interfere with normal venous outflow. Summary Additional research is needed to better define the role of the extracranial venous system in relation to CNS disorders and aging. The use of endovascular treatment for the correction of these extracranial venous abnormalities should be discouraged, until potential benefit is demonstrated in properly-designed, blinded, randomized and controlled clinical trials. Please see related editorial: http://www.biomedcentral.com/1741-7015/11/259. PMID:24344742

  18. Pituitary adenylate cyclase-activating polypeptide type 1 (PAC1) receptor is expressed during embryonic development of the earthworm.

    PubMed

    Boros, Akos; Somogyi, Ildikó; Engelmann, Péter; Lubics, Andrea; Reglodi, Dóra; Pollák, Edit; Molnár, László

    2010-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP)-like molecules have been shown to be present in cocoon albumin and in Eisenia fetida embryos at an early developmental stage (E1) by immunocytochemistry and radioimmunoassay. Here, we focus on detecting the stage at which PAC1 receptor (PAC1R)-like immunoreactivity first appears in germinal layers and structures, e.g., various parts of the central nervous system (CNS), in developing earthworm embryos. PAC1R-like immunoreactivity was revealed by Western blot and Far Western blot as early as the E2 developmental stage, occurring in the ectoderm and later in specific neurons of the developing CNS. Labeled CNS neurons were first seen in the supraesophageal ganglion (brain) and subsequently in the subesophageal and ventral nerve cord ganglia. Ultrastructurally, PAC1Rs were located mainly on plasma membranes and intracellular membranes, especially on cisternae of the endoplasmic reticulum. Therefore, PACAP-like compounds probably influence the differentiation of germinal layers (at least the ectoderm) and of some neurons and might act as signaling molecules during earthworm embryonic development.

  19. Clinical trial aims to study immunotherapy for central nervous system tumors | Center for Cancer Research

    Cancer.gov

    A new clinical trial aims to determine whether nivolumab, an immune checkpoint inhibitor, can improve control of cancer for patients with several types of tumors of the central nervous system (CNS). The CNS is composed of the brain and spinal cord and the cause of most CNS tumors in adults is unknown. Learn more...

  20. Peripherally derived FGF21 promotes remyelination in the central nervous system

    PubMed Central

    Kuroda, Mariko; Maedera, Noriko; Koyama, Yoshihisa; Hamaguchi, Machika; Fujimura, Harutoshi; Konishi, Morichika; Itoh, Nobuyuki; Mochizuki, Hideki

    2017-01-01

    Demyelination in the central nervous system (CNS) leads to severe neurological deficits that can be partially reversed by spontaneous remyelination. Because the CNS is isolated from the peripheral milieu by the blood-brain barrier, remyelination is thought to be controlled by the CNS microenvironment. However, in this work we found that factors derived from peripheral tissue leak into the CNS after injury and promote remyelination in a murine model of toxin-induced demyelination. Mechanistically, leakage of circulating fibroblast growth factor 21 (FGF21), which is predominantly expressed by the pancreas, drives proliferation of oligodendrocyte precursor cells (OPCs) through interactions with β-klotho, an essential coreceptor of FGF21. We further confirmed that human OPCs expressed β-klotho and proliferated in response to FGF21 in vitro. Vascular barrier disruption is a common feature of many CNS disorders; thus, our findings reveal a potentially important role for the peripheral milieu in promoting CNS regeneration. PMID:28825598

  1. Medicinal Chemical Properties of Successful Central Nervous System Drugs

    PubMed Central

    Pajouhesh, Hassan; Lenz, George R.

    2005-01-01

    Summary: Fundamental physiochemical features of CNS drugs are related to their ability to penetrate the blood-brain barrier affinity and exhibit CNS activity. Factors relevant to the success of CNS drugs are reviewed. CNS drugs show values of molecular weight, lipophilicity, and hydrogen bond donor and acceptor that in general have a smaller range than general therapeutics. Pharmacokinetic properties can be manipulated by the medicinal chemist to a significant extent. The solubility, permeability, metabolic stability, protein binding, and human ether-ago-go-related gene inhibition of CNS compounds need to be optimized simultaneously with potency, selectivity, and other biological parameters. The balance between optimizing the physiochemical and pharmacokinetic properties to make the best compromises in properties is critical for designing new drugs likely to penetrate the blood brain barrier and affect relevant biological systems. This review is intended as a guide to designing CNS therapeutic agents with better drug-like properties. PMID:16489364

  2. The Association Between Ventriculo-Peritoneal Shunt and Acute Appendicitis in Patients with Traumatic Brain Injury: A 14-Year, Population-Based Study.

    PubMed

    Lim, Sher-Wei; Ao, Kam-Hou; Ho, Chung-Han; Tseng, Chien-Jen; Wang, Jhi-Joung; Chio, Chung-Ching; Kuo, Jinn-Rung

    2017-07-01

    The association between preexisting ventriculoperitoneal (VP) shunt and the risk of new-onset acute appendicitis in patients with traumatic brain injury (TBI) is not well established. The aim of the present study was to determine the relationships between VP shunt and acute appendicitis in patients with TBI. A longitudinal cohort study matched by a propensity score in patients with TBI with (4781 patients) or without (9562 patients) VP shunt was conducted using the National Health Insurance Research Database in Taiwan between January 1993 and December 2013. The main outcome studied was diagnosis of acute appendicitis. The cumulative probability of acute appendicitis was not different between these 2 groups (P = 0.6244). A Cox model showed central nervous system (CNS) infection to be an independent predictor of acute appendicitis with an adjusted hazard ratio of 2.98. Patients with TBI with both a VP shunt and a CNS infection had a greater risk of developing new-onset acute appendicitis (hazard ratio 4.25; 95% confidence interval 1.84-9.81) compared patients with TBI without a VP shunt or CNS infection. We concluded that VP shunt is not a risk factor in the development of appendicitis in patients with TBI. Patients with TBI with a shunt and a CNS infection may have a greater risk of developing acute appendicitis. Therefore, care in avoiding CNS infection is a key for the prevention acute appendicitis in this patient population. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Air pollution: mechanisms of neuroinflammation and CNS disease.

    PubMed

    Block, Michelle L; Calderón-Garcidueñas, Lilian

    2009-09-01

    Air pollution has been implicated as a chronic source of neuroinflammation and reactive oxygen species (ROS) that produce neuropathology and central nervous system (CNS) disease. Stroke incidence and Alzheimer's and Parkinson's disease pathology are linked to air pollution. Recent reports reveal that air pollution components reach the brain; systemic effects that impact lung and cardiovascular disease also impinge upon CNS health. While mechanisms driving air pollution-induced CNS pathology are poorly understood, new evidence suggests that microglial activation and changes in the blood-brain barrier are key components. Here we summarize recent findings detailing the mechanisms through which air pollution reaches the brain and activates the resident innate immune response to become a chronic source of pro-inflammatory factors and ROS, culminating in CNS disease.

  4. Antiretroviral Therapy and Central Nervous System HIV-1 Infection

    PubMed Central

    Price, Richard W.; Spudich, Serena

    2008-01-01

    Central nervous system (CNS) HIV-1 infection begins during primary viremia and continues throughout the course of untreated systemic infection. While frequently accompanied by local inflammatory reactions detectable in cerebrospinal fluid (CSF), CNS HIV-1 infection is not usually clinically apparent. In a minority of patients, CNS HIV-1 infection evolves late in the course of systemic infection into encephalitis, which compromises brain function and presents clinically as AIDS dementia complex (ADC). Combination highly active antiretroviral therapy (HAART) has had a major impact on all aspects of HIV-1 CNS infection and disease. In those with asymptomatic infection, HAART usually effectively suppresses CSF HIV-1 and markedly reduces the incidence of symptomatic ADC. In those presenting with ADC, HAART characteristically prevents neurological progression and leads to variable, and at times substantial, recovery. Treatment has similarly reduced CNS opportunistic infections. With better control of these severe disorders, attention has turned to the possible consequences of chronic silent infection, and the issue of whether indolent, low-grade brain injury might require earlier treatment intervention. PMID:18447615

  5. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures

    PubMed Central

    Bohlen, Christopher J.; Bennett, F. Chris; Tucker, Andrew F.; Collins, Hannah Y.; Mulinyawe, Sara B.; Barres, Ben A.

    2017-01-01

    Summary Microglia, the resident macrophages of the central nervous system (CNS), engage in various CNS-specific functions that are critical for development and health. To better study microglia and the properties that distinguish them from other tissue macrophage populations, we have optimized serum-free culture conditions to permit robust survival of highly ramified adult microglia under defined-medium conditions. We find that astrocyte-derived factors prevent microglial death ex vivo and that this activity results from three primary components, CSF-1/IL-34, TGF-β2, and cholesterol. Using microglial cultures that have never been exposed to serum, we demonstrate a dramatic and lasting change in phagocytic capacity after serum exposure. Finally, we find that mature microglia rapidly lose signature gene expression after isolation, and that this loss can be reversed by engrafting cells back into an intact CNS environment. These data indicate that the specialized gene expression profile of mature microglia requires continuous instructive signaling from the intact CNS. PMID:28521131

  6. A Combination of Ontogeny and CNS Environment Establishes Microglial Identity.

    PubMed

    Bennett, F Chris; Bennett, Mariko L; Yaqoob, Fazeela; Mulinyawe, Sara B; Grant, Gerald A; Hayden Gephart, Melanie; Plowey, Edward D; Barres, Ben A

    2018-05-22

    Microglia, the brain's resident macrophages, are dynamic CNS custodians with surprising origins in the extra-embryonic yolk sac. The consequences of their distinct ontogeny are unknown but critical to understanding and treating brain diseases. We created a brain macrophage transplantation system to disentangle how environment and ontogeny specify microglial identity. We find that donor cells extensively engraft in the CNS of microglia-deficient mice, and even after exposure to a cell culture environment, microglia fully regain their identity when returned to the CNS. Though transplanted macrophages from multiple tissues can express microglial genes in the brain, only those of yolk-sac origin fully attain microglial identity. Transplanted macrophages of inappropriate origin, including primary human cells in a humanized host, express disease-associated genes and specific ontogeny markers. Through brain macrophage transplantation, we discover new principles of microglial identity that have broad applications to the study of disease and development of myeloid cell therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Antiretroviral drug treatment of CNS HIV-1 infection.

    PubMed

    Yilmaz, Aylin; Price, Richard W; Gisslén, Magnus

    2012-02-01

    The advent of combination antiretroviral treatment has had a profound impact on CNS HIV infection and its clinical complications, but neurological impairment still occurs in patients on systemically effective combination therapy, and in some patients it may be important to consider antiretroviral drug entry and effects within the CNS. There are now data on the CNS exposure for most antiretroviral drugs. This review focuses on the CNS pharmacokinetics and pharmacodynamics of antiretroviral drugs in humans, and also discusses controversies in this field.

  8. Evaluating Cancer of the Central Nervous System Through Next-Generation Sequencing of Cerebrospinal Fluid

    PubMed Central

    Pentsova, Elena I.; Shah, Ronak H.; Tang, Jiabin; Boire, Adrienne; You, Daoqi; Briggs, Samuel; Omuro, Antonio; Lin, Xuling; Fleisher, Martin; Grommes, Christian; Panageas, Katherine S.; Meng, Fanli; Selcuklu, S. Duygu; Ogilvie, Shahiba; Distefano, Natalie; Shagabayeva, Larisa; Rosenblum, Marc; DeAngelis, Lisa M.; Viale, Agnes; Berger, Michael F.

    2016-01-01

    Purpose Cancer spread to the central nervous system (CNS) often is diagnosed late and is unresponsive to therapy. Mechanisms of tumor dissemination and evolution within the CNS are largely unknown because of limited access to tumor tissue. Materials and Methods We sequenced 341 cancer-associated genes in cell-free DNA from cerebrospinal fluid (CSF) obtained through routine lumbar puncture in 53 patients with suspected or known CNS involvement by cancer. Results We detected high-confidence somatic alterations in 63% (20 of 32) of patients with CNS metastases of solid tumors, 50% (six of 12) of patients with primary brain tumors, and 0% (zero of nine) of patients without CNS involvement by cancer. Several patients with tumor progression in the CNS during therapy with inhibitors of oncogenic kinases harbored mutations in the kinase target or kinase bypass pathways. In patients with glioma, the most common malignant primary brain tumor in adults, examination of cell-free DNA uncovered patterns of tumor evolution, including temozolomide-associated mutations. Conclusion The study shows that CSF harbors clinically relevant genomic alterations in patients with CNS cancers and should be considered for liquid biopsies to monitor tumor evolution in the CNS. PMID:27161972

  9. [Cerebrospinal fluid findings in chronic active Epstein-Barr virus infection with central nervous system involvement].

    PubMed

    Yoshimori, Mayumi; Imadome, Ken-Ichi; Tomii, Shohei; Yamamoto, Kouhei; Miura, Osamu; Arai, Ayako

    2018-01-01

    As chronic active Epstein-Barr virus (EBV) infection (CAEBV) progresses, EBV-infected tumor cells invade the central nervous system (CNS). To establish a diagnostic procedure for CNS invasion, we retrospectively analyzed cerebrospinal fluid (CSF) obtained from eight patients. Two patients presented with consciousness disturbance and were diagnosed with CNS invasion based on scan and autopsy results, respectively. The remaining six patients were diagnosed without CNS invasion by clinical findings and scans. In the two patients with CNS invasion, the number of mononuclear cells and the protein concentration were increased, whereas the CSF to serum glucose ratio and the adenosine deaminase concentration were raised. In one of the two patients, however, bacterial meningitis could not be excluded. Cytological examination of CSF demonstrated class 1-3. Notably, the CSF EBV-DNA load was positive in all patients, independent of CNS invasion diagnosis, and the CSF load correlated with that of the peripheral blood. Taken together, this indicates that CSF may lack the specific markers of CNS invasion in CAEBV patients. The CSF EBV-DNA load and the cytological analysis did not reflect CNS invasion; therefore, new biomarkers need to be established.

  10. Maternal adiposity negatively influences infant brain white matter development.

    PubMed

    Ou, Xiawei; Thakali, Keshari M; Shankar, Kartik; Andres, Aline; Badger, Thomas M

    2015-05-01

    To study potential effects of maternal body composition on central nervous system (CNS) development of newborn infants. Diffusion tensor imaging (DTI) was used to evaluate brain white matter development in 2-week-old, full-term, appropriate for gestational age (AGA) infants from uncomplicated pregnancies of normal-weight (BMI < 25 at conception) or obese ( BMI = 30 at conception) and otherwise healthy mothers. Tract-based spatial statistics (TBSS) analyses were used for voxel-wise group comparison of fractional anisotropy (FA), a sensitive measure of white matter integrity. DNA methylation analyses of umbilical cord tissue focused on genes known to be important in CNS development were also performed. Newborns from obese women had significantly lower FA values in multiple white matter regions than those born of normal-weight mothers. Global and regional FA values negatively correlated (P < 0.05) with maternal fat mass percentage. Linear regression analysis followed by gene ontology enrichment showed that methylation status of 68 CpG sites representing 57 genes with GO terms related to CNS development was significantly associated with maternal adiposity status. These results suggest a negative association between maternal adiposity and white matter development in offspring. © 2015 The Obesity Society.

  11. Secondary central nervous system relapse in diffuse large B cell lymphoma in a resource limited country: result from the Thailand nationwide multi-institutional registry.

    PubMed

    Wudhikarn, Kitsada; Bunworasate, Udomsak; Julamanee, Jakrawadee; Lekhakula, Arnuparp; Chuncharunee, Suporn; Niparuck, Pimjai; Ekwattanakit, Supachai; Khuhapinant, Archrob; Norasetthada, Lalita; Nawarawong, Weerasak; Makruasi, Nisa; Kanitsap, Nonglak; Sirijerachai, Chittima; Chansung, Kanchana; Wong, Peerapon; Numbenjapon, Tontanai; Prayongratana, Kannadit; Suwanban, Tawatchai; Wongkhantee, Somchai; Praditsuktavorn, Pannee; Intragumtornchai, Tanin

    2017-01-01

    Secondary central nervous system (CNS) relapse is a serious and fatal complication of diffuse large B cell lymphoma (DLBCL). Data on secondary CNS (SCNS) relapse were mostly obtained from western countries with limited data from developing countries. We analyzed the data of 2034 newly diagnosed DLBCL patients enrolled into the multi-center registry under Thai Lymphoma Study Group from setting. The incidence, September 2006 to December 2013 to represent outcome from a resource limited pattern, management, and outcome of SCNS relapse were described. The 2-year cumulative incidence (CI) of SCNS relapse was 2.7 %. A total of 729, 1024, and 281 patients were classified as low-, intermediate-, and high-risk CNS international prognostic index (CNS-IPI) with corresponding 2-year CI of SCNS relapse of 1.5, 3.1, and 4.6 %, respectively (p < 0.001). Univariate analysis demonstrated advance stage disease, poor performance status, elevated lactate dehydrogenase, presence of B symptoms, more than one extranodal organ involvement, high IPI, and high CNS-IPI group as predictive factors for SCNS relapse. Rituximab exposure and intrathecal chemoprophylaxis offered no protective effect against SCNS relapse. At the time of analysis, six patients were alive. Median OS in SCNS relapsed patients was significantly shorter than relapsed patients without CNS involvement (13.2 vs 22.6 months) (p < 0.001). Primary causes of death were progressive disease (n = 35, 63.6 %) and infection (n = 9, 16.7 %). In conclusion, although the incidence of SCNS relapse in our cohort was low, the prognosis was dismal. Prophylaxis for SCNS involvement was underused even in high-risk patients. Novel approaches for SCNS relapse prophylaxis and managements are warranted.

  12. Delineating hierarchy of selenotranscriptome expression and their response to selenium status in chicken central nervous system.

    PubMed

    Jiang, Xiu-Qing; Cao, Chang-Yu; Li, Zhao-Yang; Li, Wei; Zhang, Cong; Lin, Jia; Li, Xue-Nan; Li, Jing-Long

    2017-04-01

    Selenium (Se) incorporated in selenoproteins as selenocysteine and supports various important cellular and organismal functions. We recently reported that chicken brain exhibited high priority for Se supply and retention under conditions of dietary Se deficiency and supernutrition Li et al. (2012) . However, the selenotranscriptome expressions and their response to Se status in chicken central nervous system (CNS) are unclear. To better understand the relationship of Se homeostasis and selenoproteins expression in chicken CNS, 1day-old HyLine White chickens were fed a low Se diet (Se-L, 0.028mg/g) supplemented with 4 levels of dietary Se (0 to 5.0mgSe/kg) as Na 2 SeO 3 for 8weeks. Then chickens were dissected for getting the CNS, which included cerebral cortex, cerebellum, thalamus, bulbus cinereus and marrow. The expressions of selenoproteome which have 24 selenoproteins were detected by the quantitative real-time PCR array. The concept of a selenoprotein hierarchy was developed and the hierarchy of different regions in chicken CNS was existence, especially cerebral cortex and bulbus cinereus. The expression of selenoproteins has a hierarch while changing Se content, and Selenoprotein T (Selt), Selenoprotein K (Selk), Selenoprotein W (Selw), Selenoprotein U (Selu), Glutathione peroxidase 3 (Gpx3), Glutathione peroxidase 4 (Gpx4), Selenoprotein P (Sepp1), Selenoprotein O (Selo), Selenoprotein 15 (Sel15), Selenoprotein N (Seln), Glutathione peroxidase 2 (Gpx2) and Selenoprotein P 2 (Sepp2) take more necessary function in the chicken CNS. Therefore, we hypothesize that hierarchy of regulated the transcriptions of selenoproteome makes an important role of CNS Se metabolism and transport in birds. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Mycobacterium bovis Bacille Calmette-Guérin Infection in the CNS Suppresses Experimental Autoimmune Encephalomyelitis and Th17 Responses in an IFN-gamma-independent Manner1

    PubMed Central

    Lee, JangEun; Reinke, Emily K.; Zozulya, Alla L.; Sandor, Matyas; Fabry, Zsuzsanna

    2009-01-01

    Multiple sclerosis (MS) and an animal model resembling MS, experimental autoimmune encephalomyelitis (EAE), are inflammatory demyelinating diseases of the central nervous system (CNS) that are suppressed by systemic mycobacterial infection in mice and BCG vaccination in humans. Host defense responses against Mycobacterium in mice are influenced by T lymphocytes and their cytokine products, particularly IFN-γ, which plays a protective regulatory role in EAE. To analyze the counter-regulatory role of mycobacterial infection-induced IFN-γ in the CNS on the function of the pathological Th17 cells and the clinical outcome of EAE, we induced EAE in mice that were intracerebrally infected with Mycobacterium bovis bacille Calmette-Guerin (BCG). Here we demonstrate that intracerebral (i.c.) BCG infection prevented inflammatory cell recruitment to the spinal cord and suppressed the development of EAE. Concomitantly, there was a significant decrease in the frequency of MOG-specific IFN-γ-producing CD4+ T cells in the CNS. IL-17+CD4+ T cell responses were significantly suppressed in i.c. BCG-infected mice following EAE induction regardless of T cell specificity. The frequency of Foxp3+CD4+ T cells in these mice was equivalent to that of control mice. The i.c. BCG infection-induced protection of EAE and suppression of MOG-specific IL-17+CD4+ T cell responses were similar in both wild type (WT) and IFN-γ deficient mice. These data show that live BCG infection in the brain suppresses CNS autoimmunity. These findings also reveal that the regulation of Th17-mediated autoimmunity in the CNS can be independent of IFN-γ-mediated mechanisms. PMID:18941210

  14. The Secret Lives of Neurotrophin Receptors | Center for Cancer Research

    Cancer.gov

    Neurotrophins are a family of growth factors that are critical to the proper development and functioning of the nervous system. Neurotrophins activate a family of tyrosine receptor kinases (Trk), which typically initiate signaling cascades through phosphorylation. This axis is important for central nervous system (CNS) drug development efforts, ranging from pain management to

  15. Chronic morphine and HIV-1 Tat promote differential central nervous system trafficking of CD3+ and Ly6C+ immune cells in a murine Streptococcus pneumoniae infection model.

    PubMed

    Dutta, Raini; Roy, Sabita

    2015-06-20

    Persistent systemic infection results in excessive trafficking of peripheral immune cells into the central nervous system (CNS), thereby contributing to sustained neuroinflammation that leads to neurocognitive deficits. In this study, we explored the role of opportunistic systemic infection with Streptococcus pneumoniae in the recruitment of peripheral leukocytes into the CNS and its contribution to HIV-1-associated neurocognitive disorders in opioid-dependent individuals. Wild-type B6CBAF1 (wt), μ-opioid receptor knockout (MORKO), FVB/N luciferase transgenic, and Toll-like receptor 2 and 4 knockout (TLR2KO and TLR4KO) mice were subcutaneously implanted with morphine/placebo pellet followed by HIV-1 Transactivator of transcription (Tat) protein injection intravenously and S. pneumoniae administration intraperitoneally. On postoperative day 5, brains perfused with phosphate-buffered saline were harvested and subjected to immunohistochemistry (for bacterial trafficking and chemokine ligand generation), flow cytometry (for phenotypic characterization of CNS trafficked immune cells), Western blot, and real-time PCR (for ligand expression). Our results show differential leukocyte trafficking of T lymphocytes (CD3+) and inflammatory monocytes (Ly6C+) into the CNS of mice treated with morphine, HIV-1 Tat, and/or S. pneumoniae. In addition, we demonstrate a Trojan horse mechanism for bacterial dissemination across the blood-brain barrier into the CNS by monocytes. Activation of TLRs on microglia induced a chemokine gradient that facilitated receptor-dependent trafficking of peripheral immune cells into the CNS. HIV-1 Tat induced trafficking of Ly6C+ and CD3+ cells into the CNS; infection with S. pneumoniae facilitated infiltration of only T lymphocytes into the CNS. We also observed differential chemokine secretion in the CNS, with CCL5 being the predominant chemokine following HIV-1 Tat treatment, which was potentiated further with morphine. S. pneumoniae alone led to preferential induction of CXCL12. Furthermore, we attributed a regulatory role for TLRs in the chemokine-mediated trafficking of leukocytes into the CNS. Chronic morphine and HIV-1 Tat, in the context of systemic S. pneumoniae co-infection, differentially modulated induction of TLR2/4, which consequently facilitated trafficking of TLR2 → CD3 + CCR5+ and TLR4 → Ly6C+(CCR5+/CXCR4+) immune cells into the CNS. Our murine study suggests that secondary infection in opioid-dependent individuals infected with HIV-1 augments peripheral leukocyte trafficking as a consequence of sustained chemokine gradients in the CNS.

  16. The impact of microbiota on brain and behavior: mechanisms & therapeutic potential.

    PubMed

    Borre, Yuliya E; Moloney, Rachel D; Clarke, Gerard; Dinan, Timothy G; Cryan, John F

    2014-01-01

    There is increasing evidence that host-microbe interactions play a key role in maintaining homeostasis. Alterations in gut microbial composition is associated with marked changes in behaviors relevant to mood, pain and cognition, establishing the critical importance of the bi-directional pathway of communication between the microbiota and the brain in health and disease. Dysfunction of the microbiome-brain-gut axis has been implicated in stress-related disorders such as depression, anxiety and irritable bowel syndrome and neurodevelopmental disorders such as autism. Bacterial colonization of the gut is central to postnatal development and maturation of key systems that have the capacity to influence central nervous system (CNS) programming and signaling, including the immune and endocrine systems. Moreover, there is now expanding evidence for the view that enteric microbiota plays a role in early programming and later response to acute and chronic stress. This view is supported by studies in germ-free mice and in animals exposed to pathogenic bacterial infections, probiotic agents or antibiotics. Although communication between gut microbiota and the CNS are not fully elucidated, neural, hormonal, immune and metabolic pathways have been suggested. Thus, the concept of a microbiome-brain-gut axis is emerging, suggesting microbiota-modulating strategies may be a tractable therapeutic approach for developing novel treatments for CNS disorders.

  17. Olfactory Nerve—A Novel Invasion Route of Neisseria meningitidis to Reach the Meninges

    PubMed Central

    Sjölinder, Hong; Jonsson, Ann-Beth

    2010-01-01

    Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS) is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival. PMID:21124975

  18. Olfactory nerve--a novel invasion route of Neisseria meningitidis to reach the meninges.

    PubMed

    Sjölinder, Hong; Jonsson, Ann-Beth

    2010-11-18

    Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS) is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival.

  19. Bony fish myelin: evidence for common major structural glycoproteins in central and peripheral myelin of trout.

    PubMed

    Jeserich, G; Waehneldt, T V

    1986-02-01

    Peripheral nervous system (PNS) myelin from the rainbow trout (Salmo gairdneri) banded at a density of 0.38 M sucrose. The main myelin proteins consisted of (1) two basic proteins, BPa and BPb (11,500 and 13,000 MW, similar to those of trout central nervous system (CNS) myelin proteins BP1 and BP2), and (2) two glycosylated components, IPb (24,400 MW) and IPc (26,200 MW). IPc comigrated with trout CNS myelin protein IP2 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, whereas trout CNS myelin protein IP1 had a lower molecular weight (23,000). Following two-dimensional separation, however, both IPb and IPc from PNS showed two components; the more acidic component of IPc comigrated with IP2 from CNS. PNS tissue autolysis led to the formation of IPa (20,000 MW), consisting of two components in isoelectric focusing of which again the more acidic one comigrated with the CNS autolysis product IP0. Limited enzymatic digestion of isolated IP proteins from PNS and CNS led to closely similar degradation patterns, being most pronounced in the case of IP2 and IPc. Immunoblotting revealed that all IP components from trout PNS and CNS myelins reacted with antibodies to trout IP1 (CNS) and bovine P0 protein (PNS) whereas antibodies to rat PLP (CNS) were entirely unreactive. All BP components from trout PNS and CNS myelins bound to antibodies against human myelin basic protein. On the basis of these studies trout PNS and CNS myelins contain at least one common IP glycoprotein, whereas other members of the IP myelin protein family appear closely related. In the CNS myelin of trout the IP components appear to replace PLP.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Maternal adiposity negatively influences infant brain white matter development

    USDA-ARS?s Scientific Manuscript database

    Objective: To study potential effects of maternal body composition on central nervous system (CNS) development of newborn infants. Methods: Diffusion tensor imaging was used to evaluate brain white matter development in 2-week-old, full-term, appropriate for gestational age infants from uncomplicat...

  1. Frequency, risk factors, and outcomes of central nervous system relapse in lymphoma patients treated with dose-adjusted EPOCH plus rituximab.

    PubMed

    Malecek, Mary-Kate; Petrich, Adam M; Rozell, Shaina; Chu, Benjamin; Trifilio, Steven; Galanina, Natalie; Maurer, Matthew; Farooq, Umar; Link, Brian K; Nowakowski, Grzegorz S; Nabhan, Chadi; Ayed, Ayed O

    2017-11-01

    Central nervous system (CNS) relapse in non-Hodgkin lymphoma (NHL) is a rare but serious complication that carries a poor prognosis. The use of infusional etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab (EPOCH-R) for frontline treatment of diffuse large B cell lymphoma (DLBCL) is increasing, though little is known about incidence of and risk factors for CNS relapse with this regimen PATIENTS AND METHODS: We completed a chart review of patients with NHL who received EPOCH-R as front line therapy. Data obtained included baseline and treatment characteristics including if patients received CNS directed therapy. We measured overall survival (OS), progression free survival (PFS), and progression to CNS involvement. We identified 223 patients who met the inclusion criteria, 72% had DLBCL. Of all the patients, 5.8% experienced CNS relapse, and 38.6% were treated with CNS prophylaxis. There was no difference in rate of CNS relapse, OS, or PFS between patients who had and had not received CNS prophylaxis. Patients whose serum lactate dehydrogenase was greater than twice the upper limit of normal at diagnosis and those with extranodal disease were significantly more likely to have CNS relapse (P = .0247 and 0.022, respectively) than their counterparts. The rate of CNS relapse in this patient population approaches 6%, not significantly different from reports on those receiving R-CHOP. The results of this study suggest that CNS prophylaxis might be more selectively used among patients treated with EPOCH-R with certain high-risk features. © 2017 Wiley Periodicals, Inc.

  2. Various drug delivery approaches to the central nervous system.

    PubMed

    Pasha, Santosh; Gupta, Kshitij

    2010-01-01

    The presence of the blood-brain barrier (BBB), an insurmountable obstacle, in particular, and other barriers in brain and periphery contribute to hindrance of the successful diagnosis and treatment of a myriad of central nervous system pathologies. This review discusses several strategies adopted to define a rational drug delivery approach to the CNS along with a short description of the strategies implemented by the authors' group to enhance the analgesic activity, a CNS property, of chimeric peptide of Met-enkephalin and FMRFa (YGGFMKKKFMRFa-YFa). Various approaches for drug delivery to the CNS with their beneficial and non-beneficial aspects, supported by an extensive literature survey published recently, up to August 2009. The reader will have the privilege of gaining an understanding of previous as well as recent approaches to breaching the CNS barriers. Among the various strategies discussed, the potential for efficacious CNS drug targeting in future lies either with the non-invasively administered multifunctional nanosystems or these nanosystems without characterstics such as long systemic circulating capability and avoiding reticuloendothelial system scavenging system of the body, endogenous transporters and efflux inhibitors administered by convection-enhanced delivery.

  3. The clinical effectiveness and cost-effectiveness of clinical nurse specialist-led hospital to home transitional care: a systematic review.

    PubMed

    Bryant-Lukosius, Denise; Carter, Nancy; Reid, Kim; Donald, Faith; Martin-Misener, Ruth; Kilpatrick, Kelley; Harbman, Patricia; Kaasalainen, Sharon; Marshall, Deborah; Charbonneau-Smith, Renee; DiCenso, Alba

    2015-10-01

    Clinical nurse specialists (CNSs) are major providers of transitional care. This paper describes a systematic review of randomized controlled trials (RCTs) evaluating the clinical effectiveness and cost-effectiveness of CNS transitional care. We searched 10 electronic databases, 1980 to July 2013, and hand-searched reference lists and key journals for RCTs that evaluated health system outcomes of CNS transitional care. Study quality was assessed using the Cochrane Risk of Bias and Quality of Health Economic Studies tools. The quality of evidence for individual outcomes was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) tool. We pooled data for similar outcomes. Thirteen RCTs of CNS transitional care were identified (n = 2463 participants). The studies had low (n = 3), moderate (n = 8) and high (n = 2) risk of bias and weak economic analyses. Post-cancer surgery, CNS care was superior in reducing patient mortality. For patients with heart failure, CNS care delayed time to and reduced death or re-hospitalization, improved treatment adherence and patient satisfaction, and reduced costs and length of re-hospitalization stay. For elderly patients and caregivers, CNS care improved caregiver depression and reduced re-hospitalization, re-hospitalization length of stay and costs. For high-risk pregnant women and very low birthweight infants, CNS care improved infant immunization rates and maternal satisfaction with care and reduced maternal and infant length of hospital stay and costs. There is low-quality evidence that CNS transitional care improves patient health outcomes, delays re-hospitalization and reduces hospital length of stay, re-hospitalization rates and costs. Further research incorporating robust economic evaluation is needed. © 2015 John Wiley & Sons, Ltd.

  4. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy

    PubMed Central

    Hazell, Gareth; Shabanpoor, Fazel; Saleh, Amer F.; Bowerman, Melissa; Meijboom, Katharina E.; Zhou, Haiyan; Muntoni, Francesco; Talbot, Kevin; Gait, Michael J.; Wood, Matthew J. A.

    2016-01-01

    The development of antisense oligonucleotide therapy is an important advance in the identification of corrective therapy for neuromuscular diseases, such as spinal muscular atrophy (SMA). Because of difficulties of delivering single-stranded oligonucleotides to the CNS, current approaches have been restricted to using invasive intrathecal single-stranded oligonucleotide delivery. Here, we report an advanced peptide-oligonucleotide, Pip6a-morpholino phosphorodiamidate oligomer (PMO), which demonstrates potent efficacy in both the CNS and peripheral tissues in severe SMA mice following systemic administration. SMA results from reduced levels of the ubiquitously expressed survival motor neuron (SMN) protein because of loss-of-function mutations in the SMN1 gene. Therapeutic splice-switching oligonucleotides (SSOs) modulate exon 7 splicing of the nearly identical SMN2 gene to generate functional SMN protein. Pip6a-PMO yields SMN expression at high efficiency in peripheral and CNS tissues, resulting in profound phenotypic correction at doses an order-of-magnitude lower than required by standard naked SSOs. Survival is dramatically extended from 12 d to a mean of 456 d, with improvement in neuromuscular junction morphology, down-regulation of transcripts related to programmed cell death in the spinal cord, and normalization of circulating insulin-like growth factor 1. The potent systemic efficacy of Pip6a-PMO, targeting both peripheral as well as CNS tissues, demonstrates the high clinical potential of peptide-PMO therapy for SMA. PMID:27621445

  5. Application of dental nanomaterials: potential toxicity to the central nervous system

    PubMed Central

    Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin

    2015-01-01

    Nanomaterials are defined as materials with one or more external dimensions with a size of 1–100 nm. Such materials possess typical nanostructure-dependent properties (eg, chemical, biological, optical, mechanical, and magnetic), which may differ greatly from the properties of their bulk counterparts. In recent years, nanomaterials have been widely used in the production of dental materials, particularly in light polymerization composite resins and bonding systems, coating materials for dental implants, bioceramics, endodontic sealers, and mouthwashes. However, the dental applications of nanomaterials yield not only a significant improvement in clinical treatments but also growing concerns regarding their biosecurity. The brain is well protected by the blood–brain barrier (BBB), which separates the blood from the cerebral parenchyma. However, in recent years, many studies have found that nanoparticles (NPs), including nanocarriers, can transport through the BBB and locate in the central nervous system (CNS). Because the CNS may be a potential target organ of the nanomaterials, it is essential to determine the neurotoxic effects of NPs. In this review, possible dental nanomaterials and their pathways into the CNS are discussed, as well as related neurotoxicity effects underlying the in vitro and in vivo studies. Finally, we analyze the limitations of the current testing methods on the toxicological effects of nanomaterials. This review contributes to a better understanding of the nano-related risks to the CNS as well as the further development of safety assessment systems. PMID:25999717

  6. Favorable Outcomes of Pediatric Patients Treated With Radiotherapy to the Central Nervous System Who Develop Radiation-Induced Meningiomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galloway, Thomas J.; Indelicato, Daniel J., E-mail: dindelicato@floridaproton.or; University of Florida Proton Therapy Institute, Jacksonville, FL

    Purpose: To report the outcome of patients treated at the University of Florida who developed meningiomas after radiation to the central nervous system (CNS) for childhood cancer. Methods and Materials: We retrospectively identified 10 patients aged {<=}19 years who received radiotherapy to sites in the craniospinal axis and subsequently developed a meningioma. We report the histology of the radiation-induced meningioma, treatment received, and ultimate outcome among this cohort of patients. Results: Meningioma was diagnosed at a median of 23.5 years after completion of the primary radiation. Fifty percent of second meningiomas were World Health Organization Grade 2 (atypical) or higher.more » All cases were managed with a single modality: resection alone (n = 7), fractionated radiotherapy (n = 2), and stereotactic radiosurgery (n = 1). The actuarial event-free survival and overall survival rate at 5 years after treatment for a radiation-induced meningioma was 89%. Three patients who underwent resection for retreatment experienced a Grade 3 toxicity. Conclusions: Radiation-induced meningiomas after treatment of pediatric CNS tumors are effectively managed with single-modality therapy. Such late-effect data inform the overall therapeutic ratio and support the continued role of selective irradiation in managing pediatric CNS malignancies.« less

  7. Oxidative Stress and Neurodegenerative Disorders

    PubMed Central

    Li, Jie; O, Wuliji; Li, Wei; Jiang, Zhi-Gang; Ghanbari, Hossein A.

    2013-01-01

    Living cells continually generate reactive oxygen species (ROS) through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS) is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS) of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs. PMID:24351827

  8. Primary central nervous system lymphoma in immunocompetent patients: spectrum of findings and differential characteristics.

    PubMed

    Gómez Roselló, E; Quiles Granado, A M; Laguillo Sala, G; Pedraza Gutiérrez, S

    2018-02-23

    Primary central nervous system (CNS) lymphomas are uncommon and their management differs significantly from that of other malignant tumors involving the CNS. This article explains how the imaging findings often suggest the diagnosis early. The typical findings in immunocompetent patients consist of a supratentorial intraaxial mass that enhances homogeneously. Other findings to evaluate include multifocality and incomplete ring enhancement. The differential diagnosis of primary CNS lymphomas should consider mainly other malignant tumors of the CNS such as glioblastomas or metastases. Primary CNS lymphomas tend to have less edema and less mass effect; they also tend to spare the adjacent cortex. Necrosis, hemorrhage, and calcification are uncommon in primary CNS lymphomas. Although the findings in morphologic sequences are characteristic, they are not completely specific and atypical types are sometimes encountered. Advanced imaging techniques such as diffusion or especially perfusion provide qualitative and quantitative data that play an important role in differentiating primary CNS lymphomas from other brain tumors. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Brain size and neuropsychological functioning in long-term survivors of pediatric acute lymphoblastic leukemia.

    PubMed

    Mulcahy Levy, Jean M; Hunger, Stephen P

    2013-10-01

    With the increased survival of pediatric cancer patients the interest in the late effects of treatments is rapidly increasing. Long-term survival rates for children with acute lymphoblastic leukemia (ALL) now approach 90%. Treatment for ALL includes intensified central nervous system (CNS)-directed therapy, which is associated with risks for long-term neurocognitive effects. It is becoming clear that current therapies can have not only a detrimental effect on IQ, processing speed, and memory, but also on structural changes that lead to permanent alterations of the organization of the CNS. Understanding how the CNS is affected by the treatments is a critical step in evaluating current therapies and developing interventions to decrease the incidence and severity of long-term changes in brain anatomy and function.

  10. Brain size and neuropsychological functioning in long-term survivors of pediatric acute lymphoblastic leukemia

    PubMed Central

    Mulcahy Levy, Jean M

    2013-01-01

    With the increased survival of pediatric cancer patients the interest in the late effects of treatments is rapidly increasing. Long-term survival rates for children with acute lymphoblastic leukemia (ALL) now approach 90%. Treatment for ALL includes intensified central nervous system (CNS)-directed therapy, which is associated with risks for long-term neurocognitive effects. It is becoming clear that current therapies can have not only a detrimental effect on IQ, processing speed, and memory, but also on structural changes that lead to permanent alterations of the organization of the CNS. Understanding how the CNS is affected by the treatments is a critical step in evaluating current therapies and developing interventions to decrease the incidence and severity of long-term changes in brain anatomy and function. PMID:26835308

  11. Cell intrinsic control of axon regeneration

    PubMed Central

    Mar, Fernando M; Bonni, Azad; Sousa, Mónica M

    2014-01-01

    Although neurons execute a cell intrinsic program of axonal growth during development, following the establishment of connections, the developmental growth capacity declines. Besides environmental challenges, this switch largely accounts for the failure of adult central nervous system (CNS) axons to regenerate. Here, we discuss the cell intrinsic control of axon regeneration, including not only the regulation of transcriptional and epigenetic mechanisms, but also the modulation of local protein translation, retrograde and anterograde axonal transport, and microtubule dynamics. We further explore the causes underlying the failure of CNS neurons to mount a vigorous regenerative response, and the paradigms demonstrating the activation of cell intrinsic axon growth programs. Finally, we present potential mechanisms to support axon regeneration, as these may represent future therapeutic approaches to promote recovery following CNS injury and disease. PMID:24531721

  12. slc7a6os gene plays a critical role in defined areas of the developing CNS in zebrafish.

    PubMed

    Benini, Anna; Cignarella, Francesca; Calvarini, Laura; Mantovanelli, Silvia; Giacopuzzi, Edoardo; Zizioli, Daniela; Borsani, Giuseppe

    2015-01-01

    The aim of this study is to shed light on the functional role of slc7a6os, a gene highly conserved in vertebrates. The Danio rerio slc7a6os gene encodes a protein of 326 amino acids with 46% identity to human SLC7A6OS and 14% to Saccharomyces cerevisiae polypeptide Iwr1. Yeast Iwr1 specifically binds RNA pol II, interacts with the basal transcription machinery and regulates the transcription of specific genes. In this study we investigated for the first time the biological role of SLC7A6OS in vertebrates. Zebrafish slc7a6os is a maternal gene that is expressed throughout development, with a prevalent localization in the developing central nervous system (CNS). The gene is also expressed, although at different levels, in various tissues of the adult fish. To determine the functional role of slc7a6os during zebrafish development, we knocked-down the gene by injecting a splice-blocking morpholino. At 24 hpf morphants show morphological defects in the CNS, particularly the interface between hindbrain and midbrain is not well-defined. At 28 hpf the morpholino injected embryos present an altered somite morphology and appear partially or completely immotile. At this stage the midbrain, hindbrain and cerebellum are compromised and not well defined compared with control embryos. The observed alterations persist at later developmental stages. Consistently, the expression pattern of two markers specifically expressed in the developing CNS, pax2a and neurod, is significantly altered in morphants. The co-injection of embryos with synthetic slc7a6os mRNA, rescues the morphant phenotype and restores the wild type expression pattern of pax2a and neurod. Our data suggest that slc7a6os might play a critical role in defined areas of the developing CNS in vertebrates, probably by regulating the expression of key genes.

  13. slc7a6os Gene Plays a Critical Role in Defined Areas of the Developing CNS in Zebrafish

    PubMed Central

    Benini, Anna; Cignarella, Francesca; Calvarini, Laura; Mantovanelli, Silvia; Giacopuzzi, Edoardo; Zizioli, Daniela; Borsani, Giuseppe

    2015-01-01

    The aim of this study is to shed light on the functional role of slc7a6os, a gene highly conserved in vertebrates. The Danio rerio slc7a6os gene encodes a protein of 326 amino acids with 46% identity to human SLC7A6OS and 14% to Saccharomyces cerevisiae polypeptide Iwr1. Yeast Iwr1 specifically binds RNA pol II, interacts with the basal transcription machinery and regulates the transcription of specific genes. In this study we investigated for the first time the biological role of SLC7A6OS in vertebrates. Zebrafish slc7a6os is a maternal gene that is expressed throughout development, with a prevalent localization in the developing central nervous system (CNS). The gene is also expressed, although at different levels, in various tissues of the adult fish. To determine the functional role of slc7a6os during zebrafish development, we knocked-down the gene by injecting a splice-blocking morpholino. At 24 hpf morphants show morphological defects in the CNS, particularly the interface between hindbrain and midbrain is not well-defined. At 28 hpf the morpholino injected embryos present an altered somite morphology and appear partially or completely immotile. At this stage the midbrain, hindbrain and cerebellum are compromised and not well defined compared with control embryos. The observed alterations persist at later developmental stages. Consistently, the expression pattern of two markers specifically expressed in the developing CNS, pax2a and neurod, is significantly altered in morphants. The co-injection of embryos with synthetic slc7a6os mRNA, rescues the morphant phenotype and restores the wild type expression pattern of pax2a and neurod. Our data suggest that slc7a6os might play a critical role in defined areas of the developing CNS in vertebrates, probably by regulating the expression of key genes. PMID:25803583

  14. The Extracellular Environment of the CNS: Influence on Plasticity, Sprouting, and Axonal Regeneration after Spinal Cord Injury

    PubMed Central

    Forbes, Lindsey H.

    2018-01-01

    The extracellular environment of the central nervous system (CNS) becomes highly structured and organized as the nervous system matures. The extracellular space of the CNS along with its subdomains plays a crucial role in the function and stability of the CNS. In this review, we have focused on two components of the neuronal extracellular environment, which are important in regulating CNS plasticity including the extracellular matrix (ECM) and myelin. The ECM consists of chondroitin sulfate proteoglycans (CSPGs) and tenascins, which are organized into unique structures called perineuronal nets (PNNs). PNNs associate with the neuronal cell body and proximal dendrites of predominantly parvalbumin-positive interneurons, forming a robust lattice-like structure. These developmentally regulated structures are maintained in the adult CNS and enhance synaptic stability. After injury, however, CSPGs and tenascins contribute to the structure of the inhibitory glial scar, which actively prevents axonal regeneration. Myelin sheaths and mature adult oligodendrocytes, despite their important role in signal conduction in mature CNS axons, contribute to the inhibitory environment existing after injury. As such, unlike the peripheral nervous system, the CNS is unable to revert to a “developmental state” to aid neuronal repair. Modulation of these external factors, however, has been shown to promote growth, regeneration, and functional plasticity after injury. This review will highlight some of the factors that contribute to or prevent plasticity, sprouting, and axonal regeneration after spinal cord injury. PMID:29849554

  15. Characterisation of the triple negative breast cancer phenotype associated with the development of central nervous system metastases.

    PubMed

    Laimito, Katerin Rojas; Gámez-Pozo, Angelo; Sepúlveda, Juan; Manso, Luis; López-Vacas, Rocío; Pascual, Tomás; Fresno Vara, Juan A; Ciruelos, Eva

    2016-01-01

    Breast cancer (BC) is the most frequent tumour in women, representing 20-30% of all malignancies, and continues to be the leading cause of cancer deaths among European women. Triple-negative (TN) BC biological aggressiveness is associated with a higher dissemination rate, with central nervous system (CNS) metastases common. This study aims to elucidate the association between gene expression profiles of PTGS2, HBEGF and ST6GALNAC5 and the development of CNS metastases in TNBC. This is a case-controlled retrospective study comparing patients (pts) with CNS metastases versus patients without them after adjuvant treatment. The selection of the samples was performed including 30 samples in both case and control groups. Formalin-fixed, paraffin-embedded samples were retrieved from the Hospital 12 de Octubre Biobank. Five 10 µm sections from each FFPE sample were deparaffinised with xylene and washed with ethanol, and the RNA was then extracted with the RecoverAll Kit (Ambion). Gene expression was assessed using TaqMan assays. A total of 53 patients were included in the study. The average age was 55 years (range 25-85). About 47 patients (88.67%) had ductal histology and presented high grade (III) tumours (40 patients; 75.47%). Eight women in the case group presented first distant recurrence in the CNS (34.80%), local recurrence (three patients, 13.04%), lungs (two patients; 8.7%), bone (one patient; 4.34%) and other locations (seven patients; 30.38%). In the control group, first distant recurrence occurred locally (six patients; 46.1%), in bone (two patients; 15.4%), lungs (one patient; 7.7%) and other sites (four patients; 23.1%). RNA was successfully obtained from 53 out of 60 samples. PTGS2, HBEGF, and ST6GALNAC5 expression values were not related to metastasis location. TN tumours frequently metastasise to the visceral organs, particularly lungs and brain, and are less common in bone. The literature suggests that expression of the three genes of interest (PTGS2, HBEGF, and ST6GALNAC5) could be different in TNBC patients with CNS metastasis when compared to patients without it. We did not find a differential expression pattern in PTGS2, HBEGF, and ST6GALNAC5 genes in primary TNBC showing CNS metastases. Further studies are needed to clarify the role of these genes in CNS metastases in TNBC patients.

  16. T-bet-dependent NKp46+ innate lymphoid cells regulate the onset of TH17-induced neuroinflammation

    PubMed Central

    Kwong, Brandon; Rua, Rejane; Gao, Yuanyuan; Flickinger, John; Wang, Yan; Kruhlak, Michael J.; Zhu, Jinfang; Vivier, Eric; McGavern, Dorian B.; Lazarevic, Vanja

    2017-01-01

    The transcription factor T-bet has been linked to increased susceptibility to systemic and organ-specific autoimmunity, but the mechanism by which T-bet expression promotes neuroinflammation remains unknown. In this study, we demonstrate a cardinal role for T-bet-dependent NKp46+ innate lymphoid cells (ILCs) in the initiation of CD4+ TH17-mediated neuroinflammation. Loss of T-bet specifically in NKp46+ ILCs profoundly impaired the ability of myelin-reactive TH17 cells to invade the central nervous system (CNS) tissue and protected the mice from autoimmunity. T-bet-dependent NKp46+ ILCs were localized in the meninges and acted as chief coordinators of meningeal inflammation by inducing the expression of pro-inflammatory cytokines, chemokines and matrix metalloproteinases, which in a concerted fashion facilitated T cell entry into CNS parenchyma. Our findings uncover a detrimental role of T-bet-dependent NKp46+ ILCs in the development of CNS autoimmune disease. PMID:28805812

  17. Dysregulation of the Cytokine GM-CSF Induces Spontaneous Phagocyte Invasion and Immunopathology in the Central Nervous System.

    PubMed

    Spath, Sabine; Komuczki, Juliana; Hermann, Mario; Pelczar, Pawel; Mair, Florian; Schreiner, Bettina; Becher, Burkhard

    2017-02-21

    Chronic inflammatory diseases are influenced by dysregulation of cytokines. Among them, granulocyte macrophage colony stimulating factor (GM-CSF) is crucial for the pathogenic function of T cells in preclinical models of autoimmunity. To study the impact of dysregulated GM-CSF expression in vivo, we generated a transgenic mouse line allowing the induction of GM-CSF expression in mature, peripheral helper T (Th) cells. Antigen-independent GM-CSF release led to the invasion of inflammatory myeloid cells into the central nervous system (CNS), which was accompanied by the spontaneous development of severe neurological deficits. CNS-invading phagocytes produced reactive oxygen species and exhibited a distinct genetic signature compared to myeloid cells invading other organs. We propose that the CNS is particularly vulnerable to the attack of monocyte-derived phagocytes and that the effector functions of GM-CSF-expanded myeloid cells are in turn guided by the tissue microenvironment. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Generation of Demyelination Models by Targeted Ablation of Oligodendrocytes in the Zebrafish CNS

    PubMed Central

    Chung, Ah-Young; Kim, Pan-Soo; Kim, Suhyun; Kim, Eunmi; Kim, Dohyun; Jeong, Inyoung; Kim, Hwan-Ki; Ryu, Jae-Ho; Kim, Cheol-Hee; Choi, June; Seo, Jin-Ho; Park, Hae-Chul

    2013-01-01

    Demyelination is the pathological process by which myelin sheaths are lost from around axons, and is usually caused by a direct insult targeted at the oligodendrocytes in the vertebrate central nervous system (CNS). A demyelinated CNS is usually remyelinated by a population of oligodendrocyte progenitor cells, which are widely distributed throughout the adult CNS. However, myelin disruption and remyelination failure affect the normal function of the nervous system, causing human diseases such as multiple sclerosis. In spite of numerous studies aimed at understanding the remyelination process, many questions still remain unanswered. Therefore, to study remyelination mechanisms in vivo, a demyelination animal model was generated using a transgenic zebrafish system in which oligodendrocytes are conditionally ablated in the larval and adult CNS. In this transgenic system, bacterial nitroreductase enzyme (NTR), which converts the prodrug metronidazole (Mtz) into a cytotoxic DNA cross-linking agent, is expressed in oligodendrocyte lineage cells under the control of the mbp and sox10 promoter. Exposure of transgenic zebrafish to Mtz-containing media resulted in rapid ablation of oligodendrocytes and CNS demyelination within 48 h, but removal of Mtz medium led to efficient remyelination of the demyelinated CNS within 7 days. In addition, the demyelination and remyelination processes could be easily observed in living transgenic zebrafish by detecting the fluorescent protein, mCherry, indicating that this transgenic system can be used as a valuable animal model to study the remyelination process in vivo, and to conduct high-throughput primary screens for new drugs that facilitate remyelination. PMID:23807048

  19. NASA's Proposed Requirements for the Global Aeronautical Network and a Summary of Responses

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2005-01-01

    In October 2003, NASA embarked on the ACAST project (Advanced CNS Architectures and System Technologies) to perform research and development on selected communications, navigation, and surveillance (CNS) technologies to enhance the performance of the National Airspace System (NAS). The Networking Research Group of NASA's ACAST project, in order to ensure global interoperability and deployment, formulated their own salient list of requirements. Many of these are not necessarily of concern to the FAA, but are a concern to those who have to deploy, operate, and pay for these systems. These requirements were submitted to the world s industries, governments, and academic institutions for comments. The results of that request for comments are summarized in this paper.

  20. Air Pollution: Mechanisms of Neuroinflammation & CNS Disease

    PubMed Central

    Block, Michelle L.; Calderón-Garcidueñas, Lilian

    2009-01-01

    Emerging evidence implicates air pollution as a chronic source of neuroinflammation, reactive oxygen species (ROS), and neuropathology instigating central nervous system (CNS) disease. Stroke incidence, and Alzheimer’s and Parkinson’s disease pathology are linked to air pollution. Recent reports reveal that air pollution components reach the brain. Further, systemic effects known to impact lung and cardiovascular disease also impinge upon CNS health. While mechanisms driving air pollution-induced CNS pathology are poorly understood, new evidence suggests that activation of microglia and changes in the blood brain barrier may be key to this process. Here, we summarize recent findings detailing the mechanisms through which air pollution reaches the brain and activates the resident innate immune response to become a chronic source of pro-inflammatory factors and ROS culpable in CNS disease. PMID:19716187

  1. Sensory synergy as environmental input integration

    PubMed Central

    Alnajjar, Fady; Itkonen, Matti; Berenz, Vincent; Tournier, Maxime; Nagai, Chikara; Shimoda, Shingo

    2015-01-01

    The development of a method to feed proper environmental inputs back to the central nervous system (CNS) remains one of the challenges in achieving natural movement when part of the body is replaced with an artificial device. Muscle synergies are widely accepted as a biologically plausible interpretation of the neural dynamics between the CNS and the muscular system. Yet the sensorineural dynamics of environmental feedback to the CNS has not been investigated in detail. In this study, we address this issue by exploring the concept of sensory synergy. In contrast to muscle synergy, we hypothesize that sensory synergy plays an essential role in integrating the overall environmental inputs to provide low-dimensional information to the CNS. We assume that sensor synergy and muscle synergy communicate using these low-dimensional signals. To examine our hypothesis, we conducted posture control experiments involving lateral disturbance with nine healthy participants. Proprioceptive information represented by the changes on muscle lengths were estimated by using the musculoskeletal model analysis software SIMM. Changes on muscles lengths were then used to compute sensory synergies. The experimental results indicate that the environmental inputs were translated into the two dimensional signals and used to move the upper limb to the desired position immediately after the lateral disturbance. Participants who showed high skill in posture control were found to be likely to have a strong correlation between sensory and muscle signaling as well as high coordination between the utilized sensory synergies. These results suggest the importance of integrating environmental inputs into suitable low-dimensional signals before providing them to the CNS. This mechanism should be essential when designing the prosthesis' sensory system to make the controller simpler. PMID:25628523

  2. NLR-Dependent Regulation of Inflammation in Multiple Sclerosis

    PubMed Central

    Gharagozloo, Marjan; Gris, Katsiaryna V.; Mahvelati, Tara; Amrani, Abdelaziz; Lukens, John R.; Gris, Denis

    2018-01-01

    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) associated with inappropriate activation of lymphocytes, hyperinflammatory responses, demyelination, and neuronal damage. In the past decade, a number of biological immunomodulators have been developed that suppress the peripheral immune responses and slow down the progression of the disease. However, once the inflammation of the CNS has commenced, it can cause serious permanent neuronal damage. Therefore, there is a need for developing novel therapeutic approaches that control and regulate inflammatory responses within the CNS. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are intracellular regulators of inflammation expressed by many cell types within the CNS. They redirect multiple signaling pathways initiated by pathogens and molecules released by injured tissues. NLR family members include positive regulators of inflammation, such as NLRP3 and NLRC4 and anti-inflammatory NLRs, such as NLRX1 and NLRP12. They exert immunomodulatory effect at the level of peripheral immune responses, including antigen recognition and lymphocyte activation and differentiation. Also, NLRs regulate tissue inflammatory responses. Understanding the molecular mechanisms that are placed at the crossroad of innate and adaptive immune responses, such as NLR-dependent pathways, could lead to the discovery of new therapeutic targets. In this review, we provide a summary of the role of NLRs in the pathogenesis of MS. We also summarize how anti-inflammatory NLRs regulate the immune response within the CNS. Finally, we speculate the therapeutic potential of targeting NLRs in MS. PMID:29403486

  3. Central nervous system.

    PubMed

    Adamson, D Cory; Rasheed, B Ahmed K; McLendon, Roger E; Bigner, Darell D

    2010-01-01

    Several different types of tumors, benign and malignant, have been identified in the central nervous system (CNS). The prognoses for these tumors are related to several factors, such as the age of the patient and the location and histology of the tumor. In adults, about half of all CNS tumors are malignant, whereas in pediatric patients, more than 75% are malignant. For most benign CNS tumors that require treatment, neurosurgeons can offer curative resections or at least provide significant relief from mass effect. Unfortunately, we still lack effective treatments for most primary and secondary malignant CNS tumors. However, the past decade has witnessed an explosion in the understanding of the early molecular events in malignant primary CNS tumors, and for the first time in history, oncologists are seeing that a plethora of new therapies targeting these molecular events are being tested in clinical trials. There is hope on the horizon for the fight against these deadly tumors. The distribution of CNS tumors by location has remained constant for numerous years. The majority of primary CNS tumors arise in the major cortical lobes. Twenty nine percent of primary CNS tumors arise from the dural meninges that encase the CNS structures. The vast majority of these are meningiomas, of which over 90% are benign. About 10% of primary CNS tumors are found in the sella turcica region, where the pituitary gland resides. Other much less common sites of primary CNS tumors include the pineal region, ventricular system, cerebellum, brain stem, cranial nerves, and spinal cord. The distribution of CNS tumors by histology has seen a slight increase in more malignant tumors over the past decade, possibly due to increased neuroimaging practices or environmental exposures. Arising from glial cells, gliomas represent over 36% of all primary CNS tumors and consist of astrocytomas, oligodendrogliomas, ependymomas, mixed gliomas, and neuroepithelial tumors. The benign meningiomas make up 32% of primary CNS tumors, followed by nerve sheath tumors and pituitary tumors. Primary CNS lymphomas, embryonal tumors, and craniopharyngiomas are uncommon. The most common gliomas are astrocytomas, and these tumors are typically classified by the World Health Organization (WHO) as Grades I through IV. Grade IV, the most malignant grade of astrocytoma, includes glioblastoma multiforme (GBM), the most common malignant primary CNS glioma in adults, which represents 51% of all CNS gliomas. GBM is unfortunately the most challenging to effectively treat and has the worst patient survival. This chapter is therefore primarily devoted to the current understanding of this topic. Here we describe the molecular and cellular events associated with malignant glioma initiation and progression. We also review the importance of glioma stem cell biology and tumor immunology in early gliomagenesis. In addition, we present a brief description of the most common malignant primary CNS glioma in pediatric patients - medulloblastoma, as well as familial cancer syndromes that include gliomas as part of the syndrome.

  4. Whole Neuraxis Irradiation to Address Central Nervous System Relapse in High-Risk Neuroblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croog, Victoria J., E-mail: vcroog@sibley.or; Kramer, Kim; Cheung, Nai-Kong V.

    Background: As systemic control of high-risk neuroblastoma (NB) has improved, relapse in the central nervous system (CNS) is an increasingly recognized entity that carries a grim prognosis. This study describes the use of craniospinal irradiation (CSI) for CNS relapse and compares outcomes to patients who received focal radiotherapy (RT). Methods: A retrospective query identified 29 children with NB treated at Memorial Sloan-Kettering Cancer Center since 1987 who received RT for CNS relapse. At CNS relapse, 16 patients received CSI (median dose, 2160cGy), and 13 received focal RT. Of those who underwent CSI, 14 (88%) received intra-Ommaya (IO) radioimmunotherapy (RIT); onemore » patient in the non-CSI cohort received IO-RIT. Results: Patient characteristics were similar between the groups. Time to CNS relapse was 20 and 17 months for the CSI and non-CSI cohorts, respectively. At a median follow-up of 28 months, 12 patients (75%) in the CSI group are alive without CNS disease, including two patients with isolated skeletal relapse. Another patient is alive without disease after a brain relapse was retreated with RT. Three patients died-one with no NB at autopsy, one of CNS disease, and one of systemic disease. The two patients who died of NB did not receive IO-RIT. All 13 patients in the non-CSI cohort died at a median of 8.8 months. Conclusions: Low-dose CSI together with IO-RIT provides durable CNS remissions and improved survival compared with focal RT and conventional therapies. Further evaluation of long-term NB survivors after CSI is warranted to determine the treatment consequences for this cohort.« less

  5. Brain development, environment and sex: what can we learn from studying graviperception, gravitransduction and the gravireaction of the developing CNS to altered gravity?

    PubMed

    Sajdel-Sulkowska, Elizabeth M

    2008-01-01

    As man embarks on space exploration and contemplates space habitation, there is a critical need for basic understanding of the impact of the environmental factors of space, and in particular gravity, on human survival, health, reproduction and development. This review summarizes our present knowledge on the effect of altered gravity on the developing CNS with respect to the response of the developing CNS to altered gravity (gravireaction), the physiological changes associated with altered gravity that could contribute to this effect (gravitransduction), and the possible mechanisms involved in the detection of altered gravity (graviperception). Some of these findings transcend gravitational research and are relevant to our understanding of the impact of environmental factors on CNS development on Earth.

  6. CNS Tumors in Neurofibromatosis.

    PubMed

    Campian, Jian; Gutmann, David H

    2017-07-20

    Neurofibromatosis (NF) encompasses a group of distinct genetic disorders in which affected children and adults are prone to the development of benign and malignant tumors of the nervous system. The purpose of this review is to discuss the spectrum of CNS tumors arising in individuals with NF type 1 (NF1) and NF type 2 (NF2), their pathogenic etiologies, and the rational treatment options for people with these neoplasms. This article is a review of preclinical and clinical data focused on the treatment of the most common CNS tumors encountered in children and adults with NF1 and NF2. Although children with NF1 are at risk for developing low-grade gliomas of the optic pathway and brainstem, individuals with NF2 typically manifest low-grade tumors affecting the cranial nerves (vestibular schwannomas), meninges (meningiomas), and spinal cord (ependymomas). With the identification of the NF1 and NF2 genes, molecularly targeted therapies are beginning to emerge, as a result of a deeper understanding of the mechanisms underlying NF1 and NF2 protein function. As we enter into an era of precision oncology, a more comprehensive awareness of the factors that increase the risk of developing CNS cancers in affected individuals, coupled with a greater appreciation of the cellular and molecular determinants that maintain tumor growth, will undoubtedly yield more effective therapies for these cancer predisposition syndromes.

  7. Competing Risk Analysis of Neurologic versus Nonneurologic Death in Patients Undergoing Radiosurgical Salvage After Whole-Brain Radiation Therapy Failure: Who Actually Dies of Their Brain Metastases?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, John T., E-mail: jolucas@wakehealth.edu; Colmer, Hentry G.; White, Lance

    Purpose: To estimate the hazard for neurologic (central nervous system, CNS) and nonneurologic (non-CNS) death associated with patient, treatment, and systemic disease status in patients receiving stereotactic radiosurgery after whole-brain radiation therapy (WBRT) failure, using a competing risk model. Patients and Methods: Of 757 patients, 293 experienced recurrence or new metastasis following WBRT. Univariate Cox proportional hazards regression identified covariates for consideration in the multivariate model. Competing risks multivariable regression was performed to estimate the adjusted hazard ratio (aHR) and 95% confidence interval (CI) for both CNS and non-CNS death after adjusting for patient, disease, and treatment factors. The resultantmore » model was converted into an online calculator for ease of clinical use. Results: The cumulative incidence of CNS and non-CNS death at 6 and 12 months was 20.6% and 21.6%, and 34.4% and 35%, respectively. Patients with melanoma histology (relative to breast) (aHR 2.7, 95% CI 1.5-5.0), brainstem location (aHR 2.1, 95% CI 1.3-3.5), and number of metastases (aHR 1.09, 95% CI 1.04-1.2) had increased aHR for CNS death. Progressive systemic disease (aHR 0.55, 95% CI 0.4-0.8) and increasing lowest margin dose (aHR 0.97, 95% CI 0.9-0.99) were protective against CNS death. Patients with lung histology (aHR 1.3, 95% CI 1.1-1.9) and progressive systemic disease (aHR 2.14, 95% CI 1.5-3.0) had increased aHR for non-CNS death. Conclusion: Our nomogram provides individual estimates of neurologic death after salvage stereotactic radiosurgery for patients who have failed prior WBRT, based on histology, neuroanatomical location, age, lowest margin dose, and number of metastases after adjusting for their competing risk of death from other causes.« less

  8. rAAV Gene Therapy in a Canavan's Disease Mouse Model Reveals Immune Impairments and an Extended Pathology Beyond the Central Nervous System.

    PubMed

    Ahmed, Seemin Seher; Schattgen, Stefan A; Frakes, Ashley E; Sikoglu, Elif M; Su, Qin; Li, Jia; Hampton, Thomas G; Denninger, Andrew R; Kirschner, Daniel A; Kaspar, Brian; Matalon, Reuben; Gao, Guangping

    2016-06-01

    Aspartoacylase (AspA) gene mutations cause the pediatric lethal neurodegenerative Canavan disease (CD). There is emerging promise of successful gene therapy for CD using recombinant adeno-associated viruses (rAAVs). Here, we report an intracerebroventricularly delivered AspA gene therapy regime using three serotypes of rAAVs at a 20-fold reduced dose than previously described in AspA(-/-) mice, a bona-fide mouse model of CD. Interestingly, central nervous system (CNS)-restricted therapy prolonged survival over systemic therapy in CD mice but failed to sustain motor functions seen in systemically treated mice. Importantly, we reveal through histological and functional examination of untreated CD mice that AspA deficiency in peripheral tissues causes morphological and functional abnormalities in this heretofore CNS-defined disorder. We demonstrate for the first time that AspA deficiency, possibly through excessive N-acetyl aspartic acid accumulation, elicits both a peripheral and CNS immune response in CD mice. Our data establish a role for peripheral tissues in CD pathology and serve to aid the development of more efficacious and sustained gene therapy for this disease.

  9. Redox Abnormalities as a Vulnerability Phenotype for Autism and Related Alterations in CNS Development

    DTIC Science & Technology

    2011-10-01

    the hypothesis that SJL mice would have impaired neuronal dendrite generation, as has been observed in autism . This was our prediction due to the...phenotype for Autism and related alterations in CNS development PRINCIPAL INVESTIGATOR: Mark D. Noble, Ph.D. CONTRACTING...SUBTITLE Redox abnormalities as a vulnerability phenotype for Autism 5a. CONTRACT NUMBER And related alterations in CNS development 5b. GRANT

  10. Evolution of bilaterian central nervous systems: a single origin?

    PubMed Central

    2013-01-01

    The question of whether the ancestral bilaterian had a central nervous system (CNS) or a diffuse ectodermal nervous system has been hotly debated. Considerable evidence supports the theory that a CNS evolved just once. However, an alternative view proposes that the chordate CNS evolved from the ectodermal nerve net of a hemichordate-like ancestral deuterostome, implying independent evolution of the CNS in chordates and protostomes. To specify morphological divisions along the anterior/posterior axis, this ancestor used gene networks homologous to those patterning three organizing centers in the vertebrate brain: the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer, and subsequent evolution of the vertebrate brain involved elaboration of these ancestral signaling centers; however, all or part of these signaling centers were lost from the CNS of invertebrate chordates. The present review analyzes the evidence for and against these theories. The bulk of the evidence indicates that a CNS evolved just once – in the ancestral bilaterian. Importantly, in both protostomes and deuterostomes, the CNS represents a portion of a generally neurogenic ectoderm that is internalized and receives and integrates inputs from sensory cells in the remainder of the ectoderm. The expression patterns of genes involved in medio/lateral (dorso/ventral) patterning of the CNS are similar in protostomes and chordates; however, these genes are not similarly expressed in the ectoderm outside the CNS. Thus, their expression is a better criterion for CNS homologs than the expression of anterior/posterior patterning genes, many of which (for example, Hox genes) are similarly expressed both in the CNS and in the remainder of the ectoderm in many bilaterians. The evidence leaves hemichordates in an ambiguous position – either CNS centralization was lost to some extent at the base of the hemichordates, or even earlier, at the base of the hemichordates + echinoderms, or one of the two hemichordate nerve cords is homologous to the CNS of protostomes and chordates. In any event, the presence of part of the genetic machinery for the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer in invertebrate chordates together with similar morphology indicates that these organizers were present, at least in part, at the base of the chordates and were probably elaborated upon in the vertebrate lineage. PMID:24098981

  11. The CNS connectome of a tadpole larva of Ciona intestinalis (L.) highlights sidedness in the brain of a chordate sibling.

    PubMed

    Ryan, Kerrianne; Lu, Zhiyuan; Meinertzhagen, Ian A

    2016-12-06

    Left-right asymmetries in brains are usually minor or cryptic. We report brain asymmetries in the tiny, dorsal tubular nervous system of the ascidian tadpole larva, Ciona intestinalis . Chordate in body plan and development, the larva provides an outstanding example of brain asymmetry. Although early neural development is well studied, detailed cellular organization of the swimming larva's CNS remains unreported. Using serial-section EM we document the synaptic connectome of the larva's 177 CNS neurons. These formed 6618 synapses including 1772 neuromuscular junctions, augmented by 1206 gap junctions. Neurons are unipolar with at most a single dendrite, and few synapses. Some synapses are unpolarised, others form reciprocal or serial motifs; 922 were polyadic. Axo-axonal synapses predominate. Most neurons have ciliary organelles, and many features lack structural specialization. Despite equal cell numbers on both sides, neuron identities and pathways differ left/right. Brain vesicle asymmetries include a right ocellus and left coronet cells.

  12. Treatment of HIV in the CNS: effects of antiretroviral therapy and the promise of non-antiretroviral therapeutics.

    PubMed

    Peluso, Michael J; Spudich, Serena

    2014-09-01

    The growing recognition of the burden of neurologic disease associated with HIV infection in the last decade has led to renewed efforts to characterize the pathophysiology of the virus within the central nervous system (CNS). The concept of the AIDS-dementia complex is now better understood as a spectrum of HIV-associated neurocognitive disorders (HAND), which range from asymptomatic disease to severe impairment. Recent work has shown that even optimally treated patients can experience not only persistent HAND, but also the development of new neurologic abnormalities despite viral suppression. This has thrown into question what the impact of antiretroviral therapy has been on the incidence and prevalence of neurocognitive dysfunction. In this context, the last few years have seen a concentrated effort to identify the effects that antiretroviral therapy has on the neurologic manifestations of HIV and to develop therapeutic modalities that might specifically alter the trajectory of HIV within the CNS.

  13. Blastic plasmacytoid dendritic cell neoplasm frequently shows occult central nervous system involvement at diagnosis and benefits from intrathecal therapy.

    PubMed

    Martín-Martín, Lourdes; Almeida, Julia; Pomares, Helena; González-Barca, Eva; Bravo, Pilar; Giménez, Teresa; Heras, Cecilia; Queizán, José-Antonio; Pérez-Ceballos, Elena; Martínez, Violeta; Alonso, Natalia; Calvo, Carlota; Álvarez, Rodolfo; Caballero, María Dolores; Orfao, Alberto

    2016-03-01

    Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare aggressive myeloid neoplasm which shows a high rate of central nervous system (CNS) recurrence and overall survival (OS) of <1 year. Despite this, screening for CNS involvement is not routinely performed at diagnosis and intrathecal (IT) prophylaxis is not regularly administered in BPDCN. Here, we prospectively evaluated 13 consecutive BPDCN patients for the presence of CNS involvement by flow cytometry. Despite none of the patients presented with neurological symptoms, occult CNS involvement was detected in 6/10 cases evaluated at diagnosis and 3/3 studied at relapse/progression. BPDCN patients evaluated at diagnosis received IT treatment -either CNS prophylaxis (n = 4) or active therapy (n = 6)- and all but one remain alive (median follow-up of 20 months). In contrast, all three patients assessed at relapse/progression died. The potential benefit of IT treatment administered early at diagnosis on OS and CNS recurrence-free survival of BPDCN was further confirmed in a retrospective cohort of another 23 BPDCN patients. Our results show that BPDCN patients studied at diagnosis frequently display occult CNS involvement; moreover, they also indicate that treatment of occult CNS disease might lead to a dramatically improved outcome of BPDCN.

  14. Blastic plasmacytoid dendritic cell neoplasm frequently shows occult central nervous system involvement at diagnosis and benefits from intrathecal therapy

    PubMed Central

    Martín-Martín, Lourdes; Almeida, Julia; Pomares, Helena; González-Barca, Eva; Bravo, Pilar; Giménez, Teresa; Heras, Cecilia; Queizán, José-Antonio; Pérez-Ceballos, Elena; Martínez, Violeta; Alonso, Natalia; Calvo, Carlota; Álvarez, Rodolfo; Caballero, María Dolores; Orfao, Alberto

    2016-01-01

    Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare aggressive myeloid neoplasm which shows a high rate of central nervous system (CNS) recurrence and overall survival (OS) of <1 year. Despite this, screening for CNS involvement is not routinely performed at diagnosis and intrathecal (IT) prophylaxis is not regularly administered in BPDCN. Here, we prospectively evaluated 13 consecutive BPDCN patients for the presence of CNS involvement by flow cytometry. Despite none of the patients presented with neurological symptoms, occult CNS involvement was detected in 6/10 cases evaluated at diagnosis and 3/3 studied at relapse/progression. BPDCN patients evaluated at diagnosis received IT treatment -either CNS prophylaxis (n = 4) or active therapy (n = 6)- and all but one remain alive (median follow-up of 20 months). In contrast, all three patients assessed at relapse/progression died. The potential benefit of IT treatment administered early at diagnosis on OS and CNS recurrence-free survival of BPDCN was further confirmed in a retrospective cohort of another 23 BPDCN patients. Our results show that BPDCN patients studied at diagnosis frequently display occult CNS involvement; moreover, they also indicate that treatment of occult CNS disease might lead to a dramatically improved outcome of BPDCN. PMID:26840087

  15. Pharmacology of a Central Nervous System Delivered 2′-O-Methoxyethyl–Modified Survival of Motor Neuron Splicing Oligonucleotide in Mice and Nonhuman Primates

    PubMed Central

    Chun, Seung J.; Norris, Daniel A.; Hung, Gene; Lee, Sam; Matson, John; Fey, Robert A.; Gaus, Hans; Hua, Yimin; Grundy, John S.; Krainer, Adrian R.; Henry, Scott P.; Bennett, C. Frank

    2014-01-01

    Spinal muscular atrophy (SMA) is a debilitating neuromuscular disease caused by the loss of survival of motor neuron (SMN) protein. Previously, we demonstrated that ISIS 396443, an antisense oligonucleotide (ASO) targeted to the SMN2 pre-mRNA, is a potent inducer of SMN2 exon 7 inclusion and SMN protein expression, and improves function and survival of mild and severe SMA mouse models. Here, we demonstrate that ISIS 396443 is the most potent ASO in central nervous system (CNS) tissues of adult mice, compared with several other chemically modified ASOs. We evaluated methods of ISIS 396443 delivery to the CNS and characterized its pharmacokinetics and pharmacodynamics in rodents and nonhuman primates (NHPs). Intracerebroventricular bolus injection is a more efficient method of delivering ISIS 396443 to the CNS of rodents, compared with i.c.v. infusion. For both methods of delivery, the duration of ISIS 396443–mediated SMN2 splicing correction is long lasting, with maximal effects still observed 6 months after treatment discontinuation. Administration of ISIS 396443 to the CNS of NHPs by a single intrathecal bolus injection results in widespread distribution throughout the spinal cord. Based upon these preclinical studies, we have advanced ISIS 396443 into clinical development. PMID:24784568

  16. Infections, inflammation and epilepsy

    PubMed Central

    Vezzani, Annamaria; Fujinami, Robert S.; White, H. Steve; Preux, Pierre-Marie; Blümcke, Ingmar; Sander, Josemir W.; Löscher, Wolfgang

    2016-01-01

    Epilepsy is the tendency to have unprovoked epileptic seizures. Anything causing structural or functional derangement of brain physiology may lead to seizures, and different conditions may express themselves solely by recurrent seizures and thus be labelled “epilepsy.” Worldwide, epilepsy is the most common serious neurological condition. The range of risk factors for the development of epilepsy varies with age and geographic location. Congenital, developmental and genetic conditions are mostly associated with the development of epilepsy in childhood, adolescence and early adulthood. Head trauma, infections of the central nervous system (CNS) and tumours may occur at any age and may lead to the development of epilepsy. Infections of the CNS are a major risk factor for epilepsy. The reported risk of unprovoked seizures in population-based cohorts of survivors of CNS infections from developed countries is between 6.8 and 8.3 %, and is much higher in resource-poor countries. In this review, the various viral, bacterial, fungal and parasitic infectious diseases of the CNS which result in seizures and epilepsy are discussed. The pathogenesis of epilepsy due to brain infections, as well as the role of experimental models to study mechanisms of epileptogenesis induced by infectious agents, is reviewed. The sterile (non-infectious) inflammatory response that occurs following brain insults is also discussed, as well as its overlap with inflammation due to infections, and the potential role in epileptogenesis. Furthermore, autoimmune encephalitis as a cause of seizures is reviewed. Potential strategies to prevent epilepsy resulting from brain infections and non-infectious inflammation are also considered. PMID:26423537

  17. CNS Schwann cells display oligodendrocyte precursor-like potassium channel activation and antigenic expression in vitro.

    PubMed

    Kegler, Kristel; Imbschweiler, Ilka; Ulrich, Reiner; Kovermann, Peter; Fahlke, Christoph; Deschl, Ulrich; Kalkuhl, Arno; Baumgärnter, Wolfgang; Wewetzer, Konstantin

    2014-06-01

    Central nervous system (CNS) injury triggers production of myelinating Schwann cells from endogenous oligodendrocyte precursors (OLPs). These CNS Schwann cells may be attractive candidates for novel therapeutic strategies aiming to promote endogenous CNS repair. However, CNS Schwann cells have been so far mainly characterized in situ regarding morphology and marker expression, and it has remained enigmatic whether they display functional properties distinct from peripheral nervous system (PNS) Schwann cells. Potassium channels (K+) have been implicated in progenitor and glial cell proliferation after injury and may, therefore, represent a suitable pharmacological target. In the present study, we focused on the function and expression of voltage-gated K+ channels Kv(1-12) and accessory β-subunits in purified adult canine CNS and PNS Schwann cell cultures using electrophysiology and microarray analysis and characterized their antigenic phenotype. We show here that K+ channels differed significantly in both cell types. While CNS Schwann cells displayed prominent K D-mediated K+ currents, PNS Schwann cells elicited K(D-) and K(A-type) K+ currents. Inhibition of K+ currents by TEA and Ba2+ was more effective in CNS Schwann cells. These functional differences were not paralleled by differential mRNA expression of Kv(1-12) and accessory β-subunits. However, O4/A2B5 and GFAP expressions were significantly higher and lower, respectively, in CNS than in PNS Schwann cells. Taken together, this is the first evidence that CNS Schwann cells display specific properties not shared by their peripheral counterpart. Both Kv currents and increased O4/A2B5 expression were reminiscent of OLPs suggesting that CNS Schwann cells retain OLP features during maturation.

  18. The Role of Neurogenic Inflammation in Blood-Brain Barrier Disruption and Development of Cerebral Oedema Following Acute Central Nervous System (CNS) Injury

    PubMed Central

    Sorby-Adams, Annabel J.; Marcoionni, Amanda M.; Dempsey, Eden R.; Woenig, Joshua A.; Turner, Renée J.

    2017-01-01

    Acute central nervous system (CNS) injury, encompassing traumatic brain injury (TBI) and stroke, accounts for a significant burden of morbidity and mortality worldwide, largely attributable to the development of cerebral oedema and elevated intracranial pressure (ICP). Despite this, clinical treatments are limited and new therapies are urgently required to improve patient outcomes and survival. Originally characterised in peripheral tissues, such as the skin and lungs as a neurally-elicited inflammatory process that contributes to increased microvascular permeability and tissue swelling, neurogenic inflammation has now been described in acute injury to the brain where it may play a key role in the secondary injury cascades that evolve following both TBI and stroke. In particular, release of the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) appear to be critically involved. In particular, increased SP expression is observed in perivascular tissue following acute CNS injury, with the magnitude of SP release being related to both the frequency and degree of the insult. SP release is associated with profound blood-brain barrier disruption and the subsequent development of vasogenic oedema, as well as neuronal injury and poor functional outcomes. Inhibition of SP through use of a neurokinin 1 (NK1) antagonist is highly beneficial following both TBI and ischaemic stroke in pre-clinical models. The role of CGRP is more unclear, especially with respect to TBI, with both elevations and reductions in CGRP levels reported following trauma. However, a beneficial role has been delineated in stroke, given its potent vasodilatory effects. Thus, modulating neuropeptides represents a novel therapeutic target in the treatment of cerebral oedema following acute CNS injury. PMID:28817088

  19. Mechanisms of Hypothermia, Delayed Hyperthermia and Fever Following CNS Injury

    EPA Science Inventory

    Central nervous system (CNS) damage is often associated with robust body temperature changes, such as hypothermia and delayed hyperthermia. Hypothermia is one of the most common body temperature changes to CNS insults in rodents and is often associated with improved outcome. Alth...

  20. Immune privilege of the CNS is not the consequence of limited antigen sampling

    NASA Astrophysics Data System (ADS)

    Harris, Melissa G.; Hulseberg, Paul; Ling, Changying; Karman, Jozsef; Clarkson, Benjamin D.; Harding, Jeffrey S.; Zhang, Mengxue; Sandor, Adam; Christensen, Kelsey; Nagy, Andras; Sandor, Matyas; Fabry, Zsuzsanna

    2014-03-01

    Central nervous system (CNS) immune privilege is complex, and it is still not understood how CNS antigens are sampled by the peripheral immune system under steady state conditions. To compare antigen sampling from immune-privileged or nonprivileged tissues, we created transgenic mice with oligodendrocyte or gut epithelial cell expression of an EGFP-tagged fusion protein containing ovalbumin (OVA) antigenic peptides and tested peripheral anti-OVA peptide-specific sentinel OT-I and OT-II T cell activation. We report that oligodendrocyte or gut antigens are sampled similarly, as determined by comparable levels of OT-I T cell activation. However, activated T cells do not access the CNS under steady state conditions. These data show that afferent immunity is normally intact as there is no barrier at the antigen sampling level, but that efferent immunity is restricted. To understand how this one-sided surveillance contributes to CNS immune privilege will help us define mechanisms of CNS autoimmune disease initiation.

  1. Treatment of initial parenchymal central nervous system involvement in systemic aggressive B-cell lymphoma.

    PubMed

    Nijland, Marcel; Jansen, Anne; Doorduijn, Jeanette K; Enting, Roelien H; Bromberg, Jacoline E C; Kluin-Nelemans, Hanneke C

    2017-09-01

    Central nervous system (CNS) involvement in systemic B-cell non-Hodgkin lymphoma (B-NHL) at diagnosis (sysCNS) is rare. We investigated the outcome of 21 patients with sysCNS, most commonly diffuse large B-cell lymphoma, treated with high dose methotrexate (HD-MTX) and R-CHOP. The median number of cycles of HD-MTX and R-CHOP was 4 (range 1-8) and 6 (range 0-8), respectively. Consolidative whole brain radiotherapy (WBRT) was given to 33% (7/21) patients. With a median follow-up of 44 months the 3-year progression free survival (PFS) and overall survival (OS) were 45% (95%CI 34-56%) and 49% (95%CI 38-60%), respectively. Over 90% of patients had an unfavorable international prognostic index score, reflected by treatment-related mortality of 19% (4/21) and relapse-related mortality of 28% (6/21). The outcome of these patients was, however, unexpectedly good when compared to secondary CNS relapses. Prospective studies are needed to define the optimal treatment for patients with sysCNS, but its rarity might be challenging.

  2. Clinical nurse specialist education: actualizing the systems leadership competency.

    PubMed

    Thompson, Cathy J; Nelson-Marten, Paula

    2011-01-01

    The purpose of this article was to show how sequenced educational strategies aid in the acquisition of systems leadership and change agent skills, as well as other essential skills for professional clinical nurse specialist (CNS) practice. Clinical nurse specialist education offers the graduate student both didactic and clinical experiences to help the student transition into the CNS role. Clinical nurse specialist faculty have a responsibility to prepare students for the realities of advanced practice. Systems leadership is an integral competency of CNS practice. The contemporary CNS is to be a leader in the translation of evidence into practice. To assist students to acquire this competency, all CNS students are expected to use research and other sources of evidence to identify, design, implement, and evaluate a specific practice change. Anecdotal comments from students completing the projects are offered. Student projects have been focused in acute and critical care, palliative care, and adult/gerontologic health clinical settings; community outreach has been the focus of a few change projects. Examples of student projects related to the systems leadership competency and correlated to the spheres of influence impacted are presented.

  3. [Met-enkephalin in the cerebrospinal fluid as an indicator of central nervous system injury in meningitis and encephalitis].

    PubMed

    Cieśla, Andrzej; Pierzchała-Koziec, Krystyna; Mach, Tomasz; Garlicki, Aleksander; Bociaga-Jasik, Monika

    2005-05-01

    Assessment of met-enkephalin level in the cerebrospinal fluid (CSF) of patients with inflammatory process of the central nervous system (CNS) was performed to estimate the role of opioid system in viral and bacterial meningitis, and encephalitis. The met-enkephalin level, protein concentration and pleocytosis were analysed in the CSF of 53 patients with viral or bacterial meningitis, encephalitis, and in the control group of patients without inflammatory disease of the CNS. The biggest differences have been observed between the groups of patients with bacterial meningitis and those without inflammatory disease of the CNS, but they were statistically insignificant. There was a lack of correlation between met-enkephalin level and some factors of inflammatory process in CSF, such as pleocytosis and protein concentration. We have not revealed any correlation between etiological agent of CNS infection and opioid system of the brain. Despite the fact that, we observed in the study statistically insignificant changes, we suggest to continue investigations, including additional parameters which are characteristic for the CNS diseases.

  4. Structural and functional features of central nervous system lymphatics

    PubMed Central

    Louveau, Antoine; Smirnov, Igor; Keyes, Timothy J.; Eccles, Jacob D.; Rouhani, Sherin J.; Peske, J. David; Derecki, Noel C.; Castle, David; Mandell, James W.; Kevin, S. Lee; Harris, Tajie H.; Kipnis, Jonathan

    2015-01-01

    One of the characteristics of the CNS is the lack of a classical lymphatic drainage system. Although it is now accepted that the CNS undergoes constant immune surveillance that takes place within the meningeal compartment1–3, the mechanisms governing the entrance and exit of immune cells from the CNS remain poorly understood4–6. In searching for T cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the CSF, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the CNS. The discovery of the CNS lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and shed new light on the etiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction. PMID:26030524

  5. Integrin alpha 10, CD44, PTEN, cadherin-11 and lactoferrin expressions are potential biomarkers for selecting patients in need of central nervous system prophylaxis in diffuse large B-cell lymphoma.

    PubMed

    Lemma, Siria A; Kuusisto, Milla; Haapasaari, Kirsi-Maria; Sormunen, Raija; Lehtinen, Tuula; Klaavuniemi, Tuula; Eray, Mine; Jantunen, Esa; Soini, Ylermi; Vasala, Kaija; Böhm, Jan; Salokorpi, Niina; Koivunen, Petri; Karihtala, Peeter; Vuoristo, Jussi; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi

    2017-08-01

    Central nervous system (CNS) relapse is a devastating complication that occurs in about 5% of diffuse large B-cell lymphoma (DLBCL) patients. Currently, there are no predictive biological markers. We wanted to study potential biomarkers of CNS tropism that play a role in adhesion, migration and/or in the regulation of inflammatory responses. The expression levels of ITGA10, CD44, PTEN, cadherin-11, CDH12, N-cadherin, P-cadherin, lactoferrin and E-cadherin were studied with IHC and IEM. GEP was performed to see whether found expressional changes are regulated at DNA/RNA level. IHC included 96 samples of primary CNS lymphoma (PCNSL), secondary CNS lymphoma (sCNSL) and systemic DLBCL (sDLBCL). IEM included two PCNSL, one sCNSL, one sDLBCL and one reactive lymph node samples. GEP was performed on two DLBCL samples, one with and one without CNS relapse. CNS disease was associated with enhanced expression of cytoplasmic and membranous ITGA10 and nuclear PTEN (P < 0.0005, P = 0.002, P = 0.024, respectively). sCNSL presented decreased membranous CD44 and nuclear and cytoplasmic cadherin-11 expressions (P = 0.001, P = 0.006, P = 0.048, respectively). In PCNSL lactoferrin expression was upregulated (P < 0.0005). IEM results were mainly supportive of the IHC results. In GEP CD44, cadherin-11, lactoferrin and E-cadherin were under-expressed in CNS disease. Our results are in line with previous studies, where gene expressions in extracellular matrix and adhesion-related pathways are altered in CNS lymphoma. This study gives new information on the DLBCL CNS tropism. If further verified, these markers might become useful in predicting CNS relapses. © The Author 2017. Published by Oxford University Press.

  6. Central nervous system filariasis masquerading as a glioma: case report.

    PubMed

    Shrivastava, Adesh; Arora, Prateek; Khare, Akriti; Goel, Garima; Kapoor, Neelkamal

    2017-09-01

    Filariasis, an endemic zoonosis in the Southeast Asia region, has been reported to affect various organs as well as the central nervous system (CNS). Inflammatory reactions mimicking those from neoplastic lesions clinically and radiologically have been reported in the breast and urinary bladder. To date, a CNS manifestation of filarial infestation has been reported in the form of meningoencephalitis. The authors here present an interesting case of a young man presenting in status epilepticus, which on radiological evaluation appeared to be a glioma. However, postoperative histopathological examination changed the provisional diagnosis to a filarial infection of the CNS mimicking a primary CNS neoplasm.

  7. Hypothalamic control of energy and glucose metabolism.

    PubMed

    Sisley, Stephanie; Sandoval, Darleen

    2011-09-01

    The central nervous system (CNS), generally accepted to regulate energy homeostasis, has been implicated in the metabolic perturbations that either cause or are associated with obesity. Normally, the CNS receives hormonal, metabolic, and neuronal input to assure adequate energy levels and maintain stable energy homeostasis. Recent evidence also supports that the CNS uses these same inputs to regulate glucose homeostasis and this aspect of CNS regulation also becomes impaired in the face of dietary-induced obesity. This review focuses on the literature surrounding hypothalamic regulation of energy and glucose homeostasis and discusses how dysregulation of this system may contribute to obesity and T2DM.

  8. Type-1 angiotensin receptor signaling in central nervous system myeloid cells is pathogenic during fatal alphavirus encephalitis in mice.

    PubMed

    Blakely, Pennelope K; Huber, Amanda K; Irani, David N

    2016-08-25

    Alphaviruses can cause fatal encephalitis in humans. Natural infections occur via the bite of infected mosquitos, but aerosol transmissibility makes some of these viruses potential bioterrorism agents. Central nervous system (CNS) host responses contribute to alphavirus pathogenesis in experimental models and are logical therapeutic targets. We investigated whether reactive oxygen species (ROS) generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) activity within the CNS contributes to fatal alphavirus encephalitis in mice. Infected animals were treated systemically with the angiotensin receptor-blocking drug, telmisartan, given its ability to cross the blood-brain barrier, selectively block type-1 angiotensin receptors (AT1R), and inhibit Nox-derived ROS production in vascular smooth muscle and other extraneural tissues. Clinical, virological, biochemical, and histopathological outcomes were followed over time. The importance of the angiotensin II (Ang II)/AT1R axis in disease pathogenesis was confirmed by demonstrating increased Ang II levels in the CNS following infection, enhanced disease survival when CNS Ang II production was suppressed, increased AT1R expression on microglia and tissue-infiltrating myeloid cells, and enhanced disease survival in AT1R-deficient mice compared to wild-type (WT) controls. Systemic administration of telmisartan protected WT mice from lethal encephalitis caused by two different alphaviruses in a dose-dependent manner without altering virus replication or exerting any anti-inflammatory effects in the CNS. Infection triggered up-regulation of multiple Nox subunits in the CNS, while drug treatment inhibited local Nox activity, ROS production, and oxidative neuronal damage. Telmisartan proved ineffective in Nox-deficient mice, demonstrating that this enzyme is its main target in this experimental setting. Nox-derived ROS, likely arising from CNS myeloid cells triggered by AT1R signaling, are pathogenic during fatal alphavirus encephalitis in mice. Systemically administered telmisartan at non-hypotensive doses targets Nox activity in the CNS to exert a neuroprotective effect. Disruption of this pathway may have broader implications for the treatment of related infections as well as for other CNS diseases driven by oxidative injury.

  9. Prognostic Factors After Extraneural Metastasis of Medulloblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazloom, Ali; Zangeneh, Azy H.; Paulino, Arnold C., E-mail: apaulino@tmhs.or

    2010-09-01

    Purpose: To review the existing literature regarding the characteristics, prognostic factors, treatment, and survival of patients with medulloblastoma, who develop extraneural metastasis (ENM). Methods and Materials: A PubMed search of English language articles from 1961 to 2007 was performed, yielding 47 articles reporting on 119 patients. Factors analyzed included age, time interval to development of ENM, ENM location, central nervous system (CNS) involvement, treatment, and outcome. Results: Sites of ENM included bone in 84% of patients, bone marrow in 27% of patients, lymph nodes in 15% of patients, lung in 6% of patients, and liver in 6% of patients. Medianmore » survival was 8 months after diagnosis of ENM. The 1-, 2-, and 5-year overall survival (OS) rates after diagnosis of ENM were 41.9%, 31.0%, and 26.0%, respectively. The 1-, 2-, and 5-year progression-free survival (PFS) rates after diagnosis of ENM were 34.5%, 23.2%, and 13.4%, respectively. For patients without CNS involvement at the time of ENM diagnosis, the 1-, 2-, and 5-year OS rates for those treated with and without radiotherapy (RT) were 82.4%, 64.8%, and 64.8% vs. 51.0%, 36.6%, and 30.5%, respectively (p = 0.03, log-rank test). RT did not significantly improve OS or PFS rates for those with CNS involvement. Concurrent CNS involvement, ENM in the lung or liver, a time interval of <18 months to development of ENM, and a patient age of <16 years at ENM diagnosis were found to be negative prognostic factors for both OS and PFS. Conclusions: Several prognostic factors were identified for patients with ENM from medulloblastoma. Patients without concurrent CNS involvement, who received RT after ENM diagnosis had an OS and PFS benefit compared to those who did not receive RT.« less

  10. Progress in the Biological Understanding and Management of Breast Cancer-Associated Central Nervous System Metastases

    PubMed Central

    Gonzalez-Angulo, Ana M.

    2013-01-01

    Metastasis to the central nervous system (CNS) is a devastating neurological complication of systemic cancer. Brain metastases from breast cancer have been documented to occur in approximately 10%–16% of cases over the natural course of the disease with leptomeningeal metastases occurring in approximately 2%–5% of cases of breast cancer. CNS metastases among women with breast cancer tend to occur among those who are younger, have larger tumors, and have a more aggressive histological subtype such as the triple negative and HER2-positive subtypes. Treatment of CNS metastases involves various combinations of whole brain radiation therapy, surgery, stereotactic radiosurgery, and chemotherapy. We will discuss the progress made in the treatment and prevention of breast cancer-associated CNS metastases and will delve into the biological underpinnings of CNS metastases including evaluating the role of breast tumor subtype on the incidence, natural history, prognostic outcome, and impact of therapeutic efficacy. PMID:23740934

  11. Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route

    PubMed Central

    Munster, Vincent J.; Prescott, Joseph B.; Bushmaker, Trenton; Long, Dan; Rosenke, Rebecca; Thomas, Tina; Scott, Dana; Fischer, Elizabeth R.; Feldmann, Heinz; de Wit, Emmie

    2012-01-01

    Encephalitis is a hallmark of Nipah virus (NiV) infection in humans. The exact route of entry of NiV into the central nervous system (CNS) is unknown. Here, we performed a spatio-temporal analysis of NiV entry into the CNS of hamsters. NiV initially predominantly targeted the olfactory epithelium in the nasal turbinates. From there, NiV infected neurons were visible extending through the cribriform plate into the olfactory bulb, providing direct evidence of rapid CNS entry. Subsequently, NiV disseminated to the olfactory tubercle and throughout the ventral cortex. Transmission electron microscopy on brain tissue showed extravasation of plasma cells, neuronal degeneration and nucleocapsid inclusions in affected tissue and axons, providing further evidence for axonal transport of NiV. NiV entry into the CNS coincided with the occurrence of respiratory disease, suggesting that the initial entry of NiV into the CNS occurs simultaneously with, rather than as a result of, systemic virus replication. PMID:23071900

  12. Single cell cultures of Drosophila neuroectodermal and mesectodermal central nervous system progenitors reveal different degrees of developmental autonomy.

    PubMed

    Lüer, Karin; Technau, Gerhard M

    2009-08-03

    The Drosophila embryonic central nervous system (CNS) develops from two sets of progenitor cells, neuroblasts and ventral midline progenitors, which behave differently in many respects. Neuroblasts derive from the neurogenic region of the ectoderm and form the lateral parts of the CNS. Ventral midline precursors are formed by two rows of mesectodermal cells and build the CNS midline. There is plenty of evidence that individual identities are conferred to precursor cells by positional information in the ectoderm. It is unclear, however, how far the precursors can maintain their identities and developmental properties in the absence of normal external signals. To separate the respective contributions of autonomous properties versus extrinsic signals during their further development, we isolated individual midline precursors and neuroectodermal precursors at the pre-mitotic gastrula stage, traced their development in vitro, and analyzed the characteristics of their lineages in comparison with those described for the embryo. Although individually cultured mesectodermal cells exhibit basic characteristics of CNS midline progenitors, the clones produced by these progenitors differ from their in situ counterparts with regard to cell numbers, expression of molecular markers, and the separation of neuronal and glial fate. In contrast, clones derived from individually cultured precursors taken from specific dorsoventral zones of the neuroectoderm develop striking similarities to the lineages of neuroblasts that normally delaminate from these zones and develop in situ. This in vitro analysis allows for the first time a comparison of the developmental capacities in situ and in vitro of individual neural precursors of defined spatial and temporal origin. The data reveal that cells isolated at the pre-mitotic and pre-delamination stage express characteristics of the progenitor type appropriate to their site of origin in the embryo. However, presumptive neuroblasts, once specified in the neuroectoderm, exhibit a higher degree of autonomy regarding generation of their lineages compared to mesectodermal midline progenitors.

  13. High-dose methotrexate following intravitreal methotrexate administration in preventing central nervous system involvement of primary intraocular lymphoma.

    PubMed

    Akiyama, Hiroki; Takase, Hiroshi; Kubo, Fumito; Miki, Tohru; Yamamoto, Masahide; Tomita, Makoto; Mochizuki, Manabu; Miura, Osamu; Arai, Ayako

    2016-10-01

    In order to prevent central nervous system (CNS) involvement and improve the prognosis of primary intraocular lymphoma (PIOL), we prospectively evaluated the efficacy of combined therapy using intravitreal methotrexate (MTX) and systemic high-dose MTX on treatment-naïve PIOL. Patients with newly diagnosed PIOL whose lymphoma was limited to the eyes were enrolled. The patients were treated with weekly intravitreal MTX until the ocular lesions were resolved, followed by five cycles of systemic high-dose MTX (3.5 g/m 2 ) every other week. Ten patients were enrolled in this study and completed the treatment. All patients achieved complete response for their ocular lesions with rapid decrease of intravitreal interleukin-10 concentration. Adverse events of intravitreal and systemic high-dose MTX were mild and tolerable. With a median follow-up of 29.5 months, four patients (40%) experienced the CNS disease development and the mean CNS lymphoma-free survival (CLFS) time was 51.1 months. Two-year CLFS, which was the primary end-point of the study, was 58.3% (95% confidence interval, 23.0-82.1%). In contrast, eight patients were treated with intravitreal MTX alone in our institute, and their 2-year CLFS was 37.5% (95% confidence interval, 8.7-67.4%). In conclusion, systemic high-dose MTX following intravitreal MTX is feasible and might be effective in preventing CNS involvement of PIOL. Further arrangements are worth considering in order to improve the effects. This study was registered with UMIN Clinical Trials Registry (UMIN000003921). © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  14. Comparative transcriptome analysis between planarian Dugesia japonica and other platyhelminth species.

    PubMed

    Nishimura, Osamu; Hirao, Yukako; Tarui, Hiroshi; Agata, Kiyokazu

    2012-06-29

    Planarians are considered to be among the extant animals close to one of the earliest groups of organisms that acquired a central nervous system (CNS) during evolution. Planarians have a bilobed brain with nine lateral branches from which a variety of external signals are projected into different portions of the main lobes. Various interneurons process different signals to regulate behavior and learning/memory. Furthermore, planarians have robust regenerative ability and are attracting attention as a new model organism for the study of regeneration. Here we conducted large-scale EST analysis of the head region of the planarian Dugesia japonica to construct a database of the head-region transcriptome, and then performed comparative analyses among related species. A total of 54,752 high-quality EST reads were obtained from a head library of the planarian Dugesia japonica, and 13,167 unigene sequences were produced by de novo assembly. A new method devised here revealed that proteins related to metabolism and defense mechanisms have high flexibility of amino-acid substitutions within the planarian family. Eight-two CNS-development genes were found in the planarian (cf. C. elegans 3; chicken 129). Comparative analysis revealed that 91% of the planarian CNS-development genes could be mapped onto the schistosome genome, but one-third of these shared genes were not expressed in the schistosome. We constructed a database that is a useful resource for comparative planarian transcriptome studies. Analysis comparing homologous genes between two planarian species showed that the potential of genes is important for accumulation of amino-acid substitutions. The presence of many CNS-development genes in our database supports the notion that the planarian has a fundamental brain with regard to evolution and development at not only the morphological/functional, but also the genomic, level. In addition, our results indicate that the planarian CNS-development genes already existed before the divergence of planarians and schistosomes from their common ancestor.

  15. Autoimmune control of lesion growth in CNS with minimal damage

    NASA Astrophysics Data System (ADS)

    Mathankumar, R.; Mohan, T. R. Krishna

    2013-07-01

    Lesions in central nervous system (CNS) and their growth leads to debilitating diseases like Multiple Sclerosis (MS), Alzheimer's etc. We developed a model earlier [1, 2] which shows how the lesion growth can be arrested through a beneficial auto-immune mechanism. We compared some of the dynamical patterns in the model with different facets of MS. The success of the approach depends on a set of control parameters and their phase space was shown to have a smooth manifold separating the uncontrolled lesion growth region from the controlled. Here we show that an optimal set of parameter values exist in the model which minimizes system damage while, at once, achieving control of lesion growth.

  16. Clinical Applications Involving CNS Gene Transfer

    PubMed Central

    Kantor, Boris; McCown, Thomas; Leone, Paola; Gray, Steven J.

    2015-01-01

    Diseases of the central nervous system (CNS) have traditionally been the most difficult to treat by traditional pharmacological methods, due mostly to the blood–brain barrier and the difficulties associated with repeated drug administration targeting the CNS. Viral vector gene transfer represents a way to permanently provide a therapeutic protein within the nervous system after a single administration, whether this be a gene replacement strategy for an inherited disorder or a disease-modifying protein for a disease such as Parkinson's. Gene therapy approaches for CNS disorders has evolved considerably over the last two decades. Although a breakthrough treatment has remained elusive, current strategies are now considerably safer and potentially much more effective. This chapter will explore the past, current, and future status of CNS gene therapy, focusing on clinical trials utilizing adeno-associated virus and lentiviral vectors. PMID:25311921

  17. Trade-Off Analysis Report

    NASA Technical Reports Server (NTRS)

    Dhas, Chris

    2000-01-01

    NASAs Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to examine protocols and architectures for an In-Space Internet Node. CNS has developed a methodology for network reference models to support NASAs four mission areas: Earth Science, Space Science, Human Exploration and Development of Space (REDS), Aerospace Technology. CNS previously developed a report which applied the methodology, to three space Internet-based communications scenarios for future missions. CNS conceptualized, designed, and developed space Internet-based communications protocols and architectures for each of the independent scenarios. GRC selected for further analysis the scenario that involved unicast communications between a Low-Earth-Orbit (LEO) International Space Station (ISS) and a ground terminal Internet node via a Tracking and Data Relay Satellite (TDRS) transfer. This report contains a tradeoff analysis on the selected scenario. The analysis examines the performance characteristics of the various protocols and architectures. The tradeoff analysis incorporates the results of a CNS developed analytical model that examined performance parameters.

  18. Meninges-derived cues control axon guidance.

    PubMed

    Suter, Tracey A C S; DeLoughery, Zachary J; Jaworski, Alexander

    2017-10-01

    The axons of developing neurons travel long distances along stereotyped pathways under the direction of extracellular cues sensed by the axonal growth cone. Guidance cues are either secreted proteins that diffuse freely or bind the extracellular matrix, or membrane-anchored proteins. Different populations of axons express distinct sets of receptors for guidance cues, which results in differential responses to specific ligands. The full repertoire of axon guidance cues and receptors and the identity of the tissues producing these cues remain to be elucidated. The meninges are connective tissue layers enveloping the vertebrate brain and spinal cord that serve to protect the central nervous system (CNS). The meninges also instruct nervous system development by regulating the generation and migration of neural progenitors, but it has not been determined whether they help guide axons to their targets. Here, we investigate a possible role for the meninges in neuronal wiring. Using mouse neural tissue explants, we show that developing spinal cord meninges produce secreted attractive and repulsive cues that can guide multiple types of axons in vitro. We find that motor and sensory neurons, which project axons across the CNS-peripheral nervous system (PNS) boundary, are attracted by meninges. Conversely, axons of both ipsi- and contralaterally projecting dorsal spinal cord interneurons are repelled by meninges. The responses of these axonal populations to the meninges are consistent with their trajectories relative to meninges in vivo, suggesting that meningeal guidance factors contribute to nervous system wiring and control which axons are able to traverse the CNS-PNS boundary. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Hypersonic code efficiency and validation studies

    NASA Technical Reports Server (NTRS)

    Bennett, Bradford C.

    1992-01-01

    Renewed interest in hypersonic and supersonic flows spurred the development of the Compressible Navier-Stokes (CNS) code. Originally developed for external flows, CNS was modified to enable it to also be applied to internal high speed flows. In the initial phase of this study CNS was applied to both internal flow applications and fellow researchers were taught to run CNS. The second phase of this research was the development of surface grids over various aircraft configurations for the High Speed Research Program (HSRP). The complex nature of these configurations required the development of improved surface grid generation techniques. A significant portion of the grid generation effort was devoted to testing and recommending modifications to early versions of the S3D surface grid generation code.

  20. Large Amplitude Cortical Evoked Potentials in Nonepileptic Patients. Reviving an Old Neurophysiologic Tool to Help Detect CNS Pathology.

    PubMed

    Martín-Palomeque, Guillermo; Castro-Ortiz, Antonio; Pamplona-Valenzuela, Pilar; Saiz-Sepúlveda, Miguel Á; Cabañes-Martínez, Lidia; López, Jaime R

    2017-01-01

    Although large amplitude evoked potentials (EPs) are typically associated with progressive myoclonic epilepsy patients, giant EPs imply central nervous system (CNS) hyperexcitability and can be seen in various nonepileptic disorders. We performed a retrospective chart review including history, physical examination, imaging and diagnostic studies of nonepileptic patients with large amplitude somatosensory evoked potentials (SSEPs) and visual evoked potentials (VEPs) during 2007 to 2013. Large amplitude EPs were defined as follows: VEPs (N75-P100) >18 μV; and SSEPs (N20-P25) >6.4 μV. Recording montage for VEPs was Oz-Cz and SSEPs C3'/C4'-Fz. Fifty-two patients (33 females, 19 males; age range, 9-90 years) were identified. No CNS pathology was detected in 7 patients. All remaining patients were diagnosed with new CNS disorders including: vascular (37%); myelopathies (13%); demyelinating (11%); space occupying lesions (8.7%); syringomyelia (8.7%); hydrocephalus (6.5%); Vitamin B-12 deficiency (4.3%); multiple system atrophy (4.3%); and toxins (2.2%). This study supports the notion that large amplitude EP implies CNS hyperexcitability and CNS disease. These results confirm the utility of EP studies in patients with suspected CNS pathology.

  1. Central nervous system infections masquerading as cerebrovascular accidents: Case series and review of literature.

    PubMed

    Hayes, Lisa; Malhotra, Prashant

    2014-01-01

    Central nervous system (CNS) infections can have various presentations including Cerebrovascular accidents (CVA) which may go unrecognized as a presentation of infection. We describe three cases of different CNS infections complicated by CVA. Case 1 describes a 27-year-old man, presenting with symptoms consistent with a transient ischemic attack found to have racemose neurocysticercosis. Case 2 describes a 55-year-old man with low grade fevers for 4 weeks accompanied by visual and gait disturbances and delayed speech diagnosed with multiple small left thalamocapsular and superior cerebellar infarcts secondary to cryptococcal meningitis. The third case describes a man with pneumococcal meningitis complicated by cerebellar infarcts. CNS vascular compromise secondary to infections may be due to vasculitis, an immune-mediated parainfectious process causing vasospasm or thrombosis, or a hypercoagulable state with endothelial dysfunction. Patients with CVAs are at risk for aspiration pneumonia, urinary tract infections (especially catheter related) and other nosocomial infections and their clinical presentation may be very similar to CNS infections. The cases described demonstrate that CNS infections need to be considered in the differential diagnosis of CVAs presenting with fevers. The signs and symptoms of non-CNS infections associated with CVAs may be clinically indistinguishable from those of CNS infections. The outcomes of untreated CNS infections are extremely poor. It is thus imperative to have a high index of suspicion for CNS infection when evaluating CVAs with fevers or other signs of infection.

  2. Central nervous system infections masquerading as cerebrovascular accidents: Case series and review of literature

    PubMed Central

    Hayes, Lisa; Malhotra, Prashant

    2014-01-01

    Introduction Central nervous system (CNS) infections can have various presentations including Cerebrovascular accidents (CVA) which may go unrecognized as a presentation of infection. We describe three cases of different CNS infections complicated by CVA. Presentation Case 1 describes a 27-year-old man, presenting with symptoms consistent with a transient ischemic attack found to have racemose neurocysticercosis. Case 2 describes a 55-year-old man with low grade fevers for 4 weeks accompanied by visual and gait disturbances and delayed speech diagnosed with multiple small left thalamocapsular and superior cerebellar infarcts secondary to cryptococcal meningitis. The third case describes a man with pneumococcal meningitis complicated by cerebellar infarcts. Discussion CNS vascular compromise secondary to infections may be due to vasculitis, an immune-mediated parainfectious process causing vasospasm or thrombosis, or a hypercoagulable state with endothelial dysfunction. Patients with CVAs are at risk for aspiration pneumonia, urinary tract infections (especially catheter related) and other nosocomial infections and their clinical presentation may be very similar to CNS infections. Conclusion The cases described demonstrate that CNS infections need to be considered in the differential diagnosis of CVAs presenting with fevers. The signs and symptoms of non-CNS infections associated with CVAs may be clinically indistinguishable from those of CNS infections. The outcomes of untreated CNS infections are extremely poor. It is thus imperative to have a high index of suspicion for CNS infection when evaluating CVAs with fevers or other signs of infection. PMID:26839779

  3. Dynamic Simulation of Human Gait Model With Predictive Capability.

    PubMed

    Sun, Jinming; Wu, Shaoli; Voglewede, Philip A

    2018-03-01

    In this paper, it is proposed that the central nervous system (CNS) controls human gait using a predictive control approach in conjunction with classical feedback control instead of exclusive classical feedback control theory that controls based on past error. To validate this proposition, a dynamic model of human gait is developed using a novel predictive approach to investigate the principles of the CNS. The model developed includes two parts: a plant model that represents the dynamics of human gait and a controller that represents the CNS. The plant model is a seven-segment, six-joint model that has nine degrees-of-freedom (DOF). The plant model is validated using data collected from able-bodied human subjects. The proposed controller utilizes model predictive control (MPC). MPC uses an internal model to predict the output in advance, compare the predicted output to the reference, and optimize the control input so that the predicted error is minimal. To decrease the complexity of the model, two joints are controlled using a proportional-derivative (PD) controller. The developed predictive human gait model is validated by simulating able-bodied human gait. The simulation results show that the developed model is able to simulate the kinematic output close to experimental data.

  4. Innate immune interactions within the central nervous system modulate pathogenesis of viral infections

    PubMed Central

    Nair, Sharmila; Diamond, Michael S.

    2015-01-01

    The innate immune system mediates protection against neurotropic viruses that replicate in the central nervous system (CNS). Virus infection within specific cells of the CNS triggers activation of several families of pattern recognition receptors including Toll-like receptors, retinoic acid-inducible gene 1 like receptors, nucleotide-binding oligomerization domain-like receptors, and cytosolic DNA sensors. In this review, we highlight recent advances in our understanding of how cell-intrinsic host defenses within the CNS modulate infection of different DNA and RNA viruses. PMID:26163762

  5. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting: Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4{sup +} T cells compared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, A.L.; Goodsall, A.L.; Sedgwick, J.D.

    1995-05-01

    Ramified microglia in the adult central nervous system (CNS) are the principal glial element up-regulating MHC class I and II expression in response to inflammatory events or neuronal damage. A proportion of these cells also express MHC class II constitutively in the normal CNS. The role of microglia as APCs for CD4{sup +} cells extravasating into the CNS remains undefined. In this study, using irradiation bone marrow chimeras in CD45-congenic rats, the phenotype CD45{sup low}CD11b/c{sup +} is shown to identify microglial cells specifically within the CNS. Highly purified populations of microglia and nonmicroglial but CNS-associated macrophages (CD45{sup high}CD11b/c{sup +}) havemore » been obtained directly from the adult CNS, by using flow cytometric sorting. Morphologically, freshly isolated microglia vs other CNS macrophages are quite distinct. Of the two populations recovered from the normal CNS, it is the minority CD45{sup high}CD11 b/c{sup +} transitional macrophage population, and not microglia, that is the effective APC for experimental autoimmune encephalomyelitis-inducing CD4{sup +} myelin basic protein (MBP)-reactive T cells. CD45{sup high}CD11b/c{sup +} CNS macrophages also stimulate MBP-reactive T cells without addition of MBP to culture suggesting presentation of endogenous Ag. This is the first study in which microglia vs other CNS macrophages have been analyzed for APC ability directly from the CNS, with substantial cross-contamination between the two populations eliminated. The heterogeneity of these populations in terms of APC function is clearly demonstrated. Evidence is still lacking that adult CNS microglia have the capacity to interact with and stimulate CD4{sup +} T cells to proliferate or secrete IL-2. 60 refs., 6 figs., 1 tab.« less

  6. A Brief Report of the Status of Central Nervous System Metastasis Enrollment Criteria for Advanced Non-Small Cell Lung Cancer Clinical Trials: A Review of the ClinicalTrials.gov Trial Registry.

    PubMed

    McCoach, Caroline E; Berge, Eamon M; Lu, Xian; Barón, Anna E; Camidge, D Ross

    2016-03-01

    Central nervous system (CNS) metastases are common in non-small cell lung cancer (NSCLC), yet clinical trials of new drugs in advanced NSCLC have varying inclusion and exclusion criteria for CNS disease. The true extent of variation in CNS-related enrollment criteria in NSCLC clinical trials has not been documented. We performed a systematic search of the ClinicalTrials.gov website to characterize interventional drug trials enrolling adult patients with advanced NSCLC. Of 413 open trials, 78 (19%) strictly excluded patients with leptomeningeal disease (LMD). Separate from LMD, patients with any history of CNS metastases were strictly excluded in 59 trials (14%), allowed after local treatment in 169 (41%), and allowed with no prior treatment in 106 (26%). No explicit mention of CNS disease was made in 79 trials (19%). In multivariate analysis looking at trial phase, location, sponsor, and treatment type, only sponsor was statistically significant, with pharmaceutical industry-sponsored trials having higher odds of excluding patients with brain metastases than did university or investigator-initiated trials (OR = 2.262, 95% confidence interval: 1.063-4.808, p = 0.0342) CONCLUSIONS: With 14% to 19% of trials excluding any history of LMD or CNS parenchymal metastatic disease and 41% of trials permitting CNS disease only after prior CNS-directed treatment, direct evidence of activity of a treatment on CNS disease cannot be reliably generated in most NSCLC trials. Given the high frequency of CNS disease in NSCLC and only sponsor being associated with specific CNS exclusion criteria, sponsors should consider tailoring trial designs to explore CNS benefit more explicitly. Copyright © 2015 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  7. Nanomedicines for the Treatment of CNS Diseases.

    PubMed

    Reynolds, Jessica L; Mahato, Ram I

    2017-03-01

    Targeting and delivering macromolecular therapeutics to the central nervous system (CNS) has been a major challenge. The blood-brain barrier (BBB) is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Therefore, much effort has been channelled into improving transport of therapeutics across the BBB and into the CNS including the use of nanoparticles. In this thematic issue, several reviews and original research are presented that address "Nanomedicines for CNS Diseases." The articles in this issue are concentrated on either CNS-HIV disease or CNS tumors. In regards to CNS-HIV disease, there are two reviews that discuss the role of nanoparticles for improving the delivery of HIV therapeutics to the CNS. In addition, there are two original articles focusing on therapies for CNS-HIV, one of them uses nanoparticles for delivery of siRNA specific to a key protein in autophagy to microglia, and another discusses nanoparticle delivery of a soluble mediator to suppress neuroinflammation. Furthermore, a comprehensive review about gene therapy for CNS neurological diseases is also included. Finally, this issue also includes review articles on enhanced drug targeting to CNS tumors. These articles include a review on the use of nanoparticles for CNS tumors, a review on functionalization (ligands) of nanoparticles for drug targeting to the brain tumor by overcoming BBB, and the final review discusses the use of macrophages as a delivery vehicle to CNS tumors. This thematic issue provides a wealth of knowledge on using nanomedicines for CNS diseases.

  8. Discovery of inhibitors that overcome the G1202R ALK Resistance Mutation

    PubMed Central

    Choi, Hwan Geun; Gao, Yang; Sim, Taebo; George, Rani; Jänne, Pasi A.; Gray, Nathanael S.

    2016-01-01

    The treatment of patients with advanced non-small cell lung cancer (NSCLC) harboring chromosomal rearrangements of anaplastic lymphoma kinase (ALK) has been revolutionized by the development of crizotinib, a small molecule inhibitor of ALK, ROS1, and MET. However, resistance to crizotinib inevitably develops through a variety of mechanisms leading to relapse both systemically and in the central nervous system (CNS). This has motivated the development of ‘second generation’ ALK inhibitors, including alectinib and ceritinib that overcome some of the mutations leading to resistance. However, most of the reported ALK inhibitors do not show inhibition of the G1202R mutant, which is one of the most common mutations. Herein, we report the development of a structural analogue of alectinib (JH-VIII-157-02) that is potent against the G1202R mutant as well as a variety of other frequently observed mutants. In addition, JH-VIII-157-02 is capable of penetrating the CNS of mice following oral dosing. PMID:26568289

  9. Computational models and motor learning paradigms: Could they provide insights for neuroplasticity after stroke? An overview.

    PubMed

    Kiper, Pawel; Szczudlik, Andrzej; Venneri, Annalena; Stozek, Joanna; Luque-Moreno, Carlos; Opara, Jozef; Baba, Alfonc; Agostini, Michela; Turolla, Andrea

    2016-10-15

    Computational approaches for modelling the central nervous system (CNS) aim to develop theories on processes occurring in the brain that allow the transformation of all information needed for the execution of motor acts. Computational models have been proposed in several fields, to interpret not only the CNS functioning, but also its efferent behaviour. Computational model theories can provide insights into neuromuscular and brain function allowing us to reach a deeper understanding of neuroplasticity. Neuroplasticity is the process occurring in the CNS that is able to permanently change both structure and function due to interaction with the external environment. To understand such a complex process several paradigms related to motor learning and computational modeling have been put forward. These paradigms have been explained through several internal model concepts, and supported by neurophysiological and neuroimaging studies. Therefore, it has been possible to make theories about the basis of different learning paradigms according to known computational models. Here we review the computational models and motor learning paradigms used to describe the CNS and neuromuscular functions, as well as their role in the recovery process. These theories have the potential to provide a way to rigorously explain all the potential of CNS learning, providing a basis for future clinical studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. NCI-CONNECT - Comprehensive Oncology Network Evaluating Rare CNS Tumors | Center for Cancer Research

    Cancer.gov

    NCI-CONNECT:  Comprehensive Oncology Network Evaluating Rare CNS Tumors Purpose NCI-CONNECT aims to advance the understanding of rare adult central nervous system (CNS) cancers by establishing and fostering patient-advocacy-provider partnerships and networks to improve approaches to care and treatment.

  11. Neuronopathic Lysosomal Storage Diseases: Clinical and Pathologic Findings

    ERIC Educational Resources Information Center

    Prada, Carlos E.; Grabowski, Gregory A.

    2013-01-01

    Background: The lysosomal--autophagocytic system diseases (LASDs) affect multiple body systems including the central nervous system (CNS). The progressive CNS pathology has its onset at different ages, leading to neurodegeneration and early death. Methods: Literature review provided insight into the current clinical neurological findings,…

  12. The transition from day-to-night activity is a risk factor for the development of CNS oxygen toxicity in the diurnal fat sand rat (Psammomys obesus).

    PubMed

    Eynan, Mirit; Biram, Adi; Mullokandov, Michael; Kronfeld-Schor, Noga; Paz-Cohen, Rotem; Menajem, Dvir; Arieli, Yehuda

    2017-01-01

    Performance and safety are impaired in employees engaged in shift work. Combat divers who use closed-circuit oxygen diving apparatus undergo part of their training during the night hours. The greatest risk involved in diving with such apparatus is the development of central nervous system oxygen toxicity (CNS-OT). We investigated whether the switch from day-to-night activity may be a risk factor for the development of CNS-OT using a diurnal animal model, the fat sand rat (Psammomys obesus). Animals were kept on a 12:12 light-dark schedule (6 a.m. to 6 p.m. at 500 lx). The study included two groups: (1) Control group: animals were kept awake and active during the day, between 09:00 and 15:00. (2) Experimental group: animals were kept awake and active during the night, between 21:00 and 03:00, when they were exposed to dim light in order to simulate the conditions prevalent during combat diver training. This continued for a period of 3 weeks, 5 days a week. On completion of this phase, 6-sulphatoxymelatonin (6-SMT) levels in urine were determined over a period of 24 h. Animals were then exposed to hyperbaric oxygen (HBO). To investigate the effect of acute melatonin administration, melatonin (50 mg/kg) or its vehicle was administered to the animals in both groups 20 min prior to HBO exposure. After the exposure, the activity of superoxide dismutase, catalase and glutathione peroxidase was measured, as were the levels of neuronal nitric oxide synthase (nNOS) and overall nitrotyrosylation in the cortex and hippocampus. Latency to CNS-OT was significantly reduced after the transition from day-to-night activity. This was associated with alterations in the level of melatonin metabolites secreted in the urine. Acute melatonin administration had no effect on latency to CNS-OT in either of the groups. Nevertheless, the activity of superoxide dismutase and catalase, as well as nitrotyrosine and nNOS levels, were altered in the hippocampus following melatonin administration. On the basis of these results, we suggest that a switch from diurnal to nocturnal activity may represent an additional risk factor for the development of CNS-OT. Utilizing a diurnal animal model may contribute to our understanding of the heightened risk of developing CNS-OT when diving with closed-circuit oxygen apparatus at night.

  13. Aging, the Central Nervous System, and Mobility in Older Adults: Interventions

    PubMed Central

    Hausdorff, Jeffrey M.; Studenski, Stephanie A.; Rosano, Caterina; Camicioli, Richard; Alexander, Neil B.; Chen, Wen G.; Lipsitz, Lewis A.; Carlson, Michelle C.

    2016-01-01

    Background: Research suggests that the central nervous system (CNS) and mobility are closely linked. CNS-mediated mobility impairment may represent a potentially new and prevalent syndrome within the older adult populations. Interventions targeting this group may have the potential to improve mobility and cognition and prevent disability. Methods: In 2012, the Gerontological Society of America (GSA) and the National Institute on Aging (NIA) sponsored a 3-year conference workshop series, “Aging, the CNS, and Mobility.” The goal of this third and final conference was to (i) report on the state of the science of interventions targeting CNS-mediated mobility impairment among community-dwelling older adults and (ii) partnering with the NIA, explore the future of research and intervention design focused on a potentially novel aging syndrome. Results: Evidence was presented in five main intervention areas: (i) pharmacology and diet; (ii) exercise; (iii) electrical stimulation; (iv) sensory stimulation/deprivation; and (v) a combined category of multimodal interventions. Workshop participants identified important gaps in knowledge and key recommendations for future interventions related to recruitment and sample selection, intervention design, and methods to measure effectiveness. Conclusions: In order to develop effective preventive interventions for this prevalent syndrome, multidisciplinary teams are essential particularly because of the complex nature of the syndrome. Additionally, integrating innovative methods into the design of interventions may help researchers better measure complex mechanisms, and finally, the value of understanding the link between the CNS and mobility should be conveyed to researchers across disciplines in order to incorporate cognitive and mobility measurements into study protocols. PMID:27154905

  14. CX3CR1-dependent recruitment of mature NK cells into the central nervous system contributes to control autoimmune neuroinflammation.

    PubMed

    Hertwig, Laura; Hamann, Isabell; Romero-Suarez, Silvina; Millward, Jason M; Pietrek, Rebekka; Chanvillard, Coralie; Stuis, Hanna; Pollok, Karolin; Ransohoff, Richard M; Cardona, Astrid E; Infante-Duarte, Carmen

    2016-08-01

    Fractalkine receptor (CX3CR1)-deficient mice develop very severe experimental autoimmune encephalomyelitis (EAE), associated with impaired NK cell recruitment into the CNS. Yet, the precise implications of NK cells in autoimmune neuroinflammation remain elusive. Here, we investigated the pattern of NK cell mobilization and the contribution of CX3CR1 to NK cell dynamics in the EAE. We show that in both wild-type and CX3CR1-deficient EAE mice, NK cells are mobilized from the periphery and accumulate in the inflamed CNS. However, in CX3CR1-deficient mice, the infiltrated NK cells displayed an immature phenotype contrasting with the mature infiltrates in WT mice. This shift in the immature/mature CNS ratio contributes to EAE exacerbation in CX3CR1-deficient mice, since transfer of mature WT NK cells prior to immunization exerted a protective effect and normalized the CNS NK cell ratio. Moreover, mature CD11b(+) NK cells show higher degranulation in the presence of autoreactive 2D2 transgenic CD4(+) T cells and kill these autoreactive cells more efficiently than the immature CD11b(-) fraction. Together, these data suggest a protective role of mature NK cells in EAE, possibly through direct modulation of T cells inside the CNS, and demonstrate that mature and immature NK cells are recruited into the CNS by distinct chemotactic signals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Crimean-Congo Hemorrhagic Fever in Humanized Mice Reveals Glial Cells as Primary Targets of Neurological Infection.

    PubMed

    Spengler, Jessica R; Kelly Keating, M; McElroy, Anita K; Zivcec, Marko; Coleman-McCray, JoAnn D; Harmon, Jessica R; Bollweg, Brigid C; Goldsmith, Cynthia S; Bergeron, Éric; Keck, James G; Zaki, Sherif R; Nichol, Stuart T; Spiropoulou, Christina F

    2017-12-12

    Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne viral hemorrhagic disease seen exclusively in humans. Central nervous system (CNS) infection and neurological involvement have also been reported in CCHF. In the current study, we inoculated NSG-SGM3 mice engrafted with human hematopoietic CD34+ stem cells with low-passage CCHF virus strains isolated from human patients. In humanized mice, lethal disease develops, characterized by histopathological change in the liver and brain. To date, targets of neurological infection and disease have not been investigated in CCHF. CNS disease in humanized mice was characterized by gliosis, meningitis, and meningoencephalitis, and glial cells were identified as principal targets of infection. Humanized mice represent a novel lethal model for studies of CCHF countermeasures, and CCHF-associated CNS disease. Our data suggest a role for astrocyte dysfunction in neurological disease and identify key regions of infection in the CNS for future investigations of CCHF. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. Overview of recent trends in diagnosis and management of leptomeningeal multiple myeloma.

    PubMed

    Yellu, Mahender R; Engel, Jessica M; Ghose, Abhimanyu; Onitilo, Adedayo A

    2016-03-01

    Neurological complications related to multiple myeloma (MM) are not uncommon; however, direct involvement of the central nervous system (CNS) is extremely rare and represents a diagnostic and therapeutic challenge. Significant survival difference has been noted with the introduction of novel therapy in patients with MM, but their effect on the incidence and their use for management of leptomeningeal myeloma (LMM) is uncertain. Analysis of published data demonstrates its recent increased incidence, median time to CNS presentation, and slight improvement in median survival after diagnosis of LMM. Less common MM isotypes have been overrepresented in LMM. CNS relapse occurred mostly in patients with Durie-Salmon stage III MM. Despite treatments, standard or experimental, the survival rates of LMM remain dismal. Monitoring high risk patients closely, even after achieving complete remission, may be useful in early detection of LMM. As we gain better understanding of LMM, we recommend that future research and clinical care focus on earlier diagnosis and development of more efficient CNS-directed therapy to improve survival in this patient population. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Central nervous system toxicity of metallic nanoparticles

    PubMed Central

    Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin

    2015-01-01

    Nanomaterials (NMs) are increasingly used for the therapy, diagnosis, and monitoring of disease- or drug-induced mechanisms in the human biological system. In view of their small size, after certain modifications, NMs have the capacity to bypass or cross the blood–brain barrier. Nanotechnology is particularly advantageous in the field of neurology. Examples may include the utilization of nanoparticle (NP)-based drug carriers to readily cross the blood–brain barrier to treat central nervous system (CNS) diseases, nanoscaffolds for axonal regeneration, nanoelectromechanical systems in neurological operations, and NPs in molecular imaging and CNS imaging. However, NPs can also be potentially hazardous to the CNS in terms of nano-neurotoxicity via several possible mechanisms, such as oxidative stress, autophagy, and lysosome dysfunction, and the activation of certain signaling pathways. In this review, we discuss the dual effect of NMs on the CNS and the mechanisms involved. The limitations of the current research are also discussed. PMID:26170667

  18. CCL5-Glutamate Cross-Talk in Astrocyte-Neuron Communication in Multiple Sclerosis.

    PubMed

    Pittaluga, Anna

    2017-01-01

    The immune system (IS) and the central nervous system (CNS) are functionally coupled, and a large number of endogenous molecules (i.e., the chemokines for the IS and the classic neurotransmitters for the CNS) are shared in common between the two systems. These interactions are key elements for the elucidation of the pathogenesis of central inflammatory diseases. In recent years, evidence has been provided supporting the role of chemokines as modulators of central neurotransmission. It is the case of the chemokines CCL2 and CXCL12 that control pre- and/or post-synaptically the chemical transmission. This article aims to review the functional cross-talk linking another endogenous pro-inflammatory factor released by glial cells, i.e., the chemokine Regulated upon Activation Normal T-cell Expressed and Secreted (CCL5) and the principal neurotransmitter in CNS (i.e., glutamate) in physiological and pathological conditions. In particular, the review discusses preclinical data concerning the role of CCL5 as a modulator of central glutamatergic transmission in healthy and demyelinating disorders. The CCL5-mediated control of glutamate release at chemical synapses could be relevant either to the onset of psychiatric symptoms that often accompany the development of multiple sclerosis (MS), but also it might indirectly give a rationale for the progression of inflammation and demyelination. The impact of disease-modifying therapies for the cure of MS on the endogenous availability of CCL5 in CNS will be also summarized. We apologize in advance for omission in our coverage of the existing literature.

  19. Results for the response function determination of the Compact Neutron Spectrometer

    NASA Astrophysics Data System (ADS)

    Gagnon-Moisan, F.; Reginatto, M.; Zimbal, A.

    2012-03-01

    The Compact Neutron Spectrometer (CNS) is a Joint European Torus (JET) Enhancement Project, designed for fusion diagnostics in different plasma scenarios. The CNS is based on a liquid scintillator (BC501A) which allows good discrimination between neutron and gamma radiation. Neutron spectrometry with a BC501A spectrometer requires the use of a reliable, fully characterized detector. The determination of the response matrix was carried out at the Ion Accelerator Facility (PIAF) of the Physikalisch-Technische Bundesanstalt (PTB). This facility provides several monoenergetic beams (2.5, 8, 10, 12 and 14 MeV) and a white field (Emax ~ 17 MeV), which allows for a full characterization of the spectrometer in the region of interest (from ~ 1.5 MeV to ~ 17 MeV). The energy of the incoming neutrons was determined by the time of flight method (TOF), with time resolution in the order of 1 ns. To check the response matrix, the measured pulse height spectra were unfolded with the code MAXED and the resulting energy distributions were compared with those obtained from TOF. The CNS project required modification of the PTB BC501A spectrometer design, to replace an analog data acquisition system (NIM modules) with a digital system developed by the Ente per le Nuove tecnologie, l'Energia e l'Ambiente (ENEA). Results for the new digital system were evaluated using new software developed specifically for this project.

  20. Simultaneous presentation of acute disseminated encephalomyelitis (ADEM) and systemic lupus erythematosus (SLE) after enteroviral infection: can ADEM present as the first manifestation of SLE?

    PubMed

    Kim, J-M; Son, C-N; Chang, H W; Kim, S-H

    2015-05-01

    Central Nervous System (CNS) involvement of Systemic Lupus Erythematosus (SLE) includes a broad range of neuropsychiatric syndromes. Acute Disseminated Encephalomyelitis (ADEM) is a demyelinating CNS disorder characterized by encephalopathy and multifocal lesions predominantly involving the white matter on brain magnetic resonance imaging. ADEM associated with SLE has been only rarely reported. We report an unusual case of a 17-year-old girl who developed ADEM after enteroviral infection as the first manifestation of SLE. The authors emphasize that the patient's illness was preceded by enteroviral infection and that ADEM occurred before any other symptoms of SLE, which makes this case unique. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  1. Sodium nitrite induces acute central nervous system toxicity in guinea pigs exposed to systemic cell-free hemoglobin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buehler, Paul W.; Butt, Omer I.; D'Agnillo, Felice, E-mail: felice.dagnillo@fda.hhs.gov

    Highlights: {yields} Toxicological implications associated with the use of NaNO{sub 2} therapy to treat systemic cell-free Hb exposure are not well-defined. {yields} Systemic Hb exposure followed by NaNO{sub 2} infusion induces acute CNS toxicities in guinea pigs. {yields} These CNS effects were not reproduced by the infusion of cell-free Hb or NaNO{sub 2} alone. {yields} NaNO{sub 2}-mediated oxidation of cell-free Hb may play a causative role in the observed CNS changes. -- Abstract: Systemic cell-free hemoglobin (Hb) released via hemolysis disrupts vascular homeostasis, in part, through the scavenging of nitric oxide (NO). Sodium nitrite (NaNO{sub 2}) therapy can attenuate themore » hypertensive effects of Hb. However, the chemical reactivity of NaNO{sub 2} with Hb may enhance heme- or iron-mediated toxicities. Here, we investigate the effect of NaNO{sub 2} on the central nervous system (CNS) in guinea pigs exposed to systemic cell-free Hb. Intravascular infusion of NaNO{sub 2}, at doses sufficient to alleviate Hb-mediated blood pressure changes, reduced the expression of occludin, but not zona occludens-1 (ZO-1) or claudin-5, in cerebral tight junctions 4 h after Hb infusion. This was accompanied by increased perivascular heme oxygenase-1 expression, neuronal iron deposition, increased astrocyte and microglial activation, and reduced expression of neuron-specific nuclear protein (NeuN). These CNS changes were not observed in animals treated with Hb or NaNO{sub 2} alone. Taken together, these findings suggest that the use of nitrite salts to treat systemic Hb exposure may promote acute CNS toxicity.« less

  2. Evidence Report: Risk of Acute and Late Central Nervous System Effects from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Simonsen, Lisa; Huff, Janice L.

    2016-01-01

    Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays (GCR) and solar particle events (SPE) are concerns for human exploration of space. Acute CNS risks may include: altered cognitive function, reduced motor function, and behavioral changes, all of which may affect performance and human health. Late CNS risks may include neurological disorders such as Alzheimer's disease (AD), dementia and premature aging. Although detrimental CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and 9 protons) for cancer and are supported by experimental evidence showing neurocognitive and behavioral effects in animal models, the significance of these results on the morbidity to astronauts has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not possible for CNS risks. Research specific to the spaceflight environment using animal and cell models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk and to establish validity of the current permissible exposure limits (PELs). In addition, the impact of radiation exposure in combination with individual sensitivity or other space flight factors, as well as assessment of the need for biological/pharmaceutical countermeasures, will be considered after further definition of CNS risk occurs.

  3. Evidence Report: Risk of Acute and Late Central Nervous System Effects from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Simonsen, Lisa; Huff, Janice L.

    2015-01-01

    Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays (GCR) and solar particle events (SPE) are a documented concern for human exploration of space. Acute CNS risks include: altered cognitive function, reduced motor function, and behavioral changes, all of which may affect performance and human health. Late CNS risks include neurological disorders such as Alzheimer's disease (AD), dementia and premature aging. Although detrimental CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and protons) for cancer and are supported by experimental evidence showing neurocognitive and behavioral effects in animal models, the significance of these results on the morbidity to astronauts has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not possible for CNS risks. Research specific to the spaceflight environment using animal and cell models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk and to establish validity of the current permissible exposure limits (PELs). In addition, the impact of radiation exposure in combination with individual sensitivity or other space flight factors, as well as assessment of the need for biological/pharmaceutical countermeasures, will be considered after further definition of CNS risk occurs.

  4. Tri-partite complex for axonal transport drug delivery achieves pharmacological effect

    PubMed Central

    2010-01-01

    Background Targeted delivery of pharmaceutical agents into selected populations of CNS (Central Nervous System) neurons is an extremely compelling goal. Currently, systemic methods are generally used for delivery of pain medications, anti-virals for treatment of dermatomal infections, anti-spasmodics, and neuroprotectants. Systemic side effects or undesirable effects on parts of the CNS that are not involved in the pathology limit efficacy and limit clinical utility for many classes of pharmaceuticals. Axonal transport from the periphery offers a possible selective route, but there has been little progress towards design of agents that can accomplish targeted delivery via this intraneural route. To achieve this goal, we developed a tripartite molecular construction concept involving an axonal transport facilitator molecule, a polymer linker, and a large number of drug molecules conjugated to the linker, then sought to evaluate its neurobiology and pharmacological behavior. Results We developed chemical synthesis methodologies for assembling these tripartite complexes using a variety of axonal transport facilitators including nerve growth factor, wheat germ agglutinin, and synthetic facilitators derived from phage display work. Loading of up to 100 drug molecules per complex was achieved. Conjugation methods were used that allowed the drugs to be released in active form inside the cell body after transport. Intramuscular and intradermal injection proved effective for introducing pharmacologically effective doses into selected populations of CNS neurons. Pharmacological efficacy with gabapentin in a paw withdrawal latency model revealed a ten fold increase in half life and a 300 fold decrease in necessary dose relative to systemic administration for gabapentin when the drug was delivered by axonal transport using the tripartite vehicle. Conclusion Specific targeting of selected subpopulations of CNS neurons for drug delivery by axonal transport holds great promise. The data shown here provide a basic framework for the intraneural pharmacology of this tripartite complex. The pharmacologically efficacious drug delivery demonstrated here verify the fundamental feasibility of using axonal transport for targeted drug delivery. PMID:20085661

  5. Integrated Neural and Endocrine Control of Gastrointestinal Function.

    PubMed

    Furness, John B

    The activity of the digestive system is dynamically regulated by external factors, including body nutritional and activity states, emotions and the contents of the digestive tube. The gut must adjust its activity to assimilate a hugely variable mixture that is ingested, particularly in an omnivore such as human for which a wide range of food choices exist. It must also guard against toxins and pathogens. These nutritive and non-nutritive components of the gut contents interact with the largest and most vulnerable surface in the body, the lining of the gastrointestinal tract. This requires a gut sensory system that can detect many classes of nutrients, non-nutrient components of food, physicochemical conditions, toxins, pathogens and symbionts (Furness et al., Nat Rev Gastroenterol Hepatol 10:729-740, 2013). The gut sensors are in turn coupled to effector systems that can respond to the sensory information. The responses are exerted through enteroendocrine cells (EEC), the enteric nervous system (ENS), the central nervous system (CNS) and the gut immune and tissue defence systems. It is apparent that the control of the digestive organs is an integrated function of these effectors. The peripheral components of the EEC, ENS and CNS triumvirate are extensive. EEC cells have traditionally been classified into about 12 types (disputed in this review), releasing about 20 hormones, together making the gut endocrine system the largest endocrine organ in the body. Likewise, in human the ENS contains about 500 million neurons, far more than the number of neurons in the remainder of the peripheral autonomic nervous system. Together gut hormones, the ENS and the CNS control or influence functions including satiety, mixing and propulsive activity, release of digestive enzymes, induction of nutrient transporters, fluid transport, local blood flow, gastric acid secretion, evacuation and immune responses. Gut content receptors, including taste, free fatty acid, peptide and phytochemical receptors, are primarily located on EEC. Hormones released by EEC act via both the ENS and CNS to optimise digestion. Toxic chemicals and pathogens are sensed and then avoided, expelled or metabolised. These defensive activities also involve the EEC and signalling from EEC to the ENS and the CNS. A major challenge is to develop a comprehensive understanding of the integrated responses of the gut, via its effector systems, the ENS, extrinsic innervation, EEC and the gut immune system, to the sensory information it receives.

  6. Long-Term Outcomes Among Adult Survivors of Childhood Central Nervous System Malignancies in the Childhood Cancer Survivor Study

    PubMed Central

    Liu, Qi; Yasui, Yutaka; Huang, Sujuan; Ness, Kirsten K.; Leisenring, Wendy; Hudson, Melissa M.; Donaldson, Sarah S.; King, Allison A.; Stovall, Marilyn; Krull, Kevin R.; Robison, Leslie L.; Packer, Roger J.

    2009-01-01

    Background Adult survivors of childhood central nervous system (CNS) malignancies are at high risk for long-term morbidity and late mortality. However, patterns of late mortality, the long-term risks of subsequent neoplasms and debilitating medical conditions, and sociodemographic outcomes have not been comprehensively characterized for individual diagnostic and treatment groups. Methods We collected information on treatment, mortality, chronic medical conditions, and neurocognitive functioning of adult 5-year survivors of CNS malignancies diagnosed between 1970 and 1986 within the Childhood Cancer Survivor Study. Using competing risk framework, we calculated cumulative mortality according to cause of death and cumulative incidence of subsequent neoplasms according to exposure and dose of cranial radiation therapy (RT). Neurocognitive impairment and socioeconomic outcomes were assessed with respect to dose of CNS radiotherapy to specific brain regions. Cumulative incidence of chronic medical conditions was compared between survivors and siblings using Cox regression models. All tests of statistical significance were two-sided. Results Among all eligible 5-year survivors (n = 2821), cumulative late mortality at 30 years was 25.8% (95% confidence interval [CI] = 23.4% to 28.3%), due primarily to recurrence and/or progression of primary disease. Patients who received cranial RT of 50 Gy or more (n = 813) had a cumulative incidence of a subsequent neoplasm within the CNS of 7.1% (95% CI = 4.5% to 9.6%) at 25 years from diagnosis compared with 1.0% (95% CI = 0% to 2.3%) for patients who had no RT. Survivors had higher risk than siblings of developing new endocrine, neurological, or sensory complications 5 or more years after diagnosis. Neurocognitive impairment was high and proportional to radiation dose for specific tumor types. There was a dose-dependent association between RT to the frontal and/or temporal lobes and lower rates of employment, and marriage. Conclusions Survivors of childhood CNS malignancies are at high risk for late mortality and for developing subsequent neoplasms and chronic medical conditions. Care providers should be informed of these risks so they can provide risk-directed care and develop screening guidelines. PMID:19535780

  7. Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach

    PubMed Central

    Tam, Roger Y; Fuehrmann, Tobias; Mitrousis, Nikolaos; Shoichet, Molly S

    2014-01-01

    The central nervous system (CNS) has a limited capacity to spontaneously regenerate following traumatic injury or disease, requiring innovative strategies to promote tissue and functional repair. Tissue regeneration strategies, such as cell and/or drug delivery, have demonstrated promising results in experimental animal models, but have been difficult to translate clinically. The efficacy of cell therapy, which involves stem cell transplantation into the CNS to replace damaged tissue, has been limited due to low cell survival and integration upon transplantation, while delivery of therapeutic molecules to the CNS using conventional methods, such as oral and intravenous administration, have been limited by diffusion across the blood–brain/spinal cord-barrier. The use of biomaterials to promote graft survival and integration as well as localized and sustained delivery of biologics to CNS injury sites is actively being pursued. This review will highlight recent advances using biomaterials as cell- and drug-delivery vehicles for CNS repair. PMID:24002187

  8. Pericyte function in the physiological central nervous system.

    PubMed

    Muramatsu, Rieko; Yamashita, Toshihide

    2014-01-01

    Damage to the central nervous system (CNS) leads to disruption of the vascular network, causing vascular dysfunction. Vascular dysfunction is the major event in the pathogenesis of CNS diseases and is closely associated with the severity of neuronal dysfunction. The suppression of vascular dysfunction has been considered a promising avenue to limit damage to the CNS, leading to efforts to clarify the cellular and molecular basis of vascular homeostasis maintenance. A reduction of trophic support and oxygen delivery due to circulatory insufficiency has long been regarded as a major cause of vascular damage. Moreover, recent studies provide a new perspective on the importance of the structural stability of blood vessels in CNS diseases. This updated article discusses emerging information on the key role of vascular integrity in CNS diseases, specially focusing on pericyte function. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  9. Gut-CNS-Axis as Possibility to Modulate Inflammatory Disease Activity-Implications for Multiple Sclerosis.

    PubMed

    Fleck, Ann-Katrin; Schuppan, Detlef; Wiendl, Heinz; Klotz, Luisa

    2017-07-14

    In the last decade the role of environmental factors as modulators of disease activity and progression has received increasing attention. In contrast to classical environmental modulators such as exposure to sun-light or fine dust pollution, nutrition is an ideal tool for a personalized human intervention. Various studies demonstrate a key role of dietary factors in autoimmune diseases including Inflammatory Bowel Disease (IBD), rheumatoid arthritis or inflammatory central nervous system (CNS) diseases such as Multiple Sclerosis (MS). In this review we discuss the connection between diet and inflammatory processes via the gut-CNS-axis. This axis describes a bi-directional communication system and comprises neuronal signaling, neuroendocrine pathways and modulation of immune responses. Therefore, the gut-CNS-axis represents an emerging target to modify CNS inflammatory activity ultimately opening new avenues for complementary and adjunctive treatment of autoimmune diseases such as MS.

  10. Beneficial effects of exercise and its molecular mechanisms on depression in rats

    PubMed Central

    Zheng, Hang; Liu, Yanyou; Li, Wei; Yang, Bo; Chen, Dengbang; Wang, Xiaojia; Jiang, Zhou; Wang, Hongxing; Wang, Zhengrong; Cornelisson, G.; Halberg, F.

    2008-01-01

    Exercise showed the beneficial effects on mental health in depressed sufferers, whereas, its underlying mechanisms remained unresolved. This study utilized the chronic unpredictable stress (CNS) animal model of depression to evaluate the effects of exercise on depressive behaviors and spatial performance in rats. Furthermore, we tested the hypothesis that the capacity of exercise to reverse the harmful effects of CNS was relative to the hypothalamo–pituitary–adrenal (HPA) system and brain-derived neurotrophic factor (BDNF) in the hippocampus. Animal groups were exposed to CNS for 4 weeks with and without access to voluntary wheel running. Stressed rats consumed significantly less of a 1% sucrose solution during CNS and exhibited a significant decrease in open field behavior. On the other hand, they showed impaired spatial performance in Morris water maze test 2 weeks after the end of CNS. Further, CNS significantly decreased hippocampal BDNF mRNA levels. However, voluntary exercise improved or even reversed these harmful behavioral effects in stressed rats. Furthermore, exercise counteracted a decrease in hippocampal BDNF mRNA caused by CNS. In addition, we also found that CMS alone increased circulating corticosterone (CORT) significantly and decreased hippocampal glucocorticoid receptor (GR) mRNA. At the same time, exercise alone increased CORT moderately and did not affect hippocampal GR mRNA levels. While, when both CNS and exercise were combined, exercise reduced the increase of CORT and the decrease of GR caused by CMS. The results demonstrated that: (1) exercise reversed the harmful effects of CNS on mood and spatial performance in rats and (2) the behavioral changes induced by exercise and/or CNS might be associated with hippocampal BDNF levels, and in addition, the HPA system might play different roles in the two different processes. PMID:16290283

  11. Impact of incarceration in Nazi concentration camps on multimorbidity of former prisoners

    PubMed Central

    Jablonski, Robert K; Leszek, Jerzy; Rosińczuk, Joanna; Uchmanowicz, Izabella; Panaszek, Bernard

    2015-01-01

    Objective To show the extent to which the health of former prisoners was affected by incarceration in extermination camps after 5 and 30 years of leaving the camp, and to determine the etiological factors underlying particular dysfunctions. Methods Medical records of former prisoners developed in 1950 (n=250) and 1975 (n=120) were then, after several decades, retrospectively analyzed and compared with the control group, randomized and matched according to age, sex, occupation, and environment. None of the subjects in the control group was a prisoner either at a concentration camp or at any other prison or detention facility. Results Multimorbidity affected mainly the central nervous system (CNS). Five years after leaving a camp, CNS dysfunctions were observed in 66% of former prisoners. Skeletal (42.4%) and cardiovascular system (34.4%) dysfunctions were the second and third most frequent dysfunctions. Thirty years after leaving a camp, the most prevalent coexisting conditions were also found within the CNS (80%), cardiovascular system (58.33%), and skeletal system (55%). Five and 30 years after leaving a camp, multiorgan lesions were found in 21.6% and 60% of survivors, respectively. Multimorbidity was more frequent in a group of prisoners who underwent the state of apathy and depression or who had been incarcerated longer than 24 months. The rate of CNS diseases was four times higher, and the rate of cardiovascular diseases or skeletal system dysfunctions was two times higher, in the study group after 30 years of leaving a camp compared with the control group. Conclusion The consequences of incarceration in concentration camps manifesting as multimorbidity, premature aging, and dramatic increase in mortality rate are observed in the majority of former prisoners. The multimorbidity mostly affected older prisoners who stayed at a camp for a longer time period. PMID:25792836

  12. Impact of incarceration in Nazi concentration camps on multimorbidity of former prisoners.

    PubMed

    Jablonski, Robert K; Leszek, Jerzy; Rosińczuk, Joanna; Uchmanowicz, Izabella; Panaszek, Bernard

    2015-01-01

    To show the extent to which the health of former prisoners was affected by incarceration in extermination camps after 5 and 30 years of leaving the camp, and to determine the etiological factors underlying particular dysfunctions. Medical records of former prisoners developed in 1950 (n=250) and 1975 (n=120) were then, after several decades, retrospectively analyzed and compared with the control group, randomized and matched according to age, sex, occupation, and environment. None of the subjects in the control group was a prisoner either at a concentration camp or at any other prison or detention facility. Multimorbidity affected mainly the central nervous system (CNS). Five years after leaving a camp, CNS dysfunctions were observed in 66% of former prisoners. Skeletal (42.4%) and cardiovascular system (34.4%) dysfunctions were the second and third most frequent dysfunctions. Thirty years after leaving a camp, the most prevalent coexisting conditions were also found within the CNS (80%), cardiovascular system (58.33%), and skeletal system (55%). Five and 30 years after leaving a camp, multiorgan lesions were found in 21.6% and 60% of survivors, respectively. Multimorbidity was more frequent in a group of prisoners who underwent the state of apathy and depression or who had been incarcerated longer than 24 months. The rate of CNS diseases was four times higher, and the rate of cardiovascular diseases or skeletal system dysfunctions was two times higher, in the study group after 30 years of leaving a camp compared with the control group. The consequences of incarceration in concentration camps manifesting as multimorbidity, premature aging, and dramatic increase in mortality rate are observed in the majority of former prisoners. The multimorbidity mostly affected older prisoners who stayed at a camp for a longer time period.

  13. Prevalence of Central Nervous System Polypharmacy and Associations with Overdose and Suicide-Related Behaviors in Iraq and Afghanistan War Veterans in VA Care 2010-2011.

    PubMed

    Collett, Garen A; Song, Kangwon; Jaramillo, Carlos A; Potter, Jennifer S; Finley, Erin P; Pugh, Mary Jo

    The increase in the quantities of central nervous system (CNS)-acting medications prescribed has coincided with increases in overdose mortality, suicide-related behaviors, and unintentional deaths in military personnel deployed in support of the wars in Iraq and Afghanistan. Data on the extent and impact of prescribing multiple CNS drugs among Iraq and Afghanistan Veterans (IAVs) are sparse. We sought to identify the characteristics of IAVs with CNS polypharmacy and examine the association of CNS polypharmacy with drug overdose and suicide-related behaviors controlling for known risk factors. This cross-sectional cohort study examined national data of Iraq and Afghanistan Veterans ( N  = 311,400) who used the Veterans Health Administration (VHA) during the fiscal year 2011. CNS polypharmacy was defined as five or more CNS-acting medications; drug/alcohol overdose and suicide-related behaviors were identified using ICD-9-CM codes. Demographic and clinical characteristics associated with CNS polypharmacy were identified using a multivariable logistic regression model. We found that 25,546 (8.4 %) of Iraq and Afghanistan Veterans had CNS polypharmacy. Those with only post-traumatic stress disorder (PTSD) (adjusted odds ratio (AOR) 6.50, 99 % confidence interval (CI) 5.96-7.10), only depression (AOR 6.42, 99 % CI 5.86-7.04), co-morbid PTSD and depression (AOR 12.98, 99 % CI 11.97-14.07), and co-morbid traumatic brain injury (TBI), PTSD, and depression (AOR 15.30, 99 % CI 14.00-16.73) had the highest odds of CNS polypharmacy. After controlling for these co-morbid conditions, CNS polypharmacy was significantly associated with drug/alcohol overdose and suicide-related behavior. CNS polypharmacy was most strongly associated with PTSD, depression, and TBI, and independently associated with overdose and suicide-related behavior after controlling for known risk factors. These findings suggest that CNS polypharmacy may be used as an indicator of risk for adverse outcomes. Further research should evaluate whether CNS polypharmacy may be used as a trigger for evaluation of the current care provided to these individuals.

  14. Prevalence of Central Nervous System Polypharmacy and Associations with Overdose and Suicide-Related Behaviors in Iraq and Afghanistan War Veterans in VA Care 2010-2011.

    PubMed

    Collett, Garen A; Song, Kangwon; Jaramillo, Carlos A; Potter, Jennifer S; Finley, Erin P; Pugh, Mary Jo

    2016-03-01

    The increase in the quantities of central nervous system (CNS)-acting medications prescribed has coincided with increases in overdose mortality, suicide-related behaviors, and unintentional deaths in military personnel deployed in support of the wars in Iraq and Afghanistan. Data on the extent and impact of prescribing multiple CNS drugs among Iraq and Afghanistan Veterans (IAVs) are sparse. We sought to identify the characteristics of IAVs with CNS polypharmacy and examine the association of CNS polypharmacy with drug overdose and suicide-related behaviors controlling for known risk factors. This cross-sectional cohort study examined national data of Iraq and Afghanistan Veterans (N = 311,400) who used the Veterans Health Administration (VHA) during the fiscal year 2011. CNS polypharmacy was defined as five or more CNS-acting medications; drug/alcohol overdose and suicide-related behaviors were identified using ICD-9-CM codes. Demographic and clinical characteristics associated with CNS polypharmacy were identified using a multivariable logistic regression model. We found that 25,546 (8.4 %) of Iraq and Afghanistan Veterans had CNS polypharmacy. Those with only post-traumatic stress disorder (PTSD) (adjusted odds ratio (AOR) 6.50, 99 % confidence interval (CI) 5.96-7.10), only depression (AOR 6.42, 99 % CI 5.86-7.04), co-morbid PTSD and depression (AOR 12.98, 99 % CI 11.97-14.07), and co-morbid traumatic brain injury (TBI), PTSD, and depression (AOR 15.30, 99 % CI 14.00-16.73) had the highest odds of CNS polypharmacy. After controlling for these co-morbid conditions, CNS polypharmacy was significantly associated with drug/alcohol overdose and suicide-related behavior. CNS polypharmacy was most strongly associated with PTSD, depression, and TBI, and independently associated with overdose and suicide-related behavior after controlling for known risk factors. These findings suggest that CNS polypharmacy may be used as an indicator of risk for adverse outcomes. Further research should evaluate whether CNS polypharmacy may be used as a trigger for evaluation of the current care provided to these individuals.

  15. Prognostic significance of the initial cerebro-spinal fluid (CSF) involvement of children with acute lymphoblastic leukaemia (ALL) treated without cranial irradiation: results of European Organization for Research and Treatment of Cancer (EORTC) Children Leukemia Group study 58881.

    PubMed

    Sirvent, Nicolas; Suciu, Stefan; Rialland, Xavier; Millot, Frédéric; Benoit, Yves; Plantaz, Dominique; Ferster, Alice; Robert, Alain; Lutz, Patrick; Nelken, Brigitte; Plouvier, Emmanuel; Norton, Lucilia; Bertrand, Yves; Otten, Jacques

    2011-01-01

    To evaluate the prognostic significance of the initial cerebro-spinal fluid (CSF) involvement of children with ALL enrolled from 1989 to 1996 in the EORTC 58881 trial. Patients (2025) were categorised according to initial central nervous system (CNS) status: CNS-1 (CNS negative, n=1866), CNS-2 (<5 leucocytes/mm(3), CSF with blasts, n=50), CNS-3 (CNS positive, n=49), TLP+ (TLP with blasts, n=60). CNS-directed therapy consisted in intravenous (i.v.) methotrexate (5 g/sqm) in 4-10 courses, and intrathecal methotrexate injections (10-20), according to CNS status. Cranial irradiation was omitted in all patients. In the CNS1, TLP+, CNS2 and CNS3 group the 8-year EFS rate (SE%) was 69.7% (1.1%), 68.8% (6.2%), 71.3% (6.5%) and 68.3% (6.2%), respectively. The 8-year incidence of isolated CNS relapse (SE%) was 3.4% (0.4%), 1.7% (1.7%), 6.1% (3.5%) and 9.4% (4.5%), respectively, whereas the 8-year isolated or combined CNS relapse incidence was 7.6% (0.6%), 3.5% (2.4%), 10.2% (4.4%) and 11.7% (5.0%), respectively. Patients with CSF blasts had a higher rate of initial bad risk features. Multivariate analysis indicated that presence of blasts in the CSF had no prognostic value: (i) for EFS and OS; (ii) for isolated and isolated or combined CNS relapse; WBC count<25 × 10(9)/L and Medac E-coli asparaginase treatment were each related to a lower CNS relapse risk. The presence of initial CNS involvement has no prognostic significance in EORTC 58881. Intensification of CNS-directed chemotherapy, without CNS radiation, is an effective treatment of initial meningeal leukaemic involvement. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. The developing dorsal ganglion of the salp Thalia democratica, and the nature of the ancestral chordate brain

    PubMed Central

    C.Lacalli, T.

    1998-01-01

    The development of the dorsal ganglion of the salp, Thalia democratica, is described from electron microscope reconstructions up to the stage of central neuropile formation. The central nervous system (CNS) rudiment is initially tubular with an open central canal. Early developmental events include: (i) the formation of a thick dorsal mantle of neuroblasts from which paired dorsal paraxial neuropiles arise; (ii) the differentiation of clusters of primary motor neurons along the ventral margin of the mantle; and (iii) the development from the latter of a series of peripheral nerves. The dorsal paraxial neuropiles ultimately connect to the large central neuropile, which develops later. Direct contact between neuroblasts and muscle appears to be involved in the development of some anterior nerves. The caudal nerves responsible for innervating more distant targets in the posterior part of the body develop without such contacts, which suggests that a different patterning mechanism may be employed in this part of the neuromuscular system. The results are compared with patterns of brain organization in other chordates. Because the salp CNS is symmetrical and generally less reduced than that of ascidian larvae, it is more easily compared with the CNS of amphioxus and vertebrates. The dorsal paraxial centres in the salp resemble the dorsolateral tectal centres in amphioxus in both position and organization; the central neuropile in salps likewise resembles the translumenal system in amphioxus. The neurons themselves are similar in that many of their neurites appear to be derived from the apical surface instead of the basal surface of the cell. Such neurons, with extensively developed apical neurites, may represent a new cell type that evolved in the earliest chordates in conjunction with the formation of translumenal or intralumenal integrative centres. In comparing the salp ganglion with vertebrates, we suggest that the main core of the ganglion is most like the mes-metencephalic region of the vertebrate brain, i.e. the zone occupied by the midbrain, isthmus, and anterior hindbrain. Counterparts of more anterior regions (forebrain) and posterior ones (segmented hindbrain) appear to be absent in salps, but are found in other tunicates, suggesting that evolution has acted quite differently on the main subdivisions of the CNS in different types of tunicates.

  17. Spatial and temporal localization during embryonic and fetal human development of the transcription factor SIM2 in brain regions altered in Down syndrome.

    PubMed

    Rachidi, Mohammed; Lopes, Carmela; Charron, Giselle; Delezoide, Anne-Lise; Paly, Evelyne; Bloch, Bernard; Delabar, Jean-Maurice

    2005-08-01

    Human SIM2 is the ortholog of Drosophila single-minded (sim), a master regulator of neurogenesis and transcriptional factor controlling midline cell fate determination. We previously localized SIM2 in a chromosome 21 critical region for Down syndrome (DS). Here, we studied SIM2 gene using a new approach to provide insights in understanding of its potential role in human development. For the first time, we showed SIM2 spatial and temporal expression pattern during human central nervous system (CNS) development, from embryonic to fetal stages. Additional investigations were performed using a new optic microscopy technology to compare signal intensity and cell density [M. Rachidi, C. Lopes, S. Gassanova, P.M. Sinet, M. Vekemans, T. Attie, A.L. Delezoide, J.M. Delabar, Regional and cellular specificity of the expression of TPRD, the tetratricopeptide Down syndrome gene, during human embryonic development, Mech. Dev. 93 (2000) 189--193]. In embryonic stages, SIM2 was identified predominantly in restricted regions of CNS, in ventral part of D1/D2 diencephalic neuroepithelium, along the neural tube and in a few cell subsets of dorsal root ganglia. In fetal stages, SIM2 showed differential expression in pyramidal and granular cell layers of hippocampal formation, in cortical cells and in cerebellar external granular and Purkinje cell layers. SIM2 expression in embryonic and fetal brain could suggest a potential role in human CNS development, in agreement with Drosophila and mouse Sim mutant phenotypes and with the conservation of the Sim function in CNS development from Drosophila to Human. SIM2 expression in human fetal brain regions, which correspond to key structures for cognitive processes, correlates well with the behavioral phenotypes of Drosophila Sim mutants and transgenic mice overexpressing Sim2. In addition, SIM2-expressing brain regions correspond to the altered structures in DS patients. All together, these findings suggest a potential role of SIM2 in CNS development and indicate that SIM2 overexpression could participate to the pathogenesis of mental retardation in Down syndrome patients.

  18. Temporal changes in incidence and pattern of central nervous system relapses in children with acute lymphoblastic leukaemia treated on four consecutive Medical Research Council Trials, 1985–2001

    PubMed Central

    Krishnan, Shekhar; Wade, Rachel; Moorman, Anthony V; Mitchell, Chris; Kinsey, Sally E; Eden, TOB; Parker, Catriona; Vora, Ajay; Richards, Sue; Saha, Vaskar

    2009-01-01

    Despite the success of contemporary treatment protocols in childhood acute lymphoblastic leukaemia (ALL), relapse within the central nervous system (CNS) remains a challenge. To better understand this phenomenon, we have analysed the changes in incidence and pattern of CNS relapses in 5564 children enrolled on four successive MRC-ALL trials between 1985 and 2001. Changes in the incidence and pattern of CNS relapses were examined and the relationship with patient characteristics assessed. Factors affecting post-relapse outcome were determined. Overall, relapses declined by 49%. Decreases occurred primarily in non-CNS and combined relapses with a progressive shift towards later (≥30 months from diagnosis) relapses (p<0·0001). Although isolated CNS relapses declined, the proportional incidence and timing of relapse remained unchanged. Age and presenting white cell count were risk factors for CNS relapse. On multivariate analysis, the time to relapse and the trial period influenced post-relapse outcomes. Relapse trends differed within biological subtypes. In ETV6-RUNX1 ALL, relapse patterns mirrored overall trends while in High Hyperdiploidy ALL, these appear to have plateaued over the latter two trial periods. Intensive systemic and intrathecal chemotherapy have decreased the overall CNS relapse rates and changed the patterns of recurrence. The heterogeneity of therapeutic response in the biological subtypes suggests room for further optimisation using currently available chemotherapy. PMID:20016529

  19. The clinical nurse specialist in New Zealand: how is the role defined?

    PubMed

    Roberts, Jennifer; Floyd, Sue; Thompson, Shona

    2011-07-01

    New Zealand, like many countries, is developing new advanced nursing practice roles to meet emerging needs. While much has been written about the Nurse Practitioner (NP), the role of Clinical Nurse Specialist (CNS) remains relatively unexplored and lacks national definition. This paper reports the findings from research designed to investigate the role of the CNS and how it is defined by New Zealand District Health Boards (DHBs). The study sought to identify the current requirements and expectations for the CNS role and how it is defined in practice. In 2008, 15 CNS job descriptions were collected from eight DHBs throughout the country generating data that were treated both quantitatively and qualitatively. Overall, few areas of consensus were found regarding the essential requirements for the CNS role and there were inconsistencies in how the roles were defined, most notably concerning requirements for postgraduate qualifications and Professional Development Recognition Programmes. Thematic analysis of the documents generated four key areas relevant to the CNS role. These described the CNS as a leader, a clinical expert, a co-ordinator and an educator. The findings indicate that the CNS role is inconsistently defined in New Zealand, particularly with respect to the postgraduate qualifications required and what is meant by 'expertise'.

  20. Blue moon neurovirology: the merits of studying rare CNS diseases of viral origin.

    PubMed

    O'Donnell, Lauren A; Rall, Glenn F

    2010-09-01

    While measles virus (MV) continues to have a significant impact on human health, causing 150,000-200,000 deaths worldwide each year, the number of fatalities that can be attributed to MV-triggered central nervous system (CNS) diseases are on the order of a few hundred individuals annually (World Health Organization 2009). Despite this modest impact, substantial effort has been expended to understand the basis of measles-triggered neuropathogenesis. What can be gained by studying such a rare condition? Simply stated, the wealth of studies in this field have revealed core principles that are relevant to multiple neurotropic pathogens, and that inform the broader field of viral pathogenesis. In recent years, the emergence of powerful in vitro systems, novel animal models, and reverse genetics has enabled insights into the basis of MV persistence, the complexity of MV interactions with neurons and the immune system, and the role of immune and CNS development in virus-triggered disease. In this review, we highlight some key advances, link relevant measles-based studies to the broader disciplines of neurovirology and viral pathogenesis, and propose future areas of study for the field of measles-mediated neurological disease.

  1. Hypothalamic-Pituitary-Thyroid Axis Perturbations in Male Mice by CNS-Penetrating Thyromimetics.

    PubMed

    Ferrara, Skylar J; Bourdette, Dennis; Scanlan, Thomas S

    2018-07-01

    Thyromimetics represent a class of experimental drugs that can stimulate tissue-selective thyroid hormone action. As such, thyromimetics should have effects on the hypothalamic-pituitary-thyroid (HPT) axis, but details of this action and the subsequent effects on systemic thyroid hormone levels have not been reported to date. Here, we compare the HPT-axis effects of sobetirome, a well-studied thyromimetic, with Sob-AM2, a newly developed prodrug of sobetirome that targets sobetirome distribution to the central nervous system (CNS). Similar to endogenous thyroid hormone, administration of sobetirome and Sob-AM2 suppress HPT-axis gene transcript levels in a manner that correlates to their specific tissue distribution properties (periphery vs CNS, respectively). Dosing male C57BL/6 mice with sobetirome and Sob-AM2 at concentrations ≥10 μg/kg/d for 29 days induces a state similar to central hypothyroidism characterized by depleted circulating T4 and T3 and normal TSH levels. However, despite the systemic T4 and T3 depletion, the sobetirome- and Sob-AM2-treated mice do not show signs of hypothyroidism, which may result from the presence of the thyromimetic in the thyroid hormone-depleted background.

  2. Occupational Neurological Disorders in Korea

    PubMed Central

    Kang, Seong-Kyu

    2010-01-01

    The purpose of this article was to provide a literature review of occupational neurological disorders and related research in Korea, focusing on chemical hazards. We reviewed occupational neurological disorders investigated by the Occupational Safety and Health Research Institute of Korean Occupational Safety and Health Agency between 1992 and 2009, categorizing them as neurological disorders of the central nervous system (CNS), of the peripheral nervous system (PNS) or as neurodegenerative disorders. We also examined peer-reviewed journal articles related to neurotoxicology, published from 1984 to 2009. Outbreaks of occupational neurological disorder of the CNS due to inorganic mercury and carbon disulfide poisoning had helped prompt the development of the occupational safety and health system of Korea. Other major neurological disorders of the CNS included methyl bromide intoxication and chronic toxic encephalopathy. Most of the PNS disorders were n-hexane-induced peripheral neuritis, reported from the electronics industry. Reports of manganese-induced Parkinsonism resulted in the introduction of neuroimaging techniques to occupational medicine. Since the late 1990s, the direction of research has been moving toward degenerative disorder and early effect of neurotoxicity. To understand the early effects of neurotoxic chemicals in the preclinical stage, more follow-up studies of a longer duration are necessary. PMID:21258587

  3. Neuroinflammation as Fuel for Axonal Regeneration in the Injured Vertebrate Central Nervous System

    PubMed Central

    Van houcke, Jessie

    2017-01-01

    Damage to the central nervous system (CNS) is one of the leading causes of morbidity and mortality in elderly, as repair after lesions or neurodegenerative disease usually fails because of the limited capacity of CNS regeneration. The causes underlying this limited regenerative potential are multifactorial, but one critical aspect is neuroinflammation. Although classically considered as harmful, it is now becoming increasingly clear that inflammation can also promote regeneration, if the appropriate context is provided. Here, we review the current knowledge on how acute inflammation is intertwined with axonal regeneration, an important component of CNS repair. After optic nerve or spinal cord injury, inflammatory stimulation and/or modification greatly improve the regenerative outcome in rodents. Moreover, the hypothesis of a beneficial role of inflammation is further supported by evidence from adult zebrafish, which possess the remarkable capability to repair CNS lesions and even restore functionality. Lastly, we shed light on the impact of aging processes on the regenerative capacity in the CNS of mammals and zebrafish. As aging not only affects the CNS, but also the immune system, the regeneration potential is expected to further decline in aged individuals, an element that should definitely be considered in the search for novel therapeutic strategies. PMID:28203046

  4. Advances in Meningeal Immunity.

    PubMed

    Rua, Rejane; McGavern, Dorian B

    2018-06-01

    The central nervous system (CNS) is an immunologically specialized tissue protected by a blood-brain barrier. The CNS parenchyma is enveloped by a series of overlapping membranes that are collectively referred to as the meninges. The meninges provide an additional CNS barrier, harbor a diverse array of resident immune cells, and serve as a crucial interface with the periphery. Recent studies have significantly advanced our understanding of meningeal immunity, demonstrating how a complex immune landscape influences CNS functions under steady-state and inflammatory conditions. The location and activation state of meningeal immune cells can profoundly influence CNS homeostasis and contribute to neurological disorders, but these cells are also well equipped to protect the CNS from pathogens. In this review, we discuss advances in our understanding of the meningeal immune repertoire and provide insights into how this CNS barrier operates immunologically under conditions ranging from neurocognition to inflammatory diseases. Published by Elsevier Ltd.

  5. The role of the immune system in central nervous system plasticity after acute injury.

    PubMed

    Peruzzotti-Jametti, Luca; Donegá, Matteo; Giusto, Elena; Mallucci, Giulia; Marchetti, Bianca; Pluchino, Stefano

    2014-12-26

    Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Acute Cerebrovascular Radiation Syndrome: Radiation Neurotoxicity , mechanisms of CNS radiation injury, advanced countermeasures for Radiation Protection of Central Nervous System.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key words: Cerebrovascular Acute Radiation Syndrome (Cv ARS), Radiation Neurotoxins (RNT), Neurotransmitters, Radiation Countermeasures, Antiradiation Vaccine (ArV), Antiradiation Blocking Antibodies, Antiradiation Antidote. Psychoneuroimmunology, Neurotoxicity. ABSTRACT: To review the role of Radiation Neurotoxins in triggering, developing of radiation induced central nervous system injury. Radiation Neurotoxins - rapidly acting blood toxic lethal agent, which activated after irradiation and concentrated, circulated in interstitial fluid, lymph, blood with interactions with cell membranes, receptors and cell compartments. Radiation Neurotoxins - biological molecules with high enzymatic activity and/or specific lipids and activated or modified after irradiation. The Radiation Neurotoxins induce increased permeability of blood vessels, disruption of the blood-brain barrier, blood-cerebrospinal fluid (CSF) barrier and developing severe disorder of blood macro- and micro-circulation. Principles of Radiation Psychoneuro-immunology and Psychoneuro-allergology were applied for determination of pathological processes developed after irradiation or selective administration of Radiation Neurotoxins to radiation naïve mammals. Effects of radiation and exposure to radiation can develop severe irreversible abnormalities of Central Nervous System, brain structures and functions. Antiradiation Vaccine - most effective, advanced methods of protection, prevention, mitigation and treatment and was used for of Acute Radiation Syndromes and elaboration of new technology for immune-prophylaxis and immune-protection against ϒ, Heavy Ion, Neutron irradiation. Results of experiments suggested that blocking, antitoxic, antiradiation antibodies can significantly reduce toxicity of Radiation Toxins. New advanced technology include active immune-prophylaxis with Antiradiation Vaccine and Antiradiation therapy that included specific blocking antibodies to Radiation Neurotoxins. Antiradiation Vaccine and Antiradiation IgG preparations - prospective effective antidote/countermeasure for ϒ-irradiation, heavy ions irradiation, neutron irradiation. Recommendations for treatment and immune-prophylaxis of CNS injury, induced by radiation, were proposed. Specific immune therapy and specific immune prophylaxis reduce symptoms of ACvRS. This manuscript summarizes the results of experiments and considering possibility for blocking toxicological mechanisms of action of Radiation and Radiation Neurotoxins and prevention or diminishing clinical signs of injury of CNS. Experimental data suggest that Antiradiation vaccine and Antiradiation IgG with specific antibodies to Radiation Neurotoxins, Cytotoxins protect CNS against high doses of radiation.

  7. Development of a simple, rapid, and robust intrathecal catheterization method in the rat.

    PubMed

    Mazur, Curt; Fitzsimmons, Bethany; Kamme, Fredrik; Nichols, Brandon; Powers, Berit; Wancewicz, Ed

    2017-03-15

    The blood brain barrier (BBB) is an impediment to the development of large and highly charged molecules as therapeutics for diseases and injuries of the central nervous system (CNS). Antisense oligonucleotides (ASOs) are large (6000-8000MW) and highly charged and therefore do not cross the BBB. A method of circumventing the blood brain barrier to test ASOs, and other non-BBB penetrant molecules, as CNS therapeutics is the direct administration of these molecules to the CNS tissue or cerebral spinal fluid. We developed a rapid, simple and robust method for the intrathecal catheterization of rats to test putatively therapeutic antisense oligonucleotides. This method utilizes 23-gauge needles, simply constructed ½in. long 19-gauge guide cannulas and 8cm long plastic PE-10 sized catheters. Unlike the cisterna magna approach, this method uses a lumbar approach for intrathecal catheterization with the catheter residing entirely in the cauda equina space minimizing spinal cord compression. Readily available materials and only a few specialized pieces of equipment, which are easily manufactured, are used for this intrathecal catheterization method. This method is easy to learn and has been taught to multiple in house surgeons, collaborators and contract laboratories. Greater than 90% catheterization success is routinely achieved with this method and as many as 100 catheters can be placed and test substance administered in one 6-h period. This method has allowed the pre-clinical testing of hundreds of ASOs as therapeutics for CNS indications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Paring down on Descartes: a review of brain noradrenaline and sympathetic nervous function.

    PubMed

    Lambert, G W

    2001-12-01

    1. The conceptual framework of mind-body interaction can be traced back to the seminal observations of the French philosopher and mathematician René Descartes (1596-1650). Descartes succeeded in eliminating the soul's apparent physiological role and established the brain as the body's control centre. 2. While the pivotal role played by the central nervous system (CNS) in the maintenance of physiological and psychological health has long been recognized, the development of methods designed for the direct examination of human CNS processes has only recently come to fruition. 3. There exists a substantial body of evidence derived from clinical and experimental studies indicating that CNS monoaminergic cell groups, in particular those using noradrenaline as their neurotransmitter, participate in the excitatory regulation of the sympathetic nervous system and the development and maintenance of the hypertensive state. 4. In essential hypertension, particularly in younger patients, there occurs an activation of sympathetic nervous outflows to the kidneys, heart and skeletal muscle. The existence of a correlation between subcortical brain noradrenaline turnover and total body noradrenaline spillover to plasma, resting blood pressure and heart rate provides further support for the observation that elevated subcortical noradrenergic activity subserves a sympathoexcitatory role in the regulation of sympathetic preganglionic neurons of the thorocolumbar cord.

  9. Drug Delivery Systems, CNS Protection, and the Blood Brain Barrier

    PubMed Central

    Upadhyay, Ravi Kant

    2014-01-01

    Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods. PMID:25136634

  10. Myotonic Dystrophies: State of the Art of New Therapeutic Developments for the CNS

    PubMed Central

    Gourdon, Genevieve; Meola, Giovanni

    2017-01-01

    Myotonic dystrophies are multisystemic diseases characterized not only by muscle and heart dysfunction but also by CNS alteration. They are now recognized as brain diseases affecting newborns and children for myotonic dystrophy type 1 and adults for both myotonic dystrophy type 1 and type 2. In the past two decades, much progress has been made in understanding the mechanisms underlying the DM symptoms allowing development of new molecular therapeutic tools with the ultimate aim of curing the disease. This review describes the state of the art for the characterization of CNS related symptoms, the development of molecular strategies to target the CNS as well as the available tools for screening and testing new possible treatments. PMID:28473756

  11. Hypersonic flow analysis

    NASA Technical Reports Server (NTRS)

    Chow, Chuen-Yen; Ryan, James S.

    1987-01-01

    While the zonal grid system of Transonic Navier-Stokes (TNS) provides excellent modeling of complex geometries, improved shock capturing, and a higher Mach number range will be required if flows about hypersonic aircraft are to be modeled accurately. A computational fluid dynamics (CFD) code, the Compressible Navier-Stokes (CNS), is under development to combine the required high Mach number capability with the existing TNS geometry capability. One of several candidate flow solvers for inclusion in the CNS is that of F3D. This upwinding flow solver promises improved shock capturing, and more accurate hypersonic solutions overall, compared to the solver currently used in TNS.

  12. The risk of central nervous system relapses in patients with peripheral T-cell lymphoma

    PubMed Central

    Fanale, Michelle A.; Miranda, Roberto N.; Noorani, Mansoor; Westin, Jason R.; Nastoupil, Loretta J.; Hagemeister, Fredrick B.; Fayad, Luis E.; Romaguera, Jorge E.; Samaniego, Felipe; Turturro, Francesco; Lee, Hun J.; Neelapu, Sattva S.; Rodriguez, M. Alma; Wang, Michael; Fowler, Nathan H.; Davis, Richard E.; Medeiros, L. Jeffrey; Oki, Yasuhiro

    2018-01-01

    We performed a retrospective analysis to identify risk factors and survival outcome for central nervous system (CNS) relapse of peripheral T-cell lymphoma (PTCL) by histologic type. Records of 600 PTCL patients diagnosed between 1999 and 2014 were analyzed including PTCL not otherwise specified (PTCL-NOS, 174 patients), angoimmunoblastic T-cell lymphoma (AITL, 144), ALK+anaplastic large cell lymphoma (ALCL, 74), ALK-ALCL (103), extranodal NK-cell lymphoma (ENKL, 54), or others (51). With a median follow up of 57 months, 13 patients (4 PTCL-NOS, 1 AITL, 4 ALK+ALCL, 2 ALK-ALCL, 2 ENKL) experienced CNS relapse. One-year and 5-year cumulative incidence of CNS relapse were 1.5% (95%CI: 0.7–2.8%) and 2.1% (95%CI: 1.1–3.5%), respectively. The 5-year cumulative incidence of CNS relapse was 1.8% in PTCL-NOS, 0.7% in AITL, 5.4% in ALK+ALCL, 2.1% in ALK-ALCL and 3.7% in ENKL. Extranodal involvement >1 site was the only significant factor associated with higher chance of CNS relapse (HR: 4.9, 95%CI: 1.6–15.0, p = 0.005). Patients with ALK+ALCL who had extranodal involvement >1 (N = 19) had very high risk of CNS relapse with one year cumulative incidence of 17% (95%CI: 4%-37%), all occurring within six months after diagnosis. All patients with CNS relapse eventually died (median, 1.5 months; range, 0.1–10.1 months). CNS relapse in patients with PTCL is rare event but the risk varies by subtype. ALK+ALCL patients with extranodal involvement >1 site have a very high risk of early CNS relapse, and thus evaluation of CNS involvement at the time of diagnosis and possible CNS-directed prophylaxis may be considered. PMID:29538376

  13. Ki-67 is a strong predictor of central nervous system relapse in patients with mantle cell lymphoma (MCL).

    PubMed

    Chihara, D; Asano, N; Ohmachi, K; Nishikori, M; Okamoto, M; Sawa, M; Sakai, R; Okoshi, Y; Tsukamoto, N; Yakushijin, Y; Nakamura, S; Kinoshita, T; Ogura, M; Suzuki, R

    2015-05-01

    Central nervous system (CNS) relapse is an uncommon but challenging complication in patients with mantle cell lymphoma (MCL). Survival after CNS relapse is extremely poor. Identification of high-risk populations is therefore critical in determining patients who might be candidates for a prophylactic approach. A total of 608 patients (median age, 67 years; range 22-92) with MCL newly diagnosed between 1994 and 2012 were evaluated. Pretreatment characteristics and treatment regimens were evaluated for their association with CNS relapse by competing risk regression analysis. None of the patients received intrathecal prophylaxis. Overall, 33 patients (5.4%) experienced CNS relapse during a median follow-up of 42.7 months. Median time from diagnosis to CNS relapse was 20.3 months (range: 2.2-141.3 months). Three-year cumulative incidence of CNS relapse was 5.6% [95% confidence interval (95% CI) 3.7% to 8.0%]. Univariate analysis revealed several risk factors including blastoid variant, leukemic presentation, high-risk MCL International Prognostic Index and high Ki-67 (proliferation marker). Multivariate analyses revealed that Ki-67 ≥ 30 was the only significant risk factor for CNS relapse (hazard ratio: 6.0, 95% CI 1.9-19.4, P = 0.003). Two-year cumulative incidence of CNS relapse in patients with Ki-67 ≥ 30 was 25.4% (95% CI 13.5-39.1), while that in the patients with Ki-67 < 30 was 1.6% (95% CI 0.4-4.2). None of the treatment modalities, including rituximab, high-dose cytarabine, high-dose methotrexate or consolidative autologous stem-cell transplant, were associated with a lower incidence of CNS relapse. Survival after CNS relapse was poor, with median survival time of 8.3 months. There was no significant difference in the survival by the site of CNS involvement. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Evaluation of the effects of plant-derived essential oils on central nervous system function using discrete shuttle-type conditioned avoidance response in mice.

    PubMed

    Umezu, Toyoshi

    2012-06-01

    Although plant-derived essential oils (EOs) have been used to treat various mental disorders, their central nervous system (CNS) acting effects have not been clarified. The present study compared the effects of 20 kinds of EOs with the effects of already-known CNS acting drugs to examine whether the EOs exhibited CNS stimulant-like effects, CNS depressant-like effects, or neither. All agents were tested using a discrete shuttle-type conditioned avoidance task in mice. Essential oils of peppermint and chamomile exhibited CNS stimulant-like effects; that is, they increased the response rate (number of shuttlings/min) of the avoidance response. Linden also increased the response rate, however, the effect was not dose-dependent. In contrast, EOs of orange, grapefruit, and cypress exhibited CNS depressant-like effects; that is, they decreased the response rate of the avoidance response. Essential oils of eucalyptus and rose decreased the avoidance rate (number of avoidance responses/number of avoidance trials) without affecting the response rate, indicating that they may exhibit some CNS acting effects. Essential oils of 12 other plants, including juniper, patchouli, geranium, jasmine, clary sage, neroli, lavender, lemon, ylang-ylang, niaouli, vetivert and frankincense had no effect on the avoidance response in mice. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Central nervous system prophylaxis with intrathecal liposomal cytarabine in a subset of high-risk patients with diffuse large B-cell lymphoma receiving first line systemic therapy in a prospective trial.

    PubMed

    González-Barca, E; Canales, M; Salar, A; Ferreiro-Martínez, J J; Ferrer-Bordes, S; García-Marco, J A; Sánchez-Blanco, J J; García-Frade, J; Peñalver, J; Bello-López, J L; Sancho, J M; Caballero, D

    2016-05-01

    The dissemination in the central nervous system (CNS) is an uncommon but fatal complication occurring in patients with diffuse large B-cell lymphoma (DLBCL). Standard prophylaxis has been demonstrated to reduce CNS relapse and improve survival rates. Intrathecal (IT) liposomal cytarabine allows maintaining elevated drug levels in the cerebrospinal fluid for an extended period of time. Data on the efficacy and safety of liposomal cytarabine as CNS prophylaxis in patients with DLBCL are still insufficient. The objective of the present study was to evaluate the effectiveness and safety of the prophylaxis with IT liposomal cytarabine in prevention of CNS relapse in high-risk patients with DLBCL who were included in a trial of first line systemic therapy with 6 cycles of dose-dense R-CHOP every 14 days. Twenty-four (18.6 %) out of 129 patients were identified to have risk factors for CNS involvement, defined as follows: >30 % bone marrow infiltration, testes infiltration, retroperitoneal mass ≥10 cm, Waldeyer ring, or bulky cervical nodes involvement. Liposomal cytarabine (50 mg) was administered by lumbar puncture the first day of the 1st, 2nd, and 6th cycle of R-CHOP14 scheme. Among 70 IT infusions, grade 3-4 adverse events reported were headache (one patient) and nausea/vomiting (one patient). With a median follow-up of 40.1 months, no CNS involvement by DLBCL was observed in any patient. In conclusion, IT liposomal cytarabine is safe, feasible, and effective for CNS prophylaxis, causing few associated risks and little discomfort to patients with DLBCL.

  16. Nanomedicine and its application in treatment of microglia-mediated neuroinflammation.

    PubMed

    Baby, N; Patnala, R; Ling, Eng-Ang; Dheen, S T

    2014-01-01

    Nanomedicine, an emerging therapeutic tool in current medical frontiers, offers targeted drug delivery for many neurodegenerative disorders. Neuroinflammation, a hallmark of many neurodegenerative disorders, is mediated by microglia, the resident immunocompetent cells of the central nervous system (CNS). Microglial cells respond to various stimuli in the CNS resulting in their activation which may have a beneficial or a detrimental effect. In general, the activated microglia remove damaged neurons and infectious agents by phagocytosis, therefore being neuroprotective. However, their chronic activation exacerbates neuronal damage through excessive release of proinflammatory cytokines, chemokines and other inflammatory mediators which contribute to neuroinflammation and subsequent neurodegeneration in the CNS. Hence, controlling microglial inflammatory response and their proliferation has been considered as an important aspect in treating neurodegenerative disorders. Regulatory factors that control microglial activation and proliferation also play an important role in microglia-mediated neuroinflammation and neurotoxicity. Various anti-inflammatory drugs and herbal compounds have been identified in treating microglia-mediated neuroinflammation in the CNS. However, hurdles in crossing blood brain barrier (BBB), expression of metabolic enzymes, presence of efflux pumps and several other factors prevent the entry of these drugs into the CNS. Use of non-degradable delivery systems and microglial activation in response to the drug delivery system further complicate drug delivery to the CNS. Nanomedicine, a nanoparticle-mediated drug delivery system, exhibits immense potential to overcome these hurdles in drug delivery to the CNS enabling new alternatives with significant promises in revolutionising the field of neurodegenerative disease therapy. This review attempts to summarise various regulatory factors in microglia, existing therapeutic strategies in controlling microglial activation, and how nanotechnology can serve to improve the delivery of therapeutic drugs across the BBB for treating microglia- mediated neuroinflammation and neurodegeneration.

  17. Ethnopharmacological survey of plant species used in folk medicine against central nervous system disorders in Togo.

    PubMed

    Kantati, Yendube T; Kodjo, K Magloire; Dogbeavou, Koffi S; Vaudry, David; Leprince, Jérôme; Gbeassor, Messanvi

    2016-04-02

    Neurological diseases are rising all around the world. In a developing country such as Togo, although plant-based medicines are the only means, still very little is known regarding the nature and efficiency of medicinal plants used by indigenous people to manage central nervous system (CNS) disorders. This study, an ethnobotanical survey, aimed to report plant species used in traditional medicine (TM) for the management of various CNS disorders in Togo. 52 traditional actors (TA) including 33 traditional healers (TH) and 19 medicinal plant sellers (MPS) were interviewed, using a questionnaire mentioning informants' general data and uses of medicinal plants. The present study reports 44 medicinal plant species distributed into 26 families, mentioning scientific and common local names, plant organs used, preparation method, root of administration and putative applications. It appears that there is a real knowledge on medicinal plants used for traditional treatment of CNS disorders in Togo and that the local flora abounds of potentially neuroactive plants which could be useful for the discovery of antipsychotic or neuroprotective molecules. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Modulation of Food Reward by Endocrine and Environmental Factors: Update and Perspective.

    PubMed

    Figlewicz, Dianne P

    2015-01-01

    Palatable foods are frequently high in energy density. Chronic consumption of high-energy density foods can contribute to the development of cardiometabolic pathology including obesity, diabetes, and cardiovascular disease. This article reviews the contributions of extrinsic and intrinsic factors that influence the reward components of food intake. A narrative review was conducted to determine the behavioral and central nervous system (CNS) related processes involved in the reward components of high-energy density food intake. The rewarding aspects of food, particularly palatable and preferred foods, are regulated by CNS circuitry. Overlaying this regulation is modulation by intrinsic endocrine systems and metabolic hormones relating to energy homeostasis, developmental stage, or gender. It is now recognized that extrinsic or environmental factors, including ambient diet composition and the provocation of stress or anxiety, also contribute substantially to the expression of food reward behaviors such as motivation for, and seeking of, preferred foods. High-energy density food intake is influenced by both physiological and pathophysiological processes. Contextual, behavioral, and psychological factors and CNS-related processes represent potential targets for multiple types of therapeutic intervention.

  19. Characterisation of the triple negative breast cancer phenotype associated with the development of central nervous system metastases

    PubMed Central

    Laimito, Katerin Rojas; Gámez-Pozo, Angelo; Sepúlveda, Juan; Manso, Luis; López-Vacas, Rocío; Pascual, Tomás; Fresno Vara, Juan A; Ciruelos, Eva

    2016-01-01

    Aims Breast cancer (BC) is the most frequent tumour in women, representing 20–30% of all malignancies, and continues to be the leading cause of cancer deaths among European women. Triple-negative (TN) BC biological aggressiveness is associated with a higher dissemination rate, with central nervous system (CNS) metastases common. This study aims to elucidate the association between gene expression profiles of PTGS2, HBEGF and ST6GALNAC5 and the development of CNS metastases in TNBC. Methods This is a case-controlled retrospective study comparing patients (pts) with CNS metastases versus patients without them after adjuvant treatment. The selection of the samples was performed including 30 samples in both case and control groups. Formalin-fixed, paraffin-embedded samples were retrieved from the Hospital 12 de Octubre Biobank. Five 10 µm sections from each FFPE sample were deparaffinised with xylene and washed with ethanol, and the RNA was then extracted with the RecoverAll Kit (Ambion). Gene expression was assessed using TaqMan assays. Results A total of 53 patients were included in the study. The average age was 55 years (range 25–85). About 47 patients (88.67%) had ductal histology and presented high grade (III) tumours (40 patients; 75.47%). Eight women in the case group presented first distant recurrence in the CNS (34.80%), local recurrence (three patients, 13.04%), lungs (two patients; 8.7%), bone (one patient; 4.34%) and other locations (seven patients; 30.38%). In the control group, first distant recurrence occurred locally (six patients; 46.1%), in bone (two patients; 15.4%), lungs (one patient; 7.7%) and other sites (four patients; 23.1%). RNA was successfully obtained from 53 out of 60 samples. PTGS2, HBEGF, and ST6GALNAC5 expression values were not related to metastasis location. Conclusion TN tumours frequently metastasise to the visceral organs, particularly lungs and brain, and are less common in bone. The literature suggests that expression of the three genes of interest (PTGS2, HBEGF, and ST6GALNAC5) could be different in TNBC patients with CNS metastasis when compared to patients without it. We did not find a differential expression pattern in PTGS2, HBEGF, and ST6GALNAC5 genes in primary TNBC showing CNS metastases. Further studies are needed to clarify the role of these genes in CNS metastases in TNBC patients. PMID:27170832

  20. EDITORIAL Neuroglia as a Central Element of Neurological Diseases: An Underappreciated Target for Therapeutic Intervention

    PubMed Central

    Peng, Liang; Parpura, Vladimir; Verkhratsky, Alexei

    2014-01-01

    Neuroglia of the central nervous system (CNS), represented by cells of neural (astrocytes, oligodendrocytes and NG2 glial cells) and myeloid (microglia) origins are fundamental for homeostasis of the nervous tissue. Astrocytes are critical for the development of the CNS, they are indispensable for synaptogenesis, and they define structural organisation of the nervous tissue, as well as the generation and maintenance of CNS-blood and cerebrospinal fluid-blood barriers. Astroglial cells control homeostasis of ions and neurotransmitters and provide neurones with metabolic support. Oligodendrocytes, through the process of myelination, as well as by homoeostatic support of axons provide for interneuronal connectivity. The NG2 cells receive direct synaptic inputs, and might be important elements of adult remyelination. Microglial cells, which originate from foetal macrophages invading the brain early in embryogenesis, shape the synaptic connections through removing of redundant synapses and phagocyting apoptotic neurones. Neuroglia also form the defensive system of the CNS through complex and context-specific programmes of activation, known as reactive gliosis. Many neurological diseases are associated with neurogliopathologies represented by asthenic and atrophic changes in glial cells that, through the loss or diminution of their homeostatic and defensive functions, assist evolution of pathology. Conceptually, neurological and psychiatric disorders can be regarded as failures of neuroglial homeostatic/ defensive responses, and, hence, glia represent a (much underappreciated) target for therapeutic intervention. PMID:25342938

  1. Mycobacteria employ two different mechanisms to cross the blood-brain barrier.

    PubMed

    van Leeuwen, Lisanne M; Boot, Maikel; Kuijl, Coen; Picavet, Daisy I; van Stempvoort, Gunny; van der Pol, Susanne M A; de Vries, Helga E; van der Wel, Nicole N; van der Kuip, Martijn; van Furth, A Marceline; van der Sar, Astrid M; Bitter, Wilbert

    2018-05-10

    Central nervous system (CNS) infection by Mycobacterium tuberculosis is one of the most devastating complications of tuberculosis, in particular in early childhood. In order to induce CNS infection, M. tuberculosis needs to cross specialised barriers protecting the brain. How M. tuberculosis crosses the blood-brain barrier (BBB) and enters the CNS is not well understood. Here, we use transparent zebrafish larvae and the closely related pathogen Mycobacterium marinum to answer this question. We show that in the early stages of development, mycobacteria rapidly infect brain tissue, either as free mycobacteria or within circulating macrophages. After the formation of a functionally intact BBB, the infiltration of brain tissue by infected macrophages is delayed, but not blocked, suggesting that crossing the BBB via phagocytic cells is one of the mechanisms used by mycobacteria to invade the CNS. Interestingly, depletion of phagocytic cells did not prevent M. marinum from infecting the brain tissue, indicating that free mycobacteria can independently cause brain infection. Detailed analysis showed that mycobacteria are able to cause vasculitis by extracellular outgrowth in the smaller blood vessels and by infecting endothelial cells. Importantly, we could show that this second mechanism is an active process that depends on an intact ESX-1 secretion system, which extends the role of ESX-1 secretion beyond the macrophage infection cycle. © 2018 The Authors Cellular Microbiology Published by John Wiley & Sons Ltd.

  2. Advances in understanding the pathogenesis of CNS acute lymphoblastic leukaemia and potential for therapy.

    PubMed

    Frishman-Levy, Liron; Izraeli, Shai

    2017-01-01

    Central nervous system acute lymphoblastic leukaemia (CNS-ALL) is a major clinical problem. CNS-directed 'prophylactic' chemo- or radio - therapy is associated with significant early and long-term toxicity. Moreover, greater than a third of the relapses occur in the CNS. To design specific, more effective and less toxic therapy and for personalized precise adjustment of prophylactic therapy there is a need for better understanding of the biology of this disease. Specifically, the precise neurotropic mechanisms of ALL are currently unclear, as is the pathogenesis of CNS relapse. Here we review and contrast the recent findings with earlier studies of pathogenesis of CNS leukaemia. We also describe the challenges in research of this devastating complication of ALL. © 2016 John Wiley & Sons Ltd.

  3. Role of gabra2, GABAA receptor alpha-2 subunit, in CNS development.

    PubMed

    Gonzalez-Nunez, Veronica

    2015-09-01

    gabra2 gene codes for the alpha-2 subunit of the GABA A receptor, one of the ionotropic receptors which has been related to anxiety, depression and other behavioural disorders, including drug dependence and schizophrenia. GABAergic signalling also plays a role during development, by promoting neural stem cell maintenance and renewal. To investigate the role of gabra2 in CNS development, gabra2 deficient zebrafish were generated. The pattern of proliferation during the embryonic development was disrupted in morphant embryos, which also displayed an increase in the number of apoptotic nuclei mainly at the mid- and hindbrain regions. The expression of several genes ( notch1, pax2, fgf8 and wnt1 ) known to contribute to the development of the central nervous system was also affected in gabra2 morpholino-injected embryos, although no changes were found for pax6a and shh a expression. The transcriptional activity of neuroD (a proneural gene involved in early neuronal determination) was down-regulated in gabra2 deficient embryos, and the expression pattern of gad1b (GABA-synthesising enzyme GAD67) was clearly reduced in injected fish. I propose that gabra2 might be interacting with those signalling pathways that regulate proliferation, differentiation and neurogenesis during the embryonic development; thus, gabra2 might be playing a role in the differentiation of the mesencephalon and cerebellum. Given that changes in GABAergic circuits during development have been related to several psychiatric disorders, such as autism and schizophrenia, this work might be helpful to understand the role of neurotransmitter systems during CNS development and to assess the developmental effects of several GABAergic drugs.

  4. Altered energy production, lowered antioxidant potential, and inflammatory processes mediate CNS damage associated with abuse of the psychostimulants MDMA and methamphetamine

    PubMed Central

    Downey, Luke A.; Loftis, Jennifer M.

    2014-01-01

    Central nervous system (CNS) damage associated with psychostimulant dependence may be an ongoing, degenerative process with adverse effects on neuropsychiatric function. However, the molecular mechanisms regarding how altered energy regulation affects immune response in the context of substance use disorders are not fully understood. This review summarizes the current evidence regarding the effects of psychostimulant [particularly 3,4-methylenedioxy-N-methylamphetamine (MDMA) and methamphetamine] exposure on brain energy regulation, immune response, and neuropsychiatric function. Importantly, the neuropsychiatric impairments (e.g., cognitive deficits, depression, and anxiety) that persist following abstinence are associated with poorer treatment outcomes – increased relapse rates, lower treatment retention rates, and reduced daily functioning. Qualifying the molecular changes within the CNS according to the exposure and use patterns of specifically abused substances should inform the development of new therapeutic approaches for addiction treatment. PMID:24485894

  5. Delayed central nervous system manifestation of Chikungunya virus with magnetic resonance T2 weighted imaging high signal changes—a case report

    PubMed Central

    Hamilton, Preci L; Cruickshank, Garth

    2018-01-01

    Abstract CHIKV is a relatively new virus and we are still learning about the illness. Very little is known about CNS its involvement and even less about its delayed or long-term manifestations if any. It therefore behoves us to consider delayed CNS involvement when assessing patients with CHIKV infections that may not have had an acute neurological manifestation at the time of diagnosis coupled with new onset neurological manifestations and MRI abnormalities. It seems likely that patients with CHIKV may experience delayed CNS manifestation of the viral infection. This report highlights the importance of a travel history when assessing patients with a neurological complaint. The pathway to best manage such cases is with repeated imaging to assess if the signal changes either progress, resolve or more importantly if there is any MRI correlation should changes in neurology develop during the surveillance period. PMID:29942482

  6. Altered energy production, lowered antioxidant potential, and inflammatory processes mediate CNS damage associated with abuse of the psychostimulants MDMA and methamphetamine.

    PubMed

    Downey, Luke A; Loftis, Jennifer M

    2014-03-15

    Central nervous system (CNS) damage associated with psychostimulant dependence may be an ongoing, degenerative process with adverse effects on neuropsychiatric function. However, the molecular mechanisms regarding how altered energy regulation affects immune response in the context of substance use disorders are not fully understood. This review summarizes the current evidence regarding the effects of psychostimulant [particularly 3,4-methylenedioxy-N-methylamphetamine (MDMA) and methamphetamine] exposure on brain energy regulation, immune response, and neuropsychiatric function. Importantly, the neuropsychiatric impairments (e.g., cognitive deficits, depression, and anxiety) that persist following abstinence are associated with poorer treatment outcomes - increased relapse rates, lower treatment retention rates, and reduced daily functioning. Qualifying the molecular changes within the CNS according to the exposure and use patterns of specifically abused substances should inform the development of new therapeutic approaches for addiction treatment. Published by Elsevier B.V.

  7. Development of allosteric modulators of GPCRs for treatment of CNS disorders.

    PubMed

    Nickols, Hilary Highfield; Conn, P Jeffrey

    2014-01-01

    The discovery of allosteric modulators of G protein-coupled receptors (GPCRs) provides a promising new strategy with potential for developing novel treatments for a variety of central nervous system (CNS) disorders. Traditional drug discovery efforts targeting GPCRs have focused on developing ligands for orthosteric sites which bind endogenous ligands. Allosteric modulators target a site separate from the orthosteric site to modulate receptor function. These allosteric agents can either potentiate (positive allosteric modulator, PAM) or inhibit (negative allosteric modulator, NAM) the receptor response and often provide much greater subtype selectivity than orthosteric ligands for the same receptors. Experimental evidence has revealed more nuanced pharmacological modes of action of allosteric modulators, with some PAMs showing allosteric agonism in combination with positive allosteric modulation in response to endogenous ligand (ago-potentiators) as well as "bitopic" ligands that interact with both the allosteric and orthosteric sites. Drugs targeting the allosteric site allow for increased drug selectivity and potentially decreased adverse side effects. Promising evidence has demonstrated potential utility of a number of allosteric modulators of GPCRs in multiple CNS disorders, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, as well as psychiatric or neurobehavioral diseases such as anxiety, schizophrenia, and addiction. © 2013.

  8. The connection between maternal thiamine shortcoming and offspring cognitive damage and poverty perpetuation in underprivileged communities across the world.

    PubMed

    Dias, Fernando M V; Silva, Danielle Marra de Freitas; Doyle, Flavia Costa de Proença; Ribeiro, Angela Maria

    2013-01-01

    The acquisition of cognitive, sensory-motor and social emotional functions depend on a proper development of the Central Nervous System (CNS). This set of functions, known as intelligence, allows a better adaptation to the environment. In the last decades, an increase in the average of intelligence has been reported. However, such an increase cannot be observed in an equivalent way in economically and social underprivileged regions. Children from those regions are in great risk of being affected by mental retardation or impaired cognitive development. In later life they will, probably, be unable to transform and improve themselves and their communities, perpetuating the poverty of the region. Therefore, knowledge of factors involved in CNS development is a matter of health closely related to social improvement. Malnutrition throughout pregnancy and breastfeeding is clearly identifiable as a cause of damage in CNS development. Vitamin B1 (Thiamine) is a micronutrient important to the growth and maturity of the CNS. Thiamine shortcoming may affect 50% of pregnant women. Thiamine function in cerebral development is still not well known. There is a gap in the literature regarding systematical research about the blood thiamine concentration throughout the periods of gestation and breastfeeding. These studies are relevant in populations with a high level of nutritional vulnerability, because in a follow up offspring cognitive exam they could reveal if the maternal thiamine deficiency is related to child CNS impairment. This paper introduce the hypothesis that thiamine shortcoming during pregnancy and breastfeeding is directly related to cognitive impairment of child. Data about the neurophysiological role of thiamine, consequences of its shortcoming in experimental models, populations under the risk of thiamine shortcoming are presented. The hypothesis that maternal thiamine shortcoming causes damage related to child cognitive development needs to be considered. Thus, thiamine shortcoming during gestation and breastfeeding and its effects on children must be studied in many populations in order to know the magnitude of the problem and to indicate actions to overcome it. Copyright © 2012. Published by Elsevier Ltd.

  9. Monocyte/macrophage trafficking in acquired immunodeficiency syndrome encephalitis: lessons from human and nonhuman primate studies.

    PubMed

    Fischer-Smith, Tracy; Bell, Christie; Croul, Sidney; Lewis, Mark; Rappaport, Jay

    2008-08-01

    Here the authors discuss evidence in human and animal models supporting two opposing views regarding the pathogenesis of human immunodeficiency virus (HIV) in the central nervous system (CNS): (1) HIV infection in the CNS is a compartmentalized infection, with the virus-infected macrophages entering the CNS early, infecting resident microglia and astrocytes, and achieving a state of latency with evolution toward a fulminant CNS infection late in the course of disease; or alternatively, (2) events in the periphery lead to altered monocyte/macrophage (MPhi) homeostasis, with increased CNS invasion of infected and/or uninfected MPhis. Here the authors have reevaluated evidence presented in the favor of the latter model, with a discussion of phenotypic characteristics distinguishing normal resident microglia with those accumulating in HIV encephalitis (HIVE). CD163 is normally expressed by perivascular MPhi s but not resident microglia in normal CNS of humans and rhesus macaques. In agreement with other studies, the authors demonstrate expression of CD163 by brain MPhi s in HIVE and simian immunodeficiency virus encephalitis (SIVE). CNS tissues from HIV-sero positive individuals with HIVE or HIV-associated progressive multifocal leukoencephalopathy (PML) were also examined. In HIVE, the authors further demonstrate colocalization of CD163 and CD16 (Fcgamma III recptor) gene expression, the latter marker associated with HIV infection of monocyte in vivo and permissivity of infection. Indeed, CD163(+) MPhis and microglia are often productively infected in HIVE CNS. In SIV infected rhesus macaques, CD163(+) cells accumulate perivascularly, within nodular lesions and the parenchyma in animals with encephalitis. Likewise, parenchymal microglia and perivascular MPhi s are CD163(+) in HIVE. In contrast to HIVE, CD163(+)perivascular and parenchymal MPhi s in HIV-associated PML were only associated with areas of demyelinating lesions. Interestingly, SIV-infected rhesus macaques whose viral burden was predominantly at 1 x 10(6) copies/ml or greater developed encephalitis. To further investigate the relationship between CD163(+)/CD16(+) MPhis/microglia in the CNS and altered homeostasis in the periphery, the authors performed flow-cytometric analyses of peripheral blood mononuclear cells (PBMCs) from SIV-infected rhesus macaques. The results demonstrate an increase in the percent frequency of CD163(+)/CD16(+) monocytes in animals with detectable virus that correlated significantly with increased viral burden and CD4(+) T-cell decline. These results suggest the importance of this monocyte subset in HIV/SIV CNS disease, and also in the immune pathogenesis of lentiviral infection. The authors further discuss the potential role of CD163(+)/CD16(+) monocyte/MPhi subset expansion, altered myeloid homeostasis, and potential consequences for immune polarization and suppression. The results and discussion here suggest new avenues for the development of acquired immunodeficiency syndrome (AIDS) therapeutics and vaccine design.

  10. IFN-gamma signaling in the central nervous system controls the course of experimental autoimmune encephalomyelitis independently of the localization and composition of inflammatory foci

    PubMed Central

    2012-01-01

    Background Murine experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis, presents typically as ascending paralysis. However, in mice in which interferon-gamma (IFNγ) signaling is disrupted by genetic deletion, limb paralysis is accompanied by atypical deficits, including head tilt, postural imbalance, and circling, consistent with cerebellar/vestibular dysfunction. This was previously attributed to intense cerebellar and brainstem infiltration by peripheral immune cells and formation of neutrophil-rich foci within the CNS. However, the exact mechanism by which IFNγ signaling prohibits the development of vestibular deficits, and whether the distribution and composition of inflammatory foci within the CNS affects the course of atypical EAE remains elusive. Methods We induced EAE in IFNγ-/- mice and bone marrow chimeric mice in which IFNγR is not expressed in the CNS but is intact in the periphery (IFNγRCNSKO) and vice versa (IFNγRperiKO). Blood-brain barrier permeability was determined by Evans blue intravenous administration at disease onset. Populations of immune cell subsets in the periphery and the CNS were quantified by flow cytometry. CNS tissues isolated at various time points after EAE induction, were analyzed by immunohistochemistry for composition of inflammatory foci and patterns of axonal degeneration. Results Incidence and severity of atypical EAE were more pronounced in IFNγRCNSKO as compared to IFNγRperiKO mice. Contrary to what we anticipated, cerebella/brainstems of IFNγRCNSKO mice were only minimally infiltrated, while the same areas of IFNγRperiKO mice were extensively populated by peripheral immune cells. Furthermore, the CNS of IFNγRperiKO mice was characterized by persistent neutrophil-rich foci as compared to IFNγRCNSKO. Immunohistochemical analysis of the CNS of IFNγ-/- and IFNγR chimeric mice revealed that IFNγ protective actions are exerted through microglial STAT1. Conclusions Alterations in distribution and composition of CNS inflammatory foci are not sufficient for the onset of atypical EAE. IFNγ dictates the course of neuroinflammatory disorders mainly through actions exerted within the CNS. This study provides strong evidence that link microglial STAT1 inactivation to vestibular dysfunction. PMID:22248039

  11. Developing a rural transitional care community case management program using clinical nurse specialists.

    PubMed

    Baldwin, Kathleen M; Black, Denice; Hammond, Sheri

    2014-01-01

    This quality improvement project developed a community nursing case management program to decrease preventable readmissions to the hospital and emergency department by providing telephonic case management and, if needed, onsite assessment and treatment by a clinical nurse specialist (CNS) with prescriptive authority. As more people reach Medicare age, the number of individuals with worsening chronic diseases with dramatically increases unless appropriate disease management programs are developed. Care transitions can result in breakdown in continuity of care, resulting in increased preventable readmissions, particularly for indigent patients. The CNS is uniquely educated to managing care transitions and coordination of community resources to prevent readmissions. After a thorough SWOT (strengths, weaknesses, opportunities, and threats) analysis, we developed and implemented a cost-avoidance model to prevent readmissions in our uninsured and underinsured patients. The project CNS used a wide array of interventions to decrease readmissions. In the last 2 years, there have been a total of 22 less than 30-day readmissions to the emergency department or hospital in 13 patients, a significant decrease from readmissions in these patients prior to the program. Three of them required transfer to a larger hospital for a higher level of care. Using advanced practice nurses in transitional care can prevent readmissions, resulting in cost avoidance. The coordination of community resources during transition from hospital to home is a job best suited to CNSs, because they are educated to work within organizations/systems. The money we saved with this project more than justified the cost of hiring a CNS to lead it. More research is needed into this technology. Guidelines for this intervention need to be developed. Replicating our cost-avoidance transitional care model can help other facilities limit that loss.

  12. Establishment of a new conditionally immortalized cell line from human brain microvascular endothelial cells: a promising tool for human blood-brain barrier studies.

    PubMed

    Kamiichi, Atsuko; Furihata, Tomomi; Kishida, Satoshi; Ohta, Yuki; Saito, Kosuke; Kawamatsu, Shinya; Chiba, Kan

    2012-12-07

    The blood-brain barrier (BBB) is formed by brain microvascular endothelial cells (BMEC) working together with astrocytes and pericytes, in which tight junctions and various transporters strictly regulate the penetration of diverse compounds into the brain. Clarification of the molecular machinery that provides such regulation using in vitro BBB models has provided important insights into the roles of the BBB in central nervous system (CNS) disorders and CNS drug development. In this study, we succeeded in establishing a new cell line, hereinafter referred to as human BMEC/conditionally immortalized, clone β (HBMEC/ciβ), as part of our ongoing efforts to develop an in vitro human BBB model. Our results showed that HBMEC/ciβ proliferated well. Furthermore, we found that HBMEC/ciβ exhibited the barrier property of restricting small molecule intercellular penetration and possessed effective efflux transporter functions, both of which are essential to a functioning BBB. Because higher temperatures are known to terminate immortalization signals, we specifically examined the effects of higher temperatures on the HBMEC/ciβ differentiation status. The results showed that higher temperatures stimulated HBMEC/ciβ differentiation, marked by morphological alteration and increases in several mRNA levels. To summarize, our data indicates that the newly established HBMEC/ciβ offers a promising tool for use in the development of a practical in vitro human BBB model that could make significant contributions toward understanding the molecular biology of CNS disorders, as well as to CNS drug development. It is also believed that the development of a specific culture method for HBMEC/ciβ will add significant value to the HBMEC/ciβ-based BBB model. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Risk Factors for Symptomatic Avascular Necrosis in Childhood-onset Systemic Lupus Erythematosus.

    PubMed

    Yang, Yelin; Kumar, Sathish; Lim, Lily Siok Hoon; Silverman, Earl D; Levy, Deborah M

    2015-12-01

    To examine the frequency and risk factors for symptomatic avascular necrosis (AVN) in childhood-onset systemic lupus erythematosus (cSLE). A single-center, nested, matched, case-control design was used. There were 617 patients with cSLE followed at the Hospital for Sick Children (SickKids) Lupus Clinic between July 1982 and June 2013 included in the study. The AVN cohort consisted of 37 patients identified with clinical findings of symptomatic AVN and diagnosis was confirmed by 1 or more imaging modalities. Three controls were matched to each patient with AVN by date and age at diagnosis. Baseline clinical, laboratory, and treatment characteristics were compared between patients with AVN and controls by univariable analyses and if statistically significant, were included in a multivariable logistic regression model. A total of 37/617 patients (6%) developed symptomatic AVN in 91 joints during followup at SickKids. The mean duration to disease was 2.3 years. The hip was the most commonly involved joint (26/37, 70%). Compared with the matched non-AVN cohort, patients with AVN had a higher incidence of central nervous system (CNS) involvement and nephritis, required greater cumulative prednisone (PRED) from cSLE diagnosis to AVN, received a greater maximal daily PRED dose, and had more frequent use of pulse methylprednisolone therapy. Multivariable regression analysis confirmed major organ involvement (CNS disease and/or nephritis) and maximal daily PRED dose as significant predictors of symptomatic AVN development. Patients with cSLE with severe organ involvement including nephritis and CNS disease and higher maximal daily dose of PRED are more likely to develop symptomatic AVN.

  14. Long-term mortality of patients with septic ocular or central nervous system complications from pyogenic liver abscess: a population-based study.

    PubMed

    Lin, Yi-Tsung; Liu, Chia-Jen; Chen, Tzeng-Ji; Fung, Chang-Phone

    2012-01-01

    Taiwan is endemic for pyogenic liver abscess (PLA). Septic ocular or central nervous system (CNS) complications derived from PLA can result in catastrophic disability. We investigated the epidemiology and long-term prognosis of PLA patients with septic ocular or CNS complications over an 8-year period. We extracted 21,307 patients with newly diagnosed PLA from a nationwide health registry in Taiwan between 2000 and 2007. The frequency of and risk factors for PLA with septic ocular or CNS complications were determined. The 2-year survival of these patients was compared between those with and without septic ocular or CNS complications. Septic ocular or CNS complications accounted for 2.1% of all PLA patients. Age and the Charlson comorbidity index were significantly lower in PLA patients with ocular or CNS complications than those without. Diabetes and age <65 years were independent predictors of septic ocular or CNS complications. The 2-year mortality of patients with septic ocular or CNS complications was similar to those without complications (24.8% vs. 27.5%, p = 0.502). However, among patients <65 years old and a Charlson index ≤ 1, the 2-year mortality was significantly higher in those with than without complications (18.6% vs. 11.8%, p = 0.001). Physicians should recognize that catastrophic disability due to ocular or neurological complications from PLA could lead to a poor long-term prognosis, and should follow-up these patients more closely.

  15. Obesity induced by a high-fat diet is associated with increased immune cell entry into the central nervous system.

    PubMed

    Buckman, Laura B; Hasty, Alyssa H; Flaherty, David K; Buckman, Christopher T; Thompson, Misty M; Matlock, Brittany K; Weller, Kevin; Ellacott, Kate L J

    2014-01-01

    Obesity is associated with chronic low-grade inflammation in peripheral tissues caused, in part, by the recruitment of inflammatory monocytes into adipose tissue. Studies in rodent models have also shown increased inflammation in the central nervous system (CNS) during obesity. The goal of this study was to determine whether obesity is associated with recruitment of peripheral immune cells into the CNS. To do this we used a bone marrow chimerism model to track the entry of green-fluorescent protein (GFP) labeled peripheral immune cells into the CNS. Flow cytometry was used to quantify the number of GFP(+) immune cells recruited into the CNS of mice fed a high-fat diet compared to standard chow fed controls. High-fat feeding resulted in obesity associated with a 30% increase in the number of GFP(+) cells in the CNS compared to control mice. Greater than 80% of the GFP(+) cells recruited to the CNS were also CD45(+) CD11b(+) indicating that the GFP(+) cells displayed characteristics of microglia/macrophages. Immunohistochemistry further confirmed the increase in GFP(+) cells in the CNS of the high-fat fed group and also indicated that 93% of the recruited cells were found in the parenchyma and had a stellate morphology. These findings indicate that peripheral immune cells can be recruited to the CNS in obesity and may contribute to the inflammatory response. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Multiple lipopolysaccharide (LPS) injections alter interleukin 6 (IL-6), IL-7, IL-10 and IL-6 and IL-7 receptor mRNA in CNS and spleen.

    PubMed

    Szot, Patricia; Franklin, Allyn; Figlewicz, Dianne P; Beuca, Timothy Petru; Bullock, Kristin; Hansen, Kim; Banks, William A; Raskind, Murray A; Peskind, Elaine R

    2017-07-04

    Neuroinflammation is proposed to be an important component in the development of several central nervous system (CNS) disorders including depression, Alzheimer's disease, Parkinson's disease, and traumatic brain injury. However, exactly how neuroinflammation leads to, or contributes to, these central disorders is unclear. The objective of the study was to examine and compare the expression of mRNAs for interleukin-6 (IL-6), IL-7, IL-10 and the receptors for IL-6 (IL-6R) and IL-7 (IL-7R) using in situ hybridization in discrete brain regions and in the spleen after multiple injections of 3mg/kg lipopolysaccharide (LPS), a model of neuroinflammation. In the spleen, LPS significantly elevated IL-6 mRNA expression, then IL-10 mRNA, with no effect on IL-7 or IL-7R mRNA, while significantly decreasing IL-6R mRNA expression. In the CNS, LPS administration had the greatest effect on IL-6 and IL-6R mRNA. LPS increased IL-6 mRNA expression only in non-neuronal cells throughout the brain, but significantly elevated IL-6R mRNA in neuronal populations, where observed, except the cerebellum. LPS resulted in variable effects on IL-10 mRNA, and had no effect on IL-7 or IL-7R mRNA expression. These studies indicate that LPS-induced neuroinflammation has substantial but variable effects on the regional and cellular patterns of CNS IL-6, IL-7 and IL-10, and for IL-6R and IL-7R mRNA expression. It is apparent that administration of LPS can affect non-neuronal and neuronal cells in the brain. Further research is required to determine how CNS inflammatory changes associated with IL-6, IL-10 and IL-6R could in turn contribute to the development of CNS neurological disorders. Published by Elsevier Ltd.

  17. Th17 Cells Pathways in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders: Pathophysiological and Therapeutic Implications

    PubMed Central

    Passos, Giordani Rodrigues Dos; Sato, Douglas Kazutoshi; Becker, Jefferson; Fujihara, Kazuo

    2016-01-01

    Several animal and human studies have implicated CD4+ T helper 17 (Th17) cells and their downstream pathways in the pathogenesis of central nervous system (CNS) autoimmunity in multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD), challenging the traditional Th1-Th2 paradigm. Th17 cells can efficiently cross the blood-brain barrier using alternate ways from Th1 cells, promote its disruption, and induce the activation of other inflammatory cells in the CNS. A number of environmental factors modulate the activity of Th17 pathways, so changes in the diet, exposure to infections, and other environmental factors can potentially change the risk of development of autoimmunity. Currently, new drugs targeting specific points of the Th17 pathways are already being tested in clinical trials and provide basis for the development of biomarkers to monitor disease activity. Herein, we review the key findings supporting the relevance of the Th17 pathways in the pathogenesis of MS and NMOSD, as well as their potential role as therapeutic targets in the treatment of immune-mediated CNS disorders. PMID:26941483

  18. The CNS connectome of a tadpole larva of Ciona intestinalis (L.) highlights sidedness in the brain of a chordate sibling

    PubMed Central

    Ryan, Kerrianne; Lu, Zhiyuan; Meinertzhagen, Ian A

    2016-01-01

    Left-right asymmetries in brains are usually minor or cryptic. We report brain asymmetries in the tiny, dorsal tubular nervous system of the ascidian tadpole larva, Ciona intestinalis. Chordate in body plan and development, the larva provides an outstanding example of brain asymmetry. Although early neural development is well studied, detailed cellular organization of the swimming larva’s CNS remains unreported. Using serial-section EM we document the synaptic connectome of the larva’s 177 CNS neurons. These formed 6618 synapses including 1772 neuromuscular junctions, augmented by 1206 gap junctions. Neurons are unipolar with at most a single dendrite, and few synapses. Some synapses are unpolarised, others form reciprocal or serial motifs; 922 were polyadic. Axo-axonal synapses predominate. Most neurons have ciliary organelles, and many features lack structural specialization. Despite equal cell numbers on both sides, neuron identities and pathways differ left/right. Brain vesicle asymmetries include a right ocellus and left coronet cells. DOI: http://dx.doi.org/10.7554/eLife.16962.001 PMID:27921996

  19. Integration and long distance axonal regeneration in the central nervous system from transplanted primitive neural stem cells.

    PubMed

    Zhao, Jiagang; Sun, Woong; Cho, Hyo Min; Ouyang, Hong; Li, Wenlin; Lin, Ying; Do, Jiun; Zhang, Liangfang; Ding, Sheng; Liu, Yizhi; Lu, Paul; Zhang, Kang

    2013-01-04

    Spinal cord injury (SCI) results in devastating motor and sensory deficits secondary to disrupted neuronal circuits and poor regenerative potential. Efforts to promote regeneration through cell extrinsic and intrinsic manipulations have met with limited success. Stem cells represent an as yet unrealized therapy in SCI. Recently, we identified novel culture methods to induce and maintain primitive neural stem cells (pNSCs) from human embryonic stem cells. We tested whether transplanted human pNSCs can integrate into the CNS of the developing chick neural tube and injured adult rat spinal cord. Following injection of pNSCs into the developing chick CNS, pNSCs integrated into the dorsal aspects of the neural tube, forming cell clusters that spontaneously differentiated into neurons. Furthermore, following transplantation of pNSCs into the lesioned rat spinal cord, grafted pNSCs survived, differentiated into neurons, and extended long distance axons through the scar tissue at the graft-host interface and into the host spinal cord to form terminal-like structures near host spinal neurons. Together, these findings suggest that pNSCs derived from human embryonic stem cells differentiate into neuronal cell types with the potential to extend axons that associate with circuits of the CNS and, more importantly, provide new insights into CNS integration and axonal regeneration, offering hope for repair in SCI.

  20. Optimization of dipeptidic inhibitors of cathepsin L for improved Toxoplasma gondii selectivity and CNS permeability.

    PubMed

    Zwicker, Jeffery D; Diaz, Nicolas A; Guerra, Alfredo J; Kirchhoff, Paul D; Wen, Bo; Sun, Duxin; Carruthers, Vern B; Larsen, Scott D

    2018-06-01

    The neurotropic protozoan Toxoplasma gondii is the second leading cause of death due to foodborne illness in the US, and has been designated as one of five neglected parasitic infections by the Center for Disease Control and Prevention. Currently, no treatment options exist for the chronic dormant-phase Toxoplasma infection in the central nervous system (CNS). T. gondii cathepsin L (TgCPL) has recently been implicated as a novel viable target for the treatment of chronic toxoplasmosis. In this study, we report the first body of SAR work aimed at developing potent inhibitors of TgCPL with selectivity vs the human cathepsin L. Starting from a known inhibitor of human cathepsin L, and guided by structure-based design, we were able to modulate the selectivity for Toxoplasma vs human CPL by nearly 50-fold while modifying physiochemical properties to be more favorable for metabolic stability and CNS penetrance. The overall potency of our inhibitors towards TgCPL was improved from 2 μM to as low as 110 nM and we successfully demonstrated that an optimized analog 18b is capable of crossing the BBB (0.5 brain/plasma). This work is an important first step toward development of a CNS-penetrant probe to validate TgCPL as a feasible target for the treatment of chronic toxoplasmosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Carbon nanotube uptake and toxicity in the brain.

    PubMed

    Zhang, Leying; Alizadeh, Darya; Badie, Behnam

    2010-01-01

    The development of novel drug delivery systems is essential for the improvement of therapeutics for most human diseases. Currently used cellular delivery systems, such as viral vectors, liposomes, cationic lipids, and polymers, may have limited clinical efficacy because of safety issues, low gene transfer efficiency, or cytotoxicity. Carbon nanotubes (CNTs) have garnered much interest as possible biological vectors after the recent discovery of their capacity to penetrate cells. Inspite of the prominence of CNT studies in the nanotechnology literature, exploration of their application to central nervous system (CNS) therapeutics is at a very early stage. Before CNTs are used for treatment of brain and spinal cord disorders, however, several issues such as their CNS penetration and toxicity need to be addressed. Here, we discuss methods by which CNT uptake and toxicity can be assessed in animal models.

  2. Anti-transferrin receptor-modified amphotericin B-loaded PLA-PEG nanoparticles cure Candidal meningitis and reduce drug toxicity.

    PubMed

    Tang, Xiaolong; Liang, Yong; Zhu, Yongqiang; Xie, Chunmei; Yao, Aixia; Chen, Li; Jiang, Qinglin; Liu, Tingting; Wang, Xiaoyu; Qian, Yunyun; Wei, Jia; Ni, Wenxuan; Dai, Jingjing; Jiang, Zhenyou; Hou, Wei

    2015-01-01

    Fatal fungal infections in central nervous system (CNS) can occur through hematogenous spread or direct extension. At present, hydrophobic amphotericin B (AMB) is the most effective antifungal drug in clinical trials. However, AMB is hydrophobic and therefore penetrates poorly into the CNS, and therapeutic levels of AMB are hard to achieve. The transferrin receptor (TfR/CD71) located at the blood-brain barrier mediates transferrin transcytosis. In order to enhance the receptor-mediated delivery of AMB into CNS with therapeutic level, an anti-TfR antibody (OX26)-modified AMB-loaded PLA (poly[lactic acid])-PEG (polyethylene glycol)-based micellar drug delivery system was constructed. The prepared OX26-modified AMB-loaded nanoparticles (OX26-AMB-NPs) showed significant reduction of CNS fungal burden and an increase of mouse survival time. In conclusion, OX26-AMB-NPs represent a promising novel drug delivery system for intracerebral fungal infection.

  3. Prevalence and associated positive psychological variables of anxiety and depression among patients with central nervous system tumors in China: a cross-sectional study.

    PubMed

    Bao, Yijun; Li, Lizhuo; Guan, Yanlei; Wang, Wei; Liu, Yan; Wang, Pengfei; Huang, Xiaolong; Tao, Shanwei; Wang, Yunjie

    2017-02-01

    Anxiety and depression have been identified as common psychological distresses faced by the majority of patients with cancer. However, no studies have investigated the relationship between positive psychological variables (hope, optimism and general self-efficacy) and anxiety and depression among patients with central nervous system (CNS) tumors in China. Our hypothesis is that the patients with higher levels of hope, optimism or general self-efficacy have lower levels of anxiety and depression when encountered by stressful life events such as CNS tumors. Questionnaires, including the Hospital Anxiety and Depression Scale, the Herth Hope Index, the Life Orientation Scale-Revised and the General Self-Efficacy Scale, and demographic and clinical records were used to collect information about patients with CNS tumors in Liaoning Province, China. The study included 222 patients (effective response rate: 66.1%). Hierarchical linear regression analyses were performed to explore the associations among hope, optimism, general self-efficacy and anxiety/depression. Prevalence of anxiety and depression were 42.8 and 32.4%, respectively, among patients with CNS tumors. Hope and optimism both were negatively associated with anxiety and together accounted for 21.4% of variance in anxiety. Similarly, hope and optimism both were negatively associated with depression and accounted for 32.4% of variance in depression. The high prevalence of anxiety and depression among patients with CNS tumors should receive more attention in Chinese medical settings. To help reduce anxiety and depression, health care professionals should develop interventions to promote hope and optimism based on patients' specific needs. Copyright © 2016 John Wiley & Sons, Ltd.

  4. A Herpes Simplex Virus-Derived Replicative Vector Expressing LIF Limits Experimental Demyelinating Disease and Modulates Autoimmunity

    PubMed Central

    Nygårdas, Michaela; Paavilainen, Henrik; Müther, Nadine; Nagel, Claus-Henning; Röyttä, Matias; Sodeik, Beate; Hukkanen, Veijo

    2013-01-01

    Herpes simplex virus type 1 (HSV-1) has properties that can be exploited for the development of gene therapy vectors. The neurotropism of HSV enables delivery of therapeutic genes to the nervous system. Using a bacterial artificial chromosome (BAC), we constructed an HSV-1(17+)-based replicative vector deleted of the neurovirulence gene γ134.5, and expressing leukemia inhibitory factor (LIF) as a transgene for treatment of experimental autoimmune encephalomyelitis (EAE). EAE is an inducible T-cell mediated autoimmune disease of the central nervous system (CNS) and is used as an animal model for multiple sclerosis. Demyelination and inflammation are hallmarks of both diseases. LIF is a cytokine that has the potential to limit demyelination and oligodendrocyte loss in CNS autoimmune diseases and to affect the T-cell mediated autoimmune response. In this study SJL/J mice, induced for EAE, were treated with a HSV-LIF vector intracranially and the subsequent changes in disease parameters and immune responses during the acute disease were investigated. Replicating HSV-LIF and its DNA were detected in the CNS during the acute infection, and the vector spread to the spinal cord but was non-virulent. The HSV-LIF significantly ameliorated the EAE and contributed to a higher number of oligodendrocytes in the brains when compared to untreated mice. The HSV-LIF therapy also induced favorable changes in the expression of immunoregulatory cytokines and T-cell population markers in the CNS during the acute disease. These data suggest that BAC-derived HSV vectors are suitable for gene therapy of CNS disease and can be used to test the therapeutic potential of immunomodulatory factors for treatment of EAE. PMID:23700462

  5. Aging, the Central Nervous System, and Mobility in Older Adults: Interventions.

    PubMed

    Varma, Vijay R; Hausdorff, Jeffrey M; Studenski, Stephanie A; Rosano, Caterina; Camicioli, Richard; Alexander, Neil B; Chen, Wen G; Lipsitz, Lewis A; Carlson, Michelle C

    2016-11-01

    Research suggests that the central nervous system (CNS) and mobility are closely linked. CNS-mediated mobility impairment may represent a potentially new and prevalent syndrome within the older adult populations. Interventions targeting this group may have the potential to improve mobility and cognition and prevent disability. In 2012, the Gerontological Society of America (GSA) and the National Institute on Aging (NIA) sponsored a 3-year conference workshop series, "Aging, the CNS, and Mobility." The goal of this third and final conference was to (i) report on the state of the science of interventions targeting CNS-mediated mobility impairment among community-dwelling older adults and (ii) partnering with the NIA, explore the future of research and intervention design focused on a potentially novel aging syndrome. Evidence was presented in five main intervention areas: (i) pharmacology and diet; (ii) exercise; (iii) electrical stimulation; (iv) sensory stimulation/deprivation; and (v) a combined category of multimodal interventions. Workshop participants identified important gaps in knowledge and key recommendations for future interventions related to recruitment and sample selection, intervention design, and methods to measure effectiveness. In order to develop effective preventive interventions for this prevalent syndrome, multidisciplinary teams are essential particularly because of the complex nature of the syndrome. Additionally, integrating innovative methods into the design of interventions may help researchers better measure complex mechanisms, and finally, the value of understanding the link between the CNS and mobility should be conveyed to researchers across disciplines in order to incorporate cognitive and mobility measurements into study protocols. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Exclusion of Integrins from CNS Axons Is Regulated by Arf6 Activation and the AIS

    PubMed Central

    Franssen, Elske H. P.; Zhao, Rong-Rong; Koseki, Hiroaki; Kanamarlapudi, Venkateswarlu; Hoogenraad, Casper C.

    2015-01-01

    Integrins are adhesion and survival molecules involved in axon growth during CNS development, as well as axon regeneration after injury in the peripheral nervous system (PNS). Adult CNS axons do not regenerate after injury, partly due to a low intrinsic growth capacity. We have previously studied the role of integrins in axon growth in PNS axons; in the present study, we investigate whether integrin mechanisms involved in PNS regeneration may be altered or lacking from mature CNS axons by studying maturing CNS neurons in vitro. In rat cortical neurons, we find that integrins are present in axons during initial growth but later become restricted to the somato-dendritic domain. We investigated how this occurs and whether it can be altered to enhance axonal growth potential. We find a developmental change in integrin trafficking; transport becomes predominantly retrograde throughout axons, but not dendrites, as neurons mature. The directionality of transport is controlled through the activation state of ARF6, with developmental upregulation of the ARF6 GEF ARNO enhancing retrograde transport. Lowering ARF6 activity in mature neurons restores anterograde integrin flow, allows transport into axons, and increases axon growth. In addition, we found that the axon initial segment is partly responsible for exclusion of integrins and removal of this structure allows integrins into axons. Changing posttranslational modifications of tubulin with taxol also allows integrins into the proximal axon. The experiments suggest that the developmental loss of regenerative ability in CNS axons is due to exclusion of growth-related molecules due to changes in trafficking. PMID:26019348

  7. Diagnosis and early detection of CNS-SLE in MRL/lpr mice using peptide microarrays.

    PubMed

    Williams, Stephanie; Stafford, Phillip; Hoffman, Steven A

    2014-06-07

    An accurate method that can diagnose and predict lupus and its neuropsychiatric manifestations is essential since currently there are no reliable methods. Autoantibodies to a varied panel of antigens in the body are characteristic of lupus. In this study we investigated whether serum autoantibody binding patterns on random-sequence peptide microarrays (immunosignaturing) can be used for diagnosing and predicting the onset of lupus and its central nervous system (CNS) manifestations. We also tested the techniques for identifying potentially pathogenic autoantibodies in CNS-Lupus. We used the well-characterized MRL/lpr lupus animal model in two studies as a first step to develop and evaluate future studies in humans. In study one we identified possible diagnostic peptides for both lupus and altered behavior in the forced swim test. When comparing the results of study one to that of study two (carried out in a similar manner), we further identified potential peptides that may be diagnostic and predictive of both lupus and altered behavior in the forced swim test. We also characterized five potentially pathogenic brain-reactive autoantibodies, as well as suggested possible brain targets. These results indicate that immunosignaturing could predict and diagnose lupus and its CNS manifestations. It can also be used to characterize pathogenic autoantibodies, which may help to better understand the underlying mechanisms of CNS-Lupus.

  8. HSP70 protects rats and hippocampal neurons from central nervous system oxygen toxicity by suppression of NO production and NF-κB activation.

    PubMed

    Yi, Hongjie; Huang, Guoyang; Zhang, Kun; Liu, Shulin; Xu, Weigang

    2018-05-01

    During diving, central nervous system oxygen toxicity may cause drowning or barotrauma, which has dramatically limited the working benefits of hyperbaric oxygen in underwater operations and clinical applications. The aim of this study is to understand the effects and the underlying mechanism of heat shock protein 70 on central nervous system oxygen toxicity and its mechanisms in vivo and in vitro. Rats were given geranylgeranylacetone (800 mg/kg) orally to induce hippocampal expression of heat shock protein 70 and then treated with hyperbaric oxygen. The time course of hippocampal heat shock protein 70 expression after geranylgeranylacetone administration was measured. Seizure latency and first electrical discharge were recorded to evaluate the effects of HSP70 on central nervous system oxygen toxicity. Effects of inhibitors of nitric oxide synthase and nuclear factor-κB on the seizure latencies and changes in nitric oxide, nitric oxide synthase, and nuclear factor-κB levels in the hippocampus tissues were examined. In cell experiments, hippocampal neurons were transfected with a virus vector carrying the heat shock protein 70 gene (H3445) before hyperbaric oxygen treatment. Cell viability, heat shock protein 70 expression, nitric oxide, nitric oxide synthase, and NF-κB levels in neurons were measured. The results showed that heat shock protein 70 expression significantly increased and peaked at 48 h after geranylgeranylacetone was given. Geranylgeranylacetone prolonged the first electrical discharge and seizure latencies, which was reversed by neuronal nitric oxide synthase, inducible nitric oxide synthase and NF-κB inhibitors. Nitric oxide, nitric oxide synthase, and inducible nitric oxide synthase levels in the hippocampus were significantly increased after hyperbaric oxygen exposure, but reversed by geranylgeranylacetone, while heat shock protein 70 inhibitor quercetin could inhibit this effect of geranylgeranylacetone. In the in vitro study, heat shock protein 70-overexpression decreased the nitric oxide, nitric oxide synthase, and inducible nitric oxide synthase levels as well as the cytoplasm/nucleus ratio of nuclear factor-κB and protected neurons from hyperbaric oxygen-induced cell injury. In conclusion, overexpression of heat shock protein 70 in hippocampal neurons may protect rats from central nervous system oxygen toxicity by suppression of neuronal nitric oxide synthase and inducible nitric oxide synthase-mediated nitric oxide production and translocation of nuclear factor-κB to nucleus. Impact statement Because the pathogenesis of central nervous system oxygen toxicity (CNS-OT) remains unclear, there are few interventions available. To develop an efficient strategy against CNS-OT, it is necessary to understand its pathogenesis and in particular, the relevant key factors involved. This study examined the protective effects of heat shock protein 70 (HSP70) on CNS-OT via in vivo and in vitro experiments. Our results indicated that overexpression of HSP70 in hippocampal neurons may protect rats from CNS-OT by suppression of nNOS and iNOS-mediated NO production and the activation of NF-κB. These findings contribute to clarification of the role of HSP70 in CNS-OT and provide us a potential novel target to prevent CNS-OT. Clarification of the involvement of NO, NOS and NF-κB provides new insights into the mechanism of CNS-OT and may help us to develop new approach against it by interfering these molecules.

  9. Cerebral tuberculosis in a patient with systemic lupus erythematosus following cyclophosphamide treatment: a case report.

    PubMed

    Cooray, S; Zhang, H; Breen, R; Carr-White, G; Howard, R; Cuadrado, M; D'Cruz, D; Sanna, G

    2018-04-01

    Central nervous system (CNS) tuberculosis (TB) is a rare but catastrophic event in patients with systemic lupus erythematosus (SLE). Here we report a case of cerebral TB in a patient with lupus myocarditis and nephritis, following cyclophosphamide immunosuppression. To our knowledge this is the first reported case of cerebral TB in SLE in a non-endemic country. A 31-year-old female with SLE and a history of regular travel to Kenya presented to our centre with clinical features of acute heart failure. She was diagnosed with severe lupus myocarditis, and a renal biopsy also confirmed lupus nephritis. Prior to admission, she had also had a cough, fever and weight loss and was under investigation for suspected TB infection. She was treated with ivabradine, beta-blockers and diuretics together with methylprednisolone and cyclophosphamide immunosuppression. Subsequent sputum cultures confirmed TB and she was commenced on triple therapy. Despite this, she developed confusion, dizziness, blurred vision and fluctuating consciousness. Magnetic resonance imaging (MRI) and lumbar puncture revealed CNS TB infection resulting in meningitis. This was later complicated by obstructive hydrocephalus due to TB abscesses. A ventriculoperitoneal (VP) shunt was inserted and TB medications were given intravenously (IV) with dexamethasone. Following a prolonged hospital admission, the patient eventually recovered and rituximab treatment was used to control her SLE. TB infection has been associated with SLE flares. It is likely in this case that TB exacerbated a lupus flare and subsequent immunosuppression resulted in mycobacterial dissemination to the CNS. Systemic and CNS features of TB and SLE are difficult to distinguish and their contemporaneous management represents a diagnostic and therapeutic challenge.

  10. Can Functional Magnetic Resonance Imaging Improve Success Rates in CNS Drug Discovery?

    PubMed Central

    Borsook, David; Hargreaves, Richard; Becerra, Lino

    2011-01-01

    Introduction The bar for developing new treatments for CNS disease is getting progressively higher and fewer novel mechanisms are being discovered, validated and developed. The high costs of drug discovery necessitate early decisions to ensure the best molecules and hypotheses are tested in expensive late stage clinical trials. The discovery of brain imaging biomarkers that can bridge preclinical to clinical CNS drug discovery and provide a ‘language of translation’ affords the opportunity to improve the objectivity of decision-making. Areas Covered This review discusses the benefits, challenges and potential issues of using a science based biomarker strategy to change the paradigm of CNS drug development and increase success rates in the discovery of new medicines. The authors have summarized PubMed and Google Scholar based publication searches to identify recent advances in functional, structural and chemical brain imaging and have discussed how these techniques may be useful in defining CNS disease state and drug effects during drug development. Expert opinion The use of novel brain imaging biomarkers holds the bold promise of making neuroscience drug discovery smarter by increasing the objectivity of decision making thereby improving the probability of success of identifying useful drugs to treat CNS diseases. Functional imaging holds the promise to: (1) define pharmacodynamic markers as an index of target engagement (2) improve translational medicine paradigms to predict efficacy; (3) evaluate CNS efficacy and safety based on brain activation; (4) determine brain activity drug dose-response relationships and (5) provide an objective evaluation of symptom response and disease modification. PMID:21765857

  11. Planarian homologs of netrin and netrin receptor are required for proper regeneration of the central nervous system and the maintenance of nervous system architecture.

    PubMed

    Cebrià, Francesc; Newmark, Phillip A

    2005-08-01

    Conserved axon guidance mechanisms are essential for proper wiring of the nervous system during embryogenesis; however, the functions of these cues in adults and during regeneration remain poorly understood. Because freshwater planarians can regenerate a functional central nervous system (CNS) from almost any portion of their body, they are useful models in which to study the roles of guidance cues during neural regeneration. Here, we characterize two netrin homologs and one netrin receptor family member from Schmidtea mediterranea. RNAi analyses indicate that Smed-netR (netrin receptor) and Smed-netrin2 are required for proper CNS regeneration and that Smed-netR may mediate the response to Smed-netrin2. Remarkably, Smed-netR and Smed-netrin2 are also required in intact planarians to maintain the proper patterning of the CNS. These results suggest a crucial role for guidance cues, not only in CNS regeneration but also in maintenance of neural architecture.

  12. Annual Research Review: Epigenetic Mechanisms and Environmental Shaping of the Brain during Sensitive Periods of Development

    ERIC Educational Resources Information Center

    Roth, Tania L.; Sweatt, J. David

    2011-01-01

    Experiences during early development profoundly affect development of the central nervous system (CNS) to impart either risk for or resilience to later psychopathology. Work in the developmental neuroscience field is providing compelling data that epigenetic marking of the genome may underlie aspects of this process. Experiments in rodents…

  13. A Dialogue between the Immune System and Brain, Spoken in the Language of Serotonin

    PubMed Central

    2012-01-01

    Neuropsychiatric disorders have long been linked to both immune system activation and alterations in serotonin (5-HT) signaling. In the CNS, the contributions of 5-HT modulate a broad range of targets, most notably, hypothalamic, limbic and cortical circuits linked to the control of mood and mood disorders. In the periphery, many are aware of the production and actions of 5-HT in the gut but are unaware that the molecule and its receptors are also present in the immune system where evidence suggests they contribute to the both innate and adaptive responses. In addition, there is clear evidence that the immune system communicates to the brain via both humoral and neuronal mechanisms, and that CNS 5-HT neurons are a direct or indirect target for these actions. Following a brief primer on the immune system, we describe our current understanding of the synthesis, release, and actions of 5-HT in modulating immune function, including the expression of 5-HT biosynthetic enzymes, receptors, and transporters that are typically studied with respect to the roles in the CNS. We then orient our presentation to recent findings that pro-inflammatory cytokines can modulate CNS 5-HT signaling, leading to a conceptualization that among the many roles of 5-HT in the body is an integrated physiological and behavioral response to inflammatory events and pathogens. From this perspective, altered 5-HT/immune conversations are likely to contribute to risk for neurobehavioral disorders historically linked to compromised 5-HT function or ameliorated by 5-HT targeted medications, including depression and anxiety disorders, obsessive-compulsive disorder (OCD), and autism. Our review raises the question as to whether genetic variation impacting 5-HT signaling genes may contribute to maladaptive behavior as much through perturbed immune system modulation as through altered brain mechanisms. Conversely, targeting the immune system for therapeutic development may provide an important opportunity to treat mental illness. PMID:23336044

  14. Interaction between Tat and Drugs of Abuse during HIV-1 Infection and Central Nervous System Disease

    PubMed Central

    Maubert, Monique E.; Pirrone, Vanessa; Rivera, Nina T.; Wigdahl, Brian; Nonnemacher, Michael R.

    2016-01-01

    In many individuals, drug abuse is intimately linked with HIV-1 infection. In addition to being associated with one-third of all HIV-1 infections in the United States, drug abuse also plays a role in disease progression and severity in HIV-1-infected patients, including adverse effects on the central nervous system (CNS). Specific systems within the brain are known to be damaged in HIV-1-infected individuals and this damage is similar to that observed in drug abuse. Even in the era of anti-retroviral therapy (ART), CNS pathogenesis occurs with HIV-1 infection, with a broad range of cognitive impairment observed, collectively referred to as HIV-1-associated neurocognitive disorders (HAND). A number of HIV-1 proteins (Tat, gp120, Nef, Vpr) have been implicated in the etiology of pathogenesis and disease as a result of the biologic activity of the extracellular form of each of the proteins in a number of tissues, including the CNS, even in ART-suppressed patients. In this review, we have made Tat the center of attention for a number of reasons. First, it has been shown to be synthesized and secreted by HIV-1-infected cells in the CNS, despite the most effective suppression therapies available to date. Second, Tat has been shown to alter the functions of several host factors, disrupting the molecular and biochemical balance of numerous pathways contributing to cellular toxicity, dysfunction, and death. In addition, the advantages and disadvantages of ART suppression with regard to controlling the genesis and progression of neurocognitive impairment are currently under debate in the field and are yet to be fully determined. In this review, we discuss the individual and concerted contributions of HIV-1 Tat, drug abuse, and ART with respect to damage in the CNS, and how these factors contribute to the development of HAND in HIV-1-infected patients. PMID:26793168

  15. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system

    PubMed Central

    Kapsimali, Marika; Kloosterman, Wigard P; de Bruijn, Ewart; Rosa, Frederic; Plasterk, Ronald HA; Wilson, Stephen W

    2007-01-01

    Background MicroRNA (miRNA) encoding genes are abundant in vertebrate genomes but very few have been studied in any detail. Bioinformatic tools allow prediction of miRNA targets and this information coupled with knowledge of miRNA expression profiles facilitates formulation of hypotheses of miRNA function. Although the central nervous system (CNS) is a prominent site of miRNA expression, virtually nothing is known about the spatial and temporal expression profiles of miRNAs in the brain. To provide an overview of the breadth of miRNA expression in the CNS, we performed a comprehensive analysis of the neuroanatomical expression profiles of 38 abundant conserved miRNAs in developing and adult zebrafish brain. Results Our results show miRNAs have a wide variety of different expression profiles in neural cells, including: expression in neuronal precursors and stem cells (for example, miR-92b); expression associated with transition from proliferation to differentiation (for example, miR-124); constitutive expression in mature neurons (miR-124 again); expression in both proliferative cells and their differentiated progeny (for example, miR-9); regionally restricted expression (for example, miR-222 in telencephalon); and cell-type specific expression (for example, miR-218a in motor neurons). Conclusion The data we present facilitate prediction of likely modes of miRNA function in the CNS and many miRNA expression profiles are consistent with the mutual exclusion mode of function in which there is spatial or temporal exclusion of miRNAs and their targets. However, some miRNAs, such as those with cell-type specific expression, are more likely to be co-expressed with their targets. Our data provide an important resource for future functional studies of miRNAs in the CNS. PMID:17711588

  16. Clinicopathological and immunohistochemical features of primary central nervous system germ cell tumors: a 24-years experience.

    PubMed

    Gao, Yuping; Jiang, Jiyao; Liu, Qiang

    2014-01-01

    Primary central nervous system (CNS) germ cell tumors (GCTs) are a rare heterogeneous group of lesions, which the clinicopathological features have a marked degree of heterogeneity comparing with that of gonadal GCTs. Accurately diagnosing CNS GCTs might be extremely difficult and requires immunohistochemical verification. This study was to investigate the biological feature of CNS GCTs and diagnostic value of immunohistochemical markers OCT3/4, C-kit, PLAP, and CD30 in CNS GCTs. A retrospective study was performed on 34 patients with CNS germ cell tumors between 1990 and 2014. 34 CNS GCTs account for 9.2% of all primary CNS neoplasms. The sellar region (35.3%) and pineal gland (17.6%) were the most common sites of intracranial GCTs. Hydrocephalus (82.4%) and diplopia (46.9%) were the two most common clinical presentations. The most common histological subtypes were germinoma (67.6%). PLAP, c-kit, OCT3/4 were highly expressed in gernimomas. CD30 and CK AE1/3 stainings were positive in embryonal carcinoma. Yolk sac tumor component showed positive staining for AFP and CK AE1/3. β-HCG staining was positive in choriocarcinoma and STGC. Patients with mature teratomas and germinomas had a better prognosis (a 5-year survival rate) than those with embryonal carcinoma and choriocarcinoma (a 5-year survival rates were 0). Our finding suggest that the incidences of primary CNS GCTs are higher in South China than in the West, but mixed GCTs are uncommon in our study. The judicious use of a panel of selected markers is helpful in diagnosing and predicting the prognosis for CNS GCTs.

  17. Genome-wide analysis of the bHLH gene family in planarians identifies factors required for adult neurogenesis and neuronal regeneration.

    PubMed

    Cowles, Martis W; Brown, David D R; Nisperos, Sean V; Stanley, Brianna N; Pearson, Bret J; Zayas, Ricardo M

    2013-12-01

    In contrast to most well-studied model organisms, planarians have a remarkable ability to completely regenerate a functional nervous system from a pluripotent stem cell population. Thus, planarians provide a powerful model to identify genes required for adult neurogenesis in vivo. We analyzed the basic helix-loop-helix (bHLH) family of transcription factors, many of which are crucial for nervous system development and have been implicated in human diseases. However, their potential roles in adult neurogenesis or central nervous system (CNS) function are not well understood. We identified 44 planarian bHLH homologs, determined their patterns of expression in the animal and assessed their functions using RNAi. We found nine bHLHs expressed in stem cells and neurons that are required for CNS regeneration. Our analyses revealed that homologs of coe, hes (hesl-3) and sim label progenitors in intact planarians, and following amputation we observed an enrichment of coe(+) and sim(+) progenitors near the wound site. RNAi knockdown of coe, hesl-3 or sim led to defects in CNS regeneration, including failure of the cephalic ganglia to properly pattern and a loss of expression of distinct neuronal subtype markers. Together, these data indicate that coe, hesl-3 and sim label neural progenitor cells, which serve to generate new neurons in uninjured or regenerating animals. Our study demonstrates that this model will be useful to investigate how stem cells interpret and respond to genetic and environmental cues in the CNS and to examine the role of bHLH transcription factors in adult tissue regeneration.

  18. Integrated Stress Response as a Therapeutic Target for CNS Injuries.

    PubMed

    Romero-Ramírez, Lorenzo; Nieto-Sampedro, Manuel; Barreda-Manso, M Asunción

    2017-01-01

    Central nervous system (CNS) injuries, caused by cerebrovascular pathologies or mechanical contusions (e.g., traumatic brain injury, TBI) comprise a diverse group of disorders that share the activation of the integrated stress response (ISR). This pathway is an innate protective mechanism, with encouraging potential as therapeutic target for CNS injury repair. In this review, we will focus on the progress in understanding the role of the ISR and we will discuss the effects of various small molecules that target the ISR on different animal models of CNS injury.

  19. The Effects of Different Factors on the Behavior of Neural Stem Cells

    PubMed Central

    Huang, Lixiang

    2017-01-01

    The repair of central nervous system (CNS) injury has been a worldwide problem in the biomedical field. How to reduce the damage to the CNS and promote the reconstruction of the damaged nervous system structure and function recovery has always been the concern of nerve tissue engineering. Multiple differentiation potentials of neural stem cell (NSC) determine the application value for the repair of the CNS injury. Thus, how to regulate the behavior of NSCs becomes the key to treating the CNS injury. So far, a large number of researchers have devoted themselves to searching for a better way to regulate the behavior of NSCs. This paper summarizes the effects of different factors on the behavior of NSCs in the past 10 years, especially on the proliferation and differentiation of NSCs. The final purpose of this review is to provide a more detailed theoretical basis for the clinical repair of the CNS injury by nerve tissue engineering. PMID:29358957

  20. Cerebrospinal Fluid HIV Escape from Antiretroviral Therapy.

    PubMed

    Ferretti, Francesca; Gisslen, Magnus; Cinque, Paola; Price, Richard W

    2015-06-01

    CNS infection is a nearly constant facet of systemic CNS infection and is generally well controlled by suppressive systemic antiretroviral therapy (ART). However, there are instances when HIV can be detected in the cerebrospinal fluid (CSF) despite suppression of plasma viruses below the clinical limits of measurement. We review three types of CSF viral escape: asymptomatic, neuro-symptomatic, and secondary. The first, asymptomatic CSF escape, is seemingly benign and characterized by lack of discernable neurological deterioration or subsequent CNS disease progression. Neuro-symptomatic CSF escape is an uncommon, but important, entity characterized by new or progressive CNS disease that is critical to recognize clinically because of its management implications. Finally, secondary CSF escape, which may be even more uncommon, is defined by an increase of CSF HIV replication in association with a concomitant non-HIV infection, as a consequence of the local inflammatory response. Understanding these CSF escape settings not only is important for clinical diagnosis and management but also may provide insight into the CNS HIV reservoir.

  1. Comparison of three neurotropic viruses reveals differences in viral dissemination to the central nervous system

    PubMed Central

    Luethy, Lauren N.; Erickson, Andrea K; Jesudhasan, Palmy R.; Ikizler, Mine; Dermody, Terence S.; Pfeiffer, Julie K.

    2015-01-01

    Neurotropic viruses initiate infection in peripheral tissues prior to entry into the central nervous system (CNS). However, mechanisms of dissemination are not completely understood. We used genetically marked viruses to compare dissemination of poliovirus, yellow fever virus 17D (YFV-17D), and reovirus type 3 Dearing in mice from a hind limb intramuscular inoculation site to the sciatic nerve, spinal cord, and brain. While YFV-17D likely entered the CNS via blood, poliovirus and reovirus likely entered the CNS by transport through the sciatic nerve to the spinal cord. We found that dissemination was inefficient in adult immune-competent mice for all three viruses, particularly reovirus. Dissemination of all viruses was more efficient in immune-deficient mice. Although poliovirus and reovirus both accessed the CNS by transit through the sciatic nerve, stimulation of neuronal transport by muscle damage enhanced dissemination only of poliovirus. Our results suggest that these viruses access the CNS using different pathways. PMID:26479325

  2. Permeabilization of the blood-brain barrier via mucosal engrafting: implications for drug delivery to the brain.

    PubMed

    Bleier, Benjamin S; Kohman, Richie E; Feldman, Rachel E; Ramanlal, Shreshtha; Han, Xue

    2013-01-01

    Utilization of neuropharmaceuticals for central nervous system(CNS) disease is highly limited due to the blood-brain barrier(BBB) which restricts molecules larger than 500Da from reaching the CNS. The development of a reliable method to bypass the BBB would represent an enormous advance in neuropharmacology enabling the use of many potential disease modifying therapies. Previous attempts such as transcranial catheter implantation have proven to be temporary and associated with multiple complications. Here we describe a novel method of creating a semipermeable window in the BBB using purely autologous tissues to allow for high molecular weight(HMW) drug delivery to the CNS. This approach is inspired by recent advances in human endoscopic transnasal skull base surgical techniques and involves engrafting semipermeable nasal mucosa within a surgical defect in the BBB. The mucosal graft thereby creates a permanent transmucosal conduit for drugs to access the CNS. The main objective of this study was to develop a murine model of this technique and use it to evaluate transmucosal permeability for the purpose of direct drug delivery to the brain. Using this model we demonstrate that mucosal grafts allow for the transport of molecules up to 500 kDa directly to the brain in both a time and molecular weight dependent fashion. Markers up to 40 kDa were found within the striatum suggesting a potential role for this technique in the treatment of Parkinson's disease. This proof of principle study demonstrates that mucosal engrafting represents the first permanent and stable method of bypassing the BBB thereby providing a pathway for HMW therapeutics directly into the CNS.

  3. Permeabilization of the Blood-Brain Barrier via Mucosal Engrafting: Implications for Drug Delivery to the Brain

    PubMed Central

    Bleier, Benjamin S.; Kohman, Richie E.; Feldman, Rachel E.; Ramanlal, Shreshtha; Han, Xue

    2013-01-01

    Utilization of neuropharmaceuticals for central nervous system(CNS) disease is highly limited due to the blood-brain barrier(BBB) which restricts molecules larger than 500Da from reaching the CNS. The development of a reliable method to bypass the BBB would represent an enormous advance in neuropharmacology enabling the use of many potential disease modifying therapies. Previous attempts such as transcranial catheter implantation have proven to be temporary and associated with multiple complications. Here we describe a novel method of creating a semipermeable window in the BBB using purely autologous tissues to allow for high molecular weight(HMW) drug delivery to the CNS. This approach is inspired by recent advances in human endoscopic transnasal skull base surgical techniques and involves engrafting semipermeable nasal mucosa within a surgical defect in the BBB. The mucosal graft thereby creates a permanent transmucosal conduit for drugs to access the CNS. The main objective of this study was to develop a murine model of this technique and use it to evaluate transmucosal permeability for the purpose of direct drug delivery to the brain. Using this model we demonstrate that mucosal grafts allow for the transport of molecules up to 500 kDa directly to the brain in both a time and molecular weight dependent fashion. Markers up to 40 kDa were found within the striatum suggesting a potential role for this technique in the treatment of Parkinson’s disease. This proof of principle study demonstrates that mucosal engrafting represents the first permanent and stable method of bypassing the BBB thereby providing a pathway for HMW therapeutics directly into the CNS. PMID:23637885

  4. To the Brain and Back: Migratory Paths of Dendritic Cells in Multiple Sclerosis.

    PubMed

    De Laere, Maxime; Berneman, Zwi N; Cools, Nathalie

    2018-03-01

    Migration of dendritic cells (DC) to the central nervous system (CNS) is a critical event in the pathogenesis of multiple sclerosis (MS). While up until now, research has mainly focused on the transmigration of DC through the blood-brain barrier, experimental evidence points out that also the choroid plexus and meningeal vessels represent important gateways to the CNS, especially in early disease stages. On the other hand, DC can exit the CNS to maintain immunological tolerance to patterns expressed in the CNS, a process that is perturbed in MS. Targeting trafficking of immune cells, including DC, to the CNS has demonstrated to be a successful strategy to treat MS. However, this approach is known to compromise protective immune surveillance of the brain. Unravelling the migratory paths of regulatory and pathogenic DC within the CNS may ultimately lead to the design of new therapeutic strategies able to selectively interfere with the recruitment of pathogenic DC to the CNS, while leaving host protective mechanisms intact. © 2018 American Association of Neuropathologists, Inc.

  5. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential into the Brain using MRI-Guided Focused Ultrasound

    PubMed Central

    Etame, Arnold B.; Diaz, Roberto J.; O’Reilly, Meaghan A.; Smith, Christian A.; Mainprize, Todd G.; Hynynen, Kullervo; Rutka, James T.

    2014-01-01

    The blood brain barrier (BBB) is a major impediment to the delivery of therapeutics into the central nervous system (CNS). Gold nanoparticles (AuNPs) have been successfully employed in multiple potential therapeutic and diagnostic applications outside the CNS. However, AuNPs have very limited biodistribution within the CNS following intravenous administration. Magnetic resonance imaging guided focused ultrasound (MRgFUS) is a novel technique that can transiently increase BBB permeability allowing delivery of therapeutics into the CNS. MRgFUS has not been previously employed for delivery of AuNPs into the CNS. This work represents the first demonstration of focal enhanced delivery of AuNPs into the CNS using MRgFUS in a rat model both safely and effectively. Histologic visualization and analytical quantification of AuNPs within the brain parenchyma suggest BBB transgression. These results suggest a role for MRgFUS in the delivery of AuNPs with therapeutic potential into the CNS for targeting neurological diseases. PMID:22349099

  6. Pharmacology of Glutamate Transport in the CNS: Substrates and Inhibitors of Excitatory Amino Acid Transporters (EAATs) and the Glutamate/Cystine Exchanger System x c -

    NASA Astrophysics Data System (ADS)

    Bridges, Richard J.; Patel, Sarjubhai A.

    As the primary excitatory neurotransmitter in the mammalian CNS, l-glutamate participates not only in standard fast synaptic communication, but also contributes to higher order signal processing, as well as neuropathology. Given this variety of functional roles, interest has been growing as to how the extracellular concentrations of l-glutamate surrounding neurons are regulated by cellular transporter proteins. This review focuses on two prominent systems, each of which appears capable of influencing both the signaling and pathological actions of l-glutamate within the CNS: the sodium-dependent excitatory amino acid transporters (EAATs) and the glutamate/cystine exchanger, system x c - (Sx c -). While the family of EAAT subtypes limit access to glutamate receptors by rapidly and efficiently sequestering l-glutamate in neurons and glia, Sxc - provides a route for the export of glutamate from cells into the extracellular environment. The primary intent of this work is to provide an overview of the inhibitors and substrates that have been developed to delineate the pharmacological specificity of these transport systems, as well as be exploited as probes with which to selectively investigate function. Particular attention is paid to the development of small molecule templates that mimic the structural properties of the endogenous substrates, l-glutamate, l-aspartate and l-cystine and how strategic control of functional group position and/or the introduction of lipophilic R-groups can impact multiple aspects of the transport process, including: subtype selectivity, inhibitory potency, and substrate activity.

  7. Organotypic Cultures from the Adult CNS: A Novel Model to Study Demyelination and Remyelination Ex Vivo.

    PubMed

    Tan, Glaiza A; Furber, Kendra L; Thangaraj, Merlin P; Sobchishin, LaRhonda; Doucette, J Ronald; Nazarali, Adil J

    2018-01-01

    Experimental models of multiple sclerosis (MS) have significantly advanced our understanding of pathophysiology and therapeutic interventions. Although in vivo rodent models are considered to most closely represent the complex cellular and molecular disease states of the human central nervous system (CNS), these can be costly to maintain and require long timelines. Organotypic slice cultures maintain the cytotypic organization observed in the intact CNS, yet provide many of the experimental advantages of in vitro cell culture models. Cerebellar organotypic cultures have proven useful for studying myelination and remyelination, but this model has only been established using early postnatal tissue. This young brain tissue allows for neuro development ex vivo to mimic the 'mature' CNS; however, there are many differences between postnatal and adult organotypic cultures. This may be particularly relevant to MS, as a major barrier to myelin regeneration is age. This paper describes a modified protocol to study demyelination and remyelination in adult cerebellar tissue, which has been used to demonstrate neuroprotection with omega-3 fatty acids. Thus, adult cerebellar organotypic cultures provide a novel ex vivo platform for screening potential therapies in myelin degeneration and repair.

  8. Tissue-Specific Regulation of Chromatin Insulator Function

    PubMed Central

    Matzat, Leah H.; Dale, Ryan K.; Moshkovich, Nellie; Lei, Elissa P.

    2012-01-01

    Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type–specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein Shep as a direct interactor of two individual components of the gypsy insulator complex in Drosophila. Mutation of shep improves gypsy-dependent enhancer blocking, indicating a role as a negative regulator of insulator activity. Unlike ubiquitously expressed core gypsy insulator proteins, Shep is highly expressed in the central nervous system (CNS) with lower expression in other tissues. We developed a novel, quantitative tissue-specific barrier assay to demonstrate that Shep functions as a negative regulator of insulator activity in the CNS but not in muscle tissue. Additionally, mutation of shep alters insulator complex nuclear localization in the CNS but has no effect in other tissues. Consistent with negative regulatory activity, ChIP–seq analysis of Shep in a CNS-derived cell line indicates substantial genome-wide colocalization with a single gypsy insulator component but limited overlap with intact insulator complexes. Taken together, these data reveal a novel, tissue-specific mode of regulation of a chromatin insulator. PMID:23209434

  9. Brain-Derived Neurotrophic Factor and Neuropsychiatric Disorders

    PubMed Central

    Autry, Anita E.

    2012-01-01

    Brain derived neurotrophic factor (BDNF) is the most prevalent growth factor in the central nervous system (CNS). It is essential for the development of the CNS and for neuronal plasticity. Because BDNF plays a crucial role in development and plasticity of the brain, it is widely implicated in psychiatric diseases. This review provides a summary of clinical and preclinical evidence for the involvement of this ubiquitous growth factor in major depressive disorder, schizophrenia, addiction, Rett syndrome, as well as other psychiatric and neurodevelopmental diseases. In addition, the review includes a discussion of the role of BDNF in the mechanism of action of pharmacological therapies currently used to treat these diseases, such antidepressants and antipsychotics. The review also covers a critique of experimental therapies such as BDNF mimetics and discusses the value of BDNF as a target for future drug development. PMID:22407616

  10. Liposomal cytarabine in the prophylaxis and treatment of CNS lymphoma: toxicity analysis in a retrospective case series study conducted at Polish Lymphoma Research Group Centers.

    PubMed

    Jurczak, Wojciech; Kroll-Balcerzak, Renata; Giebel, Sebastian; Machaczka, Maciej; Giza, Agnieszka; Ogórka, Tomasz; Fornagiel, Szymon; Rybka, Justyna; Wróbel, Tomasz; Kumiega, Beata; Skotnicki, Aleksander B; Komarnicki, Mieczysław

    2015-04-01

    Lymphomas with primary or secondary involvement of central nervous system (CNS) have poor prognosis despite specific treatment protocols which include whole brain radiotherapy and high-dose systemic and/or intrathecal chemotherapy. Toxicity of intrathecal liposomal cytarabine-based regimens collected between November 2006 and January 2012 was assessed retrospectively. Data from 120 adult lymphoma patients with, or at high risk of CNS involvement who received intrathecal liposomal cytarabine-based regimens at six Polish Lymphoma Research Group centres between November 2006 and January 2012 were assessed retrospectively. Patients were divided into three cohorts: A (high risk of CNS disease, n = 88), B (cerebrospinal fluid pleocytosis without neurological symptoms or pathological imaging findings, n = 7), and C (CNS disease/neurological involvement; n = 25). In all examined groups, toxicity of treatment was found to be acceptable (including the prophylactic setting). None of the patients in cohorts A or B who took intrathecal liposomal cytarabine 50 mg, repeated every 2-4 weeks (mean 3.8 doses) had experienced a CNS relapse at a median follow-up time of 3 years. Patients in cohort C had a 76 % overall neurological response rate (including a 40 % complete response rate) and median overall survival of 4.8 years. Regimens incorporating liposomal cytarabine seem to be safe and effective treatments for lymphomas with CNS involvement.

  11. Hypoxic Stress and Inflammatory Pain Disrupt Blood-Brain Barrier Tight Junctions: Implications for Drug Delivery to the Central Nervous System.

    PubMed

    Lochhead, Jeffrey J; Ronaldson, Patrick T; Davis, Thomas P

    2017-07-01

    A functional blood-brain barrier (BBB) is necessary to maintain central nervous system (CNS) homeostasis. Many diseases affecting the CNS, however, alter the functional integrity of the BBB. It has been shown that various diseases and physiological stressors can impact the BBB's ability to selectively restrict passage of substances from the blood to the brain. Modifications of the BBB's permeability properties can potentially contribute to the pathophysiology of CNS diseases and result in altered brain delivery of therapeutic agents. Hypoxia and/or inflammation are central components of a number of diseases affecting the CNS. A number of studies indicate hypoxia or inflammatory pain increase BBB paracellular permeability, induce changes in the expression and/or localization of tight junction proteins, and affect CNS drug uptake. In this review, we look at what is currently known with regard to BBB disruption following a hypoxic or inflammatory insult in vivo. Potential mechanisms involved in altering tight junction components at the BBB are also discussed. A more detailed understanding of the mediators involved in changing BBB functional integrity in response to hypoxia or inflammatory pain could potentially lead to new treatments for CNS diseases with hypoxic or inflammatory components. Additionally, greater insight into the mechanisms involved in TJ rearrangement at the BBB may lead to novel strategies to pharmacologically increase delivery of drugs to the CNS.

  12. [Effect of nociceptin on histamine and serotonin release in the central nervous system].

    PubMed

    Gyenge, Melinda; Hantos, Mónika; Laufer, Rudolf; Tekes, Korniléa

    2006-01-01

    Role in pain sensation of both nociceptin (NC), the bioactive heptadecapeptide sequence of preproorphaninFQ and of histamine has been widely evidenced in the central nervous system (CNS). In the current series of experiments effect of intracerebroventricularly (i.c.v.) administered NC (5.5 nmol/rat) on histamine and serotonin levels in blood plasma, CSF and brain areas (hypothalamus and hippocampus) was studies and compared to the effect of the mast cell degranulator Compound 48/80(100microg/kg, i.c.v.) and the neuroactive peptide Substance P (50nmol/rat, i.c.v.). It was found that all the three compounds increased the histamine level in the CNS, however their activity concerning the mast cell-, and neuronal histamine release is different. NC could release histamine from both the mast cells and the neurons and it decreased CNS serotonin levels. Substance P was found the most potent in increasing CNS histamine levels. Compound 48/80 treatment resulted in elevated histamine levels both in the CNS and blood plasma. It is concluded that the histamine releasing effects of i.c.v. administered NC and SP are limited to the CNS, but in the effect of Compound 48/80 its blood-brain barrier impairing activity is also involved. Data also demonstrate that NC has significant effect on both the histaminergic and serotonergic neurotransmission in the CNS.

  13. Proceedings of the 2013 CINP Summit: Innovative Partnerships to Accelerate CNS Drug Discovery for Improved Patient Care

    PubMed Central

    Hongaard-Andersen, Peter; Moscicki, Richard A.; Sahakian, Barbara; Quirion, Rémi; Krishnan, K. Ranga Rama; Race, Tim

    2015-01-01

    Central nervous system (CNS) diseases and, in particular, mental health disorders, are becoming recognized as the health challenge of the 21st century. Currently, at least 10% of the global population is affected by a mental health disorder, a figure that is set to increase year on year. Meanwhile, the rate of development of new CNS drugs has not increased for many years, despite unprecedented levels of investment. In response to this state of affairs, the Collegium Internationale Neuro-Psychopharmacologicum (CINP) convened a summit to discuss ways to reverse this disturbing trend through new partnerships to accelerate CNS drug discovery. The objectives of the Summit were to explore the issues affecting the value chain (i.e. the chain of activities or stakeholders that a company engages in/with to deliver a product to market) in brain research, thereby gaining insights from key stakeholders and developing actions to address unmet needs; to identify achievable objectives to address the issues; to develop action plans to bring about measurable improvements across the value chain and accelerate CNS drug discovery; and finally, to communicate recommendations to governments, the research and development community, and other relevant stakeholders. Summit outputs include the following action plans, aligned to the pressure points within the brain research-drug development value chain: Code of conduct dealing with conflict of interest issues,Prevention, early diagnosis, and treatment,Linking science and regulation,Patient involvement in trial design, definition of endpoints, etc.,Novel trial design,Reproduction and confirmation of data,Update of intellectual property (IP) laws to facilitate repurposing and combination therapy (low priority),Large-scale, global patient registries,Editorials on nomenclature, biomarkers, and diagnostic tools, andPublic awareness, with brain disease advocates to attend G8 meetings and World Economic Forum (WEF) Annual meetings in Davos, Switzerland. In this context Professor Barbara Sahakian recently made a formal presentation at the World Economic Forum (see Barbara Sahakian Blog from April 11, 2014, at https://forumblog.org/people/barbara-sahakian/) Full details of the discussions that formed the bases for these actions are presented in the main body of this document. PMID:25542690

  14. Tolerability of central nervous system symptoms among HIV-1 infected efavirenz users: analysis of patient electronic medical record data.

    PubMed

    Rosenblatt, Lisa; Broder, Michael S; Bentley, Tanya G K; Chang, Eunice; Reddy, Sheila R; Papoyan, Elya; Myers, Joel

    2017-08-01

    Efavirenz (EFV) is a non-nucleoside reverse transcriptase inhibitor indicated for treatment of HIV-1 infection. Despite concern over EFV tolerability in clinical trials and practice, particularly related to central nervous system (CNS) adverse events, some observational studies have shown high rates of EFV continuation at one year and low rates of CNS-related EFV substitution. The objective of this study was to further examine the real-world rate of CNS-related EFV discontinuation in antiretroviral therapy naïve HIV-1 patients. This retrospective cohort study used a nationally representative electronic medical records database to identify HIV-1 patients ≥12 years old, treated with a 1st-line EFV-based regimen (single or combination antiretroviral tablet) from 1 January 2009 to 30 June 2013. Patients without prior record of EFV use during 6-month baseline (i.e., antiretroviral therapy naïve) were followed 12 months post-medication initiation. CNS-related EFV discontinuation was defined as evidence of a switch to a replacement antiretroviral coupled with record of a CNS symptom within 30 days prior, absent lab evidence of virologic failure. We identified 1742 1st-line EFV patients. Mean age was 48 years, 22.7% were female, and 8.1% had a prior report of CNS symptoms. The first year, overall discontinuation rate among new users of EFV was 16.2%. Ten percent of patients (n = 174) reported a CNS symptom and 1.1% (n = 19) discontinued EFV due to CNS symptoms: insomnia (n = 12), headache (n = 5), impaired concentration (n = 1), and somnolence (n = 1). The frequency of CNS symptoms was similar for patients who discontinued EFV compared to those who did not (10.3 vs. 9.9%; P = .86). Our study found that EFV discontinuation due to CNS symptoms was low, consistent with prior reports.

  15. From fish to man: understanding endogenous remyelination in central nervous system demyelinating diseases.

    PubMed

    Dubois-Dalcq, Monique; Williams, Anna; Stadelmann, Christine; Stankoff, Bruno; Zalc, Bernard; Lubetzki, Catherine

    2008-07-01

    In the central nervous system (CNS) of man, evolutionary pressure has preserved some capability for remyelination while axonal regeneration is very limited. In contrast, two efficient programmes of regeneration exist in the adult fish CNS, neurite regrowth and remyelination. The rapidity of CNS remyelination is critical since it not only restores fast conduction of nerve impulses but also maintains axon integrity. If myelin repair fails, axons degenerate, leading to increased disability. In the human CNS demyelinating disease multiple sclerosis (MS), remyelination often takes place in the midst of inflammation. Here, we discuss recent studies that address the innate repair capabilities of the axon-glia unit from fish to man. We propose that expansion of this research field will help find ways to maintain or enhance spontaneous remyelination in man.

  16. The effects of Chinese medicines on cAMP/PKA signaling in central nervous system dysfunction.

    PubMed

    Li, Lin; Fan, Xiang; Zhang, Xi-Ting; Yue, Shao-Qian; Sun, Zuo-Yan; Zhu, Jin-Qiang; Zhang, Jun-Hua; Gao, Xiu-Mei; Zhang, Han

    2017-06-01

    Neuropathological injury in the mammalian adult central nervous system (CNS) may cause axon disruption, neuronal death and lasting neurological deficits. Failure of axon regeneration is one of the major challenges for CNS functional recovery. Recently, the cAMP/PKA signaling pathway has been proven to be a critical regulator for neuronal regeneration, neuroplasticity, learning and memory. Also, previous studies have shown the effects of Chinese medicines on the prevention and treatment of CNS dysfunction mediated in part by cAMP/PKA signaling. In this review, the authors discuss current knowledge of the role of cAMP/PKA signaling pathway in neuronal regeneration and provide an overview of the Chinese medicines that may enable CNS functional recovery via this signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Protective and pathological immunity during CNS infections

    PubMed Central

    Klein, Robyn S.; Hunter, Christopher A.

    2017-01-01

    The concept of immune privilege of the central nervous system (CNS) has dominated the study of inflammatory processes in the brain. However, clinically relevant models have highlighted the innate pathways that limit pathogen invasion of the CNS and that adaptive immunity mediates control of many neural infections. Because protective responses can result in bystander damage there are regulatory mechanisms that balance protective and pathological inflammation but which may also allow microbial persistence. The focus of this review is to consider the host-pathogen interactions that influence neurotropic infections and to highlight advances in understanding of innate and adaptive mechanisms of resistance as key determinants of the outcome of CNS infection. Advances in these areas have broadened our comprehension of how the immune system functions in the brain and can readily overcome immune privilege. PMID:28636958

  18. Alectinib Dose Escalation Re-induces Central Nervous System Responses in ALK-Positive Non-Small Cell Lung Cancer (NSCLC) Patients Relapsing on Standard Dose Alectinib

    PubMed Central

    Gainor, Justin F.; Chi, Andrew S.; Logan, Jennifer; Hu, Ranliang; Oh, Kevin S.; Brastianos, Priscilla K.; Shih, Helen A.; Shaw, Alice T.

    2015-01-01

    The central nervous system (CNS) is an important and increasingly recognized site of treatment failure in ALK-positive, non-small cell lung cancer (NSCLC) patients receiving ALK inhibitors. In this report, we describe two ALK-positive patients who experienced initial improvements in CNS metastases on standard-dose alectinib (600 mg twice daily), but subsequently recurred with symptomatic leptomeningeal metastases. Both patients were dose-escalated to alectinib 900 mg twice daily, resulting in repeat clinical and radiographic responses. Our results suggest that dose intensification of alectinib may be necessary to overcome incomplete ALK inhibition in the CNS and prolong the durability of responses in patients with CNS metastases, particularly those with leptomeningeal carcinomatosis. PMID:26845119

  19. Induced Pluripotent Stem Cell Models to Enable In Vitro Models for Screening in the Central Nervous System.

    PubMed

    Hunsberger, Joshua G; Efthymiou, Anastasia G; Malik, Nasir; Behl, Mamta; Mead, Ivy L; Zeng, Xianmin; Simeonov, Anton; Rao, Mahendra

    2015-08-15

    There is great need to develop more predictive drug discovery tools to identify new therapies to treat diseases of the central nervous system (CNS). Current nonpluripotent stem cell-based models often utilize non-CNS immortalized cell lines and do not enable the development of personalized models of disease. In this review, we discuss why in vitro models are necessary for translational research and outline the unique advantages of induced pluripotent stem cell (iPSC)-based models over those of current systems. We suggest that iPSC-based models can be patient specific and isogenic lines can be differentiated into many neural cell types for detailed comparisons. iPSC-derived cells can be combined to form small organoids, or large panels of lines can be developed that enable new forms of analysis. iPSC and embryonic stem cell-derived cells can be readily engineered to develop reporters for lineage studies or mechanism of action experiments further extending the utility of iPSC-based systems. We conclude by describing novel technologies that include strategies for the development of diversity panels, novel genomic engineering tools, new three-dimensional organoid systems, and modified high-content screens that may bring toxicology into the 21st century. The strategic integration of these technologies with the advantages of iPSC-derived cell technology, we believe, will be a paradigm shift for toxicology and drug discovery efforts.

  20. Evaluation of Possible Consequences of Zika Virus Infection in the Developing Nervous System.

    PubMed

    Walter, Lais Takata; Higa, Guilherme Shigueto Vilar; Ikebara, Juliane Midori; Vedovello, Danila; Salvador, Felipe Scassi; Takada, Silvia Honda; Kinjo, Erika Reime; Whalley, Benjamin J; Sperança, Márcia Aparecida; Kihara, Alexandre Hiroaki

    2018-02-01

    The Zika virus (ZIKV) outbreak that occurred in the northeast of Brazil in 2015 led to alarming numbers of babies born with microcephaly in this region. Since then, several studies have evaluated the relationship between ZIKV infection and development of the malformation although the specific mechanistic interaction between ZIKV and human physiological processes that ultimately manifest as microcephaly remains debated. Importantly, most current studies did not consider the specificities of the biology and life cycle of ZIKV. As a consequence, specificities of the infection on the developing central nervous system (CNS) were frequently disregarded. In order to begin to address this important gap in our knowledge, we have collated and critically reviewed the existing evidence in this area to identify any emerging consensus on this topic and thereafter describe possible mechanisms by which ZIKV infection could interfere with specific processes of CNS development, such as neuronal proliferation, and the complex interactions of immature neurons with radial glial cells. With this, we were able to present the current knowledge on this important topic in the neurobiology field.

  1. Identification of Genes from the Fungal Pathogen Cryptococcus neoformans Related to Transmigration into the Central Nervous System

    PubMed Central

    Tseng, Hsiang-Kuang; Liu, Chang-Pan; Price, Michael S.; Jong, Ambrose Y.; Chang, Jui-Chih; Toffaletti, Dena L.; Betancourt-Quiroz, Marisol; Frazzitta, Aubrey E.; Cho, Wen-Long; Perfect, John R.

    2012-01-01

    Background A mouse brain transmigration assessment (MBTA) was created to investigate the central nervous system (CNS) pathogenesis of cryptococcal meningoencephalitis. Methodology/Principal Findings Two cryptococcal mutants were identified from a pool of 109 pre-selected mutants that were signature-tagged with the nourseothricin acetyltransferase (NAT) resistance cassette. These two mutants displayed abnormal transmigration into the central nervous system. One mutant displaying decreased transmigration contains a null mutation in the putative FNX1 gene, whereas the other mutant possessing a null mutation in the putative RUB1 gene exhibited increased transmigration into the brain. Two macrophage adhesion-defective mutants in the pool, 12F1 and 3C9, showed reduced phagocytosis by macrophages, but displayed no defects in CNS entry suggesting that transit within macrophages (the “Trojan horse” model of CNS entry) is not the primary mechanism for C. neoformans migration into the CNS in this MBTA. Conclusions/Significance This research design provides a new strategy for genetic impact studies on how Cryptococcus passes through the blood-brain barrier (BBB), and the specific isolated mutants in this assay support a transcellular mechanism of CNS entry. PMID:23028773

  2. Edema is a precursor to central nervous system peritumoral cyst formation.

    PubMed

    Lonser, Russell R; Vortmeyer, Alexander O; Butman, John A; Glasker, Sven; Finn, Michael A; Ammerman, Joshua M; Merrill, Marsha J; Edwards, Nancy A; Zhuang, Zhengping; Oldfield, Edward H

    2005-09-01

    Despite the common occurrence and frequent clinical effects of peritumoral cysts in the central nervous system (CNS), the mechanism underlying their development and evolution is not understood. Because they commonly produce peritumoral cysts and because serial magnetic resonance imaging (MRI) is obtained in von Hippel-Lindau disease patients, hemangioblastomas provide an opportunity to examine the pathophysiology of CNS peritumoral cyst formation. Serial MRI was correlated with the clinical findings in 16 von Hippel-Lindau disease patients with 22 CNS hemangioblastomas (11 spinal cord; 11 cerebellar) that were associated with the appearance and evolution of peritumoral cysts. Hemangioblastoma-associated cyst wall histomorphological analysis was performed on postmortem tissues from three von Hippel-Lindau disease patients (not in the clinical series). Comparative proteomic profiling was performed on peritumoral cyst fluid and serum. Vascular endothelial growth factor levels were determined in peritumoral cysts. MRI clearly showed peritumoral edema that developed and slowly and progressively evolved into enlarging hemangioblastoma-associated cysts in all tumors (mean follow-up, 130 +/- 38 months; mean +/- standard deviation). Postcontrast MRI demonstrated convective leakage of gadolinium into cysts. Mean time required for edema to evolve into a cyst was 36 +/- 23 months (range, 8-72 months). Thirteen (59%) hemangioblastoma-cysts became symptomatic (mean time to symptom formation after cyst development, 35 +/- 32 months; range, 3-102 months) and required resection. Protein profiles of cyst fluid and serum were similar. Mean cyst fluid vascular endothelial growth factor concentration was 1.5 ng/ml (range, 0-5.4 ng/ml). Histology of the cyst walls was consistent with reactive gliosis. CNS peritumoral cyst formation is initiated by increased tumor vascular permeability, increased interstitial pressure in the tumor, and plasma extravasation with convective distribution into the surrounding tissue. When the delivery of plasma from the tumor exceeds the capacity of the surrounding tissue to absorb the extravasated fluid, edema (with its associated increased interstitial pressure) and subsequent cyst formation occur.

  3. Age dependence of clinical and pathological manifestations of autoimmune demyelination. Implications for multiple sclerosis.

    PubMed

    Smith, M E; Eller, N L; McFarland, H F; Racke, M K; Raine, C S

    1999-10-01

    A prominent feature of the clinical spectrum of multiple sclerosis (MS) is its high incidence of onset in the third decade of life and the relative rarity of clinical manifestations during childhood and adolescence, features suggestive of age-related restriction of clinical expression. Experimental allergic encephalomyelitis (EAE), a model of central nervous system (CNS) autoimmune demyelination with many similarities to MS, has a uniform rapid onset and a high incidence of clinical and pathological disease in adult (mature) animals. Like MS, EAE is most commonly seen and studied in female adults. In this study, age-related resistance to clinical EAE has been examined with the adoptive transfer model of EAE in SJL mice that received myelin basic protein-sensitized cells from animals 10 days (sucklings) to 12 weeks (young adults) of age. A variable delay before expression of clinical EAE was observed between the different age groups. The preclinical period was longest in the younger (<14 days of age) animals, and shortest in animals 6 to 8 weeks old at time of transfer. Young animals initially resistant to EAE eventually expressed well-developed clinical signs by 6 to 7 weeks of age. This was followed by a remitting, relapsing clinical course. For each age at time of sensitization, increased susceptibility of females compared to males was observed. Examination of the CNS of younger animal groups during the preclinical period showed lesions of acute EAE. Older age groups developed onset of signs coincident with acute CNS lesions. This age-related resistance to clinical EAE in developing mice is reminiscent of an age-related characteristic of MS previously difficult to study in vivo. The associated subclinical CNS pathology and age-related immune functions found in young animals may be relevant to the increasing clinical expression of MS with maturation, and may allow study of factors associated with the known occasional poor correlation of CNS inflammation and demyelination and clinical changes in this disease.

  4. Validation of the CNS Penetration-Effectiveness Rank for Quantifying Antiretroviral Penetration Into the Central Nervous System

    PubMed Central

    Letendre, Scott; Marquie-Beck, Jennifer; Capparelli, Edmund; Best, Brookie; Clifford, David; Collier, Ann C.; Gelman, Benjamin B.; McArthur, Justin C.; McCutchan, J. Allen; Morgello, Susan; Simpson, David; Grant, Igor; Ellis, Ronald J.

    2009-01-01

    Objective To evaluate whether penetration of a combination regimen into the central nervous system (CNS), as estimated by the CNS Penetration-Effectiveness (CPE) rank, is associated with lower cerebrospinal fluid (CSF) viral load. Design Data were analyzed from 467 participants who were human immunodeficiency virus (HIV) seropositive and who reported antiretroviral (ARV) drug use. Individual ARV drugs were assigned a penetration rank of 0 (low), 0.5 (intermediate), or 1 (high) based on their chemical properties, concentrations in CSF, and/or effectiveness in the CNS in clinical studies. The CPE rank was calculated by summing the individual penetration ranks for each ARV in the regimen. Results The median CPE rank was 1.5 (interquartile range, 1–2). Lower CPE ranks correlated with higher CSF viral loads. Ranks less than 2 were associated with an 88% increase in the odds of detectable CSF viral load. In multivariate regression, lower CPE ranks were associated with detectable CSF viral loads even after adjusting for total number of ARV drugs, ARV drug adherence, plasma viral load, duration and type of the current regimen, and CD4 count. Conclusions Poorer penetration of ARV drugs into the CNS appears to allow continued HIV replication in the CNS as indicated by higher CSF HIV viral loads. Because inhibition of HIV replication in the CNS is probably critical in treating patients who have HIV-associated neurocognitive disorders, ARV treatment strategies that account for CNS penetration should be considered in consensus treatment guidelines and validated in clinical studies. PMID:18195140

  5. Metabolic Dysfunction and Peroxisome Proliferator-Activated Receptors (PPAR) in Multiple Sclerosis.

    PubMed

    Ferret-Sena, Véronique; Capela, Carlos; Sena, Armando

    2018-06-01

    Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS) probably caused, in most cases, by the interaction of genetic and environmental factors. This review first summarizes some clinical, epidemiological and pathological characteristics of MS. Then, the involvement of biochemical pathways is discussed in the development and repair of the CNS lesions and the immune dysfunction in the disease. Finally, the potential roles of peroxisome proliferator-activated receptors (PPAR) in MS are discussed. It is suggested that metabolic mechanisms modulated by PPAR provide a window to integrate the systemic and neurological events underlying the pathogenesis of the disease. In conclusion, the reviewed data highlight molecular avenues of understanding MS that may open new targets for improved therapies and preventive strategies for the disease.

  6. Relapsing remitting multiple sclerosis in x-linked charcot-marie-tooth disease with central nervous system involvement.

    PubMed

    Koutsis, Georgios; Karadima, Georgia; Floroskoufi, Paraskewi; Raftopoulou, Maria; Panas, Marios

    2015-01-01

    We report a patient with relapsing remitting multiple sclerosis (MS) and X-linked Charcot-Marie-Tooth disease (CMTX), carrying a GJB1 mutation affecting connexin-32 (c.191G>A, p. Cys64Tyr) which was recently reported by our group. This is the third case report of a patient with CMTX developing MS, but it is unique in the fact that other family members carrying the same mutation were found to have asymptomatic central nervous system (CNS) involvement (diffuse white matter hyperintensity on brain MRI and extensor plantars). Although this may be a chance association, the increasing number of cases with CMTX and MS, especially with mutations involving the CNS, may imply some causative effect and provide insights into MS pathogenesis.

  7. Relapsing Remitting Multiple Sclerosis in X-Linked Charcot-Marie-Tooth Disease with Central Nervous System Involvement

    PubMed Central

    Karadima, Georgia; Floroskoufi, Paraskewi; Raftopoulou, Maria; Panas, Marios

    2015-01-01

    We report a patient with relapsing remitting multiple sclerosis (MS) and X-linked Charcot-Marie-Tooth disease (CMTX), carrying a GJB1 mutation affecting connexin-32 (c.191G>A, p. Cys64Tyr) which was recently reported by our group. This is the third case report of a patient with CMTX developing MS, but it is unique in the fact that other family members carrying the same mutation were found to have asymptomatic central nervous system (CNS) involvement (diffuse white matter hyperintensity on brain MRI and extensor plantars). Although this may be a chance association, the increasing number of cases with CMTX and MS, especially with mutations involving the CNS, may imply some causative effect and provide insights into MS pathogenesis. PMID:25883816

  8. Promising approaches to circumvent the blood-brain barrier: progress, pitfalls and clinical prospects in brain cancer

    PubMed Central

    Papademetriou, Iason T; Porter, Tyrone

    2015-01-01

    Brain drug delivery is a major challenge for therapy of central nervous system (CNS) diseases. Biochemical modifications of drugs or drug nanocarriers, methods of local delivery, and blood–brain barrier (BBB) disruption with focused ultrasound and microbubbles are promising approaches which enhance transport or bypass the BBB. These approaches are discussed in the context of brain cancer as an example in CNS drug development. Targeting to receptors enabling transport across the BBB offers noninvasive delivery of small molecule and biological cancer therapeutics. Local delivery methods enable high dose delivery while avoiding systemic exposure. BBB disruption with focused ultrasound and microbubbles offers local and noninvasive treatment. Clinical trials show the prospects of these technologies and point to challenges for the future. PMID:26488496

  9. Promising approaches to circumvent the blood-brain barrier: progress, pitfalls and clinical prospects in brain cancer.

    PubMed

    Papademetriou, Iason T; Porter, Tyrone

    2015-01-01

    Brain drug delivery is a major challenge for therapy of central nervous system (CNS) diseases. Biochemical modifications of drugs or drug nanocarriers, methods of local delivery, and blood-brain barrier (BBB) disruption with focused ultrasound and microbubbles are promising approaches which enhance transport or bypass the BBB. These approaches are discussed in the context of brain cancer as an example in CNS drug development. Targeting to receptors enabling transport across the BBB offers noninvasive delivery of small molecule and biological cancer therapeutics. Local delivery methods enable high dose delivery while avoiding systemic exposure. BBB disruption with focused ultrasound and microbubbles offers local and noninvasive treatment. Clinical trials show the prospects of these technologies and point to challenges for the future.

  10. Multitarget drug discovery projects in CNS diseases: quantitative systems pharmacology as a possible path forward.

    PubMed

    Geerts, Hugo; Kennis, Ludo

    2014-01-01

    Clinical development in brain diseases has one of the lowest success rates in the pharmaceutical industry, and many promising rationally designed single-target R&D projects fail in expensive Phase III trials. By contrast, successful older CNS drugs do have a rich pharmacology. This article will provide arguments suggesting that highly selective single-target drugs are not sufficiently powerful to restore complex neuronal circuit homeostasis. A rationally designed multitarget project can be derisked by dialing in an additional symptomatic treatment effect on top of a disease modification target. Alternatively, we expand upon a hypothetical workflow example using a humanized computer-based quantitative systems pharmacology platform. The hope is that incorporating rationally multipharmacology drug discovery could potentially lead to more impactful polypharmacy drugs.

  11. Characteristics of breast cancer patients with central nervous system metastases: a single-center experience.

    PubMed

    Harputluoglu, Hakan; Dizdar, Omer; Aksoy, Sercan; Kilickap, Saadettin; Dede, Didem S; Ozisik, Yavuz; Guler, Nilufer; Barista, Ibrahim; Gullu, Ibrahim; Hayran, Mutlu; Selek, Ugur; Cengiz, Mustafa; Zorlu, Faruk; Tekuzman, Gulten; Altundag, Kadri

    2008-05-01

    The aim of this study was to assess the characteristics of breast cancer patients with central nervous system (CNS) metastases and factors associated with survival after development of CNS metastasis. One-hundred-forty-four patients with brain metastases were retrospectively analyzed. Median age at the time of brain metastasis diagnosis was 48.9. Median time between initial diagnosis and development of brain metastasis was 36 months. Fourteen cases had leptomeningeal involvement. Twenty-two patients (15.3%) had single metastasis. Ten percent of the patients had surgery, 94% had radiotherapy and 63% had chemotherapy. Median survival after development of brain metastasis was 7.4 months. Survival of patients with single metastasis was significantly longer than those with multiple metastases (33.5 vs. 6.5 months, p = 0.0006). Survival of patients who received chemotherapy was significantly longer than those who received radiotherapy alone (9.9 vs. 2 months, p < 0.0001). In multivariate Cox regression analyses, presence of single metastasis and application of chemotherapy were the only significant factors associated with better survival (p = 0.047 and p < 0.0001, respectively). Age at initial diagnosis or at the time of brain metastasis, time from initial diagnosis to development of brain metastasis, menopausal status, tumor stage, grade, hormone receptor or HER2 status individually were not associated with survival. In this study, survival after the diagnosis of CNS metastases appeared to be affected by patient characteristics rather than biologic characteristics of the tumor. This is probably secondary to the lack of effective treatment options in these patients and overall poor prognosis.

  12. Microglia function in brain tumors.

    PubMed

    Watters, Jyoti J; Schartner, Jill M; Badie, Behnam

    2005-08-01

    Microglia play an important role in inflammatory diseases of the central nervous system (CNS). These cells have also been identified in brain neoplasms; however, as of yet their function largely remains unclear. More recent studies designed to characterize further tumor-associated microglia suggest that the immune effector function of these cells may be suppressed in CNS tumors. Furthermore, microglia and macrophages can secrete various cytokines and growth factors that may contribute to the successful immune evasion, growth, and invasion of brain neoplasms. A better understanding of microglia and macrophage function is essential for the development of immune-based treatment strategies against malignant brain tumors. (c) 2005 Wiley-Liss, Inc.

  13. Enhanced brain penetration of hexamethonium in complexes with derivatives of fullerene C60.

    PubMed

    Piotrovskiy, L B; Litasova, E V; Dumpis, M A; Nikolaev, D N; Yakovleva, E E; Dravolina, O A; Bespalov, A Yu

    2016-05-01

    The present report describes development of hexamethonium complexes based on fullerene C60. Hexamethonium has a limited penetration into CNS and therefore can antagonize central effects of nicotine only when given at high doses. In the present studies conducted in laboratory rodents, intraperitoneal administration of hexamethonium-fullerene complexes blocked effects of nicotine (convulsions and locomotor stimulation). When compared to equimolar doses of hexamethonium, complexes of hexamethonium with derivatives of fullerene C60 were 40 times more potent indicating an enhanced ability to interact with central nicotine receptors. Thus, fullerene C60 derivatives should be explored further as potential carrier systems for polar drug delivery into CNS.

  14. Case report: Central nervous system involvement of human graft versus host disease: Report of 7 cases and a review of literature.

    PubMed

    Ruggiu, Mathilde; Cuccuini, Wendy; Mokhtari, Karima; Meignin, Véronique; Peffault de Latour, Régis; Robin, Marie; Fontbrune, Flore Sicre de; Xhaard, Aliénor; Socié, Gérard; Michonneau, David

    2017-10-01

    Central nervous system (CNS) involvement of graft versus host disease (GvHD) is a rare cause of CNS disorders after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Chronic CNS GvHD symptoms are heterogeneous and include cerebrovascular manifestations, demyelinating disease and immune-mediated encephalitis. CNS-Acute GvHD is not formally defined in literature. We report 7 cases of CNS-GvHD among which two had histological-proven disease. We reviewed 32 additional cases of CNS GvHD published in literature since 1990. In this cohort, 34 patients were transplanted for hematologic malignancies, and 5 for non-malignant hematopoiesis disorders. Of these patients, 25 had a history of chronic GvHD and immunosuppressive treatment had been decreased or discontinued in 14 patients before neurological symptoms onset. Median neurological disorder onset was 385 days [7-7320]. Patients had stroke-like episodes (n = 7), lacunar syndromes (n = 3), multiple sclerosis-like presentations (n = 7), acute demyelinating encephalomyelitis-like symptoms (n = 4), encephalitis (n = 14), mass syndrome (n = 1), and 3 had non-specific symptoms. Median neurological symptoms onset was 81.5 days [7-1095] for patients without chronic GVHD history versus 549 days [11-7300] for patients with chronic GVHD (P = 0.001). Patients with early involvement of CNS after allo-HSCT and no chronic GVHD symptoms were more frequently suffering from encephalitis (64% versus 28%, P = 0.07), whereas stroke-like episodes and lacunar symptoms were less frequent (9% versus 36%, P = 0.13). 34 patients with CNS-GvHD were treated with immunosuppressive therapy, including corticosteroids for 31 of them. Other treatments were intravenous immunoglobulin, plasmapheresis, cyclophosphamide, calcineurin inhibitors, mycophenolic acid, methotrexate and etoposide. 27 patients achieved a response: 10 complete responses, 15 partial responses and 2 transient responses. Of 25 patients with sufficient follow-up, 7 were alive and 18 patients deceased after CNS-GvHD diagnosis. CNS-related GvHD is a rare cause of CNS disorders after allo-HSCT and is associated with a poor prognosis.

  15. Proceedings of the Fifth Integrated Communications, Navigation, and Surveillance (ICNS) Conference and Workshop

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene (Compiler)

    2005-01-01

    Contents includes papers on the following: JPDO: Inter-Agency Cooperation for the Next Generation ATS; R&T Programs; Integrated CNS Systems and Architectures; Datalink Communication Systems; Navigation, System Demonstrations and Operations; Safety and Security Initiatives Impacting CNS; Global Communications Initiatives; Airborne Internet; Avionics for System-Level Enhancements; SWIM (System Wide Information Management); Weather Products and Data Dissemination Technologies; Airsapce Communication Networks; Surveillance Systems; Workshop Breakouts Sessions and ; ICNS Conference Information.

  16. Enhancing Psychosocial Outcomes for Young Adult Childhood CNS Cancer Survivors: Importance of Addressing Vocational Identity and Community Integration

    ERIC Educational Resources Information Center

    Strauser, David R.; Wagner, Stacia; Wong, Alex W. K.

    2012-01-01

    The purpose of this study was to examine the relationship between vocational identity, community integration, positive and negative affect, and satisfaction with life in a group of young adult central nervous system (CNS) cancer survivors. Participants in this study included 45 young adult CNS cancer survivors who ranged in age from 18 to 30 years…

  17. Is complement good, bad, or both? New functions of the complement factors associated with inflammation mechanisms in the central nervous system.

    PubMed

    Tahtouh, Muriel; Croq, Françoise; Lefebvre, Christophe; Pestel, Joël

    2009-09-01

    The complement system is well known as an enzyme cascade that helps to defend against infections. Indeed, this ancestral system bridges innate and adaptive immunity. Its implication in diseases of the central nervous system (CNS), has led to an increased number of studies. Complement activation in the CNS has been generally considered to contribute to tissue damage. However, recent studies suggest that complement may be neuroprotective, and can participate in maintenance and repair of the adult brain. Here, we will review this dual role of complement proteins and some of their functional interactions with part of the chemokine and cytokine network associated with the protection of CNS integrity.

  18. The origin and evolution of chordate nervous systems

    PubMed Central

    Holland, Linda Z.

    2015-01-01

    In the past 40 years, comparisons of developmental gene expression and mechanisms of development (evodevo) joined comparative morphology as tools for reconstructing long-extinct ancestral forms. Unfortunately, both approaches typically give congruent answers only with closely related organisms. Chordate nervous systems are good examples. Classical studies alone left open whether the vertebrate brain was a new structure or evolved from the anterior end of an ancestral nerve cord like that of modern amphioxus. Evodevo plus electron microscopy showed that the amphioxus brain has a diencephalic forebrain, small midbrain, hindbrain and spinal cord with parts of the genetic mechanisms for the midbrain/hindbrain boundary, zona limitans intrathalamica and neural crest. Evodevo also showed how extra genes resulting from whole-genome duplications in vertebrates facilitated evolution of new structures like neural crest. Understanding how the chordate central nervous system (CNS) evolved from that of the ancestral deuterostome has been truly challenging. The majority view is that this ancestor had a CNS with a brain that gave rise to the chordate CNS and, with loss of a discrete brain, to one of the two hemichordate nerve cords. The minority view is that this ancestor had no nerve cord; those in chordates and hemichordates evolved independently. New techniques such as phylostratigraphy may help resolve this conundrum. PMID:26554041

  19. HIV-1 transcriptional regulation in the central nervous system and implications for HIV cure research

    PubMed Central

    Churchill, Melissa J.; Cowley, Daniel J.; Wesselingh, Steve L.; Gorry, Paul R.; Gray, Lachlan R.

    2014-01-01

    Human immunodeficiency virus type-1 (HIV-1) invades the central nervous system (CNS) during acute infection which can result in HIV-associated neurocognitive disorders (HAND) in up to 50% of patients, even in the presence of combination antiretroviral therapy (cART). Within the CNS, productive HIV-1 infection occurs in the perivascular macrophages and microglia. Astrocytes also become infected, although their infection is restricted and does not give rise to new viral particles. The major barrier to the elimination of HIV-1 is the establishment of viral reservoirs in different anatomical sites throughout the body and viral persistence during long-term treatment with cART. While the predominant viral reservoir is believed to be resting CD4+ T-cells in the blood, other anatomical compartments including the CNS, gut-associated lymphoid tissue, bone marrow, and genital tract can also harbor persistently infected cellular reservoirs of HIV-1. Viral latency is predominantly responsible for HIV-1 persistence, and is most likely governed at the transcriptional level. Current clinical trials are testing transcriptional activators, in the background of cART, in an attempt to purge these viral reservoirs and reverse viral latency. These strategies aim to activate viral transcription in cells constituting the viral reservoir, so they can be recognized and cleared by the immune system, while new rounds of infection are blocked by co-administration of cART. The CNS has several unique characteristics that may result in differences in viral transcription and in the way latency is established. These include CNS-specific cell types, different transcription factors, altered immune surveillance, and reduced antiretroviral drug bioavailability. A comprehensive understanding of viral transcription and latency in the CNS is required in order to determine treatment outcomes when using transcriptional activators within the CNS. PMID:25060300

  20. Unconventional myosin ID is expressed in myelinating oligodendrocytes.

    PubMed

    Yamazaki, Reiji; Ishibashi, Tomoko; Baba, Hiroko; Yamaguchi, Yoshihide

    2014-10-01

    Myelin is a dynamic multilamellar structure that ensheathes axons and is crucial for normal neuronal function. In the central nervous system (CNS), myelin is produced by oligodendrocytes that wrap many layers of plasma membrane around axons. The dynamic membrane trafficking system, which relies on motor proteins, is required for myelin formation and maintenance. Previously, we found that myosin ID (Myo1d), a class I myosin, is enriched in the rat CNS myelin fraction. Myo1d is an unconventional myosin and has been shown to be involved in membrane trafficking in the recycling pathway in an epithelial cell line. Western blotting revealed that Myo1d expression begins early in myelinogenesis and continues to increase into adulthood. The localization of Myo1d in CNS myelin has not been reported, and the function of Myo1d in vivo remains unknown. To demonstrate the expression of Myo1d in CNS myelin and to begin to explore the function of Myo1d in myelination, we produced a new antibody against Myo1d that has a high titer and specificity for rat Myo1d. By using this antibody, we demonstrated that Myo1d is expressed in rat CNS myelin and is especially abundant in abaxonal and adaxonal regions (the outer and inner cytoplasm-containing loops, respectively), but that expression is low in peripheral nervous system myelin. In culture, Myo1d was expressed in mature rat oligodendrocytes. Furthermore, an increase in expression of Myo1d during maturation of CNS white matter (cerebellum and corpus callosum) was demonstrated by histological analysis. These results suggest that Myo1d may be involved in the formation and/or maintenance of CNS myelin. © 2014 Wiley Periodicals, Inc.

  1. Does non-central nervous system tuberculosis increase the risk of ischemic stroke? A population-based propensity score-matched follow-up study.

    PubMed

    Wu, Chueh-Hung; Chen, Li-Sheng; Yen, Ming-Fang; Chiu, Yueh-Hsia; Fann, Ching-Yuan; Chen, Hsiu-Hsi; Pan, Shin-Liang

    2014-01-01

    Previous studies on the association between tuberculosis and the risk of developing ischemic stroke have generated inconsistent results. We therefore performed a population-based, propensity score-matched longitudinal follow-up study to investigate whether contracting non-central nervous system (CNS) tuberculosis leads to an increased risk of ischemic stroke. We used a logistic regression model that includes age, sex, pre-existing comorbidities and socioeconomic status as covariates to compute the propensity score. A total of 5804 persons with at least three ambulatory visits in 2001 with the principal diagnosis of non-CNS tuberculosis were enrolled in the tuberculosis group. The non-tuberculosis group consisted of 5804, propensity score-matched subjects without tuberculosis. The three-year ischemic stroke-free survival rates for these 2 groups were estimated using the Kaplan-Meier method. The stratified Cox proportional hazards regression was used to estimate the effect of tuberculosis on the occurrence of ischemic stroke. During three-year follow-up, 176 subjects in the tuberculosis group (3.0%) and 207 in the non-tuberculosis group (3.6%) had ischemic stroke. The hazard ratio for developing ischemic stroke in the tuberculosis group was 0.92 compared to the non-tuberculosis group (95% confidence interval: 0.73-1.14, P = 0.4299). Non-CNS tuberculosis does not increase the risk of subsequent ischemic stroke.

  2. Envisioning the future of polymer therapeutics for brain disorders.

    PubMed

    Rodriguez-Otormin, Fernanda; Duro-Castano, Aroa; Conejos-Sánchez, Inmaculada; Vicent, María J

    2018-06-14

    The growing incidence of brain-related pathologies and the problems that undermine the development of efficient and effective treatments have prompted both researchers and the pharmaceutical industry to search for novel therapeutic alternatives. Polymer therapeutics (PT) display properties well suited to the treatment of neuro-related disorders, which help to overcome the many hidden obstacles on the journey to the central nervous system (CNS). The inherent features of PT, derived from drug(s) conjugation, in parallel with the progress in synthesis and analytical methods, the increasing knowledge in molecular basis of diseases, and collected clinical data through the last four decades, have driven the translation from "bench to bedside" for various biomedical applications. However, since the approval of Gliadel® wafers, little progress has been made in the CNS field, even though brain targeting represents an ever-growing challenge. A thorough assessment of the steps required for successful brain delivery via different administration routes and the consideration of the disease-specific hallmarks are essential to progress in the field. Within this review, we hope to summarize the latest developments, successes, and failures and discuss considerations on designs and strategies for PT in the treatment of CNS disorders. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease. © 2018 Wiley Periodicals, Inc.

  3. Microglial Priming and Enhanced Reactivity to Secondary Insult in Aging, and Traumatic CNS injury, and Neurodegenerative Disease

    PubMed Central

    Norden, Diana M.; Muccigrosso, Megan M.; Godbout, Jonathan P.

    2014-01-01

    Glia of the central nervous system (CNS) help to maintain homeostasis in the brain and support efficient neuronal function. Microglia are innate immune cells of the brain that mediate responses to pathogens and injury. They have key roles in phagocytic clearing, surveying the local microenvironment and propagating inflammatory signals. An interruption in homeostasis induces a cascade of conserved adaptive responses in glia. This response involves biochemical, physiological and morphological changes and is associated with the production of cytokines and secondary mediators that influence synaptic plasticity, cognition and behavior. This reorganization of host priorities represents a beneficial response that is normally adaptive but may become maladaptive when the profile of microglia is compromised. For instance, microglia can develop a primed or pro-inflammatory mRNA, protein and morphological profile with aging, traumatic brain injury and neurodegenerative disease. As a result, primed microglia exhibit an exaggerated inflammatory response to secondary and sub-threshold challenges. Consequences of exaggerated inflammatory responses by microglia include the development of cognitive deficits, impaired synaptic plasticity and accelerated neurodegeneration. Moreover, impairments in regulatory systems in these circumstances may make microglia more resistant to negative feedback and important functions of glia can become compromised and dysfunctional. Overall, the purpose of this review is to discuss key concepts of microglial priming and immune-reactivity in the context of aging, traumatic CNS injury and neurodegenerative disease. PMID:25445485

  4. Isolated central nervous system progression on Crizotinib

    PubMed Central

    Chun, Stephen G.; Choe, Kevin S.; Iyengar, Puneeth; Yordy, John S.; Timmerman, Robert D.

    2012-01-01

    Advanced non-small lung cancer (NSCLC) remains almost uniformly lethal with marginal long-term survival despite efforts to target specific oncogenic addiction pathways that may drive these tumors with small molecularly targeted agents and biologics. The EML4-ALK fusion gene encodes a chimeric tyrosine kinase that activates the Ras signaling pathway, and this fusion protein is found in approximately 5% of NSCLC. Targeting EML4-ALK with Crizotinib in this subset of NSCLC has documented therapeutic efficacy, but the vast majority of patients eventually develop recurrent disease that is often refractory to further treatments. We present the clinicopathologic features of three patients with metastatic NSCLC harboring the EML4-ALK translocation that developed isolated central nervous system (CNS) metastases in the presence of good disease control elsewhere in the body. These cases suggest a differential response of NSCLC to Crizotinib in the brain in comparison to other sites of disease, and are consistent with a previous report of poor CNS penetration of Crizotinib. Results of ongoing clinical trials will clarify whether the CNS is a major sanctuary site for EML4-ALK positive NSCLC being treated with Crizotinib. While understanding molecular mechanisms of resistance is critical to overcome therapeutic resistance, understanding physiologic mechanisms of resistance through analyzing anatomic patterns of failure may be equally crucial to improve long-term survival for patients with EML4-ALK translocation positive NSCLC. PMID:22986231

  5. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system.

    PubMed

    Kim, Hee Jin; Kim, Pitna; Shin, Chan Young

    2013-03-01

    Ginseng is one of the most widely used herbal medicines in human. Central nervous system (CNS) diseases are most widely investigated diseases among all others in respect to the ginseng's therapeutic effects. These include Alzheimer's disease, Parkinson's disease, cerebral ischemia, depression, and many other neurological disorders including neurodevelopmental disorders. Not only the various types of diseases but also the diverse array of target pathways or molecules ginseng exerts its effect on. These range, for example, from neuroprotection to the regulation of synaptic plasticity and from regulation of neuroinflammatory processes to the regulation of neurotransmitter release, too many to mention. In general, ginseng and even a single compound of ginsenoside produce its effects on multiple sites of action, which make it an ideal candidate to develop multi-target drugs. This is most important in CNS diseases where multiple of etiological and pathological targets working together to regulate the final pathophysiology of diseases. In this review, we tried to provide comprehensive information on the pharmacological and therapeutic effects of ginseng and ginsenosides on neurodegenerative and other neurological diseases. Side by side comparison of the therapeutic effects in various neurological disorders may widen our understanding of the therapeutic potential of ginseng in CNS diseases and the possibility to develop not only symptomatic drugs but also disease modifying reagents based on ginseng.

  6. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system

    PubMed Central

    Kim, Hee Jin; Kim, Pitna; Shin, Chan Young

    2013-01-01

    Ginseng is one of the most widely used herbal medicines in human. Central nervous system (CNS) diseases are most widely investigated diseases among all others in respect to the ginseng’s therapeutic effects. These include Alzheimer’s disease, Parkinson’s disease, cerebral ischemia, depression, and many other neurological disorders including neurodevelopmental disorders. Not only the various types of diseases but also the diverse array of target pathways or molecules ginseng exerts its effect on. These range, for example, from neuroprotection to the regulation of synaptic plasticity and from regulation of neuroinflammatory processes to the regulation of neurotransmitter release, too many to mention. In general, ginseng and even a single compound of ginsenoside produce its effects on multiple sites of action, which make it an ideal candidate to develop multi-target drugs. This is most important in CNS diseases where multiple of etiological and pathological targets working together to regulate the final pathophysiology of diseases. In this review, we tried to provide comprehensive information on the pharmacological and therapeutic effects of ginseng and ginsenosides on neurodegenerative and other neurological diseases. Side by side comparison of the therapeutic effects in various neurological disorders may widen our understanding of the therapeutic potential of ginseng in CNS diseases and the possibility to develop not only symptomatic drugs but also disease modifying reagents based on ginseng. PMID:23717153

  7. Methamphetamine abuse affects gene expression in brain-derived microglia of SIV-infected macaques to enhance inflammation and promote virus targets.

    PubMed

    Najera, Julia A; Bustamante, Eduardo A; Bortell, Nikki; Morsey, Brenda; Fox, Howard S; Ravasi, Timothy; Marcondes, Maria Cecilia Garibaldi

    2016-04-23

    Methamphetamine (Meth) abuse is a major health problem linked to the aggravation of HIV- associated complications, especially within the Central Nervous System (CNS). Within the CNS, Meth has the ability to modify the activity/function of innate immune cells and increase brain viral loads. Here, we examined changes in the gene expression profile of neuron-free microglial cell preparations isolated from the brain of macaques infected with the Simian Immunodeficiency Virus (SIV), a model of neuroAIDS, and exposed to Meth. We aimed to identify molecular patterns triggered by Meth that could explain the detection of higher brain viral loads and the development of a pro-inflammatory CNS environment in the brain of infected drug abusers. We found that Meth alone has a strong effect on the transcription of genes associated with immune pathways, particularly inflammation and chemotaxis. Systems analysis led to a strong correlation between Meth exposure and enhancement of molecules associated with chemokines and chemokine receptors, especially CXCR4 and CCR5, which function as co-receptors for viral entry. The increase in CCR5 expression was confirmed in the brain in correlation with increased brain viral load. Meth enhances the availability of CCR5-expressing cells for SIV in the brain, in correlation with increased viral load. This suggests that Meth is an important factor in the susceptibility to the infection and to the aggravated CNS inflammatory pathology associated with SIV in macaques and HIV in humans.

  8. The pathogenic role of virus-specific antibody-secreting cells in the central nervous system of rats with different susceptibility to coronavirus-induced demyelinating encephalitis.

    PubMed Central

    Schwender, S; Imrich, H; Dörries, R

    1991-01-01

    The humoral immune response in the central nervous system (CNS) of susceptible Lewis (LE) rats and resistant Brown Norway (BN) rats was analysed after intracerebral infection with the murine coronavirus JHM (MHV4). The subclinical course of the infection in BN rats was characterized by an early rise of neutralizing antibodies in the cerebrospinal fluid (CSF) 7 days post-infection. At this time in LE rats, neutralizing antibodies were not detectable in the CSF and the animals developed neurological signs of infection. Subsequently, LE rats recovered from disease. This process was accompanied by increasing titres of virus-neutralizing antibodies. Within the CNS parenchyma of both rat strains, equivalent numbers of IgM-secreting cells were detected. However, in BN rats, virus-specific IgG secreting cells appeared earlier and in higher numbers. Moreover, based on the size of zones of antibody secreted by single cells in the Spot-ELISA assay, it appeared that cells from BN rats secreted IgG antibody of higher affinity. These data suggest that early maturation of antiviral antibody responses in the resistant BN rat probably restricts the spread of viral infection to small foci within the CNS, resulting in a subclinical level of primary demyelination. In contrast, the absence of neutralizing antibodies in the susceptible LE rats favours spread of the virus throughout the CNS, resulting finally in severe neurological disease. Images Figure 1 Figure 2 Figure 3 PMID:1663078

  9. Agile delivery of protein therapeutics to CNS.

    PubMed

    Yi, Xiang; Manickam, Devika S; Brynskikh, Anna; Kabanov, Alexander V

    2014-09-28

    A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Agile Delivery of Protein Therapeutics to CNS

    PubMed Central

    Yi, Xiang; Manickam, Devika S.; Brynskikh, Anna; Kabanov, Alexander V.

    2014-01-01

    A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics. PMID:24956489

  11. THE ROLE OF APOPTOSIS IN NEUROTOXICOLOGY.

    EPA Science Inventory

    The role of apoptosis in neurodegeneration in developing animals and in adults has become increasingly apparent in the past ten years. Normal apoptosis occurs in the CNS from the embryonic stage through senescence, with different cells in each region of the nervous system having ...

  12. Assessment of substance abuse liability in rodents: self-administration, drug discrimination, and locomotor sensitization.

    PubMed

    Paterson, Neil E

    2012-09-01

    Assessing abuse liability is a crucial step in the development of a novel chemical entity (NCE) with central nervous system (CNS) activity or with chemical or pharmacological properties in common with known abused substances. Rodent assessment of abuse liability is highly attractive due to its relatively low cost and high predictive validity. Described in this unit are three rodent assays commonly used to provide data on the potential for abuse liability based on the acute effects of NCEs: specifically, self-administration, drug discrimination, and locomotor sensitization. As these assays provide insight into the potential abuse liability of NCEs as well as in vivo pharmacological mechanism(s) of action, they should form a key part of the development process for novel therapeutics aimed at treating CNS disorders.

  13. Nature Neuroscience Review

    PubMed Central

    Maze, Ian; Shen, Li; Zhang, Bin; Garcia, Benjamin A.; Shao, Ningyi; Mitchell, Amanda; Sun, HaoSheng; Akbarian, Schahram; Allis, C. David; Nestler, Eric J.

    2014-01-01

    Over the past decade, rapid advances in epigenomics research have extensively characterized critical roles for chromatin regulatory events during normal periods of eukaryotic cell development and plasticity, as well as part of aberrant processes implicated in human disease. Application of such approaches to studies of the central nervous system (CNS), however, is more recent. Here, we provide a comprehensive overview of currently available tools to analyze neuroepigenomics data, as well as a discussion of pending challenges specific to the field of neuroscience. Integration of numerous unbiased genome-wide and proteomic approaches will be necessary to fully understand the neuroepigenome and the extraordinarily complex nature of the human brain. This will be critical to the development of future diagnostic and therapeutic strategies aimed at alleviating the vast array of heterogeneous and genetically distinct disorders of the CNS. PMID:25349914

  14. Behavior and memory evaluation of Wistar rats exposed to 1·8 GHz radiofrequency electromagnetic radiation.

    PubMed

    Júnior, Luiz Carlos de Caires; Guimarães, Ernesto da Silveira Goulart; Musso, Camila Manso; Stabler, Collin Turner; Garcia, Raúl Marcel González; Mourão-Júnior, Carlos Alberto; Andreazzi, Ana Eliza

    2014-09-01

    The development of communication systems has brought great social and economic benefits to society. As mobile phone use has become widespread, concerns have emerged regarding the potential adverse effects of radiofrequency electromagnetic radiation (RF-EMR) used by these devices. To verify potential effects of mobile phone radiation on the central nervous system (CNS) in an animal model. Male Wistar rats (60 days old) were exposed to RF-EMR from a Global System for Mobile (GSM) cell phone (1·8 GHz) for 3 days. At the end of the exposure, the following behavioral tests were performed: open field and object recognition. Our results showed that exposed animals did not present anxiety patterns or working memory impairment, but stress behavior actions were observed. Given the results of the present study, we speculate that RF-EMR does not promote CNS impairment, but suggest that it may lead to stressful behavioral patterns.

  15. The Intrinsic Electrophysiological Properties of Mammalian Neurons: Insights into Central Nervous System Function

    NASA Astrophysics Data System (ADS)

    Llinas, Rodolfo R.

    1988-12-01

    This article reviews the electroresponsive properties of single neurons in the mammalian central nervous system (CNS). In some of these cells the ionic conductances responsible for their excitability also endow them with autorhythmic electrical oscillatory properties. Chemical or electrical synaptic contacts between these neurons often result in network oscillations. In such networks, autorhytmic neurons may act as true oscillators (as pacemakers) or as resonators (responding preferentially to certain firing frequencies). Oscillations and resonance in the CNS are proposed to have diverse functional roles, such as (i) determining global functional states (for example, sleep-wakefulness or attention), (ii) timing in motor coordination, and (iii) specifying connectivity during development. Also, oscillation, especially in the thalamo-cortical circuits, may be related to certain neurological and psychiatric disorders. This review proposes that the autorhythmic electrical properties of central neurons and their connectivity form the basis for an intrinsic functional coordinate system that provides internal context to sensory input.

  16. The retina as a window to the brain-from eye research to CNS disorders.

    PubMed

    London, Anat; Benhar, Inbal; Schwartz, Michal

    2013-01-01

    Philosophers defined the eye as a window to the soul long before scientists addressed this cliché to determine its scientific basis and clinical relevance. Anatomically and developmentally, the retina is known as an extension of the CNS; it consists of retinal ganglion cells, the axons of which form the optic nerve, whose fibres are, in effect, CNS axons. The eye has unique physical structures and a local array of surface molecules and cytokines, and is host to specialized immune responses similar to those in the brain and spinal cord. Several well-defined neurodegenerative conditions that affect the brain and spinal cord have manifestations in the eye, and ocular symptoms often precede conventional diagnosis of such CNS disorders. Furthermore, various eye-specific pathologies share characteristics of other CNS pathologies. In this Review, we summarize data that support examination of the eye as a noninvasive approach to the diagnosis of select CNS diseases, and the use of the eye as a valuable model to study the CNS. Translation of eye research to CNS disease, and deciphering the role of immune cells in these two systems, could improve our understanding and, potentially, the treatment of neurodegenerative disorders.

  17. Microbiota-gut-brain axis and the central nervous system.

    PubMed

    Zhu, Xiqun; Han, Yong; Du, Jing; Liu, Renzhong; Jin, Ketao; Yi, Wei

    2017-08-08

    The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated with various CNS diseases, such as Parkinson's disease, Alzheimer's disease, schizophrenia, and multiple sclerosis. In this paper, we will review the latest advances of studies on the correlation between gut microorganisms and CNS functions & diseases.

  18. Plasma Concentration of the Neurofilament Light Protein (NFL) is a Biomarker of CNS Injury in HIV Infection: A Cross-Sectional Study.

    PubMed

    Gisslén, Magnus; Price, Richard W; Andreasson, Ulf; Norgren, Niklas; Nilsson, Staffan; Hagberg, Lars; Fuchs, Dietmar; Spudich, Serena; Blennow, Kaj; Zetterberg, Henrik

    2016-01-01

    Cerebrospinal fluid (CSF) neurofilament light chain protein (NFL) is a sensitive marker of neuronal injury in a variety of neurodegenerative conditions, including the CNS dysfunction injury that is common in untreated HIV infection. However, an important limitation is the requirement for lumbar puncture. For this reason, a sensitive and reliable blood biomarker of CNS injury would represent a welcome advance in both clinical and research settings. To explore whether plasma concentrations of NFL might be used to detect CNS injury in HIV infection, an ultrasensitive Single molecule array (Simoa) immunoassay was developed. Using a cross-sectional design, we measured NFL in paired CSF and plasma samples from 121 HIV-infected subjects divided into groups according to stage of their systemic disease, presence of overt HIV-associated dementia (HAD), and after antiretroviral treatment (ART)-induced viral suppression. HIV-negative controls were also examined. Plasma and CSF NFL concentrations were very highly correlated (r = 0.89, P < 0.0001). While NFL was more than 50-fold lower plasma than CSF it was within the quantifiable range of the new plasma assay in all subjects, including the HIV negatives and the HIV positives with normal CSF NFL concentrations. The pattern of NFL changes were almost identical in plasma and CSF, both exhibiting similar age-related increases in concentrations along with highest values in HAD and substantial elevations in ART-naïve neuroasymptomatic subjects with low blood CD4(+) T cells. These results show that plasma NFL may prove a valuable tool to evaluate ongoing CNS injury in HIV infection that may be applied in the clinic and in research settings to assess the presence if active CNS injury. Because CSF NFL is also elevated in a variety of other CNS disorders, sensitive measures of plasma NFL may similarly prove useful in other settings.

  19. Plasma Concentration of the Neurofilament Light Protein (NFL) is a Biomarker of CNS Injury in HIV Infection: A Cross-Sectional Study

    PubMed Central

    Gisslén, Magnus; Price, Richard W.; Andreasson, Ulf; Norgren, Niklas; Nilsson, Staffan; Hagberg, Lars; Fuchs, Dietmar; Spudich, Serena; Blennow, Kaj; Zetterberg, Henrik

    2015-01-01

    Background Cerebrospinal fluid (CSF) neurofilament light chain protein (NFL) is a sensitive marker of neuronal injury in a variety of neurodegenerative conditions, including the CNS dysfunction injury that is common in untreated HIV infection. However, an important limitation is the requirement for lumbar puncture. For this reason, a sensitive and reliable blood biomarker of CNS injury would represent a welcome advance in both clinical and research settings. Methods To explore whether plasma concentrations of NFL might be used to detect CNS injury in HIV infection, an ultrasensitive Single molecule array (Simoa) immunoassay was developed. Using a cross-sectional design, we measured NFL in paired CSF and plasma samples from 121 HIV-infected subjects divided into groups according to stage of their systemic disease, presence of overt HIV-associated dementia (HAD), and after antiretroviral treatment (ART)-induced viral suppression. HIV-negative controls were also examined. Findings Plasma and CSF NFL concentrations were very highly correlated (r = 0.89, P < 0.0001). While NFL was more than 50-fold lower plasma than CSF it was within the quantifiable range of the new plasma assay in all subjects, including the HIV negatives and the HIV positives with normal CSF NFL concentrations. The pattern of NFL changes were almost identical in plasma and CSF, both exhibiting similar age-related increases in concentrations along with highest values in HAD and substantial elevations in ART-naïve neuroasymptomatic subjects with low blood CD4+ T cells. Interpretation These results show that plasma NFL may prove a valuable tool to evaluate ongoing CNS injury in HIV infection that may be applied in the clinic and in research settings to assess the presence if active CNS injury. Because CSF NFL is also elevated in a variety of other CNS disorders, sensitive measures of plasma NFL may similarly prove useful in other settings. PMID:26870824

  20. Myelin damage and repair in pathologic CNS: challenges and prospects

    PubMed Central

    Alizadeh, Arsalan; Dyck, Scott M.; Karimi-Abdolrezaee, Soheila

    2015-01-01

    Injury to the central nervous system (CNS) results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells and neural stem/progenitor cells contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal. Emerging evidence indicates that optimal remyelination is restricted by multiple factors including (i) low levels of factors that promote oligodendrogenesis; (ii) cell death among newly generated oligodendrocytes, (iii) inhibitory factors in the post-injury milieu that impede remyelination, and (iv) deficient expression of key growth factors essential for proper re-construction of a highly organized myelin sheath. Considering these challenges, over the past several years, a number of cell-based strategies have been developed to optimize remyelination therapeutically. Outcomes of these basic and preclinical discoveries are promising and signify the importance of remyelination as a mechanism for improving functions in CNS injuries. In this review, we provide an overview on: (1) the precise organization of myelinated axons and the reciprocal axo-myelin interactions that warrant properly balanced physiological activities within the CNS; (2) underlying cause of demyelination and the structural and functional consequences of demyelination in axons following injury and disease; (3) the endogenous mechanisms of oligodendrocyte replacement; (4) the modulatory role of reactive astrocytes and inflammatory cells in remyelination; and (5) the current status of cell-based therapies for promoting remyelination. Careful elucidation of the cellular and molecular mechanisms of demyelination in the pathologic CNS is a key to better understanding the impact of remyelination for CNS repair. PMID:26283909

Top