Treatment of HIV in the Central Nervous System.
Yilmaz, Aylin; Gisslén, Magnus
2014-02-01
Central nervous system (CNS) infection is an important part of systemic human immunodeficiency disease (HIV) infection. It is most often asymptomatic, but can sometimes lead to severe neurologic disease, particularly in advanced stages of immunosuppression. CNS HIV infection usually responds well to antiretroviral treatment, but there are concerns that treatment may not always be fully effective in treating or preventing milder CNS disease and that it, under certain circumstances, might be important to consider antiretroviral drug distribution and effects within the CNS. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Nogueiras, Ruben; Pérez-Tilve, Diego; Veyrat-Durebex, Christelle; Morgan, Donald A; Varela, Luis; Haynes, William G; Patterson, James T; Disse, Emmanuel; Pfluger, Paul T; López, Miguel; Woods, Stephen C; DiMarchi, Richard; Diéguez, Carlos; Rahmouni, Kamal; Rohner-Jeanrenaud, Françoise; Tschöp, Matthias H
2009-05-06
We investigated a possible role of the central glucagon-like peptide (GLP-1) receptor system as an essential brain circuit regulating adiposity through effects on nutrient partitioning and lipid metabolism independent from feeding behavior. Both lean and diet-induced obesity mice were used for our experiments. GLP-1 (7-36) amide was infused in the brain for 2 or 7 d. The expression of key enzymes involved in lipid metabolism was measured by real-time PCR or Western blot. To test the hypothesis that the sympathetic nervous system may be responsible for informing adipocytes about changes in CNS GLP-1 tone, we have performed direct recording of sympathetic nerve activity combined with experiments in genetically manipulated mice lacking beta-adrenergic receptors. Intracerebroventricular infusion of GLP-1 in mice directly and potently decreases lipid storage in white adipose tissue. These effects are independent from nutrient intake. Such CNS control of adipocyte metabolism was found to depend partially on a functional sympathetic nervous system. Furthermore, the effects of CNS GLP-1 on adipocyte metabolism were blunted in diet-induced obese mice. The CNS GLP-1 system decreases fat storage via direct modulation of adipocyte metabolism. This CNS GLP-1 control of adipocyte lipid metabolism appears to be mediated at least in part by the sympathetic nervous system and is independent of parallel changes in food intake and body weight. Importantly, the CNS GLP-1 system loses the capacity to modulate adipocyte metabolism in obese states, suggesting an obesity-induced adipocyte resistance to CNS GLP-1.
Umezu, Toyoshi
2012-06-01
Although plant-derived essential oils (EOs) have been used to treat various mental disorders, their central nervous system (CNS) acting effects have not been clarified. The present study compared the effects of 20 kinds of EOs with the effects of already-known CNS acting drugs to examine whether the EOs exhibited CNS stimulant-like effects, CNS depressant-like effects, or neither. All agents were tested using a discrete shuttle-type conditioned avoidance task in mice. Essential oils of peppermint and chamomile exhibited CNS stimulant-like effects; that is, they increased the response rate (number of shuttlings/min) of the avoidance response. Linden also increased the response rate, however, the effect was not dose-dependent. In contrast, EOs of orange, grapefruit, and cypress exhibited CNS depressant-like effects; that is, they decreased the response rate of the avoidance response. Essential oils of eucalyptus and rose decreased the avoidance rate (number of avoidance responses/number of avoidance trials) without affecting the response rate, indicating that they may exhibit some CNS acting effects. Essential oils of 12 other plants, including juniper, patchouli, geranium, jasmine, clary sage, neroli, lavender, lemon, ylang-ylang, niaouli, vetivert and frankincense had no effect on the avoidance response in mice. Copyright © 2011 John Wiley & Sons, Ltd.
Biomaterial Scaffolds in Regenerative Therapy of the Central Nervous System
Tan, Hong
2018-01-01
The central nervous system (CNS) is the most important section of the nervous system as it regulates the function of various organs. Injury to the CNS causes impairment of neurological functions in corresponding sites and further leads to long-term patient disability. CNS regeneration is difficult because of its poor response to treatment and, to date, no effective therapies have been found to rectify CNS injuries. Biomaterial scaffolds have been applied with promising results in regeneration medicine. They also show great potential in CNS regeneration for tissue repair and functional recovery. Biomaterial scaffolds are applied in CNS regeneration predominantly as hydrogels and biodegradable scaffolds. They can act as cellular supportive scaffolds to facilitate cell infiltration and proliferation. They can also be combined with cell therapy to repair CNS injury. This review discusses the categories and progression of the biomaterial scaffolds that are applied in CNS regeneration. PMID:29805977
Antiretroviral drug treatment of CNS HIV-1 infection.
Yilmaz, Aylin; Price, Richard W; Gisslén, Magnus
2012-02-01
The advent of combination antiretroviral treatment has had a profound impact on CNS HIV infection and its clinical complications, but neurological impairment still occurs in patients on systemically effective combination therapy, and in some patients it may be important to consider antiretroviral drug entry and effects within the CNS. There are now data on the CNS exposure for most antiretroviral drugs. This review focuses on the CNS pharmacokinetics and pharmacodynamics of antiretroviral drugs in humans, and also discusses controversies in this field.
Beneficial effects of exercise and its molecular mechanisms on depression in rats
Zheng, Hang; Liu, Yanyou; Li, Wei; Yang, Bo; Chen, Dengbang; Wang, Xiaojia; Jiang, Zhou; Wang, Hongxing; Wang, Zhengrong; Cornelisson, G.; Halberg, F.
2008-01-01
Exercise showed the beneficial effects on mental health in depressed sufferers, whereas, its underlying mechanisms remained unresolved. This study utilized the chronic unpredictable stress (CNS) animal model of depression to evaluate the effects of exercise on depressive behaviors and spatial performance in rats. Furthermore, we tested the hypothesis that the capacity of exercise to reverse the harmful effects of CNS was relative to the hypothalamo–pituitary–adrenal (HPA) system and brain-derived neurotrophic factor (BDNF) in the hippocampus. Animal groups were exposed to CNS for 4 weeks with and without access to voluntary wheel running. Stressed rats consumed significantly less of a 1% sucrose solution during CNS and exhibited a significant decrease in open field behavior. On the other hand, they showed impaired spatial performance in Morris water maze test 2 weeks after the end of CNS. Further, CNS significantly decreased hippocampal BDNF mRNA levels. However, voluntary exercise improved or even reversed these harmful behavioral effects in stressed rats. Furthermore, exercise counteracted a decrease in hippocampal BDNF mRNA caused by CNS. In addition, we also found that CMS alone increased circulating corticosterone (CORT) significantly and decreased hippocampal glucocorticoid receptor (GR) mRNA. At the same time, exercise alone increased CORT moderately and did not affect hippocampal GR mRNA levels. While, when both CNS and exercise were combined, exercise reduced the increase of CORT and the decrease of GR caused by CMS. The results demonstrated that: (1) exercise reversed the harmful effects of CNS on mood and spatial performance in rats and (2) the behavioral changes induced by exercise and/or CNS might be associated with hippocampal BDNF levels, and in addition, the HPA system might play different roles in the two different processes. PMID:16290283
Wang, Qiuying; Cui, Xufei; Li, Yibing; Ye, Fang
2017-01-01
To improve the ability of autonomous navigation for Unmanned Surface Vehicles (USVs), multi-sensor integrated navigation based on Inertial Navigation System (INS), Celestial Navigation System (CNS) and Doppler Velocity Log (DVL) is proposed. The CNS position and the DVL velocity are introduced as the reference information to correct the INS divergence error. The autonomy of the integrated system based on INS/CNS/DVL is much better compared with the integration based on INS/GNSS alone. However, the accuracy of DVL velocity and CNS position are decreased by the measurement noise of DVL and bad weather, respectively. Hence, the INS divergence error cannot be estimated and corrected by the reference information. To resolve the problem, the Adaptive Information Sharing Factor Federated Filter (AISFF) is introduced to fuse data. The information sharing factor of the Federated Filter is adaptively adjusted to maintaining multiple component solutions usable as back-ups, which can improve the reliability of overall system. The effectiveness of this approach is demonstrated by simulation and experiment, the results show that for the INS/CNS/DVL integrated system, when the DVL velocity accuracy is decreased and the CNS cannot work under bad weather conditions, the INS/CNS/DVL integrated system can operate stably based on the AISFF method. PMID:28165369
Wang, Qiuying; Cui, Xufei; Li, Yibing; Ye, Fang
2017-02-03
To improve the ability of autonomous navigation for Unmanned Surface Vehicles (USVs), multi-sensor integrated navigation based on Inertial Navigation System (INS), Celestial Navigation System (CNS) and Doppler Velocity Log (DVL) is proposed. The CNS position and the DVL velocity are introduced as the reference information to correct the INS divergence error. The autonomy of the integrated system based on INS/CNS/DVL is much better compared with the integration based on INS/GNSS alone. However, the accuracy of DVL velocity and CNS position are decreased by the measurement noise of DVL and bad weather, respectively. Hence, the INS divergence error cannot be estimated and corrected by the reference information. To resolve the problem, the Adaptive Information Sharing Factor Federated Filter (AISFF) is introduced to fuse data. The information sharing factor of the Federated Filter is adaptively adjusted to maintaining multiple component solutions usable as back-ups, which can improve the reliability of overall system. The effectiveness of this approach is demonstrated by simulation and experiment, the results show that for the INS/CNS/DVL integrated system, when the DVL velocity accuracy is decreased and the CNS cannot work under bad weather conditions, the INS/CNS/DVL integrated system can operate stably based on the AISFF method.
Zoethout, Remco W M; Delgado, Wilson L; Ippel, Annelies E; Dahan, Albert; van Gerven, Joop M A
2011-01-01
The central nervous system (CNS) effects of acute alcohol administration have been frequently assessed. Such studies often use a wide range of methods to study each of these effects. Unfortunately, the sensitivity of these tests has not completely been ascertained. A literature search was performed to recognize the most useful tests (or biomarkers) for identifying the acute CNS effects of alcohol in healthy volunteers. All tests were grouped in clusters and functional domains. Afterwards, the effect of alcohol administration on these tests was scored as improvement, impairment or as no effect. Furthermore, dose–response relationships were established. A total number of 218 studies, describing 342 different tests (or test variants) were evaluated. Alcohol affected a wide range of CNS domains. Divided attention, focused attention, visuo-motor control and scales of feeling high and of subjective drug effects were identified as the most sensitive functional biomarkers for the acute CNS effects of alcohol. The large number of CNS tests that are used to determine the effects of alcohol interferes with the identification of the most sensitive ones and of drug–response relationships. Our results may be helpful in selecting rational biomarkers for studies investigating the acute CNS effects of alcohol or for future alcohol- interaction studies. PMID:21284693
Fan, Jun; Yang, Jing; Jiang, Zhenran
2018-04-01
Drug side effects are one of the public health concerns. Using powerful machine-learning methods to predict potential side effects before the drugs reach the clinical stages is of great importance to reduce time consumption and protect the security of patients. Recently, researchers have proved that the central nervous system (CNS) side effects of a drug are closely related to its permeability to the blood-brain barrier (BBB). Inspired by this, we proposed an extended neighborhood-based recommendation method to predict CNS side effects using drug permeability to the BBB and other known features of drug. To the best of our knowledge, this is the first attempt to predict CNS side effects considering drug permeability to the BBB. Computational experiments demonstrated that drug permeability to the BBB is an important factor in CNS side effects prediction. Moreover, we built an ensemble recommendation model and obtained higher AUC score (area under the receiver operating characteristic curve) and AUPR score (area under the precision-recall curve) on the data set of CNS side effects by integrating various features of drug.
[Effect of nociceptin on histamine and serotonin release in the central nervous system].
Gyenge, Melinda; Hantos, Mónika; Laufer, Rudolf; Tekes, Korniléa
2006-01-01
Role in pain sensation of both nociceptin (NC), the bioactive heptadecapeptide sequence of preproorphaninFQ and of histamine has been widely evidenced in the central nervous system (CNS). In the current series of experiments effect of intracerebroventricularly (i.c.v.) administered NC (5.5 nmol/rat) on histamine and serotonin levels in blood plasma, CSF and brain areas (hypothalamus and hippocampus) was studies and compared to the effect of the mast cell degranulator Compound 48/80(100microg/kg, i.c.v.) and the neuroactive peptide Substance P (50nmol/rat, i.c.v.). It was found that all the three compounds increased the histamine level in the CNS, however their activity concerning the mast cell-, and neuronal histamine release is different. NC could release histamine from both the mast cells and the neurons and it decreased CNS serotonin levels. Substance P was found the most potent in increasing CNS histamine levels. Compound 48/80 treatment resulted in elevated histamine levels both in the CNS and blood plasma. It is concluded that the histamine releasing effects of i.c.v. administered NC and SP are limited to the CNS, but in the effect of Compound 48/80 its blood-brain barrier impairing activity is also involved. Data also demonstrate that NC has significant effect on both the histaminergic and serotonergic neurotransmission in the CNS.
Dendrimer advances for the central nervous system delivery of therapeutics.
Xu, Leyuan; Zhang, Hao; Wu, Yue
2014-01-15
The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included.
Dendrimer Advances for the Central Nervous System Delivery of Therapeutics
2013-01-01
The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included. PMID:24274162
Zoethout, Remco W M; Delgado, Wilson L; Ippel, Annelies E; Dahan, Albert; van Gerven, Joop M A
2011-03-01
The central nervous system (CNS) effects of acute alcohol administration have been frequently assessed. Such studies often use a wide range of methods to study each of these effects. Unfortunately, the sensitivity of these tests has not completely been ascertained. A literature search was performed to recognize the most useful tests (or biomarkers) for identifying the acute CNS effects of alcohol in healthy volunteers. All tests were grouped in clusters and functional domains. Afterwards, the effect of alcohol administration on these tests was scored as improvement, impairment or as no effect. Furthermore, dose-response relationships were established. A total number of 218 studies, describing 342 different tests (or test variants) were evaluated. Alcohol affected a wide range of CNS domains. Divided attention, focused attention, visuo-motor control and scales of feeling high and of subjective drug effects were identified as the most sensitive functional biomarkers for the acute CNS effects of alcohol. The large number of CNS tests that are used to determine the effects of alcohol interferes with the identification of the most sensitive ones and of drug-response relationships. Our results may be helpful in selecting rational biomarkers for studies investigating the acute CNS effects of alcohol or for future alcohol- interaction studies. © 2011 The Authors. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.
Shigematsu, Akio; Kako, Shinichi; Mitsuhashi, Kenjiro; Iwato, Koji; Uchida, Naoyuki; Kanda, Yoshinobu; Fukuda, Takahiro; Sawa, Masashi; Senoo, Yasushi; Ogawa, Hiroyasu; Miyamura, Koichi; Takada, Satoru; Nagamura-Inoue, Tokiko; Morishima, Yasuo; Ichinohe, Tatsuo; Atsuta, Yoshiko; Mizuta, Shuichi; Tanaka, Junji
2017-06-01
The prognosis for adult acute lymphoblastic leukemia (ALL) patients with central nervous system (CNS) involvement (CNS+) who received allogeneic hematopoietic stem cell transplantation (allo-SCT) remains unclear. We retrospectively compared the outcomes of allo-SCT for patients with CNS involvement and for patients without CNS involvement (CNS-) using a database in Japan. The eligibility criteria for this study were as follows: diagnosis of ALL, aged more than 16 years, allo-SCT between 2005 and 2012, and first SCT. Data for 2582 patients including 136 CNS+ patients and 2446 CNS- patients were used for analyses. As compared with CNS- patients, CNS+ patients were younger, had worse disease status at SCT and had poorer performance status (PS) at SCT (P < 0.01). Incidence of relapse was higher in CNS+ patients (P = 0.02), and incidence of CNS relapse was also higher (P < 0.01). The probability of 3-year overall survival (OS) was better in CNS- patients (P < 0.01) by univariate analysis. However, in patients who received SCT in CR, there was no difference in the probability of OS between CNS+ and CNS- patients (P = 0.38) and CNS involvement did not have an unfavorable effect on OS by multivariate analysis. CNS+ patients who achieved CR showed OS comparable to that of CNS- patients.
Khambhla, Ekta; Shah, Viral; Baviskar, Kalpesh
2016-01-01
The current epoch has witnessed a lifestyle impregnated with stress, which is a major cause of several neurological disorders. High morbidity and mortality rate due to neurological diseases and disorders have generated a huge social impact. Despite voluminous research, patients suffering from fatal and/or debilitating CNS diseases such as brain tumors, HIV, encephalopathy, Alzheimer's, epilepsy, Parkinson's, migraine and multiple sclerosis outnumbered those suffering from systemic cancer or heart diseases. The brain being a highly sensitive neuronal organ, has evolved with vasculature barriers, which regulates the efflux and influx of substances to CNS. Treatment of CNS diseases/disorders is challenging because of physiologic, metabolic and biochemical obstacles created by these barriers which comprise mainly of BBB and BCFB. The inability of achieving therapeutically active concentration has become the bottleneck level difficulty, hampering the therapeutic efficiency of several promising drug candidates for CNS related disorders. Parallel maturation of an effective CNS drug delivery strategy with CNS drug discovery is the need of the hour. Recently, the focus of the pharmaceutical community has aggravated in the direction of developing novel and more efficient drug delivery systems, giving the potential of more effective and safer CNS therapies. The present review outlines several hurdles in drug delivery to the CNS along with ideal physicochemical properties desired in drug substance/formulation for CNS delivery. The review also focuses on different conventional and novel strategies for drug delivery to the CNS. The article also assesses and emphasizes on possible benefits of biomaterial based formulations for drug delivery to the CNS.
The adverse effects of air pollution on the nervous system.
Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H; Genc, Kursad
2012-01-01
Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health.
The Adverse Effects of Air Pollution on the Nervous System
Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H.; Genc, Kursad
2012-01-01
Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health. PMID:22523490
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buehler, Paul W.; Butt, Omer I.; D'Agnillo, Felice, E-mail: felice.dagnillo@fda.hhs.gov
Highlights: {yields} Toxicological implications associated with the use of NaNO{sub 2} therapy to treat systemic cell-free Hb exposure are not well-defined. {yields} Systemic Hb exposure followed by NaNO{sub 2} infusion induces acute CNS toxicities in guinea pigs. {yields} These CNS effects were not reproduced by the infusion of cell-free Hb or NaNO{sub 2} alone. {yields} NaNO{sub 2}-mediated oxidation of cell-free Hb may play a causative role in the observed CNS changes. -- Abstract: Systemic cell-free hemoglobin (Hb) released via hemolysis disrupts vascular homeostasis, in part, through the scavenging of nitric oxide (NO). Sodium nitrite (NaNO{sub 2}) therapy can attenuate themore » hypertensive effects of Hb. However, the chemical reactivity of NaNO{sub 2} with Hb may enhance heme- or iron-mediated toxicities. Here, we investigate the effect of NaNO{sub 2} on the central nervous system (CNS) in guinea pigs exposed to systemic cell-free Hb. Intravascular infusion of NaNO{sub 2}, at doses sufficient to alleviate Hb-mediated blood pressure changes, reduced the expression of occludin, but not zona occludens-1 (ZO-1) or claudin-5, in cerebral tight junctions 4 h after Hb infusion. This was accompanied by increased perivascular heme oxygenase-1 expression, neuronal iron deposition, increased astrocyte and microglial activation, and reduced expression of neuron-specific nuclear protein (NeuN). These CNS changes were not observed in animals treated with Hb or NaNO{sub 2} alone. Taken together, these findings suggest that the use of nitrite salts to treat systemic Hb exposure may promote acute CNS toxicity.« less
Lemma, Siria A; Pasanen, Anna Kaisa; Haapasaari, Kirsi-Maria; Sippola, Antti; Sormunen, Raija; Soini, Ylermi; Jantunen, Esa; Koivunen, Petri; Salokorpi, Niina; Bloigu, Risto; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi
2016-05-01
Central nervous system (CNS) relapse occurs in around 5% of diffuse large B-cell lymphoma (DLBCL) cases. No biomarkers to identify high-risk patients have been discovered. We evaluated the expression of lymphocyte-guiding chemokine receptors in systemic and CNS lymphomas. Immunohistochemical staining for CXCR4, CXCR5, CCR7, CXCL12, and CXCL13 was performed on 89 tissue samples, including cases of primary central nervous system lymphoma (PCNSL), secondary CNS lymphoma (sCNSL), and systemic DLBCL. Also, 10 reactive lymph node samples were included. Immunoelectron microscopy was performed on two PCNSLs, one sCNSL, one systemic DLBCL, and one reactive lymph node samples, and staining was performed for CXCR4, CXCR5, CXCL12, and CXCL13. Chi-square test was used to determine correlations between clinical parameters, diagnostic groups, and chemokine receptor expression. Strong nuclear CXCR4 positivity correlated with systemic DLBCL, whereas strong cytoplasmic CXCR5 positivity correlated with CNS involvement (P = 0.003 and P = 0.039). Immunoelectron microscopy revealed a nuclear CXCR4 staining in reactive lymph node, compared with cytoplasmic and membranous localization seen in CNS lymphomas. We found that CNS lymphoma presented a chemokine receptor profile different from systemic disease. Our findings give new information on the CNS tropism of DLBCL and, if confirmed, may contribute to more effective targeting of CNS prophylaxis among patients with DLBCL. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
ABORDO-ADESIDA, EVELYN; FOLLENZI, ANTONIA; BARCIA, CARLOS; SCIASCIA, SANDRA; CASTRO, MARIA G.; NALDINI, LUIGI; LOWENSTEIN, PEDRO R.
2009-01-01
Lentiviral vectors are promising tools for gene therapy in the CNS. It is therefore important to characterize their interactions with the immune system in the CNS. This work characterizes transgene expression and brain inflammation in the presence or absence of immune responses generated after systemic immunization with lentiviral vectors. We characterized transduction with SIN-LV vectors in the CNS. A dose—response curve using SIN-LV-GFP demonstrated detectable transgene expression in the striatum at a dose of 102, and maximum expression at 106, transducing units of lentiviral vector, with minimal increase in inflammatory markers between the lowest and highest dose of vector injected. Our studies demonstrate that injection of a lentiviral vector into the CNS did not cause a measurable inflammatory response. Systemic immunization after CNS injection, with the lentiviral vector expressing the same transgene as a vector injected into the CNS, caused a decrease in transgene expression in the CNS, concomitantly with an infiltration of inflammatory cells into the CNS parenchyma at the injection site. However, peripheral immunization with a lentiviral vector carrying a different transgene did not diminish transgene expression, or cause CNS inflammation. Systemic immunization preceding injection of lentiviral vectors into the CNS determined that preexisting antilentiviral immunity, regardless of the transgene, did not affect transgene expression. Furthermore, we showed that the transgene, but not the virion or vector components, is responsible for providing antigenic epitopes to the activated immune system, on systemic immunization with lentivirus. Low immunogenicity and prolonged transgene expression in the presence of preexisting lentiviral immunity are encouraging data for the future use of lentiviral vectors in CNS gene therapy. In summary, the lentiviral vectors tested induced undetectable activation of innate immune responses, and stimulation of adaptive immune responses against lentiviral vectors was effective in causing a decrease in transgene expression only if the immune response was directed against the transgene. A systemic immune response against vector components alone did not cause brain inflammation, possibly because vector-derived epitopes were not being presented in the CNS. PMID:15960605
Air pollution: mechanisms of neuroinflammation and CNS disease.
Block, Michelle L; Calderón-Garcidueñas, Lilian
2009-09-01
Air pollution has been implicated as a chronic source of neuroinflammation and reactive oxygen species (ROS) that produce neuropathology and central nervous system (CNS) disease. Stroke incidence and Alzheimer's and Parkinson's disease pathology are linked to air pollution. Recent reports reveal that air pollution components reach the brain; systemic effects that impact lung and cardiovascular disease also impinge upon CNS health. While mechanisms driving air pollution-induced CNS pathology are poorly understood, new evidence suggests that microglial activation and changes in the blood-brain barrier are key components. Here we summarize recent findings detailing the mechanisms through which air pollution reaches the brain and activates the resident innate immune response to become a chronic source of pro-inflammatory factors and ROS, culminating in CNS disease.
Anticholinergics and Central Nervous System Effects: Are We Confused?
Staskin, David R; Zoltan, Edward
2007-01-01
The central nervous system (CNS) effects of anticholinergic agents have been documented in various patient populations and to varying degrees in case reports, brain-activity surrogates, and computerized cognitive testing. The older patient population with overactive bladder represents a group at increased risk of cognitive impairment and other CNS side effects associated with antimuscarinic agents. The complexity of the effect of anticholinergic agents on CNS function requires an increased level of careful investigation. Studies need to be performed in the at-risk population with multiple, validated tests at clinically prescribed doses in acute and chronic situations. These studies need to take into account the effect of commonly prescribed dosing regimens, with doses selected to represent with equivalent bladder potency. The alterations in the serum levels and parent/metabolite effects contributed by metabolic issues or drug delivery systems require special attention. PMID:18231615
A Novel Robust H∞ Filter Based on Krein Space Theory in the SINS/CNS Attitude Reference System.
Yu, Fei; Lv, Chongyang; Dong, Qianhui
2016-03-18
Owing to their numerous merits, such as compact, autonomous and independence, the strapdown inertial navigation system (SINS) and celestial navigation system (CNS) can be used in marine applications. What is more, due to the complementary navigation information obtained from two different kinds of sensors, the accuracy of the SINS/CNS integrated navigation system can be enhanced availably. Thus, the SINS/CNS system is widely used in the marine navigation field. However, the CNS is easily interfered with by the surroundings, which will lead to the output being discontinuous. Thus, the uncertainty problem caused by the lost measurement will reduce the system accuracy. In this paper, a robust H∞ filter based on the Krein space theory is proposed. The Krein space theory is introduced firstly, and then, the linear state and observation models of the SINS/CNS integrated navigation system are established reasonably. By taking the uncertainty problem into account, in this paper, a new robust H∞ filter is proposed to improve the robustness of the integrated system. At last, this new robust filter based on the Krein space theory is estimated by numerical simulations and actual experiments. Additionally, the simulation and experiment results and analysis show that the attitude errors can be reduced by utilizing the proposed robust filter effectively when the measurements are missing discontinuous. Compared to the traditional Kalman filter (KF) method, the accuracy of the SINS/CNS integrated system is improved, verifying the robustness and the availability of the proposed robust H∞ filter.
Central nervous system involvement in pediatric rheumatic diseases: current concepts in treatment.
Duzova, Ali; Bakkaloglu, Aysin
2008-01-01
Central nervous system (CNS) manifestations are not rare in pediatric rheumatic diseases. They may be a relatively common feature of the disease, as in systemic lupus erythematosus (SLE) and Behçet's disease. Direct CNS involvement of a systemic rheumatic disease, primary CNS vasculitis, indirect involvement secondary to hypertension, hypoxia and metabolic changes, and drug associated adverse events may all result in CNS involvement. We have reviewed the CNS manifestations of SLE, Behçet's disease, Henoch-Schönlein purpura, polyarteritis nodosa, juvenile idiopathic arthritis, juvenile ankylosing spondylitis, familial Mediterranean fever, scleroderma, sarcoidosis, Wegener's granulomatosis, Takayasu's arteritis, CINCA syndrome, Kawasaki disease, and primary CNS vasculitis; and adverse CNS effects of anti-rheumatic drugs in pediatric patients. The manifestations are diverse; ranging from headache, seizures, chorea, changes in personality, depression, memory and concentration problems, cognitive impairment, cerebrovascular accidents to coma, and death. The value of cerebrospinal fluid (CSF) examination (pleocytosis, high level of protein), auto-antibodies in serum and CSF, electroencephalography, neuroimaging with computerized tomography, magnetic resonance imaging, SPECT, PET, and angiography depends on the disease. Brain biopsy is gold standard for the diagnosis of CNS vasculitis, however it may be inconclusive in 25% of cases. A thorough knowledge of the rheumatic diseases and therapy-related adverse events is mandatory for the management of a patient with rheumatic disease and CNS involvement. Severe CNS involvement is associated with poor prognosis, and high mortality rate. High dose steroid and cyclophosphamide (oral or intravenous) are first choice drugs in the treatment; plasmapheresis, IVIG, thalidomide, and intratechal treatment may be valuable in treatment-resistant, and serious cases.
Adamson, D Cory; Rasheed, B Ahmed K; McLendon, Roger E; Bigner, Darell D
2010-01-01
Several different types of tumors, benign and malignant, have been identified in the central nervous system (CNS). The prognoses for these tumors are related to several factors, such as the age of the patient and the location and histology of the tumor. In adults, about half of all CNS tumors are malignant, whereas in pediatric patients, more than 75% are malignant. For most benign CNS tumors that require treatment, neurosurgeons can offer curative resections or at least provide significant relief from mass effect. Unfortunately, we still lack effective treatments for most primary and secondary malignant CNS tumors. However, the past decade has witnessed an explosion in the understanding of the early molecular events in malignant primary CNS tumors, and for the first time in history, oncologists are seeing that a plethora of new therapies targeting these molecular events are being tested in clinical trials. There is hope on the horizon for the fight against these deadly tumors. The distribution of CNS tumors by location has remained constant for numerous years. The majority of primary CNS tumors arise in the major cortical lobes. Twenty nine percent of primary CNS tumors arise from the dural meninges that encase the CNS structures. The vast majority of these are meningiomas, of which over 90% are benign. About 10% of primary CNS tumors are found in the sella turcica region, where the pituitary gland resides. Other much less common sites of primary CNS tumors include the pineal region, ventricular system, cerebellum, brain stem, cranial nerves, and spinal cord. The distribution of CNS tumors by histology has seen a slight increase in more malignant tumors over the past decade, possibly due to increased neuroimaging practices or environmental exposures. Arising from glial cells, gliomas represent over 36% of all primary CNS tumors and consist of astrocytomas, oligodendrogliomas, ependymomas, mixed gliomas, and neuroepithelial tumors. The benign meningiomas make up 32% of primary CNS tumors, followed by nerve sheath tumors and pituitary tumors. Primary CNS lymphomas, embryonal tumors, and craniopharyngiomas are uncommon. The most common gliomas are astrocytomas, and these tumors are typically classified by the World Health Organization (WHO) as Grades I through IV. Grade IV, the most malignant grade of astrocytoma, includes glioblastoma multiforme (GBM), the most common malignant primary CNS glioma in adults, which represents 51% of all CNS gliomas. GBM is unfortunately the most challenging to effectively treat and has the worst patient survival. This chapter is therefore primarily devoted to the current understanding of this topic. Here we describe the molecular and cellular events associated with malignant glioma initiation and progression. We also review the importance of glioma stem cell biology and tumor immunology in early gliomagenesis. In addition, we present a brief description of the most common malignant primary CNS glioma in pediatric patients - medulloblastoma, as well as familial cancer syndromes that include gliomas as part of the syndrome.
The effects of Chinese medicines on cAMP/PKA signaling in central nervous system dysfunction.
Li, Lin; Fan, Xiang; Zhang, Xi-Ting; Yue, Shao-Qian; Sun, Zuo-Yan; Zhu, Jin-Qiang; Zhang, Jun-Hua; Gao, Xiu-Mei; Zhang, Han
2017-06-01
Neuropathological injury in the mammalian adult central nervous system (CNS) may cause axon disruption, neuronal death and lasting neurological deficits. Failure of axon regeneration is one of the major challenges for CNS functional recovery. Recently, the cAMP/PKA signaling pathway has been proven to be a critical regulator for neuronal regeneration, neuroplasticity, learning and memory. Also, previous studies have shown the effects of Chinese medicines on the prevention and treatment of CNS dysfunction mediated in part by cAMP/PKA signaling. In this review, the authors discuss current knowledge of the role of cAMP/PKA signaling pathway in neuronal regeneration and provide an overview of the Chinese medicines that may enable CNS functional recovery via this signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.
Evidence Report: Risk of Acute and Late Central Nervous System Effects from Radiation Exposure
NASA Technical Reports Server (NTRS)
Nelson, Gregory A.; Simonsen, Lisa; Huff, Janice L.
2016-01-01
Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays (GCR) and solar particle events (SPE) are concerns for human exploration of space. Acute CNS risks may include: altered cognitive function, reduced motor function, and behavioral changes, all of which may affect performance and human health. Late CNS risks may include neurological disorders such as Alzheimer's disease (AD), dementia and premature aging. Although detrimental CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and 9 protons) for cancer and are supported by experimental evidence showing neurocognitive and behavioral effects in animal models, the significance of these results on the morbidity to astronauts has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not possible for CNS risks. Research specific to the spaceflight environment using animal and cell models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk and to establish validity of the current permissible exposure limits (PELs). In addition, the impact of radiation exposure in combination with individual sensitivity or other space flight factors, as well as assessment of the need for biological/pharmaceutical countermeasures, will be considered after further definition of CNS risk occurs.
Evidence Report: Risk of Acute and Late Central Nervous System Effects from Radiation Exposure
NASA Technical Reports Server (NTRS)
Nelson, Gregory A.; Simonsen, Lisa; Huff, Janice L.
2015-01-01
Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays (GCR) and solar particle events (SPE) are a documented concern for human exploration of space. Acute CNS risks include: altered cognitive function, reduced motor function, and behavioral changes, all of which may affect performance and human health. Late CNS risks include neurological disorders such as Alzheimer's disease (AD), dementia and premature aging. Although detrimental CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and protons) for cancer and are supported by experimental evidence showing neurocognitive and behavioral effects in animal models, the significance of these results on the morbidity to astronauts has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not possible for CNS risks. Research specific to the spaceflight environment using animal and cell models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk and to establish validity of the current permissible exposure limits (PELs). In addition, the impact of radiation exposure in combination with individual sensitivity or other space flight factors, as well as assessment of the need for biological/pharmaceutical countermeasures, will be considered after further definition of CNS risk occurs.
Zheng, Changcheng; Liu, Xin; Zhu, Weibo; Cai, Xiaoyan; Wu, Jingsheng; Sun, Zimin
2014-06-01
The aim of this report was to investigate the tailored treatment strategies for isolated central nervous system (CNS) recurrence in adult patients with acute myeloid leukemia (AML). Isolated CNS recurrence was documented in 34 patients: there were 18, 6, and 10 patients with meningeal involvement type (type A), cranial nerve palsy type (type B), and myeloid sarcoma type (type C), respectively. For patients with type A, intrathecal chemotherapy was the predominant strategy. For type B, systemic HD-Ara-C with four cycles was the main treatment. For type C, cranial irradiation or craniospinal irradiation was adopted and two cycles of HD-Ara-C were given after the irradiation. The 5-year cumulative incidence of CNS recurrence was 12.8%. There was a significantly higher WBC count (32.6∼60.8 × 10(9)/l) in patients at first diagnosis who developed CNS recurrence (all of the three types) compared with patients with no CNS recurrence (10.1 × 10(9)/l) (P = 0.005). We found that a significantly more patients with AML-M5 and 11q23 abnormalities developed CNS recurrence in type A (P < 0.001, 0.005). Twenty-four out of 34 patients (70.6%) with CNS recurrence achieved CNS complete remission at a median of 58 days (range, 30-120). The 3-year disease-free survival and overall survival estimates for all CNS recurrence patients were 21.6 and 25.3%, respectively. This report indicates that the tailored CNS-directed strategy is an effective modality to treat CNS recurrence in adult AML, but further studies are needed to improve the long-term survival.
Air Pollution: Mechanisms of Neuroinflammation & CNS Disease
Block, Michelle L.; Calderón-Garcidueñas, Lilian
2009-01-01
Emerging evidence implicates air pollution as a chronic source of neuroinflammation, reactive oxygen species (ROS), and neuropathology instigating central nervous system (CNS) disease. Stroke incidence, and Alzheimer’s and Parkinson’s disease pathology are linked to air pollution. Recent reports reveal that air pollution components reach the brain. Further, systemic effects known to impact lung and cardiovascular disease also impinge upon CNS health. While mechanisms driving air pollution-induced CNS pathology are poorly understood, new evidence suggests that activation of microglia and changes in the blood brain barrier may be key to this process. Here, we summarize recent findings detailing the mechanisms through which air pollution reaches the brain and activates the resident innate immune response to become a chronic source of pro-inflammatory factors and ROS culpable in CNS disease. PMID:19716187
The Effects of Different Factors on the Behavior of Neural Stem Cells
Huang, Lixiang
2017-01-01
The repair of central nervous system (CNS) injury has been a worldwide problem in the biomedical field. How to reduce the damage to the CNS and promote the reconstruction of the damaged nervous system structure and function recovery has always been the concern of nerve tissue engineering. Multiple differentiation potentials of neural stem cell (NSC) determine the application value for the repair of the CNS injury. Thus, how to regulate the behavior of NSCs becomes the key to treating the CNS injury. So far, a large number of researchers have devoted themselves to searching for a better way to regulate the behavior of NSCs. This paper summarizes the effects of different factors on the behavior of NSCs in the past 10 years, especially on the proliferation and differentiation of NSCs. The final purpose of this review is to provide a more detailed theoretical basis for the clinical repair of the CNS injury by nerve tissue engineering. PMID:29358957
Antiretroviral Therapy and Central Nervous System HIV-1 Infection
Price, Richard W.; Spudich, Serena
2008-01-01
Central nervous system (CNS) HIV-1 infection begins during primary viremia and continues throughout the course of untreated systemic infection. While frequently accompanied by local inflammatory reactions detectable in cerebrospinal fluid (CSF), CNS HIV-1 infection is not usually clinically apparent. In a minority of patients, CNS HIV-1 infection evolves late in the course of systemic infection into encephalitis, which compromises brain function and presents clinically as AIDS dementia complex (ADC). Combination highly active antiretroviral therapy (HAART) has had a major impact on all aspects of HIV-1 CNS infection and disease. In those with asymptomatic infection, HAART usually effectively suppresses CSF HIV-1 and markedly reduces the incidence of symptomatic ADC. In those presenting with ADC, HAART characteristically prevents neurological progression and leads to variable, and at times substantial, recovery. Treatment has similarly reduced CNS opportunistic infections. With better control of these severe disorders, attention has turned to the possible consequences of chronic silent infection, and the issue of whether indolent, low-grade brain injury might require earlier treatment intervention. PMID:18447615
Radiation: Behavioral Implications in Space
1988-01-01
central nervous system (CNS). Thus, because of the uncertainties bout proton and HZE radiation, the CNS and behavioral effects of these radiations should...central nervous system or with an indirect measure of emesis (conditioned taste aversion) may occur as low as 0.1 -0.25 Gy. 305 (3) Radiation effects ...paper: (1) space radiations are more effective at disrupting behavior; (2) task demands can aggravate the radiation-disruption; (3) efforts to mitigate
Letendre, Scott; Marquie-Beck, Jennifer; Capparelli, Edmund; Best, Brookie; Clifford, David; Collier, Ann C.; Gelman, Benjamin B.; McArthur, Justin C.; McCutchan, J. Allen; Morgello, Susan; Simpson, David; Grant, Igor; Ellis, Ronald J.
2009-01-01
Objective To evaluate whether penetration of a combination regimen into the central nervous system (CNS), as estimated by the CNS Penetration-Effectiveness (CPE) rank, is associated with lower cerebrospinal fluid (CSF) viral load. Design Data were analyzed from 467 participants who were human immunodeficiency virus (HIV) seropositive and who reported antiretroviral (ARV) drug use. Individual ARV drugs were assigned a penetration rank of 0 (low), 0.5 (intermediate), or 1 (high) based on their chemical properties, concentrations in CSF, and/or effectiveness in the CNS in clinical studies. The CPE rank was calculated by summing the individual penetration ranks for each ARV in the regimen. Results The median CPE rank was 1.5 (interquartile range, 1–2). Lower CPE ranks correlated with higher CSF viral loads. Ranks less than 2 were associated with an 88% increase in the odds of detectable CSF viral load. In multivariate regression, lower CPE ranks were associated with detectable CSF viral loads even after adjusting for total number of ARV drugs, ARV drug adherence, plasma viral load, duration and type of the current regimen, and CD4 count. Conclusions Poorer penetration of ARV drugs into the CNS appears to allow continued HIV replication in the CNS as indicated by higher CSF HIV viral loads. Because inhibition of HIV replication in the CNS is probably critical in treating patients who have HIV-associated neurocognitive disorders, ARV treatment strategies that account for CNS penetration should be considered in consensus treatment guidelines and validated in clinical studies. PMID:18195140
A Novel Robust H∞ Filter Based on Krein Space Theory in the SINS/CNS Attitude Reference System
Yu, Fei; Lv, Chongyang; Dong, Qianhui
2016-01-01
Owing to their numerous merits, such as compact, autonomous and independence, the strapdown inertial navigation system (SINS) and celestial navigation system (CNS) can be used in marine applications. What is more, due to the complementary navigation information obtained from two different kinds of sensors, the accuracy of the SINS/CNS integrated navigation system can be enhanced availably. Thus, the SINS/CNS system is widely used in the marine navigation field. However, the CNS is easily interfered with by the surroundings, which will lead to the output being discontinuous. Thus, the uncertainty problem caused by the lost measurement will reduce the system accuracy. In this paper, a robust H∞ filter based on the Krein space theory is proposed. The Krein space theory is introduced firstly, and then, the linear state and observation models of the SINS/CNS integrated navigation system are established reasonably. By taking the uncertainty problem into account, in this paper, a new robust H∞ filter is proposed to improve the robustness of the integrated system. At last, this new robust filter based on the Krein space theory is estimated by numerical simulations and actual experiments. Additionally, the simulation and experiment results and analysis show that the attitude errors can be reduced by utilizing the proposed robust filter effectively when the measurements are missing discontinuous. Compared to the traditional Kalman filter (KF) method, the accuracy of the SINS/CNS integrated system is improved, verifying the robustness and the availability of the proposed robust H∞ filter. PMID:26999153
Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System.
Ren, Xiaoyuan; Zou, Lili; Zhang, Xu; Branco, Vasco; Wang, Jun; Carvalho, Cristina; Holmgren, Arne; Lu, Jun
2017-11-01
The thioredoxin (Trx) and glutathione (GSH) systems play important roles in maintaining the redox balance in the brain, a tissue that is prone to oxidative stress due to its high-energy demand. These two disulfide reductase systems are active in various areas of the brain and are considered to be critical antioxidant systems in the central nervous system (CNS). Various neuronal disorders have been characterized to have imbalanced redox homeostasis. Recent Advances: In addition to their detrimental effects, recent studies have highlighted that reactive oxygen species/reactive nitrogen species (ROS/RNS) act as critical signaling molecules by modifying thiols in proteins. The Trx and GSH systems, which reversibly regulate thiol modifications, regulate redox signaling involved in various biological events in the CNS. In this review, we focus on the following: (i) how ROS/RNS are produced and mediate signaling in CNS; (ii) how Trx and GSH systems regulate redox signaling by catalyzing reversible thiol modifications; (iii) how dysfunction of the Trx and GSH systems causes alterations of cellular redox signaling in human neuronal diseases; and (iv) the effects of certain small molecules that target thiol-based signaling pathways in the CNS. Further study on the roles of thiol-dependent redox systems in the CNS will improve our understanding of the pathogenesis of many human neuronal disorders and also help to develop novel protective and therapeutic strategies against neuronal diseases. Antioxid. Redox Signal. 27, 989-1010.
Hoekman, John D.; Ho, Rodney J.Y.
2011-01-01
Background Centrally acting opioid analgesics such as morphine and fentanyl are effective, but their efficacy is often limited by a delayed response or side effects resulting from systemic first-pass before reaching the brain and the central nervous system (CNS). It is generally accepted that drugs applied to the nasal cavity can directly access the brain and the CNS, which could provide therapeutic advantages such as rapid onset and lower systemic exposure. The olfactory region of the nasal cavity has been implicated in facilitating this direct nose-to-CNS transfer. If the fraction of opioid administered to the olfactory region could be improved, there could be a larger fraction of drug directly delivered to the CNS, mediating greater therapeutic benefit. Methods We have developed a pressurized olfactory delivery (POD) device to consistently and non-invasively deposit a majority of drug on the olfactory region of the nasal cavity in Sprague-Dawley rats. Using the tail-flick latency test and analysis of plasma and CNS tissue drug exposure, we compared distribution and efficacy of the opioids morphine and fentanyl administered to the nasal olfactory region with the POD device or the nasal respiratory region with nose drops or systemically via intraperitoneal (IP) injection. Results Compared to nose drop, POD administration of morphine resulted in significantly higher overall therapeutic effect (AUCeffect) without a significant increase in plasma drug exposure (AUCplasma). POD delivery of morphine resulted in a nose-to-CNS direct transport percentage of 38–55%. POD delivery of fentanyl led to a faster (5 min vs. 10 min) and more intense analgesic effect compared to nasal respiratory administration. Unlike IP injection or nose drop administration, both morphine and fentanyl given by the POD device to olfactory nasal epithelium exhibited clockwise [plasma] versus effect hysteresis after nasal POD administration, consistent with direct nose-to-CNS drug transport mechanism. Conclusions Deposition of opioids to the olfactory region within the nasal cavity could have a significant impact on drug distribution and pharmacodynamic effect, and thus should be considered into account in future nasally administered opioid studies. PMID:21709146
Robson, Matthew J; Quinlan, Meagan A; Blakely, Randy D
2017-05-17
Serotonin (5-hydroxytryptamine, 5-HT) has long been recognized as a key contributor to the regulation of mood and anxiety and is strongly associated with the etiology of major depressive disorder (MDD). Although more known for its roles within the central nervous system (CNS), 5-HT is recognized to modulate several key aspects of immune system function that may contribute to the development of MDD. Copious amounts of research have outlined a connection between alterations in immune system function, inflammation status, and MDD. Supporting this connection, peripheral immune activation results in changes in the function and/or expression of many components of 5-HT signaling that are associated with depressive-like phenotypes. How 5-HT is utilized by the immune system to effect CNS function and ultimately behaviors related to depression is still not well understood. This Review summarizes the evidence that immune system alterations related to depression affect CNS 5-HT signaling that can alter MDD-relevant behaviors and that 5-HT regulates immune system signaling within the CNS and periphery. We suggest that targeting the interrelationships between immune and 5-HT signaling may provide more effective treatments for subsets of those suffering from inflammation-associated MDD.
Blakely, Pennelope K; Huber, Amanda K; Irani, David N
2016-08-25
Alphaviruses can cause fatal encephalitis in humans. Natural infections occur via the bite of infected mosquitos, but aerosol transmissibility makes some of these viruses potential bioterrorism agents. Central nervous system (CNS) host responses contribute to alphavirus pathogenesis in experimental models and are logical therapeutic targets. We investigated whether reactive oxygen species (ROS) generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) activity within the CNS contributes to fatal alphavirus encephalitis in mice. Infected animals were treated systemically with the angiotensin receptor-blocking drug, telmisartan, given its ability to cross the blood-brain barrier, selectively block type-1 angiotensin receptors (AT1R), and inhibit Nox-derived ROS production in vascular smooth muscle and other extraneural tissues. Clinical, virological, biochemical, and histopathological outcomes were followed over time. The importance of the angiotensin II (Ang II)/AT1R axis in disease pathogenesis was confirmed by demonstrating increased Ang II levels in the CNS following infection, enhanced disease survival when CNS Ang II production was suppressed, increased AT1R expression on microglia and tissue-infiltrating myeloid cells, and enhanced disease survival in AT1R-deficient mice compared to wild-type (WT) controls. Systemic administration of telmisartan protected WT mice from lethal encephalitis caused by two different alphaviruses in a dose-dependent manner without altering virus replication or exerting any anti-inflammatory effects in the CNS. Infection triggered up-regulation of multiple Nox subunits in the CNS, while drug treatment inhibited local Nox activity, ROS production, and oxidative neuronal damage. Telmisartan proved ineffective in Nox-deficient mice, demonstrating that this enzyme is its main target in this experimental setting. Nox-derived ROS, likely arising from CNS myeloid cells triggered by AT1R signaling, are pathogenic during fatal alphavirus encephalitis in mice. Systemically administered telmisartan at non-hypotensive doses targets Nox activity in the CNS to exert a neuroprotective effect. Disruption of this pathway may have broader implications for the treatment of related infections as well as for other CNS diseases driven by oxidative injury.
Gómez Roselló, E; Quiles Granado, A M; Laguillo Sala, G; Pedraza Gutiérrez, S
2018-02-23
Primary central nervous system (CNS) lymphomas are uncommon and their management differs significantly from that of other malignant tumors involving the CNS. This article explains how the imaging findings often suggest the diagnosis early. The typical findings in immunocompetent patients consist of a supratentorial intraaxial mass that enhances homogeneously. Other findings to evaluate include multifocality and incomplete ring enhancement. The differential diagnosis of primary CNS lymphomas should consider mainly other malignant tumors of the CNS such as glioblastomas or metastases. Primary CNS lymphomas tend to have less edema and less mass effect; they also tend to spare the adjacent cortex. Necrosis, hemorrhage, and calcification are uncommon in primary CNS lymphomas. Although the findings in morphologic sequences are characteristic, they are not completely specific and atypical types are sometimes encountered. Advanced imaging techniques such as diffusion or especially perfusion provide qualitative and quantitative data that play an important role in differentiating primary CNS lymphomas from other brain tumors. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Clinical Applications Involving CNS Gene Transfer
Kantor, Boris; McCown, Thomas; Leone, Paola; Gray, Steven J.
2015-01-01
Diseases of the central nervous system (CNS) have traditionally been the most difficult to treat by traditional pharmacological methods, due mostly to the blood–brain barrier and the difficulties associated with repeated drug administration targeting the CNS. Viral vector gene transfer represents a way to permanently provide a therapeutic protein within the nervous system after a single administration, whether this be a gene replacement strategy for an inherited disorder or a disease-modifying protein for a disease such as Parkinson's. Gene therapy approaches for CNS disorders has evolved considerably over the last two decades. Although a breakthrough treatment has remained elusive, current strategies are now considerably safer and potentially much more effective. This chapter will explore the past, current, and future status of CNS gene therapy, focusing on clinical trials utilizing adeno-associated virus and lentiviral vectors. PMID:25311921
Hernandez, Ruben V.; Puro, Alana C.; Manos, Jessica C.; Huitron-Resendiz, Salvador; Reyes, Kenneth C.; Liu, Kevin; Vo, Khanh; Roberts, Amanda J.; Gruol, Donna L.
2015-01-01
A growing body of evidence has revealed that resident cells of the central nervous system (CNS), and particularly the glial cells, comprise a neuroimmune system that serves a number of functions in the normal CNS and during adverse conditions. Cells of the neuroimmune system regulate CNS functions through the production of signaling factors, referred to as neuroimmune factors. Recent studies show that ethanol can activate cells of the neuroimmune system, resulting in the elevated production of neuroimmune factors, including the cytokine interleukin-6 (IL-6). Here we analyzed the consequences of this CNS action of ethanol using transgenic mice that express elevated levels of IL-6 through increased astrocyte expression (IL-6-tg) to model the increased IL-6 expression that occurs with ethanol use. Results show that increased IL-6 expression induces neuroadaptive changes that alter the effects of ethanol. In hippocampal slices from non-transgenic (non-tg) littermate control mice, synaptically evoked dendritic field excitatory postsynaptic potential (fEPSP) and somatic population spike (PS) at the Schaffer collateral to CA1 pyramidal neuron synapse were reduced by acute ethanol (20 or 60 mM). In contrast, acute ethanol enhanced the fEPSP and PS in hippocampal slices from IL-6 tg mice. Long-term synaptic plasticity of the fEPSP (i.e., LTP) showed the expected dose-dependent reduction by acute ethanol in non-tg hippocampal slices, whereas LTP in the IL-6 tg hippocampal slices was resistant to this depressive effect of acute ethanol. Consistent with altered effects of acute ethanol on synaptic function in the IL-6 tg mice, EEG recordings showed a higher level of CNS activity in the IL-6 tg mice than in the non-tg mice during the period of withdrawal from an acute high dose of ethanol. These results suggest a potential role for neuroadaptive effects of ethanol-induced astrocyte production of IL-6 as a mediator or modulator of the actions of ethanol on the CNS, including persistent changes in CNS function that contribute to cognitive dysfunction and the development of alcohol dependence. PMID:26707655
González-Barca, E; Canales, M; Salar, A; Ferreiro-Martínez, J J; Ferrer-Bordes, S; García-Marco, J A; Sánchez-Blanco, J J; García-Frade, J; Peñalver, J; Bello-López, J L; Sancho, J M; Caballero, D
2016-05-01
The dissemination in the central nervous system (CNS) is an uncommon but fatal complication occurring in patients with diffuse large B-cell lymphoma (DLBCL). Standard prophylaxis has been demonstrated to reduce CNS relapse and improve survival rates. Intrathecal (IT) liposomal cytarabine allows maintaining elevated drug levels in the cerebrospinal fluid for an extended period of time. Data on the efficacy and safety of liposomal cytarabine as CNS prophylaxis in patients with DLBCL are still insufficient. The objective of the present study was to evaluate the effectiveness and safety of the prophylaxis with IT liposomal cytarabine in prevention of CNS relapse in high-risk patients with DLBCL who were included in a trial of first line systemic therapy with 6 cycles of dose-dense R-CHOP every 14 days. Twenty-four (18.6 %) out of 129 patients were identified to have risk factors for CNS involvement, defined as follows: >30 % bone marrow infiltration, testes infiltration, retroperitoneal mass ≥10 cm, Waldeyer ring, or bulky cervical nodes involvement. Liposomal cytarabine (50 mg) was administered by lumbar puncture the first day of the 1st, 2nd, and 6th cycle of R-CHOP14 scheme. Among 70 IT infusions, grade 3-4 adverse events reported were headache (one patient) and nausea/vomiting (one patient). With a median follow-up of 40.1 months, no CNS involvement by DLBCL was observed in any patient. In conclusion, IT liposomal cytarabine is safe, feasible, and effective for CNS prophylaxis, causing few associated risks and little discomfort to patients with DLBCL.
Swamydas, Muthulekha; Rodriguez, Carlos A.; Lim, Jean K.; Mendez, Laura M.; Fink, Danielle L.; Hsu, Amy P.; Zhai, Bing; Karauzum, Hatice; Mikelis, Constantinos M.; Rose, Stacey R.; Ferre, Elise M. N.; Yockey, Lynne; Lemberg, Kimberly; Kuehn, Hye Sun; Rosenzweig, Sergio D.; Lin, Xin; Chittiboina, Prashant; Datta, Sandip K.; Belhorn, Thomas H.; Weimer, Eric T.; Hernandez, Michelle L.; Hohl, Tobias M.; Kuhns, Douglas B.; Lionakis, Michail S.
2015-01-01
Candida is the most common human fungal pathogen and causes systemic infections that require neutrophils for effective host defense. Humans deficient in the C-type lectin pathway adaptor protein CARD9 develop spontaneous fungal disease that targets the central nervous system (CNS). However, how CARD9 promotes protective antifungal immunity in the CNS remains unclear. Here, we show that a patient with CARD9 deficiency had impaired neutrophil accumulation and induction of neutrophil-recruiting CXC chemokines in the cerebrospinal fluid despite uncontrolled CNS Candida infection. We phenocopied the human susceptibility in Card9 -/- mice, which develop uncontrolled brain candidiasis with diminished neutrophil accumulation. The induction of neutrophil-recruiting CXC chemokines is significantly impaired in infected Card9 -/- brains, from both myeloid and resident glial cellular sources, whereas cell-intrinsic neutrophil chemotaxis is Card9-independent. Taken together, our data highlight the critical role of CARD9-dependent neutrophil trafficking into the CNS and provide novel insight into the CNS fungal susceptibility of CARD9-deficient humans. PMID:26679537
Changing central nervous system control following intercostal nerve transfer.
Malessy, M J; Thomeer, R T; van Dijk, J G
1998-10-01
The goal of this study was to find which central nervous system (CNS) pathways are involved in volitional control over reinnervated biceps or pectoral muscles. Intercostal nerves (ICNs) were coapted to the musculocutaneous nerve (MCN) or the medial pectoral nerve (MPN) in 23 patients with root avulsions of the brachial plexus to restore biceps or pectoral muscle function. The facilitatory effects of respiration and voluntary contraction on cortical motor-evoked potentials of biceps or pectoral muscles were used to study CNS control over the reinnervated muscles. The time course of the facilitatory effect of respiration and voluntary contraction differed significantly. In the end stage of nerve regeneration, the facilitatory effect of voluntary contraction was significantly larger than that of respiration, indicating that the CNS control network over the muscle comes to resemble that of the recipient nerve (MCN or MPN) rather than that of the donor nerve (ICN). The strengthening of previously subthreshold synaptic connections in a CNS network connecting ICN to MCN or MPN neurons may underlie changing excitability.
Aging and brain rejuvenation as systemic events
Bouchard, Jill; Villeda, Saul A
2015-01-01
The effects of aging were traditionally thought to be immutable, particularly evident in the loss of plasticity and cognitive abilities occurring in the aged central nervous system (CNS). However, it is becoming increasingly apparent that extrinsic systemic manipulations such as exercise, caloric restriction, and changing blood composition by heterochronic parabiosis or young plasma administration can partially counteract this age-related loss of plasticity in the aged brain. In this review, we discuss the process of aging and rejuvenation as systemic events. We summarize genetic studies that demonstrate a surprising level of malleability in organismal lifespan, and highlight the potential for systemic manipulations to functionally reverse the effects of aging in the CNS. Based on mounting evidence, we propose that rejuvenating effects of systemic manipulations are mediated, in part, by blood-borne ‘pro-youthful’ factors. Thus, systemic manipulations promoting a younger blood composition provide effective strategies to rejuvenate the aged brain. As a consequence, we can now consider reactivating latent plasticity dormant in the aged CNS as a means to rejuvenate regenerative, synaptic, and cognitive functions late in life, with potential implications even for extending lifespan. PMID:25327899
Fukushima, Kazuyuki; Miura, Yuji; Sawada, Kohei; Yamazaki, Kazuto; Ito, Masashi
2016-01-01
Using human cell models mimicking the central nervous system (CNS) provides a better understanding of the human CNS, and it is a key strategy to improve success rates in CNS drug development. In the CNS, neurons function as networks in which astrocytes play important roles. Thus, an assessment system of neuronal network functions in a co-culture of human neurons and astrocytes has potential to accelerate CNS drug development. We previously demonstrated that human hippocampus-derived neural stem/progenitor cells (HIP-009 cells) were a novel tool to obtain human neurons and astrocytes in the same culture. In this study, we applied HIP-009 cells to a multielectrode array (MEA) system to detect neuronal signals as neuronal network functions. We observed spontaneous firings of HIP-009 neurons, and validated functional formation of neuronal networks pharmacologically. By using this assay system, we investigated effects of several reference compounds, including agonists and antagonists of glutamate and γ-aminobutyric acid receptors, and sodium, potassium, and calcium channels, on neuronal network functions using firing and burst numbers, and synchrony as readouts. These results indicate that the HIP-009/MEA assay system is applicable to the pharmacological assessment of drug candidates affecting synaptic functions for CNS drug development. © 2015 Society for Laboratory Automation and Screening.
Integrated Stress Response as a Therapeutic Target for CNS Injuries.
Romero-Ramírez, Lorenzo; Nieto-Sampedro, Manuel; Barreda-Manso, M Asunción
2017-01-01
Central nervous system (CNS) injuries, caused by cerebrovascular pathologies or mechanical contusions (e.g., traumatic brain injury, TBI) comprise a diverse group of disorders that share the activation of the integrated stress response (ISR). This pathway is an innate protective mechanism, with encouraging potential as therapeutic target for CNS injury repair. In this review, we will focus on the progress in understanding the role of the ISR and we will discuss the effects of various small molecules that target the ISR on different animal models of CNS injury.
Ronaldson, Patrick T; Davis, Thomas P
2012-01-01
The blood–brain barrier (BBB) is the most significant obstacle to effective CNS drug delivery. It possesses structural and biochemical features (i.e., tight-junction protein complexes and, influx and efflux transporters) that restrict xenobiotic permeation. Pathophysiological stressors (i.e., peripheral inflammatory pain) can alter BBB tight junctions and transporters, which leads to drug-permeation changes. This is especially critical for opioids, which require precise CNS concentrations to be safe and effective analgesics. Recent studies have identified molecular targets (i.e., endogenous transporters and intracellular signaling systems) that can be exploited for optimization of CNS drug delivery. This article summarizes current knowledge in this area and emphasizes those targets that present the greatest opportunity for controlling drug permeation and/or drug transport across the BBB in an effort to achieve optimal CNS opioid delivery. PMID:22468221
Central nervous system toxicity of metallic nanoparticles
Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin
2015-01-01
Nanomaterials (NMs) are increasingly used for the therapy, diagnosis, and monitoring of disease- or drug-induced mechanisms in the human biological system. In view of their small size, after certain modifications, NMs have the capacity to bypass or cross the blood–brain barrier. Nanotechnology is particularly advantageous in the field of neurology. Examples may include the utilization of nanoparticle (NP)-based drug carriers to readily cross the blood–brain barrier to treat central nervous system (CNS) diseases, nanoscaffolds for axonal regeneration, nanoelectromechanical systems in neurological operations, and NPs in molecular imaging and CNS imaging. However, NPs can also be potentially hazardous to the CNS in terms of nano-neurotoxicity via several possible mechanisms, such as oxidative stress, autophagy, and lysosome dysfunction, and the activation of certain signaling pathways. In this review, we discuss the dual effect of NMs on the CNS and the mechanisms involved. The limitations of the current research are also discussed. PMID:26170667
Space radiation risks to the central nervous system
NASA Astrophysics Data System (ADS)
Cucinotta, Francis A.; Alp, Murat; Sulzman, Frank M.; Wang, Minli
2014-07-01
Central nervous system (CNS) risks which include during space missions and lifetime risks due to space radiation exposure are of concern for long-term exploration missions to Mars or other destinations. Possible CNS risks during a mission are altered cognitive function, including detriments in short-term memory, reduced motor function, and behavioral changes, which may affect performance and human health. The late CNS risks are possible neurological disorders such as premature aging, and Alzheimer's disease (AD) or other dementia. Radiation safety requirements are intended to prevent all clinically significant acute risks. However the definition of clinically significant CNS risks and their dependences on dose, dose-rate and radiation quality is poorly understood at this time. For late CNS effects such as increased risk of AD, the occurrence of the disease is fatal with mean time from diagnosis of early stage AD to death about 8 years. Therefore if AD risk or other late CNS risks from space radiation occur at mission relevant doses, they would naturally be included in the overall acceptable risk of exposure induced death (REID) probability for space missions. Important progress has been made in understanding CNS risks due to space radiation exposure, however in general the doses used in experimental studies have been much higher than the annual galactic cosmic ray (GCR) dose (∼0.1 Gy/y at solar maximum and ∼0.2 Gy/y at solar minimum with less than 50% from HZE particles). In this report we summarize recent space radiobiology studies of CNS effects from particle accelerators simulating space radiation using experimental models, and make a critical assessment of their relevance relative to doses and dose-rates to be incurred on a Mars mission. Prospects for understanding dose, dose-rate and radiation quality dependencies of CNS effects and extrapolation to human risk assessments are described.
Frishman-Levy, Liron; Izraeli, Shai
2017-01-01
Central nervous system acute lymphoblastic leukaemia (CNS-ALL) is a major clinical problem. CNS-directed 'prophylactic' chemo- or radio - therapy is associated with significant early and long-term toxicity. Moreover, greater than a third of the relapses occur in the CNS. To design specific, more effective and less toxic therapy and for personalized precise adjustment of prophylactic therapy there is a need for better understanding of the biology of this disease. Specifically, the precise neurotropic mechanisms of ALL are currently unclear, as is the pathogenesis of CNS relapse. Here we review and contrast the recent findings with earlier studies of pathogenesis of CNS leukaemia. We also describe the challenges in research of this devastating complication of ALL. © 2016 John Wiley & Sons Ltd.
Bortezomib-related neuropathy may mask CNS relapse in multiple myeloma: A call for diligence.
Abid, Muhammad Bilal; De Mel, Sanjay; Abid, Muhammad Abbas; Tan, Kong Bing; Chng, Wee Joo
2016-07-02
Neuropathy is a common adverse effect of bortezomib. Isolated central nervous system (CNS) relapse in MM remains exceedingly rare and carries a dismal prognosis. We present an unusual case of bortezomib related neuropathy masking a CNS relapse of MM. A 57-year-old female was diagnosed with standard-risk MM with clinical and cytogenetic features not typically associated with CNS involvement. She was treated with 4 cycles of bortezomib/cyclophosphamide/dexamethasone (VCD) and achieved a VGPR, after which she underwent an autologous stem cell transplant (ASCT) followed by bortezomib maintenance. Six months after ASCT she developed symptoms suggestive of peripheral neuropathy which was attributed to bortezomib. However the symptoms persisted despite discontinuation of bortezomib. Imaging and cerebrospinal fluid analysis subsequently confirmed a CNS relapse. CNS involvement in MM (CNS-MM) is uncommon and is considered an aggressive disease. Recently published literature has reported biomarkers with prognostic potential. However, isolated CNS relapse is even less common; an event which carries a very poor prognosis. Given the heterogeneous neurologic manifestations associated with MM, clinical suspicion may be masked by confounding factors such as bortezomib-based therapy. The disease may further remain incognito if the patient does not exhibit any of the high risk features and biomarkers associated with CNS involvement. In the era of proteasome inhibitor (PtdIns)/immunomodulator (IMID)-based therapy for MM which carries neurologic adverse effects, it is prudent to consider CNS relapse early. This case further highlights the need for more robust biomarkers to predict CNS relapse and use of newer novel agents which demonstrate potential for CNS penetration.
Ou, Sai-Hong Ignatius; Weitz, Michael; Jalas, John R; Kelly, Daniel F; Wong, Vanessa; Azada, Michele C; Quines, Oliver; Klempner, Samuel J
2016-06-01
Alectinib is a second generation ALK inhibitor that has significant clinical activity in central nervous system (CNS) metastases in anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC). Pseudoprogression (PsP) due to radiation necrosis during alecitnib treatment of central nervous system (CNS) metastases from ALK-rearranged NSCLC as been reported. Hence, distinguishing radiation-related PsP from alectinib-induced radiographic changes is important to avoid erroneous early trial discontinuation and abandonment of an effective treatment. However, it remains difficult to assess casuality of radiation necrosis is related to recent direct radiation or induced by alectinib treatment or both. It is also unknown how long from previous radiation can alectinib still induce radiation necrosis. Here we reported a crizotinib-refractory ALK-positive NSCLC patient who develop radiation necrosis in one of his metastatic CNS lesions after approximately 12 months of alectinib treatment who otherwise had on-going CNS response on alectinib. His most recent radiation to his CNS metastases was 7 years prior to the start of alectinib. This case illustrates that in the setting of pror CNS radiation, given the significant clinical activity of alectinib in CNS metastases in ALK-positive NSCLC patients the risk of CNS radiation necrosis remains long after previous radiation to the CNS metastases has been completed and can occur after durable response of treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Nanowired Drug Delivery Across the Blood-Brain Barrier in Central Nervous System Injury and Repair.
Sharma, Aruna; Menon, Preeti; Muresanu, Dafin F; Ozkizilcik, Asya; Tian, Z Ryan; Lafuente, José V; Sharma, Hari S
2016-01-01
The blood-brain barrier (BBB) is a physiological regulator of transport of essential items from blood to brain for the maintenance of homeostasis of the central nervous system (CNS) within narrow limits. The BBB is also responsible for export of harmful or metabolic products from brain to blood to keep the CNS fluid microenvironment healthy. However, noxious insults to the brain caused by trauma, ischemia or environmental/chemical toxins alter the BBB function to small as well as large molecules e.g., proteins. When proteins enter the CNS fluid microenvironment, development of brain edema occurs due to altered osmotic balance between blood and brain. On the other hand, almost all neurodegenerative diseases and traumatic insults to the CNS and subsequent BBB dysfunction lead to edema formation and cell injury. To treat these brain disorders suitable drug therapy reaching their brain targets is needed. However, due to edema formation or only a focal disruption of the BBB e.g., around brain tumors, many drugs are unable to reach their CNS targets in sufficient quantity. This results in poor therapeutic outcome. Thus, new technology such as nanodelivery is needed for drugs to reach their CNS targets and be effective. In this review, use of nanowires as a possible novel tool to enhance drug delivery into the CNS in various disease models is discussed based on our investigations. These data show that nanowired delivery of drugs may have superior neuroprotective ability to treat several CNS diseases effectively indicating their role in future therapeutic strategies.
The therapeutic effects of Rho-ROCK inhibitors on CNS disorders
Kubo, Takekazu; Yamaguchi, Atsushi; Iwata, Nobuyoshi; Yamashita, Toshihide
2008-01-01
Rho-kinase (ROCK) is a serine/threonine kinase and one of the major downstream effectors of the small GTPase Rho. The Rho-ROCK pathway is involved in many aspects of neuronal functions including neurite outgrowth and retraction. The Rho-ROCK pathway becomes an attractive target for the development of drugs for treating central nervous system (CNS) disorders, since it has been recently revealed that this pathway is closely related to the pathogenesis of several CNS disorders such as spinal cord injuries, stroke, and Alzheimer’s disease (AD). In the adult CNS, injured axons regenerate poorly due to the presence of myelin-associated axonal growth inhibitors such as myelin-associated glycoprotein (MAG), Nogo, oligodendrocyte-myelin glycoprotein (OMgp), and the recently identified repulsive guidance molecule (RGM). The effects of these inhibitors are reversed by blockade of the Rho-ROCK pathway in vitro, and the inhibition of this pathway promotes axonal regeneration and functional recovery in the injured CNS in vivo. In addition, the therapeutic effects of the Rho-ROCK inhibitors have been demonstrated in animal models of stroke. In this review, we summarize the involvement of the Rho-ROCK pathway in CNS disorders such as spinal cord injuries, stroke, and AD and also discuss the potential of Rho-ROCK inhibitors in the treatment of human CNS disorders. PMID:18827856
Wilson, Michael J; Martin-Engel, Lindsay; Vassileva, Jasmin; Gonzalez, Raul; Martin, Eileen M
2013-01-01
Treatment with combination antiretroviral therapy (cART) regimens with a high capacity to penetrate the blood-brain barrier has been associated with lower levels of human immunodeficiency virus (HIV) in the central nervous system (CNS). This study examined neurocognitive performance among a sample of 118 HIV+ substance-dependent individuals (SDIs) and 310 HIV- SDIs. HIV+ participants were prescribed cART regimens with varying capacity to penetrate the CNS as indexed by the revised CNS Penetration Effectiveness (CPE) scale. Participants completed the Rotary Pursuit Task (RPT) and the Weather Prediction Task (WPT)-two measures of procedural learning (PL) with known sensitivity to HIV infection-and a control task of sustained attention. HIV+ SDIs prescribed cART with relatively high CNS penetrance performed significantly more poorly on both tasks than HIV- controls. Task performance of HIV+ SDIs prescribed cART with relatively low CNS penetrance did not differ significantly from either HIV- controls or the HIV+/high CPE group, although a trend toward lower RPT performance than that of HIV- participants was observed. Between-group differences were not seen on a control task of motor impulsivity (Immediate Memory Task), indicating that the observed deficits among HIV+/high CPE SDIs may have some specificity.
Esch, Tobias; Guarna, Massimo; Bianchi, Enrica; Zhu, Wei; Stefano, George B
2004-06-01
Currently, complementary and alternative medicine (CAM) are experiencing growing popularity, especially in former industrialized countries. However, most of the underlying physiological and molecular mechanisms as well as participating biological structures are still speculative. Specific and non-specific effects may play a role in CAM. Moreover, trust, belief, and expectation may be of importance, pointing towards common central nervous system (CNS) pathways involved in CAM. Four CAM approaches (acupuncture, meditation, music therapy, and massage therapy) were examined with regard to the CNS activity pattern involved. CNS commonalities between different approaches were investigated. Frontal/prefrontal and limbic brain structures play a role in CAM. Particularly, left-anterior regions of the brain and reward or motivation circuitry constituents are involved, indicating positive affect and emotion-related memory processing--accompanied by endocrinologic and autonomic functions--as crucial components of CAM effects. Thus, trust and belief in a therapist or positive therapy expectations seem to be important. However, besides common non-specific or subjective effects, specific (objective) physiological components also exist. Non-specific CNS commonalities are involved in various CAM therapies. Different therapeutic approaches physiologically overlap in the brain. However, molecular correspondents of the detected CNS analogies still have to be specified. In particular, fast acting autoregulatory signaling molecules presumably play a role. These may also be involved in the placebo response.
Tang, Xiaolong; Liang, Yong; Zhu, Yongqiang; Xie, Chunmei; Yao, Aixia; Chen, Li; Jiang, Qinglin; Liu, Tingting; Wang, Xiaoyu; Qian, Yunyun; Wei, Jia; Ni, Wenxuan; Dai, Jingjing; Jiang, Zhenyou; Hou, Wei
2015-01-01
Fatal fungal infections in central nervous system (CNS) can occur through hematogenous spread or direct extension. At present, hydrophobic amphotericin B (AMB) is the most effective antifungal drug in clinical trials. However, AMB is hydrophobic and therefore penetrates poorly into the CNS, and therapeutic levels of AMB are hard to achieve. The transferrin receptor (TfR/CD71) located at the blood-brain barrier mediates transferrin transcytosis. In order to enhance the receptor-mediated delivery of AMB into CNS with therapeutic level, an anti-TfR antibody (OX26)-modified AMB-loaded PLA (poly[lactic acid])-PEG (polyethylene glycol)-based micellar drug delivery system was constructed. The prepared OX26-modified AMB-loaded nanoparticles (OX26-AMB-NPs) showed significant reduction of CNS fungal burden and an increase of mouse survival time. In conclusion, OX26-AMB-NPs represent a promising novel drug delivery system for intracerebral fungal infection.
Ellenberg, Leah; Liu, Qi; Gioia, Gerard; Yasui, Yutaka; Packer, Roger J.; Mertens, Ann; Donaldson, Sarah S.; Stovall, Marilyn; Kadan-Lottick, Nina; Armstrong, Gregory; Robison, Leslie L.; Zeltzer, Lonnie K.
2009-01-01
Background Among survivors of childhood cancer, those with Central Nervous System (CNS) malignancies have been found to be at greatest risk for neuropsychological dysfunction in the first few years following diagnosis and treatment. This study follows survivors to adulthood to assess the long term impact of childhood CNS malignancy and its treatment on neurocognitive functioning. Participants & Methods As part of the Childhood Cancer Survivor Study (CCSS), 802 survivors of childhood CNS malignancy, 5937 survivors of non-CNS malignancy and 382 siblings without cancer completed a 25 item Neurocognitive Questionnaire (CCSS-NCQ) at least 16 years post cancer diagnosis assessing task efficiency, emotional regulation, organizational skills and memory. Neurocognitive functioning in survivors of CNS malignancy was compared to that of non-CNS malignancy survivors and a sibling cohort. Within the group of CNS malignancy survivors, multiple linear regression was used to assess the contribution of demographic, illness and treatment variables to reported neurocognitive functioning and the relationship of reported neurocognitive functioning to educational, employment and income status. Results Survivors of CNS malignancy reported significantly greater neurocognitive impairment on all factors assessed by the CCSS-NCQ than non-CNS cancer survivors or siblings (p<.01), with mean T scores of CNS malignancy survivors substantially more impaired that those of the sibling cohort (p<.001), with a large effect size for Task Efficiency (1.16) and a medium effect size for Memory (.68). Within the CNS malignancy group, medical complications, including hearing deficits, paralysis and cerebrovascular incidents resulted in a greater likelihood of reported deficits on all of the CCSS-NCQ factors, with generally small effect sizes (.22-.50). Total brain irradiation predicted greater impairment on Task Efficiency and Memory (Effect sizes: .65 and .63, respectively), as did partial brain irradiation, with smaller effect sizes (.49 and .43, respectively). Ventriculoperitoneal (VP) shunt placement was associated with small deficits on the same scales (Effect sizes: Task Efficiency .26, Memory .32). Female gender predicted a greater likelihood of impaired scores on 2 scales, with small effect sizes (Task Efficiency .38, Emotional Regulation .45), while diagnosis before age 2 years resulted in less likelihood of reported impairment on the Memory factor with a moderate effect size (.64). CNS malignancy survivors with more impaired CCSS-NCQ scores demonstrated significantly lower educational attainment (p<.01), less household income (p<.001) and less full time employment (p<.001). Conclusions Survivors of childhood CNS malignancy are at significant risk for impairment in neurocognitive functioning in adulthood, particularly if they have received cranial radiation, had a VP shunt placed, suffered a cerebrovascular incident or are left with hearing or motor impairments. Reported neurocognitive impairment adversely affected important adult outcomes, including education, employment, income and marital status. PMID:19899829
Bortezomib-related neuropathy may mask CNS relapse in multiple myeloma: A call for diligence
Abid, Muhammad Bilal; De Mel, Sanjay; Abid, Muhammad Abbas; Tan, Kong Bing; Chng, Wee Joo
2016-01-01
ABSTRACT Background: Neuropathy is a common adverse effect of bortezomib. Isolated central nervous system (CNS) relapse in MM remains exceedingly rare and carries a dismal prognosis. We present an unusual case of bortezomib related neuropathy masking a CNS relapse of MM. Case presentation: A 57-year-old female was diagnosed with standard-risk MM with clinical and cytogenetic features not typically associated with CNS involvement. She was treated with 4 cycles of bortezomib/cyclophosphamide/dexamethasone (VCD) and achieved a VGPR, after which she underwent an autologous stem cell transplant (ASCT) followed by bortezomib maintenance. Six months after ASCT she developed symptoms suggestive of peripheral neuropathy which was attributed to bortezomib. However the symptoms persisted despite discontinuation of bortezomib. Imaging and cerebrospinal fluid analysis subsequently confirmed a CNS relapse. Discussion: CNS involvement in MM (CNS-MM) is uncommon and is considered an aggressive disease. Recently published literature has reported biomarkers with prognostic potential. However, isolated CNS relapse is even less common; an event which carries a very poor prognosis. Given the heterogeneous neurologic manifestations associated with MM, clinical suspicion may be masked by confounding factors such as bortezomib-based therapy. The disease may further remain incognito if the patient does not exhibit any of the high risk features and biomarkers associated with CNS involvement. Conclusion: In the era of proteasome inhibitor (PtdIns)/immunomodulator (IMID)-based therapy for MM which carries neurologic adverse effects, it is prudent to consider CNS relapse early. This case further highlights the need for more robust biomarkers to predict CNS relapse and use of newer novel agents which demonstrate potential for CNS penetration. PMID:27105248
The Therapeutic Potential of Insulin-Like Growth Factor-1 in Central Nervous System Disorders
Costales, Jesse; Kolevzon, Alexander
2016-01-01
Central nervous system (CNS) development is a finely tuned process that relies on multiple factors and intricate pathways to ensure proper neuronal differentiation, maturation, and connectivity. Disruption of this process can cause significant impairments in CNS functioning and lead to debilitating disorders that impact motor and language skills, behavior, and cognitive functioning. Recent studies focused on understanding the underlying cellular mechanisms of neurodevelopmental disorders have identified a crucial role for insulin-like growth factor-1 (IGF-1) in normal CNS development. Work in model systems has demonstrated rescue of pathophysiological and behavioral abnormalities when IGF-1 is administered, and several clinical studies have shown promise of efficacy in disorders of the CNS, including autism spectrum disorder (ASD). In this review, we explore the molecular pathways and downstream effects of IGF-1 and summarize the results of completed and ongoing pre-clinical and clinical trials using IGF-1 as a pharmacologic intervention in various CNS disorders. This aim of this review is to provide evidence for the potential of IGF-1 as a treatment for neurodevelopmental disorders and ASD. PMID:26780584
Stem Cell Therapy for the Central Nervous System in Lysosomal Storage Diseases.
Siddiqi, Faez; Wolfe, John H
2016-10-01
Neurological diseases with genetic etiologies result in the loss or dysfunction of neural cells throughout the CNS. At present, few treatment options exist for the majority of neurogenetic diseases. Stem cell transplantation (SCT) into the CNS has the potential to be an effective treatment modality because progenitor cells may replace lost cells in the diseased brain, provide multiple trophic factors, or deliver missing proteins. This review focuses on the use of SCT in lysosomal storage diseases (LSDs), a large group of monogenic disorders with prominent CNS disease. In most patients the CNS disease results in intellectual disability that is refractory to current standard-of-care treatment. A large amount of preclinical work on brain-directed SCT has been performed in rodent LSD models. Cell types that have been used for direct delivery into the CNS include neural stem cells, embryonic and induced pluripotent stem cells, and mesenchymal stem cells. Hematopoietic stem cells have been an effective therapy for the CNS in a few LSDs and may be augmented by overexpression of the missing gene. Current barriers and potential strategies to improve SCT for translation into effective patient therapies are discussed.
The role of the immune system in central nervous system plasticity after acute injury.
Peruzzotti-Jametti, Luca; Donegá, Matteo; Giusto, Elena; Mallucci, Giulia; Marchetti, Bianca; Pluchino, Stefano
2014-12-26
Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Kegler, Kristel; Imbschweiler, Ilka; Ulrich, Reiner; Kovermann, Peter; Fahlke, Christoph; Deschl, Ulrich; Kalkuhl, Arno; Baumgärnter, Wolfgang; Wewetzer, Konstantin
2014-06-01
Central nervous system (CNS) injury triggers production of myelinating Schwann cells from endogenous oligodendrocyte precursors (OLPs). These CNS Schwann cells may be attractive candidates for novel therapeutic strategies aiming to promote endogenous CNS repair. However, CNS Schwann cells have been so far mainly characterized in situ regarding morphology and marker expression, and it has remained enigmatic whether they display functional properties distinct from peripheral nervous system (PNS) Schwann cells. Potassium channels (K+) have been implicated in progenitor and glial cell proliferation after injury and may, therefore, represent a suitable pharmacological target. In the present study, we focused on the function and expression of voltage-gated K+ channels Kv(1-12) and accessory β-subunits in purified adult canine CNS and PNS Schwann cell cultures using electrophysiology and microarray analysis and characterized their antigenic phenotype. We show here that K+ channels differed significantly in both cell types. While CNS Schwann cells displayed prominent K D-mediated K+ currents, PNS Schwann cells elicited K(D-) and K(A-type) K+ currents. Inhibition of K+ currents by TEA and Ba2+ was more effective in CNS Schwann cells. These functional differences were not paralleled by differential mRNA expression of Kv(1-12) and accessory β-subunits. However, O4/A2B5 and GFAP expressions were significantly higher and lower, respectively, in CNS than in PNS Schwann cells. Taken together, this is the first evidence that CNS Schwann cells display specific properties not shared by their peripheral counterpart. Both Kv currents and increased O4/A2B5 expression were reminiscent of OLPs suggesting that CNS Schwann cells retain OLP features during maturation.
Campbell, Arezoo; Araujo, Jesus A; Li, Huihui; Sioutas, Constantinos; Kleinman, Michael
2009-08-01
Exposure to air particulate matter (PM) present in urban environments have been shown to induce systemic prooxidant and proinflammatory effects in apolipoprotein E knockout (ApoE-/-) mice and proinflammatory central nervous system (CNS) effects in BALB/c mice. We hypothesize that ApoE-/- mice would exhibit a greater propensity to develop PM-induced CNS effects due to their greater susceptibility to CNS inflammation. We studied the brains of ApoE-/- mice exposed in a previous study to concentrated air particles of different sizes (fine vs. ultrafine) or filtered-air to evaluate the effect of PM exposure on the development of CNS proinflammatory effects in a genetically susceptible background. This was important because, although the use of nano-sized materials opens an exciting potential for their use as diagnostic or therapeutic tools, not much is known about the possible CNS toxicity of these particles. Neuroinflammation has been shown to exacerbate progression of neurodegeneration. Since the onset and progression of idiopathic forms of neurodegenerative disorders are likely to be multifactorial and involve gene-environment interactions, we determined the possibility of particles in ambient air pollution to enhance neuroinflammation. Our results indicate that in the brain, there was significant modulation in the activation of the transcription factors NF-kappaB and AP-1 after exposure to the ultrafine fractions. Levels of two pro-inflammatory cytokines (TNF-alpha and IL-1alpha) were also increased in the brain of exposed animals and this was independent of the size fraction of PM. Since inflammatory processes have been shown to contribute to the pathology associated with neurodegenerative diseases, it will be important to further evaluate the role ambient particles may play in the potentiation of existing CNS damage and progression of neurodegenerative disorders.
NASA Technical Reports Server (NTRS)
Mainger, Steve
2004-01-01
As NASA speculates on and explores the future of aviation, the technological and physical aspects of our environment increasing become hurdles that must be overcome for success. Research into methods for overcoming some of these selected hurdles have been purposed by several NASA research partners as concepts. The task of establishing a common evaluation environment was placed on NASA's Virtual Airspace Simulation Technologies (VAST) project (sub-project of VAMS), and they responded with the development of the Airspace Concept Evaluation System (ACES). As one examines the ACES environment from a communication, navigation or surveillance (CNS) perspective, the simulation parameters are built with assumed perfection in the transactions associated with CNS. To truly evaluate these concepts in a realistic sense, the contributions/effects of CNS must be part of the ACES. NASA Glenn Research Center (GRC) has supported the Virtual Airspace Modeling and Simulation (VAMS) project through the continued development of CNS models and analysis capabilities which supports the ACES environment. NASA GRC initiated the development a communications traffic loading analysis tool, called the Future Aeronautical Sub-network Traffic Emulator for Communications, Navigation and Surveillance (FASTE-CNS), as part of this support. This tool allows for forecasting of communications load with the understanding that, there is no single, common source for loading models used to evaluate the existing and planned communications channels; and that, consensus and accuracy in the traffic load models is a very important input to the decisions being made on the acceptability of communication techniques used to fulfill the aeronautical requirements. Leveraging off the existing capabilities of the FASTE-CNS tool, GRC has called for FASTE-CNS to have the functionality to pre- and post-process the simulation runs of ACES to report on instances when traffic density, frequency congestion or aircraft spacing/distance violations have occurred. The integration of these functions require that the CNS models used to characterize these avionic system be of higher fidelity and better consistency then is present in FASTE-CNS system. This presentation will explore the capabilities of FASTE-CNS with renewed emphasis on the enhancements being added to perform these processing functions; the fidelity and reliability of CNS models necessary to make the enhancements work; and the benchmarking of FASTE-CNS results to improve confidence for the results of the new processing capabilities.
NASA Technical Reports Server (NTRS)
Kubat, Greg; Vandrei, Don
2006-01-01
Project Objectives include: a) CNS Model Development; b Design/Integration of baseline set of CNS Models into ACES; c) Implement Enhanced Simulation Capabilities in ACES; d) Design and Integration of Enhanced (2nd set) CNS Models; and e) Continue with CNS Model Integration/Concept evaluations.
NASA Astrophysics Data System (ADS)
Newberg, A. B.; Alavi, A.
The purpose of this paper is to review the potential functional and morphological effects of long duration space flight on the human central nervous system (CNS) and how current neuroimaging techniques may be utilized to study these effects. It must be determined if there will be any detrimental changes to the CNS from long term exposure to the space environment if human beings are to plan interplanetary missions or establish permanent space habitats. Research to date has focused primarily on the short term changes in the CNS as the result of space flight. The space environment has many factors such as weightlessness, electromagnetic fields, and radiation, that may impact upon the function and structure of the CNS. CNS changes known to occur during and after long term space flight include neurovestibular disturbances, cephalic fluid shifts, alterations in sensory perception, changes in proprioception, psychological disturbances, and cognitive changes. Animal studies have shown altered plasticity of the neural cytoarchitecture, decreased neuronal metabolism in the hypothalamus, and changes in neurotransmitter concentrations. Recent progress in the ability to study brain morphology, cerebral metabolism, and neurochemistry in vivo in the human brain would provide ample opportunity to investigate many of the changes that occur in the CNS as a result of space flight. These methods include positron emission tomography (PET), single photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI).
Type17 T-cells in Central Nervous System Autoimmunity and Tumors
Okada, Hideho; Khoury, Samia J.
2012-01-01
Interleukin-17 (IL-17) producing Type17 T-cells, specifically T-helper (Th)17 cells reactive to central nervous system (CNS) autoantigens, manifest a higher migratory capability to the CNS parenchyma compared with other T-cell subpopulations due to their ability to penetrate the blood brain barrier (BBB). In the field of cancer immunotherapy, there are now a number of cell therapy approaches including early studies using T-cells transduced with chimeric antigen receptors in hematologic malignancy, suggesting that the use of T-cells or genetically modified T-cells could have a significant role in effective cancer therapy. However, the successful application of this strategy in solid tumors, such as CNS tumors, requires careful consideration of critical factors to improve the tumor-homing of T-cells. The current review is dedicated to discuss recent findings on the role of Type17 T-cells in CNS autoimmunity and cancer. The insight gained from these findings may lead to the development of novel therapeutic and prophylactic strategies for CNS autoimmunity and tumors. PMID:22454247
Etame, Arnold B.; Diaz, Roberto J.; O’Reilly, Meaghan A.; Smith, Christian A.; Mainprize, Todd G.; Hynynen, Kullervo; Rutka, James T.
2014-01-01
The blood brain barrier (BBB) is a major impediment to the delivery of therapeutics into the central nervous system (CNS). Gold nanoparticles (AuNPs) have been successfully employed in multiple potential therapeutic and diagnostic applications outside the CNS. However, AuNPs have very limited biodistribution within the CNS following intravenous administration. Magnetic resonance imaging guided focused ultrasound (MRgFUS) is a novel technique that can transiently increase BBB permeability allowing delivery of therapeutics into the CNS. MRgFUS has not been previously employed for delivery of AuNPs into the CNS. This work represents the first demonstration of focal enhanced delivery of AuNPs into the CNS using MRgFUS in a rat model both safely and effectively. Histologic visualization and analytical quantification of AuNPs within the brain parenchyma suggest BBB transgression. These results suggest a role for MRgFUS in the delivery of AuNPs with therapeutic potential into the CNS for targeting neurological diseases. PMID:22349099
Vascular, glial, and lymphatic immune gateways of the central nervous system.
Engelhardt, Britta; Carare, Roxana O; Bechmann, Ingo; Flügel, Alexander; Laman, Jon D; Weller, Roy O
2016-09-01
Immune privilege of the central nervous system (CNS) has been ascribed to the presence of a blood-brain barrier and the lack of lymphatic vessels within the CNS parenchyma. However, immune reactions occur within the CNS and it is clear that the CNS has a unique relationship with the immune system. Recent developments in high-resolution imaging techniques have prompted a reassessment of the relationships between the CNS and the immune system. This review will take these developments into account in describing our present understanding of the anatomical connections of the CNS fluid drainage pathways towards regional lymph nodes and our current concept of immune cell trafficking into the CNS during immunosurveillance and neuroinflammation. Cerebrospinal fluid (CSF) and interstitial fluid are the two major components that drain from the CNS to regional lymph nodes. CSF drains via lymphatic vessels and appears to carry antigen-presenting cells. Interstitial fluid from the CNS parenchyma, on the other hand, drains to lymph nodes via narrow and restricted basement membrane pathways within the walls of cerebral capillaries and arteries that do not allow traffic of antigen-presenting cells. Lymphocytes targeting the CNS enter by a two-step process entailing receptor-mediated crossing of vascular endothelium and enzyme-mediated penetration of the glia limitans that covers the CNS. The contribution of the pathways into and out of the CNS as initiators or contributors to neurological disorders, such as multiple sclerosis and Alzheimer's disease, will be discussed. Furthermore, we propose a clear nomenclature allowing improved precision when describing the CNS-specific communication pathways with the immune system.
Central Nervous System Vasculitis
... of Vasculitis / Central Nervous System (CNS) Vasculitis Central Nervous System (CNS) Vasculitis Swap out your current Facebook Profile ... Facebook personal page. Replace with this image. Central nervous system (CNS) vasculitis is inflammation of blood vessel walls ...
Sasakura, Yasunori; Mita, Kaoru; Ogura, Yosuke; Horie, Takeo
2012-04-01
The swimming larvae of the chordate ascidians possess a dorsal hollowed central nervous system (CNS), which is homologous to that of vertebrates. Despite the homology, the ascidian CNS consists of a countable number of cells. The simple nervous system of ascidians provides an excellent experimental system to study the developmental mechanisms of the chordate nervous system. The neural fate of the cells consisting of the ascidian CNS is determined in both autonomous and non-autonomous fashion during the cleavage stage. The ascidian neural plate performs the morphogenetic movement of neural tube closure that resembles that in vertebrate neural tube formation. Following neurulation, the CNS is separated into five distinct regions, whose homology with the regions of vertebrate CNS has been discussed. Following their larval stage, ascidians undergo a metamorphosis and become sessile adults. The metamorphosis is completed quickly, and therefore the metamorphosis of ascidians is a good experimental system to observe the reorganization of the CNS during metamorphosis. A recent study has shown that the major parts of the larval CNS remain after the metamorphosis to form the adult CNS. In contrast to such a conserved manner of CNS reorganization, most larval neurons disappear during metamorphosis. The larval glial cells in the CNS are the major source for the formation of the adult CNS, and some of the glial cells produce adult neurons. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
... an ongoing accounting system that nets each day's Settling Trades with the prior day's Closing... Continuous Net Settlement (``CNS'') system \\5\\ (and for CNS-eligible items that are designated to be... value through the CNS system. Non-CNS eligible items, however, are assigned a market value pursuant to...
Understanding the functions and relationships of the glymphatic system and meningeal lymphatics.
Louveau, Antoine; Plog, Benjamin A; Antila, Salli; Alitalo, Kari; Nedergaard, Maiken; Kipnis, Jonathan
2017-09-01
Recent discoveries of the glymphatic system and of meningeal lymphatic vessels have generated a lot of excitement, along with some degree of skepticism. Here, we summarize the state of the field and point out the gaps of knowledge that should be filled through further research. We discuss the glymphatic system as a system that allows CNS perfusion by the cerebrospinal fluid (CSF) and interstitial fluid (ISF). We also describe the recently characterized meningeal lymphatic vessels and their role in drainage of the brain ISF, CSF, CNS-derived molecules, and immune cells from the CNS and meninges to the peripheral (CNS-draining) lymph nodes. We speculate on the relationship between the two systems and their malfunction that may underlie some neurological diseases. Although much remains to be investigated, these new discoveries have changed our understanding of mechanisms underlying CNS immune privilege and CNS drainage. Future studies should explore the communications between the glymphatic system and meningeal lymphatics in CNS disorders and develop new therapeutic modalities targeting these systems.
Mariga, Abigail; Mitre, Mariela; Chao, Moses V.
2017-01-01
Growth factor withdrawal has been studied across different species and has been shown to have dramatic consequences on cell survival. In the nervous system, withdrawal of nerve growth factor (NGF) from sympathetic and sensory neurons results in substantial neuronal cell death, signifying a requirement for NGF for the survival of neurons in the peripheral nervous system (PNS). In contrast to the PNS, withdrawal of central nervous system (CNS) enriched brain-derived neurotrophic factor (BDNF) has little effect on cell survival but is indispensible for synaptic plasticity. Given that most early events in neuropsychiatric disorders are marked by a loss of synapses, lack of BDNF may thus be an important part of a cascade of events that leads to neuronal degeneration. Here we review reports on the effects of BDNF withdrawal on CNS neurons and discuss the relevance of the loss in disease. PMID:27015693
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, A.L.; Goodsall, A.L.; Sedgwick, J.D.
1995-05-01
Ramified microglia in the adult central nervous system (CNS) are the principal glial element up-regulating MHC class I and II expression in response to inflammatory events or neuronal damage. A proportion of these cells also express MHC class II constitutively in the normal CNS. The role of microglia as APCs for CD4{sup +} cells extravasating into the CNS remains undefined. In this study, using irradiation bone marrow chimeras in CD45-congenic rats, the phenotype CD45{sup low}CD11b/c{sup +} is shown to identify microglial cells specifically within the CNS. Highly purified populations of microglia and nonmicroglial but CNS-associated macrophages (CD45{sup high}CD11b/c{sup +}) havemore » been obtained directly from the adult CNS, by using flow cytometric sorting. Morphologically, freshly isolated microglia vs other CNS macrophages are quite distinct. Of the two populations recovered from the normal CNS, it is the minority CD45{sup high}CD11 b/c{sup +} transitional macrophage population, and not microglia, that is the effective APC for experimental autoimmune encephalomyelitis-inducing CD4{sup +} myelin basic protein (MBP)-reactive T cells. CD45{sup high}CD11b/c{sup +} CNS macrophages also stimulate MBP-reactive T cells without addition of MBP to culture suggesting presentation of endogenous Ag. This is the first study in which microglia vs other CNS macrophages have been analyzed for APC ability directly from the CNS, with substantial cross-contamination between the two populations eliminated. The heterogeneity of these populations in terms of APC function is clearly demonstrated. Evidence is still lacking that adult CNS microglia have the capacity to interact with and stimulate CD4{sup +} T cells to proliferate or secrete IL-2. 60 refs., 6 figs., 1 tab.« less
Application of dental nanomaterials: potential toxicity to the central nervous system.
Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin
2015-01-01
Nanomaterials are defined as materials with one or more external dimensions with a size of 1-100 nm. Such materials possess typical nanostructure-dependent properties (eg, chemical, biological, optical, mechanical, and magnetic), which may differ greatly from the properties of their bulk counterparts. In recent years, nanomaterials have been widely used in the production of dental materials, particularly in light polymerization composite resins and bonding systems, coating materials for dental implants, bioceramics, endodontic sealers, and mouthwashes. However, the dental applications of nanomaterials yield not only a significant improvement in clinical treatments but also growing concerns regarding their biosecurity. The brain is well protected by the blood-brain barrier (BBB), which separates the blood from the cerebral parenchyma. However, in recent years, many studies have found that nanoparticles (NPs), including nanocarriers, can transport through the BBB and locate in the central nervous system (CNS). Because the CNS may be a potential target organ of the nanomaterials, it is essential to determine the neurotoxic effects of NPs. In this review, possible dental nanomaterials and their pathways into the CNS are discussed, as well as related neurotoxicity effects underlying the in vitro and in vivo studies. Finally, we analyze the limitations of the current testing methods on the toxicological effects of nanomaterials. This review contributes to a better understanding of the nano-related risks to the CNS as well as the further development of safety assessment systems.
Bryant-Lukosius, Denise; Carter, Nancy; Reid, Kim; Donald, Faith; Martin-Misener, Ruth; Kilpatrick, Kelley; Harbman, Patricia; Kaasalainen, Sharon; Marshall, Deborah; Charbonneau-Smith, Renee; DiCenso, Alba
2015-10-01
Clinical nurse specialists (CNSs) are major providers of transitional care. This paper describes a systematic review of randomized controlled trials (RCTs) evaluating the clinical effectiveness and cost-effectiveness of CNS transitional care. We searched 10 electronic databases, 1980 to July 2013, and hand-searched reference lists and key journals for RCTs that evaluated health system outcomes of CNS transitional care. Study quality was assessed using the Cochrane Risk of Bias and Quality of Health Economic Studies tools. The quality of evidence for individual outcomes was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) tool. We pooled data for similar outcomes. Thirteen RCTs of CNS transitional care were identified (n = 2463 participants). The studies had low (n = 3), moderate (n = 8) and high (n = 2) risk of bias and weak economic analyses. Post-cancer surgery, CNS care was superior in reducing patient mortality. For patients with heart failure, CNS care delayed time to and reduced death or re-hospitalization, improved treatment adherence and patient satisfaction, and reduced costs and length of re-hospitalization stay. For elderly patients and caregivers, CNS care improved caregiver depression and reduced re-hospitalization, re-hospitalization length of stay and costs. For high-risk pregnant women and very low birthweight infants, CNS care improved infant immunization rates and maternal satisfaction with care and reduced maternal and infant length of hospital stay and costs. There is low-quality evidence that CNS transitional care improves patient health outcomes, delays re-hospitalization and reduces hospital length of stay, re-hospitalization rates and costs. Further research incorporating robust economic evaluation is needed. © 2015 John Wiley & Sons, Ltd.
Forst, Thomas; Smith, Terry; Schütte, Klemens; Marcus, Paul; Pfützner, Andreas
2007-01-01
What is already known about this subject Despite encouraging effects of N-methyl-D-aspartate (NMDA) receptor antagonists in reducing neuropathic pain of different aetiologies, the clinical use of these agents has been limited by their mainly psychotropic side-effects. In a recent study in healthy volunteers, CNS 5161, a novel noncompetetive NMDA receptor antagonist, was well tolerated up to a dosage of 2000 µg without psychotropic side-effects. This is the first study to evaluate the maximal tolerated dosage of CNS 5161 and to gain experience about the analgesic effect of CNS 5161 in patients with different pain syndromes. What this study adds In patients with neuropathic pain CNS 5161 is well tolerated up to a dosage of 500 µg with the most common side-effect of increasing blood pressure, mild visual disturbances and headaches. While no therapeutic effect can be observed in a dosage up to 250 µg, treatment with 500 µg CNS 5161 provides some indications of analgesic activity. It appears that this effect occurs predominantly in patients with diabetic neuropathy. Aims The purpose of the current study was to establish the safety and maximal tolerated dose of CNS 5161 HCl. Methods Forty patients with chronic neuropathic pain (23 male, 17 female) were treated with escalating dosages of CNS 5161. All adverse events to study drug, blood pressure, heart rate, ECG, drug level and clinical laboratory values were monitored. Actual pain was measured on a 100-mm visual analogue scale (VAS) and ordinal verbal pain scores. Results The most commonly occurring nervous system disorder was headache, which was found more often during placebo than during CNS 5161 HCl treatment. Visual disturbances were experienced by 16.7% of patients receiving 250 µg and by 33.3% receiving 500 µg CNS 5161 HCl, but not during placebo treatment. An increase in blood pressure was observed in 8.3% of patients receiving 250 µg and in 50% of patients receiving 500 µg CNS 5161 HCl, compared with 15.4% during placebo treatment. The study was abandoned after two patients entered the 750 µg cohort due to a sustained systolic blood pressure response. Although this study was underpowered for the confirmation of efficacy, some indications of greater pain relief after 500 µg CNS 5161 compared with placebo could be observed (change in VAS between baseline and 12 h 10 ± 22 mm vs. 2 ± 19 mm; P = 0.11). Conclusions CNS 5161 HCl was reasonably well tolerated up to 500 µg. The most common adverse events were hypertension, headache and mild visual disorders. PMID:17391323
Zhou, Jieru; Cai, Wei; Jin, Min; Xu, Jingwei; Wang, Yanan; Xiao, Yichuan; Hao, Li; Wang, Bei; Zhang, Yanyun; Han, Jie; Huang, Rui
2015-09-02
Microglia are intrinsic immune cells in the central nervous system (CNS). The under controlled microglia activation plays important roles in inflammatory demyelination diseases, such as multiple sclerosis (MS). However, the means to modulate microglia activation as a therapeutic modality and the underlying mechanisms remain elusive. Here we show that administration of 18β-glycyrrhetinic acid (GRA), by using both preventive and therapeutic treatment protocols, significantly suppresses disease severity of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. The treatment effect of GRA on EAE is attributed to its regulatory effect on microglia. GRA-modulated microglia significantly decreased pro-inflammatory profile in the CNS through suppression of MAPK signal pathway. The ameliorated CNS pro-inflammatory profile prevented the recruitment of encephalitogenic T cells into the CNS, which alleviated inflammation-induced demyelination. In addition, GRA treatment promoted remyelination in the CNS of EAE mice. The induced remyelination can be mediated by the overcome of inflammation-induced blockade of brain-derived neurotrophic factor expression in microglia, as well as enhancing oligodendrocyte precursor cell proliferation. Collectively, our results demonstrate that GRA-modulated microglia suppresses EAE through inhibiting microglia activation-mediated CNS inflammation, and promoting neuroprotective effect of microglia, which represents a potential therapeutic strategy for MS and maybe other neuroinflammatory diseases associated with microglia activation.
Central nervous system involvement in AIDS-related lymphomas.
Barta, Stefan K; Joshi, Jitesh; Mounier, Nicolas; Xue, Xiaonan; Wang, Dan; Ribera, Josep-Maria; Navarro, Jose-Tomas; Hoffmann, Christian; Dunleavy, Kieron; Little, Richard F; Wilson, Wyndham H; Spina, Michele; Galicier, Lionel; Noy, Ariela; Sparano, Joseph A
2016-06-01
Central nervous system (CNS) involvement is reportedly more common in acquired immunodeficiency syndrome (AIDS)-related lymphomas (ARL). We describe factors and outcomes associated with CNS involvement at baseline (CNS(B) ) and relapse (CNS(R) ) in 886 patients with newly diagnosed ARL. Of 886 patients, 800 received either intrathecal (IT) therapy for CNS(B) or IT prophylaxis. CNS(B) was found in 13%. CNS(B) was not associated with reduced overall survival (OS). There was no difference in the prevalence of CNS(B) between the pre-combination antiretroviral therapy (cART) and cART eras. 5·3% of patients experienced CNS(R) at a median of 4·2 months after diagnosis (12% if CNS(B) ; 4% if not). Median OS after CNS(R) was 1·6 months. On multivariate analysis, only CNS(B) [hazard ratio (HR) 3·68, P = 0·005] and complete response to initial therapy (HR 0·14, P < 0·0001) were significantly associated with CNS(R) . When restricted to patients without CNS(B) , IT CNS prophylaxis with 3 vs. 1 agent did not significantly impact the risk of CNS(R) . Despite IT CNS prophylaxis, 5% of patients experienced CNS(R) . Our data confirms that CNS(R) in ARL occurs early and has a poor outcome. Complete response to initial therapy was associated with a reduced frequency of CNS(R) . Although CNS(B) conferred an increased risk for CNS(R) , it did not impact OS. © 2016 John Wiley & Sons Ltd.
Studies on the Effects of Anticholinesterase Compounds on Functions of Neuroglia
1987-09-01
The CNS is protected from large changes in systemic pH except for respiratory acidosis when CO2 increases, because CO2 can rapidly penetrate the blood...ischemia (15). the effects of an anion exchange inhibitor on the levels of CNS HCOj in chronic metabolic alkalosis (16). and the effect of lactic acid...Wayne, J., Demeester, G. and Leusen, I. (1983) Effects of SITS, an anion transport blocker, on CSF composition in metabolic alkalosis . In: Central
Galvani, Gerónimo L; Fruttero, Leonardo L; Coronel, María F; Nowicki, Susana; Demartini, Diogo R; Defferrari, Marina S; Postal, Melissa; Canavoso, Lilián E; Carlini, Célia R; Settembrini, Beatriz P
2015-02-01
Triatoma infestans is the main vector of Chagas'disease in Southern Cone countries. In triatomines, symptoms suggesting neurotoxicity were observed after treatment with Jaburetox (Jbtx), the entomotoxic peptide obtained from jackbean urease. Here, we study its effect in the central nervous system (CNS) of this species. Immunohistochemistry, Western blots, immunoprecipitation, two-dimensional electrophoresis, tandem mass spectrometry and enzymatic assays were performed. Anti-Jbtx antibody labeled somata of the antennal lobe only in Jbtx-treated insects. Western blot assays of nervous tissue using the same antibody reacted with a 61kDa protein band only in peptide-injected insects. Combination of immunoprecipitation, two-dimensional electrophoresis and tandem mass spectrometry identified UDP-N-acetylglucosamine pyrophosphorylase (UDP-GlcNAcP) as a molecular target for Jbtx. The activity of UDP-GlcNAcP increased significantly in the CNS of Jbtx-treated insects. The effect of Jbtx on the activity of nitric oxide synthase (NOS) and NO production was investigated as NO is a recognized messenger molecule in the CNS of T. infestans. NOS activity and NO levels decreased significantly in CNS homogenates of Jbtx-treated insects. UDP-GlcNAcP is a molecular target of Jbtx. Jbtx impaired the activity of T. infestans nitrergic system, which may be related with early behavioral effects. We report that the CNS of Triatoma infestans is a target for the entomotoxic peptide and propose that a specific area of the brain is involved. Besides potentially providing tools for control strategies of Chagas' disease vectors our data may be relevant in various fields of research as insect physiology, neurobiology and protein function. Copyright © 2014 Elsevier B.V. All rights reserved.
The effect of omega-3 fatty acids on central nervous system remyelination in fat-1 mice.
Siegert, Elise; Paul, Friedemann; Rothe, Michael; Weylandt, Karsten H
2017-01-24
There is a large body of experimental evidence suggesting that omega-3 (n-3) polyunsaturated fatty acids (PUFAs) are capable of modulating immune function. Some studies have shown that these PUFAs might have a beneficial effect in patients suffering form multiple sclerosis (MS), a chronic inflammatory demyelinating disease of the central nervous system (CNS). This could be due to increased n-3 PUFA-derived anti-inflammatory lipid mediators. In the present study we tested the effect of an endogenously increased n-3 PUFA status on cuprizone-induced CNS demyelination and remyelination in fat-1 mice versus their wild-type (wt) littermates. Fat-1 mice express an n-3 desaturase, which allows them to convert n-6 PUFAs into n-3 PUFAs. CNS lipid profiles in fat-1 mice showed a significant increase of eicosapentaenoic acid (EPA) levels but similar docosahexaenoic acid levels compared to wt littermates. This was also reflected in significantly higher levels of monohydroxy EPA metabolites such as 18-hydroxyeicosapentaenoic acid (18-HEPE) in fat-1 brain tissue. Feeding fat-1 mice and wt littermates 0.2% cuprizone for 5 weeks caused a similar degree of CNS demyelination in both groups; remyelination was increased in the fat-1 group after a recovery period of 2 weeks. However, at p = 0.07 this difference missed statistical significance. These results indicate that n-3 PUFAs might have a role in promotion of remyelination after toxic injury to CNS oligodendrocytes. This might occur either via modulation of the immune system or via a direct effect on oligodendrocytes or neurons through EPA-derived lipid metabolites such as 18-HEPE.
Marques, Andrea Horvath; Bjørke-Monsen, Anne-Lise; Teixeira, Antônio L; Silverman, Marni N
2015-08-18
Evidence suggests that maternal and fetal immune dysfunction may impact fetal brain development and could play a role in neurodevelopmental disorders, although the definitive pathophysiological mechanisms are still not completely understood. Stress, malnutrition and physical inactivity are three maternal behavioral lifestyle factors that can influence immune and central nervous system (CNS) functions in both the mother and fetus, and may therefore, increase risk for neurodevelopmental/psychiatric disorders. First, we will briefly review some aspects of maternal-fetal immune system interactions and development of immune tolerance. Second, we will discuss the bidirectional communication between the immune system and CNS and the pathways by which immune dysfunction could contribute to neurodevelopmental disorders. Third, we will discuss the effects of prenatal stress and malnutrition (over and undernutrition) on perinatal programming of the CNS and immune system, and how this might influence neurodevelopment. Finally, we will discuss the beneficial impact of physical fitness during pregnancy on the maternal-fetal unit and infant and how regular physical activity and exercise can be an effective buffer against stress- and inflammatory-related disorders. Although regular physical activity has been shown to promote neuroplasticity and an anti-inflammatory state in the adult, there is a paucity of studies evaluating its impact on CNS and immune function during pregnancy. Implementing stress reduction, proper nutrition and ample physical activity during pregnancy and the childbearing period may be an efficient strategy to counteract the impact of maternal stress and malnutrition/obesity on the developing fetus. Such behavioral interventions could have an impact on early development of the CNS and immune system and contribute to the prevention of neurodevelopmental and psychiatric disorders. Further research is needed to elucidate this relationship and the underlying mechanisms of protection. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease. Copyright © 2014 Elsevier B.V. All rights reserved.
Nanomedicine and its application in treatment of microglia-mediated neuroinflammation.
Baby, N; Patnala, R; Ling, Eng-Ang; Dheen, S T
2014-01-01
Nanomedicine, an emerging therapeutic tool in current medical frontiers, offers targeted drug delivery for many neurodegenerative disorders. Neuroinflammation, a hallmark of many neurodegenerative disorders, is mediated by microglia, the resident immunocompetent cells of the central nervous system (CNS). Microglial cells respond to various stimuli in the CNS resulting in their activation which may have a beneficial or a detrimental effect. In general, the activated microglia remove damaged neurons and infectious agents by phagocytosis, therefore being neuroprotective. However, their chronic activation exacerbates neuronal damage through excessive release of proinflammatory cytokines, chemokines and other inflammatory mediators which contribute to neuroinflammation and subsequent neurodegeneration in the CNS. Hence, controlling microglial inflammatory response and their proliferation has been considered as an important aspect in treating neurodegenerative disorders. Regulatory factors that control microglial activation and proliferation also play an important role in microglia-mediated neuroinflammation and neurotoxicity. Various anti-inflammatory drugs and herbal compounds have been identified in treating microglia-mediated neuroinflammation in the CNS. However, hurdles in crossing blood brain barrier (BBB), expression of metabolic enzymes, presence of efflux pumps and several other factors prevent the entry of these drugs into the CNS. Use of non-degradable delivery systems and microglial activation in response to the drug delivery system further complicate drug delivery to the CNS. Nanomedicine, a nanoparticle-mediated drug delivery system, exhibits immense potential to overcome these hurdles in drug delivery to the CNS enabling new alternatives with significant promises in revolutionising the field of neurodegenerative disease therapy. This review attempts to summarise various regulatory factors in microglia, existing therapeutic strategies in controlling microglial activation, and how nanotechnology can serve to improve the delivery of therapeutic drugs across the BBB for treating microglia- mediated neuroinflammation and neurodegeneration.
Sirvent, Nicolas; Suciu, Stefan; Rialland, Xavier; Millot, Frédéric; Benoit, Yves; Plantaz, Dominique; Ferster, Alice; Robert, Alain; Lutz, Patrick; Nelken, Brigitte; Plouvier, Emmanuel; Norton, Lucilia; Bertrand, Yves; Otten, Jacques
2011-01-01
To evaluate the prognostic significance of the initial cerebro-spinal fluid (CSF) involvement of children with ALL enrolled from 1989 to 1996 in the EORTC 58881 trial. Patients (2025) were categorised according to initial central nervous system (CNS) status: CNS-1 (CNS negative, n=1866), CNS-2 (<5 leucocytes/mm(3), CSF with blasts, n=50), CNS-3 (CNS positive, n=49), TLP+ (TLP with blasts, n=60). CNS-directed therapy consisted in intravenous (i.v.) methotrexate (5 g/sqm) in 4-10 courses, and intrathecal methotrexate injections (10-20), according to CNS status. Cranial irradiation was omitted in all patients. In the CNS1, TLP+, CNS2 and CNS3 group the 8-year EFS rate (SE%) was 69.7% (1.1%), 68.8% (6.2%), 71.3% (6.5%) and 68.3% (6.2%), respectively. The 8-year incidence of isolated CNS relapse (SE%) was 3.4% (0.4%), 1.7% (1.7%), 6.1% (3.5%) and 9.4% (4.5%), respectively, whereas the 8-year isolated or combined CNS relapse incidence was 7.6% (0.6%), 3.5% (2.4%), 10.2% (4.4%) and 11.7% (5.0%), respectively. Patients with CSF blasts had a higher rate of initial bad risk features. Multivariate analysis indicated that presence of blasts in the CSF had no prognostic value: (i) for EFS and OS; (ii) for isolated and isolated or combined CNS relapse; WBC count<25 × 10(9)/L and Medac E-coli asparaginase treatment were each related to a lower CNS relapse risk. The presence of initial CNS involvement has no prognostic significance in EORTC 58881. Intensification of CNS-directed chemotherapy, without CNS radiation, is an effective treatment of initial meningeal leukaemic involvement. Copyright © 2010 Elsevier Ltd. All rights reserved.
Jurczak, Wojciech; Kroll-Balcerzak, Renata; Giebel, Sebastian; Machaczka, Maciej; Giza, Agnieszka; Ogórka, Tomasz; Fornagiel, Szymon; Rybka, Justyna; Wróbel, Tomasz; Kumiega, Beata; Skotnicki, Aleksander B; Komarnicki, Mieczysław
2015-04-01
Lymphomas with primary or secondary involvement of central nervous system (CNS) have poor prognosis despite specific treatment protocols which include whole brain radiotherapy and high-dose systemic and/or intrathecal chemotherapy. Toxicity of intrathecal liposomal cytarabine-based regimens collected between November 2006 and January 2012 was assessed retrospectively. Data from 120 adult lymphoma patients with, or at high risk of CNS involvement who received intrathecal liposomal cytarabine-based regimens at six Polish Lymphoma Research Group centres between November 2006 and January 2012 were assessed retrospectively. Patients were divided into three cohorts: A (high risk of CNS disease, n = 88), B (cerebrospinal fluid pleocytosis without neurological symptoms or pathological imaging findings, n = 7), and C (CNS disease/neurological involvement; n = 25). In all examined groups, toxicity of treatment was found to be acceptable (including the prophylactic setting). None of the patients in cohorts A or B who took intrathecal liposomal cytarabine 50 mg, repeated every 2-4 weeks (mean 3.8 doses) had experienced a CNS relapse at a median follow-up time of 3 years. Patients in cohort C had a 76 % overall neurological response rate (including a 40 % complete response rate) and median overall survival of 4.8 years. Regimens incorporating liposomal cytarabine seem to be safe and effective treatments for lymphomas with CNS involvement.
Neuroinflamm-aging and neurodegenerative diseases: an overview.
Pizza, Vincenzo; Agresta, Anella; D'Acunto, Cosimo W; Festa, Michela; Capasso, Anna
2011-08-01
Neuroinflammation is considered a chronic activation of the immune response in the central nervous system (CNS) in response to different injuries. This brain immune activation results in various events: circulating immune cells infiltrate the CNS; resident cells are activated; and pro-inflammatory mediators produced and released induce neuroinflammatory brain disease. The effect of immune diffusible mediators on synaptic plasticity might result in CNS dysfunction during neuroinflammatory brain diseases. The CNS dysfunction may induce several human pathological conditions associated with both cognitive impairment and a variable degree of neuroinflammation. Furthermore, age has a powerful effect on enhanced susceptibility to neurodegenerative diseases and age-dependent enhanced neuroinflammatory processes may play an important role in toxin generation that causes death or dysfunction of neurons in neurodegenerative diseases This review will address current understanding of the relationship between ageing, neuroinflammation and neurodegenerative disease by focusing on the principal mechanisms by which the immune system influences the brain plastic phenomena. Also, the present review considers the principal human neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis and psychiatric disorders caused by aging and neuroinflammation.
The retina as a window to the brain-from eye research to CNS disorders.
London, Anat; Benhar, Inbal; Schwartz, Michal
2013-01-01
Philosophers defined the eye as a window to the soul long before scientists addressed this cliché to determine its scientific basis and clinical relevance. Anatomically and developmentally, the retina is known as an extension of the CNS; it consists of retinal ganglion cells, the axons of which form the optic nerve, whose fibres are, in effect, CNS axons. The eye has unique physical structures and a local array of surface molecules and cytokines, and is host to specialized immune responses similar to those in the brain and spinal cord. Several well-defined neurodegenerative conditions that affect the brain and spinal cord have manifestations in the eye, and ocular symptoms often precede conventional diagnosis of such CNS disorders. Furthermore, various eye-specific pathologies share characteristics of other CNS pathologies. In this Review, we summarize data that support examination of the eye as a noninvasive approach to the diagnosis of select CNS diseases, and the use of the eye as a valuable model to study the CNS. Translation of eye research to CNS disease, and deciphering the role of immune cells in these two systems, could improve our understanding and, potentially, the treatment of neurodegenerative disorders.
Spencer, Brian; Potkar, Rewati; Metcalf, Jeff; Thrin, Ivy; Adame, Anthony; Rockenstein, Edward; Masliah, Eliezer
2016-01-22
Neuropeptide Y (NPY) is one of the most abundant protein transmitters in the central nervous system with roles in a variety of biological functions including: food intake, cardiovascular regulation, cognition, seizure activity, circadian rhythms, and neurogenesis. Reduced NPY and NPY receptor expression is associated with numerous neurodegenerative disorders including Alzheimer disease (AD). To determine whether replacement of NPY could ameliorate some of the neurodegenerative and behavioral pathology associated with AD, we generated a lentiviral vector expressing NPY fused to a brain transport peptide (apoB) for widespread CNS delivery in an APP-transgenic (tg) mouse model of AD. The recombinant NPY-apoB effectively reversed neurodegenerative pathology and behavioral deficits although it had no effect on accumulation of Aβ. The subgranular zone of the hippocampus showed a significant increase in proliferation of neural precursor cells without further differentiation into neurons. The neuroprotective and neurogenic effects of NPY-apoB appeared to involve signaling via ERK and Akt through the NPY R1 and NPY R2 receptors. Thus, widespread CNS-targeted delivery of NPY appears to be effective at reversing the neuronal and glial pathology associated with Aβ accumulation while also increasing NPC proliferation. Overall, increased delivery of NPY to the CNS for AD might be an effective therapy especially if combined with an anti-Aβ therapeutic. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayadev, Jyoti S.; Department of Radiation Oncology University of California-Davis Medical Center, Davis, CA; Douglas, James G., E-mail: drjay@u.washington.ed
Purpose: Neither the prognostic importance nor the appropriate management of central nervous system (CNS) involvement is known for patients with acute myeloid leukemia (AML) undergoing hematopoietic cell transplantation (HCT). We examined the impact of a CNS irradiation boost to standard intrathecal chemotherapy (ITC). Methods and Materials: From 1995 to 2005, a total of 648 adult AML patients received a myeloablative HCT: 577 patients were CNS negative (CNS-), and 71 were CNS positive (CNS+). Of the 71 CNS+ patients, 52 received intrathecal chemotherapy alone (CNS+ITC), and 19 received ITC plus an irradiation boost (CNS+RT). Results: The CNS-, CNS+ITC, and CNS+RT patientsmore » had 1- and 5-year relapse-free survivals (RFS) of 43% and 35%, 15% and 6%, and 37% and 32%, respectively. CNS+ITC patients had a statistically significant worse RFS compared with CNS- patients (hazard ratio [HR], 2.65; 95% confidence interval [CI], 2.0-3.6; p < 0.0001). CNS+RT patients had improved relapse free survival over that of CNS+ITC patients (HR, 0.45; 95% CI, 0.2-0.8; p = 0.01). The 1- and 5-year overall survivals (OS) of patients with CNS-, CNS+ITC, and CNS+RT, were 50% and 38%, 21% and 6%, and 53% and 42%, respectively. The survival of CNS+RT were significantly better than CNS+ITC patients (p = 0.004). After adjusting for known risk factors, CNS+RT patients had a trend toward lower relapse rates and reduced nonrelapse mortality. Conclusions: CNS+ AML is associated with a poor prognosis. The role of a cranial irradiation boost to intrathecal chemotherapy appears to mitigate the risk of CNS disease, and needs to be further investigated to define optimal treatment strategies.« less
Hagberg, Lars; Cinque, Paola; Gisslen, Magnus; Brew, Bruce J; Spudich, Serena; Bestetti, Arabella; Price, Richard W; Fuchs, Dietmar
2010-06-03
HIV-1 invades the central nervous system (CNS) in the context of acute infection, persists thereafter in the absence of treatment, and leads to chronic intrathecal immunoactivation that can be measured by the macrophage activation marker, neopterin, in cerebrospinal fluid (CSF). In this review we describe our experience with CSF neopterin measurements in 382 untreated HIV-infected patients across the spectrum of immunosuppression and HIV-related neurological diseases, in 73 untreated AIDS patients with opportunistic CNS infections, and in 233 treated patients.In untreated patients, CSF neopterin concentrations are almost always elevated and increase progressively as immunosuppression worsens and blood CD4 cell counts fall. However, patients with HIV dementia exhibit particularly high CSF neopterin concentrations, above those of patients without neurological disease, though patients with CNS opportunistic infections, including CMV encephalitis and cryptococcal meningitis, also exhibit high levels of CSF neopterin. Combination antiretroviral therapy, with its potent effect on CNS HIV infection and CSF HIV RNA, mitigates both intrathecal immunoactivation and lowers CSF neopterin. However, despite suppression of plasma and CSF HIV RNA to below the detection limits of clinical assays (<50 copies HIV RNA/mL), CSF neopterin often remains mildly elevated, indicating persistent low-level intrathecal immune activation and raising the important questions of whether this elevation is driven by continued CNS infection and whether it causes continued indolent CNS injury.Although nonspecific, CSF neopterin can serve as a useful biomarker in the diagnosis of HIV dementia in the setting of confounding conditions, in monitoring the CNS inflammatory effects of antiretroviral treatment, and give valuable information to the cause of ongoing brain injury.
Clarke, G; Grenham, S; Scully, P; Fitzgerald, P; Moloney, R D; Shanahan, F; Dinan, T G; Cryan, J F
2013-06-01
Bacterial colonisation of the intestine has a major role in the post-natal development and maturation of the immune and endocrine systems. These processes are key factors underpinning central nervous system (CNS) signalling. Regulation of the microbiome-gut-brain axis is essential for maintaining homeostasis, including that of the CNS. However, there is a paucity of data pertaining to the influence of microbiome on the serotonergic system. Germ-free (GF) animals represent an effective preclinical tool to investigate such phenomena. Here we show that male GF animals have a significant elevation in the hippocampal concentration of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid, its main metabolite, compared with conventionally colonised control animals. Moreover, this alteration is sex specific in contrast with the immunological and neuroendocrine effects which are evident in both sexes. Concentrations of tryptophan, the precursor of serotonin, are increased in the plasma of male GF animals, suggesting a humoral route through which the microbiota can influence CNS serotonergic neurotransmission. Interestingly, colonisation of the GF animals post weaning is insufficient to reverse the CNS neurochemical consequences in adulthood of an absent microbiota in early life despite the peripheral availability of tryptophan being restored to baseline values. In addition, reduced anxiety in GF animals is also normalised following restoration of the intestinal microbiota. These results demonstrate that CNS neurotransmission can be profoundly disturbed by the absence of a normal gut microbiota and that this aberrant neurochemical, but not behavioural, profile is resistant to restoration of a normal gut flora in later life.
Your brain on drugs: imaging of drug-related changes in the central nervous system.
Tamrazi, Benita; Almast, Jeevak
2012-01-01
Drug abuse is a substantial problem in society today and is associated with significant morbidity and mortality. Various drugs are associated with serious complications affecting the brain, and it is critical to recognize the imaging findings of these complications to provide prompt medical management. The central nervous system (CNS) is a target organ for drugs of abuse as well as specific prescribed medications. Drugs of abuse affecting the CNS include cocaine, heroin, alcohol, amphetamines, toluene, and cannabis. Prescribed medications or medical therapies that can affect the CNS include immunosuppressants, antiepileptics, nitrous oxide, and total parenteral nutrition. The CNS complications of these drugs include neurovascular complications, encephalopathy, atrophy, infection, changes in the corpus callosum, and other miscellaneous changes. Imaging abnormalities indicative of these complications can be appreciated at both magnetic resonance (MR) imaging and computed tomography (CT). It is critical for radiologists to recognize complications related to drugs of abuse as well as iatrogenic effects of various medications. Therefore, diagnostic imaging modalities such as MR imaging and CT can play a pivotal role in the recognition and timely management of drug-related complications in the CNS.
Moreno, Lucas; García Ariza, Miguel Angel; Cruz, Ofelia; Calvo, Carlota; Fuster, Jose Luis; Salinas, Jose Antonio; Moscardo, Cristina; Portugal, Raquel; Merino, Jose Manuel; Madero, Luis
2016-11-01
Leptomeningeal dissemination in paediatric central nervous system (CNS) tumours is associated with a poor outcome, and new therapeutic strategies are desperately needed. One of the main difficulties in the treatment of CNS tumours is blood brain barrier penetration. Intrathecal therapy has shown to be effective in several paediatric tumours. The aim of this article is to review the data available on the use of liposomal cytarabine for paediatric patients with leptomeningeal dissemination of CNS tumours, including the pharmacology, administration route, safety and efficacy data. Copyright © 2016 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.
Peripherally Restricted Cannabinoids for the Treatment of Pain.
Romero-Sandoval, E Alfonso; Asbill, Scott; Paige, Candler A; Byrd-Glover, Kiara
2015-10-01
The use of cannabinoids for the treatment of chronic diseases has increased in the United States, with 23 states having legalized the use of marijuana. Although currently available cannabinoid compounds have shown effectiveness in relieving symptoms associated with numerous diseases, the use of cannabis or cannabinoids is still controversial mostly due to their psychotropic effects (e.g., euphoria, laughter) or central nervous system (CNS)-related undesired effects (e.g., tolerance, dependence). A potential strategy to use cannabinoids for medical conditions without inducing psychotropic or CNS-related undesired effects is to avoid their actions in the CNS. This approach could be beneficial for conditions with prominent peripheral pathophysiologic mechanisms (e.g., painful diabetic neuropathy, chemotherapy-induced neuropathy). In this article, we discuss the scientific evidence to target the peripheral cannabinoid system as an alternative to cannabis use for medical purposes, and we review the available literature to determine the pros and cons of potential strategies that can be used to this end. © 2015 Pharmacotherapy Publications, Inc.
Bilastine and the central nervous system.
Montoro, J; Mullol, J; Dávila, I; Ferrer, M; Sastre, J; Bartra, J; Jáuregui, I; del Cuvillo, A; Valero, A
2011-01-01
Antihistamines have been classifed as first or second generation drugs, according to their pharmacokinetic properties, chemical structure and adverse effects. The adverse effects of antihistamines upon the central nervous system (CNS) depend upon their capacity to cross the blood-brain barrier (BBB) and bind to the central H1 receptors (RH1). This in turn depends on the lipophilicity of the drug molecule, its molecular weight (MW), and affinity for P-glycoprotein (P-gp) (CNS xenobiotic substances extractor protein). First generation antihistamines show scant affinity for P-gp, unlike the second generation molecules which are regarded as P-gp substrates. Histamine in the brain is implicated in many functions (waking-sleep cycle, attention, memory and learning, and the regulation of appetite), with numerous and complex interactions with different types of receptors in different brain areas. Bilastine is a new H1 antihistamine that proves to be effective in treating allergic rhinoconjunctivitis (seasonal and perennial) and urticaria. The imaging studies made, as well as the objective psychomotor tests and subjective assessment of drowsiness, indicate the absence of bilastine action upon the CNS. This fact, and the lack of interaction with benzodiazepines and alcohol, define bilastine as a clinically promising drug with a good safety profile as regards adverse effects upon the CNS.
CENTRAL NERVOUS SYSTEM INFECTION DURING IMMUNOSUPPRESSION
Zunt, Joseph R.
2009-01-01
The central nervous system (CNS) is susceptible to bacterial, viral, and fungal infections. Suppression of the immune system by human immunodeficiency virus (HIV) infection or immunosuppressive therapy after transplantation increases susceptibility to CNS infection and modifies the presentation, diagnosis, and recommended treatment of various CNS infections. This chapter discusses how suppression of the host immune status modifies the presentation, diagnosis, and treatment of selected CNS infections. PMID:11754299
Neuroinfections caused by fungi.
Góralska, Katarzyna; Blaszkowska, Joanna; Dzikowiec, Magdalena
2018-05-21
Fungal infections of the central nervous system (FIs-CNS) have become significantly more common over the past 2 decades. Invasion of the CNS largely depends on the immune status of the host and the virulence of the fungal strain. Infections with fungi cause a significant morbidity in immunocompromised hosts, and the involvement of the CNS may lead to fatal consequences. One hundred and thirty-five articles on fungal neuroinfection in PubMed, Google Scholar, and Cochrane databases were selected for review using the following search words: "fungi and CNS mycoses", CNS fungal infections", "fungal brain infections", " fungal cerebritis", fungal meningitis", "diagnostics of fungal infections", and "treatment of CNS fungal infections". All were published in English with the majority in the period 2000-2018. This review focuses on the current knowledge of the epidemiology, clinical presentations, diagnosis, and treatment of selected FIs-CNS. The FIs-CNS can have various clinical presentations, mainly meningitis, encephalitis, hydrocephalus, cerebral abscesses, and stroke syndromes. The etiologic factors of neuroinfections are yeasts (Cryptococcus neoformans, Candida spp., Trichosporon spp.), moniliaceous moulds (Aspergillus spp., Fusarium spp.), Mucoromycetes (Mucor spp., Rhizopus spp.), dimorphic fungi (Blastomyces dermatitidis, Coccidioides spp., Histoplasma capsulatum), and dematiaceous fungi (Cladophialophora bantiana, Exophiala dermatitidis). Their common route of transmission is inhalation or inoculation from trauma or surgery, with subsequent hematogenous or contiguous spread. As the manifestations of FIs-CNS are often non-specific, their diagnosis is very difficult. A fast identification of the etiological factor of neuroinfection and the application of appropriate therapy are crucial in preventing an often fatal outcome. The choice of effective drug depends on its extent of CNS penetration and spectrum of activity. Pharmaceutical formulations of amphotericin B (AmB) (among others, deoxycholate-AmBd and liposomal L-AmB) have relatively limited distribution in the cerebrospinal fluid (CSF); however, their detectable therapeutic concentrations in the CNS makes them recommended drugs for the treatment of cryptococcal meningoencephalitis (AmBd with flucytosine) and CNS candidiasis (L-AmB) and mucormycosis (L-AmB). Voriconazole, a moderately lipophilic molecule with good CNS penetration, is recommended in the first-line therapy of CNS aspergillosis. Other triazoles, such as posaconazole and itraconazole, with negligible concentrations in the CSF are not considered effective drugs for therapy of CNS fungal neuroinfections. In contrast, clinical data have shown that a novel triazole, isavuconazole, achieved considerable efficacy for the treatment of some fungal neuroinfections. Echinocandins with relatively low or undetectable concentrations in the CSF do not play meaningful role in the treatment of FIs-CNS. Although the number of fungal species causing CNS mycosis is increasing, only some possess well-defined treatment standards (e.g., cryptococcal meningitis and CNS aspergillosis). The early diagnosis of fungal infection, accompanied by identification of the etiological factor, is needed to allow the selection of effective therapy in patients with FIs-CNS and limit their high mortality.
Enhancing communication by using the Coordinated Care Classification System.
O'Neal, P V; Kozeny, D K; Garland, P P; Gaunt, S M; Gordon, S C
1998-07-01
Because of the changes in our healthcare system, some clinical nurse specialists (CNSs) are having to expand their traditional roles of clinician, educator, consultant, leader, and researcher to include case management activities. The CNSs at Promina Gwinnett Health System in Lawrenceville, Georgia, have combined CNS and case manager activities and have adopted the title "CNS/Outcomes Coordinator." The CNS/Outcomes Coordinator is responsible for coordinating patient care, promoting team collaboration, and facilitating communication. To inform the healthcare team of the CNS/Outcomes Coordinator's patient responsibilities, the CNS/Outcomes Coordinators developed a Coordinated Care Classification System. This article describes how coordinating patient care, promoting team collaboration, and facilitating communication can be enhanced by the use of a classification system.
Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.
2013-01-01
Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305
Application of dental nanomaterials: potential toxicity to the central nervous system
Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin
2015-01-01
Nanomaterials are defined as materials with one or more external dimensions with a size of 1–100 nm. Such materials possess typical nanostructure-dependent properties (eg, chemical, biological, optical, mechanical, and magnetic), which may differ greatly from the properties of their bulk counterparts. In recent years, nanomaterials have been widely used in the production of dental materials, particularly in light polymerization composite resins and bonding systems, coating materials for dental implants, bioceramics, endodontic sealers, and mouthwashes. However, the dental applications of nanomaterials yield not only a significant improvement in clinical treatments but also growing concerns regarding their biosecurity. The brain is well protected by the blood–brain barrier (BBB), which separates the blood from the cerebral parenchyma. However, in recent years, many studies have found that nanoparticles (NPs), including nanocarriers, can transport through the BBB and locate in the central nervous system (CNS). Because the CNS may be a potential target organ of the nanomaterials, it is essential to determine the neurotoxic effects of NPs. In this review, possible dental nanomaterials and their pathways into the CNS are discussed, as well as related neurotoxicity effects underlying the in vitro and in vivo studies. Finally, we analyze the limitations of the current testing methods on the toxicological effects of nanomaterials. This review contributes to a better understanding of the nano-related risks to the CNS as well as the further development of safety assessment systems. PMID:25999717
Methamphetamine compromises gap junctional communication in astrocytes and neurons
Castellano, Paul; Nwagbo, Chisom; Martinez, Luis R.; Eugenin, Eliseo A.
2016-01-01
Methamphetamine (meth) is a central nervous system (CNS) stimulant that results in psychological and physical dependency. The long-term effects of meth within the CNS include neuronal plasticity changes, blood–brain barrier compromise, inflammation, electrical dysfunction, neuronal/glial toxicity, and an increased risk to infectious diseases including HIV. Most of the reported meth effects in the CNS are related to dysregulation of chemical synapses by altering the release and uptake of neurotransmitters, especially dopamine, norepinephrine, and epinephrine. However, little is known about the effects of meth on connexin (Cx) containing channels, such as gap junctions (GJ) and hemichannels (HC). We examined the effects of meth on Cx expression, function, and its role in NeuroAIDS. We found that meth altered Cx expression and localization, decreased GJ communication between neurons and astrocytes, and induced the opening of Cx43/Cx36 HC. Furthermore, we found that these changes in GJ and HC induced by meth treatment were mediated by activation of dopamine receptors, suggesting that dysregulation of dopamine signaling induced by meth is essential for GJ and HC compromise. Meth-induced changes in GJ and HC contributed to amplified CNS toxicity by dysregulating glutamate metabolism and increasing the susceptibility of neurons and astrocytes to bystander apoptosis induced by HIV. Together, our results indicate that connexin containing channels, GJ and HC, are essential in the pathogenesis of meth and increase the sensitivity of the CNS to HIV CNS disease. PMID:26953131
Sickle Cell Disease as a Neurodevelopmental Disorder
ERIC Educational Resources Information Center
Schatz, Jeffrey; McClellan, Catherine B.
2006-01-01
Sickle cell disease (SCD) is a blood disorder; however, the central nervous system (CNS) is one of the organs frequently affected by the disease. Brain disease can begin early in life and often leads to neurocognitive dysfunction. Approximately one-fourth to one-third of children with SCD have some form of CNS effects from the disease, which…
... effective, directed treatments. Central Nervous System The "central command system" of the body, it includes the brain, ... The central nervous system (CNS) is the "central command system" of the body, and includes the brain, ...
Central nervous system stimulants and sport practice
Avois, L; Robinson, N; Saudan, C; Baume, N; Mangin, P; Saugy, M
2006-01-01
Background and objectives Central nervous system (CNS) stimulants may be used to reduce tiredness and increase alertness, competitiveness, and aggression. They are more likely to be used in competition but may be used during training to increase the intensity of the training session. There are several potential dangers involving their misuse in contact sports. This paper reviews the three main CNS stimulants, ephedrine, amfetamine, and cocaine, in relation to misuse in sport. Methods Description of the pharmacology, actions, and side effects of amfetamine, cocaine, and ephedrine. Results CNS stimulants have psychotropic effects that may be perceived to be ergogenic. Some are prescription drugs, such as Ephedra alkaloids, and there are issues regarding their appropriate therapeutic use. Recently attention has been given to their widespread use by athletes, despite the lack of evidence regarding any ergogenic or real performance benefit, and their potentially serious side effects. Recreational drugs, some of which are illegal (cocaine, amfetamines), are commonly used by athletes and cause potential ergolytic effects. Overall, these drugs are important for their frequent use and mention in anti‐doping laboratories statistics and the media, and their potentially serious adverse effects. Conclusions Doping with CNS stimulants is a real public health problem and all sports authorities should participate in its prevention. Dissemination of information is essential to prevent doping in sport and to provide alternatives. Adequate training and education in this domain should be introduced. PMID:16799095
Min, Young-Sun; Ahn, Yeon-Soon
2016-05-01
New light is being shed on the relationship between chronic neurotoxicity of the central nervous system (CNS) and exposure to low-level organic solvents (OS). However, there are few longitudinal studies with a large sample size. A cohort of OS-exposed male workers was selected who had undergone an OS-associated specialized medical check-up at least once between 2000 and 2004 in Korea. The standardized admission ratios (SAR) for CNS diseases were calculated with reference to the Korean adult male population. Adjusted relative risks (ARR) were also estimated in comparison to noise-exposed male workers. There were 238,574 OS-exposed workers, yielding 954,772 person-years of exposure. OS-exposed workers were at elevated risk of "other extrapyramidal and movement disorders" (G25) with a SAR = 2.95 (95% CI: 1.41-5.42) and "systemic atrophies primarily affecting the CNS" (G10-G13) SAR = 2.08 (95% CI: 1.03-3.74). There were no significant differences between the OS-exposed workers and noise-exposed workers. A limited number of CNS diseases identified through hospital admissions data and short observation periods reduced statistical power to determine effect size. OS exposure was positively associated with "other extrapyramidal and movement disorder and systemic atrophies primarily affecting the CNS. © 2016 Wiley Periodicals, Inc.
Can injured adult CNS axons regenerate by recapitulating development?
Hilton, Brett J; Bradke, Frank
2017-10-01
In the adult mammalian central nervous system (CNS), neurons typically fail to regenerate their axons after injury. During development, by contrast, neurons extend axons effectively. A variety of intracellular mechanisms mediate this difference, including changes in gene expression, the ability to form a growth cone, differences in mitochondrial function/axonal transport and the efficacy of synaptic transmission. In turn, these intracellular processes are linked to extracellular differences between the developing and adult CNS. During development, the extracellular environment directs axon growth and circuit formation. In adulthood, by contrast, extracellular factors, such as myelin and the extracellular matrix, restrict axon growth. Here, we discuss whether the reactivation of developmental processes can elicit axon regeneration in the injured CNS. © 2017. Published by The Company of Biologists Ltd.
The effects of probiotics on mood and emotion.
Kane, Lindsey; Kinzel, Julie
2018-05-01
Preliminary research in humans and rodents demonstrates that various probiotic formulations of Lactobacillus and Bifidobacterium have a clinical and neurochemical anxiolytic effect on the central nervous system (CNS). Further research is warranted to more extensively examine the theorized connection between the gastrointestinal tract and the CNS; however, initial evidence suggests probiotics affect various mechanisms of the gut-brain connection that modulate anxiety-like behaviors. This article describes the wider-reaching effects of probiotics, specifically related to behavior and brain function.
Luo, Dandan; Ge, Weihong; Hu, Xiao; Li, Chen; Lee, Chia-Ming; Zhou, Liqiang; Wu, Zhourui; Yu, Juehua; Lin, Sheng; Yu, Jing; Xu, Wei; Chen, Lei; Zhang, Chong; Jiang, Kun; Zhu, Xingfei; Li, Haotian; Gao, Xinpei; Geng, Yanan; Jing, Bo; Wang, Zhen; Zheng, Changhong; Zhu, Rongrong; Yan, Qiao; Lin, Quan; Ye, Keqiang; Sun, Yi E; Cheng, Liming
2018-06-28
The mammalian central nervous system (CNS) is considered an immune privileged system as it is separated from the periphery by the blood brain barrier (BBB). Yet, immune functions have been postulated to heavily influence the functional state of the CNS, especially after injury or during neurodegeneration. There is controversy regarding whether adaptive immune responses are beneficial or detrimental to CNS injury repair. In this study, we utilized immunocompromised SCID mice and subjected them to spinal cord injury (SCI). We analyzed motor function, electrophysiology, histochemistry, and performed unbiased RNA-sequencing. SCID mice displayed improved CNS functional recovery compared to WT mice after SCI. Weighted gene-coexpression network analysis (WGCNA) of spinal cord transcriptomes revealed that SCID mice had reduced expression of immune function-related genes and heightened expression of neural transmission-related genes after SCI, which was confirmed by immunohistochemical analysis and was consistent with better functional recovery. Transcriptomic analyses also indicated heightened expression of neurotransmission-related genes before injury in SCID mice, suggesting that a steady state of immune-deficiency potentially led to CNS hyper-connectivity. Consequently, SCID mice without injury demonstrated worse performance in Morris water maze test. Taken together, not only reduced inflammation after injury but also dampened steady-state immune function without injury heightened the neurotransmission program, resulting in better or worse behavioral outcomes respectively. This study revealed the intricate relationship between immune and nervous systems, raising the possibility for therapeutic manipulation of neural function via immune modulation.
The blood-brain barrier and nasal drug delivery to the central nervous system.
Miyake, Marcel Menon; Bleier, Benjamin S
2015-01-01
The blood-brain barrier (BBB) is a highly efficient system that separates the central nervous system (CNS) from general circulation and promotes selective transport of molecules that are essential for brain function. However, it also limits the distribution of systemically administered therapeutics to the brain; therefore, there is a restricted number of drugs available for the treatment of brain disorders. Several drug-targeting strategies have been developed to attempt to bypass the BBB, but none has proved sufficiently effective in reaching the brain. The objective of this study is to generally review these strategies of drug administration to the CNS. Noninvasive methods of drug delivery, such as chemical and biologic transport systems, do not represent a feasible platform, whereas for most drugs, it is still not possible to achieve therapeutic levels within the brain tissue after intravenous or oral administration, and the use of higher potency or more concentrated doses may cause serious toxic side effects. Direct intrathecal drug delivery through a catheter into the CNS also presents several problems. Intranasal drug delivery is a potential alternative method due to the direct transport into the cerebrospinal fluid (CSF) compartment along the olfactory pathway, but the study's conclusions are controversial. An endoscopic intranasal surgical procedure using established skull base surgery reconstruction techniques based on the use of a nasal mucosa surgical flap as the only obstacle between the nose and the subarachnoid space has appeared as a potential solution to increase the absorption of intranasal drugs to the CNS. Despite extensive efforts to develop new techniques to cross the BBB, none has proved sufficiently effective in reaching the brain, whereas minimizing adverse effects and the endoscopic mucosal grafting technique offers new potential promise.
The nanomaterial toolkit for neuroengineering
NASA Astrophysics Data System (ADS)
Shah, Shreyas
2016-10-01
There is a growing interest in developing effective tools to better probe the central nervous system (CNS), to understand how it works and to treat neural diseases, injuries and cancer. The intrinsic complexity of the CNS has made this a challenging task for decades. Yet, with the extraordinary recent advances in nanotechnology and nanoscience, there is a general consensus on the immense value and potential of nanoscale tools for engineering neural systems. In this review, an overview of specialized nanomaterials which have proven to be the most effective tools in neuroscience is provided. After a brief background on the prominent challenges in the field, a variety of organic and inorganic-based nanomaterials are described, with particular emphasis on the distinctive properties that make them versatile and highly suitable in the context of the CNS. Building on this robust nano-inspired foundation, the rational design and application of nanomaterials can enable the generation of new methodologies to greatly advance the neuroscience frontier.
Erdem, H; Inan, A; Guven, E; Hargreaves, S; Larsen, L; Shehata, G; Pernicova, E; Khan, E; Bastakova, L; Namani, S; Harxhi, A; Roganovic, T; Lakatos, B; Uysal, S; Sipahi, O R; Crisan, A; Miftode, E; Stebel, R; Jegorovic, B; Fehér, Z; Jekkel, C; Pandak, N; Moravveji, A; Yilmaz, H; Khalifa, A; Musabak, U; Yilmaz, S; Jouhar, A; Oztoprak, N; Argemi, X; Baldeyrou, M; Bellaud, G; Moroti, R V; Hasbun, R; Salazar, L; Tekin, R; Canestri, A; Čalkić, L; Praticò, L; Yilmaz-Karadag, F; Santos, L; Pinto, A; Kaptan, F; Bossi, P; Aron, J; Duissenova, A; Shopayeva, G; Utaganov, B; Grgic, S; Ersoz, G; Wu, A K L; Lung, K C; Bruzsa, A; Radic, L B; Kahraman, H; Momen-Heravi, M; Kulzhanova, S; Rigo, F; Konkayeva, M; Smagulova, Z; Tang, T; Chan, P; Ahmetagic, S; Porobic-Jahic, H; Moradi, F; Kaya, S; Cag, Y; Bohr, A; Artuk, C; Celik, I; Amsilli, M; Gul, H C; Cascio, A; Lanzafame, M; Nassar, M
2017-09-01
Risk assessment of central nervous system (CNS) infection patients is of key importance in predicting likely pathogens. However, data are lacking on the epidemiology globally. We performed a multicenter study to understand the burden of community-acquired CNS (CA-CNS) infections between 2012 and 2014. A total of 2583 patients with CA-CNS infections were included from 37 referral centers in 20 countries. Of these, 477 (18.5%) patients survived with sequelae and 227 (8.8%) died, and 1879 (72.7%) patients were discharged with complete cure. The most frequent infecting pathogens in this study were Streptococcus pneumoniae (n = 206, 8%) and Mycobacterium tuberculosis (n = 152, 5.9%). Varicella zoster virus and Listeria were other common pathogens in the elderly. Although staphylococci and Listeria resulted in frequent infections in immunocompromised patients, cryptococci were leading pathogens in human immunodeficiency virus (HIV)-positive individuals. Among the patients with any proven etiology, 96 (8.9%) patients presented with clinical features of a chronic CNS disease. Neurosyphilis, neurobrucellosis, neuroborreliosis, and CNS tuberculosis had a predilection to present chronic courses. Listeria monocytogenes, Staphylococcus aureus, M. tuberculosis, and S. pneumoniae were the most fatal forms, while sequelae were significantly higher for herpes simplex virus type 1 (p < 0.05 for all). Tackling the high burden of CNS infections globally can only be achieved with effective pneumococcal immunization and strategies to eliminate tuberculosis, and more must be done to improve diagnostic capacity.
de Almeida, Sergio M; Rotta, Indianara; Ribeiro, Clea E; Oliveira, Michelli F; Chaillon, Antoine; de Pereira, Ana Paula; Cunha, Ana Paula; Zonta, Marise; Bents, Joao França; Raboni, Sonia M; Smith, Davey; Letendre, Scott; Ellis, Ronald J
2017-06-01
Despite the effective suppression of viremia with antiretroviral therapy, HIV can still replicate in the central nervous system (CNS). This was a longitudinal study of the cerebrospinal fluid (CSF) and serum dynamics of several biomarkers related to inflammation, the blood-brain barrier, neuronal injury, and IgG intrathecal synthesis in serial samples of CSF and serum from a patient infected with HIV-1 subtype C with CNS compartmentalization.The phylogenetic analyses of plasma and CSF samples in an acute phase using next-generation sequencing and F-statistics analysis of C2-V3 haplotypes revealed distinct compartmentalized CSF viruses in paired CSF and peripheral blood mononuclear cell samples. The CSF biomarker analysis in this patient showed that symptomatic CSF escape is accompanied by CNS inflammation, high levels of cell and humoral immune biomarkers, CNS barrier dysfunction, and an increase in neuronal injury biomarkers with demyelization. Independent and isolated HIV replication can occur in the CNS, even in HIV-1 subtype C, leading to compartmentalization and development of quasispecies distinct from the peripheral plasma. These immunological aspects of the HIV CNS escape have not been described previously. To our knowledge, this is the first report of CNS HIV escape and compartmentalization in HIV-1 subtype C.
Zika Virus Selectively Kills Aggressive Human Embryonal CNS Tumor Cells In Vitro and In Vivo.
Kaid, Carolini; Goulart, Ernesto; Caires-Júnior, Luiz C; Araujo, Bruno H S; Soares-Schanoski, Alessandra; Bueno, Heloisa M S; Telles-Silva, Kayque A; Astray, Renato M; Assoni, Amanda F; Júnior, Antônio F R; Ventini, Daniella C; Puglia, Ana L P; Gomes, Roselane P; Zatz, Mayana; Okamoto, Oswaldo K
2018-06-15
Zika virus (ZIKV) is largely known for causing brain abnormalities due to its ability to infect neural progenitor stem cells during early development. Here, we show that ZIKV is also capable of infecting and destroying stem-like cancer cells from aggressive human embryonal tumors of the central nervous system (CNS). When evaluating the oncolytic properties of Brazilian Zika virus strain (ZIKV BR ) against human breast, prostate, colorectal, and embryonal CNS tumor cell lines, we verified a selective infection of CNS tumor cells followed by massive tumor cell death. ZIKV BR was more efficient in destroying embryonal CNS tumorspheres than normal stem cell neurospheres. A single intracerebroventricular injection of ZIKV BR in BALB/c nude mice bearing orthotopic human embryonal CNS tumor xenografts resulted in a significantly longer survival, decreased tumor burden, fewer metastasis, and complete remission in some animals. Tumor cells closely resembling neural stem cells at the molecular level with activated Wnt signaling were more susceptible to the oncolytic effects of ZIKV BR Furthermore, modulation of Wnt signaling pathway significantly affected ZIKV BR -induced tumor cell death and viral shedding. Altogether, these preclinical findings indicate that ZIKV BR could be an efficient agent to treat aggressive forms of embryonal CNS tumors and could provide mechanistic insights regarding its oncolytic effects. Significance: Brazilian Zika virus strain kills aggressive metastatic forms of human CNS tumors and could be a potential oncolytic agent for cancer therapy. Cancer Res; 78(12); 3363-74. ©2018 AACR . ©2018 American Association for Cancer Research.
Mulcahy Levy, Jean M; Hunger, Stephen P
2013-10-01
With the increased survival of pediatric cancer patients the interest in the late effects of treatments is rapidly increasing. Long-term survival rates for children with acute lymphoblastic leukemia (ALL) now approach 90%. Treatment for ALL includes intensified central nervous system (CNS)-directed therapy, which is associated with risks for long-term neurocognitive effects. It is becoming clear that current therapies can have not only a detrimental effect on IQ, processing speed, and memory, but also on structural changes that lead to permanent alterations of the organization of the CNS. Understanding how the CNS is affected by the treatments is a critical step in evaluating current therapies and developing interventions to decrease the incidence and severity of long-term changes in brain anatomy and function.
Mulcahy Levy, Jean M
2013-01-01
With the increased survival of pediatric cancer patients the interest in the late effects of treatments is rapidly increasing. Long-term survival rates for children with acute lymphoblastic leukemia (ALL) now approach 90%. Treatment for ALL includes intensified central nervous system (CNS)-directed therapy, which is associated with risks for long-term neurocognitive effects. It is becoming clear that current therapies can have not only a detrimental effect on IQ, processing speed, and memory, but also on structural changes that lead to permanent alterations of the organization of the CNS. Understanding how the CNS is affected by the treatments is a critical step in evaluating current therapies and developing interventions to decrease the incidence and severity of long-term changes in brain anatomy and function. PMID:26835308
Tatenhorst, Lars; Hahnen, Eric; Heneka, Michael T.
2008-01-01
The peroxisome proliferator-activated receptors (PPARs) are ligand-inducible transcription factors which belong to the superfamily of nuclear hormone receptors. In recent years it turned out that natural as well as synthetic PPAR agonists exhibit profound antineoplastic as well as redifferentiation effects in tumors of the central nervous system (CNS). The molecular understanding of the underlying mechanisms is still emerging, with partially controverse findings reported by a number of studies dealing with the influence of PPARs on treatment of tumor cells in vitro. Remarkably, studies examining the effects of these drugs in vivo are just beginning to emerge. However, the agonists of PPARs, in particular the thiazolidinediones, seem to be promising candidates for new approaches in human CNS tumor therapy. PMID:18725982
Methamphetamine compromises gap junctional communication in astrocytes and neurons.
Castellano, Paul; Nwagbo, Chisom; Martinez, Luis R; Eugenin, Eliseo A
2016-05-01
Methamphetamine (meth) is a central nervous system (CNS) stimulant that results in psychological and physical dependency. The long-term effects of meth within the CNS include neuronal plasticity changes, blood-brain barrier compromise, inflammation, electrical dysfunction, neuronal/glial toxicity, and an increased risk to infectious diseases including HIV. Most of the reported meth effects in the CNS are related to dysregulation of chemical synapses by altering the release and uptake of neurotransmitters, especially dopamine, norepinephrine, and epinephrine. However, little is known about the effects of meth on connexin (Cx) containing channels, such as gap junctions (GJ) and hemichannels (HC). We examined the effects of meth on Cx expression, function, and its role in NeuroAIDS. We found that meth altered Cx expression and localization, decreased GJ communication between neurons and astrocytes, and induced the opening of Cx43/Cx36 HC. Furthermore, we found that these changes in GJ and HC induced by meth treatment were mediated by activation of dopamine receptors, suggesting that dysregulation of dopamine signaling induced by meth is essential for GJ and HC compromise. Meth-induced changes in GJ and HC contributed to amplified CNS toxicity by dysregulating glutamate metabolism and increasing the susceptibility of neurons and astrocytes to bystander apoptosis induced by HIV. Together, our results indicate that connexin containing channels, GJ and HC, are essential in the pathogenesis of meth and increase the sensitivity of the CNS to HIV CNS disease. Methamphetamine (meth) is an extremely addictive central nervous system stimulant. Meth reduced gap junctional (GJ) communication by inducing internalization of connexin-43 (Cx43) in astrocytes and reducing expression of Cx36 in neurons by a mechanism involving activation of dopamine receptors (see cartoon). Meth-induced changes in Cx containing channels increased extracellular levels of glutamate and resulted in higher sensitivity of neurons and astrocytes to apoptosis in response to HIV infection. © 2016 International Society for Neurochemistry.
Felix, Arthur; Leblanc, Thierry; Petit, Arnaud; Nelkem, Brigitte; Bertrand, Yves; Gandemer, Virginie; Sirvent, Anne; Paillard, Catherine; Schmitt, Claudine; Rohrlich, Pierre Simon; Fenneteau, Odile; Ragu, Christine; Michel, Gerard; Auvrignon, Anne; Baruchel, André; Leverger, Guy
2018-01-01
Central nervous system (CNS) involvement at diagnosis of pediatric acute myeloid leukemia (AML) is not considered as an independent prognostic factor. This study describes the prognostic value of pediatric AML with CNS involvement at diagnosis. Pediatric patients were treated for de novo AML in the French multicenter trial ELAM02. Lumbar puncture was carried out in the first week, and the treatment was adapted to the CNS status. No patient received CNS radiotherapy. The patients were classified into 2 groups: CNS+ and CNS-. Of the 438 patients, 16% (n=70) had CNS involvement at diagnosis, and 29% showed clinical signs. The patients with CNS disease were younger (40% were below 2 y old), had a higher white blood cell count (median of 45 vs. 13 G/L), and had M4 and M5 morphologies. The complete remission rate was similar at 92.8% for CNS+ and 88.5% for CNS-. There was no significant difference between the CNS+ and the CNS- group in overall survival (76% and 71%, respectively) and event-free survival (57% and 52%, respectively). Regarding the occurrence of first relapse, the CNS+ group had a higher combined relapse rate of 26.1% compared with 10% for the CNS- group. The results indicate that CNS involvement at diagnosis of pediatric AML is not an independent prognostic factor. Triple intrathecal chemotherapy combined with high-dose intravenous cytarabine should be the first-line treatment for CNS disease.
Bile Acid Signaling Pathways from the Enterohepatic Circulation to the Central Nervous System
Mertens, Kim L.; Kalsbeek, Andries; Soeters, Maarten R.; Eggink, Hannah M.
2017-01-01
Bile acids are best known as detergents involved in the digestion of lipids. In addition, new data in the last decade have shown that bile acids also function as gut hormones capable of influencing metabolic processes via receptors such as FXR (farnesoid X receptor) and TGR5 (Takeda G protein-coupled receptor 5). These effects of bile acids are not restricted to the gastrointestinal tract, but can affect different tissues throughout the organism. It is still unclear whether these effects also involve signaling of bile acids to the central nervous system (CNS). Bile acid signaling to the CNS encompasses both direct and indirect pathways. Bile acids can act directly in the brain via central FXR and TGR5 signaling. In addition, there are two indirect pathways that involve intermediate agents released upon interaction with bile acids receptors in the gut. Activation of intestinal FXR and TGR5 receptors can result in the release of fibroblast growth factor 19 (FGF19) and glucagon-like peptide 1 (GLP-1), both capable of signaling to the CNS. We conclude that when plasma bile acids levels are high all three pathways may contribute in signal transmission to the CNS. However, under normal physiological circumstances, the indirect pathway involving GLP-1 may evoke the most substantial effect in the brain. PMID:29163019
Laboratory models for central nervous system tumor stem cell research.
Khan, Imad Saeed; Ehtesham, Moneeb
2015-01-01
Central nervous system (CNS) tumors are complex organ systems comprising of a neoplastic component with associated vasculature, inflammatory cells, and reactive cellular and extracellular components. Research has identified a subset of cells in CNS tumors that portray defining properties of neural stem cells, namely, that of self-renewal and multi-potency. Growing evidence suggests that these tumor stem cells (TSC) play an important role in the maintenance and growth of the tumor. Furthermore, these cells have also been shown to be refractory to conventional therapy and may be crucial for tumor recurrence and metastasis. Current investigations are focusing on isolating these TSC from CNS tumors to investigate their unique biological processes. This understanding will help identify and develop more effective and comprehensive treatment strategies. This chapter provides an overview of some of the most commonly used laboratory models for CNSTSC research.
Investigation on navigation patterns of inertial/celestial integrated systems
NASA Astrophysics Data System (ADS)
Luo, Dacheng; Liu, Yan; Liu, Zhiguo; Jiao, Wei; Wang, Qiuyan
2014-11-01
It is known that Strapdown Inertial Navigation System (SINS), Global Navigation Satellite System (GNSS) and Celestial Navigation System (CNS) can complement each other's advantages. The SINS/CNS integrated system, which has the characteristics of strong autonomy, high accuracy and good anti-jamming, is widely used in military and civilian applications. Similar to SINS/GNSS integrated system, the SINS/CNS integrated system can also be divided into three kinds according to the difference of integrating depth, i.e., loosely coupled pattern, tightly coupled pattern and deeply coupled pattern. In this paper, the principle and characteristics of each pattern of SINS/CNS system are analyzed. Based on the comparison of these patterns, a novel deeply coupled SINS/CNS integrated navigation scheme is proposed. The innovation of this scheme is that a new star pattern matching method aided by SINS information is put forward. Thus the complementary features of these two subsystems are reflected.
Field emission study of carbon nanostructures
NASA Astrophysics Data System (ADS)
Zhao, Xin
Recently, carbon nanosheets (CNS), a novel nanostructure, were developed in our laboratory as a field emission source for high emission current. To characterize, understand and improve the field emission properties of CNS, a ultra-high vacuum surface analysis system was customized to conduct relevant experimental research in four distinct areas. The system includes Auger electron spectroscopy (AES), field emission energy spectroscopy (FEES), field emission I-V testing, and thermal desorption spectroscopy (TDS). Firstly, commercial Mo single tips were studied to calibrate the customized system. AES and FEES experiments indicate that a pyramidal nanotip of Ca and O elements formed on the Mo tip surface by field induced surface diffusion. Secondly, field emission I-V testing on CNS indicates that the field emission properties of pristine nanosheets are impacted by adsorbates. For instance, in pristine samples, field emission sources can be built up instantaneously and be characterized by prominent noise levels and significant current variations. However, when CNS are processed via conditioning (run at high current), their emission properties are greatly improved and stabilized. Furthermore, only H2 desorbed from the conditioned CNS, which indicates that only H adsorbates affect emission. Thirdly, the TDS study on nanosheets revealed that the predominant locations of H residing in CNS are sp2 hybridized C on surface and bulk. Fourthly, a fabricating process was developed to coat low work function ZrC on nanosheets for field emission enhancement. The carbide triple-peak in the AES spectra indicated that Zr carbide formed, but oxygen was not completely removed. The Zr(CxOy) coating was dispersed as nanobeads on the CNS surface. Although the work function was reduced, the coated CNS emission properties were not improved due to an increased beta factor. Further analysis suggest that for low emission current (<1 uA), the H adsorbates affect emission by altering the work function. In high emission current (>10 uA), thermal, ionic or electronic transition effects may occur, which differently affect the field emission process.
Andersen, Hjalte Holm; Johnsen, Kasper Bendix; Moos, Torben
2014-05-01
Neurodegenerative disorders are characterized by the presence of inflammation in areas with neuronal cell death and a regional increase in iron that exceeds what occurs during normal aging. The inflammatory process accompanying the neuronal degeneration involves glial cells of the central nervous system (CNS) and monocytes of the circulation that migrate into the CNS while transforming into phagocytic macrophages. This review outlines the possible mechanisms responsible for deposition of iron in neurodegenerative disorders with a main emphasis on how iron-containing monocytes may migrate into the CNS, transform into macrophages, and die out subsequently to their phagocytosis of damaged and dying neuronal cells. The dying macrophages may in turn release their iron, which enters the pool of labile iron to catalytically promote formation of free-radical-mediated stress and oxidative damage to adjacent cells, including neurons. Healthy neurons may also chronically acquire iron from the extracellular space as another principle mechanism for oxidative stress-mediated damage. Pharmacological handling of monocyte migration into the CNS combined with chelators that neutralize the effects of extracellular iron occurring due to the release from dying macrophages as well as intraneuronal chelation may denote good possibilities for reducing the deleterious consequences of iron deposition in the CNS.
Morales, Juan F; Montoto, Sebastian Scioli; Fagiolino, Pietro; Ruiz, Maria E
2017-01-01
The Blood-Brain Barrier (BBB) is a physical and biochemical barrier that restricts the entry of certain drugs to the Central Nervous System (CNS), while allowing the passage of others. The ability to predict the permeability of a given molecule through the BBB is a key aspect in CNS drug discovery and development, since neurotherapeutic agents with molecular targets in the CNS should be able to cross the BBB, whereas peripherally acting agents should not, to minimize the risk of CNS adverse effects. In this review we examine and discuss QSAR approaches and current availability of experimental data for the construction of BBB permeability predictive models, focusing on the modeling of the biorelevant parameter unbound partitioning coefficient (Kp,uu). Emphasis is made on two possible strategies to overcome the current limitations of in silico models: considering the prediction of brain penetration as a multifactorial problem, and increasing experimental datasets through accurate and standardized experimental techniques.
Targeting brain metastases in ALK-rearranged non-small-cell lung cancer.
Zhang, Isabella; Zaorsky, Nicholas G; Palmer, Joshua D; Mehra, Ranee; Lu, Bo
2015-10-01
The incidence of brain metastases has increased as a result of improved systemic control and advances in imaging. However, development of novel therapeutics with CNS activity has not advanced at the same rate. Research on molecular markers has revealed many potential targets for antineoplastic agents, and a particularly important aberration is translocation in the ALK gene, identified in non-small-cell lung cancer (NSCLC). ALK inhibitors have shown systemic efficacy against ALK-rearranged NSCLC in many clinical trials, but the effectiveness of crizotinib in CNS disease is limited by poor blood-brain barrier penetration and acquired drug resistance. In this Review, we discuss potential pathways to target ALK-rearranged brain metastases, including next generation ALK inhibitors with greater CNS penetration and mechanisms to overcome resistance. Other important mechanisms to control CNS disease include targeting pathways downstream of ALK phosphorylation, increasing the permeability of the blood-brain barrier, modifying the tumour microenvironment, and adding concurrent radiotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... manner.\\8\\ \\5\\ CNS is an ongoing accounting system that nets today's Settling Trades with yesterday's... to be processed through NSCC's Continuous Net Settlement (``CNS'') system \\5\\ (and for CNS-eligible... 50737
Whole-central nervous system functional imaging in larval Drosophila
Lemon, William C.; Pulver, Stefan R.; Höckendorf, Burkhard; McDole, Katie; Branson, Kristin; Freeman, Jeremy; Keller, Philipp J.
2015-01-01
Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord. PMID:26263051
2012-01-01
Darunavir/ritonavir monotherapy maintains HIV suppression in most patients who have achieved an undetectable viral load on combination antiretroviral treatment, and is increasingly used in the clinic. However, concerns have been raised about the effectiveness of ritonavir-boosted protease inhibitor (PI/r) monotherapy in the prevention of HIV replication in the central nervous system (CNS). Here we report the cases of 2 patients on darunavir/r maintenance monotherapy with cerebrospinal fluid viral breakthrough together with increased immunoactivation and biomarker signs of neuronal injury. These 2 cases raise concerns about the effectiveness of darunavir/ritonavir monotherapy in HIV CNS infection. Thus, we recommend caution with protease inhibitor monotherapy until CNS results have been obtained from clinical studies. PMID:22776013
Gisslén, Magnus; Fuchs, Dietmar; Hagberg, Lars; Svennerholm, Bo; Zetterberg, Henrik
2012-12-01
Darunavir/ritonavir monotherapy maintains HIV suppression in most patients who have achieved an undetectable viral load on combination antiretroviral treatment, and is increasingly used in the clinic. However, concerns have been raised about the effectiveness of ritonavir-boosted protease inhibitor (PI/r) monotherapy in the prevention of HIV replication in the central nervous system (CNS). Here we report the cases of 2 patients on darunavir/r maintenance monotherapy with cerebrospinal fluid viral breakthrough together with increased immunoactivation and biomarker signs of neuronal injury. These 2 cases raise concerns about the effectiveness of darunavir/ritonavir monotherapy in HIV CNS infection. Thus, we recommend caution with protease inhibitor monotherapy until CNS results have been obtained from clinical studies.
Neuroimmune regulation of neurophysiology in the cerebellum.
Gruol, Donna L
2013-06-01
Recent studies have established the existence of an innate immune system in the central nervous system (CNS) and implicated a critical role for this system in both normal and pathological processes. Astrocytes and microglia, normal components of the CNS, are the primary cell types that comprise the innate immune system of the CNS. Basic to their role during normal and adverse conditions is the production of neuroimmune factors such as cytokines and chemokines, which are signaling molecules that initiate or coordinate downstream cellular actions. During adverse conditions, cytokines and chemokines function in defensive and repair. However, if expression of these factors becomes dysregulated, abnormal CNS function can result. Both neurons and glial cells of the CNS express receptors for cytokines and chemokines, but the biological consequence of receptor activation has yet to be fully resolved. Our studies show that neuroadaptive changes are produced in primary cultures of rat cerebellar cells chronically treated with the cytokine interleukin-6 (IL-6) and in the cerebellum of transgenic mice that chronically express elevated levels of IL-6 in the CNS. In the cerebellum in culture and in vivo, the neuroadaptive changes included alterations in the level of expression of proteins involved in gene expression, signal transduction, and synaptic transmission. Associated with these changes were alterations in neuronal function. A comparison of results from the cultured cerebellar cells and cerebellum of the transgenic mice indicated that the effects of IL-6 can vary across neuronal types. However, alterations in mechanisms involved in Ca(2+) homeostasis were observed in all cell types studied. These results indicate that modifications in cerebellar function are likely to occur in disorders associated with elevated levels of IL-6 in the cerebellum.
Hauser, Kurt F; Knapp, Pamela E
2017-01-01
The endogenous opioid system, comprised of multiple opioid neuropeptide and receptor gene families, is highly expressed by developing neural cells and can significantly influence neuronal and glial maturation. In many central nervous system (CNS) regions, the expression of opioid peptides and receptors occurs only transiently during development, effectively disappearing with subsequent maturation only to reemerge under pathologic conditions, such as with inflammation or injury. Opiate drugs with abuse liability act to modify growth and development by mimicking the actions of endogenous opioids. Although typically mediated by μ-opioid receptors, opiate drugs can also act through δ- and κ-opioid receptors to modulate growth in a cell-type, region-specific, and developmentally regulated manner. Opioids act as biological response modifiers and their actions are highly contextual, plastic, modifiable, and influenced by other physiological processes or pathophysiological conditions, such as neuro-acquired immunodeficiency syndrome. To date, most studies have considered the acute effects of opiates on cellular maturation. For example, activating opioid receptors typically results in acute growth inhibition in both neurons and glia. However, with sustained opioid exposure, compensatory factors become operative, a concept that has been largely overlooked during CNS maturation. Accordingly, this article surveys prior studies on the effects of opiates on CNS maturation, and also suggests new directions for future research in this area. Identifying the cellular and molecular mechanisms underlying the adaptive responses to chronic opiate exposure (e.g., tolerance) during maturation is crucial toward understanding the consequences of perinatal opiate exposure on the CNS.
Clinical effects of air pollution on the central nervous system; a review.
Babadjouni, Robin M; Hodis, Drew M; Radwanski, Ryan; Durazo, Ramon; Patel, Arati; Liu, Qinghai; Mack, William J
2017-09-01
The purpose of this review is to describe recent clinical and epidemiological studies examining the adverse effects of urban air pollution on the central nervous system (CNS). Air pollution and particulate matter (PM) are associated with neuroinflammation and reactive oxygen species (ROS). These processes affect multiple CNS pathways. The conceptual framework of this review focuses on adverse effects of air pollution with respect to neurocognition, white matter disease, stroke, and carotid artery disease. Both children and older individuals exposed to air pollution exhibit signs of cognitive dysfunction. However, evidence on middle-aged cohorts is lacking. White matter injury secondary to air pollution exposure is a putative mechanism for neurocognitive decline. Air pollution is associated with exacerbations of neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. Increases in stroke incidences and mortalities are seen in the setting of air pollution exposure and CNS pathology is robust. Large populations living in highly polluted environments are at risk. This review aims to outline current knowledge of air pollution exposure effects on neurological health. Copyright © 2017 Elsevier Ltd. All rights reserved.
Is there a hierarchy of survival reflexes?
Macphail, Kieran
2013-10-01
A hierarchy of survival reflexes for prioritising assessment and treatment in patients with pain of insidious onset is hypothesised. The hierarchy asserts that some systems are more vital than others and that the central nervous system (CNS) prioritises systems based on their significance to survival. The hypothesis suggests that dysfunction in more important systems will cause compensation in less important systems. This paper presents studies examining these effects for each system, arguing that each section of the hierarchy may have effects on other systems within the hierarchy. This concept is untested empirically, highly speculative and substantial research is required to validate the suggested hierarchical prioritisation by the CNS. Nonetheless, the hierarchy does provide a theoretical framework to use to exclude contributing systems in patients with pain of insidious onset. Copyright © 2013 Elsevier Ltd. All rights reserved.
Adults with suspected central nervous system infection: A prospective study of diagnostic accuracy.
Khatib, Ula; van de Beek, Diederik; Lees, John A; Brouwer, Matthijs C
2017-01-01
To study the diagnostic accuracy of clinical and laboratory features in the diagnosis of central nervous system (CNS) infection and bacterial meningitis. We included consecutive adult episodes with suspected CNS infection who underwent cerebrospinal fluid (CSF) examination. The reference standard was the diagnosis classified into five categories: 1) CNS infection; 2) CNS inflammation without infection; 3) other neurological disorder; 4) non-neurological infection; and 5) other systemic disorder. Between 2012 and 2015, 363 episodes of suspected CNS infection were included. CSF examination showed leucocyte count >5/mm 3 in 47% of episodes. Overall, 89 of 363 episodes were categorized as CNS infection (25%; most commonly viral meningitis [7%], bacterial meningitis [7%], and viral encephalitis [4%]), 36 (10%) episodes as CNS inflammatory disorder, 111 (31%) as systemic infection, in 119 (33%) as other neurological disorder, and 8 (2%) as other systemic disorders. Diagnostic accuracy of individual clinical characteristics and blood tests for the diagnosis of CNS infection or bacterial meningitis was low. CSF leucocytosis differentiated best between bacterial meningitis and other diagnoses (area under the curve [AUC] 0.95) or any neurological infection versus other diagnoses (AUC 0.93). Clinical characteristics fail to differentiate between neurological infections and other diagnoses, and CSF analysis is the main contributor to the final diagnosis. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Strategies for drug delivery to the central nervous system by systemic route.
Kasinathan, Narayanan; Jagani, Hitesh V; Alex, Angel Treasa; Volety, Subrahmanyam M; Rao, J Venkata
2015-05-01
Delivery of a drug into the central nervous system (CNS) is considered difficult. Most of the drugs discovered over the past decade are biological, which are high in molecular weight and polar in nature. The delivery of such drugs across the blood-brain barrier presents problems. This review discusses some of the options available to reach the CNS by systemic route. The focus is mainly on the recent developments in systemic delivery of a drug to the CNS. Databases such as Scopus, Google scholar, Science Direct, SciFinder and online journals were referred for preparing this article including 89 references. There are at least nine strategies that could be adopted to achieve the required drug concentration in the CNS. The recent developments in drug delivery are very promising to deliver biologicals into the CNS.
New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.
Sturm, Dominik; Orr, Brent A; Toprak, Umut H; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J; Balasubramanian, Gnanaprakash; Worst, Barbara C; Pajtler, Kristian W; Brabetz, Sebastian; Johann, Pascal D; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M; Remke, Marc; Phillips, Joanna J; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C; Schniederjan, Matthew J; Santi, Mariarita; Buccoliero, Anna M; Dahiya, Sonika; Kramm, Christof M; von Bueren, André O; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S; Taylor, Michael D; Jones, Chris; Jabado, Nada; Karajannis, Matthias A; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M; Ellison, David W; Korshunov, Andrey; Kool, Marcel
2016-02-25
Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors. Copyright © 2016 Elsevier Inc. All rights reserved.
Suppression of MicroRNA let-7a Expression by Agmatine Regulates Neural Stem Cell Differentiation
Song, Juhyun; Oh, Yumi; Kim, Jong Youl; Cho, Kyoung Joo
2016-01-01
Purpose Neural stem cells (NSCs) effectively reverse some severe central nervous system (CNS) disorders, due to their ability to differentiate into neurons. Agmatine, a biogenic amine, has cellular protective effects and contributes to cellular proliferation and differentiation in the CNS. Recent studies have elucidated the function of microRNA let-7a (let-7a) as a regulator of cell differentiation with roles in regulating genes associated with CNS neurogenesis. Materials and Methods This study aimed to investigate whether agmatine modulates the expression of crucial regulators of NSC differentiation including DCX, TLX, c-Myc, and ERK by controlling let-7a expression. Results Our data suggest that high levels of let-7a promoted the expression of TLX and c-Myc, as well as repressed DCX and ERK expression. In addition, agmatine attenuated expression of TLX and increased expression of ERK by negatively regulating let-7a. Conclusion Our study therefore enhances the present understanding of the therapeutic potential of NSCs in CNS disorders. PMID:27593875
Suppression of MicroRNA let-7a Expression by Agmatine Regulates Neural Stem Cell Differentiation.
Song, Juhyun; Oh, Yumi; Kim, Jong Youl; Cho, Kyoung Joo; Lee, Jong Eun
2016-11-01
Neural stem cells (NSCs) effectively reverse some severe central nervous system (CNS) disorders, due to their ability to differentiate into neurons. Agmatine, a biogenic amine, has cellular protective effects and contributes to cellular proliferation and differentiation in the CNS. Recent studies have elucidated the function of microRNA let-7a (let-7a) as a regulator of cell differentiation with roles in regulating genes associated with CNS neurogenesis. This study aimed to investigate whether agmatine modulates the expression of crucial regulators of NSC differentiation including DCX, TLX, c-Myc, and ERK by controlling let-7a expression. Our data suggest that high levels of let-7a promoted the expression of TLX and c-Myc, as well as repressed DCX and ERK expression. In addition, agmatine attenuated expression of TLX and increased expression of ERK by negatively regulating let-7a. Our study therefore enhances the present understanding of the therapeutic potential of NSCs in CNS disorders.
Schmidt, L S; Kamper-Jørgensen, M; Schmiegelow, K; Johansen, C; Lähteenmäki, P; Träger, C; Stokland, T; Grell, K; Gustafson, G; Kogner, P; Sehested, A; Schüz, J
2010-01-01
Background: An infective, mostly viral basis has been found in different human cancers. To test the hypothesis of a possible infectious aetiology for central nervous system (CNS) tumours in children, we investigated the associations with proxy measures of exposure to infectious disease. Methods: In a large case–control study nested in the populations of Denmark, Norway, Sweden, and Finland of 4.4 million children, we studied the association of birth order and seasonal variation of birth with subsequent risk for CNS tumours. We identified 3983 children from the national cancer registries, and information on exposure was obtained from the high-quality national administrative health registries. We investigated the association between childcare attendance during the first 2 years of life and the risk for CNS tumours in a subset of Danish children with CNS tumours, using information from the Danish Childcare database. Results: We observed no association between birth order and risk of CNS tumours overall (odds ratio (OR) for second born or later born vs first born, 1.03; 95% confidence interval (CI), 0.96–1.10) or by histological subgroup, and children with CNS tumours did not show a seasonal variation of birth that was distinct from that of the background population. Childcare attendance compared with homecare showed a slightly increased OR (1.29; 95% CI, 0.90–1.86) for CNS tumours, with the highest risk observed in children attending a crèche. The strongest association was observed for embryonal CNS tumours. We found no effect of age at enrolment or duration of enrolment in childcare. Conclusion: These results do not support the hypothesis that the burden of exposure to infectious disease in early childhood has an important role in the aetiology of paediatric CNS tumours. PMID:20461079
Schmidt, L S; Kamper-Jørgensen, M; Schmiegelow, K; Johansen, C; Lähteenmäki, P; Träger, C; Stokland, T; Grell, K; Gustafson, G; Kogner, P; Sehested, A; Schüz, J
2010-05-25
An infective, mostly viral basis has been found in different human cancers. To test the hypothesis of a possible infectious aetiology for central nervous system (CNS) tumours in children, we investigated the associations with proxy measures of exposure to infectious disease. In a large case-control study nested in the populations of Denmark, Norway, Sweden, and Finland of 4.4 million children, we studied the association of birth order and seasonal variation of birth with subsequent risk for CNS tumours. We identified 3983 children from the national cancer registries, and information on exposure was obtained from the high-quality national administrative health registries. We investigated the association between childcare attendance during the first 2 years of life and the risk for CNS tumours in a subset of Danish children with CNS tumours, using information from the Danish Childcare database. We observed no association between birth order and risk of CNS tumours overall (odds ratio (OR) for second born or later born vs first born, 1.03; 95% confidence interval (CI), 0.96-1.10) or by histological subgroup, and children with CNS tumours did not show a seasonal variation of birth that was distinct from that of the background population. Childcare attendance compared with homecare showed a slightly increased OR (1.29; 95% CI, 0.90-1.86) for CNS tumours, with the highest risk observed in children attending a crèche. The strongest association was observed for embryonal CNS tumours. We found no effect of age at enrolment or duration of enrolment in childcare. These results do not support the hypothesis that the burden of exposure to infectious disease in early childhood has an important role in the aetiology of paediatric CNS tumours.
Zhang, Yan-Yan; Liu, Houfu; Summerfield, Scott G; Luscombe, Christopher N; Sahi, Jasminder
2016-05-02
Estimation of uptake across the blood-brain barrier (BBB) is key to designing central nervous system (CNS) therapeutics. In silico approaches ranging from physicochemical rules to quantitative structure-activity relationship (QSAR) models are utilized to predict potential for CNS penetration of new chemical entities. However, there are still gaps in our knowledge of (1) the relationship between marketed human drug derived CNS-accessible chemical space and preclinical neuropharmacokinetic (neuroPK) data, (2) interpretability of the selected physicochemical descriptors, and (3) correlation of the in vitro human P-glycoprotein (P-gp) efflux ratio (ER) and in vivo rodent unbound brain-to-blood ratio (Kp,uu), as these are assays routinely used to predict clinical CNS exposure, during drug discovery. To close these gaps, we explored the CNS druglike property boundaries of 920 market oral drugs (315 CNS and 605 non-CNS) and 846 compounds (54 CNS drugs and 792 proprietary GlaxoSmithKline compounds) with available rat Kp,uu data. The exact permeability coefficient (Pexact) and P-gp ER were determined for 176 compounds from the rat Kp,uu data set. Receiver operating characteristic curves were performed to evaluate the predictive power of human P-gp ER for rat Kp,uu. Our data demonstrates that simple physicochemical rules (most acidic pKa ≥ 9.5 and TPSA < 100) in combination with P-gp ER < 1.5 provide mechanistic insights for filtering BBB permeable compounds. For comparison, six classification modeling methods were investigated using multiple sets of in silico molecular descriptors. We present a random forest model with excellent predictive power (∼0.75 overall accuracy) using the rat neuroPK data set. We also observed good concordance between the structural interpretation results and physicochemical descriptor importance from the Kp,uu classification QSAR model. In summary, we propose a novel, hybrid in silico/in vitro approach and an in silico screening model for the effective development of chemical series with the potential to achieve optimal CNS exposure.
Dimethyl fumarate modulation of immune and antioxidant responses: application to HIV therapy
Gill, Alexander J.; Kolson, Dennis L.
2013-01-01
The persistence of chronic immune activation and oxidative stress in human immunodeficiency virus (HIV)-infected, antiretroviral drug-treated individuals are major obstacles to fully preventing HIV disease progression. The immune modulator and antioxidant dimethyl fumarate (DMF) is effective in treating immune-mediated diseases and it also has potential applications to limiting HIV disease progression. Among the relevant effects of DMF and its active metabolite monomethyl fumarate (MMF) are induction of a Th1 → Th2 lymphocyte shift, inhibition of pro-inflammatory cytokine signaling, inhibition of NF-κB nuclear translocation, inhibition of dendritic cell maturation, suppression of lymphocyte and endothelial cell adhesion molecule expression, and induction of the Nrf2-dependent antioxidant response element (ARE) and effector genes. Associated with these effects are reduced lymphocyte and monocyte infiltration into psoriatic skin lesions in humans and immune-mediated demyelinating brain lesions in rodents, which confirms potent systemic and central nervous system (CNS) effects. In addition, DMF and MMF limit HIV infection in macrophages in vitro, albeit by unknown mechanisms. Finally, DMF and MMF also suppress neurotoxin production from HIV-infected macrophages, which drives CNS neurodegeneration. Thus, DMF might protect against systemic and CNS complications in HIV infection through its effective suppression of immune activation, oxidative stress, HIV replication, and macrophage-associated neuronal injury. PMID:23971529
Zoethout, Remco W M; de Kam, Marieke L; Dahan, Albert; Cohen, Adam F; van Gerven, Joop M A
2012-11-01
In general, Japanese and Caucasians differ in their response to alcohol. To investigate these differences the alcohol clamping method can be used. This strictly controlled infusion regimen provides a reliable tool to study contrasts in central nervous system (CNS) effects and/or alcohol disposition. In this study, twelve Japanese and twelve Caucasian healthy volunteers received two concentrations of intravenous alcohol or placebo using the alcohol clamp. Infusion rates during the steady state phase were used to compare alcohol clearance between the subgroups. Central nervous system (CNS) effects were frequently measured throughout the clamp. On average, significantly lower amounts of alcohol were needed to maintain similar stable concentrations in the Japanese group. However, these differences disappeared when values were corrected for lean body mass. The most pronounced pharmacodynamic differences between the groups were observed on body sway and on the visual analogue scale for subjective alcohol effects, mainly at the highest dose level. The alcohol clamp seems a useful method to compare differences in alcohol metabolism between groups. Some CNS effects of alcohol differed clearly between Japanese and Caucasians, but others did not, even though alcohol levels were stable and similar between the two groups. Copyright © 2012 Elsevier Inc. All rights reserved.
Appu, Abhilash P; Arun, Peethambaran; Krishnan, Jishnu K S; Moffett, John R; Namboodiri, Aryan M A
2016-02-01
The blood brain barrier (BBB) is critical for maintaining central nervous system (CNS) homeostasis by restricting entry of potentially toxic substances. However, the BBB is a major obstacle in the treatment of neurotoxicity and neurological disorders due to the restrictive nature of the barrier to many medications. Intranasal delivery of active enzymes to the brain has therapeutic potential for the treatment of numerous CNS enzyme deficiency disorders and CNS toxicity caused by chemical threat agents. The aim of this work is to provide a sensitive model system for analyzing the rapid delivery of active enzymes into various regions of the brain with therapeutic bioavailability. We tested intranasal delivery of chloramphenicol acetyltransferase (CAT), a relatively large (75kD) enzyme, in its active form into different regions of the brain. CAT was delivered intranasally to anaesthetized rats and enzyme activity was measured in different regions using a highly specific High Performance Thin Layer Chromatography (HP-TLC)-radiometry coupled assay. Active enzyme reached all examined areas of the brain within 15min (the earliest time point tested). In addition, the yield of enzyme activity in the brain was almost doubled in the brains of rats pre-treated with matrix metalloproteinase-9 (MMP-9). Intranasal administration of active enzymes in conjunction with MMP-9 to the CNS is both rapid and effective. The present results suggest that intranasal enzyme therapy is a promising method for counteracting CNS chemical threat poisoning, as well as for treating CNS enzyme deficiency disorders. Published by Elsevier B.V.
Masud, Tahir; Frost, Morten; Ryg, Jesper; Matzen, Lars; Ibsen, Marlene; Abrahamsen, Bo; Brixen, Kim
2013-01-01
drugs acting on the central nervous system (CNS) increase falls risk. Most data on CNS drugs and falls are in women/mixed-sex populations. This study assessed the relationship between CNS drugs and falls in men aged 60-75 years. a questionnaire was sent to randomly selected Danish men aged 60-75 years. Cross-sectional data on CNS drugs and falls in the previous year were available for 4,696 men. Logistic regression investigated the relationship between falls and CNS drugs. the median age was 66.3 (IQR = 63.1-70.0) years; 21.7% were fallers. The following were associated with fallers (OR; 95% CI): opiates (2.4; 1.5-3.7), other analgesics (1.7; 1.4-2.1), antiepileptics (2.8; 1.5-5.1), antidepressants (2.8; 1.9-4.1) and anxiolytics/hypnotics (1.5; 0.9-2.6). Effects of opiates interacted strongly and significantly with age, with a marked association with falls in the older half of the subjects only. No significant associations were found between antipsychotics and fallers. Selective serotonin reuptake inhibitors and tricyclics were significantly associated with fallers (3.1; 2.0-5.0 and 2.2; 1.0-4.7, respectively). several CNS drug classes are associated with an approximately 2-3-fold increase risk of falls in men aged 60-75 years randomly selected from the population. Further longitudinal data are now required to confirm and further investigate the role of CNS drugs in falls causation in men.
Georgakis, Marios K; Kalogirou, Eleni I; Liaskas, Athanasios; Karalexi, Maria A; Papathoma, Paraskevi; Ladopoulou, Kyriaki; Kantzanou, Maria; Tsivgoulis, Georgios; Petridou, Eleni Th
2017-04-01
The aetiology of primary central nervous system (CNS) tumours remains largely unknown, but their childhood peak points to perinatal parameters as tentative risk factors. In this meta-analysis, we opted to quantitatively synthesise published evidence on the association between birth anthropometrics and risk of primary CNS tumour. Eligible studies were identified via systematic literature review; random-effects meta-analyses were conducted for the effect of birth weight and size-for-gestational-age on childhood and adult primary CNS tumours; subgroup, sensitivity, meta-regression and dose-response by birth weight category analyses were also performed. Forty-one articles, encompassing 53,167 CNS tumour cases, were eligible. Birth weight >4000 g was associated with increased risk of childhood CNS tumour (OR: 1.14, [1.08-1.20]; 22,330 cases). The risk was higher for astrocytoma (OR: 1.22, [1.13-1.31]; 7456 cases) and embryonal tumour (OR: 1.16, [1.04-1.29]; 3574 cases) and non-significant for ependymoma (OR: 1.12, [0.94-1.34]; 1374 cases). Increased odds for a CNS tumour were also noted among large-for-gestational-age children (OR: 1.12, [1.03-1.22]; 10,339 cases), whereas insufficient data for synthesis were identified for other birth anthropometrics. The findings remained robust across subgroup and sensitivity analyses controlling for several sources of bias, whereas no significant heterogeneity or publication bias were documented. The limited available evidence on adults (4 studies) did not reveal significant associations between increasing birth weight (500-g increment) and overall risk CNS tumour (OR: 0.99, [0.98-1.00]; 1091 cases) or glioma (OR: 1.03, [0.98-1.07]; 2052 cases). This meta-analysis confirms a sizeable association of high birth weight, with childhood CNS tumour risk, particularly astrocytoma and embryonal tumour, which seems to be independent of gestational age. Further research is needed to explore underlying mechanisms, especially modifiable determinants of infant macrosomia, such as gestational diabetes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schmidt-Hieber, M.; Silling, G.; Schalk, E.; Heinz, W.; Panse, J.; Penack, O.; Christopeit, M.; Buchheidt, D.; Meyding-Lamadé, U.; Hähnel, S.; Wolf, H. H.; Ruhnke, M.; Schwartz, S.; Maschmeyer, G.
2016-01-01
Infections of the central nervous system (CNS) are infrequently diagnosed in immunocompetent patients, but they do occur in a significant proportion of patients with hematological disorders. In particular, patients undergoing allogeneic hematopoietic stem-cell transplantation carry a high risk for CNS infections of up to 15%. Fungi and Toxoplasma gondii are the predominant causative agents. The diagnosis of CNS infections is based on neuroimaging, cerebrospinal fluid examination and biopsy of suspicious lesions in selected patients. However, identification of CNS infections in immunocompromised patients could represent a major challenge since metabolic disturbances, side-effects of antineoplastic or immunosuppressive drugs and CNS involvement of the underlying hematological disorder may mimic symptoms of a CNS infection. The prognosis of CNS infections is generally poor in these patients, albeit the introduction of novel substances (e.g. voriconazole) has improved the outcome in distinct patient subgroups. This guideline has been developed by the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO) with the contribution of a panel of 14 experts certified in internal medicine, hematology/oncology, infectious diseases, intensive care, neurology and neuroradiology. Grades of recommendation and levels of evidence were categorized by using novel criteria, as recently published by the European Society of Clinical Microbiology and Infectious Diseases. PMID:27052648
Cheng, Yuan; Koh, Leng-Duei; Wang, Fan; Li, Dechang; Ji, Baohua; Yeo, Jingjie; Guan, Guijian; Han, Ming-Yong; Zhang, Yong-Wei
2017-07-06
Hybrid structures of nanomaterials (e.g. tubes, scrolls, threads, cages) and biomaterials (e.g. proteins) hold tremendous potential for applications as drug carriers, biosensors, tissue scaffolds, cancer therapeutic agents, etc. However, in many cases, the interacting forces at the nano-bio interfaces and their roles in controlling the structures and dynamics of nano-bio-hybrid systems are very complicated but poorly understood. In this study, we investigate the structure and mechanical behavior of a protein-based hybrid structure, i.e., a carbon nanoscroll (CNS)-silk crystallite with a hydration level controllable by an interlayer interaction in CNS. Our findings demonstrate that CNS with a reduced core size not only shields the crystallite from a weakening effect of water, but also markedly strengthens the crystallite. Besides water shielding, the enhanced strength arises from an enhanced interaction between the crystallite and CNS due to the enhanced interlayer interaction in CNS. In addition, the interfacial strength for pulling the crystallite out of the CNS-silk structure is found to be dependent on both the interlayer interaction energy in CNS as well as the sequence of protein at the CNS-silk interface. The present study is of significant value in designing drugs or protein delivery vehicles for biomedical applications, and serves as a general guide in designing novel devices based on rolled-up configurations of two-dimensional (2D) materials.
Saganuwan, Saganuwan A
2017-01-01
Central Nervous System (CNS) disorders are on increase perhaps due to genetic, enviromental, social and dietetic factors. Unfortunately, a large number of CNS drugs have adverse effects such as addiction, tolerance, psychological and physical dependence. In view of this, literature search was carried out with a view to identify functional chemical groups that may serve as lead molecules for synthesis of compounds that may have CNS activity. The search revealed that heterocycles that have heteroatoms such as nitrogen (N), sulphur (S) and oxygen (O) form the largest class of organic compounds. They replace carbon in a benzene ring to form pyridine. Compounds with furan, thiophene, pyrrole, pyridine, azole, imidazole, indole, purine, pyrimidine, esters, carboxylic acid, aldehyde, pyrylium, pyrone, pyrodine, barbituric acid, barbiturate, quinoline, quinolone, isoquinolone, coumarin, alkylpyridine, picoline, piperidine, diazine, carboxamide, flavonoid glycoside, oxindole, aminophenol, benzimidazole, benzoxazole, benzothiazole, and chromone chemical groups among others may have CNS effects ranging from depression passing through euphoria to convulsion. Examples of the compounds with the functional groups include but not limited to coal tar, pyridostigmine, pralidoxime, quinine, mefloquine, pyrilamine, pyronaridine, ciprofloxacin and piroxicam. A number of them can undergo keto-enol tautomerism. Chiral amines may be used for derivation of chiral carboxylic acids which are components of tautomers. Some tautomers may cause parkinsonism and Stevens Johnson syndrome. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Goss, G; Tsai, C-M; Shepherd, F A; Ahn, M-J; Bazhenova, L; Crinò, L; de Marinis, F; Felip, E; Morabito, A; Hodge, R; Cantarini, M; Johnson, M; Mitsudomi, T; Jänne, P A; Yang, J C-H
2018-03-01
Central nervous system (CNS) metastases are common in patients with non-small-cell lung cancer (NSCLC). Osimertinib has shown systemic efficacy in patients with CNS metastases, and early clinical evidence shows efficacy in the CNS. To evaluate osimertinib activity further, we present a pre-specified subgroup analysis of CNS response using pooled data from two phase II studies: AURA extension (NCT01802632) and AURA2 (NCT02094261). Patients with T790M-positive advanced NSCLC, who had progressed following prior epidermal growth factor receptor-tyrosine kinase inhibitor treatment, received osimertinib 80 mg od (n = 411). Patients with stable, asymptomatic CNS metastases were eligible for enrolment; prior CNS treatment was allowed. Patients with ≥1 measurable CNS lesion (per RECIST 1.1) on baseline brain scan by blinded independent central neuroradiology review (BICR) were included in the evaluable for CNS response set (cEFR). The primary outcome for this CNS analysis was CNS objective response rate (ORR) by BICR; secondary outcomes included CNS duration of response, disease control rate (DCR) and progression-free survival (PFS). Of 128 patients with CNS metastases on baseline brain scans, 50 were included in the cEFR. Confirmed CNS ORR and DCR were 54% [27/50; 95% confidence interval (CI) 39-68] and 92% (46/50; 95% CI 81-98), respectively. CNS response was observed regardless of prior radiotherapy to the brain. Median CNS duration of response (22% maturity) was not reached (range, 1-15 months); at 9 months, 75% (95% CI 53-88) of patients were estimated to remain in response. Median follow-up for CNS PFS was 11 months; median CNS PFS was not reached (95% CI, 7, not calculable). The safety profile observed in the cEFR was consistent with the overall patient population. Osimertinib demonstrated clinically meaningful efficacy against CNS metastases, with a high DCR, encouraging ORR, and safety profile consistent with that reported previously. NCT01802632; NCT02094261.
Saccadic eye movements analysis as a measure of drug effect on central nervous system function.
Tedeschi, G; Quattrone, A; Bonavita, V
1986-04-01
Peak velocity (PSV) and duration (SD) of horizontal saccadic eye movements are demonstrably under the control of specific brain stem structures. Experimental and clinical evidence suggest the existence of an immediate premotor system for saccade generation located in the paramedian pontine reticular formation (PPRF). Effects on saccadic eye movements have been studied in normal volunteers with barbiturates, benzodiazepines, amphetamine and ethanol. On two occasions computer analysis of PSV, SD, saccade reaction time (SRT) and saccade accuracy (SA) was carried out in comparison with more traditional methods of assessment of human psychomotor performance like choice reaction time (CRT) and critical flicker fusion threshold (CFFT). The computer system proved to be a highly sensitive and objective method for measuring drug effect on central nervous system (CNS) function. It allows almost continuous sampling of data and appears to be particularly suitable for studying rapidly changing drug effects on the CNS.
Lounder, Dana T; Khandelwal, Pooja; Chandra, Sharat; Jordan, Michael B; Kumar, Ashish R; Grimley, Michael S; Davies, Stella M; Bleesing, Jack J; Marsh, Rebecca A
2017-05-01
Hemophagocytic lymphohistiocytosis (HLH) is an immune regulatory disorder that commonly presents with central nervous system (CNS) involvement. The only cure for genetic HLH is hematopoietic stem cell transplantation (HSCT), typically treated with reduced-intensity conditioning (RIC) regimens. We sought to estimate the incidence of CNS relapse after RIC HSCT, determine risk factors, and evaluate outcomes. We performed a retrospective chart review of 94 consecutive children and young adults with primary HLH who received RIC HSCT. CNS relapse within 1 year after transplantation was diagnosed by review of clinical symptoms, cerebral spinal fluid (CSF), and radiologic findings. Four (4.25%) patients developed symptoms of possible CNS HLH after HSCT and 3 patients were diagnosed. Eight patients underwent screening lumbar puncture because of history of active CNS disease at the onset of the conditioning regimen and 4 had evidence of continued disease. The overall incidence of CNS relapse and continued CNS disease after RIC HSCT was 8%. All patients with CNS disease after HSCT responded to CNS-directed therapy. Whole blood donor chimerism at the time of CNS relapse was low at 1% to 34%, but it remained high at 88% to 100% for patients with continued CNS disease. Overall survival for patients with CNS relapse was 50%, compared with 75% for patients without CNS disease (P = .079). Our data suggest that a low level of donor chimerism or active CNS disease at the time of transplantation increase the risk of CNS HLH after HSCT. Surveillance CSF evaluation after allogeneic RIC HSCT should be considered in patients with risk factors and CNS-directed treatment should be initiated if appropriate. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Hypothalamic-Pituitary-Thyroid Axis Perturbations in Male Mice by CNS-Penetrating Thyromimetics.
Ferrara, Skylar J; Bourdette, Dennis; Scanlan, Thomas S
2018-07-01
Thyromimetics represent a class of experimental drugs that can stimulate tissue-selective thyroid hormone action. As such, thyromimetics should have effects on the hypothalamic-pituitary-thyroid (HPT) axis, but details of this action and the subsequent effects on systemic thyroid hormone levels have not been reported to date. Here, we compare the HPT-axis effects of sobetirome, a well-studied thyromimetic, with Sob-AM2, a newly developed prodrug of sobetirome that targets sobetirome distribution to the central nervous system (CNS). Similar to endogenous thyroid hormone, administration of sobetirome and Sob-AM2 suppress HPT-axis gene transcript levels in a manner that correlates to their specific tissue distribution properties (periphery vs CNS, respectively). Dosing male C57BL/6 mice with sobetirome and Sob-AM2 at concentrations ≥10 μg/kg/d for 29 days induces a state similar to central hypothyroidism characterized by depleted circulating T4 and T3 and normal TSH levels. However, despite the systemic T4 and T3 depletion, the sobetirome- and Sob-AM2-treated mice do not show signs of hypothyroidism, which may result from the presence of the thyromimetic in the thyroid hormone-depleted background.
The physiological functions of central nervous system pericytes and a potential role in pain
Beazley-Long, Nicholas; Durrant, Alexandra M; Swift, Matthew N; Donaldson, Lucy F
2018-01-01
Central nervous system (CNS) pericytes regulate critical functions of the neurovascular unit in health and disease. CNS pericytes are an attractive pharmacological target for their position within the neurovasculature and for their role in neuroinflammation. Whether the function of CNS pericytes also affects pain states and nociceptive mechanisms is currently not understood. Could it be that pericytes hold the key to pain associated with CNS blood vessel dysfunction? This article reviews recent findings on the important physiological functions of CNS pericytes and highlights how these neurovascular functions could be linked to pain states. PMID:29623199
Chen, Yuan; Ding, Yun; Zhang, Zuming; Wang, Wen; Chen, Jun-Yuan; Ueno, Naoto; Mao, Bingyu
2011-12-20
The evolution of the central nervous system (CNS) is one of the most striking changes during the transition from invertebrates to vertebrates. As a major source of genetic novelties, gene duplication might play an important role in the functional innovation of vertebrate CNS. In this study, we focused on a group of CNS-biased genes that duplicated during early vertebrate evolution. We investigated the tempo-spatial expression patterns of 33 duplicate gene families and their orthologs during the embryonic development of the vertebrate Xenopus laevis and the cephalochordate Brachiostoma belcheri. Almost all the identified duplicate genes are differentially expressed in the CNS in Xenopus embryos, and more than 50% and 30% duplicate genes are expressed in the telencephalon and mid-hindbrain boundary, respectively, which are mostly considered as two innovations in the vertebrate CNS. Interestingly, more than 50% of the amphioxus orthologs do not show apparent expression in the CNS in amphioxus embryos as detected by in situ hybridization, indicating that some of the vertebrate CNS-biased duplicate genes might arise from non-CNS genes in invertebrates. Our data accentuate the functional contribution of gene duplication in the CNS evolution of vertebrate and uncover an invertebrate non-CNS history for some vertebrate CNS-biased duplicate genes. Copyright © 2011. Published by Elsevier Ltd.
Ye, Ping; Kenyon, Christopher J; MacKenzie, Scott M; Nichol, Katherine; Seckl, Jonathan R; Fraser, Robert; Connell, John M C; Davies, Eleanor
2008-01-01
Using a highly sensitive quantitative RT-PCR method for the measurement of CYP11B1 (11β-hydroxylase) and CYP11B2 (aldosterone synthase) mRNAs, we previously demonstrated that CYP11B2 expression in the central nervous system (CNS) is subject to regulation by dietary sodium. We have now quantified the expression of these genes in the CNS of male Wistar Kyoto (WKY) rats in response to systemic ACTH infusion, dexamethasone infusion, and to adrenalectomy. CYP11B1 and CYP11B2 mRNA levels were measured in total RNA isolated from the adrenal gland and discrete brain regions using real-time quantitative RT-PCR. ACTH infusion (40 ng/day for 7 days, N=8) significantly increased CYP11B1 mRNA in the adrenal gland, hypothalamus, and cerebral cortex compared with animals infused with vehicle only. ACTH infusion decreased adrenal CYP11B2 expression but increased expression in all of the CNS regions except the cortex. Dexamethasone (10 μg/day for 7 days, N=8) reduced adrenal CYP11B1 mRNA compared with control animals but had no significant effect on either gene's expression in the CNS. Adrenalectomy (N=6 per group) significantly increased CYP11B1 expression in the hippocampus and hypothalamus and raised CYP11B2 expression in the cerebellum relative to sham-operated animals. This study confirms the transcription of CYP11B1 and CYP11B2 throughout the CNS and demonstrates that gene transcription is subject to differential regulation by ACTH and circulating corticosteroid levels. PMID:18252953
Central nervous system event in patients with diffuse large B-cell lymphoma in the rituximab era.
Tomita, Naoto; Yokoyama, Masahiro; Yamamoto, Wataru; Watanabe, Reina; Shimazu, Yutaka; Masaki, Yasufumi; Tsunoda, Saburo; Hashimoto, Chizuko; Murayama, Kayoko; Yano, Takahiro; Okamoto, Rumiko; Kikuchi, Ako; Tamura, Kazuo; Sato, Kazuya; Sunami, Kazutaka; Shibayama, Hirohiko; Takimoto, Rishu; Ohshima, Rika; Hatta, Yoshihiro; Moriuchi, Yukiyoshi; Kinoshita, Tomohiro; Yamamoto, Masahide; Numata, Ayumi; Ishigatsubo, Yoshiaki; Takeuchi, Kengo
2012-02-01
Central nervous system (CNS) events, including CNS relapse and progression to CNS, are known to be serious complications in the clinical course of patients with lymphoma. This study aimed to evaluate the risk of CNS events in patients with diffuse large B-cell lymphoma in the rituximab era. We performed a retrospective survey of Japanese patients diagnosed with diffuse large B-cell lymphoma who underwent primary therapy with R-CHOP chemoimmunotherapy between September 2003 and December 2006. Patients who had received any prophylactic CNS treatment were excluded. Clinical data from 1221 patients were collected from 47 institutions. The median age of patients was 64 years (range, 15-91 years). We noted 82 CNS events (6.7%) and the cumulative 5-year probability of CNS events was 8.4%. Patients with a CNS event demonstrated significantly worse overall survival (P < 0.001). The 2-year overall survival rate after a CNS event was 27.1%. In a multivariate analysis, involvement of breast (relative risk [RR] 10.5), adrenal gland (RR 4.6) and bone (RR 2.0) were identified as independent risk factors for CNS events. We conclude that patients with these risk factors, in addition to patients with testicular involvement in whom CNS prophylaxis has been already justified, are at high risk for CNS events in the rituximab era. The efficacy and manner of CNS prophylaxis in patients for each involvement site should be evaluated further. © 2011 Japanese Cancer Association.
Cho, Suengmok; Han, Daeseok; Kim, Seon-Bong; Yoon, Minseok; Yang, Hyejin; Jin, Young-Ho; Jo, Jinho; Yong, Hyeim; Lee, Sang-Hoon; Jeon, You-Jin; Shimizu, Makoto
2012-01-01
Marine plants have been reported to possess various pharmacological properties; however, there have been few reports on their neuropharmacological effects. Terrestrial plants have depressive effects on the central nervous system (CNS) because of their polyphenols which make them effective as anticonvulsants and sleep inducers. We investigated in this study the depressive effects of the polyphenol-rich brown seaweed, Ecklonia cava (EC), on CNS. An EC enzymatic extract (ECEE) showed significant anticonvulsive (>500 mg/kg) and sleep-inducing (>500 mg/kg) effects on the respective mice seizure induced by picrotoxin and on the mice sleep induced by pentobarbital. The phlorotannin-rich fraction (PTRF) from ECEE significantly potentiated the pentobarbital-induced sleep at >50 mg/kg. PTRF had binding activity to the gamma aminobutyric acid type A (GABA(A))-benzodiazepine (BZD) receptors. The sleep-inducing effects of diazepam (DZP, a well-known GABA(A)-BZD agonist), ECEE, and PTRF were completely blocked by flumazenil, a well-known antagonist of GABA(A)-BZD receptors. These results imply that ECEE produced depressive effects on CNS by positive allosteric modulation of its phlorotannins on GABA(A)-BZD receptors like DZP. Our study proposes EC as a candidate for the effective treatment of neuropsychiatric disorders such as anxiety and insomnia.
Virag, I; Kende, G; Agahai, E; Ramot, B
1976-11-01
The results of treatment in a group of 50 children with acute lymphatic leukemia are summarized. A comparison was made between those who received prophylactic central nervous systen (CNS) therapy on attaining complete remission and those who did not. Although none of the prophylactically treated children developed CNS leukemia, the expected prolongation of median complete remission time was not achieved. It was found that there was a high percentage of poor-risk patients in the CNS-treated group, and these patients relapsed early in the course of the disease. The prevention of CNS leukemia, a late complication of the disease, did not change the natural course of the disease in poor-risk patients. A need exists for new treatment protocols aimed at better control of the disease in these poor-risk cases.
Pothier, J; Cheav, S L; Galand, N; Dormeau, C; Viel, C
1998-08-01
Lupin is toxic because of its alkaloid content, sparteine and lupanine in particular. Although the pharmacological properties of sparteine are well known those of lupanine have not been much studied. This paper reports procedures for extraction, purification and crystallization of lupanine, and methods for the preparation of an extract for injection of Lupinus mutabilis Sweet, and for the determination of the acute toxicity and maximum non-lethal dose (DL0) of lupanine, sparteine and lupin extract in the mouse. The three substances were tested on the central nervous system (CNS) for locomotor activity, for interaction with specific drugs used for treatment of the CNS (the stimulant drugs amphetamine and pentetrazol and the depressant drugs pentobarbital and chlorpromazine) and for analgesic activity. The results indicate that lupanine and lupin extract are less toxic than sparteine and that at the doses studied the three products have a weak sedative effect on the CNS.
Aldoss, Ibrahim; Al Malki, Monzr M; Stiller, Tracey; Cao, Thai; Sanchez, James F; Palmer, Joycelynne; Forman, Stephen J; Pullarkat, Vinod
2016-03-01
Acute lymphoblastic leukemia (ALL) with a history of central nervous system (CNS) involvement, either at diagnosis or relapse, poses challenges when the decision is made to proceed with allogeneic hematopoietic cell transplantation (alloHCT), as there is no evidence-based consensus on the best peri-transplantation approach to reduce subsequent CNS relapse risk. Here, we retrospectively analyzed outcomes of 87 patients with ALL and a history of CNS involvement who later underwent alloHCT. Patients with pretransplantation CNS involvement had higher risk of CNS relapse after transplantation (2-year CNS relapse: 9.6% versus 1.4%, P < .0001), inferior event-free survival (EFS) (hazard ratio [HR], 1.52; P = .003), and worse overall survival (OS) (HR, 1.55; P = .003) compared with patients without pretransplantation CNS involvement (n = 543). There was no difference in post-transplantation CNS relapse, EFS, or OS among patients presenting with CNS involvement at diagnosis, those with isolated CNS relapse, and those with combined bone marrow and CNS relapse before HCT. Interestingly, neither pretransplantation cranial irradiation, use of total body irradiation-based conditioning, nor post-transplantation prophylactic intrathecal chemotherapy were associated with a reduction of CNS relapse risk after transplantation. Thus, among the patients in the cohort studied, there was no clear benefit of CNS-directed therapy in the peri-transplantation period among patients who had prior CNS involvement and underwent subsequent alloHCT. Copyright © 2016 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Biocompatability of carbon nanotubes with stem cells to treat CNS injuries.
Bokara, Kiran Kumar; Kim, Jong Youl; Lee, Young Il; Yun, Kyungeun; Webster, Tom J; Lee, Jong Eun
2013-06-01
Cases reporting traumatic injuries to the brain and spinal cord are extended range of disorders that affect a large percentage of the world's population. But, there are only few effective treatments available for central nervous system (CNS) injuries because the CNS is refractory to axonal regeneration and relatively inaccessible to many pharmacological treatments. The use of stem cell therapy in regenerative medicine has been extensively examined to replace lost cells during CNS injuries. But, given the complexity of CNS injuries oxidative stress, toxic byproducts, which prevails in the microenvironment during the diseased condition, may limit the survival of the transplanted stem cells affecting tissue regeneration and even longevity. Carbon nanotubes (CNT) are a new class of nanomaterials, which have been shown to be promising in different areas of nanomedicine for the prevention, diagnosis and therapy of certain diseases, including CNS diseases. In particular, the use of CNTs as substrates/scaffolds for supporting the stem cell differentiation has been an area of active research. Single-walled and multi-walled CNT's have been increasingly used as scaffolds for neuronal growth and more recently for neural stem cell growth and differentiation. This review summarizes recent research on the application of CNT-based materials to direct the differentiation of progenitor and stem cells toward specific neurons and to enhance axon regeneration and synaptogenesis for the effective treatment of CNS injuries. Nonetheless, accumulating data support the use of CNTs as a biocompatible and permissive substrate/scaffold for neural cells and such application holds great potential in neurological research.
Biocompatability of carbon nanotubes with stem cells to treat CNS injuries
Bokara, Kiran Kumar; Kim, Jong Youl; Lee, Young Il; Yun, Kyungeun; Webster, Tom J
2013-01-01
Cases reporting traumatic injuries to the brain and spinal cord are extended range of disorders that affect a large percentage of the world's population. But, there are only few effective treatments available for central nervous system (CNS) injuries because the CNS is refractory to axonal regeneration and relatively inaccessible to many pharmacological treatments. The use of stem cell therapy in regenerative medicine has been extensively examined to replace lost cells during CNS injuries. But, given the complexity of CNS injuries oxidative stress, toxic byproducts, which prevails in the microenvironment during the diseased condition, may limit the survival of the transplanted stem cells affecting tissue regeneration and even longevity. Carbon nanotubes (CNT) are a new class of nanomaterials, which have been shown to be promising in different areas of nanomedicine for the prevention, diagnosis and therapy of certain diseases, including CNS diseases. In particular, the use of CNTs as substrates/scaffolds for supporting the stem cell differentiation has been an area of active research. Single-walled and multi-walled CNT's have been increasingly used as scaffolds for neuronal growth and more recently for neural stem cell growth and differentiation. This review summarizes recent research on the application of CNT-based materials to direct the differentiation of progenitor and stem cells toward specific neurons and to enhance axon regeneration and synaptogenesis for the effective treatment of CNS injuries. Nonetheless, accumulating data support the use of CNTs as a biocompatible and permissive substrate/scaffold for neural cells and such application holds great potential in neurological research. PMID:23869255
Sjögren's syndrome. Cutaneous, immunologic, and nervous system manifestations.
Provost, T T; Vasily, D; Alexander, E
1987-08-01
The studies recounted in this review have demonstrated that cutaneous vasculitis is a frequent extraglandular manifestation of primary Sjögren's syndrome. Two histopathologic types of vasculitis have been detected. One type, a leukocytoclastic angiitis, is found in association with high-titer anti-Ro(SS-A) antibodies, rheumatoid factor, hypergammaglobulinemia, and hypocomplementemia. The second type, a mononuclear inflammatory vasculopathy, in sharp contrast, is found in association with low-titer Ro(SS-A) antibodies, normocomplementemia, and absence of hypergammaglobulinemia and rheumatoid factor. Both types of vasculitis are found in association with peripheral nervous system and CNS disease. The peripheral nervous system and CNS disease involves the entire neuroaxis and preliminary data indicate that a vasculopathy is the cause of the peripheral nervous system and CNS disease. Evoked sensory response testing, CSF analysis, and MRI have proved to be very valuable techniques in investigating these patients with Sjögren's syndrome. Preliminary data suggest that high doses of prednisone or immunosuppressive agents are effective in treating these patients.
A Review on Central Nervous System Effects of Gastrodin
Liu, Yuan; Gao, Jialiang; Peng, Min; Meng, Hongyan; Ma, Hongbo; Cai, Pingping; Xu, Yuan; Zhao, Qiong; Si, Guomin
2018-01-01
Rhizoma Gastrodiae (also known as Tian ma), the dried rhizome of Gastrodia elata Blume, is a famous Chinese herb that has been traditionally used for the treatment of headache, dizziness, spasm, epilepsy, stoke, amnesia and other disorders for centuries. Gastrodin, a phenolic glycoside, is the main bioactive constituent of Rhizoma Gastrodiae. Since identified in 1978, gastrodin has been extensively investigated on its pharmacological properties. In this article, we reviewed the central nervous system (CNS) effects of gastrodin in preclinical models of CNS disorders including epilepsy, Alzheimer's disease, Parkinson's disease, affective disorders, cerebral ischemia/reperfusion, cognitive impairment as well as the underlying mechanisms involved and, where possible, clinical data that support the pharmacological activities. The sources and pharmacokinetics of gastrodin were also reviewed here. As a result, gastrodin possesses a broad range of beneficial effects on the above-mentioned CNS diseases, and the mechanisms of actions include modulating neurotransmitters, antioxidative, anti-inflammatory, suppressing microglial activation, regulating mitochondrial cascades, up-regulating neurotrophins, etc. However, more detailed clinical trials are still in need for positioning it in the treatment of neurological disorders. PMID:29456504
Pallesen, Jakob S; Tran, Kim T; Bach, Anders
2018-05-29
The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) has a protective effect against oxidative stress and plays a major role in inflammation and central nervous system (CNS) diseases. Inhibition of the protein-protein interaction (PPI) between Nrf2 and its repressor protein, Kelch-like ECH-associated protein 1 (Keap1), leads to translocation of Nrf2 from the cytosol to the nucleus and expression of detoxifying antioxidant enzymes. To date, several non-covalent small-molecule Keap1-Nrf2 inhibitors have been identified; however, many of them contain carboxylic acids and are rather large in size, which likely prevents or decreases CNS permeability. This Perspective describes current small-molecule Keap1-Nrf2 inhibitors with experimental evidence for the ability to inhibit the Keap1-Nrf2 interaction by binding to Keap1 in a non-covalent manner. Binding data, biostructural studies, and biological activity are summarized for the inhibitors, and their potential as CNS tool compounds is discussed by analyzing physicochemical properties, including CNS multiparameter optimization (MPO) scoring algorithms. Finally, several strategies for identifying CNS-targeting Keap1 inhibitors are described.
Du, Sienmi; Itoh, Noriko; Askarinam, Sahar; Hill, Haley; Arnold, Arthur P.; Voskuhl, Rhonda R.
2014-01-01
Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease. PMID:24550311
Du, Sienmi; Itoh, Noriko; Askarinam, Sahar; Hill, Haley; Arnold, Arthur P; Voskuhl, Rhonda R
2014-02-18
Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease.
Williams, Hayley; Jones, Stephen; Wood, Kelly; Scott, Robert A H; Eddleston, Michael; Thomas, Simon H L; Thompson, John Paul; Vale, J Allister
2014-02-01
CONTEXT. Data on the ophthalmic and central nervous system (CNS) adverse effects of liquid detergent capsules (liquid laundry pods) are limited. OBJECTIVE. To ascertain the reported toxicity of liquid detergent capsules, particularly their ophthalmic and CNS adverse effects, in a large case series. METHODS. Between 1 May 2009 and 30 July 2012 the UK National Poisons Information Service collected prospectively 1509 telephone enquiries (involving 1486 exposures) relating to liquid detergent capsules. RESULTS. The majority of patients (95.6%) were children aged less than 5. Exposure to these products occurred mainly as a result of ingestion alone (n = 1215; 81.8%), with eye contact alone (n = 110; 7.4%), and skin contact alone (n = 20; 1.3%) being less common; multiple routes of exposure were involved in 141 (9.5%) cases. Following ocular exposure (n = 212), features suggesting conjunctivitis (n = 145; 68.4%) and corneal ulceration (n = 6; 2.8%) developed. The most common features reported following ingestion alone were nausea and vomiting (n = 721; 59.3%), followed by coughing (n = 53; 4.4%), drowsiness/CNS depression (n = 49; 42 of these were children were aged 2 years or less) and foaming at the mouth (n = 47; 3.9%). A rash occurred in 22 patients where ingestion was considered to be the route of exposure. Twenty patients were exposed via the dermal route alone and developed erythema (n = 9), rash (n = 6) and burn (n = 3). CONCLUSIONS. Ocular exposure to liquid detergent capsules may lead to conjunctivitis and corneal ulceration; detergent ingestion may result in central nervous system (CNS)depression. Greater consumer awareness is required to reduce injury from liquid detergent capsules, particularly that involving the eye.
Yilmaz, Aylin; Verhofstede, Chris; D'Avolio, Antonio; Watson, Victoria; Hagberg, Lars; Fuchs, Dietmar; Svennerholm, Bo; Gisslén, Magnus
2010-12-15
Antiretroviral treatment (ART) significantly reduces cerebrospinal fluid (CSF) HIV-1 RNA levels and residual viremia is less frequently found in CSF than in blood. However, persistent intrathecal immunoactivation is common, even after several years of ART. To investigate whether low-level CSF viremia and residual immunoactivation within the central nervous system (CNS) derive from ongoing local viral replication, we conducted a study of treatment intensification in patients on effective ART. Ten patients on ART with plasma HIV RNA <50 copies per milliliter for >18 months were included. Intensification was given for in total 8 weeks: 4 weeks with maraviroc or lopinavir/ritonavir (good CNS penetration), and 4 weeks with enfuvirtide (poor CNS penetration). Lumbar punctures were performed 4 weeks before, at intensification commencement, at switchover after 4 weeks, at the conclusion of, and 4 weeks after the intensification period. No significant changes in HIV RNA, neopterin, β2-microglobulin, immunoglobulin G index, albumin ratio, and CD4(+) T-cell count were observed, either in CSF or blood, neither before, during, nor after the intensification periods. ART intensification did not reduce residual CSF HIV RNA levels or intrathecal immunoactivation in patients on ART. These findings do not support an ongoing viral replication in CNS.
Central Nervous System Medication Burden and Serious Falls in Older Nursing Home Residents
Hanlon, Joseph T.; Zhao, Xinhua; Naples, Jennifer G.; Aspinall, Sherrie L.; Perera, Subashan; Nace, David A.; Castle, Nicholas G.; Greenspan, Susan L.; Thorpe, Carolyn T.
2016-01-01
Objectives To examine the association between CNS medication burden and serious falls in those with a recent fall history. Design Nested-case control study; cases matched to four controls by age, gender, and date. Setting US nursing homes Participants 5,556 residents age ≥ 65 with a recent fall history admitted to a nursing home between 1/1–9/30/2010 and followed until discharge, death, or 12/31/2010. Measurements Outcome was serious falls as per Medicare Part A and B ICD/CPT codes. CNS burden, from Medicare Part D data, was calculated by dividing the daily dose of each CNS agent (i.e., specific antidepressants, antiepileptic, antipsychotic, benzodiazepine and opioid receptor agonists) received during the six days prior to the index (outcome) date by the minimum effective geriatric daily dose and summing the results across medications. Results There were 367 cases and 1468 matched controls. Those taking 3+ CNS standardized daily doses were more likely to have a serious fall than those not taking any CNS medications (Adjusted Odds Ratio 1.83; 95% confidence interval 1.35–2.48). There was no significant difference in fall risk for residents taking >0 to <3 CNS standardized daily doses compared to residents taking no CNS medications (Adjusted Odds Ratio 0.85; 95% CI 0.63–1.15). Conclusion CNS medication burden, approximately 3+ standardized daily doses, was associated with an increased risk of serious falls in nursing home residents with recent fall. Clinicians should be vigilant for opportunities to discontinue or decrease the doses of individual CNS medications and/or consider non-pharmacological alternatives. Such interventions that reduce use of CNS medications in nursing homes could reduce fall rates but further research is needed to confirm this. PMID:28152179
The effects of ozone exposure and associated injury mechanisms on the central nervous system.
Martínez-Lazcano, Juan Carlos; González-Guevara, Edith; del Carmen Rubio, María; Franco-Pérez, Javier; Custodio, Verónica; Hernández-Cerón, Miguel; Livera, Carlos; Paz, Carlos
2013-01-01
Ozone (O3) is a component of photochemical smog, which is a major air pollutant and demonstrates properties that are harmful to health because of the toxic properties that are inherent to its powerful oxidizing capabilities. Environmental O3 exposure is associated with many symptoms related to respiratory disorders, which include loss of lung function, exacerbation of asthma, airway damage, and lung inflammation. The effects of O3 are not restricted to the respiratory system or function - adverse effects within the central nervous system (CNS) such as decreased cognitive response, decrease in motor activity, headaches, disturbances in the sleep-wake cycle, neuronal dysfunctions, cell degeneration, and neurochemical alterations have also been described; furthermore, it has also been proposed that O3 could have epigenetic effects. O3 exposure induces the reactive chemical species in the lungs, but the short half-life of these chemical species has led some authors to attribute the injurious mechanisms observed within the lungs to inflammatory processes. However, the damage to the CNS induced by O3 exposure is not well understood. In this review, the basic mechanisms of inflammation and activation of the immune system by O3 exposure are described and the potential mechanisms of damage, which include neuroinflammation and oxidative stress, and the signs and symptoms of disturbances within the CNS caused by environmental O3 exposure are discussed.
Strauser, David; Wagner, Stacia; Wong, Alex W K; O'Sullivan, Deidre
2013-04-01
The primary purpose of this paper is to undertake foundational research in the area of career readiness, work personality and age of onset with young adult central nervous system (CNS) survivors. Participants for this study consisted of 43 individuals whose age range from 18 to 30 (M = 21.64, SD = 3.46), an average age of brain tumor onset of 9.50 years (SD = 4.73) and average years off of treatment of 7.25 years (SD = 5.80). Packets were distributed to survivors who were participating in a psychosocial cancer treatment program. Participants completed multiple career instruments and a demographic form. Differences between groups and among the variables were examined and size effect sizes were analyzed. Young adult CNS survivors had significantly lower levels of work personality and career readiness when compared to young adult non-cancer survivors with CNS cancer with those between the ages of 6 and 12 reported significantly lower levels when compared to individuals diagnosed before age 6 and after the age of 13. Young adult CNS survivors at an increased risk for having lower levels of work personality and career readiness then a norm group comparison. Age of onset (between 6 and 12) may be at significant risk factor for developing poor or dysfunctional work and career behaviors. • Young adults with central nervous system (CNS) cancer are at particular risk for experiencing difficulties related to career and employment. • Work personality and career readiness are two constructs that have been found to be related to one's ability to meet the demands of work. • Young adult CNS cancer survivors have lower levels of work personality and career readiness. • Individuals diagnosed between the ages of 6 and 12 may be at particular risk and may need specific vocational rehabilitation interventions. • The results of this study point to the need for comprehensive career and vocational services for young adult CNS cancer survivors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giantsoudi, Drosoula; Sethi, Roshan V.; Yeap, Beow Y.
Background: Central nervous system (CNS) injury is a rare complication of radiation therapy for pediatric brain tumors, but its incidence with proton radiation therapy (PRT) is less well defined. Increased linear energy transfer (LET) and relative biological effectiveness (RBE) at the distal end of proton beams may influence this risk. We report the incidence of CNS injury in medulloblastoma patients treated with PRT and investigate correlations with LET and RBE values. Methods and Materials: We reviewed 111 consecutive patients treated with PRT for medulloblastoma between 2002 and 2011 and selected patients with clinical symptoms of CNS injury. Magnetic resonance imagingmore » (MRI) findings for all patients were contoured on original planning scans (treatment change areas [TCA]). Dose and LET distributions were calculated for the treated plans using Monte Carlo system. RBE values were estimated based on LET-based published models. Results: At a median follow-up of 4.2 years, the 5-year cumulative incidence of CNS injury was 3.6% for any grade and 2.7% for grade 3+. Three of 4 symptomatic patients were treated with a whole posterior fossa boost. Eight of 10 defined TCAs had higher LET values than the target but statistically nonsignificant differences in RBE values (P=.12). Conclusions: Central nervous system and brainstem injury incidence for PRT in this series is similar to that reported for photon radiation therapy. The risk of CNS injury was higher for whole posterior fossa boost than for involved field. Although no clear correlation with RBE values was found, numbers were small and additional investigation is warranted to better determine the relationship between injury and LET.« less
NASA Astrophysics Data System (ADS)
Gardner, Gregory S.
This research dissertation summarizes research done on the topic of global air traffic control, to include technology, controlling world organizations and economic considerations. The International Civil Aviation Organization (ICAO) proposed communication, navigation, surveillance, air traffic management system (CNS/ATM) plan is the basis for the development of a single global CNS/ATM system concept as it is discussed within this study. Research will be evaluated on the efficacy of a single technology, Automatic Dependent Surveillance-Broadcast (ADS-B) within the scope of a single global CNS/ATM system concept. ADS-B has been used within the Federal Aviation Administration's (FAA) Capstone program for evaluation since the year 2000. The efficacy of ADS-B was measured solely by using National Transportation Safety Board (NTSB) data relating to accident and incident rates within the Alaskan airspace (AK) and that of the national airspace system (NAS).
Akiyama, Hiroki; Takase, Hiroshi; Kubo, Fumito; Miki, Tohru; Yamamoto, Masahide; Tomita, Makoto; Mochizuki, Manabu; Miura, Osamu; Arai, Ayako
2016-10-01
In order to prevent central nervous system (CNS) involvement and improve the prognosis of primary intraocular lymphoma (PIOL), we prospectively evaluated the efficacy of combined therapy using intravitreal methotrexate (MTX) and systemic high-dose MTX on treatment-naïve PIOL. Patients with newly diagnosed PIOL whose lymphoma was limited to the eyes were enrolled. The patients were treated with weekly intravitreal MTX until the ocular lesions were resolved, followed by five cycles of systemic high-dose MTX (3.5 g/m 2 ) every other week. Ten patients were enrolled in this study and completed the treatment. All patients achieved complete response for their ocular lesions with rapid decrease of intravitreal interleukin-10 concentration. Adverse events of intravitreal and systemic high-dose MTX were mild and tolerable. With a median follow-up of 29.5 months, four patients (40%) experienced the CNS disease development and the mean CNS lymphoma-free survival (CLFS) time was 51.1 months. Two-year CLFS, which was the primary end-point of the study, was 58.3% (95% confidence interval, 23.0-82.1%). In contrast, eight patients were treated with intravitreal MTX alone in our institute, and their 2-year CLFS was 37.5% (95% confidence interval, 8.7-67.4%). In conclusion, systemic high-dose MTX following intravitreal MTX is feasible and might be effective in preventing CNS involvement of PIOL. Further arrangements are worth considering in order to improve the effects. This study was registered with UMIN Clinical Trials Registry (UMIN000003921). © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease.
Argaw, Azeb Tadesse; Asp, Linnea; Zhang, Jingya; Navrazhina, Kristina; Pham, Trinh; Mariani, John N; Mahase, Sean; Dutta, Dipankar J; Seto, Jeremy; Kramer, Elisabeth G; Ferrara, Napoleone; Sofroniew, Michael V; John, Gareth R
2012-07-01
In inflammatory CNS conditions such as multiple sclerosis (MS), current options to treat clinical relapse are limited, and more selective agents are needed. Disruption of the blood-brain barrier (BBB) is an early feature of lesion formation that correlates with clinical exacerbation, leading to edema, excitotoxicity, and entry of serum proteins and inflammatory cells. Here, we identify astrocytic expression of VEGF-A as a key driver of BBB permeability in mice. Inactivation of astrocytic Vegfa expression reduced BBB breakdown, decreased lymphocyte infiltration and neuropathology in inflammatory and demyelinating lesions, and reduced paralysis in a mouse model of MS. Knockdown studies in CNS endothelium indicated activation of the downstream effector eNOS as the principal mechanism underlying the effects of VEGF-A on the BBB. Systemic administration of the selective eNOS inhibitor cavtratin in mice abrogated VEGF-A-induced BBB disruption and pathology and protected against neurologic deficit in the MS model system. Collectively, these data identify blockade of VEGF-A signaling as a protective strategy to treat inflammatory CNS disease.
[Effects of diabetes and obesity on the higher brain functions in rodents].
Asato, Megumi; Ikeda, Hiroko; Kamei, Junzo
2012-11-01
Metabolic disorders, such as diabetes and obesity, have been indicated to disturb the function of the central nervous system (CNS) as well as several peripheral organs. Clinically, it is well recognized that the prevalence of anxiety and depression is higher in diabetic and obesity patients than in the general population. We have recently indicated that streptozotocin-induced diabetic and diet-induced obesity mice have enhanced fear memory and higher anxiety-like behavior in several tests such as the conditioned fear, tail-suspension, hole-board and elevated open-platform tests. The changes in fear memory and anxiety-like behavior of diabetic and obese mice are due to the dysfunction of central glutamatergic and monoaminergic systems, which is mediated by the changes of intracellular signaling. These results suggest that metabolic disorders strongly affect the function of the CNS and disturb the higher brain functions. These dysfunctions of the CNS in diabetes and obesity are involved in the increased prevalence of anxiety disorders and depression. Normalization of these dysfunctions in the CNS will be a new attractive target to treat the metabolic disorders and their complications.
Rojas, Jennifer M; Stafford, John M; Saadat, Sanaz; Printz, Richard L; Beck-Sickinger, Annette G; Niswender, Kevin D
2012-12-15
Elevated plasma triglyceride (TG) levels contribute to an atherogenic dyslipidemia that is associated with obesity, diabetes, and metabolic syndrome. Numerous models of obesity are characterized by increased central nervous system (CNS) neuropeptide Y (NPY) tone that contributes to excess food intake and obesity. Previously, we demonstrated that intracerebroventricular (icv) administration of NPY in lean fasted rats also elevates hepatic production of very low-density lipoprotein (VLDL)-TG. Thus, we hypothesize that elevated CNS NPY action contributes to not only the pathogenesis of obesity but also dyslipidemia. Here, we sought to determine whether the effects of NPY on feeding and/or obesity are dissociable from effects on hepatic VLDL-TG secretion. Pair-fed, icv NPY-treated, chow-fed Long-Evans rats develop hypertriglyceridemia in the absence of increased food intake and body fat accumulation compared with vehicle-treated controls. We then modulated CNS NPY signaling by icv injection of selective NPY receptor agonists and found that Y1, Y2, Y4, and Y5 receptor agonists all induced hyperphagia in lean, ad libitum chow-fed Long-Evans rats, with the Y2 receptor agonist having the most pronounced effect. Next, we found that at equipotent doses for food intake NPY Y1 receptor agonist had the most robust effect on VLDL-TG secretion, a Y2 receptor agonist had a modest effect, and no effect was observed for Y4 and Y5 receptor agonists. These findings, using selective agonists, suggest the possibility that the effect of CNS NPY signaling on hepatic VLDL-TG secretion may be relatively dissociable from effects on feeding behavior via the Y1 receptor.
Haas, David W; Bradford, Yuki; Verma, Anurag; Verma, Shefali S; Eron, Joseph J; Gulick, Roy M; Riddler, Sharon A; Sax, Paul E; Daar, Eric S; Morse, Gene D; Acosta, Edward P; Ritchie, Marylyn D
2018-05-29
We characterized associations between central nervous system (CNS) adverse events and brain neurotransmitter transporter/receptor genomics among participants randomized to efavirenz-containing regimens in AIDS Clinical Trials Group studies in the USA. Four clinical trials randomly assigned treatment-naive participants to efavirenz-containing regimens. Genome-wide genotype and PrediXcan were used to infer gene expression levels in tissues including 10 brain regions. Multivariable regression models stratified by race/ethnicity were adjusted for CYP2B6/CYP2A6 genotypes that predict plasma efavirenz exposure, age, and sex. Combined analyses also adjusted for genetic ancestry. Analyses included 167 cases with grade 2 or greater efavirenz-consistent CNS adverse events within 48 weeks of study entry, and 653 efavirenz-tolerant controls. CYP2B6/CYP2A6 genotype level was independently associated with CNS adverse events (odds ratio: 1.07; P=0.044). Predicted expression of six genes postulated to mediate efavirenz CNS side effects (SLC6A2, SLC6A3, PGR, HTR2A, HTR2B, HTR6) were not associated with CNS adverse events after correcting for multiple testing, the lowest P value being for PGR in hippocampus (P=0.012), nor were polymorphisms in these genes or AR and HTR2C, the lowest P value being for rs12393326 in HTR2C (P=6.7×10). As a positive control, baseline plasma bilirubin concentration was associated with predicted liver UGT1A1 expression level (P=1.9×10). Efavirenz-related CNS adverse events were not associated with predicted neurotransmitter transporter/receptor gene expression levels in brain or with polymorphisms in these genes. Variable susceptibility to efavirenz-related CNS adverse events may not be explained by brain neurotransmitter transporter/receptor genomics.
Allen, Carl E.; Flores, Ricardo; Rauch, Ronald; Dauser, Robert; Murray, Jeffrey C.; Puccetti, Diane; Hsu, David A.; Sondel, Paul; Hetherington, Maxine; Goldman, Stan; McClain, Kenneth L.
2012-01-01
Background Central nervous system (CNS) complications of Langerhans cell histiocytosis (LCH) include mass lesions and a neurodegenerative (ND) syndrome with ataxia, dysarthria, dysmetria, learning and behavior difficulties and/or characteristic changes on brain MRIs. Hydrocephalus has rarely been reported in LCH. LCH lesions of the orbit, mastoid and temporal bones (“CNS-Risk” lesions) and diabetes insipidus predispose patients to ND-CNS-LCH. Treatment options have been limited and only a case series using trans-retinoic acid (ATRA) and intravenous immunoglobulin (IVIG) have been published. Methods We have used cytosine arabinoside (ARA-C) with or without vincristine to treat 8 patients with ND-CNS LCH. Patients:7 male children and one young adult male with clinical and radiologic ND- CNS-LCH were treated with a regimen of vincristine 1.5 mg/m2 on day 1 and ARA-C 100 mg/m2 daily for 5 days or ARA-C alone monthly for 4–19 months. Seven patients were evaluated with an ataxia rating scale (ARS) and all with serial MRIs of the brain. Results Five of 7 patients had decreases in their ARS scores and/or decreased T2 hyperintense lesions on MRI images. Grade 2 neutropenia was the most frequent adverse event. Vincristine-associated neuropathy occurred in two patients. Hydrocephalus caused symptoms and signs that confounded the diagnosis and management of ND-CNS-LCH in all 4 patients affected with both. Conclusions Subtle changes in neurologic function may be complicated by hydrocephalus. Vcr/ARA-C or ARA-C were an effective therapies for some ND-CNS LCH patients. A clinical trial using this and possibly other modalities such as IVIG or ATRA should be done. PMID:19908293
Singh, Nisha; Sharpley, Ann L; Emir, Uzay E; Masaki, Charles; Herzallah, Mohammad M; Gluck, Mark A; Sharp, Trevor; Harmer, Catherine J; Vasudevan, Sridhar R; Cowen, Philip J; Churchill, Grant C
2016-06-01
Lithium remains the gold standard in treating bipolar disorder but has unwanted toxicity and side effects. We previously reported that ebselen inhibits inositol monophosphatase (IMPase) and exhibits lithium-like effects in animal models through lowering of inositol. Ebselen has been tested in clinical trials for other disorders, enabling us to determine for the first time the effect of a blood-brain barrier-penetrant IMPase inhibitor on human central nervous system (CNS) function. We now report that in a double-blind, placebo-controlled trial with healthy participants, acute oral ebselen reduced brain myo-inositol in the anterior cingulate cortex, consistent with CNS target engagement. Ebselen decreased slow-wave sleep and affected emotional processing by increasing recognition of some emotions, decreasing latency time in the acoustic startle paradigm, and decreasing the reinforcement of rewarding stimuli. In summary, ebselen affects the phosphoinositide cycle and has CNS effects on surrogate markers that may be relevant to the treatment of bipolar disorder that can be tested in future clinical trials.
Lebar, R; Lubetzki, C; Vincent, C; Lombrail, P; Boutry, J M
1986-01-01
Autoantibodies with in-vitro demyelinating capacity induced in Hartley and strain 13 guinea pigs with homologous central nervous system (CNS) tissue were used to characterize the target autoantigen M2. Using the Dot Immunobinding technique, M2 was found to be a component of CNS myelin different from basic protein (BP) and from cerebroside. The expression of M2 on oligodendrocytes, cells known to produce CNS myelin, also confirmed that M2 was a component of CNS myelin. Furthermore, the autoradiography of immunoprecipitates formed with radiolabelled guinea pig myelin and analysed in sodium dodecyl sulphate gels showed that M2 was specific to CNS myelin and absent in peripheral nervous system (PNS) myelin. On electrophoresis M2 appeared as two CNS myelin protein bands at the 27 and 54 KD molecular weight levels, distinct from the major protein bands of proteolipid and BP. M2 bands were of glycoprotein nature, as was demonstrated by affinity chromatography of CNS myelin on wheat germ agglutinin (WGA)-Sepharose. A monoclonal antibody induced by BP-free CNS glycoproteins recognized the same bands as anti-M2 serum in guinea pig CNS myelin. This would imply that both M2 bands share common determinants. M2 bands similar to the above in guinea pig were also shown in rat, rabbit and bovine CNS myelin with guinea pig antibodies. The same type of anti-M2 antibodies were induced in rabbit immunized with homologous CNS tissue. Although only a minor component of myelin, M2 is strongly immunogenic compared to BP. M2 antigen could thus be the target of chronic demyelinating processes such as experimental allergic encephalomyelitis. Images Fig. 1 Figure 2 Fig. 3 Fig. 4 PMID:2434274
Tri-partite complex for axonal transport drug delivery achieves pharmacological effect
2010-01-01
Background Targeted delivery of pharmaceutical agents into selected populations of CNS (Central Nervous System) neurons is an extremely compelling goal. Currently, systemic methods are generally used for delivery of pain medications, anti-virals for treatment of dermatomal infections, anti-spasmodics, and neuroprotectants. Systemic side effects or undesirable effects on parts of the CNS that are not involved in the pathology limit efficacy and limit clinical utility for many classes of pharmaceuticals. Axonal transport from the periphery offers a possible selective route, but there has been little progress towards design of agents that can accomplish targeted delivery via this intraneural route. To achieve this goal, we developed a tripartite molecular construction concept involving an axonal transport facilitator molecule, a polymer linker, and a large number of drug molecules conjugated to the linker, then sought to evaluate its neurobiology and pharmacological behavior. Results We developed chemical synthesis methodologies for assembling these tripartite complexes using a variety of axonal transport facilitators including nerve growth factor, wheat germ agglutinin, and synthetic facilitators derived from phage display work. Loading of up to 100 drug molecules per complex was achieved. Conjugation methods were used that allowed the drugs to be released in active form inside the cell body after transport. Intramuscular and intradermal injection proved effective for introducing pharmacologically effective doses into selected populations of CNS neurons. Pharmacological efficacy with gabapentin in a paw withdrawal latency model revealed a ten fold increase in half life and a 300 fold decrease in necessary dose relative to systemic administration for gabapentin when the drug was delivered by axonal transport using the tripartite vehicle. Conclusion Specific targeting of selected subpopulations of CNS neurons for drug delivery by axonal transport holds great promise. The data shown here provide a basic framework for the intraneural pharmacology of this tripartite complex. The pharmacologically efficacious drug delivery demonstrated here verify the fundamental feasibility of using axonal transport for targeted drug delivery. PMID:20085661
Nishio, Makoto; Nakagawa, Kazuhiko; Mitsudomi, Tetsuya; Yamamoto, Nobuyuki; Tanaka, Tomohiro; Kuriki, Hiroshi; Zeaiter, Ali; Tamura, Tomohide
2018-07-01
We determined the central nervous system (CNS) efficacy of alectinib by calculating time to CNS progression and cumulative incidence rates (CIRs) of CNS progression, non-CNS progression and death in patients with anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer (NSCLC) enrolled in the J-ALEX phase III study. Japanese patients aged ≥20 years with ALK-positive NSCLC who were ALK inhibitor-naïve and chemotherapy-naïve, or who had received one previous chemotherapy regimen, were enrolled. Patients with treated or untreated asymptomatic CNS metastases were eligible. Treatment comprised oral alectinib 300 mg twice daily or crizotinib 250 mg twice daily until progressive disease, unacceptable toxicity, death or withdrawal. Imaging scans (computed tomography/magnetic resonance imaging) were taken at baseline and at regular intervals throughout the study. The CIRs for CNS progression, non-CNS progression and death were calculated for patients with and without baseline CNS metastases using a competing risks method. The hazard ratio for time to CNS progression in patients with and without baseline CNS metastases was 0.51 (95% confidence interval [CI]: 0.16-1.64; P = 0.2502) and 0.19 (95% CI: 0.07-0.53; P = 0.0004), respectively. The CIRs of CNS progression and non-CNS progression were lower in the alectinib group than in the crizotinib group at all time points. The 1-year CIRs of CNS progression were 16.8% and 5.9% with crizotinib and alectinib, respectively, and the 1-year CIRs of non-CNS progression were 38.4% and 17.5%, respectively. Comparable findings were obtained in patients with or without baseline CNS metastases. Alectinib appears to avert the progression of CNS metastases in patients with ALK-positive NSCLC and baseline CNS metastases, and to prevent the development of new CNS lesions in patients without baseline CNS disease. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Centralization of the deuterostome nervous system predates chordates.
Nomaksteinsky, Marc; Röttinger, Eric; Dufour, Héloïse D; Chettouh, Zoubida; Lowe, Chris J; Martindale, Mark Q; Brunet, Jean-François
2009-08-11
The origin of the chordate central nervous system (CNS) is unknown. One theory is that a CNS was present in the first bilaterian and that it gave rise to both the ventral cord of protostomes and the dorsal cord of deuterostomes. Another theory proposes that the chordate CNS arose by a dramatic process of dorsalization and internalization from a diffuse nerve net coextensive with the skin of the animal, such as enteropneust worms (Hemichordata, Ambulacraria) are supposed to have. We show here that juvenile and adult enteropneust worms in fact have a bona fide CNS, i.e., dense agglomerations of neurons associated with a neuropil, forming two cords, ventral and dorsal. The latter is internalized in the collar as a chordate-like neural tube. Contrary to previous assumptions, the greater part of the adult enteropneust skin is nonneural, although elements of the peripheral nervous system (PNS) are found there. We use molecular markers to show that several neuronal types are anatomically segregated in the CNS and PNS. These neuroanatomical features, whatever their homologies with the chordate CNS, imply that nervous system centralization predates the evolutionary separation of chordate and hemichordate lineages.
Immunomodulatory effects of endogenous and synthetic peptides activating opioid receptors.
Pomorska, Dorota K; Gach, Katarzyna; Janecka, Anna
2014-01-01
The main role of endogenous opioid peptides is the modulation of pain. Opioid peptides exert their analgesic activity by binding to the opioid receptors distributed widely in the central nervous system (CNS). However, opioid receptors are also found on tissues and organs outside the CNS, including the cells of the immune system, indicating that opioids are capable of exerting additional effects in periphery. Morphine, which is a gold standard in the treatment of chronic pain, is well-known for its immunosuppressive effects. Much less is known about the immunomodulatory effects exerted by endogenous (enkephalins, endorphins, dynorphins and endomorphins) and synthetic peptides activating opioid receptors. In this review we tried to summarize opioid peptide-mediated modulation of immune cell functions which can be stimulatory as well as inhibitory.
Gandhi, Leena; Ou, Sai-Hong Ignatius; Shaw, Alice T; Barlesi, Fabrice; Dingemans, Anne-Marie C; Kim, Dong-Wan; Camidge, D Ross; Hughes, Brett G M; Yang, James C-H; de Castro, Javier; Crino, Lucio; Léna, Hervé; Do, Pascal; Golding, Sophie; Bordogna, Walter; Zeaiter, Ali; Kotb, Ahmed; Gadgeel, Shirish
2017-09-01
Central nervous system (CNS) progression is common in patients with anaplastic lymphoma kinase-positive (ALK+) non-small-cell lung cancer (NSCLC) receiving crizotinib. Next-generation ALK inhibitors have shown activity against CNS metastases, but accurate assessment of response and progression is vital. Data from two phase II studies in crizotinib-refractory ALK+ NSCLC were pooled to examine the CNS efficacy of alectinib, a CNS-active ALK inhibitor, using Response Evaluation Criteria in Solid Tumours (RECIST version 1.1) and Response Assessment in Neuro-Oncology high-grade glioma (RANO-HGG) criteria. Both studies enrolled patients aged ≥18 years who had previously received crizotinib. NP28761 was conducted in North America and NP28673 was a global study. All patients received 600 mg oral alectinib twice daily and had baseline CNS imaging. CNS response for those with baseline CNS metastases was determined by an independent review committee. Baseline measurable CNS disease was identified in 50 patients by RECIST and 43 by RANO-HGG. CNS objective response rate was 64.0% by RECIST (95% confidence interval [CI]: 49.2-77.1; 11 CNS complete responses [CCRs]) and 53.5% by RANO-HGG (95% CI: 37.7-68.8; eight CCRs). CNS responses were durable, with consistent estimates of median duration of 10.8 months with RECIST and 11.1 months with RANO-HGG. Of the 39 patients with measurable CNS disease by both RECIST and RANO-HGG, only three (8%) had CNS progression according to one criteria but not the other (92% concordance rate). Alectinib demonstrated promising efficacy in the CNS for ALK+ NSCLC patients pretreated with crizotinib, regardless of the assessment criteria used. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pinezich, Meghan R; Russell, Lauren N; Murphy, Nicholas P; Lampe, Kyle J
2018-04-16
Biomaterial drug delivery systems (DDS) can be used to regulate growth factor release and combat the limited intrinsic regeneration capabilities of central nervous system (CNS) tissue following injury and disease. Of particular interest are systems that aid in oligodendrocyte regeneration, as oligodendrocytes generate myelin which surrounds neuronal axons and helps transmit signals throughout the CNS. Oligodendrocyte precursor cells (OPCs) are found in small numbers in the adult CNS, but are unable to effectively differentiate following CNS injury. Delivery of signaling molecules can initiate a favorable OPC response, such as proliferation or differentiation. Here, we investigate the delivery of one such molecule, platelet derived growth factor-AA (PDGF-AA), from poly(lactic-co-glycolic) acid microparticles to OPCs in a 3D polyethylene glycol-based hydrogel. The goal of this DDS was to better understand the relationship between PDGF-AA release kinetics and OPC fate. The system approximates native brain tissue stiffness, while incorporating PDGF-AA under seven different delivery scenarios. Within this DDS, supply of PDGF-AA followed by PDGF-AA withdrawal caused OPCs to upregulate gene expression of myelin basic protein (MBP) by factors of 1.6-9.2, whereas continuous supply of PDGF-AA caused OPCs to remain proliferative. At the protein expression level, we observed an upregulation in O1, a marker for mature oligodendrocytes. Together, these results show that burst release followed by withdrawal of PDGF-AA from a hydrogel DDS stimulates survival, proliferation, and differentiation of OPCs in vitro. Our results could inform the development of improved neural regeneration strategies that incorporate delivery of PDGF-AA to the injured CNS. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.
Glycoproteins Enrichment and LC-MS/MS Glycoproteomics in Central Nervous System Applications.
Zhu, Rui; Song, Ehwang; Hussein, Ahmed; Kobeissy, Firas H; Mechref, Yehia
2017-01-01
Proteins and glycoproteins play important biological roles in central nervous systems (CNS). Qualitative and quantitative evaluation of proteins and glycoproteins expression in CNS is critical to reveal the inherent biomolecular mechanism of CNS diseases. This chapter describes proteomic and glycoproteomic approaches based on liquid chromatography/tandem mass spectrometry (LC-MS or LC-MS/MS) for the qualitative and quantitative assessment of proteins and glycoproteins expressed in CNS. Proteins and glycoproteins, extracted by a mass spectrometry friendly surfactant from CNS samples, were subjected to enzymatic (tryptic) digestion and three down-stream analyses: (1) a nano LC system coupled with a high-resolution MS instrument to achieve qualitative proteomic profile, (2) a nano LC system combined with a triple quadrupole MS to quantify identified proteins, and (3) glycoprotein enrichment prior to LC-MS/MS analysis. Enrichment techniques can be applied to improve coverage of low abundant glycopeptides/glycoproteins. An example described in this chapter is hydrophilic interaction liquid chromatographic (HILIC) enrichment to capture glycopeptides, allowing efficient removal of peptides. The combination of three LC-MS/MS-based approaches is capable of the investigation of large-scale proteins and glycoproteins from CNS with an in-depth coverage, thus offering a full view of proteins and glycoproteins changes in CNS.
Considerations for an Integrated UAS CNS Architecture
NASA Technical Reports Server (NTRS)
Templin, Fred L.; Jain, Raj; Sheffield, Greg; Taboso-Bellesteros, Pedro; Ponchak, Denise
2017-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating revolutionary and advanced universal, reliable, always available, cyber secure and affordable Communication, Navigation, Surveillance (CNS) options for all altitudes of UAS operations. In Spring 2015, NASA issued a Call for Proposals under NASA Research Announcements (NRA) NNH15ZEA001N, Amendment 7 Subtopic 2.4. Boeing was selected to conduct a study with the objective to determine the most promising candidate technologies for Unmanned Air Systems (UAS) air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. The overall objectives are to develop UAS CNS requirements and then develop architectures that satisfy the requirements for UAS in both controlled and uncontrolled air space. This contract is funded under NASAs Aeronautics Research Mission Directorates (ARMD) Aviation Operations and Safety Program (AOSP) Safe Autonomous Systems Operations (SASO) project and proposes technologies for the Unmanned Air Systems Traffic Management (UTM) service.There is a need for accommodating large-scale populations of Unmanned Air Systems (UAS) in the national air space. Scale obviously impacts capacity planning for Communication, Navitation, and Surveillance (CNS) technologies. For example, can wireless communications data links provide the necessary capacity for accommodating millions of small UASs (sUAS) nationwide? Does the communications network provide sufficient Internet Protocol (IP) address space to allow air traffic control to securely address both UAS teams as a whole as well as individual UAS within each team? Can navigation and surveillance approaches assure safe route planning and safe separation of vehicles even in crowded skies?Our objective is to identify revolutionary and advanced CNS alternatives supporting UASs operating at all altitudes and in all airspace while accurately navigating in the absence of navigational aids. These CNS alternatives must be reliable, redundant, always available, cyber-secure, and affordable for all types of vehicles including small UAS to large transport category aircraft. The approach will identify CNS technology candidates that can meet the needs of the range of UAS missions to specific air traffic management applications where they will be most beneficial and cost effective.
Considerations for an Integrated UAS CNS Architecture
NASA Technical Reports Server (NTRS)
Templin, Fred L.; Jain, Raj; Sheffield, Greg; Taboso-Bellesteros, Pedro; Ponchak, Denise
2017-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating revolutionary and advanced universal, reliable, always available, cyber secure and affordable Communication, Navigation, Surveillance (CNS) options for all altitudes of UAS operations. In Spring 2015, NASA issued a Call for Proposals under NASA Research Announcements (NRA) NNH15ZEA001N, Amendment 7 Subtopic 2.4. Boeing was selected to conduct a study with the objective to determine the most promising candidate technologies for Unmanned Air Systems (UAS) air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. The overall objectives are to develop UAS CNS requirements and then develop architectures that satisfy the requirements for UAS in both controlled and uncontrolled air space. This contract is funded under NASAs Aeronautics Research Mission Directorates (ARMD) Aviation Operations and Safety Program (AOSP) Safe Autonomous Systems Operations (SASO) project and proposes technologies for the Unmanned Air Systems Traffic Management (UTM) service.There is a need for accommodating large-scale populations of Unmanned Air Systems (UAS) in the national air space. Scale obviously impacts capacity planning for Communication, Navigation, and Surveillance (CNS) technologies. For example, can wireless communications data links provide the necessary capacity for accommodating millions of small UASs (sUAS) nationwide? Does the communications network provide sufficient Internet Protocol (IP) address space to allow air traffic control to securely address both UAS teams as a whole as well as individual UAS within each team? Can navigation and surveillance approaches assure safe route planning and safe separation of vehicles even in crowded skies?Our objective is to identify revolutionary and advanced CNS alternatives supporting UASs operating at all altitudes and in all airspace while accurately navigating in the absence of navigational aids. These CNS alternatives must be reliable, redundant, always available, cyber-secure, and affordable for all types of vehicles including small UAS to large transport category aircraft. The approach will identify CNS technology candidates that can meet the needs of the range of UAS missions to specific air traffic management applications where they will be most beneficial and cost effective.
Aging, the Central Nervous System, and Mobility in Older Adults: Interventions
Hausdorff, Jeffrey M.; Studenski, Stephanie A.; Rosano, Caterina; Camicioli, Richard; Alexander, Neil B.; Chen, Wen G.; Lipsitz, Lewis A.; Carlson, Michelle C.
2016-01-01
Background: Research suggests that the central nervous system (CNS) and mobility are closely linked. CNS-mediated mobility impairment may represent a potentially new and prevalent syndrome within the older adult populations. Interventions targeting this group may have the potential to improve mobility and cognition and prevent disability. Methods: In 2012, the Gerontological Society of America (GSA) and the National Institute on Aging (NIA) sponsored a 3-year conference workshop series, “Aging, the CNS, and Mobility.” The goal of this third and final conference was to (i) report on the state of the science of interventions targeting CNS-mediated mobility impairment among community-dwelling older adults and (ii) partnering with the NIA, explore the future of research and intervention design focused on a potentially novel aging syndrome. Results: Evidence was presented in five main intervention areas: (i) pharmacology and diet; (ii) exercise; (iii) electrical stimulation; (iv) sensory stimulation/deprivation; and (v) a combined category of multimodal interventions. Workshop participants identified important gaps in knowledge and key recommendations for future interventions related to recruitment and sample selection, intervention design, and methods to measure effectiveness. Conclusions: In order to develop effective preventive interventions for this prevalent syndrome, multidisciplinary teams are essential particularly because of the complex nature of the syndrome. Additionally, integrating innovative methods into the design of interventions may help researchers better measure complex mechanisms, and finally, the value of understanding the link between the CNS and mobility should be conveyed to researchers across disciplines in order to incorporate cognitive and mobility measurements into study protocols. PMID:27154905
Kulkarni, Subhash; Zou, Bende; Hanson, Jesse; Micci, Maria-Adelaide; Tiwari, Gunjan; Becker, Laren; Kaiser, Martin; Xie, Xinmin Simon; Pasricha, Pankaj Jay
2011-10-01
Recent studies have explored the potential of central nervous system-derived neural stem cells (CNS-NSC) to repopulate the enteric nervous system. However, the exact phenotypic fate of gut-transplanted CNS-NSC has not been characterized. The aim of this study was to investigate the effect of the gut microenvironment on phenotypic fate of CNS-NSC in vitro. With the use of Transwell culture, differentiation of mouse embryonic CNS-NSC was studied when cocultured without direct contact with mouse intestinal longitudinal muscle-myenteric plexus preparations (LM-MP) compared with control noncocultured cells, in a differentiating medium. Differentiated cells were analyzed by immunocytochemistry and quantitative RT-PCR to assess the expression of specific markers and by whole cell patch-clamp studies for functional characterization of their phenotype. We found that LM-MP cocultured cells had a significant increase in the numbers of cells that were immune reactive against the panneuronal marker β-tubulin, neurotransmitters neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), and neuropeptide vasoactive intestinal peptide (VIP) and showed an increase in expression of these genes, compared with control cells. Whole cell patch-clamp analysis showed that coculture with LM-MP decreases cell excitability and reduces voltage-gated Na(+) currents but significantly enhances A-current and late afterhyperpolarization (AHP) and increases the expression of the four AHP-generating Ca(2+)-dependent K(+) channel genes (KCNN), compared with control cells. In a separate experiment, differentiation of LM-MP cocultured CNS-NSC produced a significant increase in the numbers of cells that were immune reactive against the neurotransmitters nNOS, ChAT, and the neuropeptide VIP compared with CNS-NSC differentiated similarly in the presence of neonatal brain tissue. Our results show that the gut microenvironment induces CNS-NSC to produce neurons that share some of the characteristics of classical enteric neurons, further supporting the therapeutic use of these cells for gastrointestinal disorders.
NASA Technical Reports Server (NTRS)
Geller, I.; Garcia, C.; Gleiser, C.; Haines, R., Jr.; Hamilton, M.; Hartmann, R., Jr.; Mendez, V.; Samuels, A.; Miguel, M. S.
1981-01-01
The proposed use of bromotrifluoromethane (CBrF3) as a fire extinguishant in aircraft, spacecraft and submarines has stimulated increasing interest and research in the toxicological properties of this compound. In a spacecraft, because of its unique recirculating life support system, the introduction of CBrF3 by leakage or intentional discharge, will result in continuous exposure of crewman to low concentrations of this compound for periods of up to 7 days, or possibly even longer. The effects of low concentrations of CBrF3, under continuous exposure conditions, on the CNS and cardiovascular systems of animals to enable an assessment of these risks were investigated.
Pazopanib therapy for cerebellar hemangioblastomas in von Hippel–Lindau disease
Kim, Betty Y. S.; Jonasch, Eric
2016-01-01
von Hippel–Lindau (VHL) disease is a genetically acquired multisystem tumor syndrome of the viscera and central nervous system (CNS). The most common tumors associated with this disease are histologically benign, slow-growing CNS hemangioblastomas affecting the retina, cerebellum, brainstem, spinal cord or nerve roots. With mean age at diagnosis of 30 years, CNS hemangioblastomas are usually the first manifestation of the disease. Ongoing clinical and radiological surveillance is required, with symptomatic lesions necessitating treatment. As tumor growth is inevitable during the lifetime of most VHL patients, and the multiplicity of tumors may preclude surgical cure, the search for effective therapies is ongoing. Here we provide the first report demonstrating clinical and radiological anti-tumor response using pazopanib, a small molecule multi-receptor tyrosine kinase inhibitor, in a patient with treatment-refractory VHL-associated CNS hemangioblastoma. Treatment initiation with daily oral pazopanib (800 mg/day) resulted in significant neurologic improvement and radiologic tumor volume reduction. PMID:22374327
Communications, Navigation, and Surveillance Models in ACES: Design Implementation and Capabilities
NASA Technical Reports Server (NTRS)
Kubat, Greg; Vandrei, Don; Satapathy, Goutam; Kumar, Anil; Khanna, Manu
2006-01-01
Presentation objectives include: a) Overview of the ACES/CNS System Models Design and Integration; b) Configuration Capabilities available for Models and Simulations using ACES with CNS Modeling; c) Descriptions of recently added, Enhanced CNS Simulation Capabilities; and d) General Concepts Ideas that Utilize CNS Modeling to Enhance Concept Evaluations.
Gurzick, Martha; Kesten, Karen S
2010-01-01
The purpose of this article was to address the call for evidence-based practice through the development of clinical pathways and to assert the role of the clinical nurse specialist (CNS) as a champion in clinical pathway implementation. In the current health care system, providing quality of care while maintaining cost-effectiveness is an ever-growing battle that institutions face. The CNS's role is central to meeting these demands. An extensive literature review has been conducted to validate the use of clinical pathways as a means of improving patient outcomes. This literature also suggests that clinical pathways must be developed, implemented, and evaluated utilizing validated methods including the use of best practice standards. Execution of clinical pathways should include a clinical expert, who has the ability to look at the system as a whole and can facilitate learning and change by employing a multitude of competencies while maintaining a sphere of influence over patient and families, nurses, and the system. The CNS plays a pivotal role in influencing effective clinical pathway development, implementation, utilization, and ongoing evaluation to ensure improved patient outcomes and reduced costs. This article expands upon the call for evidence-based practice through the utilization of clinical pathways to improve patient outcomes and reduce costs and stresses the importance of the CNS as a primary figure for ensuring proper pathway development, implementation, and ongoing evaluation. Copyright 2010 Elsevier Inc. All rights reserved.
CEREBROSPINAL FLUID STASIS AND ITS CLINICAL SIGNIFICANCE
Whedon, James M.; Glassey, Donald
2010-01-01
We hypothesize that stasis of the cerebrospinal fluid (CSF) occurs commonly and is detrimental to health. Physiologic factors affecting the normal circulation of CSF include cardiovascular, respiratory, and vasomotor influences. The CSF maintains the electrolytic environment of the central nervous system (CNS), influences systemic acid-base balance, serves as a medium for the supply of nutrients to neuronal and glial cells, functions as a lymphatic system for the CNS by removing the waste products of cellular metabolism, and transports hormones, neurotransmitters, releasing factors, and other neuropeptides throughout the CNS. Physiologic impedance or cessation of CSF flow may occur commonly in the absence of degenerative changes or pathology and may compromise the normal physiologic functions of the CSF. CSF appears to be particularly prone to stasis within the spinal canal. CSF stasis may be associated with adverse mechanical cord tension, vertebral subluxation syndrome, reduced cranial rhythmic impulse, and restricted respiratory function. Increased sympathetic tone, facilitated spinal segments, dural tension, and decreased CSF flow have been described as closely related aspects of an overall pattern of structural and energetic dysfunction in the axial skeleton and CNS. Therapies directed at affecting CSF flow include osteopathic care (especially cranial manipulation), craniosacral therapy, chiropractic adjustment of the spine and cranium, Network Care (formerly Network Chiropractic), massage therapy (including lymphatic drainage techniques), yoga, therapeutic breathwork, and cerebrospinal fluid technique. Further investigation into the nature and causation of CSF stasis, its potential effects upon human health, and effective therapies for its correction is warranted. PMID:19472865
NASA Astrophysics Data System (ADS)
Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang; Liu, Ming
2017-06-01
Many countries have been paying great attention to space exploration, especially about the Moon and the Mars. Autonomous and high-accuracy navigation systems are needed for probers and rovers to accomplish missions. Inertial navigation system (INS)/celestial navigation system (CNS) based navigation system has been used widely on the lunar rovers. Initialization is a particularly important step for navigation. This paper presents an in-motion alignment and positioning method for lunar rovers by INS/CNS/odometer integrated navigation. The method can estimate not only the position and attitude errors, but also the biases of the accelerometers and gyros using the standard Kalman filter. The differences between the platform star azimuth, elevation angles and the computed star azimuth, elevation angles, and the difference between the velocity measured by odometer and the velocity measured by inertial sensors are taken as measurements. The semi-physical experiments are implemented to demonstrate that the position error can reduce to 10 m and attitude error is within 2″ during 5 min. The experiment results prove that it is an effective and attractive initialization approach for lunar rovers.
Hemangiopericytoma in the central nervous system. A study of eight cases.
Mekni, A; Kourda, J; Chelly, I; Ferchichi, L; Bellil, K; Hammouda, K B; Kchir, N; Zitouna, M; Khaldi, M; Haouet, S
2008-02-01
Most hemangiopericytomas (HPC) are located in the musculoskeletal system and the skin, while the location in the central nervous system (CNS) is rare. The latter represents 2 to 4% in large series of meningeal tumors, thus accounting for less than 1% of all CNS tumors. In the central nervous system, tumors with a hemangiopericytomatous histolopathological pattern can be either hemangiopericytomas or solitary fibrous tumors. CNS-HPCs have a relentless tendency for local recurrence and metastases outside the CNS. Metastasis can also appear many years after adequate treatment of the primary tumor. We present a pathological study of eight patients with CNS-HPC and compare our results with corresponding published data. The CNS-HPC group consisted of three males and five females with a mean age of 36.75 years. The tumors were supratentorial in four cases, infratentorial in two cases, tentorial in one case and located in the spinal cord in the last one. Histologically, CNS-HPCs were similar to their soft tissue counterparts. One case demonstrated increased cellularity, marked nuclear hyperchromasia and marked cellular pleomorphism with infiltration of the cerebellum. All patients underwent surgery with gross-total resection in all cases. No patients received postoperative radiation therapy. Only four patients recurred locally after six, seven and eight months, and five years. Our study presents the pathological features of CNS-HPC as a distinct entity from both meningioma and solitary fibrous tumors. A comparative review of literature with our results is discussed.
Therapeutic potential of agmatine for CNS disorders.
Neis, Vivian B; Rosa, Priscila B; Olescowicz, Gislaine; Rodrigues, Ana Lúcia S
2017-09-01
Agmatine is a neuromodulator that regulates multiple neurotransmitters and signaling pathways. Several studies have focused on elucidating the mechanisms underlying the neuroprotective effects of this molecule, which seems to be mediated by a reduction in oxidative damage, neuroinflammation, and proapoptotic signaling. Since these events are implicated in acute and chronic excitotoxicity-related disorders (ischemia, epilepsy, traumatic brain injury, spinal cord injury, neurodegenerative, and psychiatric disorders) as well as in nociception, agmatine has been proposed as a therapeutic strategy for the treatment of central nervous system (CNS) disorders. Agmatine also stimulates the expression of trophic factors and adult neurogenesis, contributing to its ability to induce endogenous repair mechanisms. Therefore, considering its wide range of biological effects, this review summarizes the current knowledge about its protective and regenerative properties in the CNS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ten Kulve, Jennifer S; Veltman, Dick J; Gerdes, Victor E A; van Bloemendaal, Liselotte; Barkhof, Frederik; Deacon, Carolyn F; Holst, Jens J; Drent, Madeleine L; Diamant, Michaela; IJzerman, Richard G
2017-11-01
It has been suggested that weight reduction and improvements in satiety after Roux-en-Y gastric bypass (RYGB) are partly mediated via postoperative neuroendocrine changes. Glucagon-like peptide-1 (GLP-1) is a gut hormone secreted after food ingestion and is associated with appetite and weight reduction, mediated via effects on the central nervous system (CNS). Secretion of GLP-1 is greatly enhanced after RYGB. We hypothesized that postoperative elevated GLP-1 levels contribute to the improved satiety regulation after RYGB via effects on the CNS. Effects of the GLP-1 receptor antagonist exendin 9-39 (Ex9-39) and placebo were assessed in 10 women before and after RYGB. We used functional MRI to investigate CNS activation in response to visual food cues (pictures) and gustatory food cues (consumption of chocolate milk), comparing results with Ex9-39 versus placebo before and after RYGB. After RYGB, CNS activation was reduced in the rolandic operculum and caudate nucleus in response to viewing food pictures ( P = 0.03) and in the insula in response to consumption of palatable food ( P = 0.003). GLP-1 levels were significantly elevated postoperatively ( P < 0.001). After RYGB, GLP-1 receptor blockade resulted in a larger increase in activation in the caudate nucleus in response to food pictures ( P = 0.02) and in the insula in response to palatable food consumption ( P = 0.002). We conclude that the effects of RYGB on CNS activation in response to visual and gustatory food cues may be mediated by central effects of GLP-1. Our findings provide further insights into the mechanisms underlying the weight-lowering effects of RYGB. © 2017 by the American Diabetes Association.
75 FR 37301 - Exempt Chemical Mixtures Containing Gamma-Butyrolactone
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-29
... their central nervous system (CNS) depressant effect. An overdose from GBL or GHB may result in... the central nervous system that is substantially similar to or greater than the stimulant, depressant, or hallucinogenic effect on the central nervous system of a controlled substance in schedule I or II...
2011-01-01
The central nervous system (CNS) is the major area that is affected by aging. Alzheimer’s disease (AD), Parkinson’s disease (PD), brain cancer, and stroke are the CNS diseases that will cost trillions of dollars for their treatment. Achievement of appropriate blood–brain barrier (BBB) penetration is often considered a significant hurdle in the CNS drug discovery process. On the other hand, BBB penetration may be a liability for many of the non-CNS drug targets, and a clear understanding of the physicochemical and structural differences between CNS and non-CNS drugs may assist both research areas. Because of the numerous and challenging issues in CNS drug discovery and the low success rates, pharmaceutical companies are beginning to deprioritize their drug discovery efforts in the CNS arena. Prompted by these challenges and to aid in the design of high-quality, efficacious CNS compounds, we analyzed the physicochemical property and the chemical structural profiles of 317 CNS and 626 non-CNS oral drugs. The conclusions derived provide an ideal property profile for lead selection and the property modification strategy during the lead optimization process. A list of substructural units that may be useful for CNS drug design was also provided here. A classification tree was also developed to differentiate between CNS drugs and non-CNS oral drugs. The combined analysis provided the following guidelines for designing high-quality CNS drugs: (i) topological molecular polar surface area of <76 Å2 (25–60 Å2), (ii) at least one (one or two, including one aliphatic amine) nitrogen, (iii) fewer than seven (two to four) linear chains outside of rings, (iv) fewer than three (zero or one) polar hydrogen atoms, (v) volume of 740–970 Å3, (vi) solvent accessible surface area of 460–580 Å2, and (vii) positive QikProp parameter CNS. The ranges within parentheses may be used during lead optimization. One violation to this proposed profile may be acceptable. The chemoinformatics approaches for graphically analyzing multiple properties efficiently are presented. PMID:22267984
Primary CNS Lymphoma Treatment (PDQ®)—Health Professional Version
Primary central nervous system (CNS) lymphoma treatment options include radiation, chemotherapy, and corticosteroids. Get detailed information about the treatment of newly diagnosed and recurrent primary CNS lymphoma cancer in this clinician summary.
Brinkman, Tara M; Bass, Johnnie K; Li, Zhenghong; Ness, Kirsten K; Gajjar, Amar; Pappo, Alberto S; Armstrong, Gregory T; Merchant, Thomas E; Srivastava, Deo Kumar; Robison, Leslie L; Hudson, Melissa M; Gurney, James G
2015-11-15
Survivors of childhood cancer who are treated with platinum-based chemotherapy and/or cranial radiation are at risk of treatment-induced hearing loss. However, the effects of such hearing loss on adult social attainment have not been well elucidated. Adult survivors of pediatric central nervous system (CNS) solid tumors (180 survivors) and non-CNS solid tumors (226 survivors) who were treated with potentially ototoxic cancer therapy completed audiologic evaluations and questionnaires assessing their perception of social functioning and social attainment (ie, independent living, marriage, and employment). Audiograms were graded with the Chang ototoxicity grading scale. Analyses were stratified by tumor type (ie, CNS vs non-CNS). Multivariable logistic regression models were conducted with adjustment for age; sex; chronic health conditions; and, for the CNS group, IQ. Adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs) were reported. Serious hearing loss (that requiring a hearing aid or deafness) was detected in 36% of survivors of CNS tumors and 39% of survivors of non-CNS tumors. Serious hearing loss was associated with an increased risk of perceived negative impact in ≥1 areas of social functioning (survivors of non-CNS tumors: OR, 1.83 [95% CI, 1.00-3.34]). Among survivors of non-CNS tumors, serious hearing loss was associated with 2-fold increased risk of nonindependent living (OR, 2.19; 95% CI, 1.19-4.04) and unemployment or not graduating from high school (OR, 1.85; 95% CI, 1.00-3.34). A substantial proportion of adult survivors of childhood cancer treated with potentially ototoxic therapy have serious hearing loss. Treatment-induced hearing loss was found to be associated with reduced social attainment, both perceived and actual, in this study sample. © 2015 American Cancer Society.
NASA Astrophysics Data System (ADS)
Zhang, Wanli; Li, Chuandong; Huang, Tingwen; Huang, Junjian
2018-02-01
This paper investigates the fixed-time synchronization of complex networks (CNs) with nonidentical nodes and stochastic noise perturbations. By designing new controllers, constructing Lyapunov functions and using the properties of Weiner process, different synchronization criteria are derived according to whether the node systems in the CNs or the goal system satisfies the corresponding conditions. Moreover, the role of the designed controllers is analyzed in great detail by constructing a suitable comparison system and a new method is presented to estimate the settling time by utilizing the comparison system. Results of this paper can be applied to both directed and undirected weighted networks. Numerical simulations are offered to verify the effectiveness of our new results.
Torres-Salazar, Delany; Bittner, Stefan; Zozulya, Alla L.; Weidenfeller, Christian; Kotsiari, Alexandra; Stangel, Martin; Fahlke, Christoph; Wiendl, Heinz
2008-01-01
In multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), impairment of glial “Excitatory Amino Acid Transporters” (EAATs) together with an excess glutamate-release by invading immune cells causes excitotoxic damage of the central nervous system (CNS). In order to identify pathways to dampen excitotoxic inflammatory CNS damage, we assessed the effects of a β-lactam antibiotic, ceftriaxone, reported to enhance expression of glial EAAT2, in “Myelin Oligodendrocyte Glycoprotein” (MOG)-induced EAE. Ceftriaxone profoundly ameliorated the clinical course of murine MOG-induced EAE both under preventive and therapeutic regimens. However, ceftriaxone had impact neither on EAAT2 protein expression levels in several brain areas, nor on the radioactive glutamate uptake capacity in a mixed primary glial cell-culture and the glutamate-induced uptake currents in a mammalian cell line mediated by EAAT2. Moreover, the clinical effect of ceftriaxone was preserved in the presence of the EAAT2-specific transport inhibitor, dihydrokainate, while dihydrokainate alone caused an aggravated EAE course. This demonstrates the need for sufficient glial glutamate uptake upon an excitotoxic autoimmune inflammatory challenge of the CNS and a molecular target of ceftriaxone other than the glutamate transporter. Ceftriaxone treatment indirectly hampered T cell proliferation and proinflammatory INFγ and IL17 secretion through modulation of myelin-antigen presentation by antigen-presenting cells (APCs) e.g. dendritic cells (DCs) and reduced T cell migration into the CNS in vivo. Taken together, we demonstrate, that a β-lactam antibiotic attenuates disease course and severity in a model of autoimmune CNS inflammation. The mechanisms are reduction of T cell activation by modulation of cellular antigen-presentation and impairment of antigen-specific T cell migration into the CNS rather than or modulation of central glutamate homeostasis. PMID:18773080
Psychoyos, Delphine; Vinod, K. Yaragudri
2014-01-01
Marijuana is the most widely used illicit drug by pregnant women in the world. In utero exposure to Δ9-tetrahydrocannabinol (Δ9-THC), a major psychoactive component of marijuana, is associated with an increased risk for anencephaly and neurobehavioural deficiencies in the offspring, including attention deficit hyperactivity disorder (ADHD), learning disabilities, and memory impairment. Recent studies demonstrate that the developing central nervous system (CNS) is susceptible to the effects of Δ9-THC and other cannabimimetics, including the psychoactive ingredients of the branded product ‘Spice’ branded products. These exocannabinoids interfere with the function of an endocannabinoid (eCB) system, present in the developing CNS from E12.5 (week 5 of gestation in humans), and required for proliferation, migration, and differentiation of neurons. Until recently, it was not known whether the eCB system is also present in the developing CNS during the initial stages of its ontogeny, i.e. from E7.0 onwards (week 2 of gestation in humans), and if so, whether this system is also susceptible to the action of exocannabinoids. Here, we review current data, in which the presence of an eCB system during the initial stage of development of the CNS is demonstrated. Furthermore, we focus on recent advances on the effect of canabimimetics on early gestation. The relevance of these findings and potential adverse developmental consequences of in utero exposure to ‘high potency’ marijuana, Spice branded products and/or cannabinoid research chemicals during this period is discussed. Finally, we address the implication of these findings in terms of the potential dangers of synthetic cannabinoid use during pregnancy, and the ongoing debate over legalization of marijuana. PMID:22887867
Yi, Hongjie; Huang, Guoyang; Zhang, Kun; Liu, Shulin; Xu, Weigang
2018-05-01
During diving, central nervous system oxygen toxicity may cause drowning or barotrauma, which has dramatically limited the working benefits of hyperbaric oxygen in underwater operations and clinical applications. The aim of this study is to understand the effects and the underlying mechanism of heat shock protein 70 on central nervous system oxygen toxicity and its mechanisms in vivo and in vitro. Rats were given geranylgeranylacetone (800 mg/kg) orally to induce hippocampal expression of heat shock protein 70 and then treated with hyperbaric oxygen. The time course of hippocampal heat shock protein 70 expression after geranylgeranylacetone administration was measured. Seizure latency and first electrical discharge were recorded to evaluate the effects of HSP70 on central nervous system oxygen toxicity. Effects of inhibitors of nitric oxide synthase and nuclear factor-κB on the seizure latencies and changes in nitric oxide, nitric oxide synthase, and nuclear factor-κB levels in the hippocampus tissues were examined. In cell experiments, hippocampal neurons were transfected with a virus vector carrying the heat shock protein 70 gene (H3445) before hyperbaric oxygen treatment. Cell viability, heat shock protein 70 expression, nitric oxide, nitric oxide synthase, and NF-κB levels in neurons were measured. The results showed that heat shock protein 70 expression significantly increased and peaked at 48 h after geranylgeranylacetone was given. Geranylgeranylacetone prolonged the first electrical discharge and seizure latencies, which was reversed by neuronal nitric oxide synthase, inducible nitric oxide synthase and NF-κB inhibitors. Nitric oxide, nitric oxide synthase, and inducible nitric oxide synthase levels in the hippocampus were significantly increased after hyperbaric oxygen exposure, but reversed by geranylgeranylacetone, while heat shock protein 70 inhibitor quercetin could inhibit this effect of geranylgeranylacetone. In the in vitro study, heat shock protein 70-overexpression decreased the nitric oxide, nitric oxide synthase, and inducible nitric oxide synthase levels as well as the cytoplasm/nucleus ratio of nuclear factor-κB and protected neurons from hyperbaric oxygen-induced cell injury. In conclusion, overexpression of heat shock protein 70 in hippocampal neurons may protect rats from central nervous system oxygen toxicity by suppression of neuronal nitric oxide synthase and inducible nitric oxide synthase-mediated nitric oxide production and translocation of nuclear factor-κB to nucleus. Impact statement Because the pathogenesis of central nervous system oxygen toxicity (CNS-OT) remains unclear, there are few interventions available. To develop an efficient strategy against CNS-OT, it is necessary to understand its pathogenesis and in particular, the relevant key factors involved. This study examined the protective effects of heat shock protein 70 (HSP70) on CNS-OT via in vivo and in vitro experiments. Our results indicated that overexpression of HSP70 in hippocampal neurons may protect rats from CNS-OT by suppression of nNOS and iNOS-mediated NO production and the activation of NF-κB. These findings contribute to clarification of the role of HSP70 in CNS-OT and provide us a potential novel target to prevent CNS-OT. Clarification of the involvement of NO, NOS and NF-κB provides new insights into the mechanism of CNS-OT and may help us to develop new approach against it by interfering these molecules.
The endocannabinoid system and the brain.
Mechoulam, Raphael; Parker, Linda A
2013-01-01
The psychoactive constituent in cannabis, Δ(9)-tetrahydrocannabinol (THC), was isolated in the mid-1960s, but the cannabinoid receptors, CB1 and CB2, and the major endogenous cannabinoids (anandamide and 2-arachidonoyl glycerol) were identified only 20 to 25 years later. The cannabinoid system affects both central nervous system (CNS) and peripheral processes. In this review, we have tried to summarize research--with an emphasis on recent publications--on the actions of the endocannabinoid system on anxiety, depression, neurogenesis, reward, cognition, learning, and memory. The effects are at times biphasic--lower doses causing effects opposite to those seen at high doses. Recently, numerous endocannabinoid-like compounds have been identified in the brain. Only a few have been investigated for their CNS activity, and future investigations on their action may throw light on a wide spectrum of brain functions.
NASA Astrophysics Data System (ADS)
Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.
2004-01-01
Exposure to heavy particles can affect the functioning of the central nervous system (CNS), particularly the dopaminergic system. In turn, the radiation-induced disruption of dopaminergic function affects a variety of behaviors that are dependent upon the integrity of this system, including motor behavior (upper body strength), amphetamine (dopamine)-mediated taste aversion learning, and operant conditioning (fixed-ratio bar pressing). Although the relationships between heavy particle irradiation and the effects of exposure depend, to some extent, upon the specific behavioral or neurochemical endpoint under consideration, a review of the available research leads to the hypothesis that the endpoints mediated by the CNS have certain characteristics in common. These include: (1) a threshold, below which there is no apparent effect; (2) the lack of a dose-response relationship, or an extremely steep dose-response curve, depending on the particular endpoint; and (3) the absence of recovery of function, such that the heavy particle-induced behavioral and neural changes are present when tested up to one year following exposure. The current report reviews the data relevant to the degree to which these characteristics are common to neurochemical and behavioral endpoints that are mediated by the effects of exposure to heavy particles on CNS activity.
NASA Technical Reports Server (NTRS)
Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.
2004-01-01
Exposure to heavy particles can affect the functioning of the central nervous system (CNS), particularly the dopaminergic system. In turn, the radiation-induced disruption of dopaminergic function affects a variety of behaviors that are dependent upon the integrity of this system, including motor behavior (upper body strength), amphetamine (dopamine)-mediated taste aversion learning, and operant conditioning (fixed-ratio bar pressing). Although the relationships between heavy particle irradiation and the effects of exposure depend, to some extent, upon the specific behavioral or neurochemical endpoint under consideration, a review of the available research leads to the hypothesis that the endpoints mediated by the CNS have certain characteristics in common. These include: (1) a threshold, below which there is no apparent effect; (2) the lack of a dose-response relationship, or an extremely steep dose-response curve, depending on the particular endpoint; and (3) the absence of recovery of function, such that the heavy particle-induced behavioral and neural changes are present when tested up to one year following exposure. The current report reviews the data relevant to the degree to which these characteristics are common to neurochemical and behavioral endpoints that are mediated by the effects of exposure to heavy particles on CNS activity. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Alcohol intake alters immune responses and promotes CNS viral persistence in mice.
Loftis, Jennifer M; Taylor, Jonathan; Raué, Hans-Peter; Slifka, Mark K; Huang, Elaine
2016-10-01
Chronic hepatitis C virus (HCV) infection leads to progressive liver disease and is associated with a variety of extrahepatic effects, including central nervous system (CNS) damage and neuropsychiatric impairments. Alcohol abuse can exacerbate these adverse effects on brain and behavior, but the molecular mechanisms are not well understood. This study investigated the role of alcohol in regulating viral persistence and CNS immunopathology in mice infected with lymphocytic choriomeningitis virus (LCMV), a model for HCV infections in humans. Female and male BALB/c mice (n=94) were exposed to alcohol (ethanol; EtOH) and water (or water only) using a two-bottle choice paradigm, followed one week later by infection with either LCMV clone 13 (causes chronic infection similar to chronic HCV), LCMV Armstrong (causes acute infection), or vehicle. Mice were monitored for 60days post-infection and continued to receive 24-h access to EtOH and water. Animals infected with LCMV clone 13 drank more EtOH, as compared to those with an acute or no viral infection. Six weeks after infection with LCMV clone 13, mice with EtOH exposure evidenced higher serum viral titers, as compared to mice without EtOH exposure. EtOH intake was also associated with reductions in virus-specific CD8(+) T cell frequencies (particularly CD11a(hi) subsets) and evidence of persistent CNS viremia in chronically infected mice. These findings support the hypothesis that EtOH use and chronic viral infection can result in combined toxic effects accelerating CNS damage and neuropsychiatric dysfunction and suggest that examining the role of EtOH in regulating viral persistence and CNS immunopathology in mice infected with LCMV can lead to a more comprehensive understanding of comorbid alcohol use disorder and chronic viral infection. Published by Elsevier B.V.
Chancellor, Michael B; Staskin, David R; Kay, Gary G; Sandage, Bobby W; Oefelein, Michael G; Tsao, Jack W
2012-04-01
Overactive bladder (OAB) is a common condition, particularly in the elderly. Anticholinergic agents are the mainstay of pharmacological treatment of OAB; however, many anticholinergics can cross the blood-brain barrier (BBB) and may cause central nervous system (CNS) effects, including cognitive deficits, which can be especially detrimental in older patients. Many anticholinergics have the potential to cause adverse CNS effects due to muscarinic (M(1)) receptor binding in the brain. Of note, permeability of the BBB increases with age and can also be affected by trauma, stress, and some diseases and medications. Passive crossing of a molecule across the BBB into the brain is dependent upon its physicochemical properties. Molecular characteristics that hinder passive BBB penetration include a large molecular size, positive or negative ionic charge at physiological pH, and a hydrophilic structure. Active transport across the BBB is dependent upon protein-mediated transporter systems, such as that of permeability-glycoprotein (P-gp), which occurs only for P-gp substrates, such as trospium chloride, darifenacin and fesoterodine. Reliance on active transport can be problematic since genetic polymorphisms of P-gp exist, and many commonly used drugs and even some foods are P-gp inhibitors or are substrates themselves and, due to competition, can reduce the amount of the drug that is actively transported out of the CNS. Therefore, for drugs that are preferred not to cross into the CNS, such as potent anticholinergics intended for the bladder, it is optimal to have minimal passive crossing of the BBB, although it may also be beneficial for the drug to be a substrate for an active efflux transport system. Anticholinergics demonstrate different propensities to cross the BBB. Darifenacin, fesoterodine and trospium chloride are substrates for P-gp and, therefore, are actively transported away from the brain. In addition, trospium chloride has not been detected in cerebrospinal fluid assays and does not appear to have significant CNS penetration. This article reviews the properties of anticholinergics that affect BBB penetration and active transport out of the CNS, discusses issues of increased BBB permeability in patients with OAB, and examines the clinical implications of BBB penetration on adverse events associated with anticholinergics.
Agbedanu, Prince N; Anderson, Kristi L; Brewer, Matthew T; Carlson, Steve A
2015-09-15
Meningeal worms (Parelaphostrongylus tenuis) are a common malady of alpacas, often refractory to conventional treatments. Ivermectin is a very effective anthelmintic used against a variety of parasites but this drug is not consistently effective against alpaca meningeal worms once the parasite has gained access to the CNS, even if used in a protracted treatment protocol. Ivermectin is not effective against clinical cases of P. tenuis, raising the possibility that the drug is not sustained at therapeutic concentrations in the central nervous system (CNS). A specific protein (designated as p-glycoprotein (PGP)) effluxes ivermectin from the brain at the blood-brain barrier, thus hampering the maintenance of therapeutic concentrations of the drug in the CNS. Minocycline is a synthetic tetracycline antibiotic with an excellent safety profile in all animals tested to date. Minocycline has three unique characteristics that could be useful for treating meningeal worms in conjunction with ivermectin. First, minocycline is an inhibitor of PGP at the blood-brain barrier and this inhibition could maintain effective concentrations of ivermectin in the brain and meninges. Second, minocycline protects neurons in vivo through a number of different mechanisms and this neuroprotection could alleviate the potential untoward neurologic effects of meningeal worms. Third, minocycline is a highly lipid-soluble drug, thus facilitating efficient brain penetration. We thus hypothesized that minocycline will maintain ivermectin, or a related avermectin approved in ruminants (abamectin, doramectin, or eprinomectin), in the alpaca CNS. To test this hypothesis, we cloned the gene encoding the alpaca PGP, expressed the alpaca PGP in a heterologous expression system involving MDCK cells, and measured the ability of minocycline to inhibit the efflux of avermectins from the MDCK cells; doxycycline was used as a putative negative control (based on studies in other species). Our in vitro studies surprisingly revealed that doxycycline was effective at inhibiting the efflux of ivermectin and doramectin (minocycline had no effect). These two avermectins, in combination with doxycycline, should be considered when treating meningeal worms in alpacas. Copyright © 2015 Elsevier B.V. All rights reserved.
[Central nervous system relapse in diffuse large B cell lymphoma: Risk factors].
Sancho, Juan-Manuel; Ribera, Josep-Maria
2016-01-15
Central nervous system (CNS) involvement by lymphoma is a complication associated, almost invariably, with a poor prognosis. The knowledge of the risk factors for CNS relapse is important to determine which patients could benefit from prophylaxis. Thus, patients with very aggressive lymphomas (such as lymphoblastic lymphoma or Burkitt's lymphoma) must systematically receive CNS prophylaxis due to a high CNS relapse rate (25-30%), while in patients with indolent lymphoma (such as follicular lymphoma or marginal lymphoma) prophylaxis is unnecessary. However, the question about CNS prophylaxis in patients with diffuse large B-cell lymphoma (DLBCL), the most common type of lymphoma, remains controversial. The information available is extensive, mainly based on retrospective and heterogeneous studies. There seems that immunochemotherapy based on rituximab reduces the CNS relapse rate. On the other hand, patients with increased serum lactate dehydrogenase plus more than one extranodal involvement seem to have a higher risk of CNS relapse, but a prophylaxis strategy based only on the presence of these 2 factors does not prevent all CNS relapses. Patients with involvement of testes or breast have high risk of CNS relapse and prophylaxis is mandatory. Finally, CNS prophylaxis could be considered in patients with DLBCL and renal or epidural space involvement, as well as in those cases with MYC rearrangements, although additional studies are necessary. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.
Zhao, Liping; Kim, Ki Woo; Ikeda, Yayoi; Anderson, Kimberly K; Beck, Laurel; Chase, Stephanie; Tobet, Stuart A; Parker, Keith L
2008-06-01
Steroidogenic factor 1 (SF-1) plays key roles in adrenal and gonadal development, expression of pituitary gonadotropins, and development of the ventromedial hypothalamic nucleus (VMH). If kept alive by adrenal transplants, global knockout (KO) mice lacking SF-1 exhibit delayed-onset obesity and decreased locomotor activity. To define specific roles of SF-1 in the VMH, we used the Cre-loxP system to inactivate SF-1 in a central nervous system (CNS)-specific manner. These mice largely recapitulated the VMH structural defect seen in mice lacking SF-1 in all tissues. In multiple behavioral tests, mice with CNS-specific KO of SF-1 had significantly more anxiety-like behavior than wild-type littermates. The CNS-specific SF-1 KO mice had diminished expression or altered distribution in the mediobasal hypothalamus of several genes whose expression has been linked to stress and anxiety-like behavior, including brain-derived neurotrophic factor, the type 2 receptor for CRH (Crhr2), and Ucn 3. Moreover, transfection and EMSAs support a direct role of SF-1 in Crhr2 regulation. These findings reveal important roles of SF-1 in the hypothalamic expression of key regulators of anxiety-like behavior, providing a plausible molecular basis for the behavioral effect of CNS-specific KO of this nuclear receptor.
Loizzo, Joseph J
2016-06-01
Meditation research has begun to clarify the brain effects and mechanisms of contemplative practices while generating a range of typologies and explanatory models to guide further study. This comparative review explores a neglected area relevant to current research: the validity of a traditional central nervous system (CNS) model that coevolved with the practices most studied today and that provides the first comprehensive neural-based typology and mechanistic framework of contemplative practices. The subtle body model, popularly known as the chakra system from Indian yoga, was and is used as a map of CNS function in traditional Indian and Tibetan medicine, neuropsychiatry, and neuropsychology. The study presented here, based on the Nalanda tradition, shows that the subtle body model can be cross-referenced with modern CNS maps and challenges modern brain maps with its embodied network model of CNS function. It also challenges meditation research by: (1) presenting a more rigorous, neural-based typology of contemplative practices; (2) offering a more refined and complete network model of the mechanisms of contemplative practices; and (3) serving as an embodied, interoceptive neurofeedback aid that is more user friendly and complete than current teaching aids for clinical and practical applications of contemplative practice. © 2016 New York Academy of Sciences.
Gao, Wei; Liu, Yongchun; Jing, Guixia; Li, Ke; Zhao, Yuan; Sha, Baoyong; Wang, Qiang; Wu, Daocheng
2017-01-01
A novel strategy of rapid transport across the blood-brain barrier (BBB) via phosphatidylethanolamine-triggered release is developed through both molecular dynamics (MD) simulation and experiments. Hydrophobic drugs, namely, propofol, iodine, and 1,1'-dioctadecyltetramethyl indotricarbocyanine iodide, were loaded with propionylated amylose helix (HLPAH) nanoclusters to form PLPAH, ILPAH, and DLPAH nanoclusters, respectively. These clusters were subjected to MD simulation, structure measurement, in vitro triggered study, in vivo DLPAH imaging, and analysis of PLPAH sedative effects on rabbits. Results indicated that HLPAH nanoclusters were initially located on the BBB, and the helix was unfolded to release the loaded hydrophobic drugs. The released drugs crossed the BBB and performed their functions in the central nervous system (CNS) through concentration gradient and hydrophobicity. This mechanism of HLPAH across the BBB featured high membrane permeability and specificity, rapid onset, short maintenance, rapid recovery, and lower dosage of drugs. Hence, this novel strategy is very meaningful for the development of CNS drug carriers and the proposed system could be used to improve the therapeutic effects of CNS diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
C-peptide and Central Nervous System Complications in Diabetes
Li, Zhen-guo
2004-01-01
Substantial evidence collected from clinical data and experimental studies has indicated that CNS is not spared from diabetes complications. Impairments in CNS function are well documented in both type 1 and type 2 diabetic patients as well as in various animal models of diabetes, in terms of alterations in cognition, neuropsychology, neurobehavior, electrophysiology, structure, neurochemistry and apoptotic activities. These data suggest that primary diabetic encephalopathy exists as a definable diabetic complication. The mechanisms underlying this CNS complication are not clear. Experimental studies have suggested that neuronal apoptosis may play an important role in neuronal loss and impaired cognitive function. In diabetes multiple factors are responsible for neuronal apoptosis, such as a perturbed IGF system, hyperglycemia and the aging process itself. Recent data suggest that insulin/C-peptide deficiency may exert an eminent role. Administration of C-peptide partially corrects the perturbed IGF system in the brain and prevents neuronal apoptosis in hippocampus of type 1 diabetes. In neuroblastoma SH-SY5Y cells C-peptide provides a dose-dependent stimulation on cell proliferation and an anti-apoptotic effect as well. These studies provide a basis for administration of C-peptide as a potentially effective therapy for type 1 diabetes. PMID:15198373
Occupational Neurological Disorders in Korea
Kang, Seong-Kyu
2010-01-01
The purpose of this article was to provide a literature review of occupational neurological disorders and related research in Korea, focusing on chemical hazards. We reviewed occupational neurological disorders investigated by the Occupational Safety and Health Research Institute of Korean Occupational Safety and Health Agency between 1992 and 2009, categorizing them as neurological disorders of the central nervous system (CNS), of the peripheral nervous system (PNS) or as neurodegenerative disorders. We also examined peer-reviewed journal articles related to neurotoxicology, published from 1984 to 2009. Outbreaks of occupational neurological disorder of the CNS due to inorganic mercury and carbon disulfide poisoning had helped prompt the development of the occupational safety and health system of Korea. Other major neurological disorders of the CNS included methyl bromide intoxication and chronic toxic encephalopathy. Most of the PNS disorders were n-hexane-induced peripheral neuritis, reported from the electronics industry. Reports of manganese-induced Parkinsonism resulted in the introduction of neuroimaging techniques to occupational medicine. Since the late 1990s, the direction of research has been moving toward degenerative disorder and early effect of neurotoxicity. To understand the early effects of neurotoxic chemicals in the preclinical stage, more follow-up studies of a longer duration are necessary. PMID:21258587
Ten Kulve, Jennifer S; Veltman, Dick J; van Bloemendaal, Liselotte; Barkhof, Frederik; Drent, Madeleine L; Diamant, Michaela; IJzerman, Richard G
2016-02-01
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are associated with reduced appetite and body weight. We investigated whether these effects could be mediated by the central nervous system (CNS). We performed a randomized crossover study in obese patients with type 2 diabetes (n = 20, mean age 59.3 ± 4.1 years, mean BMI 32 ± 4.7 kg/m(2)), consisting of two periods of 12-week treatment with either liraglutide 1.8 mg or insulin glargine. Using functional MRI, we determined the effects of treatment on CNS responses to viewing food pictures in the fasted condition and 30 min after meal intake. After 12 weeks, the decrease in HbA1c was larger with liraglutide versus insulin glargine (Δ-0.7% vs. -0.2%, P < 0.001). Body weight decreased during liraglutide versus insulin glargine (Δ-3.3 kg vs. 0.8 kg, P < 0.001). After 10 days, patients treated with liraglutide, compared with insulin glargine, showed decreased responses to food pictures in insula and putamen (P ≤ 0.02). In addition, liraglutide enhanced the satiating effect of meal intake on responses in putamen and amygdala (P ≤ 0.05). Differences between liraglutide and insulin glargine were not observed after 12 weeks. Compared with insulin, liraglutide decreased CNS activation significantly only after short-term treatment, suggesting that these effects of GLP-1RA on the CNS may contribute to the induction of weight loss, but not necessarily to its maintenance, in view of the absence of an effect of liraglutide on CNS activation in response to food pictures after longer-term treatment. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Szot, Patricia; Franklin, Allyn; Figlewicz, Dianne P; Beuca, Timothy Petru; Bullock, Kristin; Hansen, Kim; Banks, William A; Raskind, Murray A; Peskind, Elaine R
2017-07-04
Neuroinflammation is proposed to be an important component in the development of several central nervous system (CNS) disorders including depression, Alzheimer's disease, Parkinson's disease, and traumatic brain injury. However, exactly how neuroinflammation leads to, or contributes to, these central disorders is unclear. The objective of the study was to examine and compare the expression of mRNAs for interleukin-6 (IL-6), IL-7, IL-10 and the receptors for IL-6 (IL-6R) and IL-7 (IL-7R) using in situ hybridization in discrete brain regions and in the spleen after multiple injections of 3mg/kg lipopolysaccharide (LPS), a model of neuroinflammation. In the spleen, LPS significantly elevated IL-6 mRNA expression, then IL-10 mRNA, with no effect on IL-7 or IL-7R mRNA, while significantly decreasing IL-6R mRNA expression. In the CNS, LPS administration had the greatest effect on IL-6 and IL-6R mRNA. LPS increased IL-6 mRNA expression only in non-neuronal cells throughout the brain, but significantly elevated IL-6R mRNA in neuronal populations, where observed, except the cerebellum. LPS resulted in variable effects on IL-10 mRNA, and had no effect on IL-7 or IL-7R mRNA expression. These studies indicate that LPS-induced neuroinflammation has substantial but variable effects on the regional and cellular patterns of CNS IL-6, IL-7 and IL-10, and for IL-6R and IL-7R mRNA expression. It is apparent that administration of LPS can affect non-neuronal and neuronal cells in the brain. Further research is required to determine how CNS inflammatory changes associated with IL-6, IL-10 and IL-6R could in turn contribute to the development of CNS neurological disorders. Published by Elsevier Ltd.
Campbell, Jacquelyn C; Anderson, Jocelyn C; McFadgion, Akosoa; Gill, Jessica; Zink, Elizabeth; Patch, Michelle; Callwood, Gloria; Campbell, Doris
2018-06-01
Abused women often report a wide range of physical and psychological symptoms that present challenges to providers. Specifically, injuries to the head or strangulation, may initiate neurological changes that contribute to central nervous system (CNS) symptoms. These symptoms are often attributed to mental health diagnoses in this population. The purpose of this analysis is to examine the prevalence of and associations between reported probable traumatic brain injury (TBI) and CNS symptoms in a sample of women of African descent. A convenience sample of 901 women of African descent from Baltimore, MD and the US Virgin Islands, aged 18-55, was used to examine relationships among self-reported intimate partner violence (IPV), TBI, and CNS symptoms. Data were collected via Audio Computer-Assisted Self-Interview. Abused women who experienced a probable TBI were more likely to report CNS symptoms than those who did not. When controlling for demographics, IPV, and mental health symptoms, probable TBI was associated with a two point increase in CNS symptom frequency score (95% confidence interval: 1.55-2.93, p < 0.001). Women who reported both probable TBI and IPV were more likely than their abused counterparts who reported no TBI to report CNS symptoms. This relationship held true even when controlling for symptoms of depression and post-traumatic stress disorder (PTSD). Clinicians working with women should be aware of TBI as a possible etiology for symptoms in abused women. Appropriate screening and treatment protocols should be designed and implemented across medical settings to improve outcomes for women who have experienced IPV and TBI.
Crichton, Siobhan; Cooper, Gill; Lupton, David J.; Eddleston, Michael; Vale, J. Allister; Thompson, John P.; Thomas, Simon H. L.
2016-01-01
Aims Case reports and small case series suggest increased central nervous system (CNS) toxicity, especially convulsions, after overdose of mefenamic acid, compared with other nonsteroidal anti‐inflammatory drugs (NSAIDs), although comparative epidemiological studies have not been conducted. The current study compared rates of CNS toxicity after overdose between mefenamic acid, ibuprofen, diclofenac and naproxen, as reported in telephone enquiries to the UK National Poisons Information Service (NPIS). Methods NPIS telephone enquiries related to the four NSAIDs, received between January 2007 and December 2013, were analysed, comparing the frequency of reported CNS toxicity (convulsions, altered conscious level, agitation or aggression, confusion or disorientation) using multivariable logistic regression. Results Of 22 937 patient‐specific telephone enquiries, 10 398 did not involve co‐ingestion of other substances (mefenamic acid 461, ibuprofen 8090, diclofenac 1300, naproxen 547). Patients taking mefenamic acid were younger and more commonly female than those using other NSAIDs. Those ingesting mefenamic acid were more likely to experience CNS toxicity than those ingesting the other NSAIDs combined [adjusted odds ratio (OR) 7.77, 95% confidence interval (CI) 5.68, 10.62], especially convulsions (adjusted OR 81.5, 95% CI 27.8, 238.8). Predictors of CNS toxicity included reported dose and age, but not gender. Conclusions Mefenamic acid overdose is associated with a much larger and dose‐related risk of CNS toxicity, especially convulsions, compared with overdose of other NSAIDs. The benefit–risk profile of mefenamic acid should now be re‐evaluated in light of effective and less toxic alternatives. PMID:27785820
CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery
2012-01-01
Background Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). In the murine experimental autoimmune encephalomyelitis (EAE) model of MS, T regulatory (Treg) cell therapy has proved to be beneficial, but generation of stable CNS-targeting Tregs needs further development. Here, we propose gene engineering to achieve CNS-targeting Tregs from naïve CD4 cells and demonstrate their efficacy in the EAE model. Methods CD4+ T cells were modified utilizing a lentiviral vector system to express a chimeric antigen receptor (CAR) targeting myelin oligodendrocyte glycoprotein (MOG) in trans with the murine FoxP3 gene that drives Treg differentiation. The cells were evaluated in vitro for suppressive capacity and in C57BL/6 mice to treat EAE. Cells were administered by intranasal (i.n.) cell delivery. Results The engineered Tregs demonstrated suppressive capacity in vitro and could efficiently access various regions in the brain via i.n cell delivery. Clinical score 3 EAE mice were treated and the engineered Tregs suppressed ongoing encephalomyelitis as demonstrated by reduced disease symptoms as well as decreased IL-12 and IFNgamma mRNAs in brain tissue. Immunohistochemical markers for myelination (MBP) and reactive astrogliosis (GFAP) confirmed recovery in mice treated with engineered Tregs compared to controls. Symptom-free mice were rechallenged with a second EAE-inducing inoculum but remained healthy, demonstrating the sustained effect of engineered Tregs. Conclusion CNS-targeting Tregs delivered i.n. localized to the CNS and efficiently suppressed ongoing inflammation leading to diminished disease symptoms. PMID:22647574
Kamour, Ashraf; Crichton, Siobhan; Cooper, Gill; Lupton, David J; Eddleston, Michael; Vale, J Allister; Thompson, John P; Thomas, Simon H L
2017-04-01
Case reports and small case series suggest increased central nervous system (CNS) toxicity, especially convulsions, after overdose of mefenamic acid, compared with other nonsteroidal anti-inflammatory drugs (NSAIDs), although comparative epidemiological studies have not been conducted. The current study compared rates of CNS toxicity after overdose between mefenamic acid, ibuprofen, diclofenac and naproxen, as reported in telephone enquiries to the UK National Poisons Information Service (NPIS). NPIS telephone enquiries related to the four NSAIDs, received between January 2007 and December 2013, were analysed, comparing the frequency of reported CNS toxicity (convulsions, altered conscious level, agitation or aggression, confusion or disorientation) using multivariable logistic regression. Of 22 937 patient-specific telephone enquiries, 10 398 did not involve co-ingestion of other substances (mefenamic acid 461, ibuprofen 8090, diclofenac 1300, naproxen 547). Patients taking mefenamic acid were younger and more commonly female than those using other NSAIDs. Those ingesting mefenamic acid were more likely to experience CNS toxicity than those ingesting the other NSAIDs combined [adjusted odds ratio (OR) 7.77, 95% confidence interval (CI) 5.68, 10.62], especially convulsions (adjusted OR 81.5, 95% CI 27.8, 238.8). Predictors of CNS toxicity included reported dose and age, but not gender. Mefenamic acid overdose is associated with a much larger and dose-related risk of CNS toxicity, especially convulsions, compared with overdose of other NSAIDs. The benefit-risk profile of mefenamic acid should now be re-evaluated in light of effective and less toxic alternatives. © 2016 The British Pharmacological Society.
Oxygen Toxicity and Special Operations Forces Diving: Hidden and Dangerous
Wingelaar, Thijs T.; van Ooij, Pieter-Jan A. M.; van Hulst, Rob A.
2017-01-01
In Special Operations Forces (SOF) closed-circuit rebreathers with 100% oxygen are commonly utilized for covert diving operations. Exposure to high partial pressures of oxygen (PO2) could cause damage to the central nervous system (CNS) and pulmonary system. Longer exposure time and higher PO2 leads to faster development of more serious pathology. Exposure to a PO2 above 1.4 ATA can cause CNS toxicity, leading to a wide range of neurologic complaints including convulsions. Pulmonary oxygen toxicity develops over time when exposed to a PO2 above 0.5 ATA and can lead to inflammation and fibrosis of lung tissue. Oxygen can also be toxic for the ocular system and may have systemic effects on the inflammatory system. Moreover, some of the effects of oxygen toxicity are irreversible. This paper describes the pathophysiology, epidemiology, signs and symptoms, risk factors and prediction models of oxygen toxicity, and their limitations on SOF diving. PMID:28790955
Gadgeel, Shirish; Shaw, Alice T; Barlesi, Fabrice; Crinò, Lucio; Yang, James Chih-Hsin; Dingemans, Anne-Marie C; Kim, Dong-Wan; de Marinis, Filippo; Schulz, Mathias; Liu, Shiyao; Gupta, Ravindra; Kotb, Ahmed; Ou, Sai-Hong Ignatius
2018-01-01
We evaluated the cumulative incidence rate (CIR) of central nervous system (CNS) and non-CNS progression in alectinib-treated patients with anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer (NSCLC) to determine the extent to which alectinib may treat or control CNS disease. Patients with crizotinib-pretreated locally advanced or metastatic disease received alectinib 600 mg orally twice daily in two phase II trials. All patients underwent baseline imaging and regular centrally reviewed scans. At 24 months, the CIR for CNS progression was lower in patients without vs with baseline CNS metastases (8.0 vs 43.9%). Patients with baseline CNS disease and prior radiotherapy had a higher CIR of CNS progression than radiotherapy-naive patients (50.5 vs 27.4%) and a lower CIR of non-CNS progression (25.8 vs 42.5%). Adverse events leading to withdrawal occurred in 5.9% and 6.7% of patients with and without baseline CNS metastases, respectively. This analysis indicates a potential role for alectinib in controlling and preventing CNS metastases.
Lemma, Siria A; Kuusisto, Milla; Haapasaari, Kirsi-Maria; Sormunen, Raija; Lehtinen, Tuula; Klaavuniemi, Tuula; Eray, Mine; Jantunen, Esa; Soini, Ylermi; Vasala, Kaija; Böhm, Jan; Salokorpi, Niina; Koivunen, Petri; Karihtala, Peeter; Vuoristo, Jussi; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi
2017-01-01
Abstract Central nervous system (CNS) relapse is a devastating complication that occurs in about 5% of diffuse large B-cell lymphoma (DLBCL) patients. Currently, there are no predictive biological markers. We wanted to study potential biomarkers of CNS tropism that play a role in adhesion, migration and/or in the regulation of inflammatory responses. The expression levels of ITGA10, CD44, PTEN, cadherin-11, CDH12, N-cadherin, P-cadherin, lactoferrin and E-cadherin were studied with IHC and IEM. GEP was performed to see whether found expressional changes are regulated at DNA/RNA level. IHC included 96 samples of primary CNS lymphoma (PCNSL), secondary CNS lymphoma (sCNSL) and systemic DLBCL (sDLBCL). IEM included two PCNSL, one sCNSL, one sDLBCL and one reactive lymph node samples. GEP was performed on two DLBCL samples, one with and one without CNS relapse. CNS disease was associated with enhanced expression of cytoplasmic and membranous ITGA10 and nuclear PTEN (P < 0.0005, P = 0.002, P = 0.024, respectively). sCNSL presented decreased membranous CD44 and nuclear and cytoplasmic cadherin-11 expressions (P = 0.001, P = 0.006, P = 0.048, respectively). In PCNSL lactoferrin expression was upregulated (P < 0.0005). IEM results were mainly supportive of the IHC results. In GEP CD44, cadherin-11, lactoferrin and E-cadherin were under-expressed in CNS disease. Our results are in line with previous studies, where gene expressions in extracellular matrix and adhesion-related pathways are altered in CNS lymphoma. This study gives new information on the DLBCL CNS tropism. If further verified, these markers might become useful in predicting CNS relapses. PMID:28854563
The role of microbiome in central nervous system disorders
Wang, Yan; Kasper, Lloyd H.
2014-01-01
Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders. PMID:24370461
Chaverra, Marta; George, Lynn; Thorne, Julian; Grindeland, Andrea; Ueki, Yumi; Eiger, Steven; Cusick, Cassie; Babcock, A. Michael; Carlson, George A.
2017-01-01
ABSTRACT Hereditary sensory and autonomic neuropathies (HSANs) are a genetically and clinically diverse group of disorders defined by peripheral nervous system (PNS) dysfunction. HSAN type III, known as familial dysautonomia (FD), results from a single base mutation in the gene IKBKAP that encodes a scaffolding unit (ELP1) for a multi-subunit complex known as Elongator. Since mutations in other Elongator subunits (ELP2 to ELP4) are associated with central nervous system (CNS) disorders, the goal of this study was to investigate a potential requirement for Ikbkap in the CNS of mice. The sensory and autonomic pathophysiology of FD is fatal, with the majority of patients dying by age 40. While signs and pathology of FD have been noted in the CNS, the clinical and research focus has been on the sensory and autonomic dysfunction, and no genetic model studies have investigated the requirement for Ikbkap in the CNS. Here, we report, using a novel mouse line in which Ikbkap is deleted solely in the nervous system, that not only is Ikbkap widely expressed in the embryonic and adult CNS, but its deletion perturbs both the development of cortical neurons and their survival in adulthood. Primary cilia in embryonic cortical apical progenitors and motile cilia in adult ependymal cells are reduced in number and disorganized. Furthermore, we report that, in the adult CNS, both autonomic and non-autonomic neuronal populations require Ikbkap for survival, including spinal motor and cortical neurons. In addition, the mice developed kyphoscoliosis, an FD hallmark, indicating its neuropathic etiology. Ultimately, these perturbations manifest in a developmental and progressive neurodegenerative condition that includes impairments in learning and memory. Collectively, these data reveal an essential function for Ikbkap that extends beyond the peripheral nervous system to CNS development and function. With the identification of discrete CNS cell types and structures that depend on Ikbkap, novel strategies to thwart the progressive demise of CNS neurons in FD can be developed. PMID:28167615
A new clinical trial aims to determine whether nivolumab, an immune checkpoint inhibitor, can improve control of cancer for patients with several types of tumors of the central nervous system (CNS). The CNS is composed of the brain and spinal cord and the cause of most CNS tumors in adults is unknown. Learn more...
Peripherally derived FGF21 promotes remyelination in the central nervous system
Kuroda, Mariko; Maedera, Noriko; Koyama, Yoshihisa; Hamaguchi, Machika; Fujimura, Harutoshi; Konishi, Morichika; Itoh, Nobuyuki; Mochizuki, Hideki
2017-01-01
Demyelination in the central nervous system (CNS) leads to severe neurological deficits that can be partially reversed by spontaneous remyelination. Because the CNS is isolated from the peripheral milieu by the blood-brain barrier, remyelination is thought to be controlled by the CNS microenvironment. However, in this work we found that factors derived from peripheral tissue leak into the CNS after injury and promote remyelination in a murine model of toxin-induced demyelination. Mechanistically, leakage of circulating fibroblast growth factor 21 (FGF21), which is predominantly expressed by the pancreas, drives proliferation of oligodendrocyte precursor cells (OPCs) through interactions with β-klotho, an essential coreceptor of FGF21. We further confirmed that human OPCs expressed β-klotho and proliferated in response to FGF21 in vitro. Vascular barrier disruption is a common feature of many CNS disorders; thus, our findings reveal a potentially important role for the peripheral milieu in promoting CNS regeneration. PMID:28825598
Medicinal Chemical Properties of Successful Central Nervous System Drugs
Pajouhesh, Hassan; Lenz, George R.
2005-01-01
Summary: Fundamental physiochemical features of CNS drugs are related to their ability to penetrate the blood-brain barrier affinity and exhibit CNS activity. Factors relevant to the success of CNS drugs are reviewed. CNS drugs show values of molecular weight, lipophilicity, and hydrogen bond donor and acceptor that in general have a smaller range than general therapeutics. Pharmacokinetic properties can be manipulated by the medicinal chemist to a significant extent. The solubility, permeability, metabolic stability, protein binding, and human ether-ago-go-related gene inhibition of CNS compounds need to be optimized simultaneously with potency, selectivity, and other biological parameters. The balance between optimizing the physiochemical and pharmacokinetic properties to make the best compromises in properties is critical for designing new drugs likely to penetrate the blood brain barrier and affect relevant biological systems. This review is intended as a guide to designing CNS therapeutic agents with better drug-like properties. PMID:16489364
Ahmed, Seemin Seher; Li, Huapeng; Cao, Chunyan; Sikoglu, Elif M; Denninger, Andrew R; Su, Qin; Eaton, Samuel; Liso Navarro, Ana A; Xie, Jun; Szucs, Sylvia; Zhang, Hongwei; Moore, Constance; Kirschner, Daniel A; Seyfried, Thomas N; Flotte, Terence R; Matalon, Reuben; Gao, Guangping
2013-01-01
Canavan's disease (CD) is a fatal pediatric leukodystrophy caused by mutations in aspartoacylase (AspA) gene. Currently, there is no effective treatment for CD; however, gene therapy is an attractive approach to ameliorate the disease. Here, we studied progressive neuropathology and gene therapy in short-lived (≤1 month) AspA−/− mice, a bona-fide animal model for the severest form of CD. Single intravenous (IV) injections of several primate-derived recombinant adeno-associated viruses (rAAVs) as late as postnatal day 20 (P20) completely rescued their early lethality and alleviated the major disease symptoms, extending survival in P0-injected rAAV9 and rAAVrh8 groups to as long as 2 years thus far. We successfully used microRNA (miRNA)-mediated post-transcriptional detargeting for the first time to restrict therapeutic rAAV expression in the central nervous system (CNS) and minimize potentially deleterious effects of transgene overexpression in peripheral tissues. rAAV treatment globally improved CNS myelination, although some abnormalities persisted in the content and distribution of myelin-specific and -enriched lipids. We demonstrate that systemically delivered and CNS-restricted rAAVs can serve as efficacious and sustained gene therapeutics in a model of a severe neurodegenerative disorder even when administered as late as P20. PMID:23817205
Ghaderi, Sara; Engeland, Anders; Gunnes, Maria Winther; Moster, Dag; Ruud, Ellen; Syse, Astri; Wesenberg, Finn; Bjørge, Tone
2016-02-01
The number of young cancer survivors has increased over the past few decades due to improvement in treatment regimens, and understanding of long-term effects among the survivors has become even more important. Educational achievements and choice of educational fields were explored here. Five-year cancer survivors born in Norway during 1965-1985 (diagnosed <19 years) were included in our analysis by linking Norwegian population-based registries. Cox regression was applied to study the educational attainment among survivors of central nervous system (CNS) tumours, those assumed to have received CNS-directed therapy, and other cancer survivors relative to the cancer-free population. Logistic regression was used to compare the choice of educational fields between the cancer survivors at undergraduate and graduate level and the cancer-free population. Overall, a lower proportion of the cancer survivors completed intermediate (67 vs. 70 %), undergraduate (31 vs. 35 %) and graduate education (7 vs. 9 %) compared with the cancer-free population. Deficits in completion of an educational level were mainly observed among survivors of CNS-tumours and those assumed to have received CNS-directed therapy. Choices of educational fields among cancer survivors were in general similar with the cancer-free population at both undergraduate and graduate levels. Survivors of CNS-tumours and those assumed to have received CNS-directed therapy were at increased risk for educational impairments compared with the cancer-free population. Choices of educational fields were in general similar. Careful follow-up of the survivors of CNS-tumours and those assumed to have received CNS-directed therapy is important at each level of education.
Wessel, Lisa; Olbrich, Laura; Brand-Saberi, Beate
2014-01-01
The impact of progesterone on neuronal tissues in the central (CNS) and peripheral (PNS) nervous system is of significant scientific and therapeutic interest. Glial and neuronal cells of vertebrates express steroidogenic enzymes, and are able to synthesize progesterone de novo from cholesterol. Progesterone is described to have neuroprotective, neuroreparative, anti-degenerative, and anti-apoptotic effects in the CNS and the PNS. Thus, the first clinical studies promise new therapeutic options using progesterone in the treatment of patients with traumatic brain injury. Additionally, experimental data from different animal models suggest further positive effects of progesterone on neurological diseases such as cerebral ischemia, peripheral nerve injury and amyothropic lateral sclerosis. In regard to this future clinical use of progesterone, we discuss in this review the underlying physiological principles of progesterone effects in neuronal tissues. Mechanisms leading to morphological reorganizations of neurons in the CNS and PNS affected by progesterone are addressed, with special focus on the actin cytoskeleton. Furthermore, new aspects of a progesterone-dependent regulation of neurosteroidogenesis mediated by the recently described progesterone binding protein PGRMC1 in the nervous system are discussed. PMID:25141866
Lee, JangEun; Ling, Changying; Kosmalski, Michelle M.; Hulseberg, Paul; Schreiber, Heidi A.; Sandor, Matyas; Fabry, Zsuzsanna
2010-01-01
To study whether cerebral mycobacterial infection induces granuloma and protective immunity similar to systemic infection, we intracerebrally infected mice with Mycobacterium bovis bacilli Calmette-Guerin. Granuloma and IFN-γ+CD4+ T cell responses are induced in the central nervous system (CNS) similar to periphery, but the presence of IFN-γIL-17 double-positive CD4+ T cells is unique to the CNS. The major CNS source of TNF-α is microglia, with modest production by CD4+ T cells and macrophage. Protective immunity is accompanied by accumulation of Foxp3+CD4+ T cells and PD-L2+ dendritic cells, suggesting that both inflammatory and anti-inflammatory responses develop in the CNS following mycobacterial infection. PMID:19535154
Ferris, Mark J.; Mactutus, Charles F.; Booze, Rosemarie M.
2008-01-01
There are roughly 30 to 40 million HIV infected individuals in the world as of December 2007, and drug abuse directly contributes to one-third of all HIV-infections in the United States. Antiretroviral therapy has increased the lifespan of HIV-seropositives, but CNS function often remains diminished, effectively decreasing quality of life. A modest proportion may develop HIV-associated dementia, the severity and progression of which is increased with drug abuse. HIV and drugs of abuse in the CNS target subcortical brain structures and DA systems in particular. This toxicity is mediated by a number of neurotoxic mechanisms, including but not limited to, aberrant immune response and oxidative stress. Therefore, novel therapeutic strategies must be developed that can address a wide variety of disparate neurotoxic mechanisms and apoptotic cascades. This paper reviews the research pertaining to the where, what, and how of HIV and cocaine/methamphetamine toxicity in the CNS. Specifically, where these toxins most affect the brain, what aspects of the virus are neurotoxic, and how these toxins mediate neurotoxicity. PMID:18430470
Risk of defeats in the central nervous system during deep space missions.
Kokhan, Viktor S; Matveeva, Marina I; Mukhametov, Azat; Shtemberg, Andrey S
2016-12-01
Space flight factors (SFF) significantly affect the operating activity of astronauts during deep space missions. Gravitational overloads, hypo-magnetic field and ionizing radiation are the main SFF that perturb the normal activity of the central nervous system (CNS). Acute and chronic CNS risks include alterations in cognitive abilities, reduction of motor functions and behavioural changes. Multiple experimental works have been devoted to the SFF effects on integrative functional activity of the brain; however, the model parameters utilized have not always been ideal and consistent. Even less is known regarding the combined effects of these SFF in a real interplanetary mission, for example to Mars. Our review aims to systemize and analyse the last advancements in astrobiology, with a focus on the combined effects of SFF; as well as to discuss on unification of the parameters for ground-based models of deep space missions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pentsova, Elena I.; Shah, Ronak H.; Tang, Jiabin; Boire, Adrienne; You, Daoqi; Briggs, Samuel; Omuro, Antonio; Lin, Xuling; Fleisher, Martin; Grommes, Christian; Panageas, Katherine S.; Meng, Fanli; Selcuklu, S. Duygu; Ogilvie, Shahiba; Distefano, Natalie; Shagabayeva, Larisa; Rosenblum, Marc; DeAngelis, Lisa M.; Viale, Agnes; Berger, Michael F.
2016-01-01
Purpose Cancer spread to the central nervous system (CNS) often is diagnosed late and is unresponsive to therapy. Mechanisms of tumor dissemination and evolution within the CNS are largely unknown because of limited access to tumor tissue. Materials and Methods We sequenced 341 cancer-associated genes in cell-free DNA from cerebrospinal fluid (CSF) obtained through routine lumbar puncture in 53 patients with suspected or known CNS involvement by cancer. Results We detected high-confidence somatic alterations in 63% (20 of 32) of patients with CNS metastases of solid tumors, 50% (six of 12) of patients with primary brain tumors, and 0% (zero of nine) of patients without CNS involvement by cancer. Several patients with tumor progression in the CNS during therapy with inhibitors of oncogenic kinases harbored mutations in the kinase target or kinase bypass pathways. In patients with glioma, the most common malignant primary brain tumor in adults, examination of cell-free DNA uncovered patterns of tumor evolution, including temozolomide-associated mutations. Conclusion The study shows that CSF harbors clinically relevant genomic alterations in patients with CNS cancers and should be considered for liquid biopsies to monitor tumor evolution in the CNS. PMID:27161972
Yoshimori, Mayumi; Imadome, Ken-Ichi; Tomii, Shohei; Yamamoto, Kouhei; Miura, Osamu; Arai, Ayako
2018-01-01
As chronic active Epstein-Barr virus (EBV) infection (CAEBV) progresses, EBV-infected tumor cells invade the central nervous system (CNS). To establish a diagnostic procedure for CNS invasion, we retrospectively analyzed cerebrospinal fluid (CSF) obtained from eight patients. Two patients presented with consciousness disturbance and were diagnosed with CNS invasion based on scan and autopsy results, respectively. The remaining six patients were diagnosed without CNS invasion by clinical findings and scans. In the two patients with CNS invasion, the number of mononuclear cells and the protein concentration were increased, whereas the CSF to serum glucose ratio and the adenosine deaminase concentration were raised. In one of the two patients, however, bacterial meningitis could not be excluded. Cytological examination of CSF demonstrated class 1-3. Notably, the CSF EBV-DNA load was positive in all patients, independent of CNS invasion diagnosis, and the CSF load correlated with that of the peripheral blood. Taken together, this indicates that CSF may lack the specific markers of CNS invasion in CAEBV patients. The CSF EBV-DNA load and the cytological analysis did not reflect CNS invasion; therefore, new biomarkers need to be established.
Goodrich, C; Lechner, R; Slone, W
1989-08-01
Experiments were designed to distinguish between central and peripheral effects on temperature preference and body temperature of drugs injected intraperitoneally (IP) in infant mice ranging in age from 3 to 10 days postpartum. These compared a drug restricted to the periphery ("peripheral" drug) with a drug of similar action that reaches the central nervous system (CNS) as well as the periphery. Two different classes of drugs were utilized to test central versus peripheral actions independently with drugs that have different modes of action: 1-aromatic amino acid inhibitors and serotonin receptor antagonists. Although the decarboxylase inhibitor NSD 1015, which reaches the central nervous system from IP injection, can significantly decrease temperature preference (Tpref), the peripheral inhibitor carbidopa had no significant effects on Tpref or on body temperature (Tb). Furthermore, pretreatment with NSD 1015 prevented the elevation of Tpref produced by the serotonin precursor 5-hydroxytryptophan (5-HTP); however carbidopa pretreatment had no effect on the increased Tpref produced by 5-HTP. In other experiments, the peripheral serotonin antagonist BW 501C was not able to prevent elevated Tpref produced by 5-HTP, although the specific 5-HT2 antagonist pirenperone, which reaches the CNS as well as the periphery, blocks the 5-HTP elevation of Tpref. Taking all of these results together, we conclude that the changes in Tb and Tpref following these treatments require a decarboxylase inhibitor or 5-HT antagonist that reaches the CNS. However, the well known and potent peripheral vasoconstrictor action of serotonin requires that peripheral effects of drugs be considered when manipulations are not restricted to the CNS.
Dutta, Raini; Roy, Sabita
2015-06-20
Persistent systemic infection results in excessive trafficking of peripheral immune cells into the central nervous system (CNS), thereby contributing to sustained neuroinflammation that leads to neurocognitive deficits. In this study, we explored the role of opportunistic systemic infection with Streptococcus pneumoniae in the recruitment of peripheral leukocytes into the CNS and its contribution to HIV-1-associated neurocognitive disorders in opioid-dependent individuals. Wild-type B6CBAF1 (wt), μ-opioid receptor knockout (MORKO), FVB/N luciferase transgenic, and Toll-like receptor 2 and 4 knockout (TLR2KO and TLR4KO) mice were subcutaneously implanted with morphine/placebo pellet followed by HIV-1 Transactivator of transcription (Tat) protein injection intravenously and S. pneumoniae administration intraperitoneally. On postoperative day 5, brains perfused with phosphate-buffered saline were harvested and subjected to immunohistochemistry (for bacterial trafficking and chemokine ligand generation), flow cytometry (for phenotypic characterization of CNS trafficked immune cells), Western blot, and real-time PCR (for ligand expression). Our results show differential leukocyte trafficking of T lymphocytes (CD3+) and inflammatory monocytes (Ly6C+) into the CNS of mice treated with morphine, HIV-1 Tat, and/or S. pneumoniae. In addition, we demonstrate a Trojan horse mechanism for bacterial dissemination across the blood-brain barrier into the CNS by monocytes. Activation of TLRs on microglia induced a chemokine gradient that facilitated receptor-dependent trafficking of peripheral immune cells into the CNS. HIV-1 Tat induced trafficking of Ly6C+ and CD3+ cells into the CNS; infection with S. pneumoniae facilitated infiltration of only T lymphocytes into the CNS. We also observed differential chemokine secretion in the CNS, with CCL5 being the predominant chemokine following HIV-1 Tat treatment, which was potentiated further with morphine. S. pneumoniae alone led to preferential induction of CXCL12. Furthermore, we attributed a regulatory role for TLRs in the chemokine-mediated trafficking of leukocytes into the CNS. Chronic morphine and HIV-1 Tat, in the context of systemic S. pneumoniae co-infection, differentially modulated induction of TLR2/4, which consequently facilitated trafficking of TLR2 → CD3 + CCR5+ and TLR4 → Ly6C+(CCR5+/CXCR4+) immune cells into the CNS. Our murine study suggests that secondary infection in opioid-dependent individuals infected with HIV-1 augments peripheral leukocyte trafficking as a consequence of sustained chemokine gradients in the CNS.
Jeserich, G; Waehneldt, T V
1986-02-01
Peripheral nervous system (PNS) myelin from the rainbow trout (Salmo gairdneri) banded at a density of 0.38 M sucrose. The main myelin proteins consisted of (1) two basic proteins, BPa and BPb (11,500 and 13,000 MW, similar to those of trout central nervous system (CNS) myelin proteins BP1 and BP2), and (2) two glycosylated components, IPb (24,400 MW) and IPc (26,200 MW). IPc comigrated with trout CNS myelin protein IP2 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, whereas trout CNS myelin protein IP1 had a lower molecular weight (23,000). Following two-dimensional separation, however, both IPb and IPc from PNS showed two components; the more acidic component of IPc comigrated with IP2 from CNS. PNS tissue autolysis led to the formation of IPa (20,000 MW), consisting of two components in isoelectric focusing of which again the more acidic one comigrated with the CNS autolysis product IP0. Limited enzymatic digestion of isolated IP proteins from PNS and CNS led to closely similar degradation patterns, being most pronounced in the case of IP2 and IPc. Immunoblotting revealed that all IP components from trout PNS and CNS myelins reacted with antibodies to trout IP1 (CNS) and bovine P0 protein (PNS) whereas antibodies to rat PLP (CNS) were entirely unreactive. All BP components from trout PNS and CNS myelins bound to antibodies against human myelin basic protein. On the basis of these studies trout PNS and CNS myelins contain at least one common IP glycoprotein, whereas other members of the IP myelin protein family appear closely related. In the CNS myelin of trout the IP components appear to replace PLP.(ABSTRACT TRUNCATED AT 250 WORDS)
Downey, Luke A.; Loftis, Jennifer M.
2014-01-01
Central nervous system (CNS) damage associated with psychostimulant dependence may be an ongoing, degenerative process with adverse effects on neuropsychiatric function. However, the molecular mechanisms regarding how altered energy regulation affects immune response in the context of substance use disorders are not fully understood. This review summarizes the current evidence regarding the effects of psychostimulant [particularly 3,4-methylenedioxy-N-methylamphetamine (MDMA) and methamphetamine] exposure on brain energy regulation, immune response, and neuropsychiatric function. Importantly, the neuropsychiatric impairments (e.g., cognitive deficits, depression, and anxiety) that persist following abstinence are associated with poorer treatment outcomes – increased relapse rates, lower treatment retention rates, and reduced daily functioning. Qualifying the molecular changes within the CNS according to the exposure and use patterns of specifically abused substances should inform the development of new therapeutic approaches for addiction treatment. PMID:24485894
Downey, Luke A; Loftis, Jennifer M
2014-03-15
Central nervous system (CNS) damage associated with psychostimulant dependence may be an ongoing, degenerative process with adverse effects on neuropsychiatric function. However, the molecular mechanisms regarding how altered energy regulation affects immune response in the context of substance use disorders are not fully understood. This review summarizes the current evidence regarding the effects of psychostimulant [particularly 3,4-methylenedioxy-N-methylamphetamine (MDMA) and methamphetamine] exposure on brain energy regulation, immune response, and neuropsychiatric function. Importantly, the neuropsychiatric impairments (e.g., cognitive deficits, depression, and anxiety) that persist following abstinence are associated with poorer treatment outcomes - increased relapse rates, lower treatment retention rates, and reduced daily functioning. Qualifying the molecular changes within the CNS according to the exposure and use patterns of specifically abused substances should inform the development of new therapeutic approaches for addiction treatment. Published by Elsevier B.V.
Malecek, Mary-Kate; Petrich, Adam M; Rozell, Shaina; Chu, Benjamin; Trifilio, Steven; Galanina, Natalie; Maurer, Matthew; Farooq, Umar; Link, Brian K; Nowakowski, Grzegorz S; Nabhan, Chadi; Ayed, Ayed O
2017-11-01
Central nervous system (CNS) relapse in non-Hodgkin lymphoma (NHL) is a rare but serious complication that carries a poor prognosis. The use of infusional etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab (EPOCH-R) for frontline treatment of diffuse large B cell lymphoma (DLBCL) is increasing, though little is known about incidence of and risk factors for CNS relapse with this regimen PATIENTS AND METHODS: We completed a chart review of patients with NHL who received EPOCH-R as front line therapy. Data obtained included baseline and treatment characteristics including if patients received CNS directed therapy. We measured overall survival (OS), progression free survival (PFS), and progression to CNS involvement. We identified 223 patients who met the inclusion criteria, 72% had DLBCL. Of all the patients, 5.8% experienced CNS relapse, and 38.6% were treated with CNS prophylaxis. There was no difference in rate of CNS relapse, OS, or PFS between patients who had and had not received CNS prophylaxis. Patients whose serum lactate dehydrogenase was greater than twice the upper limit of normal at diagnosis and those with extranodal disease were significantly more likely to have CNS relapse (P = .0247 and 0.022, respectively) than their counterparts. The rate of CNS relapse in this patient population approaches 6%, not significantly different from reports on those receiving R-CHOP. The results of this study suggest that CNS prophylaxis might be more selectively used among patients treated with EPOCH-R with certain high-risk features. © 2017 Wiley Periodicals, Inc.
Various drug delivery approaches to the central nervous system.
Pasha, Santosh; Gupta, Kshitij
2010-01-01
The presence of the blood-brain barrier (BBB), an insurmountable obstacle, in particular, and other barriers in brain and periphery contribute to hindrance of the successful diagnosis and treatment of a myriad of central nervous system pathologies. This review discusses several strategies adopted to define a rational drug delivery approach to the CNS along with a short description of the strategies implemented by the authors' group to enhance the analgesic activity, a CNS property, of chimeric peptide of Met-enkephalin and FMRFa (YGGFMKKKFMRFa-YFa). Various approaches for drug delivery to the CNS with their beneficial and non-beneficial aspects, supported by an extensive literature survey published recently, up to August 2009. The reader will have the privilege of gaining an understanding of previous as well as recent approaches to breaching the CNS barriers. Among the various strategies discussed, the potential for efficacious CNS drug targeting in future lies either with the non-invasively administered multifunctional nanosystems or these nanosystems without characterstics such as long systemic circulating capability and avoiding reticuloendothelial system scavenging system of the body, endogenous transporters and efflux inhibitors administered by convection-enhanced delivery.
Aging, the Central Nervous System, and Mobility in Older Adults: Interventions.
Varma, Vijay R; Hausdorff, Jeffrey M; Studenski, Stephanie A; Rosano, Caterina; Camicioli, Richard; Alexander, Neil B; Chen, Wen G; Lipsitz, Lewis A; Carlson, Michelle C
2016-11-01
Research suggests that the central nervous system (CNS) and mobility are closely linked. CNS-mediated mobility impairment may represent a potentially new and prevalent syndrome within the older adult populations. Interventions targeting this group may have the potential to improve mobility and cognition and prevent disability. In 2012, the Gerontological Society of America (GSA) and the National Institute on Aging (NIA) sponsored a 3-year conference workshop series, "Aging, the CNS, and Mobility." The goal of this third and final conference was to (i) report on the state of the science of interventions targeting CNS-mediated mobility impairment among community-dwelling older adults and (ii) partnering with the NIA, explore the future of research and intervention design focused on a potentially novel aging syndrome. Evidence was presented in five main intervention areas: (i) pharmacology and diet; (ii) exercise; (iii) electrical stimulation; (iv) sensory stimulation/deprivation; and (v) a combined category of multimodal interventions. Workshop participants identified important gaps in knowledge and key recommendations for future interventions related to recruitment and sample selection, intervention design, and methods to measure effectiveness. In order to develop effective preventive interventions for this prevalent syndrome, multidisciplinary teams are essential particularly because of the complex nature of the syndrome. Additionally, integrating innovative methods into the design of interventions may help researchers better measure complex mechanisms, and finally, the value of understanding the link between the CNS and mobility should be conveyed to researchers across disciplines in order to incorporate cognitive and mobility measurements into study protocols. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Use of Convection-Enhanced Delivery with Liposomal Toxins in Neurooncology
Fiandaca, Massimo S.; Berger, Mitchel S.; Bankiewicz, Krystof S.
2011-01-01
Liposomes have long been effective delivery vehicles for transport of toxins to peripheral cancers. The combination of convection-enhanced delivery (CED) with liposomal toxins was originally proposed to circumvent the limited delivery of intravascular liposomes to the central nervous system (CNS) due to the blood-brain-barrier (BBB). CED offers markedly improved distribution of infused therapeutics within the CNS compared to direct injection or via drug eluting polymers, both of which depend on diffusion for parenchymal distribution. This review examines the basis for improved delivery of liposomal toxins via CED within the CNS, and discusses preclinical and clinical experience with these therapeutic techniques. How CED and liposomal technologies may influence future neurooncologic treatments are also considered. PMID:22069714
IFNβ secreted by microglia mediates clearance of myelin debris in CNS autoimmunity.
Kocur, Magdalena; Schneider, Reiner; Pulm, Ann-Kathrin; Bauer, Jens; Kropp, Sonja; Gliem, Michael; Ingwersen, Jens; Goebels, Norbert; Alferink, Judith; Prozorovski, Timour; Aktas, Orhan; Scheu, Stefanie
2015-04-03
Multiple sclerosis (MS) is a chronic demyelinating disorder of the central nervous system (CNS) leading to progressive neurological disability. Interferon β (IFNβ) represents a standard treatment for relapsing-remitting MS and exogenous administration of IFNβ exhibits protective effects in experimentally induced CNS autoimmunity. Also, genetic deletion of IFNβ in mice leads to an aggravation of disease symptoms in the MS model of experimental autoimmune encephalomyelitis (EAE). However, neither the underlying mechanisms mediating the beneficial effects nor the cellular source of IFNβ have been fully elucidated. In this report, a subpopulation of activated microglia was identified as the major producers of IFNβ in the CNS at the peak of EAE using an IFNβ-fluorescence reporter mouse model. These IFNβ expressing microglia specifically localized to active CNS lesions and were associated with myelin debris in demyelinated cerebellar organotypic slice cultures (OSCs). In response to IFNβ microglia showed an enhanced capacity to phagocytose myelin in vitro and up-regulated the expression of phagocytosis-associated genes. IFNβ treatment was further sufficient to stimulate association of microglia with myelin debris in OSCs. Moreover, IFNβ-producing microglia mediated an enhanced removal of myelin debris when co-transplanted onto demyelinated OSCs as compared to IFNβ non-producing microglia. These data identify activated microglia as the major producers of protective IFNβ at the peak of EAE and as orchestrators of IFNβ-induced clearance of myelin debris.
Interaction between Tat and Drugs of Abuse during HIV-1 Infection and Central Nervous System Disease
Maubert, Monique E.; Pirrone, Vanessa; Rivera, Nina T.; Wigdahl, Brian; Nonnemacher, Michael R.
2016-01-01
In many individuals, drug abuse is intimately linked with HIV-1 infection. In addition to being associated with one-third of all HIV-1 infections in the United States, drug abuse also plays a role in disease progression and severity in HIV-1-infected patients, including adverse effects on the central nervous system (CNS). Specific systems within the brain are known to be damaged in HIV-1-infected individuals and this damage is similar to that observed in drug abuse. Even in the era of anti-retroviral therapy (ART), CNS pathogenesis occurs with HIV-1 infection, with a broad range of cognitive impairment observed, collectively referred to as HIV-1-associated neurocognitive disorders (HAND). A number of HIV-1 proteins (Tat, gp120, Nef, Vpr) have been implicated in the etiology of pathogenesis and disease as a result of the biologic activity of the extracellular form of each of the proteins in a number of tissues, including the CNS, even in ART-suppressed patients. In this review, we have made Tat the center of attention for a number of reasons. First, it has been shown to be synthesized and secreted by HIV-1-infected cells in the CNS, despite the most effective suppression therapies available to date. Second, Tat has been shown to alter the functions of several host factors, disrupting the molecular and biochemical balance of numerous pathways contributing to cellular toxicity, dysfunction, and death. In addition, the advantages and disadvantages of ART suppression with regard to controlling the genesis and progression of neurocognitive impairment are currently under debate in the field and are yet to be fully determined. In this review, we discuss the individual and concerted contributions of HIV-1 Tat, drug abuse, and ART with respect to damage in the CNS, and how these factors contribute to the development of HAND in HIV-1-infected patients. PMID:26793168
Miralles, Pilar; Berenguer, Juan; Ribera, Josep-Maria
2010-09-18
With the widespread use of highly active antiretroviral therapy (HAART) the incidence of systemic non-Hodgkin lymphoma (NHL) in patients infected with the Human Immunodeficiency Virus (HIV) has declined. HAART has also modified the clinical manifestations of these tumors, with a lower frequency of involvement of the central nervous system (CNS). Currently, the frequency of meningeal involvement at the time of diagnosis of NHL in HIV-infected patients varies between 3% and 5%. These figures are similar to those observed among immunocompetent hosts. The diagnosis of meningeal lymphoma relies in clinical findings, imaging techniques, and cerebrospinal fluid (CSF) examination. Flow cytometry is a diagnostic technique with a higher sensitivity and specificity than conventional cytology for the diagnosis of meningeal lymphoma. However, flow cytometry is not yet considered to be the gold standard for this purpose. Until recently, most experts recommended neuromeningeal prophylaxis for all HIV-infected patients with aggressive NHL. However, at present this prophylaxis is recommended only in patients with higher risk of CNS relapse according to different sites of involvement, stage and histological subtype. There are different regimens of prophylaxis and treatment for meningeal lymphoma. The drugs most commonly used for this purpose are methotrexate and cytosine arabinoside. However, there are other alternatives such as liposomal cytosine arabinoside that requires fewer spinal taps for drug administration and whose results are very promising. In summary, in the context of an effective HAART, HIV infected patients with NHL have a frequency of CNS involvement by lymphoma similar to that found among immunocompetent hosts. Consequently, indications and regimens for CNS prophylaxis in HIV-infected patients with NHL should not be different than those employed in the general population. Universal CNS prophylaxis should be reserved for the few patients unable to receive an effective HAART. Copyright © 2009 Elsevier España, S.L. All rights reserved.
Central nervous system infection following allogeneic hematopoietic stem cell transplantation.
Hanajiri, Ryo; Kobayashi, Takeshi; Yoshioka, Kosuke; Watanabe, Daisuke; Watakabe, Kyoko; Murata, Yutaka; Hagino, Takeshi; Seno, Yasushi; Najima, Yuho; Igarashi, Aiko; Doki, Noriko; Kakihana, Kazuhiko; Sakamaki, Hisashi; Ohashi, Kazuteru
2017-03-01
Here, we described the clinical characteristics and outcomes of central nervous system (CNS) infections occurring after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in a single institution over the previous 6 years. Charts of 353 consecutive allogeneic transplant recipients were retrospectively reviewed for CNS infection. A total of 17 cases of CNS infection were identified at a median of 38 days (range, 10-1028 days) after allo-HSCT. Causative pathogens were human herpesvirus-6 (n=6), enterococcus (n=2), staphylococcus (n=2), streptococcus (n=2), varicella zoster virus (n=1), cytomegalovirus (n=1), John Cunningham virus (n=1), adenovirus (n=1), and Toxoplasma gondii (n=1). The cumulative incidence of CNS infection was 4.1% at 1 year and 5.5% at 5 years. Multivariate analysis revealed that high-risk disease status was a risk factor for developing CNS infection (p=.02), and that overall survival at 3 years after allo-HSCT was 33% in patients with CNS infection and 53% in those without CNS infection (p=.04). Copyright © 2016 King Faisal Specialist Hospital & Research Centre. Published by Elsevier Ltd. All rights reserved.
Linden, Jennifer R; Ma, Yinghua; Zhao, Baohua; Harris, Jason Michael; Rumah, Kareem Rashid; Schaeren-Wiemers, Nicole; Vartanian, Timothy
2015-06-16
Clostridium perfringens epsilon toxin (ε-toxin) is responsible for a devastating multifocal central nervous system (CNS) white matter disease in ruminant animals. The mechanism by which ε-toxin causes white matter damage is poorly understood. In this study, we sought to determine the molecular and cellular mechanisms by which ε-toxin causes pathological changes to white matter. In primary CNS cultures, ε-toxin binds to and kills oligodendrocytes but not astrocytes, microglia, or neurons. In cerebellar organotypic culture, ε-toxin induces demyelination, which occurs in a time- and dose-dependent manner, while preserving neurons, astrocytes, and microglia. ε-Toxin specificity for oligodendrocytes was confirmed using enriched glial culture. Sensitivity to ε-toxin is developmentally regulated, as only mature oligodendrocytes are susceptible to ε-toxin; oligodendrocyte progenitor cells are not. ε-Toxin sensitivity is also dependent on oligodendrocyte expression of the proteolipid myelin and lymphocyte protein (MAL), as MAL-deficient oligodendrocytes are insensitive to ε-toxin. In addition, ε-toxin binding to white matter follows the spatial and temporal pattern of MAL expression. A neutralizing antibody against ε-toxin inhibits oligodendrocyte death and demyelination. This study provides several novel insights into the action of ε-toxin in the CNS. (i) ε-Toxin causes selective oligodendrocyte death while preserving all other neural elements. (ii) ε-Toxin-mediated oligodendrocyte death is a cell autonomous effect. (iii) The effects of ε-toxin on the oligodendrocyte lineage are restricted to mature oligodendrocytes. (iv) Expression of the developmentally regulated proteolipid MAL is required for the cytotoxic effects. (v) The cytotoxic effects of ε-toxin can be abrogated by an ε-toxin neutralizing antibody. Our intestinal tract is host to trillions of microorganisms that play an essential role in health and homeostasis. Disruption of this symbiotic relationship has been implicated in influencing or causing disease in distant organ systems such as the brain. Epsilon toxin (ε-toxin)-carrying Clostridium perfringens strains are responsible for a devastating white matter disease in ruminant animals that shares similar features with human multiple sclerosis. In this report, we define the mechanism by which ε-toxin causes white matter disease. We find that ε-toxin specifically targets the myelin-forming cells of the central nervous system (CNS), oligodendrocytes, leading to cell death. The selectivity of ε-toxin for oligodendrocytes is remarkable, as other cells of the CNS are unaffected. Importantly, ε-toxin-induced oligodendrocyte death results in demyelination and is dependent on expression of myelin and lymphocyte protein (MAL). These results help complete the mechanistic pathway from bacteria to brain by explaining the specific cellular target of ε-toxin within the CNS. Copyright © 2015 Linden et al.
Singh, Nisha; Sharpley, Ann L; Emir, Uzay E; Masaki, Charles; Herzallah, Mohammad M; Gluck, Mark A; Sharp, Trevor; Harmer, Catherine J; Vasudevan, Sridhar R; Cowen, Philip J; Churchill, Grant C
2016-01-01
Lithium remains the gold standard in treating bipolar disorder but has unwanted toxicity and side effects. We previously reported that ebselen inhibits inositol monophosphatase (IMPase) and exhibits lithium-like effects in animal models through lowering of inositol. Ebselen has been tested in clinical trials for other disorders, enabling us to determine for the first time the effect of a blood–brain barrier-penetrant IMPase inhibitor on human central nervous system (CNS) function. We now report that in a double-blind, placebo-controlled trial with healthy participants, acute oral ebselen reduced brain myo-inositol in the anterior cingulate cortex, consistent with CNS target engagement. Ebselen decreased slow-wave sleep and affected emotional processing by increasing recognition of some emotions, decreasing latency time in the acoustic startle paradigm, and decreasing the reinforcement of rewarding stimuli. In summary, ebselen affects the phosphoinositide cycle and has CNS effects on surrogate markers that may be relevant to the treatment of bipolar disorder that can be tested in future clinical trials. PMID:26593266
Pharmacological treatment of ADHD and the short and long term effects on sleep.
Huang, Yu-Shu; Tsai, Ming-Horng; Guilleminault, Christian
2011-01-01
There is growing research focusing on the sleep problems of children with attention-deficit/hyperactivity disorder (ADHD) in recent years. High incidence of sleep disorders in children with ADHD may be associated with a substantial impact on their quality of life and exacerbation of ADHD symptoms. The core symptoms of ADHD can be effectively treated by various medications, including methylphenidate (MPH), amphetamine, pemoline, and the newly FDA-approved extended-release α2 adrenergic agonists. However, most of them are known to affect patients' sleep because of their pharmacological actions on dopaminergic and/or noradrenergic release in the central nervous system. Previous studies have found increased incidence of insomnia and sleep disturbances in ADHD children treated with CNS (central nervous system) stimulants. In contrast, recent prospective, double-blind, placebo-controlled trials concluded that MPH, by objective polysomnographic or actigraphic measurements, did not cause significant sleep problems in children or adolescents with ADHD. Given the fact that sleep quality and core symptoms of ADHD are highly correlated, it is imperative that we understand the effects of ADHD medications on sleep while prescribing either CNS stimulants or non-CNS stimulants. Here we will concisely review the pharmacological treatments of ADHD, and provide the relevant data discussing their short- and long-term effects on sleep.
Forbes, Lindsey H.
2018-01-01
The extracellular environment of the central nervous system (CNS) becomes highly structured and organized as the nervous system matures. The extracellular space of the CNS along with its subdomains plays a crucial role in the function and stability of the CNS. In this review, we have focused on two components of the neuronal extracellular environment, which are important in regulating CNS plasticity including the extracellular matrix (ECM) and myelin. The ECM consists of chondroitin sulfate proteoglycans (CSPGs) and tenascins, which are organized into unique structures called perineuronal nets (PNNs). PNNs associate with the neuronal cell body and proximal dendrites of predominantly parvalbumin-positive interneurons, forming a robust lattice-like structure. These developmentally regulated structures are maintained in the adult CNS and enhance synaptic stability. After injury, however, CSPGs and tenascins contribute to the structure of the inhibitory glial scar, which actively prevents axonal regeneration. Myelin sheaths and mature adult oligodendrocytes, despite their important role in signal conduction in mature CNS axons, contribute to the inhibitory environment existing after injury. As such, unlike the peripheral nervous system, the CNS is unable to revert to a “developmental state” to aid neuronal repair. Modulation of these external factors, however, has been shown to promote growth, regeneration, and functional plasticity after injury. This review will highlight some of the factors that contribute to or prevent plasticity, sprouting, and axonal regeneration after spinal cord injury. PMID:29849554
Central nervous system relapse in peripheral T-cell lymphomas: a Swedish Lymphoma Registry study.
Ellin, Fredrik; Landström, Jenny; Jerkeman, Mats; Relander, Thomas
2015-07-02
Central nervous system (CNS) relapse in non-Hodgkin lymphoma (NHL) carries a very poor prognosis. Risk factors and outcome have been studied in aggressive B-cell lymphomas, but very little is known about the risk in peripheral T-cell lymphoma (PTCL). We aimed at analyzing risk factors for CNS involvement at first relapse or progression, as well as the outcome of these patients, in a large population-based cohort of patients with PTCL. Twenty-eight out of 625 patients (4.5%) developed CNS disease over time. In multivariable analysis, disease characteristics at diagnosis independently associated with an increased risk for later CNS involvement were involvement of more than 1 extranodal site (hazard ratio [HR], 2.60; 95% confidence interval [CI], 1.07-6.29; P = .035) and skin (HR, 3.51; 95% CI, 1.26-9.74; P = .016) and gastrointestinal involvement (HR, 3.06; 95% CI, 1.30-7.18; P = .010). The outcome of relapsed/refractory patients was very poor, and CNS involvement was not associated with a significantly worse outcome compared with relapsed/refractory patients without CNS involvement in multivariable analysis (HR, 1.6; 95% CI, 0.96-2.6; P = .074). The results from the present study indicate that CNS relapse in PTCL occurs at a frequency similar to what is seen in aggressive B-cell lymphomas, but the poor outcomes in relapse are largely driven by systemic rather than CNS disease. © 2015 by The American Society of Hematology.
Generation of Demyelination Models by Targeted Ablation of Oligodendrocytes in the Zebrafish CNS
Chung, Ah-Young; Kim, Pan-Soo; Kim, Suhyun; Kim, Eunmi; Kim, Dohyun; Jeong, Inyoung; Kim, Hwan-Ki; Ryu, Jae-Ho; Kim, Cheol-Hee; Choi, June; Seo, Jin-Ho; Park, Hae-Chul
2013-01-01
Demyelination is the pathological process by which myelin sheaths are lost from around axons, and is usually caused by a direct insult targeted at the oligodendrocytes in the vertebrate central nervous system (CNS). A demyelinated CNS is usually remyelinated by a population of oligodendrocyte progenitor cells, which are widely distributed throughout the adult CNS. However, myelin disruption and remyelination failure affect the normal function of the nervous system, causing human diseases such as multiple sclerosis. In spite of numerous studies aimed at understanding the remyelination process, many questions still remain unanswered. Therefore, to study remyelination mechanisms in vivo, a demyelination animal model was generated using a transgenic zebrafish system in which oligodendrocytes are conditionally ablated in the larval and adult CNS. In this transgenic system, bacterial nitroreductase enzyme (NTR), which converts the prodrug metronidazole (Mtz) into a cytotoxic DNA cross-linking agent, is expressed in oligodendrocyte lineage cells under the control of the mbp and sox10 promoter. Exposure of transgenic zebrafish to Mtz-containing media resulted in rapid ablation of oligodendrocytes and CNS demyelination within 48 h, but removal of Mtz medium led to efficient remyelination of the demyelinated CNS within 7 days. In addition, the demyelination and remyelination processes could be easily observed in living transgenic zebrafish by detecting the fluorescent protein, mCherry, indicating that this transgenic system can be used as a valuable animal model to study the remyelination process in vivo, and to conduct high-throughput primary screens for new drugs that facilitate remyelination. PMID:23807048
van der Velden, Vincent H J; de Launaij, Daphne; de Vries, Jeltje F; de Haas, Valerie; Sonneveld, Edwin; Voerman, Jane S A; de Bie, Maaike; Revesz, Tamas; Avigad, Smadar; Yeoh, Allen E J; Swagemakers, Sigrid M A; Eckert, Cornelia; Pieters, Rob; van Dongen, Jacques J M
2016-03-01
In childhood acute lymphoblastic leukaemia (ALL), central nervous system (CNS) involvement is rare at diagnosis (1-4%), but more frequent at relapse (~30%). Because of the significant late sequelae of CNS treatment, early identification of patients at risk of CNS relapse is crucial. Using microarray-analysis, we discovered multiple differentially expressed genes between B-cell precursor (BCP) ALL cells in bone marrow (BM) and BCP-ALL cells in cerebrospinal fluid (CSF) at the time of isolated CNS relapse. After confirmation by real-time quantitative polymerase chain reaction, selected genes (including SCD and SPP1) were validated at the protein level by flowcytometric analysis of BCP-ALL cells in CSF. Further flowcytometric validation showed that a subpopulation of BCP-ALL cells (>1%) with a 'CNS protein profile' (SCD positivity and increased SPP1 expression) was present in the BM at diagnosis in patients who later developed an isolated CNS relapse, whereas this subpopulation was <1% or absent in all other patients. These data indicate that the presence of a (small) subpopulation of BCP-ALL cells with a 'CNS protein profile' at diagnosis (particularly SCD-positivity) is associated with isolated CNS relapse. Such information can be used to design new diagnostic and treatment strategies that aim at prevention of CNS relapse with reduced toxicity. © 2015 John Wiley & Sons Ltd.
Kim, Hee Jin; Kim, Pitna; Shin, Chan Young
2013-03-01
Ginseng is one of the most widely used herbal medicines in human. Central nervous system (CNS) diseases are most widely investigated diseases among all others in respect to the ginseng's therapeutic effects. These include Alzheimer's disease, Parkinson's disease, cerebral ischemia, depression, and many other neurological disorders including neurodevelopmental disorders. Not only the various types of diseases but also the diverse array of target pathways or molecules ginseng exerts its effect on. These range, for example, from neuroprotection to the regulation of synaptic plasticity and from regulation of neuroinflammatory processes to the regulation of neurotransmitter release, too many to mention. In general, ginseng and even a single compound of ginsenoside produce its effects on multiple sites of action, which make it an ideal candidate to develop multi-target drugs. This is most important in CNS diseases where multiple of etiological and pathological targets working together to regulate the final pathophysiology of diseases. In this review, we tried to provide comprehensive information on the pharmacological and therapeutic effects of ginseng and ginsenosides on neurodegenerative and other neurological diseases. Side by side comparison of the therapeutic effects in various neurological disorders may widen our understanding of the therapeutic potential of ginseng in CNS diseases and the possibility to develop not only symptomatic drugs but also disease modifying reagents based on ginseng.
Kim, Hee Jin; Kim, Pitna; Shin, Chan Young
2013-01-01
Ginseng is one of the most widely used herbal medicines in human. Central nervous system (CNS) diseases are most widely investigated diseases among all others in respect to the ginseng’s therapeutic effects. These include Alzheimer’s disease, Parkinson’s disease, cerebral ischemia, depression, and many other neurological disorders including neurodevelopmental disorders. Not only the various types of diseases but also the diverse array of target pathways or molecules ginseng exerts its effect on. These range, for example, from neuroprotection to the regulation of synaptic plasticity and from regulation of neuroinflammatory processes to the regulation of neurotransmitter release, too many to mention. In general, ginseng and even a single compound of ginsenoside produce its effects on multiple sites of action, which make it an ideal candidate to develop multi-target drugs. This is most important in CNS diseases where multiple of etiological and pathological targets working together to regulate the final pathophysiology of diseases. In this review, we tried to provide comprehensive information on the pharmacological and therapeutic effects of ginseng and ginsenosides on neurodegenerative and other neurological diseases. Side by side comparison of the therapeutic effects in various neurological disorders may widen our understanding of the therapeutic potential of ginseng in CNS diseases and the possibility to develop not only symptomatic drugs but also disease modifying reagents based on ginseng. PMID:23717153
Liem-Moolenaar, Marieke; de Boer, Peter; Timmers, Maarten; Schoemaker, Rik C; van Hasselt, J G Coen; Schmidt, Stephan; van Gerven, Joop M A
2011-01-01
AIM(S) Although scopolamine is a frequently used memory impairment model, the relationships between exposure and corresponding central nervous system (CNS) effects are mostly unknown. The aim of our study was to characterize these using pharmacokinetic–pharmacodynamic (PK–PD) modelling. METHODS In two double-blind, placebo-controlled, four-way crossover studies, 0.5-mg scopolamine was administered i.v. to 90 healthy male subjects. PK and PD/safety measures were monitored pre-dose and up to 8.5 h after administration. PK–PD relationships were modelled using non-linear mixed-effect modelling. RESULTS Most PD responses following scopolamine administration in 85 subjects differed significantly from placebo. As PD measures lagged behind the plasma PK profile, PK–PD relationships were modelled using an effect compartment and arbitrarily categorized according to their equilibration half-lives (t1/2keo; hysteresis measure). t1/2keo for heart rate was 17 min, saccadic eye movements and adaptive tracking 1–1.5 h, body sway, smooth pursuit, visual analogue scales alertness and psychedelic 2.5–3.5 h, pupil size, finger tapping and visual analogue scales feeling high more than 8 h. CONCLUSIONS Scopolamine affected different CNS functions in a concentration-dependent manner, which based on their distinct PK–PD characteristics seemed to reflect multiple distinct functional pathways of the cholinergic system. All PD effects showed considerable albeit variable delays compared with plasma concentrations. The t1/2keo of the central effects was longer than of the peripheral effects on heart rate, which at least partly reflects the long CNS retention of scopolamine, but possibly also the triggering of independent secondary mechanisms. PK–PD analysis can optimize scopolamine administration regimens for future research and give insight into the physiology and pharmacology of human cholinergic systems. PMID:21306419
Whole Neuraxis Irradiation to Address Central Nervous System Relapse in High-Risk Neuroblastoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croog, Victoria J., E-mail: vcroog@sibley.or; Kramer, Kim; Cheung, Nai-Kong V.
Background: As systemic control of high-risk neuroblastoma (NB) has improved, relapse in the central nervous system (CNS) is an increasingly recognized entity that carries a grim prognosis. This study describes the use of craniospinal irradiation (CSI) for CNS relapse and compares outcomes to patients who received focal radiotherapy (RT). Methods: A retrospective query identified 29 children with NB treated at Memorial Sloan-Kettering Cancer Center since 1987 who received RT for CNS relapse. At CNS relapse, 16 patients received CSI (median dose, 2160cGy), and 13 received focal RT. Of those who underwent CSI, 14 (88%) received intra-Ommaya (IO) radioimmunotherapy (RIT); onemore » patient in the non-CSI cohort received IO-RIT. Results: Patient characteristics were similar between the groups. Time to CNS relapse was 20 and 17 months for the CSI and non-CSI cohorts, respectively. At a median follow-up of 28 months, 12 patients (75%) in the CSI group are alive without CNS disease, including two patients with isolated skeletal relapse. Another patient is alive without disease after a brain relapse was retreated with RT. Three patients died-one with no NB at autopsy, one of CNS disease, and one of systemic disease. The two patients who died of NB did not receive IO-RIT. All 13 patients in the non-CSI cohort died at a median of 8.8 months. Conclusions: Low-dose CSI together with IO-RIT provides durable CNS remissions and improved survival compared with focal RT and conventional therapies. Further evaluation of long-term NB survivors after CSI is warranted to determine the treatment consequences for this cohort.« less
Wudhikarn, Kitsada; Bunworasate, Udomsak; Julamanee, Jakrawadee; Lekhakula, Arnuparp; Chuncharunee, Suporn; Niparuck, Pimjai; Ekwattanakit, Supachai; Khuhapinant, Archrob; Norasetthada, Lalita; Nawarawong, Weerasak; Makruasi, Nisa; Kanitsap, Nonglak; Sirijerachai, Chittima; Chansung, Kanchana; Wong, Peerapon; Numbenjapon, Tontanai; Prayongratana, Kannadit; Suwanban, Tawatchai; Wongkhantee, Somchai; Praditsuktavorn, Pannee; Intragumtornchai, Tanin
2017-01-01
Secondary central nervous system (CNS) relapse is a serious and fatal complication of diffuse large B cell lymphoma (DLBCL). Data on secondary CNS (SCNS) relapse were mostly obtained from western countries with limited data from developing countries. We analyzed the data of 2034 newly diagnosed DLBCL patients enrolled into the multi-center registry under Thai Lymphoma Study Group from setting. The incidence, September 2006 to December 2013 to represent outcome from a resource limited pattern, management, and outcome of SCNS relapse were described. The 2-year cumulative incidence (CI) of SCNS relapse was 2.7 %. A total of 729, 1024, and 281 patients were classified as low-, intermediate-, and high-risk CNS international prognostic index (CNS-IPI) with corresponding 2-year CI of SCNS relapse of 1.5, 3.1, and 4.6 %, respectively (p < 0.001). Univariate analysis demonstrated advance stage disease, poor performance status, elevated lactate dehydrogenase, presence of B symptoms, more than one extranodal organ involvement, high IPI, and high CNS-IPI group as predictive factors for SCNS relapse. Rituximab exposure and intrathecal chemoprophylaxis offered no protective effect against SCNS relapse. At the time of analysis, six patients were alive. Median OS in SCNS relapsed patients was significantly shorter than relapsed patients without CNS involvement (13.2 vs 22.6 months) (p < 0.001). Primary causes of death were progressive disease (n = 35, 63.6 %) and infection (n = 9, 16.7 %). In conclusion, although the incidence of SCNS relapse in our cohort was low, the prognosis was dismal. Prophylaxis for SCNS involvement was underused even in high-risk patients. Novel approaches for SCNS relapse prophylaxis and managements are warranted.
Staphylococcus aureus Central Nervous System Infections in Children.
Vallejo, Jesus G; Cain, Alexandra N; Mason, Edward O; Kaplan, Sheldon L; Hultén, Kristina G
2017-10-01
Central nervous system (CNS) infections caused by Staphylococcus aureus are uncommon in pediatric patients. We review the epidemiology, clinical features and treatment in 68 patients with a S. aureus CNS infection evaluated at Texas Children's Hospital. Cases of CNS infection in children with positive cerebrospinal fluid cultures or spinal epidural abscess (SEA) for S. aureus at Texas Children's Hospital from 2001 to 2013 were reviewed. Seventy cases of S. aureus CNS infection occurred in 68 patients. Forty-nine cases (70%) were secondary to a CNS device, 5 (7.1%) were postoperative meningitis, 9 (12.8%) were hematogenous meningitis and 7 (10%) were SEAs. Forty-seven (67.2%) were caused by methicillin-sensitive S. aureus (MSSA) and 23 (32.8%) by methicillin-resistant S. aureus (MRSA). Community-acquired infections were more often caused by MRSA that was clone USA300/pvl. Most patients were treated with nafcillin (MSSA) or vancomycin (MRSA) with or without rifampin. Among patients with MRSA infection, 50% had a serum vancomycin trough obtained with the median level being 10.6 μg/mL (range: 5.4-15.7 μg/mL). Only 1 death was associated with S. aureus infection. The epidemiology of invasive of S. aureus infections continues to evolve with MSSA accounting for most of the infections in this series. The majority of cases were associated with neurosurgical procedures; however, hematogenous S. aureus meningitis and SEA occurred as community-acquired infections in patients without predisposing factors. Patients with MRSA CNS infections had a favorable response to vancomycin, but the beneficial effect of combination therapy or targeting vancomycin trough concentrations of 15-20 μg/mL remains unclear.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucas, John T., E-mail: jolucas@wakehealth.edu; Colmer, Hentry G.; White, Lance
Purpose: To estimate the hazard for neurologic (central nervous system, CNS) and nonneurologic (non-CNS) death associated with patient, treatment, and systemic disease status in patients receiving stereotactic radiosurgery after whole-brain radiation therapy (WBRT) failure, using a competing risk model. Patients and Methods: Of 757 patients, 293 experienced recurrence or new metastasis following WBRT. Univariate Cox proportional hazards regression identified covariates for consideration in the multivariate model. Competing risks multivariable regression was performed to estimate the adjusted hazard ratio (aHR) and 95% confidence interval (CI) for both CNS and non-CNS death after adjusting for patient, disease, and treatment factors. The resultantmore » model was converted into an online calculator for ease of clinical use. Results: The cumulative incidence of CNS and non-CNS death at 6 and 12 months was 20.6% and 21.6%, and 34.4% and 35%, respectively. Patients with melanoma histology (relative to breast) (aHR 2.7, 95% CI 1.5-5.0), brainstem location (aHR 2.1, 95% CI 1.3-3.5), and number of metastases (aHR 1.09, 95% CI 1.04-1.2) had increased aHR for CNS death. Progressive systemic disease (aHR 0.55, 95% CI 0.4-0.8) and increasing lowest margin dose (aHR 0.97, 95% CI 0.9-0.99) were protective against CNS death. Patients with lung histology (aHR 1.3, 95% CI 1.1-1.9) and progressive systemic disease (aHR 2.14, 95% CI 1.5-3.0) had increased aHR for non-CNS death. Conclusion: Our nomogram provides individual estimates of neurologic death after salvage stereotactic radiosurgery for patients who have failed prior WBRT, based on histology, neuroanatomical location, age, lowest margin dose, and number of metastases after adjusting for their competing risk of death from other causes.« less
NASA Astrophysics Data System (ADS)
Labrecque, S.; Sylvestre, J.-P.; Marcet, S.; Mangiarini, F.; Verhaegen, M.; De Koninck, P.; Blais-Ouellette, S.
2015-03-01
In the past decade, the efficacy of existing therapies and the discovery of innovative treatments for Central Nervous System (CNS) diseases have been limited by the lack of appropriate methods to investigate complex molecular processes at the synaptic level. In order to better understand the fundamental mechanisms that regulate diseases of the CNS, a fast fluorescence hyperspectral imaging platform was designed to track simultaneously various neurotransmitter receptors trafficking in and out of synapses. With this hyperspectral imaging platform, it was possible to image simultaneously five different synaptic proteins, including subtypes of glutamate receptors (mGluR, NMDAR, AMPAR), postsynaptic density proteins, and signaling proteins. This new imaging platform allows fast simultaneous acquisitions of at least five fluorescent markers in living neurons with a high spatial resolution. This technique provides an effective method to observe several synaptic proteins at the same time, thus study how drugs for CNS impact the spatial dynamics of these proteins.
Evolution of bilaterian central nervous systems: a single origin?
2013-01-01
The question of whether the ancestral bilaterian had a central nervous system (CNS) or a diffuse ectodermal nervous system has been hotly debated. Considerable evidence supports the theory that a CNS evolved just once. However, an alternative view proposes that the chordate CNS evolved from the ectodermal nerve net of a hemichordate-like ancestral deuterostome, implying independent evolution of the CNS in chordates and protostomes. To specify morphological divisions along the anterior/posterior axis, this ancestor used gene networks homologous to those patterning three organizing centers in the vertebrate brain: the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer, and subsequent evolution of the vertebrate brain involved elaboration of these ancestral signaling centers; however, all or part of these signaling centers were lost from the CNS of invertebrate chordates. The present review analyzes the evidence for and against these theories. The bulk of the evidence indicates that a CNS evolved just once – in the ancestral bilaterian. Importantly, in both protostomes and deuterostomes, the CNS represents a portion of a generally neurogenic ectoderm that is internalized and receives and integrates inputs from sensory cells in the remainder of the ectoderm. The expression patterns of genes involved in medio/lateral (dorso/ventral) patterning of the CNS are similar in protostomes and chordates; however, these genes are not similarly expressed in the ectoderm outside the CNS. Thus, their expression is a better criterion for CNS homologs than the expression of anterior/posterior patterning genes, many of which (for example, Hox genes) are similarly expressed both in the CNS and in the remainder of the ectoderm in many bilaterians. The evidence leaves hemichordates in an ambiguous position – either CNS centralization was lost to some extent at the base of the hemichordates, or even earlier, at the base of the hemichordates + echinoderms, or one of the two hemichordate nerve cords is homologous to the CNS of protostomes and chordates. In any event, the presence of part of the genetic machinery for the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer in invertebrate chordates together with similar morphology indicates that these organizers were present, at least in part, at the base of the chordates and were probably elaborated upon in the vertebrate lineage. PMID:24098981
Side effects of beta-blocker treatments as related to the central nervous system.
Dahlöf, C; Dimenäs, E
1990-04-01
During the last decade beta-adrenoceptor antagonists have become one of the first-line treatments for hypertension. Generally, they have been shown to be safe with a low frequency of serious side effects. However, minor subjective symptoms, usually considered to be CNS-related, have been reported for all beta-blockers used. Thus, all beta-blockers on the market seem to have a high benefit:risk ratio; independent of their physicochemical properties and pharmacodynamic profile, however, they seem to cause CNS-related side effects to about the same extent. These minor side effects, the mechanisms of which are unclear, consist of subtle effects on general well being, decreased initiative, a depressed frame of mind, and disturbed sleep. Generally, however, beta-blockers in therapeutic dosages do not affect the qualitative functions of the brain. The results so far available have been obtained primarily by using objective methods. Further comparison has now been initiated using documented subjective methods to investigate whether the objectively documented differences are of any clinical relevance to the patient's quality of life. Although it cannot be claimed with certainty, nonselective beta-blockers seem to cause CNS-related side effects to a greater extent than beta 1-selective blockers. Differences in the degree of hydrophilicity of the beta-blocker are apparently of no clinical relevance in this respect. Rather, the plasma concentration of the beta-blocking drug (degree of beta-blockade) seems to be the major determinant of whether or not CNS-related symptoms appear in susceptible patients.
Planty, Camille; Mallett, Corey P; Yim, Kevin; Blanco, Jorge C G; Boukhvalova, Marina; March, Thomas; van der Most, Robbert; Destexhe, Eric
2017-01-02
An increased risk of narcolepsy following administration of an AS03-adjuvanted A(H1N1)pdm09 pandemic influenza vaccine (Pandemrix™) was described in children and adolescents in certain European countries. We investigated the potential effects of administration of the AS03-adjuvanted vaccine, non-adjuvanted vaccine antigen and AS03 Adjuvant System alone, on the central nervous system (CNS) in one-month-old cotton rats. Naïve or A(H1N1)pdm09 virus-primed animals received 2 or 3 intramuscular injections, respectively, of test article or saline at 2-week intervals. Parameters related to systemic inflammation (hematology, serum IL-6/IFN-γ/TNF-α) were assessed. Potential effects on the CNS were investigated by histopathological evaluation of brain sections stained with hematoxylin-and-eosin, or by immunohistochemical staining of microglia, using Iba1 and CD68 as markers for microglia identification/activation, albumin as indicator of vascular leakage, and hypocretin. We also determined cerebrospinal fluid (CSF) hypocretin levels and hemagglutination-inhibiting antibody titers. Immunogenicity of the AS03-adjuvanted A(H1N1)pdm09 pandemic influenza vaccine was confirmed by the induction of hemagglutination-inhibiting antibodies. Both AS03-adjuvanted vaccine and AS03 alone activated transient innate (neutrophils/eosinophils) immune responses. No serum cytokines were detected. CNS analyses revealed neither microglia activation nor inflammatory cellular infiltrates in the brain. No differences between treatment groups were detected for albumin extravascular leakage, CSF hypocretin levels, numbers of hypocretin-positive neuronal bodies or distributions of hypocretin-positive axonal/dendritic projections. Consequently, there was no evidence that intramuscular administration of the test articles promoted inflammation or damage in the CNS, or blood-brain barrier disruption, in this model.
Planty, Camille; Mallett, Corey P.; Yim, Kevin; Blanco, Jorge C. G.; Boukhvalova, Marina; March, Thomas; van der Most, Robbert; Destexhe, Eric
2017-01-01
ABSTRACT An increased risk of narcolepsy following administration of an AS03-adjuvanted A(H1N1)pdm09 pandemic influenza vaccine (Pandemrix™) was described in children and adolescents in certain European countries. We investigated the potential effects of administration of the AS03-adjuvanted vaccine, non-adjuvanted vaccine antigen and AS03 Adjuvant System alone, on the central nervous system (CNS) in one-month-old cotton rats. Naïve or A(H1N1)pdm09 virus-primed animals received 2 or 3 intramuscular injections, respectively, of test article or saline at 2-week intervals. Parameters related to systemic inflammation (hematology, serum IL-6/IFN-γ/TNF-α) were assessed. Potential effects on the CNS were investigated by histopathological evaluation of brain sections stained with hematoxylin-and-eosin, or by immunohistochemical staining of microglia, using Iba1 and CD68 as markers for microglia identification/activation, albumin as indicator of vascular leakage, and hypocretin. We also determined cerebrospinal fluid (CSF) hypocretin levels and hemagglutination-inhibiting antibody titers. Immunogenicity of the AS03-adjuvanted A(H1N1)pdm09 pandemic influenza vaccine was confirmed by the induction of hemagglutination-inhibiting antibodies. Both AS03-adjuvanted vaccine and AS03 alone activated transient innate (neutrophils/eosinophils) immune responses. No serum cytokines were detected. CNS analyses revealed neither microglia activation nor inflammatory cellular infiltrates in the brain. No differences between treatment groups were detected for albumin extravascular leakage, CSF hypocretin levels, numbers of hypocretin-positive neuronal bodies or distributions of hypocretin-positive axonal/dendritic projections. Consequently, there was no evidence that intramuscular administration of the test articles promoted inflammation or damage in the CNS, or blood-brain barrier disruption, in this model. PMID:27629482
Martín-Martín, Lourdes; Almeida, Julia; Pomares, Helena; González-Barca, Eva; Bravo, Pilar; Giménez, Teresa; Heras, Cecilia; Queizán, José-Antonio; Pérez-Ceballos, Elena; Martínez, Violeta; Alonso, Natalia; Calvo, Carlota; Álvarez, Rodolfo; Caballero, María Dolores; Orfao, Alberto
2016-03-01
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare aggressive myeloid neoplasm which shows a high rate of central nervous system (CNS) recurrence and overall survival (OS) of <1 year. Despite this, screening for CNS involvement is not routinely performed at diagnosis and intrathecal (IT) prophylaxis is not regularly administered in BPDCN. Here, we prospectively evaluated 13 consecutive BPDCN patients for the presence of CNS involvement by flow cytometry. Despite none of the patients presented with neurological symptoms, occult CNS involvement was detected in 6/10 cases evaluated at diagnosis and 3/3 studied at relapse/progression. BPDCN patients evaluated at diagnosis received IT treatment -either CNS prophylaxis (n = 4) or active therapy (n = 6)- and all but one remain alive (median follow-up of 20 months). In contrast, all three patients assessed at relapse/progression died. The potential benefit of IT treatment administered early at diagnosis on OS and CNS recurrence-free survival of BPDCN was further confirmed in a retrospective cohort of another 23 BPDCN patients. Our results show that BPDCN patients studied at diagnosis frequently display occult CNS involvement; moreover, they also indicate that treatment of occult CNS disease might lead to a dramatically improved outcome of BPDCN.
Central nervous system infections and stroke -- a population-based analysis.
Chien, L-N; Chi, N-F; Hu, C-J; Chiou, H-Y
2013-10-01
Chronic central nervous system (CNS) infections have been found to associate with cerebrovascular complications. Acute CNS infections are more common than chronic CNS infections, but whether they could increase the risk of vascular diseases has not been studied. The study cohort comprised all adult patients with diagnoses of CNS infections from Taiwan National Health Insurance Research Database during 2000-2009 (n = 533). The comparison group were matched by age, sex, urbanization, diagnostic year, and vascular risk factors of cases (cases and controls = 1:5). Patients were tracked for at least 1 year. Kaplan-Meier analysis was used to compare the risk of stroke and acute myocardial infarction (AMI) after adjusting censoring subjects. After adjusting the patients demographic characteristics and comorbidities, the risk of patients with CNS infections developing stroke was 2.75-3.44 times greater than their comparison group. More than 70% of the stroke events were occurring within 1 year after CNS infections. The risk of AMI was not found as we compared patients with and without CNS infections. The population-based cohort study suggested that adult patients with CNS infections have higher risk to develop stroke but not AMI, and the risk is marked within a year after infections. © 2013 John Wiley & Sons A/S.
Martín-Martín, Lourdes; Almeida, Julia; Pomares, Helena; González-Barca, Eva; Bravo, Pilar; Giménez, Teresa; Heras, Cecilia; Queizán, José-Antonio; Pérez-Ceballos, Elena; Martínez, Violeta; Alonso, Natalia; Calvo, Carlota; Álvarez, Rodolfo; Caballero, María Dolores; Orfao, Alberto
2016-01-01
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare aggressive myeloid neoplasm which shows a high rate of central nervous system (CNS) recurrence and overall survival (OS) of <1 year. Despite this, screening for CNS involvement is not routinely performed at diagnosis and intrathecal (IT) prophylaxis is not regularly administered in BPDCN. Here, we prospectively evaluated 13 consecutive BPDCN patients for the presence of CNS involvement by flow cytometry. Despite none of the patients presented with neurological symptoms, occult CNS involvement was detected in 6/10 cases evaluated at diagnosis and 3/3 studied at relapse/progression. BPDCN patients evaluated at diagnosis received IT treatment -either CNS prophylaxis (n = 4) or active therapy (n = 6)- and all but one remain alive (median follow-up of 20 months). In contrast, all three patients assessed at relapse/progression died. The potential benefit of IT treatment administered early at diagnosis on OS and CNS recurrence-free survival of BPDCN was further confirmed in a retrospective cohort of another 23 BPDCN patients. Our results show that BPDCN patients studied at diagnosis frequently display occult CNS involvement; moreover, they also indicate that treatment of occult CNS disease might lead to a dramatically improved outcome of BPDCN. PMID:26840087
van Laar, Marlous; Stark, Daniel P; McKinney, Patricia; Parslow, Roger C; Kinsey, Sally E; Picton, Susan V; Feltbower, Richard G
2014-09-23
Little aetiological epidemiological research has been undertaken for major cancers occurring in teenagers and young adults (TYA). Population mixing, as a possible proxy for infectious exposure, has been well researched for childhood malignancies. We aimed to investigate effects of population mixing in this older age group using an English national cancer dataset. Cases of leukaemia, lymphoma and central nervous system (CNS) tumours amongst 15-24 year olds in England (diagnosed 1996-2005) were included in the study. Data were obtained by ward of diagnosis and linked to 1991 census variables including population mixing (Shannon index); data on person-weighted population density and deprivation (Townsend score) were also used and considered as explanatory variables. Associations between TYA cancer incidence and census variables were investigated using negative binomial regression, and results presented as incidence rate ratios (IRR) with 95% confidence intervals (CI). A total of 6251 cases of leukaemia (21%), lymphoma (49%) and CNS tumours (30%) were analysed. Higher levels of population mixing were associated with a significant decrease in the incidence of CNS tumours (IRR=0.83, 95% CI=0.75-0.91), accounted for by astrocytomas and 'other CNS tumours'; however, there was no association with leukaemia or lymphoma. Incidence of CNS tumours and lymphoma was 3% lower in more deprived areas (IRR=0.97, 95% CI=0.96-0.99 and IRR=0.97, 95% CI=.96-0.98 respectively). Population density was not associated with the incidence of leukaemia, lymphoma or CNS tumours. Our results suggest a possible role for environmental risk factors with population correlates in the aetiology of CNS tumours amongst TYAs. Unlike studies of childhood cancer, associations between population mixing and the incidence of leukaemia and lymphoma were not observed.
Kedzierska, Ewa; Orzelska, Jolanta; Perković, Ivana; Knežević, Danijel; Fidecka, Sylwia; Kaiser, Marcel; Zorc, Branka
2016-02-01
New primaquine (PQ) urea and semicarbazide derivatives 1-4 were screened for the first time for central nervous system (CNS) and antimalarial activity. Behavioural tests were performed on mice. In vitro cytotoxicity on L-6 cells and activity against erythrocytic stages of Plasmodium falciparum was determined. Compound 4 inhibited 'head-twitch' responses and decreased body temperature of mice, which suggests some involvement of the serotonergic system. Compound 4 protected mice against clonic seizures and was superior in the antimalarial test. A hybrid of two PQ urea 2 showed a strong antimalarial activity, confirming the previous findings of the high activity of bis(8-aminoquinolines) and other bisantimalarial drugs. All the compounds decreased the locomotor activity of mice, what suggests their weak depressive effects on the CNS, while PQ derivatives 1 and 2 increased amphetamine-induced hyperactivity. None of the compounds impaired coordination, what suggests a lack of their neurotoxicity. All the tested compounds presented an antinociceptive activity in the 'writhing' test. Compounds 3 and 4 were active in nociceptive tests, and those effects were reversed by naloxone. Compound 4 could be a useful lead compound in the development of CNS active agents and antimalarials, whereas compound 3 may be considered as the most promising lead for new antinociceptive agents. © 2015 Société Française de Pharmacologie et de Thérapeutique.
NASA Astrophysics Data System (ADS)
Rabin, B.; Joseph, J.; Shukitt-Hale, B.
Exposure to heavy particles can affect the functioning of the central nervous system (CNS), particularly the dopaminergic system. In turn, the radiation- induced disruption of dopaminergic function disrupts a variety of behaviors that are dependent upon the integrity of the dopaminergic system, including motor behavior (upper body strength), amphetamine (dopamine)-mediated taste aversion learning, spatial learning and memory (Morris water maze), and operant conditioning (fixed-ratio bar pressing). Although the relationships between heavy particle irradiation and the effects of exposure depend, to some extent, upon the specific behavioral or neurochemical endpoint under consideration, a review of the available research leads to the hypothesis that the endpoints mediated by the CNS have certain characteristics in common. These include: (1) a threshold, below which there is no apparent effect; (2) the lack of a dose-response relationship, or an extremely steep dose-response curve, depending on the particular endpoint; and (3) the absence of recovery of function, such that the heavy particle-induced behavioral and neural changes are present when tested up to one year following exposure. The current presentation will review the data relevant to the degree to which these characteristics are in fact common to neurochemical and behavioral endpoints that are mediated by the effects of exposure to heavy particles on CNS activity. Supported by N.A.S.A. Grant NAG9-1190.
Mechanisms of Hypothermia, Delayed Hyperthermia and Fever Following CNS Injury
Central nervous system (CNS) damage is often associated with robust body temperature changes, such as hypothermia and delayed hyperthermia. Hypothermia is one of the most common body temperature changes to CNS insults in rodents and is often associated with improved outcome. Alth...
Immune privilege of the CNS is not the consequence of limited antigen sampling
NASA Astrophysics Data System (ADS)
Harris, Melissa G.; Hulseberg, Paul; Ling, Changying; Karman, Jozsef; Clarkson, Benjamin D.; Harding, Jeffrey S.; Zhang, Mengxue; Sandor, Adam; Christensen, Kelsey; Nagy, Andras; Sandor, Matyas; Fabry, Zsuzsanna
2014-03-01
Central nervous system (CNS) immune privilege is complex, and it is still not understood how CNS antigens are sampled by the peripheral immune system under steady state conditions. To compare antigen sampling from immune-privileged or nonprivileged tissues, we created transgenic mice with oligodendrocyte or gut epithelial cell expression of an EGFP-tagged fusion protein containing ovalbumin (OVA) antigenic peptides and tested peripheral anti-OVA peptide-specific sentinel OT-I and OT-II T cell activation. We report that oligodendrocyte or gut antigens are sampled similarly, as determined by comparable levels of OT-I T cell activation. However, activated T cells do not access the CNS under steady state conditions. These data show that afferent immunity is normally intact as there is no barrier at the antigen sampling level, but that efferent immunity is restricted. To understand how this one-sided surveillance contributes to CNS immune privilege will help us define mechanisms of CNS autoimmune disease initiation.
Yamamoto, Tomoko; Hiroi, Atsuko; Osawa, Makiko; Shibata, Noriyuki
2014-01-01
The muscular dystrophies have been traditionally classified based mainly on clinical manifestation and mode of inheritance. Owing to the discoveries of causative genes, new terminologies derived from each gene, such as dystrophinopathy, α-dystroglycanopathy, sarcoglycanopathy and fukutinopathy, have also become common. Mutations of each gene may cause several clinical phenotypes. Some muscular dystrophies accompany central nervous system (CNS) lesions, especially in the congenital muscular dystrophies. Cobblestone lissencephaly (type II lissencephaly) is a well-known CNS malformation observed in severe forms of α-dystroglycanopathy. Moreover, CNS involvement has been reported in other muscular dystrophies, such as Duchenne muscular dystrophy. In this review, genes related to the muscular dystrophies associated with CNS lesions are briefly described along with the molecular characteristics of each gene and the pathomechanism of the CNS lesions. Understanding of both the clinicopathological characteristics of these CNS lesions and their molecular mechanisms is important for the diagnosis, care of patients, and development of new therapeutic strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siemes, H.; Rating, D.; Siegert, M.
1980-01-01
The cerebral spinal fluid (CSF)-protein profiles of ten children with previously untreated acute lymphoblastic leukemia (ALL) were investigated by agarose gel electrophoresis. The profiles were determined at diagnosis and during the fifth to eighth week of treatment when preventive therapy for central nervous system (CNS) leukemia (skull irradiation, intrathecal methotrexate (ithMTX) was administered. The profiles were compared with those obtained from a control group of 67 children and those from 42 patients with acute aseptic meningitis. The data from the latter group demonstrated the CSF-protein pattern of partial blood-CSF barrier (B-CSF-B) breakdown. The children with ALL showed no or onlymore » minor signs of a B-CSF-B impairment at diagnosis and after four weeks of systemic treatment. However, CSF changes indicative of a lesion of the B-CSF-B increased in all children continuously during CNS prophylaxis. The protein profile at the end of combined chemotherapy and radiotherapy was very similar to that in patients with acute aseptic meningitis. These observations point to neurotoxic side effects on the CNS barrier system with the combination of cranial radiation and ithMTX. A striking finding was restricted heterogeneity of gamma-globulin, observed in the CSF of nine out of the ten children with ALL before or during treatment. The significance of this abnormality is unknown.« less
Yang, Xue; Yan, Jun; Feng, Juan
2017-01-01
The collectin surfactant protein-A (SP-A), a potent host defense molecule, is well recognized for its role in the maintenance of pulmonary homeostasis and the modulation of inflammatory responses. While previous studies have detected SP-A in numerous extrapulmonary tissues, there is still a lack of information regarding its expression in central nervous system (CNS) and potential effects in neuroinflammatory diseases, such as multiple sclerosis (MS). The present study used experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS, to investigate the expression of SP-A in the CNS at different stages of disease progression. In addition, in vitro experiments with lipopolysaccharide (LPS)-stimulated human astrocytes and microglia were performed to investigate the potential role of SP-A in the modulation of CNS inflammatory responses. The results of the present study demonstrated widespread distribution of SP-A in the rat CNS, and also identified specific expression patterns of SP-A at different stages of EAE. In vitro, the current study revealed that treatment of human astrocytes and microglia with LPS promoted SP-A expression in a dose-dependent manner. Furthermore, exogenous SP-A protein significantly decreased Toll-like receptor 4 and nuclear factor-κB expression, and reduced interleukin-1β and tumor necrosis factor-α levels. The results of the current study indicate a potential role for SP-A in the modulation of CNS inflammatory responses. PMID:28393255
Dopkins, Nicholas; Nagarkatti, Prakash S; Nagarkatti, Mitzi
2018-06-01
The importance of the gut microbiome in the regulation of non-infectious diseases has earned unprecedented interest from biomedical researchers. Widespread use of next-generation sequencing techniques has prepared a foundation for further research by correlating the presence of specific bacterial species with the onset or severity of a disease state, heralding paradigm-shifting results. This review covers the mechanisms through which a dysbiotic gut microbiota contributes to the pathological symptoms in an autoimmune neurodegenerative disorder, multiple sclerosis (MS). Although the central nervous system (CNS) is protected by the blood-brain barrier (BBB), it is unclear how gut dysbiosis can trigger potential immunological changes in the CNS in the presence of the BBB. This review focuses on the immunoregulatory functionality of microbial metabolites, which can cross the BBB and mediate their effects directly on immune cells within the CNS and/or indirectly through modulating the response of peripheral T cells to stimulate or inhibit pro-inflammatory chemokines and cytokines, which in turn regulate the autoimmune response in the CNS. Although more research is clearly needed to directly link the changes in gut microbiome with neuroinflammation, focusing research on microbiota that produce beneficial metabolites with the ability to attenuate chronic inflammation systemically as well as in the CNS, can offer novel preventive and therapeutic modalities against a wide array of inflammatory and autoimmune diseases. © 2018 John Wiley & Sons Ltd.
Rincon, Melvin Y; de Vin, Filip; Duqué, Sandra I; Fripont, Shelly; Castaldo, Stephanie A; Bouhuijzen-Wenger, Jessica; Holt, Matthew G
2018-04-01
Until recently, adeno-associated virus 9 (AAV9) was considered the AAV serotype most effective in crossing the blood-brain barrier (BBB) and transducing cells of the central nervous system (CNS), following systemic injection. However, a newly engineered capsid, AAV-PHP.B, is reported to cross the BBB at even higher efficiency. We investigated how much we could boost CNS transgene expression by using AAV-PHP.B carrying a self-complementary (sc) genome. To allow comparison, 6 weeks old C57BL/6 mice received intravenous injections of scAAV2/9-GFP or scAAV2/PHP.B-GFP at equivalent doses. Three weeks postinjection, transgene expression was assessed in brain and spinal cord. We consistently observed more widespread CNS transduction and higher levels of transgene expression when using the scAAV2/PHP.B-GFP vector. In particular, we observed an unprecedented level of astrocyte transduction in the cortex, when using a ubiquitous CBA promoter. In comparison, neuronal transduction was much lower than previously reported. However, strong neuronal expression (including spinal motor neurons) was observed when the human synapsin promoter was used. These findings constitute the first reported use of an AAV-PHP.B capsid, encapsulating a scAAV genome, for gene transfer in adult mice. Our results underscore the potential of this AAV construct as a platform for safer and more efficacious gene therapy vectors for the CNS.
Nijland, Marcel; Jansen, Anne; Doorduijn, Jeanette K; Enting, Roelien H; Bromberg, Jacoline E C; Kluin-Nelemans, Hanneke C
2017-09-01
Central nervous system (CNS) involvement in systemic B-cell non-Hodgkin lymphoma (B-NHL) at diagnosis (sysCNS) is rare. We investigated the outcome of 21 patients with sysCNS, most commonly diffuse large B-cell lymphoma, treated with high dose methotrexate (HD-MTX) and R-CHOP. The median number of cycles of HD-MTX and R-CHOP was 4 (range 1-8) and 6 (range 0-8), respectively. Consolidative whole brain radiotherapy (WBRT) was given to 33% (7/21) patients. With a median follow-up of 44 months the 3-year progression free survival (PFS) and overall survival (OS) were 45% (95%CI 34-56%) and 49% (95%CI 38-60%), respectively. Over 90% of patients had an unfavorable international prognostic index score, reflected by treatment-related mortality of 19% (4/21) and relapse-related mortality of 28% (6/21). The outcome of these patients was, however, unexpectedly good when compared to secondary CNS relapses. Prospective studies are needed to define the optimal treatment for patients with sysCNS, but its rarity might be challenging.
Clinical nurse specialist education: actualizing the systems leadership competency.
Thompson, Cathy J; Nelson-Marten, Paula
2011-01-01
The purpose of this article was to show how sequenced educational strategies aid in the acquisition of systems leadership and change agent skills, as well as other essential skills for professional clinical nurse specialist (CNS) practice. Clinical nurse specialist education offers the graduate student both didactic and clinical experiences to help the student transition into the CNS role. Clinical nurse specialist faculty have a responsibility to prepare students for the realities of advanced practice. Systems leadership is an integral competency of CNS practice. The contemporary CNS is to be a leader in the translation of evidence into practice. To assist students to acquire this competency, all CNS students are expected to use research and other sources of evidence to identify, design, implement, and evaluate a specific practice change. Anecdotal comments from students completing the projects are offered. Student projects have been focused in acute and critical care, palliative care, and adult/gerontologic health clinical settings; community outreach has been the focus of a few change projects. Examples of student projects related to the systems leadership competency and correlated to the spheres of influence impacted are presented.
Cieśla, Andrzej; Pierzchała-Koziec, Krystyna; Mach, Tomasz; Garlicki, Aleksander; Bociaga-Jasik, Monika
2005-05-01
Assessment of met-enkephalin level in the cerebrospinal fluid (CSF) of patients with inflammatory process of the central nervous system (CNS) was performed to estimate the role of opioid system in viral and bacterial meningitis, and encephalitis. The met-enkephalin level, protein concentration and pleocytosis were analysed in the CSF of 53 patients with viral or bacterial meningitis, encephalitis, and in the control group of patients without inflammatory disease of the CNS. The biggest differences have been observed between the groups of patients with bacterial meningitis and those without inflammatory disease of the CNS, but they were statistically insignificant. There was a lack of correlation between met-enkephalin level and some factors of inflammatory process in CSF, such as pleocytosis and protein concentration. We have not revealed any correlation between etiological agent of CNS infection and opioid system of the brain. Despite the fact that, we observed in the study statistically insignificant changes, we suggest to continue investigations, including additional parameters which are characteristic for the CNS diseases.
Structural and functional features of central nervous system lymphatics
Louveau, Antoine; Smirnov, Igor; Keyes, Timothy J.; Eccles, Jacob D.; Rouhani, Sherin J.; Peske, J. David; Derecki, Noel C.; Castle, David; Mandell, James W.; Kevin, S. Lee; Harris, Tajie H.; Kipnis, Jonathan
2015-01-01
One of the characteristics of the CNS is the lack of a classical lymphatic drainage system. Although it is now accepted that the CNS undergoes constant immune surveillance that takes place within the meningeal compartment1–3, the mechanisms governing the entrance and exit of immune cells from the CNS remain poorly understood4–6. In searching for T cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the CSF, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the CNS. The discovery of the CNS lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and shed new light on the etiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction. PMID:26030524
Lemma, Siria A; Kuusisto, Milla; Haapasaari, Kirsi-Maria; Sormunen, Raija; Lehtinen, Tuula; Klaavuniemi, Tuula; Eray, Mine; Jantunen, Esa; Soini, Ylermi; Vasala, Kaija; Böhm, Jan; Salokorpi, Niina; Koivunen, Petri; Karihtala, Peeter; Vuoristo, Jussi; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi
2017-08-01
Central nervous system (CNS) relapse is a devastating complication that occurs in about 5% of diffuse large B-cell lymphoma (DLBCL) patients. Currently, there are no predictive biological markers. We wanted to study potential biomarkers of CNS tropism that play a role in adhesion, migration and/or in the regulation of inflammatory responses. The expression levels of ITGA10, CD44, PTEN, cadherin-11, CDH12, N-cadherin, P-cadherin, lactoferrin and E-cadherin were studied with IHC and IEM. GEP was performed to see whether found expressional changes are regulated at DNA/RNA level. IHC included 96 samples of primary CNS lymphoma (PCNSL), secondary CNS lymphoma (sCNSL) and systemic DLBCL (sDLBCL). IEM included two PCNSL, one sCNSL, one sDLBCL and one reactive lymph node samples. GEP was performed on two DLBCL samples, one with and one without CNS relapse. CNS disease was associated with enhanced expression of cytoplasmic and membranous ITGA10 and nuclear PTEN (P < 0.0005, P = 0.002, P = 0.024, respectively). sCNSL presented decreased membranous CD44 and nuclear and cytoplasmic cadherin-11 expressions (P = 0.001, P = 0.006, P = 0.048, respectively). In PCNSL lactoferrin expression was upregulated (P < 0.0005). IEM results were mainly supportive of the IHC results. In GEP CD44, cadherin-11, lactoferrin and E-cadherin were under-expressed in CNS disease. Our results are in line with previous studies, where gene expressions in extracellular matrix and adhesion-related pathways are altered in CNS lymphoma. This study gives new information on the DLBCL CNS tropism. If further verified, these markers might become useful in predicting CNS relapses. © The Author 2017. Published by Oxford University Press.
Pediatric zolpidem ingestion demonstrating zero-order kinetics treated with flumazenil.
Thornton, Stephen L; Negus, Elezer; Carstairs, Shaun D
2013-11-01
Zolpidem is a widely prescribed anti-insomnia agent. Although most pediatric zolpidem ingestions are benign, large ingestions can cause significant central nervous system (CNS) depression. Flumazenil has been reported to reverse the CNS effects of zolpidem. We describe a case of a large pediatric zolpidem ingestion resulting in profound CNS depression that responded to flumazenil administration. Serial zolpidem serum levels confirmed the ingestion. A 10-year-old boy with trisomy 21 presented to the emergency department 1 hour after he was found sedate with several zolpidem 5-mg tablets in his mouth. Seventeen tables (85 mg) were unaccounted for from a prescription bottle. He became unarousable approximately 2 hours after his ingestion. Flumazenil 0.2 mg intravenously was given with rapid return to his baseline mental status. He became resedate 1 hour later but was arousable. Sixteen hours after his presentation, he was asymptomatic. Serial zolpidem serum levels were obtained, showed an initial level of 310 ng/mL, and demonstrated zero-order kinetics. Zolpidem is an imidazopyridine, which binds to the benzodiazepine receptor. It is rapidly absorbed and has a short-half life. Unintentional pediatric ingestions of zolpidem are typically well tolerated. However, this case demonstrates that large ingestions may cause significant and prolonged CNS depression. Flumazenil, a benzodiazepine receptor antagonist, has been described to reverse the effects of zolpidem in adult ingestions. There are few published reports describing flumazenil use in pediatric ingestion patients. This case suggests that flumazenil may be an effective treatment for zolpidem-induced CNS depression in the pediatric patient.
Vogel, Adam P; Fletcher, Janet; Snyder, Peter J; Fredrickson, Amy; Maruff, Paul
2011-03-01
Assessment of the voice for supporting classifications of central nervous system (CNS) impairment requires a different practical, methodological, and statistical framework compared with assessment of the voice to guide decisions about change in the CNS. In experimental terms, an understanding of the stability and sensitivity to change of an assessment protocol is required to guide decisions about CNS change. Five experiments (N = 70) were conducted using a set of commonly used stimuli (eg, sustained vowel, reading, extemporaneous speech) and easily acquired measures (eg, f₀-f₄, percent pause). Stability of these measures was examined through their repeated application in healthy adults over brief and intermediate retest intervals (ie, 30 seconds, 2 hours, and 1 week). Those measures found to be stable were then challenged using an experimental model that reliably changes voice acoustic properties (ie, the Lombard effect). Finally, adults with an established CNS-related motor speech disorder (dysarthria) were compared with healthy controls. Of the 61 acoustic variables studied, 36 showed good stability over all three stability experiments (eg, number of pauses, total speech time, speech rate, f₀-f₄. Of the measures with good stability, a number of frequency measures showed a change in response to increased vocal effort resulting from the Lombard effect challenge. Furthermore, several timing measures significantly separated the control and motor speech impairment groups. Measures with high levels of stability within healthy adults, and those that show sensitivity to change and impairment may prove effective for monitoring changes in CNS functioning. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Central nervous system filariasis masquerading as a glioma: case report.
Shrivastava, Adesh; Arora, Prateek; Khare, Akriti; Goel, Garima; Kapoor, Neelkamal
2017-09-01
Filariasis, an endemic zoonosis in the Southeast Asia region, has been reported to affect various organs as well as the central nervous system (CNS). Inflammatory reactions mimicking those from neoplastic lesions clinically and radiologically have been reported in the breast and urinary bladder. To date, a CNS manifestation of filarial infestation has been reported in the form of meningoencephalitis. The authors here present an interesting case of a young man presenting in status epilepticus, which on radiological evaluation appeared to be a glioma. However, postoperative histopathological examination changed the provisional diagnosis to a filarial infection of the CNS mimicking a primary CNS neoplasm.
Nature, nurture, and microbes: The development of multiple sclerosis.
Wekerle, H
2017-11-01
This paper argues that multiple sclerosis (MS) is the result of an autoimmune attack against components of the central nervous system (CNS). The effector cells involved in the pathogenic process are CNS-autoreactive T cells present in the healthy immune system in a resting state. Upon activation, these cells cross the blood-brain barrier and attack the CNS target tissue. Recent evidence indicates that autoimmune activation may happen in the intestine, following an interaction of bacterial components of the gut flora with local CNS autoreactive T cells. The consequences of this concept are discussed. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hypothalamic control of energy and glucose metabolism.
Sisley, Stephanie; Sandoval, Darleen
2011-09-01
The central nervous system (CNS), generally accepted to regulate energy homeostasis, has been implicated in the metabolic perturbations that either cause or are associated with obesity. Normally, the CNS receives hormonal, metabolic, and neuronal input to assure adequate energy levels and maintain stable energy homeostasis. Recent evidence also supports that the CNS uses these same inputs to regulate glucose homeostasis and this aspect of CNS regulation also becomes impaired in the face of dietary-induced obesity. This review focuses on the literature surrounding hypothalamic regulation of energy and glucose homeostasis and discusses how dysregulation of this system may contribute to obesity and T2DM.
Platt, Maryann P; Agalliu, Dritan; Cutforth, Tyler
2017-01-01
Antibodies against neuronal receptors and synaptic proteins are associated with autoimmune encephalitides (AE) that produce movement and psychiatric disorders. In order to exert their pathological effects on neural circuits, autoantibodies against central nervous system (CNS) targets must gain access to the brain and spinal cord by crossing the blood-brain barrier (BBB), a tightly regulated gateway formed by endothelial cells lining CNS blood vessels. To date, the pathogenic mechanisms that underlie autoantibody-triggered encephalitic syndromes are poorly understood, and how autoantibodies breach the barrier remains obscure for almost all AE syndromes. The relative importance of cellular versus humoral immune mechanisms for disease pathogenesis also remains largely unexplored. Here, we review the proposed triggers for various autoimmune encephalopathies and their animal models, as well as basic structural features of the BBB and how they differ among various CNS regions, a feature that likely underlies some regional aspects of autoimmune encephalitis pathogenesis. We then discuss the routes that antibodies and immune cells employ to enter the CNS and their implications for AE. Finally, we explore future therapeutic strategies that may either preserve or restore barrier function and thereby limit immune cell and autoantibody infiltration into the CNS. Recent mechanistic insights into CNS autoantibody entry indicate promising future directions for therapeutic intervention beyond current, short-lived therapies that eliminate circulating autoantibodies.
Platt, Maryann P.; Agalliu, Dritan; Cutforth, Tyler
2017-01-01
Antibodies against neuronal receptors and synaptic proteins are associated with autoimmune encephalitides (AE) that produce movement and psychiatric disorders. In order to exert their pathological effects on neural circuits, autoantibodies against central nervous system (CNS) targets must gain access to the brain and spinal cord by crossing the blood–brain barrier (BBB), a tightly regulated gateway formed by endothelial cells lining CNS blood vessels. To date, the pathogenic mechanisms that underlie autoantibody-triggered encephalitic syndromes are poorly understood, and how autoantibodies breach the barrier remains obscure for almost all AE syndromes. The relative importance of cellular versus humoral immune mechanisms for disease pathogenesis also remains largely unexplored. Here, we review the proposed triggers for various autoimmune encephalopathies and their animal models, as well as basic structural features of the BBB and how they differ among various CNS regions, a feature that likely underlies some regional aspects of autoimmune encephalitis pathogenesis. We then discuss the routes that antibodies and immune cells employ to enter the CNS and their implications for AE. Finally, we explore future therapeutic strategies that may either preserve or restore barrier function and thereby limit immune cell and autoantibody infiltration into the CNS. Recent mechanistic insights into CNS autoantibody entry indicate promising future directions for therapeutic intervention beyond current, short-lived therapies that eliminate circulating autoantibodies. PMID:28484451
Gonzalez-Angulo, Ana M.
2013-01-01
Metastasis to the central nervous system (CNS) is a devastating neurological complication of systemic cancer. Brain metastases from breast cancer have been documented to occur in approximately 10%–16% of cases over the natural course of the disease with leptomeningeal metastases occurring in approximately 2%–5% of cases of breast cancer. CNS metastases among women with breast cancer tend to occur among those who are younger, have larger tumors, and have a more aggressive histological subtype such as the triple negative and HER2-positive subtypes. Treatment of CNS metastases involves various combinations of whole brain radiation therapy, surgery, stereotactic radiosurgery, and chemotherapy. We will discuss the progress made in the treatment and prevention of breast cancer-associated CNS metastases and will delve into the biological underpinnings of CNS metastases including evaluating the role of breast tumor subtype on the incidence, natural history, prognostic outcome, and impact of therapeutic efficacy. PMID:23740934
Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route
Munster, Vincent J.; Prescott, Joseph B.; Bushmaker, Trenton; Long, Dan; Rosenke, Rebecca; Thomas, Tina; Scott, Dana; Fischer, Elizabeth R.; Feldmann, Heinz; de Wit, Emmie
2012-01-01
Encephalitis is a hallmark of Nipah virus (NiV) infection in humans. The exact route of entry of NiV into the central nervous system (CNS) is unknown. Here, we performed a spatio-temporal analysis of NiV entry into the CNS of hamsters. NiV initially predominantly targeted the olfactory epithelium in the nasal turbinates. From there, NiV infected neurons were visible extending through the cribriform plate into the olfactory bulb, providing direct evidence of rapid CNS entry. Subsequently, NiV disseminated to the olfactory tubercle and throughout the ventral cortex. Transmission electron microscopy on brain tissue showed extravasation of plasma cells, neuronal degeneration and nucleocapsid inclusions in affected tissue and axons, providing further evidence for axonal transport of NiV. NiV entry into the CNS coincided with the occurrence of respiratory disease, suggesting that the initial entry of NiV into the CNS occurs simultaneously with, rather than as a result of, systemic virus replication. PMID:23071900
Tsaltas, E; Kontis, D
2009-04-01
Recent data attribute neuroprotective and neurotrophic actions to lithium, leading to expectations of cognitive enhancement action. This hypothesis is at odds with the predominant view of clinical psychiatr y which, on the basis of older clinical data as well as on subjective reports of lithiumtreated patients, associates lithium with cognitive blurring and specific memory deficits. Review of the older data and their integration with more recent clinical and experimental work on the primary effects of lithium on cognitive functioning led us to two central conclusions: (a) Data on the primary cognitive effects of lithium, considered in their entirety, do not support a picture of serious or long-lasting cognitive decline. On the contrary, recent evidence suggests cognitive enhancement under certain conditions. (b) The conditions which appear to promote the emergence of cognitive enhancement under lithium are conditions of challenge to the cognitive systems, such as increased task difficulty resulting in deterioration in the performance of untreated controls. We are suggesting that alternative challenges to cognitive functioning, which therefore would facilitate the emergence of lithium's cognitive enhancement action, include biological insults to the central nervous system (CNS). This second part of our review of the cognitive effects of lithium therefore focuses on studies of its action on cognitive dysfunction associated with functional or biological challenge to the CNS, such as stress, trauma, neurodegenerative and psychiatric disorders.
Oxidative Stress and Neurodegenerative Disorders
Li, Jie; O, Wuliji; Li, Wei; Jiang, Zhi-Gang; Ghanbari, Hossein A.
2013-01-01
Living cells continually generate reactive oxygen species (ROS) through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS) is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS) of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs. PMID:24351827
Nanomedicine in Central Nervous System (CNS) Disorders: A Present and Future Prospective
Soni, Shringika; Ruhela, Rakesh Kumar; Medhi, Bikash
2016-01-01
Purpose: For the past few decades central nervous system disorders were considered as a major strike on human health and social system of developing countries. The natural therapeutic methods for CNS disorders limited for many patients. Moreover, nanotechnology-based drug delivery to the brain may an exciting and promising platform to overcome the problem of BBB crossing. In this review, first we focused on the role of the blood-brain barrier in drug delivery; and second, we summarized synthesis methods of nanomedicine and their role in different CNS disorder. Method: We reviewed the PubMed databases and extracted several kinds of literature on neuro nanomedicines using keywords, CNS disorders, nanomedicine, and nanotechnology. The inclusion criteria included chemical and green synthesis methods for synthesis of nanoparticles encapsulated drugs and, their in-vivo and in-vitro studies. We excluded nanomedicine gene therapy and nanomaterial in brain imaging. Results: In this review, we tried to identify a highly efficient method for nanomedicine synthesis and their efficacy in neuronal disorders. SLN and PNP encapsulated drugs reported highly efficient by easily crossing BBB. Although, these neuro-nanomedicine play significant role in therapeutics but some metallic nanoparticles reported the adverse effect on developing the brain. Conclusion: Although impressive advancement has made via innovative potential drug development, but their efficacy is still moderate due to limited brain permeability. To overcome this constraint,powerful tool in CNS therapeutic intervention provided by nanotechnology-based drug delivery methods. Due to its small and biofunctionalization characteristics, nanomedicine can easily penetrate and facilitate the drug through the barrier. But still, understanding of their toxicity level, optimization and standardization are a long way to go. PMID:27766216
Halliday, Gail C; Junckerstorff, Reimar C; Bentel, Jacqueline M; Miles, Andrew; Jones, David T W; Hovestadt, Volker; Capper, David; Endersby, Raelene; Cole, Catherine H; van Hagen, Tom; Gottardo, Nicholas G
2018-01-01
Central nervous system primitive neuro-ectodermal tumors (CNS-PNETs), have recently been re-classified in the most recent 2016 WHO Classification into a standby catch all category, "CNS Embryonal Tumor, not otherwise specified" (CNS embryonal tumor, NOS) based on epigenetic, biologic and histopathologic criteria. CNS embryonal tumors (NOS) are a rare, histologically and molecularly heterogeneous group of tumors that predominantly affect children, and occasionally adults. Diagnosis of this entity continues to be challenging and the ramifications of misdiagnosis of this aggressive class of brain tumors are significant. We report the case of a 45-year-old woman who was diagnosed with a central nervous system embryonal tumor (NOS) based on immunohistochemical analysis of the patient's tumor at diagnosis. However, later genome-wide methylation profiling of the diagnostic tumor undertaken to guide treatment, revealed characteristics most consistent with IDH-mutant astrocytoma. DNA sequencing and immunohistochemistry confirmed the presence of IDH1 and ATRX mutations resulting in a revised diagnosis of high-grade small cell astrocytoma, and the implementation of a less aggressive treatment regime tailored more appropriately to the patient's tumor type. This case highlights the inadequacy of histology alone for the diagnosis of brain tumours and the utility of methylation profiling and integrated genomic analysis for the diagnostic verification of adults with suspected CNS embryonal tumor (NOS), and is consistent with the increasing realization in the field that a combined diagnostic approach based on clinical, histopathological and molecular data is required to more accurately distinguish brain tumor subtypes and inform more effective therapy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Abid, Mohd; Hrishikeshavan, H J; Asad, Mohammed
2006-01-01
The research work deals with the screening of ethanol and chloroform extracts of Pachyrrhizus erosus seeds for central nervous system (CNS) depressant activity. The Pachyrrhizus erosus seed is known to contain rotinoids, flavonoids and phenylfuranocoumarin derivatives as chemical components and is reported to have antifungal, antisecretory, insecticides, antibacterial and spasmolytic activity. Since seeds of Pachyrrhizus erosus is used as folk medicine in treatment of insomnia, we made an attempt to study its CNS depressant effect. The different activities studied were potentiation of pentobarbitone-induced sleep, test for locomotor activity, effect on muscle co-ordination, antiaggressive and antianxiety activities. The result of the study reflected that ethanol extract of the seeds (150 mg/kg, p.o) decreased locomotor activity, produced muscle relaxation and showed antianxiety and antiaggressive activity.
Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.
Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong
2015-10-05
Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cowles, Martis W; Omuro, Kerilyn C; Stanley, Brianna N; Quintanilla, Carlo G; Zayas, Ricardo M
2014-10-01
Members of the COE family of transcription factors are required for central nervous system (CNS) development. However, the function of COE in the post-embryonic CNS remains largely unknown. An excellent model for investigating gene function in the adult CNS is the freshwater planarian. This animal is capable of regenerating neurons from an adult pluripotent stem cell population and regaining normal function. We previously showed that planarian coe is expressed in differentiating and mature neurons and that its function is required for proper CNS regeneration. Here, we show that coe is essential to maintain nervous system architecture and patterning in intact (uninjured) planarians. We took advantage of the robust phenotype in intact animals to investigate the genetic programs coe regulates in the CNS. We compared the transcriptional profiles of control and coe RNAi planarians using RNA sequencing and identified approximately 900 differentially expressed genes in coe knockdown animals, including 397 downregulated genes that were enriched for nervous system functional annotations. Next, we validated a subset of the downregulated transcripts by analyzing their expression in coe-deficient planarians and testing if the mRNAs could be detected in coe+ cells. These experiments revealed novel candidate targets of coe in the CNS such as ion channel, neuropeptide, and neurotransmitter genes. Finally, to determine if loss of any of the validated transcripts underscores the coe knockdown phenotype, we knocked down their expression by RNAi and uncovered a set of coe-regulated genes implicated in CNS regeneration and patterning, including orthologs of sodium channel alpha-subunit and pou4. Our study broadens the knowledge of gene expression programs regulated by COE that are required for maintenance of neural subtypes and nervous system architecture in adult animals.
Martín-Palomeque, Guillermo; Castro-Ortiz, Antonio; Pamplona-Valenzuela, Pilar; Saiz-Sepúlveda, Miguel Á; Cabañes-Martínez, Lidia; López, Jaime R
2017-01-01
Although large amplitude evoked potentials (EPs) are typically associated with progressive myoclonic epilepsy patients, giant EPs imply central nervous system (CNS) hyperexcitability and can be seen in various nonepileptic disorders. We performed a retrospective chart review including history, physical examination, imaging and diagnostic studies of nonepileptic patients with large amplitude somatosensory evoked potentials (SSEPs) and visual evoked potentials (VEPs) during 2007 to 2013. Large amplitude EPs were defined as follows: VEPs (N75-P100) >18 μV; and SSEPs (N20-P25) >6.4 μV. Recording montage for VEPs was Oz-Cz and SSEPs C3'/C4'-Fz. Fifty-two patients (33 females, 19 males; age range, 9-90 years) were identified. No CNS pathology was detected in 7 patients. All remaining patients were diagnosed with new CNS disorders including: vascular (37%); myelopathies (13%); demyelinating (11%); space occupying lesions (8.7%); syringomyelia (8.7%); hydrocephalus (6.5%); Vitamin B-12 deficiency (4.3%); multiple system atrophy (4.3%); and toxins (2.2%). This study supports the notion that large amplitude EP implies CNS hyperexcitability and CNS disease. These results confirm the utility of EP studies in patients with suspected CNS pathology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyon, K.H.; Kracko, D.A.; Strunk, M.R.
1995-12-01
The existence of a nose-brain barrier that functions to protect the central nervous system (CNS) from inhaled toxicants has been postulated. Just as a blood-brain barrier protects the CNS from systemic toxicants, the nose-brain barrier may have similar characteristic functions. One component of interest is nasal xenobiotic metabolism and its effect on the transport of pollutants into the CNS at environmentally plausible levels of exposure. Previous results have shown that inhaled xylene are dimethyl phenol (DMP) and methyl benzyl alcohol (MBA), and the nonvolatile metabolites are toluic acid (TA) and methyl hippuric acid (MHA). The nonvolatile metabolites of xylene, alongmore » with a small quantity of volatiles, representing either parent xylene or volatile metabolites, are transported via the olfactory epithelium to the glomeruli within the olfactory bulbs of the brain. Further work will be done to establish the linearity for each analyte at the actual highest detection limit of the GC/MS.« less
Calderon, Tina M; Williams, Dionna W; Lopez, Lillie; Eugenin, Eliseo A; Cheney, Laura; Gaskill, Peter J; Veenstra, Mike; Anastos, Kathryn; Morgello, Susan; Berman, Joan W
2017-06-01
In human immunodeficiency virus-1 (HIV) infected individuals, substance abuse may accelerate the development and/or increase the severity of HIV associated neurocognitive disorders (HAND). It is proposed that CD14 + CD16 + monocytes mediate HIV entry into the central nervous system (CNS) and that uninfected and infected CD14 + CD16 + monocyte transmigration across the blood brain barrier (BBB) contributes to the establishment and propagation of CNS HIV viral reservoirs and chronic neuroinflammation, important factors in the development of HAND. The effects of substance abuse on the frequency of CD14 + CD16 + monocytes in the peripheral circulation and on the entry of these cells into the CNS during HIV neuropathogenesis are not known. PBMC from HIV infected individuals were analyzed by flow cytometry and we demonstrate that the frequency of peripheral blood CD14 + CD16 + monocytes in HIV infected substance abusers is increased when compared to those without active substance use. Since drug use elevates extracellular dopamine concentrations in the CNS, we examined the effects of dopamine on CD14 + CD16 + monocyte transmigration across our in vitro model of the human BBB. The transmigration of this monocyte subpopulation is increased by dopamine and the dopamine receptor agonist, SKF 38393, implicating D1-like dopamine receptors in the increase in transmigration elicited by this neurotransmitter. Thus, elevated extracellular CNS dopamine may be a novel common mechanism by which active substance use increases uninfected and HIV infected CD14 + CD16 + monocyte transmigration across the BBB. The influx of these cells into the CNS may increase viral seeding and neuroinflammation, contributing to the development of HIV associated neurocognitive impairments.
Hutson, Thomas H.; Foster, Edmund; Dawes, John M.; Hindges, Robert; Yáñez-Muñoz, Rafael J.; Moon, Lawrence D.F.
2017-01-01
Background Knocking down neuronal LINGO-1 using short hairpin RNAs (shRNAs) might enhance axon regeneration in the CNS. Integration-deficient lentiviral vectors have great potential as a therapeutic delivery system for CNS injuries. However, recent studies have revealed that shRNAs can induce an interferon response resulting in off-target effects and cytotoxicity. Methods CNS neurons were transduced with integration-deficient lentiviral vectors in vitro. The transcriptional effect of shRNA expression was analysed using qRT-PCR and northern blots were used to assess shRNA production. Results Integration-deficient lentiviral vectors efficiently transduced CNS neurons and knocked down LINGO-1 mRNA in vitro. However, an increase in cell death was observed when lentiviral vectors encoding an shRNA were applied or when high vector concentrations were used. We demonstrate that high doses of vector or the use of vectors encoding shRNAs can induce an up-regulation of interferon stimulated genes (OAS1 and PKR) and a down-regulation of off- target genes (including p75NTR and NgR1). Furthermore, the northern blot demonstrated that these negative consequences occur even when lentiviral vectors express low levels of shRNAs. Together, these results may explain why neurite outgrowth was not enhanced on an inhibitory substrate after transduction with lentiviral vectors encoding an shRNA targeting LINGO-1. Conclusions These findings highlight the importance of including appropriate controls to verify silencing specificity and the requirement to check for an interferon response when conducting RNA interference experiments. However, the potential benefits that RNA interference and viral vectors offer to gene-based therapies to CNS injuries cannot be overlooked and demand further investigation. PMID:22499506
Hayes, Lisa; Malhotra, Prashant
2014-01-01
Central nervous system (CNS) infections can have various presentations including Cerebrovascular accidents (CVA) which may go unrecognized as a presentation of infection. We describe three cases of different CNS infections complicated by CVA. Case 1 describes a 27-year-old man, presenting with symptoms consistent with a transient ischemic attack found to have racemose neurocysticercosis. Case 2 describes a 55-year-old man with low grade fevers for 4 weeks accompanied by visual and gait disturbances and delayed speech diagnosed with multiple small left thalamocapsular and superior cerebellar infarcts secondary to cryptococcal meningitis. The third case describes a man with pneumococcal meningitis complicated by cerebellar infarcts. CNS vascular compromise secondary to infections may be due to vasculitis, an immune-mediated parainfectious process causing vasospasm or thrombosis, or a hypercoagulable state with endothelial dysfunction. Patients with CVAs are at risk for aspiration pneumonia, urinary tract infections (especially catheter related) and other nosocomial infections and their clinical presentation may be very similar to CNS infections. The cases described demonstrate that CNS infections need to be considered in the differential diagnosis of CVAs presenting with fevers. The signs and symptoms of non-CNS infections associated with CVAs may be clinically indistinguishable from those of CNS infections. The outcomes of untreated CNS infections are extremely poor. It is thus imperative to have a high index of suspicion for CNS infection when evaluating CVAs with fevers or other signs of infection.
Hayes, Lisa; Malhotra, Prashant
2014-01-01
Introduction Central nervous system (CNS) infections can have various presentations including Cerebrovascular accidents (CVA) which may go unrecognized as a presentation of infection. We describe three cases of different CNS infections complicated by CVA. Presentation Case 1 describes a 27-year-old man, presenting with symptoms consistent with a transient ischemic attack found to have racemose neurocysticercosis. Case 2 describes a 55-year-old man with low grade fevers for 4 weeks accompanied by visual and gait disturbances and delayed speech diagnosed with multiple small left thalamocapsular and superior cerebellar infarcts secondary to cryptococcal meningitis. The third case describes a man with pneumococcal meningitis complicated by cerebellar infarcts. Discussion CNS vascular compromise secondary to infections may be due to vasculitis, an immune-mediated parainfectious process causing vasospasm or thrombosis, or a hypercoagulable state with endothelial dysfunction. Patients with CVAs are at risk for aspiration pneumonia, urinary tract infections (especially catheter related) and other nosocomial infections and their clinical presentation may be very similar to CNS infections. Conclusion The cases described demonstrate that CNS infections need to be considered in the differential diagnosis of CVAs presenting with fevers. The signs and symptoms of non-CNS infections associated with CVAs may be clinically indistinguishable from those of CNS infections. The outcomes of untreated CNS infections are extremely poor. It is thus imperative to have a high index of suspicion for CNS infection when evaluating CVAs with fevers or other signs of infection. PMID:26839779
Regulation of Episodic Growth Hormone Secretion by the Central Epinephrine System
Terry, L. Cass; Crowley, W. R.; Johnson, M. D.
1982-01-01
Catecholamines are postulated to regulate growth hormone (GH) secretion by their influence on the release of two hypothalamic substances, somatostatin, which inhibits GH release, and GH-releasing factor, as yet unidentified. Extensive pharmacologic studies in man and animals indicate a stimulatory effect of central norepinephrine and dopamine on GH, but the function of epiphephrine (EPI) is uncertain. Furthermore, many of the agents used to study the role of catecholamines in GH regulation are not selective in that they affect adrenergic as well as nor-adrenergic and/or dopaminergic neurotransmission. In the present investigation, central nervous system (CNS) EPI biosynthesis was selectively interrupted with the specific norepinephrine N-methyltransferase inhibitors, SK & F 64139 (Smith, Kline & French Laboratories) and LY 78335, (Eli Lilly & Co. Research Laboratories) and the effects of central EPI depletion on episodic GH secretion in the chronically cannulated rat model were determined. Inhibition of CNS EPI synthesis with SK & F 64139 caused complete suppression of episodic GH secretion and concomitantly reduced the EPI level in the hypothalamus without affecting dopamine or norepinephrine. Administration of LY 78335 produced similar effects on pulsatile GH. Morphine-induced, but not clonidine-induced, GH release also was blocked by SK & F 64139. These results indicate that (a) the central EPI system has a major stimulatory function in episodic GH release, (b) morphine-induced GH release is mediated by the central EPI system, and (c) clonidine stimulates GH release by activation of postsynaptic α-adrenergic receptors. Drugs that affect CNS adrenergic systems have a potential role in the diagnosis and treatment of disorders of GH secretion. PMID:7054231
De Visscher, A; Piepers, S; Supré, K; Haesebrouck, F; De Vliegher, S
2015-08-01
Coagulase-negative staphylococci (CNS) are frequently isolated from quarters with subclinical mastitis, teat apices, and the cows' environment. Virulence, ecology, epidemiological behavior, and effect on udder health vary between different CNS species. Staphylococcus chromogenes, Staph. simulans, and Staph. xylosus are frequently present in milk and have a more substantial effect on quarter milk somatic cell count than other species. Therefore, these species are considered the "more relevant" CNS. As species-specific factors associated with CNS intramammary infection (IMI) have not yet been identified and susceptibility for IMI differs between cows and quarters, this study aimed to identify predictors for CNS IMI at the cow and quarter level (some of them changing over time) with a specific focus on the aforementioned more relevant CNS. Precise data were available from a longitudinal study (3,052 observations from 344 quarters from 86 dairy cows belonging to 3 commercial dairy herds). All CNS were molecularly identified to the species level, and multivariable, multilevel logistic regression models taking into account the longitudinal nature of the data, were fit to study the likelihood of infection. Staphylococcus chromogenes, Staph. xylosus, and Staph. cohnii were the most frequently isolated species from CNS IMI in older cows, whereas Staph. chromogenes, Staph. xylosus, and Staph. simulans were the main species found in IMI in heifers. Quarters from heifers (as opposed to multiparous cows), from heifers and multiparous cows in third or fourth month in lactation (as opposed to early lactation, <60 d in milk), and with an increasing quarter milk SCC were more likely to be infected with the more relevant CNS species. Quarter milk SCC was identified as the sole statistically significant predictor for IMI with other CNS species, although the size of the effect was lower [odds ratio of 1.6 (1.4-1.9) vs. 2.1 (1.8-2.5)] than the effect for IMI with the more relevant CNS. As a strong herd effect was present, studying herd-level predictors is warranted. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Nair, Sharmila; Diamond, Michael S.
2015-01-01
The innate immune system mediates protection against neurotropic viruses that replicate in the central nervous system (CNS). Virus infection within specific cells of the CNS triggers activation of several families of pattern recognition receptors including Toll-like receptors, retinoic acid-inducible gene 1 like receptors, nucleotide-binding oligomerization domain-like receptors, and cytosolic DNA sensors. In this review, we highlight recent advances in our understanding of how cell-intrinsic host defenses within the CNS modulate infection of different DNA and RNA viruses. PMID:26163762
McCoach, Caroline E; Berge, Eamon M; Lu, Xian; Barón, Anna E; Camidge, D Ross
2016-03-01
Central nervous system (CNS) metastases are common in non-small cell lung cancer (NSCLC), yet clinical trials of new drugs in advanced NSCLC have varying inclusion and exclusion criteria for CNS disease. The true extent of variation in CNS-related enrollment criteria in NSCLC clinical trials has not been documented. We performed a systematic search of the ClinicalTrials.gov website to characterize interventional drug trials enrolling adult patients with advanced NSCLC. Of 413 open trials, 78 (19%) strictly excluded patients with leptomeningeal disease (LMD). Separate from LMD, patients with any history of CNS metastases were strictly excluded in 59 trials (14%), allowed after local treatment in 169 (41%), and allowed with no prior treatment in 106 (26%). No explicit mention of CNS disease was made in 79 trials (19%). In multivariate analysis looking at trial phase, location, sponsor, and treatment type, only sponsor was statistically significant, with pharmaceutical industry-sponsored trials having higher odds of excluding patients with brain metastases than did university or investigator-initiated trials (OR = 2.262, 95% confidence interval: 1.063-4.808, p = 0.0342) CONCLUSIONS: With 14% to 19% of trials excluding any history of LMD or CNS parenchymal metastatic disease and 41% of trials permitting CNS disease only after prior CNS-directed treatment, direct evidence of activity of a treatment on CNS disease cannot be reliably generated in most NSCLC trials. Given the high frequency of CNS disease in NSCLC and only sponsor being associated with specific CNS exclusion criteria, sponsors should consider tailoring trial designs to explore CNS benefit more explicitly. Copyright © 2015 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Kano, Yasuhiro; Kodaira, Minori; Ushiki, Atsuhito; Kosaka, Makoto; Yamada, Mitsunori; Shingu, Kunihiko; Nishihara, Hiroshi; Hanaoka, Masayuki; Sekijima, Yoshiki
2017-09-15
A 49-year-old man presented with gradually progressive aphasia one month after being diagnosed with acquired immunodeficiency syndrome (AIDS). Brain magnetic resonance imaging showed multiple brain lesions with punctate and linear enhancement. A polymerase chain reaction detected Epstein-Barr virus (EBV) in the patient's cerebrospinal fluid. A diagnosis of isolated central nervous system lymphomatoid granulomatosis (CNS-LYG) was made based on the brain biopsy findings. The complete remission of CNS-LYG was achieved by anti-retroviral therapy (ART) alone. In the present case, the development of AIDS-associated CNS-LYG was considered to have been initiated by the reactivation of EBV in the CNS under immunosuppressive conditions. The patient's condition improved with the reconstitution of the patient's immune system.
Nanomedicines for the Treatment of CNS Diseases.
Reynolds, Jessica L; Mahato, Ram I
2017-03-01
Targeting and delivering macromolecular therapeutics to the central nervous system (CNS) has been a major challenge. The blood-brain barrier (BBB) is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Therefore, much effort has been channelled into improving transport of therapeutics across the BBB and into the CNS including the use of nanoparticles. In this thematic issue, several reviews and original research are presented that address "Nanomedicines for CNS Diseases." The articles in this issue are concentrated on either CNS-HIV disease or CNS tumors. In regards to CNS-HIV disease, there are two reviews that discuss the role of nanoparticles for improving the delivery of HIV therapeutics to the CNS. In addition, there are two original articles focusing on therapies for CNS-HIV, one of them uses nanoparticles for delivery of siRNA specific to a key protein in autophagy to microglia, and another discusses nanoparticle delivery of a soluble mediator to suppress neuroinflammation. Furthermore, a comprehensive review about gene therapy for CNS neurological diseases is also included. Finally, this issue also includes review articles on enhanced drug targeting to CNS tumors. These articles include a review on the use of nanoparticles for CNS tumors, a review on functionalization (ligands) of nanoparticles for drug targeting to the brain tumor by overcoming BBB, and the final review discusses the use of macrophages as a delivery vehicle to CNS tumors. This thematic issue provides a wealth of knowledge on using nanomedicines for CNS diseases.
Cuenca, Nicolás; Fernández-Sánchez, Laura; McGill, Trevor J; Lu, Bin; Wang, Shaomei; Lund, Raymond; Huhn, Stephen; Capela, Alexandra
2013-10-15
Transplantation of human central nervous system stem cells (HuCNS-SC) into the subretinal space of Royal College of Surgeons (RCS) rats preserves photoreceptors and visual function. To explore possible mechanism(s) of action underlying this neuroprotective effect, we performed a detailed morphologic and ultrastructure analysis of HuCNS-SC transplanted retinas. The HuCNS-SC were transplanted into the subretinal space of RCS rats. Histologic examination of the transplanted retinas was performed by light and electron microscopy. Areas of the retina adjacent to HuCNS-SC graft (treated regions) were analyzed and compared to control sections obtained from the same retina, but distant from the transplant site (untreated regions). The HuCNS-SC were detected as a layer of STEM 121 immunopositive cells in the subretinal space. In treated regions, preserved photoreceptor nuclei, as well as inner and outer segments were identified readily. In contrast, classic signs of degeneration were observed in the untreated regions. Interestingly, detailed ultrastructure analysis revealed a striking preservation of the photoreceptor-bipolar-horizontal cell synaptic contacts in the outer plexiform layer (OPL) of treated areas, in stark contrast with untreated areas. Finally, the presence of phagosomes and vesicles exhibiting the lamellar structure of outer segments also was detected within the cytosol of HuCNS-SC, indicating that these cells have phagocytic capacity in vivo. This study reveals the novel finding that preservation of specialized synaptic contacts between photoreceptors and second order neurons, as well as phagocytosis of photoreceptor outer segments, are potential mechanism(s) of HuCNS-SC transplantation, mediating functional rescue in retinal degeneration.
Requirements for an Integrated UAS CNS Architecture
NASA Technical Reports Server (NTRS)
Templin, Fred L.; Jain, Raj; Sheffield, Greg; Taboso-Ballesteros, Pedro; Ponchak, Denise
2017-01-01
Communications, Navigation and Surveillance (CNS) requirements must be developed in order to establish a CNS architecture supporting Unmanned Air Systems integration in the National Air Space (UAS in the NAS). These requirements must address cybersecurity, future communications, satellite-based navigation and APNT, and scalable surveillance and situational awareness. CNS integration, consolidation and miniaturization requirements are also important to support the explosive growth in small UAS deployment. Air Traffic Management (ATM) must also be accommodated to support critical Command and Control (C2) for Air Traffic Controllers (ATC). This document therefore presents UAS CNS requirements that will guide the architecture.
Enhanced brain penetration of hexamethonium in complexes with derivatives of fullerene C60.
Piotrovskiy, L B; Litasova, E V; Dumpis, M A; Nikolaev, D N; Yakovleva, E E; Dravolina, O A; Bespalov, A Yu
2016-05-01
The present report describes development of hexamethonium complexes based on fullerene C60. Hexamethonium has a limited penetration into CNS and therefore can antagonize central effects of nicotine only when given at high doses. In the present studies conducted in laboratory rodents, intraperitoneal administration of hexamethonium-fullerene complexes blocked effects of nicotine (convulsions and locomotor stimulation). When compared to equimolar doses of hexamethonium, complexes of hexamethonium with derivatives of fullerene C60 were 40 times more potent indicating an enhanced ability to interact with central nicotine receptors. Thus, fullerene C60 derivatives should be explored further as potential carrier systems for polar drug delivery into CNS.
NCI-CONNECT - Comprehensive Oncology Network Evaluating Rare CNS Tumors | Center for Cancer Research
NCI-CONNECT: Comprehensive Oncology Network Evaluating Rare CNS Tumors Purpose NCI-CONNECT aims to advance the understanding of rare adult central nervous system (CNS) cancers by establishing and fostering patient-advocacy-provider partnerships and networks to improve approaches to care and treatment.
Requirements for an Integrated UAS CNS Architecture
NASA Technical Reports Server (NTRS)
Templin, Fred; Jain, Raj; Sheffield, Greg; Taboso, Pedro; Ponchak, Denise
2017-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating revolutionary and advanced universal, reliable, always available, cyber secure and affordable Communication, Navigation, Surveillance (CNS) options for all altitudes of UAS operations. In Spring 2015, NASA issued a Call for Proposals under NASA Research Announcements (NRA) NNH15ZEA001N, Amendment 7 Subtopic 2.4. Boeing was selected to conduct a study with the objective to determine the most promising candidate technologies for Unmanned Air Systems (UAS) air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. The overall objectives are to develop UAS CNS requirements and then develop architectures that satisfy the requirements for UAS in both controlled and uncontrolled air space. This contract is funded under NASAs Aeronautics Research Mission Directorates (ARMD) Aviation Operations and Safety Program (AOSP) Safe Autonomous Systems Operations (SASO) project and proposes technologies for the Unmanned Air Systems Traffic Management (UTM) service. Communications, Navigation and Surveillance (CNS) requirements must be developed in order to establish a CNS architecture supporting Unmanned Air Systems integration in the National Air Space (UAS in the NAS). These requirements must address cybersecurity, future communications, satellite-based navigation APNT, and scalable surveillance and situational awareness. CNS integration, consolidation and miniaturization requirements are also important to support the explosive growth in small UAS deployment. Air Traffic Management (ATM) must also be accommodated to support critical Command and Control (C2) for Air Traffic Controllers (ATC). This document therefore presents UAS CNS requirements that will guide the architecture.
Júnior, Luiz Carlos de Caires; Guimarães, Ernesto da Silveira Goulart; Musso, Camila Manso; Stabler, Collin Turner; Garcia, Raúl Marcel González; Mourão-Júnior, Carlos Alberto; Andreazzi, Ana Eliza
2014-09-01
The development of communication systems has brought great social and economic benefits to society. As mobile phone use has become widespread, concerns have emerged regarding the potential adverse effects of radiofrequency electromagnetic radiation (RF-EMR) used by these devices. To verify potential effects of mobile phone radiation on the central nervous system (CNS) in an animal model. Male Wistar rats (60 days old) were exposed to RF-EMR from a Global System for Mobile (GSM) cell phone (1·8 GHz) for 3 days. At the end of the exposure, the following behavioral tests were performed: open field and object recognition. Our results showed that exposed animals did not present anxiety patterns or working memory impairment, but stress behavior actions were observed. Given the results of the present study, we speculate that RF-EMR does not promote CNS impairment, but suggest that it may lead to stressful behavioral patterns.
Neuronopathic Lysosomal Storage Diseases: Clinical and Pathologic Findings
ERIC Educational Resources Information Center
Prada, Carlos E.; Grabowski, Gregory A.
2013-01-01
Background: The lysosomal--autophagocytic system diseases (LASDs) affect multiple body systems including the central nervous system (CNS). The progressive CNS pathology has its onset at different ages, leading to neurodegeneration and early death. Methods: Literature review provided insight into the current clinical neurological findings,…
Bertrand, Luc; Nair, Madhavan; Toborek, Michal
2016-01-01
Recent decades mark a great progress in the treatment of HIV infection. What was once a deadly disease is now a chronic infection. However, HIV-infected patients are prone to develop comorbidities, which severely affect their daily functions. For example, a large population of patients develop a variety of neurological and cognitive complications, called HIV associated neurological disorders (HAND). Despite efficient repression of viral replication in the periphery, evidence shows that the virus can remain active in the central nervous system (CNS). This low level of replication is believed to result in a progression of neurocognitive dysfunction in infected individuals. Insufficient viral inhibition in the brain results from the inability of several treatment drugs in crossing the blood-brain barrier (BBB) and reaching therapeutic concentrations in the CNS. The current manuscript discusses several strategies that are being developed to enable therapeutics to cross the BBB, including bypassing BBB, inhibition of efflux transporters, the use of active transporters present at the BBB, and nanotechnology. The increased concentration of therapeutics in the CNS is desirable to prevent viral replication; however, potential side effects of anti-retroviral drugs need also to be taken into consideration.
Qiao, Jingda; Zou, Xiaolu; Lai, Duo; Yan, Ying; Wang, Qi; Li, Weicong; Deng, Shengwen; Xu, Hanhong; Gu, Huaiyu
2014-07-01
Azadirachtin is a botanical pesticide, which possesses conspicuous biological actions such as insecticidal, anthelmintic, antifeedancy, antimalarial effects as well as insect growth regulation. Deterrent for chemoreceptor functions appears to be the main mechanism involved in the potent biological actions of Azadirachtin, although the cytotoxicity and subtle changes to skeletal muscle physiology may also contribute to its insecticide responses. In order to discover the effects of Azadirachtin on the central nervous system (CNS), patch-clamp recording was applied to Drosophila melanogaster, which has been widely used in neurological research. Here, we describe the electrophysiological properties of a local neuron located in the suboesophageal ganglion region of D. melanogaster using the whole brain. The patch-clamp recordings suggested that Azadirachtin modulates the properties of cholinergic miniature excitatory postsynaptic current (mEPSC) and calcium currents, which play important roles in neural activity of the CNS. The frequency of mEPSC and the peak amplitude of the calcium currents significantly decreased after application of Azadirachtin. Our study indicates that Azadirachtin can interfere with the insect's CNS via inhibition of excitatory cholinergic transmission and partly blocking the calcium channel. © 2013 Society of Chemical Industry.
Qin, Weiping; Sun, Li; Cao, Jay; Peng, Yuanzhen; Collier, Lauren; Wu, Yong; Creasey, Graham; Li, Jianhua; Qin, Yiwen; Jarvis, Jonathan; Bauman, William A; Zaidi, Mone; Cardozo, Christopher
2013-05-10
Mechanisms by which muscle regulates bone are poorly understood. Electrically stimulated muscle contraction reversed elevations in bone resorption and increased Wnt signaling in bone-derived cells after spinal cord transection. Muscle contraction reduced resorption of unloaded bone independently of the CNS, through mechanical effects and, potentially, nonmechanical signals (e.g. myokines). The study provides new insights regarding muscle-bone interactions. Muscle and bone work as a functional unit. Cellular and molecular mechanisms underlying effects of muscle activity on bone mass are largely unknown. Spinal cord injury (SCI) causes muscle paralysis and extensive sublesional bone loss and disrupts neural connections between the central nervous system (CNS) and bone. Muscle contraction elicited by electrical stimulation (ES) of nerves partially protects against SCI-related bone loss. Thus, application of ES after SCI provides an opportunity to study the effects of muscle activity on bone and roles of the CNS in this interaction, as well as the underlying mechanisms. Using a rat model of SCI, the effects on bone of ES-induced muscle contraction were characterized. The SCI-mediated increase in serum C-terminal telopeptide of type I collagen (CTX) was completely reversed by ES. In ex vivo bone marrow cell cultures, SCI increased the number of osteoclasts and their expression of mRNA for several osteoclast differentiation markers, whereas ES significantly reduced these changes; SCI decreased osteoblast numbers, but increased expression in these cells of receptor activator of NF-κB ligand (RANKL) mRNA, whereas ES increased expression of osteoprotegerin (OPG) and the OPG/RANKL ratio. A microarray analysis revealed that ES partially reversed SCI-induced alterations in expression of genes involved in signaling through Wnt, FSH, parathyroid hormone (PTH), oxytocin, and calcineurin/nuclear factor of activated T-cells (NFAT) pathways. ES mitigated SCI-mediated increases in mRNA levels for the Wnt inhibitors DKK1, sFRP2, and sclerostin in ex vivo cultured osteoblasts. Our results demonstrate an anti-bone-resorptive activity of muscle contraction by ES that develops rapidly and is independent of the CNS. The pathways involved, particularly Wnt signaling, suggest future strategies to minimize bone loss after immobilization.
Hur, Eun-Mi; Lee, Byoung Dae
2014-12-01
Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs) are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS) are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.
Hydrogels Derived from Central Nervous System Extracellular Matrix
Medberry, Christopher J.; Crapo, Peter M.; Siu, Bernard F.; Carruthers, Christopher A.; Wolf, Matthew T.; Nagarkar, Shailesh P.; Agrawal, Vineet; Jones, Kristen E.; Kelly, Jeremy; Johnson, Scott A.; Velankar, Sachin S.; Watkins, Simon C.; Modo, Michel
2012-01-01
Biologic scaffolds composed of extracellular matrix (ECM) are commonly used repair devices in preclinical and clinical settings; however the use of these scaffolds for peripheral and central nervous system (CNS) repair has been limited. Biologic scaffolds developed from brain and spinal cord tissue have recently been described, yet the conformation of the harvested ECM limits therapeutic utility. An injectable CNS-ECM derived hydrogel capable of in vivo polymerization and conformation to irregular lesion geometries may aid in tissue reconstruction efforts following complex neurologic trauma. The objectives of the present study were to develop hydrogel forms of brain and spinal cord ECM and compare the resulting biochemical composition, mechanical properties, and neurotrophic potential of a brain derived cell line to a non-CNS-ECM hydrogel, urinary bladder matrix. Results showed distinct differences between compositions of brain ECM, spinal cord ECM, and urinary bladder matrix. The rheologic modulus of spinal cord ECM hydrogel was greater than that of brain ECM and urinary bladder matrix. All ECMs increased the number of cells expressing neurites, but only brain ECM increased neurite length, suggesting a possible tissue-specific effect. All hydrogels promoted three-dimensional uni- or bi-polar neurite outgrowth following 7 days in culture. These results suggest that CNS-ECM hydrogels may provide supportive scaffolding to promote in vivo axonal repair. PMID:23158935
New experimental models of the blood-brain barrier for CNS drug discovery
Kaisar, Mohammad A.; Sajja, Ravi K.; Prasad, Shikha; Abhyankar, Vinay V.; Liles, Taylor; Cucullo, Luca
2017-01-01
Introduction The blood-brain barrier (BBB) is a dynamic biological interface which actively controls the passage of substances between the blood and the central nervous system (CNS). From a biological and functional standpoint, the BBB plays a crucial role in maintaining brain homeostasis inasmuch that deterioration of BBB functions are prodromal to many CNS disorders. Conversely, the BBB hinders the delivery of drugs targeting the brain to treat a variety of neurological diseases. Area covered This article reviews recent technological improvements and innovation in the field of BBB modeling including static and dynamic cell-based platforms, microfluidic systems and the use of stem cells and 3D printing technologies. Additionally, the authors laid out a roadmap for the integration of microfluidics and stem cell biology as a holistic approach for the development of novel in vitro BBB platforms. Expert opinion Development of effective CNS drugs has been hindered by the lack of reliable strategies to mimic the BBB and cerebrovascular impairments in vitro. Technological advancements in BBB modeling have fostered the development of highly integrative and quasi- physiological in vitro platforms to support the process of drug discovery. These advanced in vitro tools are likely to further current understanding of the cerebrovascular modulatory mechanisms. PMID:27782770
Chun, Seung J.; Norris, Daniel A.; Hung, Gene; Lee, Sam; Matson, John; Fey, Robert A.; Gaus, Hans; Hua, Yimin; Grundy, John S.; Krainer, Adrian R.; Henry, Scott P.; Bennett, C. Frank
2014-01-01
Spinal muscular atrophy (SMA) is a debilitating neuromuscular disease caused by the loss of survival of motor neuron (SMN) protein. Previously, we demonstrated that ISIS 396443, an antisense oligonucleotide (ASO) targeted to the SMN2 pre-mRNA, is a potent inducer of SMN2 exon 7 inclusion and SMN protein expression, and improves function and survival of mild and severe SMA mouse models. Here, we demonstrate that ISIS 396443 is the most potent ASO in central nervous system (CNS) tissues of adult mice, compared with several other chemically modified ASOs. We evaluated methods of ISIS 396443 delivery to the CNS and characterized its pharmacokinetics and pharmacodynamics in rodents and nonhuman primates (NHPs). Intracerebroventricular bolus injection is a more efficient method of delivering ISIS 396443 to the CNS of rodents, compared with i.c.v. infusion. For both methods of delivery, the duration of ISIS 396443–mediated SMN2 splicing correction is long lasting, with maximal effects still observed 6 months after treatment discontinuation. Administration of ISIS 396443 to the CNS of NHPs by a single intrathecal bolus injection results in widespread distribution throughout the spinal cord. Based upon these preclinical studies, we have advanced ISIS 396443 into clinical development. PMID:24784568
Antiviral Type I and Type III Interferon Responses in the Central Nervous System
Sorgeloos, Frédéric; Kreit, Marguerite; Hermant, Pascale; Lardinois, Cécile; Michiels, Thomas
2013-01-01
The central nervous system (CNS) harbors highly differentiated cells, such as neurons that are essential to coordinate the functions of complex organisms. This organ is partly protected by the blood-brain barrier (BBB) from toxic substances and pathogens carried in the bloodstream. Yet, neurotropic viruses can reach the CNS either by crossing the BBB after viremia, or by exploiting motile infected cells as Trojan horses, or by using axonal transport. Type I and type III interferons (IFNs) are cytokines that are critical to control early steps of viral infections. Deficiencies in the IFN pathway have been associated with fatal viral encephalitis both in humans and mice. Therefore, the IFN system provides an essential protection of the CNS against viral infections. Yet, basal activity of the IFN system appears to be low within the CNS, likely owing to the toxicity of IFN to this organ. Moreover, after viral infection, neurons and oligodendrocytes were reported to be relatively poor IFN producers and appear to keep some susceptibility to neurotropic viruses, even in the presence of IFN. This review addresses some trends and recent developments concerning the role of type I and type III IFNs in: i) preventing neuroinvasion and infection of CNS cells; ii) the identity of IFN-producing cells in the CNS; iii) the antiviral activity of ISGs; and iv) the activity of viral proteins of neurotropic viruses that target the IFN pathway. PMID:23503326
Antiviral type I and type III interferon responses in the central nervous system.
Sorgeloos, Frédéric; Kreit, Marguerite; Hermant, Pascale; Lardinois, Cécile; Michiels, Thomas
2013-03-15
The central nervous system (CNS) harbors highly differentiated cells, such as neurons that are essential to coordinate the functions of complex organisms. This organ is partly protected by the blood-brain barrier (BBB) from toxic substances and pathogens carried in the bloodstream. Yet, neurotropic viruses can reach the CNS either by crossing the BBB after viremia, or by exploiting motile infected cells as Trojan horses, or by using axonal transport. Type I and type III interferons (IFNs) are cytokines that are critical to control early steps of viral infections. Deficiencies in the IFN pathway have been associated with fatal viral encephalitis both in humans and mice. Therefore, the IFN system provides an essential protection of the CNS against viral infections. Yet, basal activity of the IFN system appears to be low within the CNS, likely owing to the toxicity of IFN to this organ. Moreover, after viral infection, neurons and oligodendrocytes were reported to be relatively poor IFN producers and appear to keep some susceptibility to neurotropic viruses, even in the presence of IFN. This review addresses some trends and recent developments concerning the role of type I and type III IFNs in: i) preventing neuroinvasion and infection of CNS cells; ii) the identity of IFN-producing cells in the CNS; iii) the antiviral activity of ISGs; and iv) the activity of viral proteins of neurotropic viruses that target the IFN pathway.
Hicks, Martin J.; Kaminsky, Stephen M.; De, Bishnu P.; Rosenberg, Jonathan B.; Evans, Suzette M.; Foltin, Richard W.; Andrenyak, David M.; Moody, David E.; Koob, George F.; Janda, Kim D.; Ricart Arbona, Rodolfo J.; Lepherd, Michelle L.
2014-01-01
Abstract Cocaine use disorders are mediated by the cocaine blockade of the dopamine transporter in the central nervous system (CNS). On the basis of the concept that these effects could be obviated if cocaine were prevented from reaching its cognate receptors in the CNS, we have developed an anticocaine vaccine, dAd5GNE, based on a cocaine analog covalently linked to capsid proteins of an E1−E3− serotype 5 adenovirus. While the vaccine effectively blocks systemically administered cocaine from reaching the brain by mediating sequestration of the cocaine in the blood, the fact that cocaine also has significant peripheral effects raises concerns that vaccination-mediated redistribution could lead to adverse effects in the visceral organs. The distribution of systemically administered cocaine at a weight-adjusted typical human dose was evaluated along with cocaine metabolites in both dAd5GNE-vaccinated and control nonhuman primates. dAd5GNE sequestration of cocaine to the blood not only prevented cocaine access to the CNS, but also limited access of both the drug and its metabolites to other cocaine-sensitive organs. The levels of cocaine in the blood of vaccinated animals rapidly decreased, suggesting that while the antibody limits access of the drug and its active metabolites to the brain and sensitive organs of the periphery, it does not prolong drug levels in the blood compartment. Gross and histopathology of major organs found no vaccine-mediated untoward effects. These results build on our earlier measures of efficacy and demonstrate that the dAd5GNE vaccine-mediated redistribution of administered cocaine is not likely to impact the vaccine safety profile. PMID:24649839
Vanderhaeghen, W; Piepers, S; Leroy, F; Van Coillie, E; Haesebrouck, F; De Vliegher, S
2014-09-01
The aim of this review is to assess the effect of coagulase-negative staphylococci (CNS) species on udder health and milk yield in ruminants, and to evaluate the capacity of CNS to cause persistent intramammary infections (IMI). Furthermore, the literature on factors suspected of playing a role in the pathogenicity of IMI-associated CNS, such as biofilm formation and the presence of various putative virulence genes, is discussed. The focus is on the 5 CNS species that have been most frequently identified as causing bovine IMI using reliable molecular identification methods (Staphylococcus chromogenes, Staphylococcus simulans, Staphylococcus haemolyticus, Staphylococcus xylosus, and Staphylococcus epidermidis). Although the effect on somatic cell count and milk production is accepted to be generally limited or nonexistent for CNS as a group, indications are that the typical effects differ between CNS species and perhaps even strains. It has also become clear that many CNS species can cause persistent IMI, contrary to what has long been believed. However, this trait appears to be quite complicated, being partly strain dependent and partly dependent on the host's immunity. Consistent definitions of persistence and more uniform methods for testing this phenomenon will benefit future research. The factors explaining the anticipated differences in pathogenic behavior appear to be more difficult to evaluate. Biofilm formation and the presence of various staphylococcal virulence factors do not seem to (directly) influence the effect of CNS on IMI but the available information is indirect or insufficient to draw consistent conclusions. Future studies on the effect, persistence, and virulence of the different CNS species associated with IMI would benefit from using larger and perhaps even shared strain collections and from adjusting study designs to a common framework, as the large variation currently existing therein is a major problem. Also within-species variation should be investigated. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Language disorders in children with central nervous system injury
Dennis, Maureen
2011-01-01
Children with injury to the central nervous system (CNS) exhibit a variety of language disorders that have been described by members of different disciplines, in different journals, using different descriptors and taxonomies. This paper is an overview of language deficits in children with CNS injury, whether congenital or acquired after a period of normal development. It first reviews the principal CNS conditions associated with language disorders in childhood. It then describes a functional taxonomy of language, with examples of the phenomenology and neurobiology of clinical deficits in children with CNS insults. Finally, it attempts to situate language in the broader realm of cognition and in current theoretical accounts of embodied cognition. PMID:20397297
Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach
Tam, Roger Y; Fuehrmann, Tobias; Mitrousis, Nikolaos; Shoichet, Molly S
2014-01-01
The central nervous system (CNS) has a limited capacity to spontaneously regenerate following traumatic injury or disease, requiring innovative strategies to promote tissue and functional repair. Tissue regeneration strategies, such as cell and/or drug delivery, have demonstrated promising results in experimental animal models, but have been difficult to translate clinically. The efficacy of cell therapy, which involves stem cell transplantation into the CNS to replace damaged tissue, has been limited due to low cell survival and integration upon transplantation, while delivery of therapeutic molecules to the CNS using conventional methods, such as oral and intravenous administration, have been limited by diffusion across the blood–brain/spinal cord-barrier. The use of biomaterials to promote graft survival and integration as well as localized and sustained delivery of biologics to CNS injury sites is actively being pursued. This review will highlight recent advances using biomaterials as cell- and drug-delivery vehicles for CNS repair. PMID:24002187
Pericyte function in the physiological central nervous system.
Muramatsu, Rieko; Yamashita, Toshihide
2014-01-01
Damage to the central nervous system (CNS) leads to disruption of the vascular network, causing vascular dysfunction. Vascular dysfunction is the major event in the pathogenesis of CNS diseases and is closely associated with the severity of neuronal dysfunction. The suppression of vascular dysfunction has been considered a promising avenue to limit damage to the CNS, leading to efforts to clarify the cellular and molecular basis of vascular homeostasis maintenance. A reduction of trophic support and oxygen delivery due to circulatory insufficiency has long been regarded as a major cause of vascular damage. Moreover, recent studies provide a new perspective on the importance of the structural stability of blood vessels in CNS diseases. This updated article discusses emerging information on the key role of vascular integrity in CNS diseases, specially focusing on pericyte function. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Fleck, Ann-Katrin; Schuppan, Detlef; Wiendl, Heinz; Klotz, Luisa
2017-07-14
In the last decade the role of environmental factors as modulators of disease activity and progression has received increasing attention. In contrast to classical environmental modulators such as exposure to sun-light or fine dust pollution, nutrition is an ideal tool for a personalized human intervention. Various studies demonstrate a key role of dietary factors in autoimmune diseases including Inflammatory Bowel Disease (IBD), rheumatoid arthritis or inflammatory central nervous system (CNS) diseases such as Multiple Sclerosis (MS). In this review we discuss the connection between diet and inflammatory processes via the gut-CNS-axis. This axis describes a bi-directional communication system and comprises neuronal signaling, neuroendocrine pathways and modulation of immune responses. Therefore, the gut-CNS-axis represents an emerging target to modify CNS inflammatory activity ultimately opening new avenues for complementary and adjunctive treatment of autoimmune diseases such as MS.
Gassas, Adam; Krueger, Joerg; Alvi, Saima; Sung, Lillian; Hitzler, Johanne; Lieberman, Lani
2014-12-01
Despite the success of central nervous system (CNS) directed therapy in pediatric acute lymphoblastic leukemia (ALL), relapse involving the CNS continues to be observed in 5-10% of children when utilizing standard intrathecal prophylactic chemotherapy. While most pediatric ALL treatment protocols mandate regular lumbar punctures (LP) for the intrathecal injection of chemotherapy, the value of routine cytological analysis of cerebrospinal fluid (CSF) during therapy is unknown. Our objective was to assess the diagnostic value of routine CSF analysis during ALL therapy. To allow for at least 10 years of follow up from ALL diagnosis, children (0-18 years) with ALL diagnosed and treated at SickKids, Toronto, Canada between 1994-2004 were studied. Medical records of patients with CNS relapse were examined to determine whether CNS relapse was diagnosed based on cytology of a routinely obtained CSF sample, a CSF sample obtained because of signs and symptoms or a CSF sample obtained after the diagnosis of a bone marrow relapse. Of 494 children treated for ALL, 31 (6.6%) developed a relapse of ALL involving the CNS. Twenty-two had an isolated CNS relapse and nine had a combined bone marrow and CNS relapse. Among patients with isolated CNS relapse, 73% (16/22) were diagnosed based on routine CSF samples obtained from asymptomatic children. Conversely, 89% (8/9) of children with combined bone marrow and CNS relapse presented with symptoms and signs that prompted CSF examination. Routine CSF examination at the time of LP for intrathecal chemotherapy is useful in detecting CNS relapse. © 2014 Wiley Periodicals, Inc.
Collett, Garen A; Song, Kangwon; Jaramillo, Carlos A; Potter, Jennifer S; Finley, Erin P; Pugh, Mary Jo
The increase in the quantities of central nervous system (CNS)-acting medications prescribed has coincided with increases in overdose mortality, suicide-related behaviors, and unintentional deaths in military personnel deployed in support of the wars in Iraq and Afghanistan. Data on the extent and impact of prescribing multiple CNS drugs among Iraq and Afghanistan Veterans (IAVs) are sparse. We sought to identify the characteristics of IAVs with CNS polypharmacy and examine the association of CNS polypharmacy with drug overdose and suicide-related behaviors controlling for known risk factors. This cross-sectional cohort study examined national data of Iraq and Afghanistan Veterans ( N = 311,400) who used the Veterans Health Administration (VHA) during the fiscal year 2011. CNS polypharmacy was defined as five or more CNS-acting medications; drug/alcohol overdose and suicide-related behaviors were identified using ICD-9-CM codes. Demographic and clinical characteristics associated with CNS polypharmacy were identified using a multivariable logistic regression model. We found that 25,546 (8.4 %) of Iraq and Afghanistan Veterans had CNS polypharmacy. Those with only post-traumatic stress disorder (PTSD) (adjusted odds ratio (AOR) 6.50, 99 % confidence interval (CI) 5.96-7.10), only depression (AOR 6.42, 99 % CI 5.86-7.04), co-morbid PTSD and depression (AOR 12.98, 99 % CI 11.97-14.07), and co-morbid traumatic brain injury (TBI), PTSD, and depression (AOR 15.30, 99 % CI 14.00-16.73) had the highest odds of CNS polypharmacy. After controlling for these co-morbid conditions, CNS polypharmacy was significantly associated with drug/alcohol overdose and suicide-related behavior. CNS polypharmacy was most strongly associated with PTSD, depression, and TBI, and independently associated with overdose and suicide-related behavior after controlling for known risk factors. These findings suggest that CNS polypharmacy may be used as an indicator of risk for adverse outcomes. Further research should evaluate whether CNS polypharmacy may be used as a trigger for evaluation of the current care provided to these individuals.
Collett, Garen A; Song, Kangwon; Jaramillo, Carlos A; Potter, Jennifer S; Finley, Erin P; Pugh, Mary Jo
2016-03-01
The increase in the quantities of central nervous system (CNS)-acting medications prescribed has coincided with increases in overdose mortality, suicide-related behaviors, and unintentional deaths in military personnel deployed in support of the wars in Iraq and Afghanistan. Data on the extent and impact of prescribing multiple CNS drugs among Iraq and Afghanistan Veterans (IAVs) are sparse. We sought to identify the characteristics of IAVs with CNS polypharmacy and examine the association of CNS polypharmacy with drug overdose and suicide-related behaviors controlling for known risk factors. This cross-sectional cohort study examined national data of Iraq and Afghanistan Veterans (N = 311,400) who used the Veterans Health Administration (VHA) during the fiscal year 2011. CNS polypharmacy was defined as five or more CNS-acting medications; drug/alcohol overdose and suicide-related behaviors were identified using ICD-9-CM codes. Demographic and clinical characteristics associated with CNS polypharmacy were identified using a multivariable logistic regression model. We found that 25,546 (8.4 %) of Iraq and Afghanistan Veterans had CNS polypharmacy. Those with only post-traumatic stress disorder (PTSD) (adjusted odds ratio (AOR) 6.50, 99 % confidence interval (CI) 5.96-7.10), only depression (AOR 6.42, 99 % CI 5.86-7.04), co-morbid PTSD and depression (AOR 12.98, 99 % CI 11.97-14.07), and co-morbid traumatic brain injury (TBI), PTSD, and depression (AOR 15.30, 99 % CI 14.00-16.73) had the highest odds of CNS polypharmacy. After controlling for these co-morbid conditions, CNS polypharmacy was significantly associated with drug/alcohol overdose and suicide-related behavior. CNS polypharmacy was most strongly associated with PTSD, depression, and TBI, and independently associated with overdose and suicide-related behavior after controlling for known risk factors. These findings suggest that CNS polypharmacy may be used as an indicator of risk for adverse outcomes. Further research should evaluate whether CNS polypharmacy may be used as a trigger for evaluation of the current care provided to these individuals.
NASA Technical Reports Server (NTRS)
Wu, Honglu
2006-01-01
Astronauts receive the highest occupational radiation exposure. Effective protections are needed to ensure the safety of astronauts on long duration space missions. Increased cancer morbidity or mortality risk in astronauts may be caused by occupational radiation exposure. Acute and late radiation damage to the central nervous system (CNS) may lead to changes in motor function and behavior, or neurological disorders. Radiation exposure may result in degenerative tissue diseases (non-cancer or non-CNS) such as cardiac, circulatory, or digestive diseases, as well as cataracts. Acute radiation syndromes may occur due to occupational radiation exposure.
Martin, G; Baumann, H; Grieger, F
1976-01-01
Using the average evoked potential technique, angiotensin-II depot effects (1 mg implantate = 3--4 mg/kg body weight angiotensin-II) were studied neuroelectrophysiologically in reticular, hippocampal and neocrotical structures of albino rats. A multivariate variance and discriminance analysis program revealed differentiated changes of the bioelectrical processing data of the CNS. Evidence was obtained for a varying structural sensitivity of central-nervous substructures under depot administration of angiotensin-II. In later phases of angiotensin-II action, the hippocampus was characterized by an electrographic synchronization phenomenon with high-amplitude average evoked potentials. The reticular formation, and to a lesser extent the visual cortex, showed an angiotensin-induced diminution of bioelectrical excitation. However, the intensity of the change in functional CNS patterns did not always correlate with maximal blood pressure rises. The described changes of afference processing to standardized sensory stimuli, especially in hippocampal and reticular structures of the CNS foll owing angiotensin depot action, point to a central-nervous action mechanism of angiotensin-II.
Sex Hormones and Healthy Psychological Aging in Women
Navarro-Pardo, Esperanza; Holland, Carol A.; Cano, Antonio
2018-01-01
Besides their key role in reproduction, estrogens have effects in several organs in the body, as confirmed by the identification of estrogen receptors (ER) in multiple tissues. Experimental evidence has shown that estrogens have significant impacts on the central nervous system (CNS), and a key question is to what extent the fall in estrogen levels in the blood that occurs with increasing age, particularly around and following the menopause, has an impact on the cognitive function and psychological health of women, specifically regarding mood. This review will consider direct effects of menopausal changes in estrogens on the brain, including cognitive function and mood. Secondary pathways whereby health factors affected by changes in estrogens may interact with CNS functions, such as cardiovascular factors, will be reviewed as well insofar as they also have an impact on cognitive function. Finally, because decline in estrogens may induce changes in the CNS, there is interest in clarifying whether hormone therapy may offer a beneficial balance and the impact of hormone therapy on cognition will also be considered. PMID:29375366
Peluso, Michael J; Spudich, Serena
2014-09-01
The growing recognition of the burden of neurologic disease associated with HIV infection in the last decade has led to renewed efforts to characterize the pathophysiology of the virus within the central nervous system (CNS). The concept of the AIDS-dementia complex is now better understood as a spectrum of HIV-associated neurocognitive disorders (HAND), which range from asymptomatic disease to severe impairment. Recent work has shown that even optimally treated patients can experience not only persistent HAND, but also the development of new neurologic abnormalities despite viral suppression. This has thrown into question what the impact of antiretroviral therapy has been on the incidence and prevalence of neurocognitive dysfunction. In this context, the last few years have seen a concentrated effort to identify the effects that antiretroviral therapy has on the neurologic manifestations of HIV and to develop therapeutic modalities that might specifically alter the trajectory of HIV within the CNS.
Krishnan, Shekhar; Wade, Rachel; Moorman, Anthony V; Mitchell, Chris; Kinsey, Sally E; Eden, TOB; Parker, Catriona; Vora, Ajay; Richards, Sue; Saha, Vaskar
2009-01-01
Despite the success of contemporary treatment protocols in childhood acute lymphoblastic leukaemia (ALL), relapse within the central nervous system (CNS) remains a challenge. To better understand this phenomenon, we have analysed the changes in incidence and pattern of CNS relapses in 5564 children enrolled on four successive MRC-ALL trials between 1985 and 2001. Changes in the incidence and pattern of CNS relapses were examined and the relationship with patient characteristics assessed. Factors affecting post-relapse outcome were determined. Overall, relapses declined by 49%. Decreases occurred primarily in non-CNS and combined relapses with a progressive shift towards later (≥30 months from diagnosis) relapses (p<0·0001). Although isolated CNS relapses declined, the proportional incidence and timing of relapse remained unchanged. Age and presenting white cell count were risk factors for CNS relapse. On multivariate analysis, the time to relapse and the trial period influenced post-relapse outcomes. Relapse trends differed within biological subtypes. In ETV6-RUNX1 ALL, relapse patterns mirrored overall trends while in High Hyperdiploidy ALL, these appear to have plateaued over the latter two trial periods. Intensive systemic and intrathecal chemotherapy have decreased the overall CNS relapse rates and changed the patterns of recurrence. The heterogeneity of therapeutic response in the biological subtypes suggests room for further optimisation using currently available chemotherapy. PMID:20016529
NASA Technical Reports Server (NTRS)
2014-01-01
The Space Radiation Standing Review Panel (from here on referred to as the SRP) was impressed with the strong research program presented by the scientists and staff associated with NASA's Space Radiation Program Element and National Space Biomedical Research Institute (NSBRI). The presentations given on-site and the reports of ongoing research that were provided in advance indicated the potential Risk of Acute and Late Central Nervous System Effects from Radiation Exposure (CNS) and were extensively discussed by the SRP. This new data leads the SRP to recommend that a higher priority should be placed on research designed to identify and understand these risks at the mechanistic level. To support this effort the SRP feels that a shift of emphasis from Acute Radiation Syndromes (ARS) and carcinogenesis to CNS-related endpoints is justified at this point. However, these research efforts need to focus on mechanisms, should follow pace with advances in the field of CNS in general and should consider the specific comments and suggestions made by the SRP as outlined below. The SRP further recommends that the Space Radiation Program Element continue with its efforts to fill the vacant positions (Element Scientist, CNS Risk Discipline Lead) as soon as possible. The SRP also strongly recommends that NASA should continue the NASA Space Radiation Summer School. In addition to these broad recommendations, there are specific comments/recommendations noted for each risk, described in detail below.
Floettmann, Eike; Bui, Khanh; Sostek, Mark; Payza, Kemal; Eldon, Michael
2017-05-01
Opioid-induced constipation (OIC) is a common side effect of opioid pharmacotherapy for the management of pain because opioid agonists bind to µ -opioid receptors in the enteric nervous system (ENS). Naloxegol, a polyethylene glycol derivative of naloxol, which is a derivative of naloxone and a peripherally acting µ -opioid receptor antagonist, targets the physiologic mechanisms that cause OIC. Pharmacologic measures of opioid activity and pharmacokinetic measures of central nervous system (CNS) penetration were employed to characterize the mechanism of action of naloxegol. At the human µ -opioid receptor in vitro, naloxegol was a potent inhibitor of binding ( K i = 7.42 nM) and a neutral competitive antagonist (p A 2 - 7.95); agonist effects were <10% up to 30 μ M and identical to those of naloxone. The oral doses achieving 50% of the maximal effect in the rat for antagonism of morphine-induced inhibition of gastrointestinal transit and morphine-induced antinociception in the hot plate assay were 23.1 and 55.4 mg/kg for naloxegol and 0.69 and 1.14 mg/kg by for naloxone, respectively. In the human colon adenocarcinoma cell transport assay, naloxegol was a substrate for the P-glycoprotein transporter, with low apparent permeability in the apical to basolateral direction, and penetrated the CNS 15-fold slower than naloxone in a rat brain perfusion model. Naloxegol-derived radioactivity was poorly distributed throughout the rat CNS and was eliminated from most tissues within 24 hours. These findings corroborate phase 3 clinical studies demonstrating that naloxegol relieves OIC-associated symptoms in patients with chronic noncancer pain by antagonizing the µ -opioid receptor in the ENS while preserving CNS-mediated analgesia. Copyright © 2017 The Author(s).
Floettmann, Eike; Sostek, Mark; Payza, Kemal; Eldon, Michael
2017-01-01
Opioid-induced constipation (OIC) is a common side effect of opioid pharmacotherapy for the management of pain because opioid agonists bind to µ-opioid receptors in the enteric nervous system (ENS). Naloxegol, a polyethylene glycol derivative of naloxol, which is a derivative of naloxone and a peripherally acting µ-opioid receptor antagonist, targets the physiologic mechanisms that cause OIC. Pharmacologic measures of opioid activity and pharmacokinetic measures of central nervous system (CNS) penetration were employed to characterize the mechanism of action of naloxegol. At the human µ-opioid receptor in vitro, naloxegol was a potent inhibitor of binding (Ki = 7.42 nM) and a neutral competitive antagonist (pA2 - 7.95); agonist effects were <10% up to 30 μM and identical to those of naloxone. The oral doses achieving 50% of the maximal effect in the rat for antagonism of morphine-induced inhibition of gastrointestinal transit and morphine-induced antinociception in the hot plate assay were 23.1 and 55.4 mg/kg for naloxegol and 0.69 and 1.14 mg/kg by for naloxone, respectively. In the human colon adenocarcinoma cell transport assay, naloxegol was a substrate for the P-glycoprotein transporter, with low apparent permeability in the apical to basolateral direction, and penetrated the CNS 15-fold slower than naloxone in a rat brain perfusion model. Naloxegol-derived radioactivity was poorly distributed throughout the rat CNS and was eliminated from most tissues within 24 hours. These findings corroborate phase 3 clinical studies demonstrating that naloxegol relieves OIC-associated symptoms in patients with chronic noncancer pain by antagonizing the µ-opioid receptor in the ENS while preserving CNS-mediated analgesia. PMID:28336575
Neuroinflammation as Fuel for Axonal Regeneration in the Injured Vertebrate Central Nervous System
Van houcke, Jessie
2017-01-01
Damage to the central nervous system (CNS) is one of the leading causes of morbidity and mortality in elderly, as repair after lesions or neurodegenerative disease usually fails because of the limited capacity of CNS regeneration. The causes underlying this limited regenerative potential are multifactorial, but one critical aspect is neuroinflammation. Although classically considered as harmful, it is now becoming increasingly clear that inflammation can also promote regeneration, if the appropriate context is provided. Here, we review the current knowledge on how acute inflammation is intertwined with axonal regeneration, an important component of CNS repair. After optic nerve or spinal cord injury, inflammatory stimulation and/or modification greatly improve the regenerative outcome in rodents. Moreover, the hypothesis of a beneficial role of inflammation is further supported by evidence from adult zebrafish, which possess the remarkable capability to repair CNS lesions and even restore functionality. Lastly, we shed light on the impact of aging processes on the regenerative capacity in the CNS of mammals and zebrafish. As aging not only affects the CNS, but also the immune system, the regeneration potential is expected to further decline in aged individuals, an element that should definitely be considered in the search for novel therapeutic strategies. PMID:28203046
Advances in Meningeal Immunity.
Rua, Rejane; McGavern, Dorian B
2018-06-01
The central nervous system (CNS) is an immunologically specialized tissue protected by a blood-brain barrier. The CNS parenchyma is enveloped by a series of overlapping membranes that are collectively referred to as the meninges. The meninges provide an additional CNS barrier, harbor a diverse array of resident immune cells, and serve as a crucial interface with the periphery. Recent studies have significantly advanced our understanding of meningeal immunity, demonstrating how a complex immune landscape influences CNS functions under steady-state and inflammatory conditions. The location and activation state of meningeal immune cells can profoundly influence CNS homeostasis and contribute to neurological disorders, but these cells are also well equipped to protect the CNS from pathogens. In this review, we discuss advances in our understanding of the meningeal immune repertoire and provide insights into how this CNS barrier operates immunologically under conditions ranging from neurocognition to inflammatory diseases. Published by Elsevier Ltd.
Kano, Yasuhiro; Kodaira, Minori; Ushiki, Atsuhito; Kosaka, Makoto; Yamada, Mitsunori; Shingu, Kunihiko; Nishihara, Hiroshi; Hanaoka, Masayuki; Sekijima, Yoshiki
2017-01-01
A 49-year-old man presented with gradually progressive aphasia one month after being diagnosed with acquired immunodeficiency syndrome (AIDS). Brain magnetic resonance imaging showed multiple brain lesions with punctate and linear enhancement. A polymerase chain reaction detected Epstein-Barr virus (EBV) in the patient's cerebrospinal fluid. A diagnosis of isolated central nervous system lymphomatoid granulomatosis (CNS-LYG) was made based on the brain biopsy findings. The complete remission of CNS-LYG was achieved by anti-retroviral therapy (ART) alone. In the present case, the development of AIDS-associated CNS-LYG was considered to have been initiated by the reactivation of EBV in the CNS under immunosuppressive conditions. The patient's condition improved with the reconstitution of the patient's immune system. PMID:28824078
How Stem Cells Speak with Host Immune Cells in Inflammatory Brain Diseases
Pluchino, Stefano; Cossetti, Chiara
2014-01-01
Advances in stem cell biology have raised great expectations that diseases and injuries of the central nervous system (CNS) may be ameliorated by the development of non-hematopoietic stem cell medicines. Yet, the application of adult stem cells as CNS therapeutics is challenging and the interpretation of some of the outcomes ambiguous. In fact, the initial idea that stem cell transplants work only via structural cell replacement has been challenged by the observation of consistent cellular signaling between the graft and the host. Cellular signaling is the foundation of coordinated actions and flexible responses, and arises via networks of exchanging and interacting molecules that transmit patterns of information between cells. Sustained stem cell graft-to-host communication leads to remarkable trophic effects on endogenous brain cells and beneficial modulatory actions on innate and adaptive immune responses in vivo, ultimately promoting the healing of the injured CNS. Among a number of adult stem cell types, mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs) are being extensively investigated for their ability to signal to the immune system upon transplantation in experimental CNS diseases. Here, we focus on the main cellular signaling pathways that grafted MSCs and NPCs use to establish a therapeutically relevant cross talk with host immune cells, while examining the role of inflammation in regulating some of the bidirectionality of these communications. We propose that the identification of the players involved in stem cell signaling might contribute to the development of innovative, high clinical impact therapeutics for inflammatory CNS diseases. PMID:23633288
Blood-brain barrier structure and function and the challenges for CNS drug delivery.
Abbott, N Joan
2013-05-01
The neurons of the central nervous system (CNS) require precise control of their bathing microenvironment for optimal function, and an important element in this control is the blood-brain barrier (BBB). The BBB is formed by the endothelial cells lining the brain microvessels, under the inductive influence of neighbouring cell types within the 'neurovascular unit' (NVU) including astrocytes and pericytes. The endothelium forms the major interface between the blood and the CNS, and by a combination of low passive permeability and presence of specific transport systems, enzymes and receptors regulates molecular and cellular traffic across the barrier layer. A number of methods and models are available for examining BBB permeation in vivo and in vitro, and can give valuable information on the mechanisms by which therapeutic agents and constructs permeate, ways to optimize permeation, and implications for drug discovery, delivery and toxicity. For treating lysosomal storage diseases (LSDs), models can be included that mimic aspects of the disease, including genetically-modified animals, and in vitro models can be used to examine the effects of cells of the NVU on the BBB under pathological conditions. For testing CNS drug delivery, several in vitro models now provide reliable prediction of penetration of drugs including large molecules and artificial constructs with promising potential in treating LSDs. For many of these diseases it is still not clear how best to deliver appropriate drugs to the CNS, and a concerted approach using a variety of models and methods can give critical insights and indicate practical solutions.
The risk of central nervous system relapses in patients with peripheral T-cell lymphoma
Fanale, Michelle A.; Miranda, Roberto N.; Noorani, Mansoor; Westin, Jason R.; Nastoupil, Loretta J.; Hagemeister, Fredrick B.; Fayad, Luis E.; Romaguera, Jorge E.; Samaniego, Felipe; Turturro, Francesco; Lee, Hun J.; Neelapu, Sattva S.; Rodriguez, M. Alma; Wang, Michael; Fowler, Nathan H.; Davis, Richard E.; Medeiros, L. Jeffrey; Oki, Yasuhiro
2018-01-01
We performed a retrospective analysis to identify risk factors and survival outcome for central nervous system (CNS) relapse of peripheral T-cell lymphoma (PTCL) by histologic type. Records of 600 PTCL patients diagnosed between 1999 and 2014 were analyzed including PTCL not otherwise specified (PTCL-NOS, 174 patients), angoimmunoblastic T-cell lymphoma (AITL, 144), ALK+anaplastic large cell lymphoma (ALCL, 74), ALK-ALCL (103), extranodal NK-cell lymphoma (ENKL, 54), or others (51). With a median follow up of 57 months, 13 patients (4 PTCL-NOS, 1 AITL, 4 ALK+ALCL, 2 ALK-ALCL, 2 ENKL) experienced CNS relapse. One-year and 5-year cumulative incidence of CNS relapse were 1.5% (95%CI: 0.7–2.8%) and 2.1% (95%CI: 1.1–3.5%), respectively. The 5-year cumulative incidence of CNS relapse was 1.8% in PTCL-NOS, 0.7% in AITL, 5.4% in ALK+ALCL, 2.1% in ALK-ALCL and 3.7% in ENKL. Extranodal involvement >1 site was the only significant factor associated with higher chance of CNS relapse (HR: 4.9, 95%CI: 1.6–15.0, p = 0.005). Patients with ALK+ALCL who had extranodal involvement >1 (N = 19) had very high risk of CNS relapse with one year cumulative incidence of 17% (95%CI: 4%-37%), all occurring within six months after diagnosis. All patients with CNS relapse eventually died (median, 1.5 months; range, 0.1–10.1 months). CNS relapse in patients with PTCL is rare event but the risk varies by subtype. ALK+ALCL patients with extranodal involvement >1 site have a very high risk of early CNS relapse, and thus evaluation of CNS involvement at the time of diagnosis and possible CNS-directed prophylaxis may be considered. PMID:29538376
Chihara, D; Asano, N; Ohmachi, K; Nishikori, M; Okamoto, M; Sawa, M; Sakai, R; Okoshi, Y; Tsukamoto, N; Yakushijin, Y; Nakamura, S; Kinoshita, T; Ogura, M; Suzuki, R
2015-05-01
Central nervous system (CNS) relapse is an uncommon but challenging complication in patients with mantle cell lymphoma (MCL). Survival after CNS relapse is extremely poor. Identification of high-risk populations is therefore critical in determining patients who might be candidates for a prophylactic approach. A total of 608 patients (median age, 67 years; range 22-92) with MCL newly diagnosed between 1994 and 2012 were evaluated. Pretreatment characteristics and treatment regimens were evaluated for their association with CNS relapse by competing risk regression analysis. None of the patients received intrathecal prophylaxis. Overall, 33 patients (5.4%) experienced CNS relapse during a median follow-up of 42.7 months. Median time from diagnosis to CNS relapse was 20.3 months (range: 2.2-141.3 months). Three-year cumulative incidence of CNS relapse was 5.6% [95% confidence interval (95% CI) 3.7% to 8.0%]. Univariate analysis revealed several risk factors including blastoid variant, leukemic presentation, high-risk MCL International Prognostic Index and high Ki-67 (proliferation marker). Multivariate analyses revealed that Ki-67 ≥ 30 was the only significant risk factor for CNS relapse (hazard ratio: 6.0, 95% CI 1.9-19.4, P = 0.003). Two-year cumulative incidence of CNS relapse in patients with Ki-67 ≥ 30 was 25.4% (95% CI 13.5-39.1), while that in the patients with Ki-67 < 30 was 1.6% (95% CI 0.4-4.2). None of the treatment modalities, including rituximab, high-dose cytarabine, high-dose methotrexate or consolidative autologous stem-cell transplant, were associated with a lower incidence of CNS relapse. Survival after CNS relapse was poor, with median survival time of 8.3 months. There was no significant difference in the survival by the site of CNS involvement. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Carvalhal, Adriana; Gill, M John; Letendre, Scott L; Rachlis, Anita; Bekele, Tsegaye; Raboud, Janet; Burchell, Ann; Rourke, Sean B
2016-06-01
Since the introduction of combination antiretroviral therapy (cART), the incidence of severe HIV-associated neurocognitive impairment has declined significantly, whereas the prevalence of the milder forms has increased. Studies suggest that better distribution of cART drugs into the CNS may be important in reducing viral replication in the CNS and in reducing HIV-related brain injury. Correlates of neuropsychological (NP) performance were determined in 417 participants of the Ontario HIV Treatment Cohort Study (OCS). All participants were on three cART drugs for at least 90 days prior to assessment. Multiple logistic and linear regression methods were used. Most participants were Caucasian men with mean age of 47 years. About two thirds had a nadir CD4+ T-cell count below 200 cells/μL and 92 % had an undetectable plasma HIV viral load. The median CNS penetration effectiveness (CPE) score was 7. Sixty percent of participants had neuropsychological impairment. Higher CPE values significantly correlated with lower prevalence of impairment in bivariate and multivariate analyses. In this cross-sectional analysis of HIV+ adults who had a low prevalence of comorbidities and were taking three-drug cART regimens, greater estimated distribution of cART drugs into the CNS was associated with better NP performance.
Nootropic, anxiolytic and CNS-depressant studies on different plant sources of shankhpushpi.
Malik, Jai; Karan, Maninder; Vasisht, Karan
2011-12-01
Shankhpushpi, a well-known drug in Ayurveda, is extensively used for different central nervous system (CNS) effects especially memory enhancement. Different plants are used under the name shankhpushpi in different regions of India, leading to an uncertainty regarding its true source. Plants commonly used under the name shankhpushpi are: Convolvulus pluricaulis Chois., Evolvulus alsinoides Linn., both from Convolvulaceae, and Clitoria ternatea Linn. (Leguminosae). To find out the true source of shankhpushpi by evaluating and comparing memory-enhancing activity of the three above mentioned plants. Anxiolytic, antidepressant and CNS-depressant activities of these three plants were also compared and evaluated. The nootropic activity of the aqueous methanol extract of each plant was tested using elevated plus-maze (EPM) and step-down models. Anxiolytic, antidepressant and CNS-depressant studies were evaluated using EPM, Porsolt?s swim despair and actophotometer models, respectively. C. pluricaulis extract (CPE) at a dose of 100 mg/kg, p.o. showed maximum nootropic and anxiolytic activity (p < 0.001). E. alsinoides extract (EAE) and C. ternatea extract (CTE) showed maximum memory-enhancing and anxiolytic activity (p < 0.001) at 200 and 100?mg/kg, respectively. Amongst the three plants, EAE and CTE showed significant (p < 0.05), while CPE did not exhibit any antidepressant activity. All the three plants showed CNS-depressant action at higher dose levels. The above results showed all the three plants possess nootropic, anxiolytic and CNS-depressant activity. The results of memory-enhancing activity suggest C. pluricaulis to be used as true source of shankhpushpi.
Hertwig, Laura; Hamann, Isabell; Romero-Suarez, Silvina; Millward, Jason M; Pietrek, Rebekka; Chanvillard, Coralie; Stuis, Hanna; Pollok, Karolin; Ransohoff, Richard M; Cardona, Astrid E; Infante-Duarte, Carmen
2016-08-01
Fractalkine receptor (CX3CR1)-deficient mice develop very severe experimental autoimmune encephalomyelitis (EAE), associated with impaired NK cell recruitment into the CNS. Yet, the precise implications of NK cells in autoimmune neuroinflammation remain elusive. Here, we investigated the pattern of NK cell mobilization and the contribution of CX3CR1 to NK cell dynamics in the EAE. We show that in both wild-type and CX3CR1-deficient EAE mice, NK cells are mobilized from the periphery and accumulate in the inflamed CNS. However, in CX3CR1-deficient mice, the infiltrated NK cells displayed an immature phenotype contrasting with the mature infiltrates in WT mice. This shift in the immature/mature CNS ratio contributes to EAE exacerbation in CX3CR1-deficient mice, since transfer of mature WT NK cells prior to immunization exerted a protective effect and normalized the CNS NK cell ratio. Moreover, mature CD11b(+) NK cells show higher degranulation in the presence of autoreactive 2D2 transgenic CD4(+) T cells and kill these autoreactive cells more efficiently than the immature CD11b(-) fraction. Together, these data suggest a protective role of mature NK cells in EAE, possibly through direct modulation of T cells inside the CNS, and demonstrate that mature and immature NK cells are recruited into the CNS by distinct chemotactic signals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Podda, Maria Vittoria; Grassi, Claudio
2014-07-01
Cyclic nucleotides play fundamental roles in the central nervous system (CNS) under both physiological and pathological conditions. The impact of cAMP and cGMP signaling on neuronal and glial cell functions has been thoroughly characterized. Most of their effects have been related to cyclic nucleotide-dependent protein kinase activity. However, cyclic nucleotide-gated (CNG) channels, first described as key mediators of sensory transduction in retinal and olfactory receptors, have been receiving increasing attention as possible targets of cyclic nucleotides in the CNS. In the last 15 years, consistent evidence has emerged for their expression in neurons and astrocytes of the rodent brain. Far less is known, however, about the functional role of CNG channels in these cells, although several of their features, such as Ca(2+) permeability and prolonged activation in the presence of cyclic nucleotides, make them ideal candidates for mediators of physiological functions in the CNS. Here, we review literature suggesting the involvement of CNG channels in a number of CNS cellular functions (e.g., regulation of membrane potential, neuronal excitability, and neurotransmitter release) as well as in more complex phenomena, like brain plasticity, adult neurogenesis, and pain sensitivity. The emerging picture is that functional and dysfunctional cyclic nucleotide signaling in the CNS has to be reconsidered including CNG channels among possible targets. However, concerted efforts and multidisciplinary approaches are still needed to get more in-depth knowledge in this field.
Ribas, Vinicius T.; Costa, Marcos R.
2017-01-01
Limited axon regeneration in the injured adult mammalian central nervous system (CNS) usually results in irreversible functional deficits. Both the presence of extrinsic inhibitory molecules at the injury site and the intrinsically low capacity of adult neurons to grow axons are responsible for the diminished capacity of regeneration in the adult CNS. Conversely, in the embryonic CNS, neurons show a high regenerative capacity, mostly due to the expression of genes that positively control axon growth and downregulation of genes that inhibit axon growth. A better understanding of the role of these key genes controlling pro-regenerative mechanisms is pivotal to develop strategies to promote robust axon regeneration following adult CNS injury. Genetic manipulation techniques have been widely used to investigate the role of specific genes or a combination of different genes in axon regrowth. This review summarizes a myriad of studies that used genetic manipulations to promote axon growth in the injured CNS. We also review the roles of some of these genes during CNS development and suggest possible approaches to identify new candidate genes. Finally, we critically address the main advantages and pitfalls of gene-manipulation techniques, and discuss new strategies to promote robust axon regeneration in the mature CNS. PMID:28824380
Role of agmatine in neurodegenerative diseases and epilepsy.
Moretti, Morgana; Matheus, Filipe C; de Oliveira, Paulo A; Neis, Vivian B; Ben, Juliana; Walz, Roger; Rodrigues, Ana Lucia S; Prediger, Rui Daniel
2014-06-01
Agmatine, a cationic polyamine synthesized after decarboxylation of L-arginine by the enzyme arginine decarboxylase, is an endogenous neuromodulator that emerges as a potential agent to manage diverse central nervous system (CNS) disorders. Consistent with its neuromodulatory and neuroprotective properties, there is increasing number of preclinical studies demonstrating the beneficial effects of exogenous agmatine administration on depression, anxiety, hypoxic ischemia, nociception, morphine tolerance, memory, Parkinson`s disease, Alzheimer`s disease, traumatic brain injury related alterations/disorders and epilepsy. The aim of this review is to summarize the knowledge about the effects of agmatine in CNS and point out its potential as new pharmacological treatment for diverse neurological and neurodegenerative diseases. Moreover, some molecular mechanisms underlying the neuroprotective effects of agmatine will be discussed.
EMMPRIN, an upstream regulator of MMPs, in CNS biology.
Kaushik, Deepak Kumar; Hahn, Jennifer Nancy; Yong, V Wee
2015-01-01
Matrix metalloproteinases (MMPs) are engaged in pathologies associated with infections, tumors, autoimmune disorders and neurological dysfunctions. With the identification of an upstream regulator of MMPs, EMMPRIN (Extracellular matrix metalloproteinase inducer, CD147), it is relevant to address if EMMPRIN plays a role in the pathology of central nervous system (CNS) diseases. This would enable the possibility of a more upstream and effective therapeutic target. Indeed, conditions including gliomas, Alzheimer's disease (AD), multiple sclerosis (MS), and other insults such as hypoxia/ischemia show elevated levels of EMMPRIN which correlate with MMP production. In contrast, given EMMPRIN's role in CNS homeostasis with respect to regulation of monocarboxylate transporters (MCTs) and interactions with adhesion molecules including integrins, we need to consider that EMMPRIN may also serve important regulatory or protective functions. This review summarizes the current understanding of EMMPRIN's involvement in CNS homeostasis, its possible roles in escalating or reducing neural injury, and the mechanisms of EMMPRIN including and apart from MMP induction. Copyright © 2015 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
Overview of recent trends in diagnosis and management of leptomeningeal multiple myeloma.
Yellu, Mahender R; Engel, Jessica M; Ghose, Abhimanyu; Onitilo, Adedayo A
2016-03-01
Neurological complications related to multiple myeloma (MM) are not uncommon; however, direct involvement of the central nervous system (CNS) is extremely rare and represents a diagnostic and therapeutic challenge. Significant survival difference has been noted with the introduction of novel therapy in patients with MM, but their effect on the incidence and their use for management of leptomeningeal myeloma (LMM) is uncertain. Analysis of published data demonstrates its recent increased incidence, median time to CNS presentation, and slight improvement in median survival after diagnosis of LMM. Less common MM isotypes have been overrepresented in LMM. CNS relapse occurred mostly in patients with Durie-Salmon stage III MM. Despite treatments, standard or experimental, the survival rates of LMM remain dismal. Monitoring high risk patients closely, even after achieving complete remission, may be useful in early detection of LMM. As we gain better understanding of LMM, we recommend that future research and clinical care focus on earlier diagnosis and development of more efficient CNS-directed therapy to improve survival in this patient population. Copyright © 2014 John Wiley & Sons, Ltd.
Pelletier, René; Higgins, Johanne; Bourbonnais, Daniel
2015-02-12
Musculoskeletal rehabilitative care and research have traditionally been guided by a structural pathology paradigm and directed their resources towards the structural, functional, and biological abnormalities located locally within the musculoskeletal system to understand and treat Musculoskeletal Disorders (MSD). However the structural pathology model does not adequately explain many of the clinical and experimental findings in subjects with chronic MSD and, more importantly, treatment guided by this paradigm fails to effectively treat many of these conditions. Increasing evidence reveals structural and functional changes within the Central Nervous System (CNS) of people with chronic MSD that appear to play a prominent role in the pathophysiology of these disorders. These neuroplastic changes are reflective of adaptive neurophysiological processes occurring as the result of altered afferent stimuli including nociceptive and neuropathic transmission to spinal, subcortical and cortical areas with MSD that are initially beneficial but may persist in a chronic state, may be part and parcel in the pathophysiology of the condition and the development and maintenance of chronic signs and symptoms. Neuroplastic changes within different areas of the CNS may help to explain the transition from acute to chronic conditions, sensory-motor findings, perceptual disturbances, why some individuals continue to experience pain when no structural cause can be discerned, and why some fail to respond to conservative interventions in subjects with chronic MSD. We argue that a change in paradigm is necessary that integrates CNS changes associated with chronic MSD and that these findings are highly relevant for the design and implementation of rehabilitative interventions for this population. Recent findings suggest that a change in model and approach is required in the rehabilitation of chronic MSD that integrate the findings of neuroplastic changes across the CNS and are targeted by rehabilitative interventions. Effects of current interventions may be mediated through peripheral and central changes but may not specifically address all underlying neuroplastic changes in the CNS potentially associated with chronic MSD. Novel approaches to address these neuroplastic changes show promise and require further investigation to improve efficacy of currents approaches.
NASA Astrophysics Data System (ADS)
Jourshabani, Milad; Shariatinia, Zahra; Badiei, Alireza
2018-01-01
Novel Sm2O3/S-doped g-C3N4 (CNS) composites were synthesized with in situ method by simultaneous combining S doping in carbon nitride structure to produce CNS as well as hybridization of CNS with the Sm2O3 semiconductor. The obtained composite photocatalysts with different Sm2O3 contents were characterized by XRD, FT-IR, XPS, TEM, BET, DRS and PL techniques and their photocatalytic activities were investigated for the degradation of methylene blue (MB) as a model pollutant in aqueous solution under visible-light irradiation. The XRD structure phase and TEM morphology results showed that stacking degree of π-conjugated system in the CNS structure was disrupted in the precense of Sm2O3 particles. The optimal Sm2O3 loading value was determined to be 8.9 wt% and its corresponding MB photodegradation rate was about 93% after 150 min light irradiation, which was indeed greater compared with those of the individual CNS and Sm2O3 samples. This enhanced photocatalytic performance was originated from characteristics of the hybrid formed between the Sm2O3 and CNS so that it improved the effective charge transfer through interfacial interactions between both components. In addition, the CNS synthesized by S doping exhibited a significant enhancement in the photocatalytic activity relative to that of the pure g-C3N4; this was mostly caused by the increase in its visible light harvesting ability and charge mobility. The possible mechanism for the photocatalytic degradation of MB was suggested and discussed in detail based on the findings acquired from radical/hole trapping experiments.
Noncongenital central nervous system infections in children: radiology review.
Acosta, Jorge Humberto Davila; Rantes, Claudia Isabel Lazarte; Arbelaez, Andres; Restrepo, Feliza; Castillo, Mauricio
2014-06-01
Infections of the central nervous system (CNS) are a very common worldwide health problem in childhood with significant morbidity and mortality. In children, viruses are the most common cause of CNS infections, followed by bacterial etiology, and less frequent due to mycosis and other causes. Noncomplicated meningitis is easier to recognize clinically; however, complications of meningitis such as abscesses, infarcts, venous thrombosis, or extra-axial empyemas are difficult to recognize clinically, and imaging plays a very important role on this setting. In addition, it is important to keep in mind that infectious process adjacent to the CNS such as mastoiditis can develop by contiguity in an infectious process within the CNS. We display the most common causes of meningitis and their complications.
Zhang, Qun-Lin; Fu, Bingmei M; Zhang, Zhang-Jin
2017-11-01
The clinical application of central nervous system (CNS) drugs is limited by their poor bioavailability due to the blood-brain barrier (BBB). Borneol is a naturally occurring compound in a class of 'orifice-opening' agents often used for resuscitative purposes in traditional Chinese medicine. A growing body of evidence confirms that the 'orifice-opening' effect of borneol is principally derived from opening the BBB. Borneol is therefore believed to be an effective adjuvant that can improve drug delivery to the brain. The purpose of this paper is to provide a comprehensive review of information accumulated over the past two decades on borneol's chemical features, sources, toxic and kinetic profiles, enhancing effects on BBB permeability and their putative mechanisms, improvements in CNS drug delivery, and pharmaceutical forms. The BBB-opening effect of borneol is a reversible physiological process characterized by rapid and transient penetration of the BBB and highly specific brain regional distribution. Borneol also protects the structural integrity of the BBB against pathological damage. The enhancement of the BBB permeability is associated with the modulation of multiple ATP-binding cassette transporters, including P-glycoprotein; tight junction proteins; and predominant enhancement of vasodilatory neurotransmitters. Systemic co-administration with borneol improves drug delivery to the brain in a region-, dose- and time-dependent manner. Several pharmaceutical forms of borneol have been developed to improve the kinetic and toxic profiles of co-administered drugs and enhance their delivery to the brain. Borneol is a promising novel agent that deserves further development as a BBB permeation enhancer for CNS drug delivery.
Lin, Yi-Tsung; Liu, Chia-Jen; Chen, Tzeng-Ji; Fung, Chang-Phone
2012-01-01
Taiwan is endemic for pyogenic liver abscess (PLA). Septic ocular or central nervous system (CNS) complications derived from PLA can result in catastrophic disability. We investigated the epidemiology and long-term prognosis of PLA patients with septic ocular or CNS complications over an 8-year period. We extracted 21,307 patients with newly diagnosed PLA from a nationwide health registry in Taiwan between 2000 and 2007. The frequency of and risk factors for PLA with septic ocular or CNS complications were determined. The 2-year survival of these patients was compared between those with and without septic ocular or CNS complications. Septic ocular or CNS complications accounted for 2.1% of all PLA patients. Age and the Charlson comorbidity index were significantly lower in PLA patients with ocular or CNS complications than those without. Diabetes and age <65 years were independent predictors of septic ocular or CNS complications. The 2-year mortality of patients with septic ocular or CNS complications was similar to those without complications (24.8% vs. 27.5%, p = 0.502). However, among patients <65 years old and a Charlson index ≤ 1, the 2-year mortality was significantly higher in those with than without complications (18.6% vs. 11.8%, p = 0.001). Physicians should recognize that catastrophic disability due to ocular or neurological complications from PLA could lead to a poor long-term prognosis, and should follow-up these patients more closely.
Buckman, Laura B; Hasty, Alyssa H; Flaherty, David K; Buckman, Christopher T; Thompson, Misty M; Matlock, Brittany K; Weller, Kevin; Ellacott, Kate L J
2014-01-01
Obesity is associated with chronic low-grade inflammation in peripheral tissues caused, in part, by the recruitment of inflammatory monocytes into adipose tissue. Studies in rodent models have also shown increased inflammation in the central nervous system (CNS) during obesity. The goal of this study was to determine whether obesity is associated with recruitment of peripheral immune cells into the CNS. To do this we used a bone marrow chimerism model to track the entry of green-fluorescent protein (GFP) labeled peripheral immune cells into the CNS. Flow cytometry was used to quantify the number of GFP(+) immune cells recruited into the CNS of mice fed a high-fat diet compared to standard chow fed controls. High-fat feeding resulted in obesity associated with a 30% increase in the number of GFP(+) cells in the CNS compared to control mice. Greater than 80% of the GFP(+) cells recruited to the CNS were also CD45(+) CD11b(+) indicating that the GFP(+) cells displayed characteristics of microglia/macrophages. Immunohistochemistry further confirmed the increase in GFP(+) cells in the CNS of the high-fat fed group and also indicated that 93% of the recruited cells were found in the parenchyma and had a stellate morphology. These findings indicate that peripheral immune cells can be recruited to the CNS in obesity and may contribute to the inflammatory response. Copyright © 2013 Elsevier Inc. All rights reserved.
Observing the work of the Clinical Nurse Specialist: a pilot study.
Darmody, Julie V
2005-01-01
The Clinical Nurse Specialist (CNS) is an advanced practice nurse (APN) with graduate preparation as a clinical expert within a specialty area of nursing practice. There is a need for information about the work of the CNS in order to link CNS activities to outcomes and costs of care. To describe the work of the CNS in the acute care setting using the National Association of Clinical Nurse Specialists (NACNS) model as an organizing framework. Descriptive pilot study of the work of the CNS in acute care. A 500-bed academic medical center located in the Midwestern United States. Five masters-prepared APNs in a unit-based CNS role. Direct observation and time study were used to record activities and time for 4 hours with each CNS (n = 5) for a total of 20 hours of observation. CNS activity and time within each practice domain included patient/client (30%), nursing (44%), organization/system (10%), and other activities (16%). Specific activities observed were linked to possible outcomes in the NACNS framework. The NACNS model provided a useful framework for developing a data collection tool that can be used in a larger study that analyzes the work of the acute care CNS. Describing the work of the CNS is an important preliminary step to measuring outcomes and costs of care.
Yoon, B W; Bae, H J; Kang, D W; Lee, S H; Hong, K S; Kim, K B; Park, B J; Roh, J K
2001-01-01
Although extracranial carotid artery disease (ECAD) is accepted as a risk factor for central nervous system (CNS) complications after coronary artery bypass graft (CABG) surgery, it remains to be clarified whether intracranial cerebral artery disease (ICAD) may also increase the risk. We conducted a prospective study to elucidate the relation between ICAD and CNS complications after CABG surgery. We prospectively studied 201 patients undergoing nonemergency isolated CABG surgery during a 39-month period (from March 1995 to June 1998). Each patient was evaluated before surgery with neurological examination, transcranial Doppler, and carotid duplex ultrasonography. Magnetic resonance angiography was used to determine the presence and severity of ECAD and ICAD in patients with abnormal findings on clinical examination, carotid duplex ultrasonography, or transcranial Doppler. Patients were followed after surgery and evaluated for the development of CNS complications. Association between CNS complications and their potential predictors was analyzed. One hundred nine patients (54.2%) were found to have ECAD and/or ICAD. ECAD alone was found in 48 patients (23.9%), ICAD alone in 33 (16.4%), and both ECAD and ICAD in 28 (13.9%). Fifty-one patients (25.4%) had single or multiple CNS complications: 23 (11.4%) had delirium; 18 (9.0%) had hypoxic-metabolic encephalopathy; 7 (3.5%) had stroke; and 7 (3. 5%) had seizure. In multivariate analysis, ICAD was found to have an independent association with the development of CNS complications (prevalence OR, 2.28; 95% CI, 1.04 to 5.01) after controlling for covariates including age, occurrence of intraoperative events, and reoperation. The joint effect of ECAD and ICAD was also statistically significant and stronger than ICAD alone (prevalence OR, 3.87; 95% CI, 1.80 to 6.52). Our results suggest that ICAD may be an independent risk factor for CNS complications after CABG surgery. These results support pre-CABG evaluation of the intracranial arteries for the risk assessment of CABG surgery, at least in black and Asian patients, in whom there may be a higher prevalence of intracranial arterial stenosis.
Quercetin attenuates AZT-induced neuroinflammation in the CNS.
Yang, Yi; Liu, Xiaokang; Wu, Ting; Zhang, Wenping; Shu, Jianhong; He, Yulong; Tang, Shao-Jun
2018-04-18
Highly active anti-retroviral therapy (HAART) is very effective in suppressing HIV-1 replication in patients. However, continuous HAART is required to prevent viral rebound, which may have detrimental effects in various tissues, including persistent neuroinflammation in the central nervous system (CNS). Here, we show that quercetin (3,5,7,3',4'-pentahydroxy flavones), a natural antioxidant used in Chinese traditional medicines, suppresses the neuroinflammation that is induced by chronic exposure to Zidovudine (azidothymidine, AZT), a nucleoside reverse transcriptase inhibitor (NRTI) that is commonly part of HAART regimens. We found that the up-regulation of pro-inflammatory cytokines and microglial and astrocytic markers induced by AZT (100 mg/kg/day; 8 days) was significantly inhibited by co-administration of quercetin (50 mg/kg/day) in the mouse cortex, hippocampus and spinal cord. We further showed that quercetin attenuated AZT-induced up-regulation of Wnt5a, a key regulator of neuroinflammation. These results suggest that quercetin has an inhibitory effect on AZT-induced neuroinflammation in the CNS, and Wnt5a signaling may play an important role in this process. Our results may further our understanding of the mechanisms of HAART-related neurotoxicity and help in the development of effective adjuvant therapy.
Oikawa, Shino; Kai, Yuko; Tsuda, Masayuki; Ohata, Hisayuki; Mano, Asuka; Mizoguchi, Naoko; Sugama, Shuei; Nemoto, Takahiro; Suzuki, Kenji; Kurabayashi, Atsushi; Muramoto, Kazuyo; Kaneda, Makoto; Kakinuma, Yoshihiko
2016-11-01
We previously developed cardiac ventricle-specific choline acetyltransferase (ChAT) gene-overexpressing transgenic mice (ChAT tgm), i.e. an in vivo model of the cardiac non-neuronal acetylcholine (NNA) system or non-neuronal cardiac cholinergic system (NNCCS). By using this murine model, we determined that this system was responsible for characteristics of resistance to ischaemia, or hypoxia, via the modulation of cellular energy metabolism and angiogenesis. In line with our previous study, neuronal ChAT-immunoreactivity in the ChAT tgm brains was not altered from that in the wild-type (WT) mice brains; in contrast, the ChAT tgm hearts were the organs with the highest expression of the ChAT transgene. ChAT tgm showed specific traits in a central nervous system (CNS) phenotype, including decreased response to restraint stress, less depressive-like and anxiety-like behaviours and anti-convulsive effects, all of which may benefit the heart. These phenotypes, induced by the activation of cardiac NNCCS, were dependent on the vagus nerve, because vagus nerve stimulation (VS) in WT mice also evoked phenotypes similar to those of ChAT tgm, which display higher vagus nerve discharge frequency; in contrast, lateral vagotomy attenuated these traits in ChAT tgm to levels observed in WT mice. Furthermore, ChAT tgm induced several biomarkers of VS responsible for anti-convulsive and anti-depressive-like effects. These results suggest that the augmentation of the NNCCS transduces an effective and beneficial signal to the afferent pathway, which mimics VS. Therefore, the present study supports our hypothesis that activation of the NNCCS modifies CNS to a more stress-resistant state through vagus nerve activity. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Timmermans, Silke; Bogie, Jeroen F J; Vanmierlo, Tim; Lütjohann, Dieter; Stinissen, Piet; Hellings, Niels; Hendriks, Jerome J A
2014-03-01
Epidemiological studies suggest a positive correlation between the incidence and severity of multiple sclerosis (MS) and the intake of fatty acids. It remains to be clarified whether high fat diet (HFD) indeed can exacerbate the disease pathology associated with MS and what the underlying mechanisms are. In this study, we determined the influence of HFD on the severity and pathology of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Mice were fed either normal diet (ND) or HFD and subsequently induced with EAE. Immunohistochemical staining and real-time PCR were used to determine immune cell infiltration and inflammatory mediators in the central nervous system (CNS). Our data show that HFD increases immune cell infiltration and inflammatory mediator production in the CNS and thereby aggravates EAE. Moreover, our data demonstrate that activation of the renin angiotensin system (RAS) is associated with the HFD-mediated effects on EAE severity. These results show that HFD exacerbates an autoreactive immune response within the CNS. This indicates that diets containing excess fat have a significant influence on neuroinflammation in EAE, which may have important implications for the treatment and prevention of neuroinflammatory disorders.
Cebrià, Francesc; Newmark, Phillip A
2005-08-01
Conserved axon guidance mechanisms are essential for proper wiring of the nervous system during embryogenesis; however, the functions of these cues in adults and during regeneration remain poorly understood. Because freshwater planarians can regenerate a functional central nervous system (CNS) from almost any portion of their body, they are useful models in which to study the roles of guidance cues during neural regeneration. Here, we characterize two netrin homologs and one netrin receptor family member from Schmidtea mediterranea. RNAi analyses indicate that Smed-netR (netrin receptor) and Smed-netrin2 are required for proper CNS regeneration and that Smed-netR may mediate the response to Smed-netrin2. Remarkably, Smed-netR and Smed-netrin2 are also required in intact planarians to maintain the proper patterning of the CNS. These results suggest a crucial role for guidance cues, not only in CNS regeneration but also in maintenance of neural architecture.
Gao, Yuping; Jiang, Jiyao; Liu, Qiang
2014-01-01
Primary central nervous system (CNS) germ cell tumors (GCTs) are a rare heterogeneous group of lesions, which the clinicopathological features have a marked degree of heterogeneity comparing with that of gonadal GCTs. Accurately diagnosing CNS GCTs might be extremely difficult and requires immunohistochemical verification. This study was to investigate the biological feature of CNS GCTs and diagnostic value of immunohistochemical markers OCT3/4, C-kit, PLAP, and CD30 in CNS GCTs. A retrospective study was performed on 34 patients with CNS germ cell tumors between 1990 and 2014. 34 CNS GCTs account for 9.2% of all primary CNS neoplasms. The sellar region (35.3%) and pineal gland (17.6%) were the most common sites of intracranial GCTs. Hydrocephalus (82.4%) and diplopia (46.9%) were the two most common clinical presentations. The most common histological subtypes were germinoma (67.6%). PLAP, c-kit, OCT3/4 were highly expressed in gernimomas. CD30 and CK AE1/3 stainings were positive in embryonal carcinoma. Yolk sac tumor component showed positive staining for AFP and CK AE1/3. β-HCG staining was positive in choriocarcinoma and STGC. Patients with mature teratomas and germinomas had a better prognosis (a 5-year survival rate) than those with embryonal carcinoma and choriocarcinoma (a 5-year survival rates were 0). Our finding suggest that the incidences of primary CNS GCTs are higher in South China than in the West, but mixed GCTs are uncommon in our study. The judicious use of a panel of selected markers is helpful in diagnosing and predicting the prognosis for CNS GCTs.
HIV-1 Proteins, Tat and gp120, Target the Developing Dopamine System
Fitting, Sylvia; Booze, Rosemarie M.; Mactutus, Charles F.
2015-01-01
In 2014, 3.2 million children (< 15 years of age) were estimated to be living with HIV and AIDS worldwide, with the 240,000 newly infected children in the past year, i.e., another child infected approximately every two minutes [1]. The primary mode of HIV infection is through mother-to-child transmission (MTCT), occurring either in utero, intrapartum, or during breastfeeding. The effects of HIV-1 on the central nervous system (CNS) are putatively accepted to be mediated, in part, via viral proteins, such as Tat and gp120. The current review focuses on the targets of HIV-1 proteins during the development of the dopamine (DA) system, which appears to be specifically susceptible in HIV-1-infected children. Collectively, the data suggest that the DA system is a clinically relevant target in chronic HIV-1 infection, is one of the major targets in pediatric HIV-1 CNS infection, and may be specifically susceptible during development. The present review discusses the development of the DA system, follows the possible targets of the HIV-1 proteins during the development of the DA system, and suggests potential therapeutic approaches. By coupling our growing understanding of the development of the CNS with the pronounced age-related differences in disease progression, new light may be shed on the neurological and neurocognitive deficits that follow HIV-1 infection. PMID:25613135
Shen, Chunying; Ying, Hongmei; Lu, Xueguan; Hu, Chaosu
2017-12-01
Central nervous system (CNS) metastases are rarely seen in patients with nasopharyngeal carcinoma (NPC). Two NPC patients developed CNS metastases were collected in Fudan University Shanghai Cancer Center. The medical records were reviewed to document patients' characteristics, treatment, and outcomes. In addition, we also provide an overview of the literature concerning this scenario. Both patients were staged T4N1M0 with pathologically confirmed CNS metastases from nasopharyngeal carcinoma. After the completion of initial chemoradiotherapy, metastases to CNS including brain and/or spine occurred during follow-up. Surgical resection combined with palliative chemoradiation was offered to alleviate the symptoms. Although multiple treatment modalities were given, both patients succumbed to disease progression. The mechanism for CNS metastases is postulated through hematogenous route or cerebral spinal fluid spread. Good symptoms amelioration can be achieved with aggressive treatments such as surgery followed by palliative chemoradiation, but prognoses are ominous due to systematic disease dissemination.
Schoderboeck, Lucia; Adzemovic, Milena; Nicolussi, Eva-Maria; Crupinschi, Claudia; Hochmeister, Sonja; Fischer, Marie-Therese; Lassmann, Hans; Bradl, Monika
2013-01-01
Early in postnatal development, the immature central nervous system (CNS) is more susceptible to inflammation than its adult counterpart. We show here that this “window of susceptibility” is characterized by the presence of leaky vessels in the CNS, and by a global chemokine expression profile which is clearly distinct from the one observed in the adult CNS and has three important characteristics. First, it contains chemokines with known roles in the differentiation and maturation of glia and neurons. Secondly, these chemokines have been described before in inflammatory lesions of the CNS, where they are important for the recruitment of monocytes and T cells. And last, the chemokine profile is shaped by pathological changes like oligodendrocyte stress and attempts of myelin repair. Changes in the chemokine expression profile along with a leaky blood brain barrier pave the ground for an accelerated development of CNS inflammation. PMID:19520164
LRP-1-mediated intracellular antibody delivery to the Central Nervous System
NASA Astrophysics Data System (ADS)
Tian, Xiaohe; Nyberg, Sophie; S. Sharp, Paul; Madsen, Jeppe; Daneshpour, Nooshin; Armes, Steven P.; Berwick, Jason; Azzouz, Mimoun; Shaw, Pamela; Abbott, N. Joan; Battaglia, Giuseppe
2015-07-01
The blood-brain barrier (BBB) is by far the most important target in developing new approaches to improve delivery of drugs and diagnostic tools into the Central Nervous System (CNS). Here we report the engineering of pH- sensitive polymersomes (synthetic vesicles formed by amphiphilic copolymers) that exploit endogenous transport mechanisms to traverse the BBB, enabling delivery of large macromolecules into both the CNS parenchyma and CNS cells. We achieve this by targeting the Low Density Lipoprotein Receptor-Related Protein 1 (LRP-1) receptor. We show that LRP-1 is associated with endothelial transcytosis that does not involve acidification of cargo in membrane-trafficking organelles. By contrast, this receptor is also associated with traditional endocytosis in CNS cells, thus aiding the delivery of relevant cargo within their cytosol. We prove this using IgG as a model cargo, thus demonstrating that the combination of appropriate targeting combined with pH-sensitive polymersomes enables the efficient delivery of macromolecules into CNS cells.
Cerebrospinal Fluid HIV Escape from Antiretroviral Therapy.
Ferretti, Francesca; Gisslen, Magnus; Cinque, Paola; Price, Richard W
2015-06-01
CNS infection is a nearly constant facet of systemic CNS infection and is generally well controlled by suppressive systemic antiretroviral therapy (ART). However, there are instances when HIV can be detected in the cerebrospinal fluid (CSF) despite suppression of plasma viruses below the clinical limits of measurement. We review three types of CSF viral escape: asymptomatic, neuro-symptomatic, and secondary. The first, asymptomatic CSF escape, is seemingly benign and characterized by lack of discernable neurological deterioration or subsequent CNS disease progression. Neuro-symptomatic CSF escape is an uncommon, but important, entity characterized by new or progressive CNS disease that is critical to recognize clinically because of its management implications. Finally, secondary CSF escape, which may be even more uncommon, is defined by an increase of CSF HIV replication in association with a concomitant non-HIV infection, as a consequence of the local inflammatory response. Understanding these CSF escape settings not only is important for clinical diagnosis and management but also may provide insight into the CNS HIV reservoir.
Luethy, Lauren N.; Erickson, Andrea K; Jesudhasan, Palmy R.; Ikizler, Mine; Dermody, Terence S.; Pfeiffer, Julie K.
2015-01-01
Neurotropic viruses initiate infection in peripheral tissues prior to entry into the central nervous system (CNS). However, mechanisms of dissemination are not completely understood. We used genetically marked viruses to compare dissemination of poliovirus, yellow fever virus 17D (YFV-17D), and reovirus type 3 Dearing in mice from a hind limb intramuscular inoculation site to the sciatic nerve, spinal cord, and brain. While YFV-17D likely entered the CNS via blood, poliovirus and reovirus likely entered the CNS by transport through the sciatic nerve to the spinal cord. We found that dissemination was inefficient in adult immune-competent mice for all three viruses, particularly reovirus. Dissemination of all viruses was more efficient in immune-deficient mice. Although poliovirus and reovirus both accessed the CNS by transit through the sciatic nerve, stimulation of neuronal transport by muscle damage enhanced dissemination only of poliovirus. Our results suggest that these viruses access the CNS using different pathways. PMID:26479325
The Coordinated Noninvasive Studies (CNS) Project. Phase 1
1991-12-01
may reveal functional asymmetries that represent the influence of two factors: 1) the "contralateral effect ," based on the side -of-space source of...asymmetries, where processing on that side of the CNS opposite the side of input is favored, and 2) an effect based J.L. Lauter [CNS Project/AFOSR 88-0352...extent that these exist over and above sidedness bias as well as side -of-space asymmetries -- since in these experiments, contralateral effects are
Thermoresponsive Copolypeptide Hydrogel Vehicles for Central Nervous System Cell Delivery.
Zhang, Shanshan; Burda, Joshua E; Anderson, Mark A; Zhao, Ziru; Ao, Yan; Cheng, Yin; Sun, Yi; Deming, Timothy J; Sofroniew, Michael V
2015-08-10
Biomaterial vehicles have the potential to facilitate cell transplantation in the central nervous system (CNS). We have previously shown that highly tunable ionic diblock copolypeptide hydrogels (DCH) can provide sustained release of hydrophilic and hydrophobic molecules in the CNS. Here, we show that recently developed non-ionic and thermoresponsive DCH called DCH T exhibit excellent cytocompatibility. Neural stem cell (NSC) suspensions in DCH T were easily injected as liquids at room temperature. DCH T with a viscosity tuned to prevent cell sedimentation and clumping significantly increased the survival of NSC passed through injection cannulae. At body temperature, DCH T self-assembled into hydrogels with a stiffness tuned to that of CNS tissue. After injection in vivo , DCH T significantly increased by three-fold the survival of NSC grafted into healthy CNS. In injured CNS, NSC injected as suspensions in DCH T distributed well in non-neural lesion cores, integrated with healthy neural cells at lesion perimeters and supported regrowing host nerve fibers. Our findings show that non-ionic DCH T have numerous advantageous properties that make them useful tools for in vivo delivery of cells and molecules in the CNS for experimental investigations and potential therapeutic strategies.
Yoon, Byung-Hak; Lee, Jae Hyup; Na, Kyuheum; Ahn, Chihoon; Cho, Jongho; Ahn, Hyun Chan; Choi, Jungyoun; Oh, Hyosun; Kim, Byong Moon; Choe, Senyon
2018-01-01
The purpose of this study was to determine the effects of a single intravenous injection of a novel osteoinductive material, activin A/BMP-2 (AB204), to rodents on toxicity and their respiratory functions and central nervous system (CNS). A single intravenous injection of AB204 was given to Sprague–Dawley (SD) rats in doses of 0, 0.625, 2.5 and 10 mg/kg to observe the mortality rate, the general symptoms for 14 days. The experimental groups were also given 0.2, 0.4 and 0.8 mg/kg of AB204, respectively, and the respiration rate, the tidal volume and the minute volume were measured for 240 min. The experimental groups of imprinting control region (ICR) mice were given a single intravenous injection of 0.2, 0.4 and 0.8 mg/kg of AB204, respectively. Their body temperature was taken and general behaviors were observed to evaluate the effect of AB204 on the CNS for 240 min. The study on toxicity of a single intravenous injection found no death or abnormal symptoms, abnormal findings from autopsy, or abnormal body weight gain or loss in all the experimental groups. No abnormal variation associated with the test substance was observed in the respiration rate, the tidal volume, the minute volume, body temperature or the general behaviors. On the basis of these results, the approximate lethal dose of AB204 for a single intravenous injection exceeds 10 mg/kg for SD rats and a single intravenous injection of ≤0.8 mg/kg AB204 has no effect on their respiratory system for SD rat and no effect on their CNS for ICR mice. PMID:26446865
Yoon, Byung-Hak; Lee, Jae Hyup; Na, Kyuheum; Ahn, Chihoon; Cho, Jongho; Ahn, Hyun Chan; Choi, Jungyoun; Oh, Hyosun; Kim, Byong Moon; Choe, Senyon
2016-01-01
The purpose of this study was to determine the effects of a single intravenous injection of a novel osteoinductive material, activin A/BMP-2 (AB204), to rodents on toxicity and their respiratory functions and central nervous system (CNS). A single intravenous injection of AB204 was given to Sprague-Dawley (SD) rats in doses of 0, 0.625, 2.5 and 10 mg/kg to observe the mortality rate, the general symptoms for 14 days. The experimental groups were also given 0.2, 0.4 and 0.8 mg/kg of AB204, respectively, and the respiration rate, the tidal volume and the minute volume were measured for 240 min. The experimental groups of imprinting control region (ICR) mice were given a single intravenous injection of 0.2, 0.4 and 0.8 mg/kg of AB204, respectively. Their body temperature was taken and general behaviors were observed to evaluate the effect of AB204 on the CNS for 240 min. The study on toxicity of a single intravenous injection found no death or abnormal symptoms, abnormal findings from autopsy, or abnormal body weight gain or loss in all the experimental groups. No abnormal variation associated with the test substance was observed in the respiration rate, the tidal volume, the minute volume, body temperature or the general behaviors. On the basis of these results, the approximate lethal dose of AB204 for a single intravenous injection exceeds 10 mg/kg for SD rats and a single intravenous injection of ≤0.8 mg/kg AB204 has no effect on their respiratory system for SD rat and no effect on their CNS for ICR mice.
Yamamoto, Yumi; Välitalo, Pyry A.; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; van den Berg, Dirk‐Jan; Hartman, Robin; Wong, Yin Cheong; Danhof, Meindert; van Hasselt, John G. C.
2017-01-01
Drug development targeting the central nervous system (CNS) is challenging due to poor predictability of drug concentrations in various CNS compartments. We developed a generic physiologically based pharmacokinetic (PBPK) model for prediction of drug concentrations in physiologically relevant CNS compartments. System‐specific and drug‐specific model parameters were derived from literature and in silico predictions. The model was validated using detailed concentration‐time profiles from 10 drugs in rat plasma, brain extracellular fluid, 2 cerebrospinal fluid sites, and total brain tissue. These drugs, all small molecules, were selected to cover a wide range of physicochemical properties. The concentration‐time profiles for these drugs were adequately predicted across the CNS compartments (symmetric mean absolute percentage error for the model prediction was <91%). In conclusion, the developed PBPK model can be used to predict temporal concentration profiles of drugs in multiple relevant CNS compartments, which we consider valuable information for efficient CNS drug development. PMID:28891201
To the Brain and Back: Migratory Paths of Dendritic Cells in Multiple Sclerosis.
De Laere, Maxime; Berneman, Zwi N; Cools, Nathalie
2018-03-01
Migration of dendritic cells (DC) to the central nervous system (CNS) is a critical event in the pathogenesis of multiple sclerosis (MS). While up until now, research has mainly focused on the transmigration of DC through the blood-brain barrier, experimental evidence points out that also the choroid plexus and meningeal vessels represent important gateways to the CNS, especially in early disease stages. On the other hand, DC can exit the CNS to maintain immunological tolerance to patterns expressed in the CNS, a process that is perturbed in MS. Targeting trafficking of immune cells, including DC, to the CNS has demonstrated to be a successful strategy to treat MS. However, this approach is known to compromise protective immune surveillance of the brain. Unravelling the migratory paths of regulatory and pathogenic DC within the CNS may ultimately lead to the design of new therapeutic strategies able to selectively interfere with the recruitment of pathogenic DC to the CNS, while leaving host protective mechanisms intact. © 2018 American Association of Neuropathologists, Inc.
Xia, Tingting; Cheng, Ying; Zhang, Qian; Xiao, Fei; Liu, Bin; Chen, Shanghai; Guo, Feifan
2012-10-01
It is well established that the central nervous system (CNS), especially the hypothalamus, plays an important role in regulating energy homeostasis and lipid metabolism. We have previously shown that hypothalamic corticotropin-releasing hormone (CRH) is critical for stimulating fat loss in response to dietary leucine deprivation. The molecular mechanisms underlying the CNS regulation of leucine deprivation-stimulated fat loss are, however, still largely unknown. Here, we used intracerebroventricular injection of adenoviral vectors to identify a novel role for hypothalamic p70 S6 kinase 1 (S6K1), a major downstream effector of the kinase mammalian target of rapamycin, in leucine deprivation stimulation of energy expenditure. Furthermore, we show that the effect of hypothalamic S6K1 is mediated by modulation of Crh expression in a melanocortin-4 receptor-dependent manner. Taken together, our studies provide a new perspective for understanding the regulation of energy expenditure by the CNS and the importance of cross-talk between nutritional control and regulation of endocrine signals.
Idris, Zamzuri
2014-07-01
Cerebrospinal fluid (CSF) serves buoyancy. The buoyancy thought to play crucial role in many aspects of the central nervous system (CNS). Weightlessness is produced mainly by the CSF. This manuscript is purposely made to discuss its significance which thought contributing towards an ideal environment for the CNS to develop and function normally. The idea of microgravity environment for the CNS is supported not only by the weightlessness concept of the brain, but also the noted anatomical position of the CNS. The CNS is positioned in bowing position (at main cephalic flexure) which is nearly similar to an astronaut in a microgravity chamber, fetus in the amniotic fluid at early gestation, and animals and plants in the ocean or on the land. Therefore, this microgravity position can bring us closer to the concept of origin. The hypothesis on 'the origin' based on the microgravity were explored and their similarities were identified including the brainwaves and soul. Subsequently a review on soul was made. Interestingly, an idea from Leonardo da Vinci seems in agreement with the notion of seat of the soul at the greater limbic system which has a distinctive feature of "from God back to God".
Hassanzadeh, Parichehr; Atyabi, Fatemeh; Dinarvand, Rassoul
2017-08-01
The limited efficiency of the current treatment options against the central nervous system (CNS) disorders has created increasing demands towards the development of novel theranostic strategies. The enormous research efforts in nanotechnology have led to the production of highly-advanced nanodevices and biomaterials in a variety of geometries and configurations for targeted delivery of genes, drugs, or growth factors across the blood-brain barrier. Meanwhile, the richness or reliability of data, drug delivery methods, therapeutic effects or potential toxicity of nanoparticles, occurrence of the unexpected phenomena due to the polydisperse or polymorphic nature of nanomaterials, and personalized theranostics have remained as challenging issues. In this respect, computational modelling has emerged as a powerful tool for rational design of nanoparticles with optimized characteristics including the selectivity, improved bioactivity, and reduced toxicity that might lead to the effective delivery of therapeutic agents. High-performance simulation techniques by shedding more light on the dynamical behaviour of neural networks and pathomechanisms of CNS disorders may provide imminent breakthroughs in nanomedicine. In the present review, the importance of integration of nanotechnology-based approaches with computational techniques for targeted delivery of theranostics to the CNS has been highlighted. Copyright © 2017. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galloway, Thomas J.; Indelicato, Daniel J., E-mail: dindelicato@floridaproton.or; University of Florida Proton Therapy Institute, Jacksonville, FL
Purpose: To report the outcome of patients treated at the University of Florida who developed meningiomas after radiation to the central nervous system (CNS) for childhood cancer. Methods and Materials: We retrospectively identified 10 patients aged {<=}19 years who received radiotherapy to sites in the craniospinal axis and subsequently developed a meningioma. We report the histology of the radiation-induced meningioma, treatment received, and ultimate outcome among this cohort of patients. Results: Meningioma was diagnosed at a median of 23.5 years after completion of the primary radiation. Fifty percent of second meningiomas were World Health Organization Grade 2 (atypical) or higher.more » All cases were managed with a single modality: resection alone (n = 7), fractionated radiotherapy (n = 2), and stereotactic radiosurgery (n = 1). The actuarial event-free survival and overall survival rate at 5 years after treatment for a radiation-induced meningioma was 89%. Three patients who underwent resection for retreatment experienced a Grade 3 toxicity. Conclusions: Radiation-induced meningiomas after treatment of pediatric CNS tumors are effectively managed with single-modality therapy. Such late-effect data inform the overall therapeutic ratio and support the continued role of selective irradiation in managing pediatric CNS malignancies.« less
Viral Vectors for Gene Delivery to the Central Nervous System
Lentz, Thomas B.; Gray, Steven J.; Samulski, R. Jude
2011-01-01
The potential benefits of gene therapy for neurological diseases such as Parkinson’s, Amyotrophic Lateral Sclerosis (ALS), Epilepsy, and Alzheimer’s are enormous. Even a delay in the onset of severe symptoms would be invaluable to patients suffering from these and other diseases. Significant effort has been placed in developing vectors capable of delivering therapeutic genes to the CNS in order to treat neurological disorders. At the forefront of potential vectors, viral systems have evolved to efficiently deliver their genetic material to a cell. The biology of different viruses offers unique solutions to the challenges of gene therapy, such as cell targeting, transgene expression and vector production. It is important to consider the natural biology of a vector when deciding whether it will be the most effective for a specific therapeutic function. In this review, we outline desired features of the ideal vector for gene delivery to the CNS and discuss how well available viral vectors compare to this model. Adeno-associated virus, retrovirus, adenovirus and herpesvirus vectors are covered. Focus is placed on features of the natural biology that have made these viruses effective tools for gene delivery with emphasis on their application in the CNS. Our goal is to provide insight into features of the optimal vector and which viral vectors can provide these features. PMID:22001604
Hynes, Conor F; Ramakrishnan, Karthik; Alfares, Fahad A; Endicott, Kendal M; Hammond-Jack, Katrina; Zurakowski, David; Jonas, Richard A; Nath, Dilip S
2017-04-01
We analyzed the UNOS database to better define the risk of transmission of central nervous system (CNS) tumors from donors to adult recipients of thoracic organs. Data were procured from the Standard Transplant Analysis and Research dataset files. Donors with CNS tumors were identified, and recipients from these donors comprised the study group (Group I). The remaining recipients of organs from donors who did not have CNS tumors formed the control group (Group II). Incidence of recipient CNS tumors, donor-related malignancies, and overall survival were calculated and compared in addition to multivariable logistic regression. A cohort of 58 314 adult thoracic organ recipients were included, of which 337 received organs from donors who had documented CNS tumors (Group I). None of these recipients developed CNS tumors at a median follow-up of 72 months (IR: 30-130 months). Although overall mortality in terms of the percentage was higher in Group I than Group II (163/320=51% vs 22 123/52 691=42%), Kaplan-Meier curves indicate no significant difference in the time to death between the two groups (P=.92). There is little risk of transmission of the common nonaggressive CNS tumors to recipients of thoracic organs. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Lochhead, Jeffrey J; Ronaldson, Patrick T; Davis, Thomas P
2017-07-01
A functional blood-brain barrier (BBB) is necessary to maintain central nervous system (CNS) homeostasis. Many diseases affecting the CNS, however, alter the functional integrity of the BBB. It has been shown that various diseases and physiological stressors can impact the BBB's ability to selectively restrict passage of substances from the blood to the brain. Modifications of the BBB's permeability properties can potentially contribute to the pathophysiology of CNS diseases and result in altered brain delivery of therapeutic agents. Hypoxia and/or inflammation are central components of a number of diseases affecting the CNS. A number of studies indicate hypoxia or inflammatory pain increase BBB paracellular permeability, induce changes in the expression and/or localization of tight junction proteins, and affect CNS drug uptake. In this review, we look at what is currently known with regard to BBB disruption following a hypoxic or inflammatory insult in vivo. Potential mechanisms involved in altering tight junction components at the BBB are also discussed. A more detailed understanding of the mediators involved in changing BBB functional integrity in response to hypoxia or inflammatory pain could potentially lead to new treatments for CNS diseases with hypoxic or inflammatory components. Additionally, greater insight into the mechanisms involved in TJ rearrangement at the BBB may lead to novel strategies to pharmacologically increase delivery of drugs to the CNS.
Viral Oncolytic Therapeutics for Neoplastic Meningitis
2012-07-01
the central nervous system (CNS). While several novel molecular approaches are being developed, many of them require delivery of macromolecu- lar or...nonhuman primates. Keywords PET Imaging . Pharmacokinetics . Biopharmaceuticals . Macromolecules . Brain . Central nervous system . Drug delivery...Iodine-124 Introduction The leptomeningeal route to the central nervous system (CNS) starts from drug administration (injection or in- fusion) into the
Video Views and Reviews: Neurulation and the Fashioning of the Vertebrate Central Nervous System
ERIC Educational Resources Information Center
Watters, Christopher
2006-01-01
The central nervous system (CNS) is the first adult organ system to appear during vertebrate development, and the process of its emergence is commonly called neurulation. Such biological "urgency" is perhaps not surprising given the structural and functional complexity of the CNS and the importance of neural function to adaptive behavior and…
Rosenblatt, Lisa; Broder, Michael S; Bentley, Tanya G K; Chang, Eunice; Reddy, Sheila R; Papoyan, Elya; Myers, Joel
2017-08-01
Efavirenz (EFV) is a non-nucleoside reverse transcriptase inhibitor indicated for treatment of HIV-1 infection. Despite concern over EFV tolerability in clinical trials and practice, particularly related to central nervous system (CNS) adverse events, some observational studies have shown high rates of EFV continuation at one year and low rates of CNS-related EFV substitution. The objective of this study was to further examine the real-world rate of CNS-related EFV discontinuation in antiretroviral therapy naïve HIV-1 patients. This retrospective cohort study used a nationally representative electronic medical records database to identify HIV-1 patients ≥12 years old, treated with a 1st-line EFV-based regimen (single or combination antiretroviral tablet) from 1 January 2009 to 30 June 2013. Patients without prior record of EFV use during 6-month baseline (i.e., antiretroviral therapy naïve) were followed 12 months post-medication initiation. CNS-related EFV discontinuation was defined as evidence of a switch to a replacement antiretroviral coupled with record of a CNS symptom within 30 days prior, absent lab evidence of virologic failure. We identified 1742 1st-line EFV patients. Mean age was 48 years, 22.7% were female, and 8.1% had a prior report of CNS symptoms. The first year, overall discontinuation rate among new users of EFV was 16.2%. Ten percent of patients (n = 174) reported a CNS symptom and 1.1% (n = 19) discontinued EFV due to CNS symptoms: insomnia (n = 12), headache (n = 5), impaired concentration (n = 1), and somnolence (n = 1). The frequency of CNS symptoms was similar for patients who discontinued EFV compared to those who did not (10.3 vs. 9.9%; P = .86). Our study found that EFV discontinuation due to CNS symptoms was low, consistent with prior reports.
Dubois-Dalcq, Monique; Williams, Anna; Stadelmann, Christine; Stankoff, Bruno; Zalc, Bernard; Lubetzki, Catherine
2008-07-01
In the central nervous system (CNS) of man, evolutionary pressure has preserved some capability for remyelination while axonal regeneration is very limited. In contrast, two efficient programmes of regeneration exist in the adult fish CNS, neurite regrowth and remyelination. The rapidity of CNS remyelination is critical since it not only restores fast conduction of nerve impulses but also maintains axon integrity. If myelin repair fails, axons degenerate, leading to increased disability. In the human CNS demyelinating disease multiple sclerosis (MS), remyelination often takes place in the midst of inflammation. Here, we discuss recent studies that address the innate repair capabilities of the axon-glia unit from fish to man. We propose that expansion of this research field will help find ways to maintain or enhance spontaneous remyelination in man.
Protective and pathological immunity during CNS infections
Klein, Robyn S.; Hunter, Christopher A.
2017-01-01
The concept of immune privilege of the central nervous system (CNS) has dominated the study of inflammatory processes in the brain. However, clinically relevant models have highlighted the innate pathways that limit pathogen invasion of the CNS and that adaptive immunity mediates control of many neural infections. Because protective responses can result in bystander damage there are regulatory mechanisms that balance protective and pathological inflammation but which may also allow microbial persistence. The focus of this review is to consider the host-pathogen interactions that influence neurotropic infections and to highlight advances in understanding of innate and adaptive mechanisms of resistance as key determinants of the outcome of CNS infection. Advances in these areas have broadened our comprehension of how the immune system functions in the brain and can readily overcome immune privilege. PMID:28636958
Gainor, Justin F.; Chi, Andrew S.; Logan, Jennifer; Hu, Ranliang; Oh, Kevin S.; Brastianos, Priscilla K.; Shih, Helen A.; Shaw, Alice T.
2015-01-01
The central nervous system (CNS) is an important and increasingly recognized site of treatment failure in ALK-positive, non-small cell lung cancer (NSCLC) patients receiving ALK inhibitors. In this report, we describe two ALK-positive patients who experienced initial improvements in CNS metastases on standard-dose alectinib (600 mg twice daily), but subsequently recurred with symptomatic leptomeningeal metastases. Both patients were dose-escalated to alectinib 900 mg twice daily, resulting in repeat clinical and radiographic responses. Our results suggest that dose intensification of alectinib may be necessary to overcome incomplete ALK inhibition in the CNS and prolong the durability of responses in patients with CNS metastases, particularly those with leptomeningeal carcinomatosis. PMID:26845119
The microbiome: stress, health and disease.
Moloney, Rachel D; Desbonnet, Lieve; Clarke, Gerard; Dinan, Timothy G; Cryan, John F
2014-02-01
Bacterial colonisation of the gut plays a major role in postnatal development and maturation of key systems that have the capacity to influence central nervous system (CNS) programming and signaling, including the immune and endocrine systems. Individually, these systems have been implicated in the neuropathology of many CNS disorders and collectively they form an important bidirectional pathway of communication between the microbiota and the brain in health and disease. Regulation of the microbiome-brain-gut axis is essential for maintaining homeostasis, including that of the CNS. Moreover, there is now expanding evidence for the view that commensal organisms within the gut play a role in early programming and later responsivity of the stress system. Research has focused on how the microbiota communicates with the CNS and thereby influences brain function. The routes of this communication are not fully elucidated but include neural, humoral, immune and metabolic pathways. This view is underpinned by studies in germ-free animals and in animals exposed to pathogenic bacterial infections, probiotic agents or antibiotics which indicate a role for the gut microbiota in the regulation of mood, cognition, pain and obesity. Thus, the concept of a microbiome-brain-gut axis is emerging which suggests that modulation of the gut microflora may be a tractable strategy for developing novel therapeutics for complex stress-related CNS disorders where there is a huge unmet medical need.
Targeting the brain--surmounting or bypassing the blood-brain barrier.
Potschka, Heidrun
2010-01-01
The constituents of the blood-brain barrier, including its efflux transporter system, can efficiently limit brain penetration of potential CNS therapeutics. Effective extrusion from the brain by transporters is a frequent reason for the pharmaceutical industry to exclude novel compounds from further development for CNS therapeutics. Moreover, high transporter expression levels that are present in individual patients or may be generally associated with the pathophysiology seem to be a major cause of therapeutic failure in a variety of CNS diseases including brain tumors, epilepsy, brain HIV infection, and psychiatric disorders. Increasing knowledge of the structure and function of the blood-brain barrier creates a basis for the development of strategies which aim to enhance brain uptake of beneficial pharmaceutical compounds. The different strategies discussed in this review aim to modulate blood-brain barrier function or to bypass constituents of the blood-brain barrier.
Storm, J E; Rozman, K K
1998-06-01
The Occupational Safety and Health Administration (OSHA) methylene chloride Permissible Exposure Level (PEL) or 25 ppm is quantitatively derived from mouse tumor results observed in a high-exposure National Toxicology Program bioassay. Because this approach depends on controversial interspecies and low-dose extrapolations, the PEL itself has stimulated heated debate. Here, an alternative safety assessment for methylene chloride is presented. It is based on an acute human lowest-observed-adverse-effect level (LOAEL) of 200 ppm for subtle central nervous system (CNS) depression. Steep, parallel exposure-response curves for anesthetic and subanesthetic CNS effects associated with compounds mechanistically and structurally related to methylene chloride are shown to support a safety factor of two to account for inter-individual variability in response. LOAEL/no-observed-adverse-effect ratios for subtle CNS effects associated with structurally related solvents are shown to support a safety factor range of two to four to account for uncertainty in identifying a subthreshold exposure level. Anesthetic relative potencies and anesthetic/subanesthetic effect level ratios are shown to be constant for the compounds evaluated, demonstrating that subanesthetic relative potencies are also constant. Relative potencies among similarly derived occupational exposure limits (OELs) for solvents structurally related to methylene chloride are therefore used to validate the derived methylene chloride OEL range of 25-50 ppm. Because this safety assessment is based on human (rather than rodent) data and empirical (rather than theoretical) exposure-response relationships and is supported by relative potency analysis, it is a defensible alternative to to the OSHA risk assessment and should positively contribute to the debate regarding the appropriate basis and value for a methylene chloride PEL.
Josino, Jeanne Batista; Serra, Daniel Silveira; Gomes, Maria Diana Moreira; Araújo, Rinaldo Santos; de Oliveira, Mona Lisa Moura; Cavalcante, Francisco Sales Ávila
2017-12-01
Air pollution is a topic discussed all over the world and the search for alternatives to reduce it is of great interest to many researchers. The use of alternative energy sources and biofuels seems to be the environmentally safer solution. In this work, the deleterious effects on the respiratory system of mice exposed to PM 4.0 or TSP, present in exhaust gases from the combustion of CNS were investigated, through data from respiratory system mechanics, oxidative stress, histopathology and morphometry of the parenchyma pulmonary. The results show changes in all variables of respiratory system mechanics, in oxidative stress, the histopathological analysis and lung morphometry. The results provide experimental support for epidemiological observations of association between effects on the respiratory system and exposure to PM 4.0 or TSP from CNS combustion exhaust gases, even at acute exposure. It can serve as a basis for regulation or adjustment of environmental laws that control the emissions of these gases. Copyright © 2017 Elsevier B.V. All rights reserved.
Tseng, Hsiang-Kuang; Liu, Chang-Pan; Price, Michael S.; Jong, Ambrose Y.; Chang, Jui-Chih; Toffaletti, Dena L.; Betancourt-Quiroz, Marisol; Frazzitta, Aubrey E.; Cho, Wen-Long; Perfect, John R.
2012-01-01
Background A mouse brain transmigration assessment (MBTA) was created to investigate the central nervous system (CNS) pathogenesis of cryptococcal meningoencephalitis. Methodology/Principal Findings Two cryptococcal mutants were identified from a pool of 109 pre-selected mutants that were signature-tagged with the nourseothricin acetyltransferase (NAT) resistance cassette. These two mutants displayed abnormal transmigration into the central nervous system. One mutant displaying decreased transmigration contains a null mutation in the putative FNX1 gene, whereas the other mutant possessing a null mutation in the putative RUB1 gene exhibited increased transmigration into the brain. Two macrophage adhesion-defective mutants in the pool, 12F1 and 3C9, showed reduced phagocytosis by macrophages, but displayed no defects in CNS entry suggesting that transit within macrophages (the “Trojan horse” model of CNS entry) is not the primary mechanism for C. neoformans migration into the CNS in this MBTA. Conclusions/Significance This research design provides a new strategy for genetic impact studies on how Cryptococcus passes through the blood-brain barrier (BBB), and the specific isolated mutants in this assay support a transcellular mechanism of CNS entry. PMID:23028773
[Central nervous system control of energy homeostasis].
Machleidt, F; Lehnert, H
2011-03-01
The brain is continuously supplied with information about the distribution and amount of energy stores from the body periphery. Endocrine, autonomic and cognitive-hedonic signals are centrally integrated and exert effects on the whole organism via anabolic and catabolic pathways. The adiposity signals insulin and leptin reflect the amount of body fat and are part of a negative feedback mechanism between the periphery and the central nervous system. The hypothalamic arcuate nucleus is the most important central nervous structure, which integrates this information. Furthermore, the CNS is able to directly measure and to respond to changes in the concentration of certain nutrients. In order to develop effective therapies for the treatment of disorders of energy balance the further elucidation of these neuro-biological processes is of crucial importance. This article provides an overview of the CNS regulation of metabolism and its underlying molecular mechanisms. © Georg Thieme Verlag KG Stuttgart · New York.
Bao, Yijun; Li, Lizhuo; Guan, Yanlei; Wang, Wei; Liu, Yan; Wang, Pengfei; Huang, Xiaolong; Tao, Shanwei; Wang, Yunjie
2017-02-01
Anxiety and depression have been identified as common psychological distresses faced by the majority of patients with cancer. However, no studies have investigated the relationship between positive psychological variables (hope, optimism and general self-efficacy) and anxiety and depression among patients with central nervous system (CNS) tumors in China. Our hypothesis is that the patients with higher levels of hope, optimism or general self-efficacy have lower levels of anxiety and depression when encountered by stressful life events such as CNS tumors. Questionnaires, including the Hospital Anxiety and Depression Scale, the Herth Hope Index, the Life Orientation Scale-Revised and the General Self-Efficacy Scale, and demographic and clinical records were used to collect information about patients with CNS tumors in Liaoning Province, China. The study included 222 patients (effective response rate: 66.1%). Hierarchical linear regression analyses were performed to explore the associations among hope, optimism, general self-efficacy and anxiety/depression. Prevalence of anxiety and depression were 42.8 and 32.4%, respectively, among patients with CNS tumors. Hope and optimism both were negatively associated with anxiety and together accounted for 21.4% of variance in anxiety. Similarly, hope and optimism both were negatively associated with depression and accounted for 32.4% of variance in depression. The high prevalence of anxiety and depression among patients with CNS tumors should receive more attention in Chinese medical settings. To help reduce anxiety and depression, health care professionals should develop interventions to promote hope and optimism based on patients' specific needs. Copyright © 2016 John Wiley & Sons, Ltd.
Therapeutic Potential of Genipin in Central Neurodegenerative Diseases.
Li, Yanwei; Li, Lin; Hölscher, Christian
2016-10-01
Central neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are one of the biggest health problems worldwide. Currently, there is no cure for these diseases. The Gardenia jasminoides fruit is a common herbal medicine in traditional Chinese medicine (TCM), and a variety of preparations are used as treatments for central nervous system (CNS) diseases. Pharmacokinetic studies suggest genipin is one of the main effective ingredients of G. jasminoides fruit extract (GFE). Accumulated research data show that genipin possesses a range of key pharmacological properties, such as anti-inflammatory, neuroprotective, neurogenic, antidiabetic, and antidepressant effects. Thus, genipin shows therapeutic potential for central neurodegenerative diseases. We review the pharmacological actions of genipin for the treatment of neurodegenerative diseases of the CNS. We also describe the potential mechanisms underlying these effects.
Developing Extracellular Matrix Technology to Treat Retinal or Optic Nerve Injury
van der Merwe, Yolandi
2015-01-01
Abstract Adult mammalian CNS neurons often degenerate after injury, leading to lost neurologic functions. In the visual system, retinal or optic nerve injury often leads to retinal ganglion cell axon degeneration and irreversible vision loss. CNS axon degeneration is increasingly linked to the innate immune response to injury, which leads to tissue-destructive inflammation and scarring. Extracellular matrix (ECM) technology can reduce inflammation, while increasing functional tissue remodeling, over scarring, in various tissues and organs, including the peripheral nervous system. However, applying ECM technology to CNS injuries has been limited and virtually unstudied in the visual system. Here we discuss advances in deriving fetal CNS-specific ECMs, like fetal porcine brain, retina, and optic nerve, and fetal non-CNS-specific ECMs, like fetal urinary bladder, and the potential for using tissue-specific ECMs to treat retinal or optic nerve injuries in two platforms. The first platform is an ECM hydrogel that can be administered as a retrobulbar, periocular, or even intraocular injection. The second platform is an ECM hydrogel and polymer “biohybrid” sheet that can be readily shaped and wrapped around a nerve. Both platforms can be tuned mechanically and biochemically to deliver factors like neurotrophins, immunotherapeutics, or stem cells. Since clinical CNS therapies often use general anti-inflammatory agents, which can reduce tissue-destructive inflammation but also suppress tissue-reparative immune system functions, tissue-specific, ECM-based devices may fill an important need by providing naturally derived, biocompatible, and highly translatable platforms that can modulate the innate immune response to promote a positive functional outcome. PMID:26478910
Neuroimmunomodulators in neuroborreliosis and Lyme encephalopathy.
Eckman, Elizabeth A; Pacheco-Quinto, Javier; Herdt, Aimee R; Halperin, John J
2018-01-11
Lyme encephalopathy, characterized by non-specific neurobehavioral symptoms including mild cognitive difficulties, may occur in patients with systemic Lyme disease and is often mistakenly attributed to CNS infection. Identical symptoms occur in innumerable other inflammatory states and may reflect the effect of systemic immune mediators on the CNS. Multiplex immunoassays were used to characterize the inflammatory profile in serum and CSF from Lyme and non-Lyme patients with a range of symptoms to determine if there are specific markers of active CNS infection (neuroborreliosis), or systemic inflammatory mediators associated with neurobehavioral syndromes. CSF CXCL13 was elevated dramatically in confirmed neuroborreliosis (n=8) and to a lesser extent in possible neuroborreliosis (n=11) and other neuroinflammatory conditions (n=44). Patients with Lyme (n=63) or non-Lyme (n=8) encephalopathy had normal CSF findings, but had elevated serum levels of IL-7, TSLP, IL-17A, IL-17F, and MIP-1α/CCL3. CSF CXCL13 is a sensitive and specific marker of neuroborreliosis in individuals with Borrelia-specific intrathecal antibody (ITAb) production. However, CXCL13 does not distinguish individuals strongly suspected of having neuroborreliosis, but lacking confirmatory ITAb, from those with other neuroinflammatory conditions. Patients with mild cognitive symptoms occurring during acute Lyme disease, and/or following appropriate treatment, have normal CSF but elevated serum levels of T-helper 17 markers and T-cell growth factors. These markers are also elevated in non-Lyme disease patients experiencing similar symptoms. Our results support that in the absence of CSF abnormalities, neurobehavioral symptoms are associated with systemic inflammation, not CNS infection or inflammation, and are not specific to Lyme disease. © The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
da Silva, Alexandre A.; do Carmo, Jussara M.; Freeman, J. Nathan; Tallam, Lakshmi S.; Hall, John E.
2009-01-01
OBJECTIVE We recently showed that leptin has powerful central nervous system (CNS)-mediated antidiabetic and cardiovascular actions. This study tested whether the CNS melanocortin system mediates these actions of leptin in diabetic rats. RESEARCH DESIGN AND METHODS A cannula was placed in the lateral ventricle of Sprague-Dawley rats for intracerebroventricular infusions, and arterial and venous catheters were implanted to measure mean arterial pressure (MAP) and heart rate 24 h/day and for intravenous infusions. After recovery from surgery for 8 days, rats were injected with streptozotocin (STZ), and 5 days later, either saline or the melanocortin 3 and 4 receptor (MC3/4R) antagonist SHU-9119 (1 nmol/h) was infused intracerebroventricularly for 17 days. Seven days after starting the antagonist, leptin (0.62 μg/h) was added to the intracerebroventricular infusion for 10 days. Another group of diabetic rats was infused with the MC3/4R agonist MTII (10 ng/h i.c.v.) for 12 days, followed by 7 days at 50 ng/h. RESULTS Induction of diabetes caused hyperphagia, hyperglycemia, and decreases in heart rate (−76 bpm) and MAP (−7 mmHg). Leptin restored appetite, blood glucose, heart rate, and MAP back to pre-diabetic values in vehicle-treated rats, whereas it had no effect in SHU-9119–treated rats. MTII infusions transiently reduced blood glucose and raised heart rate and MAP, which returned to diabetic values 5–7 days after starting the infusion. CONCLUSIONS Although a functional melanocortin system is necessary for the CNS-mediated antidiabetic and cardiovascular actions of leptin, chronic MC3/4R activation is apparently not sufficient to mimic these actions of leptin that may involve interactions of multiple pathways. PMID:19491210
Paloski, W H; Black, F O; Reschke, M F; Calkins, D S; Shupert, C
1993-01-01
Orbital spaceflight exposes astronauts to an environment in which gravity is reduced to negligible magnitudes of 10(-3) to 10(-6) G. Upon insertion into earth orbit, the abrupt loss of the constant linear acceleration provided by gravity removes the otolith stimulus for vestibular sensation of vertical orientation constantly present on Earth. Since the central nervous system (CNS) assesses spatial orientation by simultaneously interpreting sensory inputs from the vestibular, visual, and proprioceptive systems, loss of the otolith-mediated vertical reference input results in an incorrect estimation of spatial orientation, which, in turn, causes a degradation in movement control. Over time, however, the CNS adapts to the loss of gravitational signals. Upon return to Earth, the vertical reference provided by gravitational stimulation of the otolith organ reappears. As a result, a period of CNS readaptation must occur upon return to terrestrial environment. Among the physiological changes observed during the postflight CNS readaptation period is a disruption of postural equilibrium control. Using a dynamic posturography system (modified NeuroCom EquiTest), 16 astronauts were tested at 60, 30, and 10 days preflight and retested at 1 to 5 hours, and 8 days postflight. All astronauts tested demonstrated decreased postural stability immediately upon return to Earth. The most dramatic increases in postural sway occurred during those sensory conditions in which both the visual and proprioceptive feedback information used for postural control were altered by the dynamic posturography system, requiring reliance primarily upon vestibular function for control of upright stance. Less marked but statistically significant increases in sway were observed under those conditions in which visual and foot support surface inputs alone were altered.(ABSTRACT TRUNCATED AT 250 WORDS)
Vazquez, Enrique; Barranco, Alejandro; Ramirez, Maria; Gruart, Agnes; Delgado-Garcia, Jose M.; Jimenez, Maria L.; Buck, Rachael; Rueda, Ricardo
2016-01-01
2´-fucosyllactose (2´-FL) is an abundant human milk oligosaccharide (HMO) in human milk with diverse biological effects. We recently reported ingested 2´-FL stimulates central nervous system (CNS) function, such as hippocampal long term potentiation (LTP) and learning and memory in rats. Conceivably the effect of 2´-FL on CNS function may be via the gut-brain axis (GBA), specifically the vagus nerve, and L-fucose (Fuc) may play a role. This study had two aims: (1) determine if the effect of ingested 2´-FL on the modulation of CNS function is dependent on the integrity of the molecule; and (2) confirm if oral 2´-FL modified hippocampal LTP and associative learning related skills in rats submitted to bilateral subdiaphragmatic vagotomy. Results showed that 2´-FL but not Fuc enhanced LTP, and vagotomy inhibited the effects of oral 2´-FL on LTP and associative learning related paradigms. Taken together, the data show that dietary 2´-FL but not its Fuc moiety affects cognitive domains and improves learning and memory in rats. This effect is dependent on vagus nerve integrity, suggesting GBA plays a role in 2´-FL-mediated cognitive benefits. PMID:27851789
Delivery of therapeutic peptides and proteins to the CNS.
Salameh, Therese S; Banks, William A
2014-01-01
Peptides and proteins have potent effects on the brain after their peripheral administration, suggesting that they may be good substrates for the development of CNS therapeutics. Major hurdles to such development include their relation to the blood-brain barrier (BBB) and poor pharmacokinetics. Some peptides cross the BBB by transendothelial diffusion and others cross in the blood-to-brain direction by saturable transporters. Some regulatory proteins are also transported across the BBB and antibodies can enter the CNS via the extracellular pathways. Glycoproteins and some antibody fragments can be taken up and cross the BBB by mechanisms related to adsorptive endocytosis/transcytosis. Many peptides and proteins are transported out of the CNS by saturable efflux systems and enzymatic activity in the blood, CNS, or BBB are substantial barriers to others. Both influx and efflux transporters are altered by various substances and in disease states. Strategies that manipulate these interactions between the BBB and peptides and proteins provide many opportunities for the development of therapeutics. Such strategies include increasing transendothelial diffusion of small peptides, upregulation of saturable influx transporters with allosteric regulators and other posttranslational means, use of vectors and other Trojan horse strategies, inhibition of efflux transporters including with antisense molecules, and improvement in pharmacokinetic parameters to overcome short half-lives, tissue sequestration, and enzymatic degradation. © 2014 Elsevier Inc. All rights reserved.
Enhancing the Functional Content of Eukaryotic Protein Interaction Networks
Pandey, Gaurav; Arora, Sonali; Manocha, Sahil; Whalen, Sean
2014-01-01
Protein interaction networks are a promising type of data for studying complex biological systems. However, despite the rich information embedded in these networks, these networks face important data quality challenges of noise and incompleteness that adversely affect the results obtained from their analysis. Here, we apply a robust measure of local network structure called common neighborhood similarity (CNS) to address these challenges. Although several CNS measures have been proposed in the literature, an understanding of their relative efficacies for the analysis of interaction networks has been lacking. We follow the framework of graph transformation to convert the given interaction network into a transformed network corresponding to a variety of CNS measures evaluated. The effectiveness of each measure is then estimated by comparing the quality of protein function predictions obtained from its corresponding transformed network with those from the original network. Using a large set of human and fly protein interactions, and a set of over GO terms for both, we find that several of the transformed networks produce more accurate predictions than those obtained from the original network. In particular, the measure and other continuous CNS measures perform well this task, especially for large networks. Further investigation reveals that the two major factors contributing to this improvement are the abilities of CNS measures to prune out noisy edges and enhance functional coherence in the transformed networks. PMID:25275489
Perwein, Maria K; Smestad, John A; Warrington, Arthur E; Heider, Robin M; Kaczor, Mark W; Maher, Louis J; Wootla, Bharath; Kunbaz, Ahmad; Rodriguez, Moses
2018-05-01
Multiple sclerosis (MS) is a chronic and progressive inflammatory demyelinating disease of the human central nervous system (CNS) and is the most common disabling neurological condition in young adults, resulting in severe neurological defects. No curative or long-term progression-inhibiting therapy has yet been developed. However, recent investigation has revealed potential strategies that do not merely modulate potentially pathogenic autoimmune responses, but stimulate remyelination within CNS lesions. Areas covered: We discuss the history and development of natural human IgM-isotype immunoglobulins (HIgMs) and recently-identified aptamer-conjugates that have been shown to enhance endogenous myelin repair in animal models of demyelination by acting on myelin-producing oligodendrocytes (OLs) or oligodendrocyte progenitor cells (OPCs) within CNS lesions. We also discuss future development aims and applications for these important novel technologies. Expert opinion: Aptamer conjugate Myaptavin-3064 and recombinant human IgM-isotype antibody rHIgM22 regenerate CNS myelin, thereby reducing axonal degeneration and offering the potential of recovery from MS relapses, reversal of disability and prevention of disease progression. Advancement of these technologies into the clinic for MS treatment is therefore a top priority. It remains unclear to what extent the therapeutic modalities of remyelinating antibodies and aptamers may synergize with other currently-approved therapies to yield enhanced therapeutic effects.
Ruggiu, Mathilde; Cuccuini, Wendy; Mokhtari, Karima; Meignin, Véronique; Peffault de Latour, Régis; Robin, Marie; Fontbrune, Flore Sicre de; Xhaard, Aliénor; Socié, Gérard; Michonneau, David
2017-10-01
Central nervous system (CNS) involvement of graft versus host disease (GvHD) is a rare cause of CNS disorders after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Chronic CNS GvHD symptoms are heterogeneous and include cerebrovascular manifestations, demyelinating disease and immune-mediated encephalitis. CNS-Acute GvHD is not formally defined in literature. We report 7 cases of CNS-GvHD among which two had histological-proven disease. We reviewed 32 additional cases of CNS GvHD published in literature since 1990. In this cohort, 34 patients were transplanted for hematologic malignancies, and 5 for non-malignant hematopoiesis disorders. Of these patients, 25 had a history of chronic GvHD and immunosuppressive treatment had been decreased or discontinued in 14 patients before neurological symptoms onset. Median neurological disorder onset was 385 days [7-7320]. Patients had stroke-like episodes (n = 7), lacunar syndromes (n = 3), multiple sclerosis-like presentations (n = 7), acute demyelinating encephalomyelitis-like symptoms (n = 4), encephalitis (n = 14), mass syndrome (n = 1), and 3 had non-specific symptoms. Median neurological symptoms onset was 81.5 days [7-1095] for patients without chronic GVHD history versus 549 days [11-7300] for patients with chronic GVHD (P = 0.001). Patients with early involvement of CNS after allo-HSCT and no chronic GVHD symptoms were more frequently suffering from encephalitis (64% versus 28%, P = 0.07), whereas stroke-like episodes and lacunar symptoms were less frequent (9% versus 36%, P = 0.13). 34 patients with CNS-GvHD were treated with immunosuppressive therapy, including corticosteroids for 31 of them. Other treatments were intravenous immunoglobulin, plasmapheresis, cyclophosphamide, calcineurin inhibitors, mycophenolic acid, methotrexate and etoposide. 27 patients achieved a response: 10 complete responses, 15 partial responses and 2 transient responses. Of 25 patients with sufficient follow-up, 7 were alive and 18 patients deceased after CNS-GvHD diagnosis. CNS-related GvHD is a rare cause of CNS disorders after allo-HSCT and is associated with a poor prognosis.
Le Rhun, Emilie; Bertrand, Nicolas; Dumont, Aurélie; Tresch, Emmanuelle; Le Deley, Marie-Cécile; Mailliez, Audrey; Preusser, Matthias; Weller, Michael; Revillion, Françoise; Bonneterre, Jacques
2017-12-01
The PI3K-AKT-mTOR pathway may be involved in the development of central nervous system (CNS) metastasis from breast cancer. Accordingly, herein we explored whether single nucleotide polymorphisms (SNPs) of this pathway are associated with altered risk of CNS metastasis formation in metastatic breast cancer patients. The GENEOM study (NCT00959556) included blood sample collection from breast cancer patients treated in the neoadjuvant, adjuvant or metastatic setting. We identified patients with CNS metastases for comparison with patients without CNS metastasis, defined as either absence of neurological symptoms or normal brain magnetic resonance imaging (MRI) before death or during 5-year follow-up. Eighty-eight SNPs of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian (or mechanistic) target of rapamycin (mTOR) pathway genes were selected for analysis: AKT1 (17 SNPs), AKT2 (4), FGFR1 (2), mTOR (7), PDK1 (4), PI3KR1 (11), PI3KCA (20), PTEN (17), RPS6KB1 (6). Of 342 patients with metastases, 207 fulfilled the inclusion criteria: One-hundred-and-seven patients remained free of CNS metastases at last follow-up or date of death whereas 100 patients developed CNS metastases. Among clinical parameters, hormonal and human epidermal growth factor receptor-2 (HER2) status as well as vascular tumour emboli was associated with risk of CNS metastasis. Only PI3KR1-rs706716 was associated with CNS metastasis in univariate analysis after Bonferroni correction (p < 0.00085). Multivariate analysis showed associations between AKT1-rs3803304, AKT2-rs3730050, PDK1-rs11686903 and PI3KR1-rs706716 and CNS metastasis . PI3KR1-rs706716 may be associated with CNS metastasis in metastatic breast cancer patients and could be included in a predictive composite score to detect early CNS metastasis irrespective of breast cancer subtype. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Fujikawa, Gene (Compiler)
2005-01-01
Contents includes papers on the following: JPDO: Inter-Agency Cooperation for the Next Generation ATS; R&T Programs; Integrated CNS Systems and Architectures; Datalink Communication Systems; Navigation, System Demonstrations and Operations; Safety and Security Initiatives Impacting CNS; Global Communications Initiatives; Airborne Internet; Avionics for System-Level Enhancements; SWIM (System Wide Information Management); Weather Products and Data Dissemination Technologies; Airsapce Communication Networks; Surveillance Systems; Workshop Breakouts Sessions and ; ICNS Conference Information.
Evaluation of antinociceptive effect of Petiveria alliacea (Guiné) in animals.
de Lima, T C; Morato, G S; Takahashi, R N
1991-01-01
Petiveria alliacea (Phytolaccaceae) is a bush widely distributed in South America including Brazil, where it is popularly known as "guiné", "pipi", "tipi" or "erva-de-tipi". Brazilian folk medicine attributes to the hot water infusion of its roots or leaves the following pharmacological properties: antipyretic, antispasmodic, abortifacient, antirrheumatic, diuretic, analgesic and sedative. The present study has evaluated the alleged effects of P. alliacea on central nervous system (CNS), particularly, the sedative and analgesic properties of root crude aqueous extract of this plant in mice and rats. This extract showed an antinociceptive effect in acetic acid--acetylcholine--and hypertonic saline--induced abdominal constrictions, but not in hot-plate and tail flick tests. P. alliacea did not produce any CNS depressor effect. Thus its antinociceptive action in animals can be responsible by its popular use as an analgesic.
ERIC Educational Resources Information Center
Strauser, David R.; Wagner, Stacia; Wong, Alex W. K.
2012-01-01
The purpose of this study was to examine the relationship between vocational identity, community integration, positive and negative affect, and satisfaction with life in a group of young adult central nervous system (CNS) cancer survivors. Participants in this study included 45 young adult CNS cancer survivors who ranged in age from 18 to 30 years…
Quick, Eamon D.; Leser, J. Smith; Tyler, Kenneth L.
2014-01-01
ABSTRACT West Nile virus (WNV) is a neurotropic flavivirus that causes significant neuroinvasive disease involving the brain and/or spinal cord. Experimental mouse models of WNV infection have established the importance of innate and adaptive immune responses in controlling the extent and severity of central nervous system (CNS) disease. However, differentiating between immune responses that are intrinsic to the CNS and those that are dependent on infiltrating inflammatory cells has proven difficult. We used a murine ex vivo spinal cord slice culture (SCSC) model to determine the innate immune processes specific to the CNS during WNV infections. By 7 days after ex vivo infection of SCSCs, the majority of neurons and a substantial percentage of astrocytes were infected with WNV, resulting in apoptotic cell death and astrogliosis. Microglia, the resident immune cells of the CNS, were activated by WNV infection, as exemplified by their amoeboid morphology, the development of filopodia and lamellipodia, and phagocytosis of WNV-infected cells and debris. Microglial cell activation was concomitant with increased expression of proinflammatory cytokines and chemokines, including CXCL10, CXCL1, CCL5, CCL3, CCL2, tumor necrosis factor alpha (TNF-α), TNF-related apoptosis-inducing ligand (TRAIL), and interleukin-6 (IL-6). The application of minocycline, an inhibitor of neuroinflammation, altered the WNV-induced proinflammatory cytokine/chemokine expression profile, with inhibited production of CCL5, CCL2, and IL-6. Our findings establish that CNS-resident cells have the capacity to initiate a robust innate immune response against WNV infection in the absence of infiltrating inflammatory cells and systemic immune responses. IMPORTANCE There are no specific treatments of proven efficacy available for WNV neuroinvasive disease. A better understanding of the pathogenesis of WNV CNS infection is crucial for the rational development of novel therapies. Development of a spinal cord slice culture (SCSC) model facilitates the study of WNV pathogenesis and allows investigation of the intrinsic immune responses of the CNS. Our studies demonstrate that robust CNS innate immune responses, including microglial activation and proinflammatory cytokine/chemokine production, develop independently of contributions from the peripheral immune system and CNS-infiltrating inflammatory cells. PMID:25165111
Electromagnetic field and brain development.
Kaplan, Suleyman; Deniz, Omur Gulsum; Önger, Mehmet Emin; Türkmen, Aysın Pınar; Yurt, Kıymet Kübra; Aydın, Işınsu; Altunkaynak, Berrin Zuhal; Davis, Devra
2016-09-01
Rapid advances in technology involve increased exposures to radio-frequency/microwave radiation from mobile phones and other wireless transmitting devices. As cell phones are held close to the head during talking and often stored next to the reproductive organs, studies are mostly focused on the brain. In fact, more research is especially needed to investigate electromagnetic field (EMF)'s effects on the central nervous system (CNS). Several studies clearly demonstrate that EMF emitted by cell phones could affect a range of body systems and functions. Recent work has demonstrated that EMF inhibit the formation and differentiation of neural stem cells during embryonic development and also affect reproductive and neurological health of adults that have undergone prenatal exposure. The aim of this review is to discuss the developing CNS and explain potential impacts of EMF on this system. Copyright © 2015 Elsevier B.V. All rights reserved.
Kang, Ting; Gao, Xiaoling; Chen, Jun
2014-01-01
The existence of blood-brain barrier (BBB) represents the most formidable challenge for drug delivery to the central nervous system (CNS). Modern breakthrough in biology offers multiple choices for overcoming this barrier but yields modest outcomes for clinical application due to various problems such as safety concerns, insufficient delivery efficiency and poor penetration. Cell penetrating peptides (CPPs) possessing powerful transmembrane capacity have been shown to be effective transport vectors for bioactive molecules and an attractive alternative to traditional active targeting approaches. However, the non-specificity of CPPs has hindered them from targeting a desired site of action. Promisingly, design of novel CPP-mediated nanoparticulate delivery systems with specific targeting property may extricate CPPs from the dilemma. In this review, both the traditional and novel applications of CPPs-based strategies for CNS drug delivery will be discussed.
Tahtouh, Muriel; Croq, Françoise; Lefebvre, Christophe; Pestel, Joël
2009-09-01
The complement system is well known as an enzyme cascade that helps to defend against infections. Indeed, this ancestral system bridges innate and adaptive immunity. Its implication in diseases of the central nervous system (CNS), has led to an increased number of studies. Complement activation in the CNS has been generally considered to contribute to tissue damage. However, recent studies suggest that complement may be neuroprotective, and can participate in maintenance and repair of the adult brain. Here, we will review this dual role of complement proteins and some of their functional interactions with part of the chemokine and cytokine network associated with the protection of CNS integrity.
Potential Application of Centrifuges to Protect the CNS in Space and on Earth.
Hashimoto, Makoto; Ho, Gilbert; Shimizu, Yuka; Sugama, Shuei; Takenouchi, Takato; Waragai, Masaaki; Wei, Jianshe; Takamatsu, Yoshiki
2018-01-01
Centrifuges are the principal means of generating physiological hypergravity and have been used for many medical purposes, including the therapy of psychiatric diseases and evaluation of vestibular system in the pilots. In particular, modern centrifuges have evolved into mechanically sophisticated precision instruments compared to primitive ones in old times, indicating that centrifuges might possess great potential in modern medicine. Indeed, studies are in progress to apply centrifuges to musculoskeletal degenerative diseases, such as osteoporosis and sarcopenia. Given that the agingrelated diseases are manifested under microgravity conditions, including astronauts and the bed-ridden elderly, it is reasonable to speculate that centrifuge-induced hypergravity may counteract the progression of these diseases. Such a view may also be important for neurodegenerative diseases for which the radical treatments are yet to be established. Therefore, the main objective of this paper is to discuss a potential therapeutic use of centrifuges for protection against the central nervous system (CNS) disorders, both in space and on Earth. Mechanistically hypergravity may exert stimulatory effects on preconditioning, chaperone expression, synapse plasticity, and growth and differentiation in the nervous system. Furthermore, hypergravity may suppress the progress of type II diabetes mellitus (T2DM), leading to inhibition of T2DM-triggered CNS disorders, including neurodegenerative diseases, ischemia and depression. Moreover, it is possible that hypergravity may counteract the neurodegeneration in hippocampus induced by the microgravity conditions and psychiatric diseases. Collectively, further investigations are warranted to demonstrate that centrifuge-induced hypergravity may be beneficial for the therapy of the CNS disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Approach to Cerebrospinal Fluid (CSF) Biomarker Discovery and Evaluation in HIV Infection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Richard W.; Peterson, Julia; Fuchs, Dietmar
2013-12-13
Central nervous system (CNS) infection is a nearly universal facet of systemic HIV infection that varies in character and neurological consequences. While clinical staging and neuropsychological test performance have been helpful in evaluating patients, cerebrospinal fluid (CSF) biomarkers present a valuable and objective approach to more accurate diagnosis, assessment of treatment effects and understanding of evolving pathobiology. We review some lessons from our recent experience with CSF biomarker studies. We have used two approaches to biomarker analysis: targeted, hypothesis-driven and non-targeted exploratory discovery methods. We illustrate the first with data from a cross-sectional study of defined subject groups across themore » spectrum of systemic and CNS disease progression and the second with a longitudinal study of the CSF proteome in subjects initiating antiretroviral treatment. Both approaches can be useful and, indeed, complementary. The first is helpful in assessing known or hypothesized biomarkers while the second can identify novel biomarkers and point to broad interactions in pathogenesis. Common to both is the need for well-defined samples and subjects that span a spectrum of biological activity and biomarker concentrations. Previouslydefined guide biomarkers of CNS infection, inflammation and neural injury are useful in categorizing samples for analysis and providing critical biological context for biomarker discovery studies. CSF biomarkers represent an underutilized but valuable approach to understanding the interactions of HIV and the CNS and to more objective diagnosis and assessment of disease activity. Both hypothesis-based and discovery methods can be useful in advancing the definition and use of these biomarkers.« less
Approach to cerebrospinal fluid (CSF) biomarker discovery and evaluation in HIV infection.
Price, Richard W; Peterson, Julia; Fuchs, Dietmar; Angel, Thomas E; Zetterberg, Henrik; Hagberg, Lars; Spudich, Serena; Smith, Richard D; Jacobs, Jon M; Brown, Joseph N; Gisslen, Magnus
2013-12-01
Central nervous system (CNS) infection is a nearly universal facet of systemic HIV infection that varies in character and neurological consequences. While clinical staging and neuropsychological test performance have been helpful in evaluating patients, cerebrospinal fluid (CSF) biomarkers present a valuable and objective approach to more accurate diagnosis, assessment of treatment effects and understanding of evolving pathobiology. We review some lessons from our recent experience with CSF biomarker studies. We have used two approaches to biomarker analysis: targeted, hypothesis-driven and non-targeted exploratory discovery methods. We illustrate the first with data from a cross-sectional study of defined subject groups across the spectrum of systemic and CNS disease progression and the second with a longitudinal study of the CSF proteome in subjects initiating antiretroviral treatment. Both approaches can be useful and, indeed, complementary. The first is helpful in assessing known or hypothesized biomarkers while the second can identify novel biomarkers and point to broad interactions in pathogenesis. Common to both is the need for well-defined samples and subjects that span a spectrum of biological activity and biomarker concentrations. Previously-defined guide biomarkers of CNS infection, inflammation and neural injury are useful in categorizing samples for analysis and providing critical biological context for biomarker discovery studies. CSF biomarkers represent an underutilized but valuable approach to understanding the interactions of HIV and the CNS and to more objective diagnosis and assessment of disease activity. Both hypothesis-based and discovery methods can be useful in advancing the definition and use of these biomarkers.
Measles Fusion Machinery Is Dysregulated in Neuropathogenic Variants
Jurgens, Eric M.; Mathieu, Cyrille; Palermo, Laura M.; Hardie, Diana; Horvat, Branka
2015-01-01
ABSTRACT Paramyxoviruses, including the human pathogen measles virus (MV), enter host cells by fusing their viral envelope with the target cell membrane. This fusion process is driven by the concerted actions of the two viral envelope glycoproteins, the receptor binding protein (hemagglutinin [H]) and the fusion (F) protein. H attaches to specific proteinaceous receptors on host cells; once the receptor engages, H activates F to directly mediate lipid bilayer fusion during entry. In a recent MV outbreak in South Africa, several HIV-positive people died of MV central nervous system (CNS) infection. We analyzed the virus sequences from these patients and found that specific intrahost evolution of the F protein had occurred and resulted in viruses that are “CNS adapted.” A mutation in F of the CNS-adapted virus (a leucine-to-tryptophan change present at position 454) allows it to promote fusion with less dependence on engagement of H by the two known wild-type (wt) MV cellular receptors. This F protein is activated independently of H or the receptor and has reduced thermal stability and increased fusion activity compared to those of the corresponding wt F. These functional effects are the result of the single L454W mutation in F. We hypothesize that in the absence of effective cellular immunity, such as HIV infection, MV variants bearing altered fusion machinery that enabled efficient spread in the CNS underwent positive selection. PMID:25670774
Churchill, Melissa J.; Cowley, Daniel J.; Wesselingh, Steve L.; Gorry, Paul R.; Gray, Lachlan R.
2014-01-01
Human immunodeficiency virus type-1 (HIV-1) invades the central nervous system (CNS) during acute infection which can result in HIV-associated neurocognitive disorders (HAND) in up to 50% of patients, even in the presence of combination antiretroviral therapy (cART). Within the CNS, productive HIV-1 infection occurs in the perivascular macrophages and microglia. Astrocytes also become infected, although their infection is restricted and does not give rise to new viral particles. The major barrier to the elimination of HIV-1 is the establishment of viral reservoirs in different anatomical sites throughout the body and viral persistence during long-term treatment with cART. While the predominant viral reservoir is believed to be resting CD4+ T-cells in the blood, other anatomical compartments including the CNS, gut-associated lymphoid tissue, bone marrow, and genital tract can also harbor persistently infected cellular reservoirs of HIV-1. Viral latency is predominantly responsible for HIV-1 persistence, and is most likely governed at the transcriptional level. Current clinical trials are testing transcriptional activators, in the background of cART, in an attempt to purge these viral reservoirs and reverse viral latency. These strategies aim to activate viral transcription in cells constituting the viral reservoir, so they can be recognized and cleared by the immune system, while new rounds of infection are blocked by co-administration of cART. The CNS has several unique characteristics that may result in differences in viral transcription and in the way latency is established. These include CNS-specific cell types, different transcription factors, altered immune surveillance, and reduced antiretroviral drug bioavailability. A comprehensive understanding of viral transcription and latency in the CNS is required in order to determine treatment outcomes when using transcriptional activators within the CNS. PMID:25060300
Unconventional myosin ID is expressed in myelinating oligodendrocytes.
Yamazaki, Reiji; Ishibashi, Tomoko; Baba, Hiroko; Yamaguchi, Yoshihide
2014-10-01
Myelin is a dynamic multilamellar structure that ensheathes axons and is crucial for normal neuronal function. In the central nervous system (CNS), myelin is produced by oligodendrocytes that wrap many layers of plasma membrane around axons. The dynamic membrane trafficking system, which relies on motor proteins, is required for myelin formation and maintenance. Previously, we found that myosin ID (Myo1d), a class I myosin, is enriched in the rat CNS myelin fraction. Myo1d is an unconventional myosin and has been shown to be involved in membrane trafficking in the recycling pathway in an epithelial cell line. Western blotting revealed that Myo1d expression begins early in myelinogenesis and continues to increase into adulthood. The localization of Myo1d in CNS myelin has not been reported, and the function of Myo1d in vivo remains unknown. To demonstrate the expression of Myo1d in CNS myelin and to begin to explore the function of Myo1d in myelination, we produced a new antibody against Myo1d that has a high titer and specificity for rat Myo1d. By using this antibody, we demonstrated that Myo1d is expressed in rat CNS myelin and is especially abundant in abaxonal and adaxonal regions (the outer and inner cytoplasm-containing loops, respectively), but that expression is low in peripheral nervous system myelin. In culture, Myo1d was expressed in mature rat oligodendrocytes. Furthermore, an increase in expression of Myo1d during maturation of CNS white matter (cerebellum and corpus callosum) was demonstrated by histological analysis. These results suggest that Myo1d may be involved in the formation and/or maintenance of CNS myelin. © 2014 Wiley Periodicals, Inc.
Neurocognitive Effects of Treatment for Childhood Cancer
ERIC Educational Resources Information Center
Butler, Robert W.; Haser, Jennifer K.
2006-01-01
We review research on the neuropsychological effects that central nervous system (CNS) cancer treatments have on the cognitive abilities of children and adolescents. The authors focus on the two most common malignancies of childhood: leukemias and brain tumors. The literature review is structured so as to separate out earlier studies, generally…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-23
... Enhance the Process for Transfers Through the Automated Customer Account Transfer Service August 16, 2010... Transfer Service (``ACATS'') system enables Members to effect automated transfers of customer accounts... transfer services and to effect customer account transfers within specified time frames. \\4\\ CNS is an...
Psychotropic drugs and bruxism.
Falisi, Giovanni; Rastelli, Claudio; Panti, Fabrizio; Maglione, Horacio; Quezada Arcega, Raul
2014-10-01
Sleep and awake bruxism is defined as 'a parafunctional activity including clenching, bracing, gnashing, and grinding of the teeth'. Some evidence suggests that bruxism may be caused by, or associated with, alterations in the CNS neurotransmission. Several classes of psychotropic drugs interfering with CNS activity may potentially contribute to bruxism. Thus, the purpose of this study was to examine relevant peer-reviewed papers to identify and describe the various classes of psychotropic substances that may cause, exacerbate or reduce bruxism as the result of their pharmacological action in CNS neurons. A literature search from 1980 to the present was performed using PubMed database. The term 'bruxism' was used in association with 'psychotropic', 'dopamine (DA)', 'serotonin', 'histamine', 'antipsychotics', 'antidepressants', 'antihistaminergics' and 'stimulants'. Studies on the effects of DA agonists (Levo-DOPA, psychostimulants) and antagonists (antipsychotics) identified a central role of DA in the pathogenesis of pharmacologically induced bruxism. Important information from studies on drugs acting on serotonin neurotransmission (antidepressants) was recognized. Other mechanisms involving different neurotransmitters are emerging. This is the case of antihistaminergic drugs which may induce bruxism as a consequence of their disinhibitory effect on the serotonergic system.
Isolated CNS relapse following stem cell transplantation for juvenile myelomonocytic leukemia.
Wilson, David B; Michalski, Jeff M; Grossman, William J; Hayashi, Robert J
2003-11-01
A 1-year-old girl with juvenile myelomonocytic leukemia (JMML) underwent allogeneic bone marrow transplantation (BMT) from her HLA-matched brother. A few months after BMT she experienced a bone marrow relapse that did not respond to withdrawal of immunosuppression. To enhance the graft-versus-leukemia (GVL) effect, she underwent peripheral stem cell transplantation (PSCT) from the same donor, using a nonmyeloablative conditioning regimen. She achieved clinical remission and developed chronic graft-versus-host disease (GVHD), which was treated with prednisone and cyclosporine A. One year after PSCT she experienced an isolated central nervous system (CNS) relapse. She was treated with intrathecal Ara-C followed by craniospinal irradiation and achieved a third clinical remission. While extramedullary relapses have been described in JMML, this is the first report of a CNS relapse. Based on this case and others in the literature, the authors suggest that newer therapies are changing the natural history of JMML. By manipulating the GVL effect it is possible to achieve a prolonged bone marrow remission, but only at the expense of unmasking the risk of late extramedullary relapse.
Influence of oil-related environmental pollutants on female reproduction.
Sirotkin, Alexander V; Harrath, Abdul Halim
2017-08-01
The petroleum low-weight aromatic hydrocarbons benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene, also known as BTEX, are among the most common hazardous sources of environmental contamination. This paper reviews the available data concerning the effects of BTEX on different aspects of female reproduction, including the fecundity, ovaries, central nervous system (CNS), oocytes, embryos, oviducts, cytogenetics of somatic and generative cells, intracellular signaling systems, and hypothalamic, pituitary and peripheral reproductive hormones. Analysis of the available literature demonstrates that BTEX can exert negative effects on various female reproductive sites, including the CNS-pituitary-ovarian axis, their signaling molecules and receptors, ovarian follicles, corpora lutea, oocytes, embryos, oviducts, ovarian cycles, fertility, and the viability of offspring. These effects could be due to the ability of BTEX to destroy chromosomes, to affect cell metabolism, including the accumulation of free radicals, and to affect the release of hormonal regulators of reproductive processes and intracellular protein kinases. Copyright © 2017 Elsevier Inc. All rights reserved.
Yasui, M; Yano, I; Ota, K; Oshima, A
1990-04-01
The aims in this study were designed to clarify the contents of calcium (Ca), phosphorus (P) and aluminum (Al) in central nervous system (CNS), liver and kidney of rabbits with atherosclerosis experimentally induced by cholesterol-rich diet, and investigate scavenger effect of 14-ethoxycarbonyl-(3 alpha, 16 alpha-ethyl)-14,15-eburnamenine (vinpocetine) on the deposition of these elements in CNS and soft tissues of experimental atherosclerosis. Sixteen male rabbits were divided into 4 groups. Each group was fed with standard diet (Group A), standard diet containing 1.5% cholesterol (Group B), standard diet containing 1.5% cholesterol plus oral administration of 3 mg/kg/day vinpocetine (Group C), and standard diet containing 1.5% cholesterol plus administration of 10 mg/kg/day vinpocetine (Group D). After 3 months' feeding, experimental atherosclerosis was produced with a modified method of Kritchevsky et al in rabbits of Groups B, C and D. Blood was collected by cardiocentesis under the anesthesia of ether and then rabbits sacrificed to remove CNS and other tissues. The blood was stood for 1 hour at room temperature and separated by centrifugation at 3000 rpm for 10 min to determine serum total cholesterol, phospholipids, HDL-cholesterol, peroxide lipid, NEFA and calcium levels. Ca, P and Al contents in the frontal lobe, pons, cerebellum, spinal cord, liver and kidney were determined by neutron activation analysis. Ca contents of CNS, liver and kidney in Group B significantly increased than those of Group A (p less than 0.01), and significantly decreased in Groups C and D compared with those of Group B (p less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)
Central nervous system effect of chronic exposure to organophosphate insecticides.
DOT National Transportation Integrated Search
1963-10-01
Two cases are reported in which persistent CNS changes were noted in aerial applicator pilots after chronic exposure to organophosphate insecticides. The synptomatology, the basis for these symptoms and EEG changes and their reversibility are discuss...
Microbiota-gut-brain axis and the central nervous system.
Zhu, Xiqun; Han, Yong; Du, Jing; Liu, Renzhong; Jin, Ketao; Yi, Wei
2017-08-08
The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated with various CNS diseases, such as Parkinson's disease, Alzheimer's disease, schizophrenia, and multiple sclerosis. In this paper, we will review the latest advances of studies on the correlation between gut microorganisms and CNS functions & diseases.
Convection-enhanced delivery to the central nervous system.
Lonser, Russell R; Sarntinoranont, Malisa; Morrison, Paul F; Oldfield, Edward H
2015-03-01
Convection-enhanced delivery (CED) is a bulk flow-driven process. Its properties permit direct, homogeneous, targeted perfusion of CNS regions with putative therapeutics while bypassing the blood-brain barrier. Development of surrogate imaging tracers that are co-infused during drug delivery now permit accurate, noninvasive real-time tracking of convective infusate flow in nervous system tissues. The potential advantages of CED in the CNS over other currently available drug delivery techniques, including systemic delivery, intrathecal and/or intraventricular distribution, and polymer implantation, have led to its application in research studies and clinical trials. The authors review the biophysical principles of convective flow and the technology, properties, and clinical applications of convective delivery in the CNS.
Carpenter, Colleen; Zestos, Alexander G; Altshuler, Rachel; Sorenson, Roderick J; Guptaroy, Bipasha; Showalter, Hollis D; Kennedy, Robert T; Jutkiewicz, Emily; Gnegy, Margaret E
2017-09-01
Amphetamines (AMPHs) are globally abused. With no effective treatment for AMPH addiction to date, there is urgent need for the identification of druggable targets that mediate the reinforcing action of this stimulant class. AMPH-stimulated dopamine efflux is modulated by protein kinase C (PKC) activation. Inhibition of PKC reduces AMPH-stimulated dopamine efflux and locomotor activity. The only known CNS-permeant PKC inhibitor is the selective estrogen receptor modulator tamoxifen. In this study, we demonstrate that a tamoxifen analog, 6c, which more potently inhibits PKC than tamoxifen but lacks affinity for the estrogen receptor, reduces AMPH-stimulated increases in extracellular dopamine and reinforcement-related behavior. In rat striatal synaptosomes, 6c was almost fivefold more potent at inhibiting AMPH-stimulated dopamine efflux than [ 3 H]dopamine uptake through the dopamine transporter (DAT). The compound did not compete with [ 3 H]WIN 35,428 binding or affect surface DAT levels. Using microdialysis, direct accumbal administration of 1 μM 6c reduced dopamine overflow in freely moving rats. Using LC-MS, we demonstrate that 6c is CNS-permeant. Systemic treatment of rats with 6 mg/kg 6c either simultaneously or 18 h prior to systemic AMPH administration reduced both AMPH-stimulated dopamine overflow and AMPH-induced locomotor effects. Finally, 18 h pretreatment of rats with 6 mg/kg 6c s.c. reduces AMPH-self administration but not food self-administration. These results demonstrate the utility of tamoxifen analogs in reducing AMPH effects on dopamine and reinforcement-related behaviors and suggest a new avenue of development for therapeutics to reduce AMPH abuse.
Nanoscale drug delivery systems and the blood-brain barrier.
Alyautdin, Renad; Khalin, Igor; Nafeeza, Mohd Ismail; Haron, Muhammad Huzaimi; Kuznetsov, Dmitry
2014-01-01
The protective properties of the blood-brain barrier (BBB) are conferred by the intricate architecture of its endothelium coupled with multiple specific transport systems expressed on the surface of endothelial cells (ECs) in the brain's vasculature. When the stringent control of the BBB is disrupted, such as following EC damage, substances that are safe for peripheral tissues but toxic to neurons have easier access to the central nervous system (CNS). As a consequence, CNS disorders, including degenerative diseases, can occur independently of an individual's age. Although the BBB is crucial in regulating the biochemical environment that is essential for maintaining neuronal integrity, it limits drug delivery to the CNS. This makes it difficult to deliver beneficial drugs across the BBB while preventing the passage of potential neurotoxins. Available options include transport of drugs across the ECs through traversing occludins and claudins in the tight junctions or by attaching drugs to one of the existing transport systems. Either way, access must specifically allow only the passage of a particular drug. In general, the BBB allows small molecules to enter the CNS; however, most drugs with the potential to treat neurological disorders other than infections have large structures. Several mechanisms, such as modifications of the built-in pumping-out system of drugs and utilization of nanocarriers and liposomes, are among the drug-delivery systems that have been tested; however, each has its limitations and constraints. This review comprehensively discusses the functional morphology of the BBB and the challenges that must be overcome by drug-delivery systems and elaborates on the potential targets, mechanisms, and formulations to improve drug delivery to the CNS.
Methods for Gene Transfer to the Central Nervous System
Kantor, Boris; Bailey, Rachel M.; Wimberly, Keon; Kalburgi, Sahana N.; Gray, Steven J.
2015-01-01
Gene transfer is an increasingly utilized approach for research and clinical applications involving the central nervous system (CNS). Vectors for gene transfer can be as simple as an unmodified plasmid, but more commonly involve complex modifications to viruses to make them suitable gene delivery vehicles. This chapter will explain how tools for CNS gene transfer have been derived from naturally occurring viruses. The current capabilities of plasmid, retroviral, adeno-associated virus, adenovirus, and herpes simplex virus vectors for CNS gene delivery will be described. These include both focal and global CNS gene transfer strategies, with short- or long-term gene expression. As is described in this chapter, an important aspect of any vector is the cis-acting regulatory elements incorporated into the vector genome that control when, where, and how the transgene is expressed. PMID:25311922
Siravegna, Giulia; Geuna, Elena; Mussolin, Benedetta; Crisafulli, Giovanni; Bartolini, Alice; Galizia, Danilo; Casorzo, Laura; Sarotto, Ivana; Scaltriti, Maurizio; Sapino, Anna; Bardelli, Alberto; Montemurro, Filippo
2017-01-01
Background Central nervous system (CNS) involvement contributes to significant morbidity and mortality in patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (mBC) and represents a major challenge for clinicians. Liquid biopsy of cerebrospinal fluid (CSF)-derived circulating tumour DNA (ctDNA) harbours clinically relevant genomic alterations in patients with CNS metastases and could be effective in tracking tumour evolution. Methods In a HER2-positive mBC patient with brain metastases, we applied droplet digital PCR (ddPCR) and next-generation whole exome sequencing (WES) analysis to measure ctDNA dynamic changes in CSF and plasma collected during treatment. Results Baseline CSF-derived ctDNA analysis revealed TP53 and PIK3CA mutations as well as ERBB2 and cMYC amplification. Post-treatment ctDNA analysis showed decreased markers level in plasma, consistent with extra-CNS disease control, while increased in the CSF, confirming poor treatment benefit in the CNS. Discussion Analysis of ctDNA in the CSF of HER2-positive mBC is feasible and could represent a useful companion for clinical management of brain metastases. PMID:29067216
Formation of compact myelin is required for maturation of the axonal cytoskeleton
NASA Technical Reports Server (NTRS)
Brady, S. T.; Witt, A. S.; Kirkpatrick, L. L.; de Waegh, S. M.; Readhead, C.; Tu, P. H.; Lee, V. M.
1999-01-01
Although traditional roles ascribed to myelinating glial cells are structural and supportive, the importance of compact myelin for proper functioning of the nervous system can be inferred from mutations in myelin proteins and neuropathologies associated with loss of myelin. Myelinating Schwann cells are known to affect local properties of peripheral axons (de Waegh et al., 1992), but little is known about effects of oligodendrocytes on CNS axons. The shiverer mutant mouse has a deletion in the myelin basic protein gene that eliminates compact myelin in the CNS. In shiverer mice, both local axonal features like phosphorylation of cytoskeletal proteins and neuronal perikaryon functions like cytoskeletal gene expression are altered. This leads to changes in the organization and composition of the axonal cytoskeleton in shiverer unmyelinated axons relative to age-matched wild-type myelinated fibers, although connectivity and patterns of neuronal activity are comparable. Remarkably, transgenic shiverer mice with thin myelin sheaths display an intermediate phenotype indicating that CNS neurons are sensitive to myelin sheath thickness. These results indicate that formation of a normal compact myelin sheath is required for normal maturation of the neuronal cytoskeleton in large CNS neurons.
Iskandar, Bermans J; Rizk, Elias; Meier, Brenton; Hariharan, Nithya; Bottiglieri, Teodoro; Finnell, Richard H; Jarrard, David F; Banerjee, Ruma V; Skene, J H Pate; Nelson, Aaron; Patel, Nirav; Gherasim, Carmen; Simon, Kathleen; Cook, Thomas D; Hogan, Kirk J
2010-05-01
The folate pathway plays a crucial role in the regeneration and repair of the adult CNS after injury. Here, we have shown in rodents that such repair occurs at least in part through DNA methylation. In animals with combined spinal cord and sciatic nerve injury, folate-mediated CNS axon regeneration was found to depend on injury-related induction of the high-affinity folate receptor 1 (Folr1). The activity of folate was dependent on its activation by the enzyme dihydrofolate reductase (Dhfr) and a functional methylation cycle. The effect of folate on the regeneration of afferent spinal neurons was biphasic and dose dependent and correlated closely over its dose range with global and gene-specific DNA methylation and with expression of both the folate receptor Folr1 and the de novo DNA methyltransferases. These data implicate an epigenetic mechanism in CNS repair. Folic acid and possibly other nontoxic dietary methyl donors may therefore be useful in clinical interventions to promote brain and spinal cord healing. If indeed the benefit of folate is mediated by epigenetic mechanisms that promote endogenous axonal regeneration, this provides possible avenues for new pharmacologic approaches to treating CNS injuries.
Iskandar, Bermans J.; Rizk, Elias; Meier, Brenton; Hariharan, Nithya; Bottiglieri, Teodoro; Finnell, Richard H.; Jarrard, David F.; Banerjee, Ruma V.; Skene, J.H. Pate; Nelson, Aaron; Patel, Nirav; Gherasim, Carmen; Simon, Kathleen; Cook, Thomas D.; Hogan, Kirk J.
2010-01-01
The folate pathway plays a crucial role in the regeneration and repair of the adult CNS after injury. Here, we have shown in rodents that such repair occurs at least in part through DNA methylation. In animals with combined spinal cord and sciatic nerve injury, folate-mediated CNS axon regeneration was found to depend on injury-related induction of the high-affinity folate receptor 1 (Folr1). The activity of folate was dependent on its activation by the enzyme dihydrofolate reductase (Dhfr) and a functional methylation cycle. The effect of folate on the regeneration of afferent spinal neurons was biphasic and dose dependent and correlated closely over its dose range with global and gene-specific DNA methylation and with expression of both the folate receptor Folr1 and the de novo DNA methyltransferases. These data implicate an epigenetic mechanism in CNS repair. Folic acid and possibly other nontoxic dietary methyl donors may therefore be useful in clinical interventions to promote brain and spinal cord healing. If indeed the benefit of folate is mediated by epigenetic mechanisms that promote endogenous axonal regeneration, this provides possible avenues for new pharmacologic approaches to treating CNS injuries. PMID:20424322
Vitamin D and remyelination in multiple sclerosis.
Matías-Guíu, J; Oreja-Guevara, C; Matias-Guiu, J A; Gomez-Pinedo, U
2018-04-01
Several studies have found an association between multiple sclerosis and vitamin D (VD) deficiency, which suggests that VD may play a role in the immune response. However, few studies have addressed its role in remyelination. The VD receptor and the enzymes transforming VD into metabolites which activate the VD receptor are expressed in central nervous system (CNS) cells, which suggests a potential effect of VD on the CNS. Both in vitro and animal model studies have shown that VD may play a role in myelination by acting on factors that influence the microenvironment which promotes both proliferation and differentiation of neural stem cells into oligodendrocyte progenitor cells and oligodendrocytes. It remains unknown whether the mechanisms of internalisation of VD in the CNS are synergistic with or antagonistic to the mechanisms that facilitate the entry of VD metabolites into immune cells. VD seems to play a role in the CNS and our hypothesis is that VD is involved in remyelination. Understanding the basic mechanisms of VD in myelination is necessary to manage multiple sclerosis patients with VD deficiency. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Tissue-Specific Regulation of Chromatin Insulator Function
Matzat, Leah H.; Dale, Ryan K.; Moshkovich, Nellie; Lei, Elissa P.
2012-01-01
Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type–specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein Shep as a direct interactor of two individual components of the gypsy insulator complex in Drosophila. Mutation of shep improves gypsy-dependent enhancer blocking, indicating a role as a negative regulator of insulator activity. Unlike ubiquitously expressed core gypsy insulator proteins, Shep is highly expressed in the central nervous system (CNS) with lower expression in other tissues. We developed a novel, quantitative tissue-specific barrier assay to demonstrate that Shep functions as a negative regulator of insulator activity in the CNS but not in muscle tissue. Additionally, mutation of shep alters insulator complex nuclear localization in the CNS but has no effect in other tissues. Consistent with negative regulatory activity, ChIP–seq analysis of Shep in a CNS-derived cell line indicates substantial genome-wide colocalization with a single gypsy insulator component but limited overlap with intact insulator complexes. Taken together, these data reveal a novel, tissue-specific mode of regulation of a chromatin insulator. PMID:23209434
Mechanisms of CNS invasion and damage by parasites.
Kristensson, Krister; Masocha, Willias; Bentivoglio, Marina
2013-01-01
Invasion of the central nervous system (CNS) is a most devastating complication of a parasitic infection. Several physical and immunological barriers provide obstacles to such an invasion. In this broad overview focus is given to the physical barriers to neuroinvasion of parasites provided at the portal of entry of the parasites, i.e., the skin and epithelial cells of the gastrointestinal tract, and between the blood and the brain parenchyma, i.e., the blood-brain barrier (BBB). A description is given on how human pathogenic parasites can reach the CNS via the bloodstream either as free-living or extracellular parasites, by embolization of eggs, or within red or white blood cells when adapted to intracellular life. Molecular mechanisms are discussed by which parasites can interact with or pass across the BBB. The possible targeting of the circumventricular organs by parasites, as well as the parasites' direct entry to the brain from the nasal cavity through the olfactory nerve pathway, is also highlighted. Finally, examples are given which illustrate different mechanisms by which parasites can cause dysfunction or damage in the CNS related to toxic effects of parasite-derived molecules or to immune responses to the infection. Copyright © 2013 Elsevier B.V. All rights reserved.
Virally mediated gene manipulation in the adult CNS
Edry, Efrat; Lamprecht, Raphael; Wagner, Shlomo; Rosenblum, Kobi
2011-01-01
Understanding how the CNS functions poses one of the greatest challenges in modern life science and medicine. Studying the brain is especially challenging because of its complexity, the heterogeneity of its cellular composition, and the substantial changes it undergoes throughout its life-span. The complexity of adult brain neural networks results also from the diversity of properties and functions of neuronal cells, governed, inter alia, by temporally and spatially differential expression of proteins in mammalian brain cell populations. Hence, research into the biology of CNS activity and its implications to human and animal behavior must use novel scientific tools. One source of such tools is the field of molecular genetics—recently utilized more and more frequently in neuroscience research. Transgenic approaches in general, and gene targeting in rodents have become fundamental tools for elucidating gene function in the CNS. Although spectacular progress has been achieved over recent decades by using these approaches, it is important to note that they face a number of restrictions. One of the main challenges is presented by the temporal and spatial regulation of introduced genetic manipulations. Viral vectors provide an alternative approach to temporally regulated, localized delivery of genetic modifications into neurons. In this review we describe available technologies for gene transfer into the adult mammalian CNS that use both viral and non-viral tools. We discuss viral vectors frequently used in neuroscience, with emphasis on lentiviral vector (LV) systems. We consider adverse effects of LVs, and the use of LVs for temporally and spatially controllable manipulations. Especially, we highlight the significance of viral vector-mediated genetic manipulations in studying learning and memory processes, and how they may be effectively used to separate out the various phases of learning: acquisition, consolidation, retrieval, and maintenance. PMID:22207836
Boman, Krister K; Lindblad, Frank; Hjern, Anders
2010-03-01
Studies of different national populations were indispensable for estimating the impact of illness-related disability on social outcomes in adult childhood cancer survivors. The effects of childhood cancer on educational attainment, employment, and income in adulthood in a Swedish setting were studied. The study population was a national cohort of 1.46 million Swedish residents, including 1716 survivors of childhood cancer diagnosed before their 16th birthday, followed up in 2002 in registries at >25 years of age. Main outcomes were educational attainment, employment, and net income. Markers of persistent disability were considered, and outcomes were analyzed with multivariate linear and logistic regression models adjusted for age, sex, and socioeconomic indicators of the childhood households. Non-central nervous system (CNS) cancer survivors had similar education, employment, and income as the general population in adjusted models, whereas survivors of CNS tumors more often had no more than basic (< or =9 years) education (relative risk [RR], 1.80 [95% confidence interval (95% CI), 1.45-2.23]), less often attained education beyond secondary school (RR, 0.69 [95% CI, 0.58-0.81]), and less often were employed (RR, 0.85 [95% CI, 0.77-0.94]). Predicted net income from work was lower in CNS tumor survivors (P <.001) than in the general population, even after the exclusion of individuals who received economic disability compensation. CNS tumor survivors had poorer social outcomes compared with the general population, whereas outcomes for survivors of other childhood cancers were similar to the general population. Established late effects highlighted the importance of improved, safer pediatric CNS tumor treatment protocols and surveillance that identified individual needs for preventive and remedial measures.
Arslan, Cagatay; Dizdar, Omer; Altundag, Kadri
2014-08-01
Breast cancer (BC) is the second most common cause of CNS metastasis. Ten to 20% of all, and 38% of human epidermal growth factor-2(+), metastatic BC patients experience brain metastasis (BM). Prolonged survival with better control of systemic disease and limited penetration of drugs to CNS increased the probability of CNS metastasis as a sanctuary site of relapse. Treatment of CNS disease has become an important component of overall disease control and quality of life. Current standard therapy for BM is whole-brain radiotherapy, surgery, stereotactic body radiation therapy for selected cases, corticosteroids and systemic chemotherapy. Little progress has been made in chemotherapy for the treatment of BM in patients with BC. Nevertheless, new treatment choices have emerged. In this review, we aimed to update current and future treatment options in systemic treatment for BM of BC. Cornerstone local treatment options for BM of BC are radiotherapy and surgery in selected cases. Efficacy of cytotoxic chemotherapeutics is limited. Among targeted therapies, lapatinib has activity in systemic treatment of BM particularly when used in combination with capecitabine. Novel agents are currently investigated.
Buchanich, Jeanine M; Youk, Ada O; Marsh, Gary M; Kennedy, Kathleen J; Lacey, Steven E; Hancock, Roger P; Esmen, Nurtan A; Cunningham, Michael A; Leiberman, Frank S; Fleissner, Mary Lou
2011-01-01
We attempted to examine non-malignant central nervous system (CNS) neoplasms incidence rates for workers at 8 jet engine manufacturing facilities in Connecticut. The objective of this manuscript is to describe difficulties encountered regarding these analyses to aid future studies. We traced the cohort for incident cases of CNS neoplasms in states where 95% of deaths in the total cohort occurred. We used external and internal analyses in an attempt to obtain the true risk of non-malignant CNS in the cohort. Because these analyses were limited by data constraints, we conducted sensitivity analyses, including using state driver's license data to adjust person-year stop dates to help minimize underascertainment and more accurately determine cohort risk estimates. We identified 3 unanticipated challenges: case identification, determination of population-based cancer incidence rates, and handling of case underascertainment. These factors precluded an accurate assessment of non-malignant CNS neoplasm incidence risks in this occupational epidemiology study. The relatively recent (2004) mandate of capturing non-malignant CNS tumor data at the state level means that, in time, it may be possible to conduct external analyses of these data. Meanwhile, similar occupational epidemiology studies may be limited to descriptive analysis of the non-malignant CNS case characteristics.
USDA-ARS?s Scientific Manuscript database
The aim of the present study was to determine if some naturally-occurring substitutions of amino acid residues of insulin could act differentially within the central nervous system (CNS) of neonatal chicks to control ingestive behavior. Intracerebroventricular (ICV) administration of chicken insuli...
Pastorelli, F; Di Silvestre, M; Vommaro, F; Maredi, E; Morigi, A; Bacchin, M R; Bonarelli, S; Plasmati, R; Michelucci, R; Greggi, T
2015-11-01
Combined intraoperative monitoring (IOM) of transcranial electric motor-evoked potentials (tce-MEPs) and somatosensory-evoked potentials (SSEPs) is safe and effective for spinal cord monitoring during scoliosis surgery. However, the literature data regarding the reliability of spinal cord monitoring in patients with neuromuscular scoliosis are conflicting and need to be confirmed. We reviewed IOM records of 40 consecutive patients with neuromuscular scoliosis related to central nervous system (CNS) (29 pts) or peripheral nervous system (PNS) (11 patients) diseases, who underwent posterior fusion with instrumentation surgery for spinal deformity. Multimodalitary IOM with SSEPs and tce-MEPs was performed. Spinal cord monitoring using at least one modality was attempted in 38/40 (95 %) patients. No false-negative results were present in either group, but a relatively high incidence of false-positive cases (4/29, 13.8 %) was noted in the CNS group. Two patients in the CNS group and one patient in the PNS group presented transient postoperative motor deficits (true positive), related to surgical manoeuvres in two cases and to malposition in the other one. Multimodalitary IOM is safe and effective to detect impending spinal cord and peripheral nerves dysfunction in neuromuscular scoliosis surgery. However, the interpretation of neurophysiological data may be challenging in such patients, and the rate of false-positive results is high when pre-operatory motor deficits are severe.
Neuro-Coagulopathy: Blood Coagulation Factors in Central Nervous System Diseases.
De Luca, Ciro; Virtuoso, Assunta; Maggio, Nicola; Papa, Michele
2017-10-12
Blood coagulation factors and other proteins, with modulatory effects or modulated by the coagulation cascade have been reported to affect the pathophysiology of the central nervous system (CNS). The protease-activated receptors (PARs) pathway can be considered the central hub of this regulatory network, mainly through thrombin or activated protein C (aPC). These proteins, in fact, showed peculiar properties, being able to interfere with synaptic homeostasis other than coagulation itself. These specific functions modulate neuronal networks, acting both on resident (neurons, astrocytes, and microglia) as well as circulating immune system cells and the extracellular matrix. The pleiotropy of these effects is produced through different receptors, expressed in various cell types, in a dose- and time-dependent pattern. We reviewed how these pathways may be involved in neurodegenerative diseases (amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases), multiple sclerosis, ischemic stroke and post-ischemic epilepsy, CNS cancer, addiction, and mental health. These data open up a new path for the potential therapeutic use of the agonist/antagonist of these proteins in the management of several central nervous system diseases.
Kan, Min Hui; Yang, Ting; Fu, Hui Qun; Fan, Long; Wu, Yan; Terrando, Niccolò; Wang, Tian-Long
2016-01-01
Systemic inflammation, for example as a result of infection, often contributes to long-term complications. Neuroinflammation and cognitive decline are key hallmarks of several neurological conditions, including advance age. The contribution of systemic inflammation to the central nervous system (CNS) remains not fully understood. Using a model of peripheral endotoxemia with lipopolysaccharide (LPS) we investigated the role of nuclear factor-κB (NF-κB) activity in mediating long-term neuroinflammation and cognitive dysfunction in aged rats. Herein we describe the anti-inflammatory effects of pyrrolidine dithiocarbamate (PDTC), a selective NF-κB inhibitor, in modulating systemic cytokines including tumor necrosis factor (TNF)-α and interleukin-1β (IL-1β) and CNS markers after LPS exposure in aged rats. In the hippocampus, PDTC not only reduced neuroinflammation by modulating canonical NF-κB activity but also affected IL-1β expression in astrocytes. Parallel effects were observed on behavior and postsynaptic density-95 (PSD95), a marker of synaptic function. Taken together these changes improved acute and long-term cognitive function in aged rats after LPS exposure. PMID:27493629
IDRIS, Zamzuri
2014-01-01
Cerebrospinal fluid (CSF) serves buoyancy. The buoyancy thought to play crucial role in many aspects of the central nervous system (CNS). Weightlessness is produced mainly by the CSF. This manuscript is purposely made to discuss its significance which thought contributing towards an ideal environment for the CNS to develop and function normally. The idea of microgravity environment for the CNS is supported not only by the weightlessness concept of the brain, but also the noted anatomical position of the CNS. The CNS is positioned in bowing position (at main cephalic flexure) which is nearly similar to an astronaut in a microgravity chamber, fetus in the amniotic fluid at early gestation, and animals and plants in the ocean or on the land. Therefore, this microgravity position can bring us closer to the concept of origin. The hypothesis on ‘the origin’ based on the microgravity were explored and their similarities were identified including the brainwaves and soul. Subsequently a review on soul was made. Interestingly, an idea from Leonardo da Vinci seems in agreement with the notion of seat of the soul at the greater limbic system which has a distinctive feature of “from God back to God”. PMID:25977615
Thiazole containing Heterocycles with CNS activity.
Kalal, Priyanka; Gandhi, Divyani; Prajapat, Prakash; Agarwal, Shikha
2017-07-24
Thiazoles are promising scaffolds in the area of medicinal and pharmaceutical chemistry and have accounted to show different pharmacophoric properties. For the last years, thiazole derivatives have focused too much attention to develop different new CNS active agents. It has been broadly used to generate diverse therapeutic agents against various CNS targets. Histamine H3 receptors are seriously involved in the pathophysiology of numerous disorders of the central nervous system. The literature survey has been done using different database from peer-reviewed journals. The quality of repossessed papers was evaluated using standard tools. The details of important papers were described to focus on the potency of thiazole containing heterocycles with CNS activity. Eighty nine papers were included in the review indicating thiazole containing heterocycles with CNS activity. (1) to (30) papers included different thiazole derivatives impregnated withCNS activity. Different CNS agents have been shown in references (37) to (56). The remaining papers have been searched for anticonvulsant agents (57) to (78) and other miscellaneous activities from (79) to (89). A detailed investigation has been carried out on thiazoles and its derivatives to judge its efficacy to overcome several CNS disorders. This article covers the recent updates of thiazole and its derivative with CNS activity already present in literature and will definitely provide a better platform for the production and development of potent thiazole based CNS vigorous drugs in near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Lange, Dustin D; Wong, Alex W K; Strauser, David R; Wagner, Stacia
2014-12-01
The aims of this study were as follows: (a) to compare levels of career thoughts and vocational identity between young adult childhood central nervous system (CNS) cancer survivors and noncancer peers and (b) to investigate the contribution of vocational identity and affect on career thoughts among cancer survivors. Participants included 45 young adult CNS cancer survivors and a comparison sample of 60 college students. Participants completed Career Thoughts Inventory, My Vocational Situation, and the Positive and Negative Affect Schedule. Multivariate analysis of variance and multiple regression analysis were used to analyze the data in this study. CNS cancer survivors had a higher level of decision-making confusion than the college students. Multiple regression analysis indicated that vocational identity and positive affect significantly predicted the career thoughts of CNS survivors. The differences in decision-making confusion suggest that young adult CNS survivors would benefit from interventions that focus on providing knowledge of how to make decisions, while increasing vocational identity and positive affect for this specific population could also be beneficial.
Kobayashi, Zen; Tsuchiya, Kuniaki; Takahashi, Makoto; Yokota, Osamu; Sasaki, Atsushi; Bhunchet, Ekapot; Arai, Tetsuaki; Akiyama, Haruhiko; Kamoshita, Masaharu; Kotera, Minoru; Mizusawa, Hidehiro
2008-12-15
A 27-year-old Japanese man developed recurrent respiratory and central nervous system (CNS) symptoms, and hemophagocytic syndromes with a clinical course of 6 years. CT demonstrated multiple nodular lesions in the bilateral lungs, and MRI revealed multiple abnormal intensity areas in the brain and spinal cord. Cerebrospinal fluid (CSF) examination disclosed mild pleocytosis and the presence of Epstein-Barr virus (EBV)-DNA detected by polymerase chain reaction (PCR). The patient died of a hemorrhagic shock associated with a hemophagocytic syndrome. A postmortem study revealed massive hemorrhage in the abdominal cavity and iliopsoas muscles, as well as diffuse infiltration of lymphocytes and/or macrophages into the lungs, liver, kidneys, spleen, cardiac muscle, bone marrow, and CNS. The severe involvement was demonstrated in the CNS, especially in the spinal cord and brainstem. The CD3 positive cells of the brainstem were EBV-encoded RNA 1 positive. This is the first autopsy case of chronic active EBV infection (CAEBV) in which severe and extensive CNS involvement was demonstrated.
Oxley, Stewart O C; Dassanayake, Tharaka L; Carter, Gregory L; Whyte, Ian; Jones, Alison L; Cooper, Gavin; Michie, Patricia T
2015-12-01
Hospital-treated deliberate self-poisoning (DSP) by central nervous system depressant drugs (CNS-D) has been associated with impairments in cognitive and psychomotor functions at the time of discharge. We aimed to replicate this finding and to compare recovery in the first month after discharge for CNS-D and CNS nondepressant drug ingestions. We also examined a series of multivariate explanatory models of recovery of neurocognitive outcomes over time. The CNS-D group was impaired at discharge compared with the CNS-nondepressant group in cognitive flexibility, cognitive efficiency, and working memory. There were no significant differences at discharge in visual attention, processing speed, visuomotor speed, or inhibition speed. Both groups improved in the latter measures over 1 month of follow-up. However, the CNS-D group's recovery was significantly slower for key neurocognitive domains underlying driving in complex traffic situations, namely, cognitive flexibility, cognitive efficiency, and working memory. Patients discharged after DSP with CNS-D drugs have impairments of some critical cognitive functions that may require up to 1 month to recover. Although more pre- than post-DSP variables were retained as explanatory models of neurocognitive performance overall, recovery over time could not be explained by any one of the measured covariates. Tests of cognitive flexibility could be used in clinical settings as a proxy measure for recovery of driving ability. Regulatory authorities should also consider the implications of these results for the period of nondriving advised after ingestion of CNS-D in overdose. Future research, with adequate sample size, should examine contributions of other variables to the pattern of recovery over time.
Jiang, Ludi; Chen, Jiahua; He, Yusu; Zhang, Yanling; Li, Gongyu
2016-02-01
The blood-brain barrier (BBB), a highly selective barrier between central nervous system (CNS) and the blood stream, restricts and regulates the penetration of compounds from the blood into the brain. Drugs that affect the CNS interact with the BBB prior to their target site, so the prediction research on BBB permeability is a fundamental and significant research direction in neuropharmacology. In this study, we combed through the available data and then with the help of support vector machine (SVM), we established an experiment process for discovering potential CNS compounds and investigating the mechanisms of BBB permeability of them to advance the research in this field four types of prediction models, referring to CNS activity, BBB permeability, passive diffusion and efflux transport, were obtained in the experiment process. The first two models were used to discover compounds which may have CNS activity and also cross the BBB at the same time; the latter two were used to elucidate the mechanism of BBB permeability of those compounds. Three optimization parameter methods, Grid Search, Genetic Algorithm (GA), and Particle Swarm Optimization (PSO), were used to optimize the SVM models. Then, four optimal models were selected with excellent evaluation indexes (the accuracy, sensitivity and specificity of each model were all above 85%). Furthermore, discrimination models were utilized to study the BBB properties of the known CNS activity compounds in Chinese herbs and this may guide the CNS drug development. With the relatively systematic and quick approach, the application rationality of traditional Chinese medicines for treating nervous system disease in the clinical practice will be improved.
Dudnik, Elizabeth; Siegal, Tali; Zach, Leor; Allen, Aaron M; Flex, Dov; Yust-Katz, Shlomit; Limon, Dror; Hirsch, Fred R; Peled, Nir
2016-04-01
Crizotinib achieves excellent systemic control in anaplastic lymphoma kinase-rearranged (ALK+) non-small cell lung cancer (NSCLC); however, central nervous system (CNS) metastases frequently occur as an early event. Whole brain irradiation, the standard treatment, results in neurocognitive impairment. We present a case series of three ALK+ NSCLC patients with progressing CNS metastases who were treated with pulse-dose crizotinib followed by ceritinib. Three ALK+ NSCLC patients treated between 2011 and 2014 (two males, two never smokers, age range 20-54years, all echinoderm microtubule-associated protein-like 4/ALK rearrangement), were diagnosed with progressing cerebral disease while receiving crizotinib. Clinico-pathological characteristics, treatments, and outcomes were analyzed. In two patients the progression was limited to the CNS, and radiological evidence of leptomeningeal spread was present in one patient. Sequential use of crizotinib 500mg administered once daily (pulse-dose) followed by ceritinib on progression achieved control of the disease in the CNS for over 18 months and over 7 months in Patient 1 and Patient 2, respectively. This strategy provided durable CNS control after whole-brain radiotherapy failure in Patient 1, and allowed the whole-brain radiotherapy to be deferred in Patient 2. Limited CNS progression was documented in Patient 3 while he was on standard-dose/pulse-dose crizotinib for 15months; durable (over 7 months) complete remission was achieved with stereotactic radiotherapy and ceritinib. Manipulating the crizotinib schedule in ALK+ NSCLC patients with CNS metastases and using a novel ALK-inhibitor at the time of further progression may provide durable CNS control and allow brain radiotherapy to be deferred. Copyright © 2015 Elsevier Ltd. All rights reserved.
Baffert, Sandrine; Cottu, Paul; Kirova, Youlia M; Mercier, Florence; Simondi, Cécile; Bachelot, Thomas; Le Rhun, Emilie; Levy, Christelle; Gutierrez, Maya; Madranges, Nicolas; Moldovan, Cristian; Coudert, Bruno; Spaëth, Dominique; Serin, Daniel; Cotté, François-Emery; Benjamin, Laure; Maillard, Cathie; Laulhere-Vigneau, Sabine; Durand-Zaleski, Isabelle
2013-10-31
The population of patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) who develop central nervous system (CNS) metastases is growing. Treatment strategies in this population are highly diverse. The objective of the study was to assess health care costs for the management of HER2 positive BC with CNS metastases. This multicentre, retrospective, observational study was conducted on HER2-positive BC patients diagnosed with CNS metastases between 2006 and 2008. Data were extracted from patient medical records to estimate health care resource use. A partitioned estimator was used to adjust censoring costs by use of the Kaplan-Meier survival estimate. 218 patients were included and costs were estimated for 200 patients. The median time to detection of CNS metastases was 37.6 months. The first metastatic event involved the CNS in 39 patients, and this was the unique first metastatic site in 31 of these patients. Two years following diagnosis of CNS metastases, 70.3% of patients had died. The mean per capita cost of HER2-positive BC with CNS metastases in the first year following diagnosis was €35,735 [95% CI: 31,716-39,898]. The proportion of costs attributed to expensive drugs and those arising from hospitalisation were in the same range. A range of individualised disease management strategies are used in HER2-positive BC patients with CNS metastases and the treatments used in the first months following diagnosis are expensive. The understanding of cost drivers may help optimise healthcare expenditure and inform the development of appropriate prevention policies.
Uicker, William C; Doyle, Hester A; McCracken, James P; Langlois, Mary; Buchanan, Kent L
2005-02-01
Cryptococcus neoformans is a yeast that causes cryptococcosis, a life-threatening disease that develops following inhalation and dissemination of the organisms. C. neoformans has a predilection for the central nervous system (CNS) and mortality is most frequently associated with meningoencephalitis. Susceptibility to cryptococcosis is increased in patients with deficiencies in cell-mediated immunity (CMI). Because cryptococcal CNS infections are associated with mortality and diagnosis of cryptococcosis is often not made until after dissemination to the CNS, a better understanding of host defense mechanisms against C. neoformans in the CNS is needed to design improved therapies for immunocompromised individuals suffering from cryptococcosis. Using a mouse model, we previously described a protective cell-mediated immune response induced in the periphery that limited the growth of C. neoformans in the CNS. In the current investigation, we examined cytokine and chemokine expression in the CNS to identify factors important in achieving protective immunity. We observed increased expression of IL-1beta, TNF-alpha, IFN-gamma, MCP-1, RANTES, and IP-10 in C. neoformans-infected brains of immune mice compared to control mice suggesting that these cytokines and chemokines are associated with the protective immune response. Furthermore, the Th1-type cytokines TNF-alpha and IFN-gamma, but not the Th2 cytokines IL-4 and IL-5, were secreted at significantly higher levels in C. neoformans-infected brains of immune mice compared to control mice. Our results demonstrate that cytokines and chemokines associated with CMI are produced following infection in the CNS of immunized mice, and the expression of these factors correlates with protection against C. neoformans in the CNS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merchant, Thomas E.; Kiehna, Erin N.; Li Chenghong
2006-05-01
Purpose: Model the effects of radiation dosimetry on IQ among pediatric patients with central nervous system (CNS) tumors. Methods and Materials: Pediatric patients with CNS embryonal tumors (n = 39) were prospectively evaluated with serial cognitive testing, before and after treatment with postoperative, risk-adapted craniospinal irradiation (CSI) and conformal primary-site irradiation, followed by chemotherapy. Differential dose-volume data for 5 brain volumes (total brain, supratentorial brain, infratentorial brain, and left and right temporal lobes) were correlated with IQ after surgery and at follow-up by use of linear regression. Results: When the dose distribution was partitioned into 2 levels, both had amore » significantly negative effect on longitudinal IQ across all 5 brain volumes. When the dose distribution was partitioned into 3 levels (low, medium, and high), exposure to the supratentorial brain appeared to have the most significant impact. For most models, each Gy of exposure had a similar effect on IQ decline, regardless of dose level. Conclusions: Our results suggest that radiation dosimetry data from 5 brain volumes can be used to predict decline in longitudinal IQ. Despite measures to reduce radiation dose and treatment volume, the volume that receives the highest dose continues to have the greatest effect, which supports current volume-reduction efforts.« less
Bilastine: a new antihistamine with an optimal benefit-to-risk ratio for safety during driving.
Jáuregui, Ignacio; Ramaekers, Johannes G; Yanai, Kazuhiko; Farré, Magí; Redondo, Esther; Valiente, Román; Labeaga, Luis
2016-01-01
Rational selection of a second-generation H1-antihistamine requires efficacy and safety considerations, particularly regarding central nervous system (CNS) effects (cognitive and psychomotor function), potential for driving impairment, minimal sedative effects and a lack of interactions. This review evaluates the key safety features of the non-sedating antihistamine, bilastine, during driving and in preventing road traffic accidents. Among the second-generation H1-antihistamines, sedative effects which can affect cognitive and psychomotor performance, and possibly driving ability, may not be similar. Bilastine is absorbed rapidly, undergoes no hepatic metabolism or cytochrome P450 interaction (minimal drug-drug interaction potential), and is a substrate for P-glycoprotein (limiting CNS entry). Positron emission tomography showed that, compared with other second-generation H1-antihistamines, bilastine has the lowest cerebral histamine H1-receptor occupancy. Bilastine 20 mg once daily (therapeutic dose) is non-sedating, does not enhance the effects of alcohol or CNS sedatives, does not impair driving performance and has at least similar efficacy as other second-generation H1-antihistamines in the treatment of allergic rhinoconjunctivitis and urticaria. Current evidence shows that bilastine has an optimal benefit-to-risk ratio, meeting all conditions for contributing to safety in drivers who need antihistamines, and hence for being considered as an antihistamine of choice for drivers.
Central motor and sensory pathway involvement in an X-linked Charcot-Marie-Tooth family.
Zambelis, T; Panas, M; Kokotis, P; Karadima, G; Kararizou, E; Karandreas, N
2008-06-01
The aim of the present study was to investigate the subclinical involvement of the central nervous system (CNS) in an X-linked Charcot-Marie-Toth (CMTX) family. Seven subjects, all members of one family with a C.462T > G connexin 32 (Cx32) mutation were investigated by Blink reflex, Somatosensory evoked potentials (SEP) and Transcranial magnetic stimulation (TMS). There were five clinically symptomatic for CMT neuropathy (four male and one female) and two asymptomatic (female) subjects. Subclinical CNS involvement was observed in all, symptomatic and asymptomatic subjects. This is the largest CMTX neuropathy family investigated for CNS involvement. Electrophysiological involvement of the CNS in every examined member of this family was observed, raising the question of a more systematic involvement of the CNS in CMTX disease.
Neurodevelopmental effects of insulin-like growth factor signaling
O’Kusky, John; Ye, Ping
2012-01-01
Insulin-like growth factor (IGF) signaling greatly impacts the development and growth of the central nervous system (CNS). IGF-I and IGF-II, two ligands of the IGF system, exert a wide variety of actions both during development and in adulthood, promoting the survival and proliferation of neural cells. The IGFs also influence the growth and maturation of neural cells, augmenting dendritic growth and spine formation, axon outgrowth, synaptogenesis, and myelination. Specific IGF actions, however, likely depend on cell type, developmental stage, and local microenvironmental milieu within the brain. Emerging research also indicates that alterations in IGF signaling likely contribute to the pathogenesis of some neurological disorders. This review summarizes experimental studies and shed light on the critical roles of IGF signaling, as well as its mechanisms, during CNS development. PMID:22710100
Koutsis, Georgios; Karadima, Georgia; Floroskoufi, Paraskewi; Raftopoulou, Maria; Panas, Marios
2015-01-01
We report a patient with relapsing remitting multiple sclerosis (MS) and X-linked Charcot-Marie-Tooth disease (CMTX), carrying a GJB1 mutation affecting connexin-32 (c.191G>A, p. Cys64Tyr) which was recently reported by our group. This is the third case report of a patient with CMTX developing MS, but it is unique in the fact that other family members carrying the same mutation were found to have asymptomatic central nervous system (CNS) involvement (diffuse white matter hyperintensity on brain MRI and extensor plantars). Although this may be a chance association, the increasing number of cases with CMTX and MS, especially with mutations involving the CNS, may imply some causative effect and provide insights into MS pathogenesis.
Karadima, Georgia; Floroskoufi, Paraskewi; Raftopoulou, Maria; Panas, Marios
2015-01-01
We report a patient with relapsing remitting multiple sclerosis (MS) and X-linked Charcot-Marie-Tooth disease (CMTX), carrying a GJB1 mutation affecting connexin-32 (c.191G>A, p. Cys64Tyr) which was recently reported by our group. This is the third case report of a patient with CMTX developing MS, but it is unique in the fact that other family members carrying the same mutation were found to have asymptomatic central nervous system (CNS) involvement (diffuse white matter hyperintensity on brain MRI and extensor plantars). Although this may be a chance association, the increasing number of cases with CMTX and MS, especially with mutations involving the CNS, may imply some causative effect and provide insights into MS pathogenesis. PMID:25883816
Geerts, Hugo; Kennis, Ludo
2014-01-01
Clinical development in brain diseases has one of the lowest success rates in the pharmaceutical industry, and many promising rationally designed single-target R&D projects fail in expensive Phase III trials. By contrast, successful older CNS drugs do have a rich pharmacology. This article will provide arguments suggesting that highly selective single-target drugs are not sufficiently powerful to restore complex neuronal circuit homeostasis. A rationally designed multitarget project can be derisked by dialing in an additional symptomatic treatment effect on top of a disease modification target. Alternatively, we expand upon a hypothetical workflow example using a humanized computer-based quantitative systems pharmacology platform. The hope is that incorporating rationally multipharmacology drug discovery could potentially lead to more impactful polypharmacy drugs.
Maggi, Pietro; Absinta, Martina; Grammatico, Matteo; Vuolo, Luisa; Emmi, Giacomo; Carlucci, Giovanna; Spagni, Gregorio; Barilaro, Alessandro; Repice, Anna Maria; Emmi, Lorenzo; Prisco, Domenico; Martinelli, Vittorio; Scotti, Roberta; Sadeghi, Niloufar; Perrotta, Gaetano; Sati, Pascal; Dachy, Bernard; Reich, Daniel S; Filippi, Massimo; Massacesi, Luca
2018-02-01
In multiple sclerosis (MS), magnetic resonance imaging (MRI) is a sensitive tool for detecting white matter lesions, but its diagnostic specificity is still suboptimal; ambiguous cases are frequent in clinical practice. Detection of perivenular lesions in the brain (the "central vein sign") improves the pathological specificity of MS diagnosis, but comprehensive evaluation of this MRI biomarker in MS-mimicking inflammatory and/or autoimmune diseases, such as central nervous system (CNS) inflammatory vasculopathies, is lacking. In a multicenter study, we assessed the frequency of perivenular lesions in MS versus systemic autoimmune diseases with CNS involvement and primary angiitis of the CNS (PACNS). In 31 patients with inflammatory CNS vasculopathies and 52 with relapsing-remitting MS, 3-dimensional T2*-weighted and T2-fluid-attenuated inversion recovery images were obtained during a single MRI acquisition after gadolinium injection. For each lesion, the central vein sign was evaluated according to consensus guidelines. For each patient, lesion count, volume, and brain location, as well as fulfillment of dissemination in space MRI criteria, were assessed. MS showed higher frequency of perivenular lesions (median = 88%) than did inflammatory CNS vasculopathies (14%), without overlap between groups or differences between 3T and 1.5T MRI. Among inflammatory vasculopathies, Behçet disease showed the highest median frequency of perivenular lesions (34%), followed by PACNS (14%), antiphospholipid syndromes (12%), Sjögren syndrome (11%), and systemic lupus erythematosus (0%). When a threshold of 50% perivenular lesions was applied, central vein sign discriminated MS from inflammatory vasculopathies with a diagnostic accuracy of 100%. The central vein sign differentiates inflammatory CNS vasculopathies from MS at standard clinical magnetic field strengths. Ann Neurol 2018;83:283-294. © 2018 The Authors Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.
In Vitro Cerebrovascular Modeling in the 21st Century: Current and Prospective Technologies
Palmiotti, Christopher A.; Prasad, Shikha; Naik, Pooja; Abul, Kaisar MD; Sajja, Ravi K.; Achyuta, Anilkumar H.; Cucullo, Luca
2014-01-01
The blood-brain barrier (BBB) maintains the brain homeostasis and dynamically responds to events associated with systemic and/or rheological impairments (e.g., inflammation, ischemia) including the exposure to harmful xenobiotics. Thus, understanding the BBB physiology is crucial for the resolution of major central nervous system CNS) disorders challenging both health care providers and the pharmaceutical industry. These challenges include drug delivery to the brain, neurological disorders, toxicological studies, and biodefense. Studies aimed at advancing our understanding of CNS diseases and promoting the development of more effective therapeutics are primarily performed in laboratory animals. However, there are major hindering factors inherent to in vivo studies such as cost, limited throughput and translational significance to humans. These factors promoted the development of alternative in vitro strategies for studying the physiology and pathophysiology of the BBB in relation to brain disorders as well as screening tools to aid in the development of novel CNS drugs. Herein, we provide a detailed review including pros and cons of current and prospective technologies for modelling the BBB in vitro including ex situ, cell based and computational (in silico) models. A special section is dedicated to microfluidic systems including micro-BBB, BBB-on-a-chip, Neurovascular Unit-on-a-Chip and Synthetic Microvasculature Blood-Brain Barrier. PMID:25098812
In vitro cerebrovascular modeling in the 21st century: current and prospective technologies.
Palmiotti, Christopher A; Prasad, Shikha; Naik, Pooja; Abul, Kaisar M D; Sajja, Ravi K; Achyuta, Anilkumar H; Cucullo, Luca
2014-12-01
The blood-brain barrier (BBB) maintains the brain homeostasis and dynamically responds to events associated with systemic and/or rheological impairments (e.g., inflammation, ischemia) including the exposure to harmful xenobiotics. Thus, understanding the BBB physiology is crucial for the resolution of major central nervous system CNS) disorders challenging both health care providers and the pharmaceutical industry. These challenges include drug delivery to the brain, neurological disorders, toxicological studies, and biodefense. Studies aimed at advancing our understanding of CNS diseases and promoting the development of more effective therapeutics are primarily performed in laboratory animals. However, there are major hindering factors inherent to in vivo studies such as cost, limited throughput and translational significance to humans. These factors promoted the development of alternative in vitro strategies for studying the physiology and pathophysiology of the BBB in relation to brain disorders as well as screening tools to aid in the development of novel CNS drugs. Herein, we provide a detailed review including pros and cons of current and prospective technologies for modelling the BBB in vitro including ex situ, cell based and computational (in silico) models. A special section is dedicated to microfluidic systems including micro-BBB, BBB-on-a-chip, Neurovascular Unit-on-a-Chip and Synthetic Microvasculature Blood-brain Barrier.
Microbial induction of vascular pathology in the CNS.
Kang, Silvia S; McGavern, Dorian B
2010-09-01
The central nervous system (CNS) is a finely tuned organ that participates in nearly every aspect of our day-to-day function. Neurons lie at the core of this functional unit and maintain an active dialogue with one another as well as their fellow CNS residents (e.g. astrocytes, oligodendrocytes, microglia). Because of this complex dialogue, it is essential that the CNS milieu be tightly regulated in order to permit uninterrupted and efficient neural chemistry. This is accomplished in part by anatomical barriers that segregate vascular components from the cerebral spinal fluid (CSF) and brain parenchyma. These barriers impede entry of noxious materials and enable the CNS to maintain requisite protein and ionic balances for constant electrochemical signaling. Under homeostatic conditions, the CNS is protected by the presence of specialized endothelium/epithelium, the blood brain barrier (BBB), and the blood-CSF barrier. However, following CNS infection these protective barriers can be comprised, sometimes resulting in severe neurological complications triggered by an imbalance or blockage of neural chemistry. In some instances, these disruptions are severe enough to be fatal. This review focuses on a selection of microbes (both viruses and parasites) that compromise vascular barriers and induce neurological complications upon gaining access to the CNS. Emphasis is placed on CNS diseases that result from a pathogenic interplay between host immune defenses and the invading microbe.
Microbial Induction of Vascular Pathology in the CNS
Kang, Silvia S.
2016-01-01
The central nervous system (CNS) is a finely tuned organ that participates in nearly every aspect of our day-to-day function. Neurons lie at the core of this functional unit and maintain an active dialogue with one another as well as their fellow CNS residents (e.g. astrocytes, oligodendrocytes, microglia). Because of this complex dialogue, it is essential that the CNS milieu be tightly regulated in order to permit uninterrupted and efficient neural chemistry. This is accomplished in part by anatomical barriers that segregate vascular components from the cerebral spinal fluid (CSF) and brain parenchyma. These barriers impede entry of noxious materials and enable the CNS to maintain requisite protein and ionic balances for constant electrochemical signaling. Under homeostatic conditions, the CNS is protected by the presence of specialized endothelium/epithelium, the blood brain barrier (BBB), and the blood-CSF barrier. However, following CNS infection these protective barriers can be comprised, sometimes resulting in severe neurological complications triggered by an imbalance or blockage of neural chemistry. In some instances, these disruptions are severe enough to be fatal. This review focuses on a selection of microbes (both viruses and parasites) that compromise vascular barriers and induce neurological complications upon gaining access to the CNS. Emphasis is placed on CNS diseases that result from a pathogenic interplay between host immune defenses and the invading microbe. PMID:20401700
Speranza, Maria-Carmela; Nowicki, Michal O; Behera, Prajna; Cho, Choi-Fong; Chiocca, E Antonio; Lawler, Sean E
2016-02-05
Glioblastoma is an aggressive, invasive tumor of the central nervous system (CNS). There is a widely acknowledged need for anti-invasive therapeutics to limit glioblastoma invasion. BKM-120 is a CNS-penetrant pan-class I phosphatidyl-inositol-3 kinase (PI3K) inhibitor in clinical trials for solid tumors, including glioblastoma. We observed that BKM-120 has potent anti-invasive effects in glioblastoma cell lines and patient-derived glioma cells in vitro. These anti-migratory effects were clearly distinguishable from cytostatic and cytotoxic effects at higher drug concentrations and longer durations of drug exposure. The effects were reversible and accompanied by changes in cell morphology and pronounced reduction in both cell/cell and cell/substrate adhesion. In vivo studies showed that a short period of treatment with BKM-120 slowed tumor spread in an intracranial xenografts. GDC-0941, a similar potent and selective PI3K inhibitor, only caused a moderate reduction in glioblastoma cell migration. The effects of BKM-120 and GDC-0941 were indistinguishable by in vitro kinase selectivity screening and phospho-protein arrays. BKM-120 reduced the numbers of focal adhesions and the velocity of microtubule treadmilling compared with GDC-0941, suggesting that mechanisms in addition to PI3K inhibition contribute to the anti-invasive effects of BKM-120. Our data suggest the CNS-penetrant PI3K inhibitor BKM-120 may have anti-invasive properties in glioblastoma.
Solitary Fibrous Tumors of the Orbit and Central Nervous System: A Case Series Analysis
Brum, Marisa; Nzwalo, Hipólito; Oliveira, Edson; Pelejão, Maria Rita; Pereira, Pedro; Farias, João Paulo; Pimentel, José
2018-01-01
Introduction: Solitary fibrous tumor (SFT) is rarely diagnosed in clinical practice. Since its initial descriptions in the central nervous system (CNS) and the orbits, very few case reports and small case series have expanded their clinical and pathological characterization. We sought to describe a cases series of SFT from a single laboratory of neuropathology belonging to a tertiary university hospital. Methods: Retrospective clinical and histopathological description of eight cases of CNS and orbital SFT diagnosed over a 21-year period of time. Results: Median age was 47.3 years and four were males. Clinical presentation was related to local mass effect in all. Tumors occurred in the orbits (5/62.5%), intracranial dura attached (2), and the spinal medulla (1). The neuropathology showed the presence of hemangiopericytoma type (2), classic type (3), and mixed type (3). Histological anaplasia was present in two cases. Widespread/total immunoreactivity for vimentin, CD34, and Bcl-2 was present in all. Gross total removal was conducted in the majority (6/75%) and subtotal removal in 2 (25%). Three patients were submitted to adjuvant treatment (radiosurgery and radiotherapy). Recurrence occurred in four patients, 13–120 months after surgical intervention. Anaplasia was present in one case of recurrence. Conclusion: Our case series confirms the clinical and neuropathological diversity of CNS and orbital SFTs. Studies with longer follow-up periods are necessary to better understand the clinical behavior and prognosis of the SFT in the CNS and orbits. PMID:29682031
Najera, Julia A; Bustamante, Eduardo A; Bortell, Nikki; Morsey, Brenda; Fox, Howard S; Ravasi, Timothy; Marcondes, Maria Cecilia Garibaldi
2016-04-23
Methamphetamine (Meth) abuse is a major health problem linked to the aggravation of HIV- associated complications, especially within the Central Nervous System (CNS). Within the CNS, Meth has the ability to modify the activity/function of innate immune cells and increase brain viral loads. Here, we examined changes in the gene expression profile of neuron-free microglial cell preparations isolated from the brain of macaques infected with the Simian Immunodeficiency Virus (SIV), a model of neuroAIDS, and exposed to Meth. We aimed to identify molecular patterns triggered by Meth that could explain the detection of higher brain viral loads and the development of a pro-inflammatory CNS environment in the brain of infected drug abusers. We found that Meth alone has a strong effect on the transcription of genes associated with immune pathways, particularly inflammation and chemotaxis. Systems analysis led to a strong correlation between Meth exposure and enhancement of molecules associated with chemokines and chemokine receptors, especially CXCR4 and CCR5, which function as co-receptors for viral entry. The increase in CCR5 expression was confirmed in the brain in correlation with increased brain viral load. Meth enhances the availability of CCR5-expressing cells for SIV in the brain, in correlation with increased viral load. This suggests that Meth is an important factor in the susceptibility to the infection and to the aggravated CNS inflammatory pathology associated with SIV in macaques and HIV in humans.
Transport of drugs across the blood-brain barrier by nanoparticles.
Wohlfart, Stefanie; Gelperina, Svetlana; Kreuter, Jörg
2012-07-20
The central nervous system is well protected by the blood-brain barrier (BBB) which maintains its homeostasis. Due to this barrier many potential drugs for the treatment of diseases of the central nervous system (CNS) cannot reach the brain in sufficient concentrations. One possibility to deliver drugs to the CNS is the employment of polymeric nanoparticles. The ability of these carriers to overcome the BBB and to produce biologic effects on the CNS was shown in a number of studies. Over the past few years, progress in understanding of the mechanism of the nanoparticle uptake into the brain was made. This mechanism appears to be receptor-mediated endocytosis in brain capillary endothelial cells. Modification of the nanoparticle surface with covalently attached targeting ligands or by coating with certain surfactants enabling the adsorption of specific plasma proteins are necessary for this receptor-mediated uptake. The delivery of drugs, which usually are not able to cross the BBB, into the brain was confirmed by the biodistribution studies and pharmacological assays in rodents. Furthermore, the presence of nanoparticles in the brain parenchyma was visualized by electron microscopy. The intravenously administered biodegradable polymeric nanoparticles loaded with doxorubicin were successfully used for the treatment of experimental glioblastoma. These data, together with the possibility to employ nanoparticles for delivery of proteins and other macromolecules across the BBB, suggest that this technology holds great promise for non-invasive therapy of the CNS diseases. Copyright © 2011 Elsevier B.V. All rights reserved.
Agile delivery of protein therapeutics to CNS.
Yi, Xiang; Manickam, Devika S; Brynskikh, Anna; Kabanov, Alexander V
2014-09-28
A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics. Copyright © 2014 Elsevier B.V. All rights reserved.
Agile Delivery of Protein Therapeutics to CNS
Yi, Xiang; Manickam, Devika S.; Brynskikh, Anna; Kabanov, Alexander V.
2014-01-01
A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics. PMID:24956489