LeVan, P; Urrestarazu, E; Gotman, J
2006-04-01
To devise an automated system to remove artifacts from ictal scalp EEG, using independent component analysis (ICA). A Bayesian classifier was used to determine the probability that 2s epochs of seizure segments decomposed by ICA represented EEG activity, as opposed to artifact. The classifier was trained using numerous statistical, spectral, and spatial features. The system's performance was then assessed using separate validation data. The classifier identified epochs representing EEG activity in the validation dataset with a sensitivity of 82.4% and a specificity of 83.3%. An ICA component was considered to represent EEG activity if the sum of the probabilities that its epochs represented EEG exceeded a threshold predetermined using the training data. Otherwise, the component represented artifact. Using this threshold on the validation set, the identification of EEG components was performed with a sensitivity of 87.6% and a specificity of 70.2%. Most misclassified components were a mixture of EEG and artifactual activity. The automated system successfully rejected a good proportion of artifactual components extracted by ICA, while preserving almost all EEG components. The misclassification rate was comparable to the variability observed in human classification. Current ICA methods of artifact removal require a tedious visual classification of the components. The proposed system automates this process and removes simultaneously multiple types of artifacts.
Hierarchical graphs for better annotations of rule-based models of biochemical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Bin; Hlavacek, William
2009-01-01
In the graph-based formalism of the BioNetGen language (BNGL), graphs are used to represent molecules, with a colored vertex representing a component of a molecule, a vertex label representing the internal state of a component, and an edge representing a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions, with a rule that specifies addition (removal) of an edge representing a class of association (dissociation) reactions and with a rule that specifies a change of vertex label representing a class of reactions that affect the internal state of amore » molecular component. A set of rules comprises a mathematical/computational model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Here, for purposes of model annotation, we propose an extension of BNGL that involves the use of hierarchical graphs to represent (1) relationships among components and subcomponents of molecules and (2) relationships among classes of reactions defined by rules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR)/CD3 complex. Likewise, we illustrate how hierarchical graphs can be used to document the similarity of two related rules for kinase-catalyzed phosphorylation of a protein substrate. We also demonstrate how a hierarchical graph representing a protein can be encoded in an XML-based format.« less
Cost decomposition of linear systems with application to model reduction
NASA Technical Reports Server (NTRS)
Skelton, R. E.
1980-01-01
A means is provided to assess the value or 'cst' of each component of a large scale system, when the total cost is a quadratic function. Such a 'cost decomposition' of the system has several important uses. When the components represent physical subsystems which can fail, the 'component cost' is useful in failure mode analysis. When the components represent mathematical equations which may be truncated, the 'component cost' becomes a criterion for model truncation. In this latter event component costs provide a mechanism by which the specific control objectives dictate which components should be retained in the model reduction process. This information can be valuable in model reduction and decentralized control problems.
Low-Dimensional Models for Physiological Systems: Nonlinear Coupling of Gas and Liquid Flows
NASA Astrophysics Data System (ADS)
Staples, A. E.; Oran, E. S.; Boris, J. P.; Kailasanath, K.
2006-11-01
Current computational models of biological organisms focus on the details of a specific component of the organism. For example, very detailed models of the human heart, an aorta, a vein, or part of the respiratory or digestive system, are considered either independently from the rest of the body, or as interacting simply with other systems and components in the body. In actual biological organisms, these components and systems are strongly coupled and interact in complex, nonlinear ways leading to complicated global behavior. Here we describe a low-order computational model of two physiological systems, based loosely on a circulatory and respiratory system. Each system is represented as a one-dimensional fluid system with an interconnected series of mass sources, pumps, valves, and other network components, as appropriate, representing different physical organs and system components. Preliminary results from a first version of this model system are presented.
Hierarchical graphs for rule-based modeling of biochemical systems
2011-01-01
Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal) of an edge represents a class of association (dissociation) reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR) complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for specifying rule-based models, such as the BioNetGen language (BNGL). Thus, the proposed use of hierarchical graphs should promote clarity and better understanding of rule-based models. PMID:21288338
A Representative Shuttle Environmental Control System
NASA Technical Reports Server (NTRS)
Brose, H. F.; Stanley, M. D.; Leblanc, J. C.
1977-01-01
The Representative Shuttle Environmental Control System (RSECS) provides a ground test bed to be used in the early accumulation of component and system operating data, the evaluation of potential system improvements, and possibly the analysis of Shuttle Orbiter test and flight anomalies. Selected components are being subjected to long term tests to determine endurance and corrosion resistance capability prior to Orbiter vehicle experience. Component and system level tests in several cases are being used to support flight certification of Orbiter hardware. These activities are conducted as a development program to allow for timeliness, flexibility, and cost effectiveness not possible in a program burdened by flight documentation and monitoring constraints.
Highlights of recent balance of system research and evaluation
NASA Astrophysics Data System (ADS)
Thomas, M. G.; Stevens, J. W.
The cost of most photovoltaic (PV) systems is more a function of the balance of system (BOS) components than the collectors. The exception to this rule is the grid-tied system whose cost is related more directly to the collectors, and secondarily to the inverter/controls. In fact, recent procurements throughout the country document that collector costs for roof-mounted, utility-tied systems (Russell, PV Systems Workshop, 7/94) represent 60% to 70% of the system cost. This contrasts with the current market for packaged stand-alone all PV or PV-hybrid systems where collectors represent only 25% to 35% of the total. Not only are the BOS components the cost drivers in the current cost-effective PV system market place, they are also the least reliable components. This paper discusses the impact that BOS issues have on component performance, system performance, and system cost and reliability. We will also look at recent recommended changes in system design based upon performance evaluations of fielded PV systems.
NASA Technical Reports Server (NTRS)
Bole, Brian; Goebel, Kai; Vachtsevanos, George
2012-01-01
This paper introduces a novel Markov process formulation of stochastic fault growth modeling, in order to facilitate the development and analysis of prognostics-based control adaptation. A metric representing the relative deviation between the nominal output of a system and the net output that is actually enacted by an implemented prognostics-based control routine, will be used to define the action space of the formulated Markov process. The state space of the Markov process will be defined in terms of an abstracted metric representing the relative health remaining in each of the system s components. The proposed formulation of component fault dynamics will conveniently relate feasible system output performance modifications to predictions of future component health deterioration.
Software For Graphical Representation Of A Network
NASA Technical Reports Server (NTRS)
Mcallister, R. William; Mclellan, James P.
1993-01-01
System Visualization Tool (SVT) computer program developed to provide systems engineers with means of graphically representing networks. Generates diagrams illustrating structures and states of networks defined by users. Provides systems engineers powerful tool simplifing analysis of requirements and testing and maintenance of complex software-controlled systems. Employs visual models supporting analysis of chronological sequences of requirements, simulation data, and related software functions. Applied to pneumatic, hydraulic, and propellant-distribution networks. Used to define and view arbitrary configurations of such major hardware components of system as propellant tanks, valves, propellant lines, and engines. Also graphically displays status of each component. Advantage of SVT: utilizes visual cues to represent configuration of each component within network. Written in Turbo Pascal(R), version 5.0.
An Integrated High Resolution Hydrometeorological Modeling Testbed using LIS and WRF
NASA Technical Reports Server (NTRS)
Kumar, Sujay V.; Peters-Lidard, Christa D.; Eastman, Joseph L.; Tao, Wei-Kuo
2007-01-01
Scientists have made great strides in modeling physical processes that represent various weather and climate phenomena. Many modeling systems that represent the major earth system components (the atmosphere, land surface, and ocean) have been developed over the years. However, developing advanced Earth system applications that integrates these independently developed modeling systems have remained a daunting task due to limitations in computer hardware and software. Recently, efforts such as the Earth System Modeling Ramework (ESMF) and Assistance for Land Modeling Activities (ALMA) have focused on developing standards, guidelines, and computational support for coupling earth system model components. In this article, the development of a coupled land-atmosphere hydrometeorological modeling system that adopts these community interoperability standards, is described. The land component is represented by the Land Information System (LIS), developed by scientists at the NASA Goddard Space Flight Center. The Weather Research and Forecasting (WRF) model, a mesoscale numerical weather prediction system, is used as the atmospheric component. LIS includes several community land surface models that can be executed at spatial scales as fine as 1km. The data management capabilities in LIS enable the direct use of high resolution satellite and observation data for modeling. Similarly, WRF includes several parameterizations and schemes for modeling radiation, microphysics, PBL and other processes. Thus the integrated LIS-WRF system facilitates several multi-model studies of land-atmosphere coupling that can be used to advance earth system studies.
Feedback loops and temporal misalignment in component-based hydrologic modeling
NASA Astrophysics Data System (ADS)
Elag, Mostafa M.; Goodall, Jonathan L.; Castronova, Anthony M.
2011-12-01
In component-based modeling, a complex system is represented as a series of loosely integrated components with defined interfaces and data exchanges that allow the components to be coupled together through shared boundary conditions. Although the component-based paradigm is commonly used in software engineering, it has only recently been applied for modeling hydrologic and earth systems. As a result, research is needed to test and verify the applicability of the approach for modeling hydrologic systems. The objective of this work was therefore to investigate two aspects of using component-based software architecture for hydrologic modeling: (1) simulation of feedback loops between components that share a boundary condition and (2) data transfers between temporally misaligned model components. We investigated these topics using a simple case study where diffusion of mass is modeled across a water-sediment interface. We simulated the multimedia system using two model components, one for the water and one for the sediment, coupled using the Open Modeling Interface (OpenMI) standard. The results were compared with a more conventional numerical approach for solving the system where the domain is represented by a single multidimensional array. Results showed that the component-based approach was able to produce the same results obtained with the more conventional numerical approach. When the two components were temporally misaligned, we explored the use of different interpolation schemes to minimize mass balance error within the coupled system. The outcome of this work provides evidence that component-based modeling can be used to simulate complicated feedback loops between systems and guidance as to how different interpolation schemes minimize mass balance error introduced when components are temporally misaligned.
40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... deterioration rate and emission level that effectively represents a significant majority of the distribution of... stabilize the permeability of all non-metallic fuel and evaporative system components to the mileage... permeability of evaporative and fuel system components. The manufacturer must also provide information...
40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... deterioration rate and emission level that effectively represents a significant majority of the distribution of... stabilize the permeability of all non-metallic fuel and evaporative system components to the mileage... permeability of evaporative and fuel system components. The manufacturer must also provide information...
40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... deterioration rate and emission level that effectively represents a significant majority of the distribution of... stabilize the permeability of all non-metallic fuel and evaporative system components to the mileage... permeability of evaporative and fuel system components. The manufacturer must also provide information...
Overview of MDX-A System for Medical Diagnosis
Mittal, S.; Chandrasekaran, B.; Smith, J.
1979-01-01
We describe the design and performance of MDX, an experimental medical diagnosis system, which currently diagnoses in the syndrome called Cholestasis. The needed medical knowledge is represented in a scheme called conceptual structures, which can be viewed as a collection of conceptual experts interacting according to certain well-defined principles. MDX has three components: the diagnostic system, a patient data base and a radiology consultant. We describe these components, the inter-expert communication system and the query language used by these components. The system is illustrated by means of its performance on a real case.
The performance of components in the Skylab refrigeration system
NASA Technical Reports Server (NTRS)
Daniher, C. E., Jr.
1975-01-01
The on-orbit performance of the Skylab refrigeration system components is presented. Flight anomalies are analyzed and performance of the newly developed components is described. Nine months of orbit data proved the practicality of the leak-free coolant system design. Flight proven application of a thermal capacitor and development test results of the first all-mechanical, low temperature mixing valve represent a significant advance in single-phase, low temperature coolant loop design. System flight data suggest that additional instrumentation and fluid filters could have prevented system orbit performance anomalies.
OCSEGen: Open Components and Systems Environment Generator
NASA Technical Reports Server (NTRS)
Tkachuk, Oksana
2014-01-01
To analyze a large system, one often needs to break it into smaller components.To analyze a component or unit under analysis, one needs to model its context of execution, called environment, which represents the components with which the unit interacts. Environment generation is a challenging problem, because the environment needs to be general enough to uncover unit errors, yet precise enough to make the analysis tractable. In this paper, we present a tool for automated environment generation for open components and systems. The tool, called OCSEGen, is implemented on top of the Soot framework. We present the tool's current support and discuss its possible future extensions.
NASA Astrophysics Data System (ADS)
Balaji, V.; Benson, Rusty; Wyman, Bruce; Held, Isaac
2016-10-01
Climate models represent a large variety of processes on a variety of timescales and space scales, a canonical example of multi-physics multi-scale modeling. Current hardware trends, such as Graphical Processing Units (GPUs) and Many Integrated Core (MIC) chips, are based on, at best, marginal increases in clock speed, coupled with vast increases in concurrency, particularly at the fine grain. Multi-physics codes face particular challenges in achieving fine-grained concurrency, as different physics and dynamics components have different computational profiles, and universal solutions are hard to come by. We propose here one approach for multi-physics codes. These codes are typically structured as components interacting via software frameworks. The component structure of a typical Earth system model consists of a hierarchical and recursive tree of components, each representing a different climate process or dynamical system. This recursive structure generally encompasses a modest level of concurrency at the highest level (e.g., atmosphere and ocean on different processor sets) with serial organization underneath. We propose to extend concurrency much further by running more and more lower- and higher-level components in parallel with each other. Each component can further be parallelized on the fine grain, potentially offering a major increase in the scalability of Earth system models. We present here first results from this approach, called coarse-grained component concurrency, or CCC. Within the Geophysical Fluid Dynamics Laboratory (GFDL) Flexible Modeling System (FMS), the atmospheric radiative transfer component has been configured to run in parallel with a composite component consisting of every other atmospheric component, including the atmospheric dynamics and all other atmospheric physics components. We will explore the algorithmic challenges involved in such an approach, and present results from such simulations. Plans to achieve even greater levels of coarse-grained concurrency by extending this approach within other components, such as the ocean, will be discussed.
Using the NPSS Environment to Model an Altitude Test Facility
NASA Technical Reports Server (NTRS)
Lavelle, Thomas M.; Owen, Albert K.; Huffman, Brian C.
2013-01-01
An altitude test facility was modeled using Numerical Propulsion System Simulation (NPSS). This altitude test facility model represents the most detailed facility model developed in the NPSS architecture. The current paper demonstrates the use of the NPSS system to define the required operating range of a component for the facility. A significant number of additional component models were easily developed to complete the model. Discussed in this paper are the additional components developed and what was done in the development of these components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huff, Kathryn D.
Component level and system level abstraction of detailed computational geologic repository models have resulted in four rapid computational models of hydrologic radionuclide transport at varying levels of detail. Those models are described, as is their implementation in Cyder, a software library of interchangeable radionuclide transport models appropriate for representing natural and engineered barrier components of generic geology repository concepts. A proof of principle demonstration was also conducted in which these models were used to represent the natural and engineered barrier components of a repository concept in a reducing, homogenous, generic geology. This base case demonstrates integration of the Cyder openmore » source library with the Cyclus computational fuel cycle systems analysis platform to facilitate calculation of repository performance metrics with respect to fuel cycle choices. (authors)« less
Modeling relations in nature and eco-informatics: a practical application of rosennean complexity.
Kineman, John J
2007-10-01
The purpose of eco-informatics is to communicate critical information about organisms and ecosystems. To accomplish this, it must reflect the complexity of natural systems. Present information systems are designed around mechanistic concepts that do not capture complexity. Robert Rosen's relational theory offers a way of representing complexity in terms of information entailments that are part of an ontologically implicit 'modeling relation'. This relation has corresponding epistemological components that can be captured empirically, the components being structure (associated with model encoding) and function (associated with model decoding). Relational complexity, thus, provides a long-awaited theoretical underpinning for these concepts that ecology has found indispensable. Structural information pertains to the material organization of a system, which can be represented by data. Functional information specifies potential change, which can be inferred from experiment and represented as models or descriptions of state transformations. Contextual dependency (of structure or function) implies meaning. Biological functions imply internalized or system-dependent laws. Complexity can be represented epistemologically by relating structure and function in two different ways. One expresses the phenomenal relation that exists in any present or past instance, and the other draws the ontology of a system into the empirical world in terms of multiple potentials subject to natural forms of selection and optimality. These act as system attractors. Implementing these components and their theoretical relations in an informatics system will provide more-complete ecological informatics than is possible from a strictly mechanistic point of view. This approach will enable many new possibilities for supporting science and decision making.
Modeling the Personal Health Ecosystem.
Blobel, Bernd; Brochhausen, Mathias; Ruotsalainen, Pekka
2018-01-01
Complex ecosystems like the pHealth one combine different domains represented by a huge variety of different actors (human beings, organizations, devices, applications, components) belonging to different policy domains, coming from different disciplines, deploying different methodologies, terminologies, and ontologies, offering different levels of knowledge, skills, and experiences, acting in different scenarios and accommodating different business cases to meet the intended business objectives. For correctly modeling such systems, a system-oriented, architecture-centric, ontology-based, policy-driven approach is inevitable, thereby following established Good Modeling Best Practices. However, most of the existing standards, specifications and tools for describing, representing, implementing and managing health (information) systems reflect the advancement of information and communication technology (ICT) represented by different evolutionary levels of data modeling. The paper presents a methodology for integrating, adopting and advancing models, standards, specifications as well as implemented systems and components on the way towards the aforementioned ultimate approach, so meeting the challenge we face when transforming health systems towards ubiquitous, personalized, predictive, preventive, participative, and cognitive health and social care.
Investigation of the effects of long duration space exposure on active optical system components
NASA Technical Reports Server (NTRS)
Blue, M. D.
1994-01-01
This experiment was exposed to the space environment for 6 years on the Long Duration Exposure Facility (LDEF). It investigated quantitatively the effects of the long-duration space exposure on the relevant performance parameters of a representative set of electron-optic system components, including lasers, radiation detectors, filters, modulators, windows, and other related components. It evaluated the results and implications of the measurements indicating real or suspected degradation mechanisms. This information will be used to establish guidelines for the selection and use of components for space-based, electro-optic systems.
Graphical Language for Data Processing
NASA Technical Reports Server (NTRS)
Alphonso, Keith
2011-01-01
A graphical language for processing data allows processing elements to be connected with virtual wires that represent data flows between processing modules. The processing of complex data, such as lidar data, requires many different algorithms to be applied. The purpose of this innovation is to automate the processing of complex data, such as LIDAR, without the need for complex scripting and programming languages. The system consists of a set of user-interface components that allow the user to drag and drop various algorithmic and processing components onto a process graph. By working graphically, the user can completely visualize the process flow and create complex diagrams. This innovation supports the nesting of graphs, such that a graph can be included in another graph as a single step for processing. In addition to the user interface components, the system includes a set of .NET classes that represent the graph internally. These classes provide the internal system representation of the graphical user interface. The system includes a graph execution component that reads the internal representation of the graph (as described above) and executes that graph. The execution of the graph follows the interpreted model of execution in that each node is traversed and executed from the original internal representation. In addition, there are components that allow external code elements, such as algorithms, to be easily integrated into the system, thus making the system infinitely expandable.
Microwave components for cellular portable radiotelephone
NASA Astrophysics Data System (ADS)
Muraguchi, Masahiro; Aikawa, Masayoshi
1995-09-01
Mobile and personal communication systems are expected to represent a huge market for microwave components in the coming years. A number of components in silicon bipolar, silicon Bi-CMOS, GaAs MESFET, HBT and HEMT are now becoming available for system application. There are tradeoffs among the competing technologies with regard to performance, cost, reliability and time-to-market. This paper describes process selection and requirements of cost and r.f. performances to microwave semiconductor components for digital cellular and cordless telephones. Furthermore, new circuit techniques which were developed by NTT are presented.
NASA Astrophysics Data System (ADS)
Biermann, D.; Gausemeier, J.; Heim, H.-P.; Hess, S.; Petersen, M.; Ries, A.; Wagner, T.
2014-05-01
In this contribution a framework for the computer-aided planning and optimisation of functional graded components is presented. The framework is divided into three modules - the "Component Description", the "Expert System" for the synthetisation of several process chains and the "Modelling and Process Chain Optimisation". The Component Description module enhances a standard computer-aided design (CAD) model by a voxel-based representation of the graded properties. The Expert System synthesises process steps stored in the knowledge base to generate several alternative process chains. Each process chain is capable of producing components according to the enhanced CAD model and usually consists of a sequence of heating-, cooling-, and forming processes. The dependencies between the component and the applied manufacturing processes as well as between the processes themselves need to be considered. The Expert System utilises an ontology for that purpose. The ontology represents all dependencies in a structured way and connects the information of the knowledge base via relations. The third module performs the evaluation of the generated process chains. To accomplish this, the parameters of each process are optimised with respect to the component specification, whereby the result of the best parameterisation is used as representative value. Finally, the process chain which is capable of manufacturing a functionally graded component in an optimal way regarding to the property distributions of the component description is presented by means of a dedicated specification technique.
NASA Astrophysics Data System (ADS)
Lucas, Charles E.; Walters, Eric A.; Jatskevich, Juri; Wasynczuk, Oleg; Lamm, Peter T.
2003-09-01
In this paper, a new technique useful for the numerical simulation of large-scale systems is presented. This approach enables the overall system simulation to be formed by the dynamic interconnection of the various interdependent simulations, each representing a specific component or subsystem such as control, electrical, mechanical, hydraulic, or thermal. Each simulation may be developed separately using possibly different commercial-off-the-shelf simulation programs thereby allowing the most suitable language or tool to be used based on the design/analysis needs. These subsystems communicate the required interface variables at specific time intervals. A discussion concerning the selection of appropriate communication intervals is presented herein. For the purpose of demonstration, this technique is applied to a detailed simulation of a representative aircraft power system, such as that found on the Joint Strike Fighter (JSF). This system is comprised of ten component models each developed using MATLAB/Simulink, EASY5, or ACSL. When the ten component simulations were distributed across just four personal computers (PCs), a greater than 15-fold improvement in simulation speed (compared to the single-computer implementation) was achieved.
Decomposition-Based Failure Mode Identification Method for Risk-Free Design of Large Systems
NASA Technical Reports Server (NTRS)
Tumer, Irem Y.; Stone, Robert B.; Roberts, Rory A.; Clancy, Daniel (Technical Monitor)
2002-01-01
When designing products, it is crucial to assure failure and risk-free operation in the intended operating environment. Failures are typically studied and eliminated as much as possible during the early stages of design. The few failures that go undetected result in unacceptable damage and losses in high-risk applications where public safety is of concern. Published NASA and NTSB accident reports point to a variety of components identified as sources of failures in the reported cases. In previous work, data from these reports were processed and placed in matrix form for all the system components and failure modes encountered, and then manipulated using matrix methods to determine similarities between the different components and failure modes. In this paper, these matrices are represented in the form of a linear combination of failures modes, mathematically formed using Principal Components Analysis (PCA) decomposition. The PCA decomposition results in a low-dimensionality representation of all failure modes and components of interest, represented in a transformed coordinate system. Such a representation opens the way for efficient pattern analysis and prediction of failure modes with highest potential risks on the final product, rather than making decisions based on the large space of component and failure mode data. The mathematics of the proposed method are explained first using a simple example problem. The method is then applied to component failure data gathered from helicopter, accident reports to demonstrate its potential.
ERIC Educational Resources Information Center
Dahmani, Hassen-Reda; Schneeberger, Patricia; Kramer, IJsbrand M.
2009-01-01
The number of experimentally derived structures of cellular components is rapidly expanding, and this phenomenon is accompanied by the development of a new semiotic system for teaching. The infographic approach is shifting from a schematic toward a more realistic representation of cellular components. By realistic we mean artist-prepared or…
Feature-based component model for design of embedded systems
NASA Astrophysics Data System (ADS)
Zha, Xuan Fang; Sriram, Ram D.
2004-11-01
An embedded system is a hybrid of hardware and software, which combines software's flexibility and hardware real-time performance. Embedded systems can be considered as assemblies of hardware and software components. An Open Embedded System Model (OESM) is currently being developed at NIST to provide a standard representation and exchange protocol for embedded systems and system-level design, simulation, and testing information. This paper proposes an approach to representing an embedded system feature-based model in OESM, i.e., Open Embedded System Feature Model (OESFM), addressing models of embedded system artifacts, embedded system components, embedded system features, and embedded system configuration/assembly. The approach provides an object-oriented UML (Unified Modeling Language) representation for the embedded system feature model and defines an extension to the NIST Core Product Model. The model provides a feature-based component framework allowing the designer to develop a virtual embedded system prototype through assembling virtual components. The framework not only provides a formal precise model of the embedded system prototype but also offers the possibility of designing variation of prototypes whose members are derived by changing certain virtual components with different features. A case study example is discussed to illustrate the embedded system model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Daum
2008-10-06
Brookhaven researcher Peter Daum discusses an international field experiment designed to make observations of critical components of the climate system of the southeastern Pacific. Because elements of this system are poorly understood and poorly represent
Peter Daum
2017-12-09
Brookhaven researcher Peter Daum discusses an international field experiment designed to make observations of critical components of the climate system of the southeastern Pacific. Because elements of this system are poorly understood and poorly represent
IAPSA 2 small-scale system specification
NASA Technical Reports Server (NTRS)
Cohen, Gerald C.; Torkelson, Thomas C.
1990-01-01
The details of a hardware implementation of a representative small scale flight critical system is described using Advanced Information Processing System (AIPS) building block components and simulated sensor/actuator interfaces. The system was used to study application performance and reliability issues during both normal and faulted operation.
DOT National Transportation Integrated Search
2000-01-01
The purpose of the Florida Rail System Plan is two-fold. First, it represents the rail : component of the Florida Transportation Plan (Agency Functional Plan) which, through an : annual series of policies, programs and projects, implements the Transp...
Hybrid and Electric Advanced Vehicle Systems Simulation
NASA Technical Reports Server (NTRS)
Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.
1985-01-01
Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.
Data reduction procedures for traffic signal systems performance measures.
DOT National Transportation Integrated Search
2011-01-01
Traffic signal systems represent a substantial component of the highway transportation network in the United States. It is challenging for most agencies to find engineering resources to properly update signal policies and timing plans to accommodate ...
NASA Technical Reports Server (NTRS)
Holley, M. D.; Swingle, W. L.; Bachman, S. L.; Leblanc, C. J.; Howard, H. T.; Biggs, H. M.
1976-01-01
The primary guidance, navigation, and control systems for both the lunar module and the command module are described. Development of the Apollo primary guidance systems is traced from adaptation of the Polaris Mark II system through evolution from Block I to Block II configurations; the discussion includes design concepts used, test and qualification programs performed, and major problems encountered. The major subsystems (inertial, computer, and optical) are covered. Separate sections on the inertial components (gyroscopes and accelerometers) are presented because these components represent a major contribution to the success of the primary guidance, navigation, and control system.
Hybrid and electric advanced vehicle systems (heavy) simulation
NASA Technical Reports Server (NTRS)
Hammond, R. A.; Mcgehee, R. K.
1981-01-01
A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.
Statistics of Shared Components in Complex Component Systems
NASA Astrophysics Data System (ADS)
Mazzolini, Andrea; Gherardi, Marco; Caselle, Michele; Cosentino Lagomarsino, Marco; Osella, Matteo
2018-04-01
Many complex systems are modular. Such systems can be represented as "component systems," i.e., sets of elementary components, such as LEGO bricks in LEGO sets. The bricks found in a LEGO set reflect a target architecture, which can be built following a set-specific list of instructions. In other component systems, instead, the underlying functional design and constraints are not obvious a priori, and their detection is often a challenge of both scientific and practical importance, requiring a clear understanding of component statistics. Importantly, some quantitative invariants appear to be common to many component systems, most notably a common broad distribution of component abundances, which often resembles the well-known Zipf's law. Such "laws" affect in a general and nontrivial way the component statistics, potentially hindering the identification of system-specific functional constraints or generative processes. Here, we specifically focus on the statistics of shared components, i.e., the distribution of the number of components shared by different system realizations, such as the common bricks found in different LEGO sets. To account for the effects of component heterogeneity, we consider a simple null model, which builds system realizations by random draws from a universe of possible components. Under general assumptions on abundance heterogeneity, we provide analytical estimates of component occurrence, which quantify exhaustively the statistics of shared components. Surprisingly, this simple null model can positively explain important features of empirical component-occurrence distributions obtained from large-scale data on bacterial genomes, LEGO sets, and book chapters. Specific architectural features and functional constraints can be detected from occurrence patterns as deviations from these null predictions, as we show for the illustrative case of the "core" genome in bacteria.
Satellite lidar and radar: Key components of the future climate observing system
NASA Astrophysics Data System (ADS)
Winker, D. M.
2017-12-01
Cloud feedbacks represent the dominant source of uncertainties in estimates of climate sensitivity and aerosols represent the largest source of uncertainty in climate forcing. Both observation of long-term changes and observational constraints on the processes responsible for those changes are necessary. The existing 30-year record of passive satellite observations has not yet provided constraints to significantly reduce these uncertainties, though. We now have more than a decade of experience with active sensors flying in the A-Train. These new observations have demonstrated the strengths of active sensors and the benefits of continued and more advanced active sensors. This talk will discuss the multiple roles for active sensors as an essential component of a global climate observing system.
Xiao, Jianbo
2015-01-01
Segmenting visual scenes into distinct objects and surfaces is a fundamental visual function. To better understand the underlying neural mechanism, we investigated how neurons in the middle temporal cortex (MT) of macaque monkeys represent overlapping random-dot stimuli moving transparently in slightly different directions. It has been shown that the neuronal response elicited by two stimuli approximately follows the average of the responses elicited by the constituent stimulus components presented alone. In this scheme of response pooling, the ability to segment two simultaneously presented motion directions is limited by the width of the tuning curve to motion in a single direction. We found that, although the population-averaged neuronal tuning showed response averaging, subgroups of neurons showed distinct patterns of response tuning and were capable of representing component directions that were separated by a small angle—less than the tuning width to unidirectional stimuli. One group of neurons preferentially represented the component direction at a specific side of the bidirectional stimuli, weighting one stimulus component more strongly than the other. Another group of neurons pooled the component responses nonlinearly and showed two separate peaks in their tuning curves even when the average of the component responses was unimodal. We also show for the first time that the direction tuning of MT neurons evolved from initially representing the vector-averaged direction of slightly different stimuli to gradually representing the component directions. Our results reveal important neural processes underlying image segmentation and suggest that information about slightly different stimulus components is computed dynamically and distributed across neurons. SIGNIFICANCE STATEMENT Natural scenes often contain multiple entities. The ability to segment visual scenes into distinct objects and surfaces is fundamental to sensory processing and is crucial for generating the perception of our environment. Because cortical neurons are broadly tuned to a given visual feature, segmenting two stimuli that differ only slightly is a challenge for the visual system. In this study, we discovered that many neurons in the visual cortex are capable of representing individual components of slightly different stimuli by selectively and nonlinearly pooling the responses elicited by the stimulus components. We also show for the first time that the neural representation of individual stimulus components developed over a period of ∼70–100 ms, revealing a dynamic process of image segmentation. PMID:26658869
NASA Astrophysics Data System (ADS)
Srivastava, D. P.; Sahni, V.; Satsangi, P. S.
2014-08-01
Graph-theoretic quantum system modelling (GTQSM) is facilitated by considering the fundamental unit of quantum computation and information, viz. a quantum bit or qubit as a basic building block. Unit directional vectors "ket 0" and "ket 1" constitute two distinct fundamental quantum across variable orthonormal basis vectors, for the Hilbert space, specifying the direction of propagation of information, or computation data, while complementary fundamental quantum through, or flow rate, variables specify probability parameters, or amplitudes, as surrogates for scalar quantum information measure (von Neumann entropy). This paper applies GTQSM in continuum of protein heterodimer tubulin molecules of self-assembling polymers, viz. microtubules in the brain as a holistic system of interacting components representing hierarchical clustered quantum Hopfield network, hQHN, of networks. The quantum input/output ports of the constituent elemental interaction components, or processes, of tunnelling interactions and Coulombic bidirectional interactions are in cascade and parallel interconnections with each other, while the classical output ports of all elemental components are interconnected in parallel to accumulate micro-energy functions generated in the system as Hamiltonian, or Lyapunov, energy function. The paper presents an insight, otherwise difficult to gain, for the complex system of systems represented by clustered quantum Hopfield network, hQHN, through the application of GTQSM construct.
The Role of Assessment in a Response to Intervention Model
ERIC Educational Resources Information Center
Crawford, Lindy
2014-01-01
This article discusses the role of assessment in a response-to-intervention model. Although assessment represents only 1 component in a response-to-intervention model, a well-articulated assessment system is critical in providing teachers with reliable data that are easily interpreted and used to make instructional decisions. Three components of…
Derivation of Boundary Manikins: A Principal Component Analysis
NASA Technical Reports Server (NTRS)
Young, Karen; Margerum, Sarah; Barr, Abbe; Ferrer, Mike A.; Rajulu, Sudhakar
2008-01-01
When designing any human-system interface, it is critical to provide realistic anthropometry to properly represent how a person fits within a given space. This study aimed to identify a minimum number of boundary manikins or representative models of subjects anthropometry from a target population, which would realistically represent the population. The boundary manikin anthropometry was derived using, Principal Component Analysis (PCA). PCA is a statistical approach to reduce a multi-dimensional dataset using eigenvectors and eigenvalues. The measurements used in the PCA were identified as those measurements critical for suit and cockpit design. The PCA yielded a total of 26 manikins per gender, as well as their anthropometry from the target population. Reduction techniques were implemented to reduce this number further with a final result of 20 female and 22 male subjects. The anthropometry of the boundary manikins was then be used to create 3D digital models (to be discussed in subsequent papers) intended for use by designers to test components of their space suit design, to verify that the requirements specified in the Human Systems Integration Requirements (HSIR) document are met. The end-goal is to allow for designers to generate suits which accommodate the diverse anthropometry of the user population.
Melioli, Giovanni; Passalacqua, Giovanni; Canonica, Giorgio W
2014-12-01
'Allergen microarrays, in poly-sensitized allergic patients, represent a real value added in the accurate IgE profiling and in the identification of allergen(s) to administer for an effective allergen immunotherapy.' Allergen microarrays (AMA) were developed in the early 2000s to improve the diagnostic pathway of patients with allergic reactions. Nowadays, AMA are constituted by more than 100 different components (either purified or recombinant), representing genuine and cross-reacting molecules from plants and animals. The cost of the procedure had suggested its use as third-level diagnostics (following in vivo- and in vitro-specific IgE tests) in poly-sensitized patients. The complexity of the interpretation had inspired the development of in silico technologies to help clinicians in their work. Both machine learning techniques and expert systems are now available. In particular, an expert system that has been recently developed not only identifies positive and negative components but also lists dangerous components and classifies patients based on their potential responsiveness to allergen immunotherapy, on the basis of published algorithms. For these characteristics, AMA represents the state-of-the-art technology for allergy diagnosis in poly-sensitized patients.
Integrated fluorescence analysis system
Buican, Tudor N.; Yoshida, Thomas M.
1992-01-01
An integrated fluorescence analysis system enables a component part of a sample to be virtually sorted within a sample volume after a spectrum of the component part has been identified from a fluorescence spectrum of the entire sample in a flow cytometer. Birefringent optics enables the entire spectrum to be resolved into a set of numbers representing the intensity of spectral components of the spectrum. One or more spectral components are selected to program a scanning laser microscope, preferably a confocal microscope, whereby the spectrum from individual pixels or voxels in the sample can be compared. Individual pixels or voxels containing the selected spectral components are identified and an image may be formed to show the morphology of the sample with respect to only those components having the selected spectral components. There is no need for any physical sorting of the sample components to obtain the morphological information.
NASA Astrophysics Data System (ADS)
Courtial, Xavier; Ferrando, Nicolas; de Hemptinne, Jean-Charles; Mougin, Pascal
2014-10-01
In this work, an electrolyte version of the Cubic Plus Association (eCPA) equation of state has been adapted to systems containing CH4, CO2, H2O and NaCl (up to 5 molal) at pressures up to 200 MPa and temperatures up to 773 K for salt-free systems and 573 K for salt-containing systems. Its purpose is to represent the phase behavior (including salting-out effect and critical point) and the phase densities in a range of temperature and pressure encountered in deep reservoirs and basins. The goal of the parameterization proposed is not to reach a very high accuracy for phase equilibrium and volumetric properties, but rather to develop a semi-predictive approach to model the phase and volumetric behavior of this system while allowing an easy extension to other compounds. Without salt, predictions for pure component vapor pressures and liquid molar volumes present an average absolute deviation (AAD) lower than 3% compared to experimental reference values. The pure component molar volumes out of saturation show an AAD lower than 4%. The highest deviations in densities are observed as expected in the vicinity of the critical coordinates of pure water and this effect increases when gases or salts are added to the system. For each binary system, CH4 + CO2, CH4 + H2O and CO2 + H2O, binary interaction parameters have been fitted to correctly represent the shape of the fluid phase envelopes (including all critical points) in the entire temperature and pressure range considered (219 K to 633 K and up to 250 MPa). The methane concentration in both phases of the CH4 + CO2 binary system is represented with an AAD lower than 9%. The methane solubility in water is represented within 16% and 8% for the methane content of the vapor. The CO2 solubility in water is within 26%, while the CO2 in the vapor phase shows an average deviation of 12%. All molar volumes are represented with an AAD lower than 3%. The few VLE experimental data for the CH4 + CO2 + H2O ternary system are fairly well predicted with the model without extra parameter, which confirm the ability of the eCPA equation of state to be extended to multi-component systems. In the presence of salts, gas + ion binary interaction parameters have been fitted, and all phase equilibrium are qualitatively correctly described, and more specifically the salting out effect. The solubility of methane or CO2 in brines, up to 5 molal, is represented with an AAD of 33% in a large temperature and pressure range (up to 673 K and 150 MPa). It should be noticed that for high temperatures, experimental data are relatively scarce and not always consistent. No data exist for water content of the vapor phase in these conditions. The new eCPA model can be easily extended to other components (including ions) to better represent real fluid behavior in very deep reservoir conditions.
DOT National Transportation Integrated Search
2012-01-01
Traffic signal systems represent a substantial component of the highway transportation network in the United : States. It is challenging for most agencies to find engineering resources to properly update signal policies and : timing plans to accommod...
The Two-Component Virial Theorem and the Physical Properties of Stellar Systems.
Dantas; Ribeiro; Capelato; de Carvalho RR
2000-01-01
Motivated by present indirect evidence that galaxies are surrounded by dark matter halos, we investigate whether their physical properties can be described by a formulation of the virial theorem that explicitly takes into account the gravitational potential term representing the interaction of the dark halo with the baryonic or luminous component. Our analysis shows that the application of such a "two-component virial theorem" not only accounts for the scaling relations displayed by, in particular, elliptical galaxies, but also for the observed properties of all virialized stellar systems, ranging from globular clusters to galaxy clusters.
Low-Temperature Power Electronics Program
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Dickman, John E.; Hammoud, Ahmad; Gerber, Scott
1997-01-01
Many space and some terrestrial applications would benefit from the availability of low-temperature electronics. Exploration missions to the outer planets, Earth-orbiting and deep-space probes, and communications satellites are examples of space applications which operate in low-temperature environments. Space probes deployed near Pluto must operate in temperatures as low as -229 C. Figure 1 depicts the average temperature of a space probe warmed by the sun for various locations throughout the solar system. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. The development of electrical power systems capable of extremely low-temperature operation represents a key element of some advanced space power systems. The Low-Temperature Power Electronics Program at NASA Lewis Research Center focuses on the design, fabrication, and characterization of low-temperature power systems and the development of supporting technologies for low-temperature operations such as dielectric and insulating materials, power components, optoelectronic components, and packaging and integration of devices, components, and systems.
On-line diagnosis of sequential systems, 3
NASA Technical Reports Server (NTRS)
Sundstrom, R. J.
1975-01-01
A formal model is introduced which can serve as the basis for a theoretical investigation of on-line diagnosis. Within this model a fault of a system S is considered to be a transformation of S into another system S prime at some time tau. The resulting faulty system is taken to be the system which looks like S up to time tau and like S prime thereafter. The on-line diagnosis of systems which are structurally decomposed and represented as a network of smaller systems is also investigated. The fault set considered is the set of unrestricted component faults; namely, the set of faults which only affect one component of the network. A characterization of networks which can be diagnosed using a combinational detector is obtained. It is further shown that any network can be made diagnosable in the above sense through the addition of one component. In addition, a lower bound is obtained on the complexity of any component, the addition of which is sufficient to make a particular network combinationally diagnosable.
Management Information System Project.
ERIC Educational Resources Information Center
Foley, Walter J.; Harr, Gordon G.
The Management Information System (MIS) described in this report represents a plan to utilize modern management techniques to facilitate the goal of a learner-responsive school system. The MIS component is being developed to meet the need for the coordination of the resources of staff, facilities, and time with the long range planning and…
Applications of SPICE for modeling miniaturized biomedical sensor systems
NASA Technical Reports Server (NTRS)
Mundt, C. W.; Nagle, H. T.
2000-01-01
This paper proposes a model for a miniaturized signal conditioning system for biopotential and ion-selective electrode arrays. The system consists of three main components: sensors, interconnections, and signal conditioning chip. The model for this system is based on SPICE. Transmission-line based equivalent circuits are used to represent the sensors, lumped resistance-capacitance circuits describe the interconnections, and a model for the signal conditioning chip is extracted from its layout. A system for measurements of biopotentials and ionic activities can be miniaturized and optimized for cardiovascular applications based on the development of an integrated SPICE system model of its electrochemical, interconnection, and electronic components.
Simulation of Tasks Distribution in Horizontally Scalable Management System
NASA Astrophysics Data System (ADS)
Kustov, D.; Sherstneva, A.; Botygin, I.
2016-08-01
This paper presents an imitational model of the task distribution system for the components of territorially-distributed automated management system with a dynamically changing topology. Each resource of the distributed automated management system is represented with an agent, which allows to set behavior of every resource in the best possible way and ensure their interaction. The agent work load imitation was done via service query imitation formed in a system dynamics style using a stream diagram. The query generation took place in the abstract-represented center - afterwards, they were sent to the drive to be distributed to management system resources according to a ranking table.
A 200kW central receiver CPV system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lasich, John, E-mail: jbl@raygen.com; Thomas, Ian, E-mail: ithomas@raygen.com; Hertaeg, Wolfgang
2015-09-28
Raygen Resources has recently completed a Central Receiver CPV (CSPV) pilot plant in Central Victoria, Australia. The system is under final commissioning and initial operation is expected in late April 2015. The pilot demonstrates a full scale CSPV repeatable unit in a form that is representative of a commercial product and provides a test bed to prove out performance and reliability of the CSPV technology. Extensive testing of the system key components: dense array module, wireless solar powered heliostat and control system has been performed in the laboratory and on sun. Results from this key component testing are presented herein.
NASA Technical Reports Server (NTRS)
Barrett, Michael J.
2004-01-01
The elements of Brayton technology development emphasize power conversion system risk mitigation. Risk mitigation is achieved by demonstrating system integration feasibility, subsystem/component life capability (particularly in the context of material creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC conversion system Technology Readiness Level (TRL) of six (6) was achieved during the Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was demonstrated for 10 kWe-class CBC components during the development of the Brayton Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space systems. Because of the baseline component and subsystem technology maturity, much of the Brayton technology task is focused on issues related to systems integration. A brief description of ongoing technology activities is given.
NASA Astrophysics Data System (ADS)
Glasser, Joshua; Pratt, Tim
2008-10-01
Programmed defect test masks serve the useful purpose of evaluating inspection system sensitivity and capability. It is widely recognized that when evaluating inspection system capability, it is important to understand the actual sensitivity of the inspection system in production; yet unfortunately we have observed that many test masks are a more accurate judge of theoretical sensitivity rather than real-world usable capability. Use of ineffective test masks leave the purchaser of inspection equipment open to the risks of over-estimating the capability of their inspection solution and overspecifying defect sensitivity to their customers. This can result in catastrophic yield loss for device makers. In this paper we examine some of the lithography-related technology advances which place an increasing burden on mask inspection complexity, such as MEEF, defect printability estimation, aggressive OPC, double patterning, and OPC jogs. We evaluate the key inspection system component contributors to successful mask inspection, including what can "go wrong" with these components. We designed and fabricated a test mask which both (a) more faithfully represents actual production use cases; and (b) stresses the key components of the inspection system. This mask's patterns represent 32nm, 36nm, and 45nm logic and memory technology including metal and poly like background patterns with programmed defects. This test mask takes into consideration requirements of advanced lithography, such as MEEF, defect printability, assist features, nearly-repetitive patterns, and data preparation. This mask uses patterns representative of 32nm, 36nm, and 45nm logic, flash, and DRAM technology. It is specifically designed to have metal and poly like background patterns with programmed defects. The mask is complex tritone and was designed for annular immersion lithography.
AgMIP Climate Data and Scenarios for Integrated Assessment. Chapter 3
NASA Technical Reports Server (NTRS)
Ruane, Alexander C.; Winter, Jonathan M.; McDermid, Sonali P.; Hudson, Nicholas I.
2015-01-01
Climate change presents a great challenge to the agricultural sector as changes in precipitation, temperature, humidity, and circulation patterns alter the climatic conditions upon which many agricultural systems rely. Projections of future climate conditions are inherently uncertain owing to a lack of clarity on how society will develop, policies that may be implemented to reduce greenhouse-gas (GHG) emissions, and complexities in modeling the atmosphere, ocean, land, cryosphere, and biosphere components of the climate system. Global climate models (GCMs) are based on well-established physics of each climate component that enable the models to project climate responses to changing GHG concentration scenarios (Stocker et al., 2013).The most recent iteration of the Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012) utilized representative concentration pathways (RCPs) to cover the range of plausible GHG concentrations out past the year 2100, with RCP8.5 representing an extreme scenario and RCP4.5 representing a lower concentrations scenario (Moss et al., 2010).
Advanced sorting technologies for optimal wood products and woody biomass utilization
Xiping Wang
2012-01-01
Forest materials represent great potential for advancing our goals in the 21st century for sustainable building, energy independence, and carbon sequestration. A critical component of an improved system for producing bioproducts and bioenergr from forest materials is the ability to sort trees, stems, and logs into end-product categories that represent their highest...
Results of low power deicer tests on a swept inlet component in the NASA Lewis icing research tunnel
NASA Technical Reports Server (NTRS)
Bond, Thomas H.; Shin, Jaiwon
1993-01-01
Tests were conducted under a USAF/NASA Low Power Deicer program on two expulsive technologies to examine system performance on hardware representative of a modern aircraft part. The BF Goodrich Electro-Expulsive Deicing System and Pneumatic Impulse Ice Protection System were installed on a swept, compound curve, engine inlet component with varying leading edge radius, and tested through a range of icing and system operating conditions in the NASA Lewis Icing Research Tunnel. A description of the experimental procedure and results, including residual ice thickness, shed ice particle size, and changes in system energy/pressure characteristics are presented.
Results of Low Power Deicer tests on a swept inlet component in the NASA Lewis Icing Research Tunnel
NASA Technical Reports Server (NTRS)
Bond, Thomas H.; Shin, Jaiwon
1993-01-01
Tests were conducted under a USAF/NASA Low Power Deicer program on two expulsive technologies to examine system performance on hardware representative of a modern aircraft part. The BF Goodrich Electro-Expulsive Deicing System and Pneumatic Impulse Ice Protection system were installed on a swept, compound curve, engine inlet component with varying leading edge radius, and tested through a range of icing and system operating conditions in the NASA Lewis Icing Research Tunnel. A description of the experimental procedure and results, including residual ice thickness, shed ice particle size, and changes in system energy/pressure characteristics are presented.
NASA Technical Reports Server (NTRS)
Niebur, Dagmar
1995-01-01
Electric power systems represent complex systems involving many electrical components whoseoperation has to be planned, analyzed, monitored and controlled. The time-scale of tasks in electricpower systems extends from long term planning years ahead to milliseconds in the area of control. The behavior of power systems is highly non-linear. Monitoring and control involves several hundred variables which are only partly available by measurements.
Hybrid membrane--PSA system for separating oxygen from air
Staiger, Chad L [Albuquerque, NM; Vaughn, Mark R [Albuquerque, NM; Miller, A Keith [Albuquerque, NM; Cornelius, Christopher J [Blackburg, VA
2011-01-25
A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.
Lasers in automobile production
NASA Astrophysics Data System (ADS)
Pizzi, P.
There is a trend in mechanical equipment to replace complicated mechanical components with electronics, especially microprocessors, laser technology represents an important new tool. The effects of laser technology can be seen in production systems concerned with cutting, welding, heat treatment, and the alloying of mechanical components. Applications in the automobile industry today are not very widespread and are concerned essentially with welding and cutting.
Ego-resiliency reloaded: a three-component model of general resiliency.
Farkas, Dávid; Orosz, Gábor
2015-01-01
Ego-resiliency (ER) is a capacity that enables individuals to adapt to constantly changing environmental demands. The goal of our research was to identify components of Ego-resiliency, and to test the reliability and the structural and convergent validity of the refined version of the ER11 Ego-resiliency scale. In Study 1 we used a factor analytical approach to assess structural validity and to identify factors of Ego-resiliency. Comparing alternative factor-structures, a hierarchical model was chosen including three factors: Active Engagement with the World (AEW), Repertoire of Problem Solving Strategies (RPSS), and Integrated Performance under Stress (IPS). In Study 2, the convergent and divergent validity of the ER11 scale and its factors and their relationship with resilience were tested. The results suggested that resiliency is a double-faced construct, with one function to keep the personality system stable and intact, and the other function to adjust the personality system in an adaptive way to the dynamically changing environment. The stability function is represented by the RPSS and IPS components of ER. Their relationship pattern is similar to other constructs of resilience, e.g. the Revised Connor-Davidson Resilience Scale (R-CD-RISC). The flexibility function is represented by the unit of RPSS and AEW components. In Study 3 we tested ER11 on a Hungarian online representative sample and integrated the results in a model of general resiliency. This framework allows us to grasp both the stability-focused and the plasticity-focused nature of resiliency.
Ego-Resiliency Reloaded: A Three-Component Model of General Resiliency
Farkas, Dávid; Orosz, Gábor
2015-01-01
Ego-resiliency (ER) is a capacity that enables individuals to adapt to constantly changing environmental demands. The goal of our research was to identify components of Ego-resiliency, and to test the reliability and the structural and convergent validity of the refined version of the ER11 Ego-resiliency scale. In Study 1 we used a factor analytical approach to assess structural validity and to identify factors of Ego-resiliency. Comparing alternative factor-structures, a hierarchical model was chosen including three factors: Active Engagement with the World (AEW), Repertoire of Problem Solving Strategies (RPSS), and Integrated Performance under Stress (IPS). In Study 2, the convergent and divergent validity of the ER11 scale and its factors and their relationship with resilience were tested. The results suggested that resiliency is a double-faced construct, with one function to keep the personality system stable and intact, and the other function to adjust the personality system in an adaptive way to the dynamically changing environment. The stability function is represented by the RPSS and IPS components of ER. Their relationship pattern is similar to other constructs of resilience, e.g. the Revised Connor-Davidson Resilience Scale (R-CD-RISC). The flexibility function is represented by the unit of RPSS and AEW components. In Study 3 we tested ER11 on a Hungarian online representative sample and integrated the results in a model of general resiliency. This framework allows us to grasp both the stability-focused and the plasticity-focused nature of resiliency. PMID:25815881
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yan; Treado, Stephen J.; Messner, John I.
Building control systems for Heating, Ventilation, and Air Conditioning (HVAC) play a key role in realizing the functionality and operation of building systems and components. Building Control Knowledge (BCK) is the logic and algorithms embedded throughout building control system. There are different methods to represent the BCK. These methods differ in the selection of BCK representing elements and the format of those elements. There is a lack of standard data schema, for storing, retrieving, and reusing structured BCK. In this study, a modular data schema is created for BCK representation. The data schema contains eleven representing elements, i.e., control modulemore » name, operation mode, system schematic, control flow diagram, data point, alarm, parameter, control sequence, function, and programming code. Each element is defined with specific attributes. This data schema is evaluated through a case study demonstration. The demonstration shows a new way to represent the BCK with standard formats.« less
NASA Astrophysics Data System (ADS)
Wi, S.; Freeman, S.; Brown, C.
2017-12-01
This study presents a general approach to developing computational models of human-hydrologic systems where human modification of hydrologic surface processes are significant or dominant. A river basin system is represented by a network of human-hydrologic response units (HHRUs) identified based on locations where river regulations happen (e.g., reservoir operation and diversions). Natural and human processes in HHRUs are simulated in a holistic framework that integrates component models representing rainfall-runoff, river routing, reservoir operation, flow diversion and water use processes. We illustrate the approach in a case study of the Cutzamala water system (CWS) in Mexico, a complex inter-basin water transfer system supplying the Mexico City Metropolitan Area (MCMA). The human-hydrologic system model for CWS (CUTZSIM) is evaluated in terms of streamflow and reservoir storages measured across the CWS and to water supplied for MCMA. The CUTZSIM improves the representation of hydrology and river-operation interaction and, in so doing, advances evaluation of system-wide water management consequences under altered climatic and demand regimes. The integrated modeling framework enables evaluation and simulation of model errors throughout the river basin, including errors in representation of the human component processes. Heretofore, model error evaluation, predictive error intervals and the resultant improved understanding have been limited to hydrologic processes. The general framework represents an initial step towards fuller understanding and prediction of the many and varied processes that determine the hydrologic fluxes and state variables in real river basins.
Integrating Water, Actors, and Structure to Study Socio-Hydro-Ecological Systems
NASA Astrophysics Data System (ADS)
Hale, R. L.; Armstrong, A.; Baker, M. A.; Bedingfield, S.; Betts, D.; Buahin, C. A.; Buchert, M.; Crowl, T.; Dupont, R.; Endter-Wada, J.; Flint, C.; Grant, J.; Hinners, S.; Horns, D.; Horsburgh, J. S.; Jackson-Smith, D.; Jones, A. S.; Licon, C.; Null, S. E.; Odame, A.; Pataki, D. E.; Rosenberg, D. E.; Runburg, M.; Stoker, P.; Strong, C.
2014-12-01
Urbanization, climate uncertainty, and ecosystem change represent major challenges for managing water resources. Water systems and the forces acting upon them are complex, and there is a need to understand and generically represent the most important system components and linkages. We developed a framework to facilitate understanding of water systems including potential vulnerabilities and opportunities for sustainability. Our goal was to produce an interdisciplinary framework for water resources research to address water issues across scales (e.g., city to region) and domains (e.g., water supply and quality, urban and transitioning landscapes). An interdisciplinary project (iUTAH - innovative Urban Transitions and Aridregion Hydro-sustainability) with a large (N=~100), diverse team having expertise spanning the hydrologic, biological, ecological, engineering, social, planning, and policy sciences motivated the development of this framework. The framework was developed through review of the literature, meetings with individual researchers, and workshops with participants. The Structure-Water-Actor Framework (SWAF) includes three main components: water (quality and quantity), structure (natural, built, and social), and actors (individual and organizational). Key linkages include: 1) ecological and hydrological processes, 2) ecosystem and geomorphic change, 3) planning, design, and policy, 4) perceptions, information, and experience, 5) resource access, and 6) operational water use and management. Our expansive view of structure includes natural, built, and social components, allowing us to examine a broad set of tools and levers for water managers and decision-makers to affect system sustainability and understand system outcomes. We validate the SWAF and illustrate its flexibility to generate insights for three research and management problems: green stormwater infrastructure in an arid environment, regional water supply and demand, and urban river restoration. These applications show that the framework can help identify key components and linkages across diverse water systems.
An Object Model for a Rocket Engine Numerical Simulator
NASA Technical Reports Server (NTRS)
Mitra, D.; Bhalla, P. N.; Pratap, V.; Reddy, P.
1998-01-01
Rocket Engine Numerical Simulator (RENS) is a packet of software which numerically simulates the behavior of a rocket engine. Different parameters of the components of an engine is the input to these programs. Depending on these given parameters the programs output the behaviors of those components. These behavioral values are then used to guide the design of or to diagnose a model of a rocket engine "built" by a composition of these programs simulating different components of the engine system. In order to use this software package effectively one needs to have a flexible model of a rocket engine. These programs simulating different components then should be plugged into this modular representation. Our project is to develop an object based model of such an engine system. We are following an iterative and incremental approach in developing the model, as is the standard practice in the area of object oriented design and analysis of softwares. This process involves three stages: object modeling to represent the components and sub-components of a rocket engine, dynamic modeling to capture the temporal and behavioral aspects of the system, and functional modeling to represent the transformational aspects. This article reports on the first phase of our activity under a grant (RENS) from the NASA Lewis Research center. We have utilized Rambaugh's object modeling technique and the tool UML for this purpose. The classes of a rocket engine propulsion system are developed and some of them are presented in this report. The next step, developing a dynamic model for RENS, is also touched upon here. In this paper we will also discuss the advantages of using object-based modeling for developing this type of an integrated simulator over other tools like an expert systems shell or a procedural language, e.g., FORTRAN. Attempts have been made in the past to use such techniques.
Real time gamma-ray signature identifier
Rowland, Mark [Alamo, CA; Gosnell, Tom B [Moraga, CA; Ham, Cheryl [Livermore, CA; Perkins, Dwight [Livermore, CA; Wong, James [Dublin, CA
2012-05-15
A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.
USDA-ARS?s Scientific Manuscript database
Critical to the use of modeling tools for the hydraulic analysis of surface irrigation systems is characterizing the infiltration and hydraulic resistance process. Since those processes are still not well understood, various formulations are currently used to represent them. A software component h...
A Neural Network Architecture For Rapid Model Indexing In Computer Vision Systems
NASA Astrophysics Data System (ADS)
Pawlicki, Ted
1988-03-01
Models of objects stored in memory have been shown to be useful for guiding the processing of computer vision systems. A major consideration in such systems, however, is how stored models are initially accessed and indexed by the system. As the number of stored models increases, the time required to search memory for the correct model becomes high. Parallel distributed, connectionist, neural networks' have been shown to have appealing content addressable memory properties. This paper discusses an architecture for efficient storage and reference of model memories stored as stable patterns of activity in a parallel, distributed, connectionist, neural network. The emergent properties of content addressability and resistance to noise are exploited to perform indexing of the appropriate object centered model from image centered primitives. The system consists of three network modules each of which represent information relative to a different frame of reference. The model memory network is a large state space vector where fields in the vector correspond to ordered component objects and relative, object based spatial relationships between the component objects. The component assertion network represents evidence about the existence of object primitives in the input image. It establishes local frames of reference for object primitives relative to the image based frame of reference. The spatial relationship constraint network is an intermediate representation which enables the association between the object based and the image based frames of reference. This intermediate level represents information about possible object orderings and establishes relative spatial relationships from the image based information in the component assertion network below. It is also constrained by the lawful object orderings in the model memory network above. The system design is consistent with current psychological theories of recognition by component. It also seems to support Marr's notions of hierarchical indexing. (i.e. the specificity, adjunct, and parent indices) It supports the notion that multiple canonical views of an object may have to be stored in memory to enable its efficient identification. The use of variable fields in the state space vectors appears to keep the number of required nodes in the network down to a tractable number while imposing a semantic value on different areas of the state space. This semantic imposition supports an interface between the analogical aspects of neural networks and the propositional paradigms of symbolic processing.
Polytopic vector analysis in igneous petrology: Application to lunar petrogenesis
NASA Technical Reports Server (NTRS)
Shervais, John W.; Ehrlich, R.
1993-01-01
Lunar samples represent a heterogeneous assemblage of rocks with complex inter-relationships that are difficult to decipher using standard petrogenetic approaches. These inter-relationships reflect several distinct petrogenetic trends as well as thermomechanical mixing of distinct components. Additional complications arise from the unequal quality of chemical analyses and from the fact that many samples (e.g., breccia clasts) are too small to be representative of the system from which they derived. Polytopic vector analysis (PVA) is a multi-variate procedure used as a tool for exploratory data analysis. PVA allows the analyst to classify samples and clarifies relationships among heterogenous samples with complex petrogenetic histories. It differs from orthogonal factor analysis in that it uses non-orthogonal multivariate sample vectors to extract sample endmember compositions. The output from a Q-mode (sample based) factor analysis is the initial step in PVA. The Q-mode analysis, using criteria established by Miesch and Klovan and Miesch, is used to determine the number of endmembers in the data system. The second step involves determination of endmembers and mixing proportions with all output expressed in the same geochemical variable as the input. The composition of endmembers is derived by analysis of the variability of the data set. Endmembers need not be present in the data set, nor is it necessary for their composition to be known a priori. A set of any endmembers defines a 'polytope' or classification figure (triangle for a three component system, tetrahedron for a four component system, a 'five-tope' in four dimensions for five component system, et cetera).
Shuttle cryogenic supply system optimization study
NASA Technical Reports Server (NTRS)
1971-01-01
Technical information on different cryogenic supply systems is presented for selecting representative designs. Parametric data and sensitivity studies, and an evaluation of related technology status are included. An integrated mathematical model for hardware program support was developed. The life support system, power generation, and propellant supply are considered. The major study conclusions are the following: Optimum integrated systems tend towards maximizing liquid storage. Vacuum jacketing of tanks is a major effect on integrated systems. Subcritical storage advantages over supercritical storage decrease as the quantity of propellant or reactant decreases. Shuttle duty cycles are not severe. The operational mode has a significant effect on reliability. Components are available for most subsystem applications. Subsystems and components require a minimum amount of technology development.
Modeling and Analysis of Mixed Synchronous/Asynchronous Systems
NASA Technical Reports Server (NTRS)
Driscoll, Kevin R.; Madl. Gabor; Hall, Brendan
2012-01-01
Practical safety-critical distributed systems must integrate safety critical and non-critical data in a common platform. Safety critical systems almost always consist of isochronous components that have synchronous or asynchronous interface with other components. Many of these systems also support a mix of synchronous and asynchronous interfaces. This report presents a study on the modeling and analysis of asynchronous, synchronous, and mixed synchronous/asynchronous systems. We build on the SAE Architecture Analysis and Design Language (AADL) to capture architectures for analysis. We present preliminary work targeted to capture mixed low- and high-criticality data, as well as real-time properties in a common Model of Computation (MoC). An abstract, but representative, test specimen system was created as the system to be modeled.
Tausz, M; Bytnerowicz, A; Arbaugh, M J; Wonisch, A; Grill, D
2001-03-01
Most environmental stress conditions promote the production of potentially toxic active oxygen species in plant cells. Plants respond with changes in their antioxidant and photoprotective systems. Antioxidants and pigments have been widely used to measure these responses. Because trees are exposed to multiple man-made and natural stresses, their responses are not reflected by changes in single stress markers, but by complex biochemical changes. To evaluate such response patterns, explorative multivariate statistics have been used. In the present study, 12 biochemical variables (chloroplast pigments, state of the xanthophyll cycle, alpha-tocopherol, ascorbate and dehydroascorbate, glutathione and oxidized glutathione) were measured in previous-year needles of field-grown Pinus ponderosa Dougl. ex Laws. The trees were sampled in two consecutive years in the San Bernardino Mountains in southern California, where a pollution gradient is overlaid by gradients in natural stresses (drought, altitude). To explore irradiance effects, needle samples were taken directly in the field (sun exposed) and from detached, dark-adapted branches. A principal component analysis on this data set (n = 80) resulted in four components (Components 1-4) that explained 67% of the variance in the original data. Component 1 was positively loaded by concentrations of alpha-tocopherol, total ascorbate and xanthophyll cycle pools, as well as by the proportion of de-epoxides in the xanthophyll cycle. It was negatively loaded by the proportion of dehydroascorbate in the ascorbate pool. Component 2 was negatively loaded by chlorophyll concentrations, and positively loaded by the ratios of lutein and beta-carotene to chlorophyll and by the de-epoxidation state of the xanthophyll cycle. Component 3 was negatively loaded by GSH concentrations and positively loaded by the proportions of GSSG and tocopherol concentrations. Component 4 was positively loaded by neoxanthin and negatively loaded by beta-carotene. The four components could be assigned to the concerted action of the biochemical protection system: high scores on Component 1 represent highly activated antioxidative defense, changes in pigment composition are represented in Components 2 and 4, and the glutathione system, which is important for antioxidant regeneration, is represented in Component 2. Although Component 1 scores were generally higher (indicating activation of antioxidant defense) in light-adapted needles relative to dark-adapted needles, they were also site dependent with increased scores at sites with less pollution, but higher natural stress impacts. High scores of Components 2 and 3 at the highest elevation site, which was only moderately polluted, indicated an increase in photoprotection by pigments and activation of the glutathione system. Significant differences between light- and dark-adapted needles in Components 2 and 3 were only found at the site with the highest pollution. Use of accumulated variables (components) instead of single biochemical variables enabled recognition of response patterns at particular sites and a better comparison with results of other studies is expected. Typical response patterns could be assigned to particular environmental stress combinations, providing a means of assessing potential biological risks within individual forest stands.
New measuring system for the distribution of a magnetic force by using an optical fiber
NASA Astrophysics Data System (ADS)
Ishigaki, H.; Oya, T.; Itoh, M.; Hida, A.; Iwata, K.
1993-01-01
A new measuring system using an optical fiber and a position sensing photodetector was developed to measure a three-dimensional distribution of a magnetic force. A steel ball attached to a cantilever made of an optical fiber generated force in a magnetic field. The displacement of the ball due to the force was detected by a position-sensing photodetector with the capability of detecting two-directional coordinates of the position. By scanning the sensing system in a magnetic field, we obtained distributions of two-directional component of the magnetic force vector. The component represents the gradient of a squared magnetic field. The usefulness of the system for measuring the magnetic field distribution in a narrow clearance and for evaluating superconducting machine components such as magnetic bearings was verified experimentally.
NASA Astrophysics Data System (ADS)
Leung, L. R.; Thornton, P. E.; Riley, W. J.; Calvin, K. V.
2017-12-01
Towards the goal of understanding the contributions from natural and managed systems to current and future greenhouse gas fluxes and carbon-climate and carbon-CO2 feedbacks, efforts have been underway to improve representations of the terrestrial, river, and human components of the ACME earth system model. Broadly, our efforts include implementation and comparison of approaches to represent the nutrient cycles and nutrient limitations on ecosystem production, extending the river transport model to represent sediment and riverine biogeochemistry, and coupling of human systems such as irrigation, reservoir operations, and energy and land use with the ACME land and river components. Numerical experiments have been designed to understand how terrestrial carbon, nitrogen, and phosphorus cycles regulate climate system feedbacks and the sensitivity of the feedbacks to different model treatments, examine key processes governing sediment and biogeochemistry in the rivers and their role in the carbon cycle, and exploring the impacts of human systems in perturbing the hydrological and carbon cycles and their interactions. This presentation will briefly introduce the ACME modeling approaches and discuss preliminary results and insights from numerical experiments that lay the foundation for improving understanding of the integrated climate-biogeochemistry-human system.
Xiao, Hong; Tian, Huai-Yu; Gao, Li-Dong; Liu, Hai-Ning; Duan, Liang-Song; Basta, Nicole; Cazelles, Bernard; Li, Xiu-Jun; Lin, Xiao-Ling; Wu, Hong-Wei; Chen, Bi-Yun; Yang, Hui-Suo; Xu, Bing; Grenfell, Bryan
2014-01-01
China has the highest incidence of hemorrhagic fever with renal syndrome (HFRS) worldwide. Reported cases account for 90% of the total number of global cases. By 2010, approximately 1.4 million HFRS cases had been reported in China. This study aimed to explore the effect of the rodent reservoir, and natural and socioeconomic variables, on the transmission pattern of HFRS. Data on monthly HFRS cases were collected from 2006 to 2010. Dynamic rodent monitoring data, normalized difference vegetation index (NDVI) data, climate data, and socioeconomic data were also obtained. Principal component analysis was performed, and the time-lag relationships between the extracted principal components and HFRS cases were analyzed. Polynomial distributed lag (PDL) models were used to fit and forecast HFRS transmission. Four principal components were extracted. Component 1 (F1) represented rodent density, the NDVI, and monthly average temperature. Component 2 (F2) represented monthly average rainfall and monthly average relative humidity. Component 3 (F3) represented rodent density and monthly average relative humidity. The last component (F4) represented gross domestic product and the urbanization rate. F2, F3, and F4 were significantly correlated, with the monthly HFRS incidence with lags of 4 months (r = -0.289, P<0.05), 5 months (r = -0.523, P<0.001), and 0 months (r = -0.376, P<0.01), respectively. F1 was correlated with the monthly HFRS incidence, with a lag of 4 months (r = 0.179, P = 0.192). Multivariate PDL modeling revealed that the four principal components were significantly associated with the transmission of HFRS. The monthly trend in HFRS cases was significantly associated with the local rodent reservoir, climatic factors, the NDVI, and socioeconomic conditions present during the previous months. The findings of this study may facilitate the development of early warning systems for the control and prevention of HFRS and similar diseases.
NASA Astrophysics Data System (ADS)
Goev, A. I.; Knyazeva, N. A.; Potelov, V. V.; Senik, B. N.
2005-06-01
The present paper represents in detail the complex approach to creating industrial technology of production of polymeric optical components: information has been given on optical polymeric materials, automatic machines for injection moulding, the possibilities of the Moldflow system (the AB "Universal" company) used for mathematical simulation of the technological process of injection moulding and making the moulds.
Vulnerability and cosusceptibility determine the size of network cascades
Yang, Yang; Nishikawa, Takashi; Motter, Adilson E.
2017-01-27
In a network, a local disturbance can propagate and eventually cause a substantial part of the system to fail in cascade events that are easy to conceptualize but extraordinarily difficult to predict. Furthermore, we develop a statistical framework that can predict cascade size distributions by incorporating two ingredients only: the vulnerability of individual components and the cosusceptibility of groups of components (i.e., their tendency to fail together). Using cascades in power grids as a representative example, we show that correlations between component failures define structured and often surprisingly large groups of cosusceptible components. Aside from their implications for blackout studies,more » these results provide insights and a new modeling framework for understanding cascades in financial systems, food webs, and complex networks in general.« less
Improving the distinguishable cluster results: spin-component scaling
NASA Astrophysics Data System (ADS)
Kats, Daniel
2018-06-01
The spin-component scaling is employed in the energy evaluation to improve the distinguishable cluster approach. SCS-DCSD reaction energies reproduce reference values with a root-mean-squared deviation well below 1 kcal/mol, the interaction energies are three to five times more accurate than DCSD, and molecular systems with a large amount of static electron correlation are still described reasonably well. SCS-DCSD represents a pragmatic approach to achieve chemical accuracy with a simple method without triples, which can also be applied to multi-configurational molecular systems.
Kinetic Equation for a Soliton Gas and Its Hydrodynamic Reductions
NASA Astrophysics Data System (ADS)
El, G. A.; Kamchatnov, A. M.; Pavlov, M. V.; Zykov, S. A.
2011-04-01
We introduce and study a new class of kinetic equations, which arise in the description of nonequilibrium macroscopic dynamics of soliton gases with elastic collisions between solitons. These equations represent nonlinear integro-differential systems and have a novel structure, which we investigate by studying in detail the class of N-component `cold-gas' hydrodynamic reductions. We prove that these reductions represent integrable linearly degenerate hydrodynamic type systems for arbitrary N which is a strong evidence in favour of integrability of the full kinetic equation. We derive compact explicit representations for the Riemann invariants and characteristic velocities of the hydrodynamic reductions in terms of the `cold-gas' component densities and construct a number of exact solutions having special properties (quasiperiodic, self-similar). Hydrodynamic symmetries are then derived and investigated. The obtained results shed light on the structure of a continuum limit for a large class of integrable systems of hydrodynamic type and are also relevant to the description of turbulent motion in conservative compressible flows.
Symbolic Constraint Maintenance Grid
NASA Technical Reports Server (NTRS)
James, Mark
2006-01-01
Version 3.1 of Symbolic Constraint Maintenance Grid (SCMG) is a software system that provides a general conceptual framework for utilizing pre-existing programming techniques to perform symbolic transformations of data. SCMG also provides a language (and an associated communication method and protocol) for representing constraints on the original non-symbolic data. SCMG provides a facility for exchanging information between numeric and symbolic components without knowing the details of the components themselves. In essence, it integrates symbolic software tools (for diagnosis, prognosis, and planning) with non-artificial-intelligence software. SCMG executes a process of symbolic summarization and monitoring of continuous time series data that are being abstractly represented as symbolic templates of information exchange. This summarization process enables such symbolic- reasoning computing systems as artificial- intelligence planning systems to evaluate the significance and effects of channels of data more efficiently than would otherwise be possible. As a result of the increased efficiency in representation, reasoning software can monitor more channels and is thus able to perform monitoring and control functions more effectively.
SRS Computer Animation and Drive Train System
NASA Technical Reports Server (NTRS)
Arthun, Daniel; Schachner, Christian
2001-01-01
The spinning rocket simulator (SRS) is an ongoing project at Oral Roberts University. The goal of the SRS is to gather crucial data concerning a spinning rocket under thrust for the purpose of analysis and correction of the coning motion experienced by this type of spacecraft maneuver. The computer animation simulates a virtual, scale model of the component of the SRS that represents the spacecraft itself. This component is known as the (VSM), or virtual spacecraft model. During actual physical simulation, this component of the SRS will experience a coning. The goal of the animation is to cone the VSM within that range to accurately represent the motion of the actual simulator. The drive system of the SRS is the apparatus that turns the actual simulator. It consists of a drive motor, motor mount and chain to power the simulator into motion. The motor mount is adjustable and rigid for high torque application. A digital stepper motor controller actuates the main drive motor for linear acceleration. The chain transfers power from the motor to the simulator via sprockets on both ends.
NASA Astrophysics Data System (ADS)
Liang, Q.; Wu, W.; Zhang, D.; Wei, B.; Sun, W.; Wang, Y.; Ge, Y.
2015-10-01
Roughness, which can represent the trade-off between manufacturing cost and performance of mechanical components, is a critical predictor of cracks, corrosion and fatigue damage. In order to measure polished or super-finished surfaces, a novel touch probe based on three-component force sensor for characterizing and quantifying surface roughness is proposed by using silicon micromachining technology. The sensor design is based on a cross-beam structure, which ensures that the system possesses high sensitivity and low coupling. The results show that the proposed sensor possesses high sensitivity, low coupling error, and temperature compensation function. The proposed system can be used to investigate micromechanical structures with nanometer accuracy.
ERIC Educational Resources Information Center
Mitchell, Eugene E., Ed.
The simulation of a sampled-data system is described that uses a full parallel hybrid computer. The sampled data system simulated illustrates the proportional-integral-derivative (PID) discrete control of a continuous second-order process representing a stirred-tank. The stirred-tank is simulated using continuous analog components, while PID…
Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy
NASA Astrophysics Data System (ADS)
Seo, Jihye; An, Yuri; Lee, Jungsul; Ku, Taeyun; Kang, Yujung; Ahn, Chulwoo; Choi, Chulhee
2016-04-01
Indocyanine green (ICG) fluorescence imaging has been clinically used for noninvasive visualizations of vascular structures. We have previously developed a diagnostic system based on dynamic ICG fluorescence imaging for sensitive detection of vascular disorders. However, because high-dimensional raw data were used, the analysis of the ICG dynamics proved difficult. We used principal component analysis (PCA) in this study to extract important elements without significant loss of information. We examined ICG spatiotemporal profiles and identified critical features related to vascular disorders. PCA time courses of the first three components showed a distinct pattern in diabetic patients. Among the major components, the second principal component (PC2) represented arterial-like features. The explained variance of PC2 in diabetic patients was significantly lower than in normal controls. To visualize the spatial pattern of PCs, pixels were mapped with red, green, and blue channels. The PC2 score showed an inverse pattern between normal controls and diabetic patients. We propose that PC2 can be used as a representative bioimaging marker for the screening of vascular diseases. It may also be useful in simple extractions of arterial-like features.
Measuring transportation in the U.S. economy
DOT National Transportation Integrated Search
1998-01-01
This paper argues that the System of National Accounts (SNA) is the most appropriate framework for comparable economic measures of national transportation, and shows that within the SNA transportation can be represented as an industry, as a component...
Components of an Effective Multi-Media System for College and University Instruction
ERIC Educational Resources Information Center
McVey, G. F.
1975-01-01
This article represents the text of an illustrated lecture presented at the Contece 2: The Second National Conference of Educational Technology Applied to Higher Education, October 14-19, 1973, Sao Paulo, Brazil. (Author)
Storytelling and environmental information: connecting schoolchildren and herpetofauna in Morocco.
Fanini, Lucia; Fahd, Soumia
2009-06-01
Northwestern Morocco is undergoing a sudden change in the level of infrastructure growth and pressure on the environment from increased tourism. The ongoing changes are raising questions about how the ecosystem will react, and the relevant drivers of these changes. The Oued Laou valley in north-west Morocco hosts high landscape, species and human cultural diversity. The Talassemtane National Park has been established to preserve the environment in this region; however, what information tools are available to children regarding this environment? The ecosystem is illustrated here using three components: herpetofauna (representing ecosystem components), problems related to water quantity and quality (representing interactions within ecosystem components) and Talassemtane National Park (representing a case of ecosystem management). A children's book was written on this topic, and when the book was delivered to pupils, a questionnaire was included, aimed at determining their sources of environmental information. The results identified major changes in the sources of information utilized by children in this part of Morocco, a clear role of schools in explaining ecosystem components, and an increasing role of TV in environmental information supply. The role of the family was found to be less important than TV or school. Another major source of pupils' environmental knowledge is personal observation and hands-on experience, both for rural and urban children. Children are willing to discover and understand complex systems, and researchers should be encouraged to supply children with correct and up-to-date information on environmental systems, focusing at first on the local environment, as a background for sustainable development. © 2009 ISZS, Blackwell Publishing and IOZ/CAS.
Towards a 3d Spatial Urban Energy Modelling Approach
NASA Astrophysics Data System (ADS)
Bahu, J.-M.; Koch, A.; Kremers, E.; Murshed, S. M.
2013-09-01
Today's needs to reduce the environmental impact of energy use impose dramatic changes for energy infrastructure and existing demand patterns (e.g. buildings) corresponding to their specific context. In addition, future energy systems are expected to integrate a considerable share of fluctuating power sources and equally a high share of distributed generation of electricity. Energy system models capable of describing such future systems and allowing the simulation of the impact of these developments thus require a spatial representation in order to reflect the local context and the boundary conditions. This paper describes two recent research approaches developed at EIFER in the fields of (a) geo-localised simulation of heat energy demand in cities based on 3D morphological data and (b) spatially explicit Agent-Based Models (ABM) for the simulation of smart grids. 3D city models were used to assess solar potential and heat energy demand of residential buildings which enable cities to target the building refurbishment potentials. Distributed energy systems require innovative modelling techniques where individual components are represented and can interact. With this approach, several smart grid demonstrators were simulated, where heterogeneous models are spatially represented. Coupling 3D geodata with energy system ABMs holds different advantages for both approaches. On one hand, energy system models can be enhanced with high resolution data from 3D city models and their semantic relations. Furthermore, they allow for spatial analysis and visualisation of the results, with emphasis on spatially and structurally correlations among the different layers (e.g. infrastructure, buildings, administrative zones) to provide an integrated approach. On the other hand, 3D models can benefit from more detailed system description of energy infrastructure, representing dynamic phenomena and high resolution models for energy use at component level. The proposed modelling strategies conceptually and practically integrate urban spatial and energy planning approaches. The combined modelling approach that will be developed based on the described sectorial models holds the potential to represent hybrid energy systems coupling distributed generation of electricity with thermal conversion systems.
Data Applicability of Heritage and New Hardware For Launch Vehicle Reliability Models
NASA Technical Reports Server (NTRS)
Al Hassan, Mohammad; Novack, Steven
2015-01-01
Bayesian reliability requires the development of a prior distribution to represent degree of belief about the value of a parameter (such as a component's failure rate) before system specific data become available from testing or operations. Generic failure data are often provided in reliability databases as point estimates (mean or median). A component's failure rate is considered a random variable where all possible values are represented by a probability distribution. The applicability of the generic data source is a significant source of uncertainty that affects the spread of the distribution. This presentation discusses heuristic guidelines for quantifying uncertainty due to generic data applicability when developing prior distributions mainly from reliability predictions.
Anning, David W.; Konieczki, Alice D.
2005-01-01
The hydrogeology of the Basin and Range Physiographic Province in parts of Arizona, California, New Mexico, Utah, and most of Nevada was classified at basin and larger scales to facilitate information transfer and to provide a synthesis of results from many previous hydrologic investigations. A conceptual model for the spatial hierarchy of the hydrogeology was developed for the Basin and Range Physiographic Province and consists, in order of increasing spatial scale, of hydrogeologic components, hydrogeologic areas, hydrogeologic flow systems, and hydrogeologic regions. This hierarchy formed a framework for hydrogeologic classification. Hydrogeologic areas consist of coincident ground-water and surface-water basins and were delineated on the basis of existing sets of basin boundaries that were used in past investigations by State and Federal government agencies. Within the study area, 344 hydrogeologic areas were identified and delineated. This set of basins not only provides a framework for the classification developed in this report, but also has value for regional and subregional purposes of inventory, study, analysis, and planning throughout the Basin and Range Physiographic Province. The fact that nearly all of the province is delineated by the hydrogeologic areas makes this set well suited to support regional-scale investigations. Hydrogeologic areas are conceptualized as a control volume consisting of three hydrogeologic components: the soils and streams, basin fill, and consolidated rocks. The soils and streams hydrogeologic component consists of all surface-water bodies and soils extending to the bottom of the plant root zone. The basin-fill hydrogeologic component consists of unconsolidated and semiconsolidated sediment deposited in the structural basin. The consolidated-rocks hydrogeologic component consists of the crystalline and sedimentary rocks that form the mountain blocks and basement rock of the structural basin. Hydrogeologic areas were classified into 19 groups through a cluster analysis of 8 characteristics of each area's hydrologic system. Six characteristics represented the inflows and outflows of water through the soils and streams, basin fill, and consolidated rocks, and can be used to determine the hydrogeologic area's position in a hydrogeologic flow system. Source-, link-, and sink-type hydrogeologic areas have outflow but not inflow, inflow and outflow, and inflow but not outflow, respectively, through one or more of the three hydrogeologic components. Isolated hydrogeologic areas have no inflow or outflow through any of the three hydrogeologic components. The remaining two characteristics are indexes that represent natural recharge and discharge processes and anthropogenic recharge and discharge processes occurring in the hydrogeologic area. Of the 19 groups of hydrogeologic areas, 1 consisted of predominantly isolated-type hydrogeologic areas, 7 consisted of source-type hydrogeologic areas, 9 consisted of link-type hydrogeologic areas, and 2 consisted of sink-type hydrogeologic areas. Groups comprising the source-, link-, and sink-type hydrogeologic areas can be distinguished between each other on the basis of the hydrogeologic component(s) through which interbasin flow occurs, as well as typical values for the two indexes. Conceptual models of the hydrologic systems of a representative hydrogeologic area for each group were developed to help distinguish groups and to synthesize the variation in hydrogeologic systems in the Basin and Range Physiographic Province. Hydrogeologic flow systems consist of either a single isolated hydrogeologic area or a series of multiple hydrogeologic areas that are hydraulically connected through interbasin flows. A total of 54 hydrogeologic flow systems were identified and classified into 9 groups. One group consisted of single isolated hydrogeologic areas. The remaining eight groups consisted of multiple hydrogeologic areas and were distinguished o
Steady-state simulation program for attitude control propulsion systems
NASA Technical Reports Server (NTRS)
Heinmiller, P. J.
1973-01-01
The formulation and the engineering equations employed in the steady state attitude control propulsion system simulation program are presented. The objective of this program is to aid in the preliminary design and development of propulsion systems used for spacecraft attitude control. The program simulates the integrated operation of the many interdependent components typically comprising an attitude control propulsion system. Flexibility, generality, ease of operation, and speed consistent with adequate accuracy were overriding considerations during the development of this program. Simulation modules were developed representing the various types of fluid components typically encountered in an attitude control propulsion system. These modules are basically self-contained and may be arranged by the program user into desired configuration through the program input data.
2010-01-01
multi-system organ failure, and remote organ injury at sites such as the lung, liver , small intestines, and brain, representing major causes of...inflammatory components. The development of systemic inflammation following severe thermal injury has been implicated in immune dysfunction, delayed wound...healing, multi-system organ failure and increased mortality. Methods: In this study, we examined the impact of thermal injury -induced systemic
Kazuta, Yasuaki; Matsuura, Tomoaki; Ichihashi, Norikazu; Yomo, Tetsuya
2014-11-01
In this study, the amount of protein synthesized using an in vitro protein synthesis system composed of only highly purified components (the PURE system) was optimized. By varying the concentrations of each system component, we determined the component concentrations that result in the synthesis of 0.38 mg/mL green fluorescent protein (GFP) in batch mode and 3.8 mg/mL GFP in dialysis mode. In dialysis mode, protein concentrations of 4.3 and 4.4 mg/mL were synthesized for dihydrofolate reductase and β-galactosidase, respectively. Using the optimized system, the synthesized protein represented 30% (w/w) of the total protein, which is comparable to the level of overexpressed protein in Escherichia coli cells. This optimized reconstituted in vitro protein synthesis system may potentially be useful for various applications, including in vitro directed evolution of proteins, artificial cell assembly, and protein structural studies. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Hydrological processes and the water budget of lakes
Winter, Thomas C.; Lerman, Abraham; Imboden, Dieter M.; Gat, Joel R.
1995-01-01
Lakes interact with all components of the hydrological system: atmospheric water, surface water, and groundwater. The fluxes of water to and from lakes with regard to each of these components represent the water budget of a lake. Mathematically, the concept of a water budget is deceptively simple: income equals outgo, plus or minus change in storage. In practice, however, measuring the water fluxes to and from lakes accurately is not simple, because understanding of the various hydrological processes and the ability to measure the various hydrological components are limited.
NASA Astrophysics Data System (ADS)
Reynders, Edwin P. B.; Langley, Robin S.
2018-08-01
The hybrid deterministic-statistical energy analysis method has proven to be a versatile framework for modeling built-up vibro-acoustic systems. The stiff system components are modeled deterministically, e.g., using the finite element method, while the wave fields in the flexible components are modeled as diffuse. In the present paper, the hybrid method is extended such that not only the ensemble mean and variance of the harmonic system response can be computed, but also of the band-averaged system response. This variance represents the uncertainty that is due to the assumption of a diffuse field in the flexible components of the hybrid system. The developments start with a cross-frequency generalization of the reciprocity relationship between the total energy in a diffuse field and the cross spectrum of the blocked reverberant loading at the boundaries of that field. By making extensive use of this generalization in a first-order perturbation analysis, explicit expressions are derived for the cross-frequency and band-averaged variance of the vibrational energies in the diffuse components and for the cross-frequency and band-averaged variance of the cross spectrum of the vibro-acoustic field response of the deterministic components. These expressions are extensively validated against detailed Monte Carlo analyses of coupled plate systems in which diffuse fields are simulated by randomly distributing small point masses across the flexible components, and good agreement is found.
Xenon in the Protoplanetary Disk (PPD-Xe)
NASA Astrophysics Data System (ADS)
Marti, K.; Mathew, K. J.
2015-06-01
Relationships among solar system Xe components as observed in the solar wind, in planetary atmospheres, and in meteorites are investigated using isotopic correlations. The term PPD-Xe is used for components inferred to have been present in the molecular cloud material that formed the protoplanetary disk (PPD). The evidence of the lack of simple relationships between terrestrial atmospheric Xe and solar or meteoritic components is confirmed. Xe isotopic correlations indicate a heterogeneous PPD composition with variable mixing ratios of the nucleosynthetic component Xe-HL. Solar Xe represents a bulk PPD component, and the isotopic abundances did not change from the time of incorporation into the interior of Mars through times of regolith implantations to the present.
Arabidopsis myrosinases link the glucosinolate-myrosinase system and the cuticle
Ahuja, Ishita; de Vos, Ric C. H.; Rohloff, Jens; Stoopen, Geert M.; Halle, Kari K.; Ahmad, Samina Jam Nazeer; Hoang, Linh; Hall, Robert D.; Bones, Atle M.
2016-01-01
Both physical barriers and reactive phytochemicals represent two important components of a plant’s defence system against environmental stress. However, these two defence systems have generally been studied independently. Here, we have taken an exclusive opportunity to investigate the connection between a chemical-based plant defence system, represented by the glucosinolate-myrosinase system, and a physical barrier, represented by the cuticle, using Arabidopsis myrosinase (thioglucosidase; TGG) mutants. The tgg1, single and tgg1 tgg2 double mutants showed morphological changes compared to wild-type plants visible as changes in pavement cells, stomatal cells and the ultrastructure of the cuticle. Extensive metabolite analyses of leaves from tgg mutants and wild-type Arabidopsis plants showed altered levels of cuticular fatty acids, fatty acid phytyl esters, glucosinolates, and indole compounds in tgg single and double mutants as compared to wild-type plants. These results point to a close and novel association between chemical defence systems and physical defence barriers. PMID:27976683
Evaluation of a proposed method for representing drug terminology.
Cimino, J. J.; McNamara, T. J.; Meredith, T.; Broverman, C. A.; Eckert, K. C.; Moore, M.; Tyree, D. J.
1999-01-01
In the absence of a single, standard, multipurpose terminology for representing medications, the HL7 Vocabulary Technical Committee has sought to develop a model for such terms in a way that will provide a unified method for representing them and supporting interoperability among various terminology systems. We evaluated the preliminary model by obtaining terms, represented in our model, from three leading vendors of pharmacy system knowledge bases. A total of 2303 terms were obtained, and 3982 pair-wise comparisons were possible. We found that the components of the term descriptions matched 68-87% of the time and that the overall descriptions matched 53% of the time. The evaluation has identified a number of areas in the model where more rigorous definitions will be needed in order to improve the matching rate. This paper discusses the implications of these results. PMID:10566318
NASA Astrophysics Data System (ADS)
Thompson, P. M. E.; Kempton, P. D.; White, R. V.; Kerr, A. C.; Tarney, J.; Saunders, A. D.; Fitton, J. G.; McBirney, A.
2004-01-01
Formation of the Cretaceous Caribbean plateau, including the komatiites of Gorgona, has been linked to the currently active Galápagos hotspot. We use Hf-Nd isotopes and trace element data to characterise both the Caribbean plateau and the Galápagos hotspot, and to investigate the relationship between them. Four geochemical components are identified in the Galápagos mantle plume: two 'enriched' components with ɛHf and ɛNd similar to enriched components observed in other mantle plumes, one moderately enriched component with high Nb/Y, and a fourth component which most likely represents depleted MORB source mantle. The Caribbean plateau basalt data form a linear array in Hf-Nd isotope space, consistent with mixing between two mantle components. Combined Hf-Nd-Pb-Sr-He isotope and trace element data from this study and the literature suggest that the more enriched Caribbean end member corresponds to one or both of the enriched components identified on Galápagos. Likewise, the depleted end member of the array is geochemically indistinguishable from MORB and corresponds to the depleted component of the Galápagos system. Enriched basalts from Gorgona partially overlap with the Caribbean plateau array in ɛHf vs. ɛNd, whereas depleted basalts, picrites and komatiites from Gorgona have a high ɛHf for a given ɛNd, defining a high- ɛHf depleted end member that is not observed elsewhere within the Caribbean plateau sequences. This component is similar, however, in terms of Hf-Nd-Pb-He isotopes and trace elements to the depleted plume component recognised in basalts from Iceland and along the Reykjanes Ridge. We suggest that the Caribbean plateau represents the initial outpourings of the ancestral Galápagos plume. Absence of a moderately enriched, high Nb/Y component in the older Caribbean plateau (but found today on the island of Floreana) is either due to changing source compositions of the plume over its 90 Ma history, or is an artifact of limited sampling. The high- ɛHf depleted component sampled by the Gorgona komatiites and depleted basalts is unique to Gorgona and is not found in the Caribbean plateau. This may be an indication of the scale of heterogeneity of the Caribbean plateau system; alternatively Gorgona may represent a separate oceanic plateau derived from a completely different Pacific plume, such as the Sala y Gomez.
Planetary-scale circulations in the presence of climatological and wave-induced heating
NASA Technical Reports Server (NTRS)
Salby, Murry L; Garcia, Rolando R.; Hendon, Harry H.
1994-01-01
Interaction between the large-scale circulation and the convective pattern is investigated in a coupled system governed by the linearized primitive equations. Convection is represented in terms of two components of heating: A 'climatological component' is prescribed stochastically to represent convection that is maintained by fixed distributions of land and sea and sea surface temperature (SST). An 'induced component' is defined in terms of the column-integrated moisture flux convergence to represent convection that is produced through feedback with the circulation. Each component describes the envelope organizing mesoscale convective activity. As SST on the equator is increased, induced heating amplifies in the gravest zonal wavenumbers at eastward frequencies, where positive feedback offsets dissipation. Under barotropic stratification, a critical SST of 29.5 C results in positive feedback exactly cancelling dissipation in wavenumber 1 for an eastward phase speed of 6 m/s. Sympathetic interaction between the circulation and the induced heating is the basis for 'frictional wave-Conditional Instability of the Second Kind (CISK)', which is distinguished from classical wave-CISK by rendering the gravest zonal dimensions most unstable. Under baroclinic stratification, the coupled system exhibits similar behavior. The critical SST is only 26.5 C for conditions representative of equinox, but in excess of 30 C for conditions representative of solstice. Having the form of an unsteady Walker circulation, the disturbance produced by frictional wave-CISK compares favorably with the observed life cycle of the Madden-Julian oscillation (MJO). SST above the critical value produces an amplifying disturbance in which enhanced convection coincides with upper-tropospheric westerlies and is positively correlated with temperature and surface convergence. Conversely, SST below the critical value produces a decaying disturbance in which enhanced convection coincides with upper-tropospheric easterlies and is nearly in quadrature with temperature and surface convergence. While sharing essential features with the MJO in the Eastern Hemisphere, frictional wave-CISK does not explain observed behavior in the Western Hemisphere, where the convective signal is largely absent. Comprised of Kelvin structure with the same frequency, observed behavior in the Western Hemisphere can be understood as a propagating response that is excited in and radiates away from the fluctuation of convection in the Eastern Hemisphere.
76 FR 4458 - Privacy Act of 1974; Report of Modified or Altered System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-25
..., any component of the Department, or any employee of the Department in his or her official capacity; (b... or her individual capacity where the Department of Justice has agreed to represent such employee, for... computer room is protected by an automatic sprinkler system, numerous automatic sensors (e.g., water, heat...
Fac-Back-OPAC: An Open Source Interface to Your Library System
ERIC Educational Resources Information Center
Beccaria, Mike; Scott, Dan
2007-01-01
The new Fac-Back-OPAC (a faceted backup OPAC) is built on code that was originally developed by Casey Durfee in February 2007. It represents the convergence of two prominent trends in library tools: the decoupling of discovery tools from the traditional integrated library system (ILS) and the use of readily available open source components to…
An architecture for object-oriented intelligent control of power systems in space
NASA Technical Reports Server (NTRS)
Holmquist, Sven G.; Jayaram, Prakash; Jansen, Ben H.
1993-01-01
A control system for autonomous distribution and control of electrical power during space missions is being developed. This system should free the astronauts from localizing faults and reconfiguring loads if problems with the power distribution and generation components occur. The control system uses an object-oriented simulation model of the power system and first principle knowledge to detect, identify, and isolate faults. Each power system component is represented as a separate object with knowledge of its normal behavior. The reasoning process takes place at three different levels of abstraction: the Physical Component Model (PCM) level, the Electrical Equivalent Model (EEM) level, and the Functional System Model (FSM) level, with the PCM the lowest level of abstraction and the FSM the highest. At the EEM level the power system components are reasoned about as their electrical equivalents, e.g, a resistive load is thought of as a resistor. However, at the PCM level detailed knowledge about the component's specific characteristics is taken into account. The FSM level models the system at the subsystem level, a level appropriate for reconfiguration and scheduling. The control system operates in two modes, a reactive and a proactive mode, simultaneously. In the reactive mode the control system receives measurement data from the power system and compares these values with values determined through simulation to detect the existence of a fault. The nature of the fault is then identified through a model-based reasoning process using mainly the EEM. Compound component models are constructed at the EEM level and used in the fault identification process. In the proactive mode the reasoning takes place at the PCM level. Individual components determine their future health status using a physical model and measured historical data. In case changes in the health status seem imminent the component warns the control system about its impending failure. The fault isolation process uses the FSM level for its reasoning base.
Ground resonance analysis using a substructure modeling approach
NASA Technical Reports Server (NTRS)
Chen, S.-Y.; Berman, A.; Austin, E. E.
1984-01-01
A convenient and versatile procedure for modeling and analyzing ground resonance phenomena is described and illustrated. A computer program is used which dynamically couples differential equations with nonlinear and time dependent coefficients. Each set of differential equations may represent a component such as a rotor, fuselage, landing gear, or a failed damper. Arbitrary combinations of such components may be formulated into a model of a system. When the coupled equations are formed, a procedure is executed which uses a Floquet analysis to determine the stability of the system. Illustrations of the use of the procedures along with the numerical examples are presented.
Ground resonance analysis using a substructure modeling approach
NASA Technical Reports Server (NTRS)
Chen, S. Y.; Austin, E. E.; Berman, A.
1985-01-01
A convenient and versatile procedure for modeling and analyzing ground resonance phenomena is described and illustrated. A computer program is used which dynamically couples differential equations with nonlinear and time dependent coefficients. Each set of differential equations may represent a component such as a rotor, fuselage, landing gear, or a failed damper. Arbitrary combinations of such components may be formulated into a model of a system. When the coupled equations are formed, a procedure is executed which uses a Floquet analysis to determine the stability of the system. Illustrations of the use of the procedures along with the numerical examples are presented.
User's manual for the Composite HTGR Analysis Program (CHAP-1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, J.S.; Secker, P.A. Jr.; Vigil, J.C.
1977-03-01
CHAP-1 is the first release version of an HTGR overall plant simulation program with both steady-state and transient solution capabilities. It consists of a model-independent systems analysis program and a collection of linked modules, each representing one or more components of the HTGR plant. Detailed instructions on the operation of the code and detailed descriptions of the HTGR model are provided. Information is also provided to allow the user to easily incorporate additional component modules, to modify or replace existing modules, or to incorporate a completely new simulation model into the CHAP systems analysis framework.
Preliminary tests of vulnerability of typical aircraft electronics to lightning-induced voltages
NASA Technical Reports Server (NTRS)
Plumer, J. A.; Walko, L. C.
1974-01-01
Tests made on two pieces of typical aircraft electronics equipment to ascertain their vulnerability to simulated lightning-induced transient voltages representative of those which might occur in flight when the aircraft is struck by lightning were conducted. The test results demonstrated that such equipment can be interfered with or damaged by transient voltages as low as 21 volts peak. Greater voltages can cause failure of semiconductor components within the equipment. The results emphasize a need for establishment of coordinated system susceptibility and component vulnerability criteria to achieve lightning protection of aerospace electrical and electronic systems.
Towards an Automated Full-Turbofan Engine Numerical Simulation
NASA Technical Reports Server (NTRS)
Reed, John A.; Turner, Mark G.; Norris, Andrew; Veres, Joseph P.
2003-01-01
The objective of this study was to demonstrate the high-fidelity numerical simulation of a modern high-bypass turbofan engine. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled three-dimensional computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady-state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the three-dimensional component models are integrated into the cycle model via partial performance maps generated automatically from the CFD flow solutions using one-dimensional meanline turbomachinery programs. This paper reports on the progress made towards the full-engine simulation of the GE90-94B engine, highlighting the generation of the high-pressure compressor partial performance map. The ongoing work will provide a system to evaluate the steady and unsteady aerodynamic and mechanical interactions between engine components at design and off-design operating conditions.
One Approach for Transitioning the iNET Standards into the IRIG 106 Telemetry Standards
2015-05-26
Protocol Suite. Figure 1 illustrates the Open Systems Interconnection ( OSI ) Model, the corresponding TCP/IP Model, and the major components of the TCP...IP Protocol Suite. Figure 2 represents the iNET-specific protocols layered onto the TCP/IP Model. Figure 1. OSI and TCP/IP Model with TCP/IP...Protocol Suite TCP/IP Protocol Suite Major Components IPv4 IPv6 TCP/IP Model OSI Model Application Presentation
Optimization of offsets and cycle length using high resolution signal event data.
DOT National Transportation Integrated Search
2011-01-01
Traffic signal systems represent a substantial component of the highway transportation network in the United States. It is challenging for most agencies to find engineering resources to properly update signal policies and timing plans to accommodate ...
A Framework for Integrated Component and System Analyses of Instabilities
NASA Technical Reports Server (NTRS)
Ahuja, Vineet; Erwin, James; Arunajatesan, Srinivasan; Cattafesta, Lou; Liu, Fei
2010-01-01
Instabilities associated with fluid handling and operation in liquid rocket propulsion systems and test facilities usually manifest themselves as structural vibrations or some form of structural damage. While the source of the instability is directly related to the performance of a component such as a turbopump, valve or a flow control element, the associated pressure fluctuations as they propagate through the system have the potential to amplify and resonate with natural modes of the structural elements and components of the system. In this paper, the authors have developed an innovative multi-level approach that involves analysis at the component and systems level. The primary source of the unsteadiness is modeled with a high-fidelity hybrid RANS/LES based CFD methodology that has been previously used to study instabilities in feed systems. This high fidelity approach is used to quantify the instability and understand the physics associated with the instability. System response to the driving instability is determined through a transfer matrix approach wherein the incoming and outgoing pressure and velocity fluctuations are related through a transfer (or transmission) matrix. The coefficients of the transfer matrix for each component (i.e. valve, pipe, orifice etc.) are individually derived from the flow physics associated with the component. A demonstration case representing a test loop/test facility comprised of a network of elements is constructed with the transfer matrix approach and the amplification of modes analyzed as the instability propagates through the test loop.
NASA Technical Reports Server (NTRS)
1991-01-01
The Engineering Scripting Language (ESL) is a language designed to allow nonprogramming users to write Higher Order Language (HOL) programs by drawing directed graphs to represent the program and having the system generate the corresponding program in HOL. The ESL system supports user generation of HOL programs through the manipulation of directed graphs. The components of this graphs (nodes, ports, and connectors) are objects each of which has its own properties and property values. The purpose of the ESL graphical editor is to allow the user to create or edit graph objects which represent programs.
Reliability demonstration test for load-sharing systems with exponential and Weibull components
Hu, Qingpei; Yu, Dan; Xie, Min
2017-01-01
Conducting a Reliability Demonstration Test (RDT) is a crucial step in production. Products are tested under certain schemes to demonstrate whether their reliability indices reach pre-specified thresholds. Test schemes for RDT have been studied in different situations, e.g., lifetime testing, degradation testing and accelerated testing. Systems designed with several structures are also investigated in many RDT plans. Despite the availability of a range of test plans for different systems, RDT planning for load-sharing systems hasn’t yet received the attention it deserves. In this paper, we propose a demonstration method for two specific types of load-sharing systems with components subject to two distributions: exponential and Weibull. Based on the assumptions and interpretations made in several previous works on such load-sharing systems, we set the mean time to failure (MTTF) of the total system as the demonstration target. We represent the MTTF as a summation of mean time between successive component failures. Next, we introduce generalized test statistics for both the underlying distributions. Finally, RDT plans for the two types of systems are established on the basis of these test statistics. PMID:29284030
Reliability demonstration test for load-sharing systems with exponential and Weibull components.
Xu, Jianyu; Hu, Qingpei; Yu, Dan; Xie, Min
2017-01-01
Conducting a Reliability Demonstration Test (RDT) is a crucial step in production. Products are tested under certain schemes to demonstrate whether their reliability indices reach pre-specified thresholds. Test schemes for RDT have been studied in different situations, e.g., lifetime testing, degradation testing and accelerated testing. Systems designed with several structures are also investigated in many RDT plans. Despite the availability of a range of test plans for different systems, RDT planning for load-sharing systems hasn't yet received the attention it deserves. In this paper, we propose a demonstration method for two specific types of load-sharing systems with components subject to two distributions: exponential and Weibull. Based on the assumptions and interpretations made in several previous works on such load-sharing systems, we set the mean time to failure (MTTF) of the total system as the demonstration target. We represent the MTTF as a summation of mean time between successive component failures. Next, we introduce generalized test statistics for both the underlying distributions. Finally, RDT plans for the two types of systems are established on the basis of these test statistics.
Effect of Individual Component Life Distribution on Engine Life Prediction
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.; Hendricks, Robert C.; Soditus, Sherry M.
2003-01-01
The effect of individual engine component life distributions on engine life prediction was determined. A Weibull-based life and reliability analysis of the NASA Energy Efficient Engine was conducted. The engine s life at a 95 and 99.9 percent probability of survival was determined based upon the engine manufacturer s original life calculations and assumed values of each of the component s cumulative life distributions as represented by a Weibull slope. The lives of the high-pressure turbine (HPT) disks and blades were also evaluated individually and as a system in a similar manner. Knowing the statistical cumulative distribution of each engine component with reasonable engineering certainty is a condition precedent to predicting the life and reliability of an entire engine. The life of a system at a given reliability will be less than the lowest-lived component in the system at the same reliability (probability of survival). Where Weibull slopes of all the engine components are equal, the Weibull slope had a minimal effect on engine L(sub 0.1) life prediction. However, at a probability of survival of 95 percent (L(sub 5) life), life decreased with increasing Weibull slope.
JEN-1 Reactor Control System; SISTEMA DE CONTROL DEL REACTOR JEN-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantillo, M.F.; Nuno, C.M.; Andreu, J.L.M.
1963-01-01
ABS>The JEN-1 3Mw power swimming pool reactor electrical control circuits are described. Start-up, power generation in the core, and shutdown are controlled by the reactor control system. This control system guarantees in each moment the safety conditions during reactor operation. Each circuit was represented by a scheme, complemented with a description of its function, components, and operation theory. Components described include: scram circuit; fission counter control circuit; servo control circuit; control circuit of safety sheets; control circuits of primary, secondary, and clean-up pump motors and tower fan motor; primary valve motor circuit; center cubicle alarm circuit; and process alarm circuit.more » (auth)« less
Using graph theory to analyze biological networks
2011-01-01
Understanding complex systems often requires a bottom-up analysis towards a systems biology approach. The need to investigate a system, not only as individual components but as a whole, emerges. This can be done by examining the elementary constituents individually and then how these are connected. The myriad components of a system and their interactions are best characterized as networks and they are mainly represented as graphs where thousands of nodes are connected with thousands of vertices. In this article we demonstrate approaches, models and methods from the graph theory universe and we discuss ways in which they can be used to reveal hidden properties and features of a network. This network profiling combined with knowledge extraction will help us to better understand the biological significance of the system. PMID:21527005
Computer systems and methods for visualizing data
Stolte, Chris; Hanrahan, Patrick
2010-07-13
A method for forming a visual plot using a hierarchical structure of a dataset. The dataset comprises a measure and a dimension. The dimension consists of a plurality of levels. The plurality of levels form a dimension hierarchy. The visual plot is constructed based on a specification. A first level from the plurality of levels is represented by a first component of the visual plot. A second level from the plurality of levels is represented by a second component of the visual plot. The dataset is queried to retrieve data in accordance with the specification. The data includes all or a portion of the dimension and all or a portion of the measure. The visual plot is populated with the retrieved data in accordance with the specification.
Computer systems and methods for visualizing data
Stolte, Chris; Hanrahan, Patrick
2013-01-29
A method for forming a visual plot using a hierarchical structure of a dataset. The dataset comprises a measure and a dimension. The dimension consists of a plurality of levels. The plurality of levels form a dimension hierarchy. The visual plot is constructed based on a specification. A first level from the plurality of levels is represented by a first component of the visual plot. A second level from the plurality of levels is represented by a second component of the visual plot. The dataset is queried to retrieve data in accordance with the specification. The data includes all or a portion of the dimension and all or a portion of the measure. The visual plot is populated with the retrieved data in accordance with the specification.
Color Image Processing and Object Tracking System
NASA Technical Reports Server (NTRS)
Klimek, Robert B.; Wright, Ted W.; Sielken, Robert S.
1996-01-01
This report describes a personal computer based system for automatic and semiautomatic tracking of objects on film or video tape, developed to meet the needs of the Microgravity Combustion and Fluids Science Research Programs at the NASA Lewis Research Center. The system consists of individual hardware components working under computer control to achieve a high degree of automation. The most important hardware components include 16-mm and 35-mm film transports, a high resolution digital camera mounted on a x-y-z micro-positioning stage, an S-VHS tapedeck, an Hi8 tapedeck, video laserdisk, and a framegrabber. All of the image input devices are remotely controlled by a computer. Software was developed to integrate the overall operation of the system including device frame incrementation, grabbing of image frames, image processing of the object's neighborhood, locating the position of the object being tracked, and storing the coordinates in a file. This process is performed repeatedly until the last frame is reached. Several different tracking methods are supported. To illustrate the process, two representative applications of the system are described. These applications represent typical uses of the system and include tracking the propagation of a flame front and tracking the movement of a liquid-gas interface with extremely poor visibility.
Weber, R E; Sullivan, B; Bonaventura, J; Bonaventura, C
1976-05-20
Blood from the primitive holostean fish, the bowfin, Amia calva, contains 2 mo of ATP per mol of hemoglobin. The hemolysates contain at least five tetrameric hemoglobin components which differ in their oxygen affinities and their response to cofactors such as ATP. The binding of oxygen by each chromatographically isolated component, including a cathodal component, is influenced by pH and organic phosphates; there is no significant differentiation of function or structure as seen in trout and certain other fish hemolysates. Kinetic analyses of ligand binding indicate that the Bohr and Root effects of Amia calva hemoglobins are best explained by changes in both the "on" and "off" constants. At low pH, the increase in the "off" constant is smaller than for most other Root hemoglobins. The hemoglobin system of Amina calva is functionally undifferentiated and may be representative of the ancestral condition in teleosts.
Principal Components Analysis of a JWST NIRSpec Detector Subsystem
NASA Technical Reports Server (NTRS)
Arendt, Richard G.; Fixsen, D. J.; Greenhouse, Matthew A.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Mott, D. Brent; Rauscher, Bernard J.; Wen, Yiting;
2013-01-01
We present principal component analysis (PCA) of a flight-representative James Webb Space Telescope NearInfrared Spectrograph (NIRSpec) Detector Subsystem. Although our results are specific to NIRSpec and its T - 40 K SIDECAR ASICs and 5 m cutoff H2RG detector arrays, the underlying technical approach is more general. We describe how we measured the systems response to small environmental perturbations by modulating a set of bias voltages and temperature. We used this information to compute the systems principal noise components. Together with information from the astronomical scene, we show how the zeroth principal component can be used to calibrate out the effects of small thermal and electrical instabilities to produce cosmetically cleaner images with significantly less correlated noise. Alternatively, if one were designing a new instrument, one could use a similar PCA approach to inform a set of environmental requirements (temperature stability, electrical stability, etc.) that enabled the planned instrument to meet performance requirements
ASSESSING HEADWATER STREAMS: LINKING LANDSCAPES TO STREAM NETWORKS
Headwater streams represent a significant land-water boundary and drain 70-80% of the landscape. Headwater streams are vital components to drainage systems and are directly linked to our downstream rivers and lakes. However, alteration and loss of headwater streams have occurre...
ERIC Educational Resources Information Center
Schneider, Stephen H.
1989-01-01
Discusses the global change of climate. Presents the trend of climate change with graphs. Describes mathematical climate models including expressions for the interacting components of the ocean-atmosphere system and equations representing the basic physical laws governing their behavior. Provides three possible responses on the change. (YP)
Xenon in the protoplanetary disk (PPD-XE)
Marti, K.; Mathew, K. J.
2015-06-18
Relationships among solar system Xe components as observed in the solar wind (SW), in planetary atmospheres and in meteorites are investigated using isotopic correlations. The term PPD-Xe is used for components inferred to have been present in the molecular cloud material that formed the protoplanetary disk (PPD). The evidence of the lack of simple relationships between terrestrial atmospheric Xe and solar or meteoritic components is confirmed. Xe isotopic correlations indicate a heterogeneous PPD composition with variable mixing ratios of the nucleosynthetic component Xe-HL. Solar Xe represents a bulk PPD component, and the isotopic abundances did not change from the timemore » of incorporation into the interior of Mars, through times of regolith implantations to the present.« less
Bacterial contamination of platelet components not detected by BacT/ALERT®.
Abela, M A; Fenning, S; Maguire, K A; Morris, K G
2018-02-01
To investigate the possible causes for false negative results in BacT/ALERT ® 3D Signature System despite bacterial contamination of platelet units. The Northern Ireland Blood Transfusion Service (NIBTS) routinely extends platelet component shelf life to 7 days. Components are sampled and screened for bacterial contamination using an automated microbial detection system, the BacT/ALERT ® 3D Signature System. We report on three platelet components with confirmed bacterial contamination, which represent false negative BacT/ALERT ® results and near-miss serious adverse events. NIBTS protocols for risk reduction of bacterial contamination of platelet components are described. The methodology for bacterial detection using BacT/ALERT ® is outlined. Laboratory tests, relevant patient details and relevant follow-up information are analysed. In all three cases, Staphylococcus aureus was isolated from the platelet residue and confirmed on terminal sub-culture using BacT/ALERT ® . In two cases, S. aureus with similar genetic makeup was isolated from the donors. Risk reduction measures for bacterial contamination of platelet components are not always effective. Automated bacterial culture detection does not eliminate the risk of bacterial contamination. Visual inspection of platelet components prior to release, issue and administration remains an important last line of defence. © 2017 British Blood Transfusion Society.
Unravelling Responses for the Canadian National Seismic Network
NASA Astrophysics Data System (ADS)
Mulder, T. L.
2009-12-01
There are a number of attendant difficulties any network must deal with that range from defining the transfer function to instrument naming conventions to choices of final local file format representation. These choices ultimately result in the ease of conversion to other data formats and therefore directly impact useability. In particular, the ease of data exhange and use of established software that is dependent on standard data types is impacted. This becomes particularly critical with large (terabyte) dataset processing and when integrating external datasets into analysis procedures. Transfer functions, often referred to as instrument responses, are a key component in describing instrumentation. The transfer function describes the complete response of the seismic system. The seismic system is designed to be a linear system that can be decomposed into discrete components. Analogue or digital convolution can be represented as multiplication in the frequency domain. The two basic elements of a seismic system are the sensor and datalogger. The analogue sensor can be represented mathmatically as poles and zeroes. The datalogger can be further broken down into its discrete analogue and digital components: the preamp, A/D converter, and fir filters. The Canadian seismic network (CNSN) digitizers have an additional complication. To save telemetry band-width, the 32 bit signal from the digitizer has a transmission gain removed. The transmission gain (txgain) represents the number of the least significant bits truncated from the sample (2^txgain) after which the data is compressed and transmitted. While telemetry band-width is not the issue it was, now that many sites have ip connectivity, this user programmable transmission gain is still in use and can vary from station to station. The processes receiving the transmitted data do not restore the pre-transmission scaling, consequently the archived waveform files can vary in bit weight over time from station to station depending on the value of the transmission gain. Consequently the transmission gain must be factored into the transfer function. This presentation describes the process for generating the transfer function based on the constituent components discussed here. A matlab routine run on the database generates the transfer function plots for the network.
Kulhánek, Tomáš; Kofránek, Jiří; Mateják, Marek
2014-11-01
This letter introduces an alternative approach to modeling the cardiovascular system with a short-term control mechanism published in Computers in Biology and Medicine, Vol. 47 (2014), pp. 104-112. We recommend using abstract components on a distinct physical level, separating the model into hydraulic components, subsystems of the cardiovascular system and individual subsystems of the control mechanism and scenario. We recommend utilizing an acausal modeling feature of Modelica language, which allows model variables to be expressed declaratively. Furthermore, the Modelica tool identifies which are the dependent and independent variables upon compilation. An example of our approach is introduced on several elementary components representing the hydraulic resistance to fluid flow and the elastic response of the vessel, among others. The introduced model implementation can be more reusable and understandable for the general scientific community. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Logical Framework for Service Migration Based Survivability
2016-06-24
platforms; Service Migration Strategy Fuzzy Inference System Knowledge Base Fuzzy rules representing domain expert knowledge about implications of...service migration strategy. Our approach uses expert knowledge as linguistic reasoning rules and takes service programs damage assessment, service...programs complexity, and available network capability as input. The fuzzy inference system includes four components as shown in Figure 5: (1) a knowledge
Teichmann, Martin; Dumay-Odelot, Hélène; Fribourg, Sébastien
2012-01-01
The winged helix (WH) domain is found in core components of transcription systems in eukaryotes and prokaryotes. It represents a sub-class of the helix-turn-helix motif. The WH domain participates in establishing protein-DNA and protein-protein-interactions. Here, we discuss possible explanations for the enrichment of this motif in transcription systems.
NASA Technical Reports Server (NTRS)
Campbell, L. F., Jr.
1981-01-01
The purpose and format of a panel session that addressed the procedures by which the hardware components of geographic information systems are evaluated and selected are described. State agencies from Alaska, Colorado, Montana, and Washington were represented and the topic was discussed within the general context of information requirements in land management decision making.
Variable setpoint as a relaxing component in physiological control.
Risvoll, Geir B; Thorsen, Kristian; Ruoff, Peter; Drengstig, Tormod
2017-09-01
Setpoints in physiology have been a puzzle for decades, and especially the notion of fixed or variable setpoints have received much attention. In this paper, we show how previously presented homeostatic controller motifs, extended with saturable signaling kinetics, can be described as variable setpoint controllers. The benefit of a variable setpoint controller is that an observed change in the concentration of the regulated biochemical species (the controlled variable) is fully characterized, and is not considered a deviation from a fixed setpoint. The variation in this biochemical species originate from variation in the disturbances (the perturbation), and thereby in the biochemical species representing the controller (the manipulated variable). Thus, we define an operational space which is spanned out by the combined high and low levels of the variations in (1) the controlled variable, (2) the manipulated variable, and (3) the perturbation. From this operational space, we investigate whether and how it imposes constraints on the different motif parameters, in order for the motif to represent a mathematical model of the regulatory system. Further analysis of the controller's ability to compensate for disturbances reveals that a variable setpoint represents a relaxing component for the controller, in that the necessary control action is reduced compared to that of a fixed setpoint controller. Such a relaxing component might serve as an important property from an evolutionary point of view. Finally, we illustrate the principles using the renal sodium and aldosterone regulatory system, where we model the variation in plasma sodium as a function of salt intake. We show that the experimentally observed variations in plasma sodium can be interpreted as a variable setpoint regulatory system. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
The role of magmas in the formation of hydrothermal ore deposits
Hedenquist, Jeffrey W.; Lowenstern, Jacob B.
1994-01-01
Magmatic fluids, both vapour and hypersaline liquid, are a primary source of many components in hydrothermal ore deposits formed in volcanic arcs. These components, including metals and their ligands, become concentrated in magmas in various ways from various sources, including subducted oceanic crust. Leaching of rocks also contributes components to the hydrothermal fluid—a process enhanced where acid magmatic vapours are absorbed by deeply circulating meteoric waters. Advances in understanding the hydrothermal systems that formed these ore deposits have come from the study of their active equivalents, represented at the surface by hot springs and volcanic fumaroles.
Experimental and numerical investigations on spray characteristics of fatty acid methyl esters
NASA Astrophysics Data System (ADS)
Lanjekar, R. D.; Deshmukh, D.
2018-02-01
A comparative experimental and numerical study is conducted to establish the significance of the use of single-component over multi-component representatives of biodiesel, diesel and their blend for predicting spray tip penetration. Methyl oleate and methyl laurate are used as single-component representative fuels for biodiesel. The pure components n-heptane, n-dodecane and n-tetradecane are used as single-component representative fuels for diesel. Methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n-heptane fuel is closely following diesel spray tip penetration along with that of n-tetradecane and n-dodecane. The study suggests that the knowledge of the single-component representatives of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment.
Experimental and numerical investigations on spray characteristics of fatty acid methyl esters.
Lanjekar, R D; Deshmukh, D
2018-02-01
A comparative experimental and numerical study is conducted to establish the significance of the use of single-component over multi-component representatives of biodiesel, diesel and their blend for predicting spray tip penetration. Methyl oleate and methyl laurate are used as single-component representative fuels for biodiesel. The pure components n -heptane, n -dodecane and n -tetradecane are used as single-component representative fuels for diesel. Methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n -heptane fuel is closely following diesel spray tip penetration along with that of n -tetradecane and n -dodecane. The study suggests that the knowledge of the single-component representatives of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment.
Experimental and numerical investigations on spray characteristics of fatty acid methyl esters
Deshmukh, D.
2018-01-01
A comparative experimental and numerical study is conducted to establish the significance of the use of single-component over multi-component representatives of biodiesel, diesel and their blend for predicting spray tip penetration. Methyl oleate and methyl laurate are used as single-component representative fuels for biodiesel. The pure components n-heptane, n-dodecane and n-tetradecane are used as single-component representative fuels for diesel. Methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n-heptane fuel is closely following diesel spray tip penetration along with that of n-tetradecane and n-dodecane. The study suggests that the knowledge of the single-component representatives of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment. PMID:29515835
Advanced Computational Techniques in Regional Wave Studies
1990-01-03
UiNCL.ASSIriEDIUNLIMITED C SAME AS RPT. C DTIC USERS CUNCLASSIFIED ; a AM OF RE.;PONSIBL- E INOIVIDIJAL 22D. TELEPHCNE NUMBER 22c. OFFICE SYMBOL...this system is right We define the components of the time dependent force handed). Then, e ,, e ., and e , are the unit vectors moment tensor as towards...are constants representing the components of the 1 , ,( ,, - second order seismic moment tensor M, usually termed , M,- "(x,/,,t ,( E ,’ the moment tensor
NASA Technical Reports Server (NTRS)
Kvaternik, R. G.
1976-01-01
The manner of representing a flight vehicle structure as an assembly of beam, spring, and rigid-body components for vibration analysis is described. The development is couched in terms of a substructures methodology which is based on the finite-element stiffness method. The particular manner of employing beam, spring, and rigid-body components to model such items as wing structures, external stores, pylons supporting engines or external stores, and sprung masses associated with launch vehicle fuel slosh is described by means of several simple qualitative examples. A detailed numerical example consisting of a tilt-rotor VTOL aircraft is included to provide a unified illustration of the procedure for representing a structure as an equivalent system of beams, springs, and rigid bodies, the manner of forming the substructure mass and stiffness matrices, and the mechanics of writing the equations of constraint which enforce deflection compatibility at the junctions of the substructures. Since many structures, or selected components of structures, can be represented in this manner for vibration analysis, the modeling concepts described and their application in the numerical example shown should prove generally useful to the dynamicist.
Public Health Analysis Transport Optimization Model v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyeler, Walt; Finley, Patrick; Walser, Alex
PHANTOM models logistic functions of national public health systems. The system enables public health officials to visualize and coordinate options for public health surveillance, diagnosis, response and administration in an integrated analytical environment. Users may simulate and analyze system performance applying scenarios that represent current conditions or future contingencies what-if analyses of potential systemic improvements. Public health networks are visualized as interactive maps, with graphical displays of relevant system performance metrics as calculated by the simulation modeling components.
Hierarchical modularization of biochemical pathways using fuzzy-c means clustering.
de Luis Balaguer, Maria A; Williams, Cranos M
2014-08-01
Biological systems that are representative of regulatory, metabolic, or signaling pathways can be highly complex. Mathematical models that describe such systems inherit this complexity. As a result, these models can often fail to provide a path toward the intuitive comprehension of these systems. More coarse information that allows a perceptive insight of the system is sometimes needed in combination with the model to understand control hierarchies or lower level functional relationships. In this paper, we present a method to identify relationships between components of dynamic models of biochemical pathways that reside in different functional groups. We find primary relationships and secondary relationships. The secondary relationships reveal connections that are present in the system, which current techniques that only identify primary relationships are unable to show. We also identify how relationships between components dynamically change over time. This results in a method that provides the hierarchy of the relationships among components, which can help us to understand the low level functional structure of the system and to elucidate potential hierarchical control. As a proof of concept, we apply the algorithm to the epidermal growth factor signal transduction pathway, and to the C3 photosynthesis pathway. We identify primary relationships among components that are in agreement with previous computational decomposition studies, and identify secondary relationships that uncover connections among components that current computational approaches were unable to reveal.
Dual laser optical system and method for studying fluid flow
NASA Technical Reports Server (NTRS)
Owen, R. B.; Witherow, W. K. (Inventor)
1983-01-01
A dual laser optical system and method is disclosed for visualization of phenomena in transport substances which induce refractive index gradients such as fluid flow and pressure and temperature gradients in fluids and gases. Two images representing mutually perpendicular components of refractive index gradients may be viewed simultaneously on screen. Two lasers having wave lengths in the visible range but separated by about 1000 angstroms are utilized to provide beams which are collimated into a beam containing components of the different wave lengths. The collimated beam is passed through a test volume of the transparent substance. The collimated beam is then separated into components of the different wave lengths and focused onto a pair of knife edges arranged mutually perpendicular to produce and project images onto the screen.
Medicare physician payment systems: impact of 2011 schedule on interventional pain management.
Manchikanti, Laxmaiah; Singh, Vijay; Caraway, David L; Benyamin, Ramsin M; Hirsch, Joshua A
2011-01-01
Physicians in the United States have been affected by significant changes in the patterns of medical practice evolving over the last several decades. The recently passed affordable health care law, termed the Patient Protection and Affordable Care Act of 2010 (the ACA, for short) affects physicians more than any other law. Physician services are an integral part of health care. Physicians are paid in the United States for their personal services. This payment also includes the overhead expenses for maintaining an office and providing services. The payment system is highly variable in the private insurance market; however, governmental systems have a formula-based payment, mostly based on the Medicare payment system. Physician services are billed under Part B. Since the inception of the Medicare program in 1965, several methods have been used to determine the amounts paid to physicians for each covered service. Initially, the payment systems compensated physicians on the basis of their charges. In 1975, just over 10 years after the inception of the Medicare program, payments changed so as not to exceed the increase in the Medical Economic Index (MEI). Nevertheless, the policy failed to curb increases in costs, leading to the determination of a yearly change in fees by legislation from 1984 to 1991. In 1992, the fee schedule essentially replaced the prior payment system that was based on the physician's charges, which also failed to live up to expectations for operational success. Then, in 1998, the sustainable growth rate (SGR) system was introduced. In 2009, multiple attempts were made by Congress to repeal the formula - rather unsuccessfully. Consequently, the SGR formula continues to hamper physician payments. The mechanism of the SGR includes 3 components that are incorporated into a statutory formula: expenditure targets, growth rate period, and annual adjustments of payment rates for physician services. Further, the relative value of a physician fee schedule is based on 3 components: physician work, practice expense (PE), and malpractice expense that are used to determine a value ranking for each service to which it is applied. On average, the work component represents 53.5% of a service's relative value, the fee component represents 43.6%, and the malpractice component represents 3.9%. The final schedule for physician payment was issued on November 24, 2010. This was based on a total cut of 30.8% with 24.9% of the cut attributed to SGR. However, as usual, with patchwork efficiency, Congress passed a one-year extension of the 0% update, effective through December 2011. Consequently, CMS issued an emergency update of the 2011 Medicare fee schedule, with multiple revisions, resulting in a reduction of the conversion factor of $36.8729 from December 2010 to $33.9764 for 2011.
The geochemistry of uranium and thorium isotopes in the Western Desert of Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dabous, A.A.
1994-11-01
The concentrations of {sup 238}U, {sup 234}U, {sup 232}Th, and {sup 228}Th have been measured in the groundwaters of the Bahariya and Farafra oases of the Western Desert of Egypt. These waters are characterized by normal amounts of U, but unusually high concentrations of Th. The pattern of variation of the parent isotopes, {sup 238}U and {sup 232}Th, as well as the daughter isotopes, {sup 234}U, {sup 230}Th, and {sup 228}Th, is systematic within and between the two oases. From the unusually consistent distribution of the {sup 234}U/{sup 238}U activity ratios one can conclude that the samples from both oasesmore » are representative of a two-component mixing system. One component, characterized by low U content and a high {sup 234}U/{sup 238}U activity ratio, is typical of deep artesian systems and probably represents flowthrough water derived from the Nubian highlands to the south. The second component is characterized by a greater U concentration and a low activity ratio. This signature is hypothesized as being derived by leaching of downward infiltrating water during pluvial times. The source of the U may be the uraniferous phosphate strata that overly the sandstone aquifer in both oasis areas. Higher Th values are associated with the artesian flow component of the mixing system and suggests that Th-bearing minerals may be abundant in the Nubian sandstone aquifer. The distribution of {sup 230}Th and {sup 228}Th in the water samples supports this interpretation.« less
Improving Perceptual Skills with 3-Dimensional Animations.
ERIC Educational Resources Information Center
Johns, Janet Faye; Brander, Julianne Marie
1998-01-01
Describes three-dimensional computer aided design (CAD) models for every component in a representative mechanical system; the CAD models made it easy to generate 3-D animations that are ideal for teaching perceptual skills in multimedia computer-based technical training. Fifteen illustrations are provided. (AEF)
Connectivity of wetlands to downstream waters: Conceptual framework and review
A river represents the time-integrated combination of all waters contributing to it. Understanding the factors that influence a river’s health and sustainability, as well as its degradation, requires an integrated systems perspective. This considers all the components of the ri...
Holistic neural coding of Chinese character forms in bilateral ventral visual system.
Mo, Ce; Yu, Mengxia; Seger, Carol; Mo, Lei
2015-02-01
How are Chinese characters recognized and represented in the brain of skilled readers? Functional MRI fast adaptation technique was used to address this question. We found that neural adaptation effects were limited to identical characters in bilateral ventral visual system while no activation reduction was observed for partially overlapping characters regardless of the spatial location of the shared sub-character components, suggesting highly selective neuronal tuning to whole characters. The consistent neural profile across the entire ventral visual cortex indicates that Chinese characters are represented as mutually distinctive wholes rather than combinations of sub-character components, which presents a salient contrast to the left-lateralized, simple-to-complex neural representations of alphabetic words. Our findings thus revealed the cultural modulation effect on both local neuronal activity patterns and functional anatomical regions associated with written symbol recognition. Moreover, the cross-language discrepancy in written symbol recognition mechanism might stem from the language-specific early-stage learning experience. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Aziri, Hasif; Patakor, Fizatul Aini; Sulaiman, Marizan; Salleh, Zulhisyam
2017-09-01
This paper presents the simulation of three-phase induction motor drives using Indirect Field Oriented Control (IFOC) in PSIM environment. The asynchronous machine is well known about natural limitations fact of highly nonlinearity and complexity of motor model. In order to resolve these problems, the IFOC is applied to control the instantaneous electrical quantities such as torque and flux component. As FOC is controlling the stator current that represented by a vector, the torque component is aligned with d coordinate while the flux component is aligned with q coordinate. There are five levels of the incremental system are gradually built up to verify and testing the software module in the system. Indeed, all of system build levels are verified and successfully tested in PSIM environment. Moreover, the corresponding system of five build levels are simulated in PSIM environment which is user-friendly for simulation studies in order to explore the performance of speed responses based on IFOC algorithm for three-phase induction motor drives.
A three-dimensional orbit for the binary star Alpha Andromedae
NASA Astrophysics Data System (ADS)
Branham, Richard L., Jr.
2017-01-01
Stars that are both spectroscopic and optical binaries present a means to determine simultaneously the masses of the components and the distance of the system independent of trigonometric parallax. Alpha Andromedae (Alpheratz) represents such a system and, moreover, the primary is the brightest of the mercury-manganese stars. An orbit, based on 42 interferometric observations and 378 radial velocities, is calculated to solve for 10 parameters: the six coefficients of the apparent ellipse, the constant of areal velocity, the systemic velocity, and the semi-amplitudes. From these, one calculates the orbit of the binary, its period and time of periastron passage, the masses of the components, and the distance of the system. The dynamical parallax does not differ greatly from the trigonometric parallax found from Hipparcos.
NASA Technical Reports Server (NTRS)
1999-01-01
A survey is presented of NASA-developed technologies and systems that were reaching commercial application in the course of 1999. Attention is given to the contributions of each major NASA Research Center. Representative 'spinoff' technologies include the predictive AI engine monitoring system EMPAS, the GPS-based Wide Area Augmentation System for aircraft navigation, a CMOS-Active Pixel Sensor camera-on-a-chip, a marine spectroradiometer, portable fuel cells, hyperspectral camera technology, and a rapid-prototyping process for ceramic components.
Smartphone-based system to improve transportation access for the cognitively impaired.
Anderson, Shane M; Riehle, Timothy H; Lichter, Patrick A; Brown, Allen W; Panescu, Dorin
2015-01-01
This project developed and evaluated a smartphone-based system to improve mobility and transportation access for the cognitively impaired. The proposed system is intended to allow the cognitively impaired to use public transportation systems, community transportation and dedicated transportation services for the disabled with greater ease and safety. Individuals with cognitive disabilities are often unable to operate an automobile, or may require a prolonged recovery period before resuming driving. Public transportation systems represent a significant means to allow these individuals to maintain independence. Yet public transportation systems can pose significant challenges to individuals with cognitive impairment. The goal of this project is to develop a system to reduce these barriers via a technological solution consisting of components developed both for the cognitively impaired user and their caregiver or family member. The first component consists of a cognitive prosthetic device featuring traditional memory cueing and reminders as well as custom location-based transportation specific functions. This cognitive mobility assistant will leverage the computing power and GPS location determination capabilities of inexpensive, powerful smart phones. The second component consists of a management application which offers caregivers the ability to configure and program the reminder and transit functions remotely via the Internet. Following completion of the prototype system a pilot human test was performed with cognitively disabled individuals and family members or caregivers to assess the usability and acceptability of both system components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stroh, K.R.
1980-01-01
The Composite HTGR Analysis Program (CHAP) consists of a model-independent systems analysis mainframe named LASAN and model-dependent linked code modules, each representing a component, subsystem, or phenomenon of an HTGR plant. The Fort St. Vrain (FSV) version (CHAP-2) includes 21 coded modules that model the neutron kinetics and thermal response of the core; the thermal-hydraulics of the reactor primary coolant system, secondary steam supply system, and balance-of-plant; the actions of the control system and plant protection system; the response of the reactor building; and the relative hazard resulting from fuel particle failure. FSV steady-state and transient plant data are beingmore » used to partially verify the component modeling and dynamic smulation techniques used to predict plant response to postulated accident sequences.« less
NASA Technical Reports Server (NTRS)
Zawodny, Nikolas S.; Boyd, D. Douglas, Jr.; Burley, Casey L.
2016-01-01
In this study, hover performance and acoustic measurements are taken on two different isolated rotors representative of small-scale rotary-wing unmanned aircraft systems (UAS) for a range of rotation rates. Each rotor system consists of two fixed-pitch blades powered by a brushless motor. For nearly the same thrust condition, significant differences in overall sound pressure level (OASPL), up to 8 dB, and directivity were observed between the two rotor systems. Differences are shown to be in part attributed to different rotor tip speeds, along with increased broadband and motor noise levels. In addition to acoustic measurements, aeroacoustic predictions were implemented in order to better understand the noise content of the rotor systems. Numerical aerodynamic predictions were computed using the unsteady Reynoldsaveraged Navier Stokes code OVERFLOW2 on one of the isolated rotors, while analytical predictions were computed using the Propeller Analysis System of the Aircraft NOise Prediction Program (ANOPP-PAS) on the two rotor configurations. Preliminary semi-empirical frequency domain broadband noise predictions were also carried out based on airfoil self-noise theory in a rotational reference frame. The prediction techniques further supported trends identified in the experimental data analysis. The brushless motors were observed to be important noise contributors and warrant further investigation. It is believed that UAS acoustic prediction capabilities must consider both rotor and motor components as part of a combined noise-generating system.
A Generic Modeling Process to Support Functional Fault Model Development
NASA Technical Reports Server (NTRS)
Maul, William A.; Hemminger, Joseph A.; Oostdyk, Rebecca; Bis, Rachael A.
2016-01-01
Functional fault models (FFMs) are qualitative representations of a system's failure space that are used to provide a diagnostic of the modeled system. An FFM simulates the failure effect propagation paths within a system between failure modes and observation points. These models contain a significant amount of information about the system including the design, operation and off nominal behavior. The development and verification of the models can be costly in both time and resources. In addition, models depicting similar components can be distinct, both in appearance and function, when created individually, because there are numerous ways of representing the failure space within each component. Generic application of FFMs has the advantages of software code reuse: reduction of time and resources in both development and verification, and a standard set of component models from which future system models can be generated with common appearance and diagnostic performance. This paper outlines the motivation to develop a generic modeling process for FFMs at the component level and the effort to implement that process through modeling conventions and a software tool. The implementation of this generic modeling process within a fault isolation demonstration for NASA's Advanced Ground System Maintenance (AGSM) Integrated Health Management (IHM) project is presented and the impact discussed.
NASA Astrophysics Data System (ADS)
Chung, Duk Ho; Cho, Kyu Seong; Hong, Deok Pyo; Park, Kyeong Jin
2016-04-01
This study aimed to investigate the perception of earth system thinking of science gifted students in future problem solving (FPS) in relation to climate changes. In order to this study, the research problem associated with climate changes was developed through a literature review. The thirty seven science gifted students participated in lessons. The ideas in problem solving process of science gifted students were analyzed using the semantic network analysis method. The results are as follows. In the problem solving processes, science gifted students are ''changes of the sunlight by water layer'', ''changes of the Earth''s temperature'', ''changes of the air pressure'', '' change of the wind and weather''were represented in order. On other hand, regard to earth system thinking for climate changes, while science gifted students were used sub components related to atmospheres frequently, they were used sub components related to biosphere, geosphere, and hydrosphere a little. But, the analytical results of the structural relationship between the sub components related to earth system, they were recognised that biosphere, geosphere, and hydrosphere used very important in network structures. In conclusion, science gifted students were understood well that components of the earth system are influencing each other. Keywords : Science gifted students, Future problem solving, Climate change, Earth system thinking
The role of the opioid system in binge eating disorder.
Giuliano, Chiara; Cottone, Pietro
2015-12-01
Binge eating disorder is characterized by excessive, uncontrollable consumption of palatable food within brief periods of time. Excessive intake of palatable food is thought to be driven by hedonic, rather than energy homeostatic, mechanisms. However, reward processing does not only comprise consummatory actions; a key component is represented by the anticipatory phase directed at procuring the reward. This phase is highly influenced by environmental food-associated stimuli, which can robustly enhance the desire to eat even in the absence of physiological needs. The opioid system (endogenous peptides and their receptors) has been strongly linked to the rewarding aspects of palatable food intake, and perhaps represents the key system involved in hedonic overeating. Here we review evidence suggesting that the opioid system can also be regarded as one of the systems that regulates the anticipatory incentive processes preceding binge eating hedonic episodes.
MODELING THE FORMATION OF SECONDARY ORGANIC AEROSOL WITHIN A COMPREHENSIVE AIR QUALITY MODEL SYSTEM
The aerosol component of the CMAQ model is designed to be an efficient and economical depiction of aerosol dynamics in the atmosphere. The approach taken represents the particle size distribution as the superposition of three lognormal subdistributions, called modes. The proces...
Self repairing composites for drone air vehicles
NASA Astrophysics Data System (ADS)
Dry, Carolyn
2015-04-01
The objective of this effort was to demonstrate the feasibility of impact-initiated delivery of repair chemicals through hollow fiber architectures embedded within graphite fiber reinforced polymer matrix composites, representative of advanced drone aircraft component material systems. Self-repairing structures through coupon and elements were demonstrated, and evaluated.
Statistical analysis of low level atmospheric turbulence
NASA Technical Reports Server (NTRS)
Tieleman, H. W.; Chen, W. W. L.
1974-01-01
The statistical properties of low-level wind-turbulence data were obtained with the model 1080 total vector anemometer and the model 1296 dual split-film anemometer, both manufactured by Thermo Systems Incorporated. The data obtained from the above fast-response probes were compared with the results obtained from a pair of Gill propeller anemometers. The digitized time series representing the three velocity components and the temperature were each divided into a number of blocks, the length of which depended on the lowest frequency of interest and also on the storage capacity of the available computer. A moving-average and differencing high-pass filter was used to remove the trend and the low frequency components in the time series. The calculated results for each of the anemometers used are represented in graphical or tabulated form.
A classical model for closed-loop diagrams of binary liquid mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnitzler, J.v.; Prausnitz, J.M.
1994-03-01
A classical lattice model for closed-loop temperature-composition phase diagrams has been developed. It considers the effect of specific interactions, such as hydrogen bonding, between dissimilar components. This van Laar-type model includes a Flory-Huggins term for the excess entropy of mixing. It is applied to several liquid-liquid equilibria of nonelectrolytes, where the molecules of the two components differ in size. The model is able to represent the observed data semi-quantitatively, but in most cases it is not flexible enough to predict all parts of the closed loop quantitatively. The ability of the model to represent different binary systems is discussed. Finally,more » attention is given to a correction term, concerning the effect of concentration fluctuations near the upper critical solution temperature.« less
Islet organogenesis, angiogenesis and innervation.
Cerf, Marlon E
2011-11-01
The pancreas is characterized by a major component, an exocrine and ductal system involved in digestion, and a minor component, the endocrine islets represented by islet micro-organs that tightly regulate glucose homoeostasis. Pancreatic organogenesis is strictly co-ordinated by transcription factors that are expressed sequentially to yield functional islets capable of maintaining glucose homoeostasis. Angiogenesis and innervation complete islet development, equipping islets to respond to metabolic demands. Proper regulation of this triad of processes during development is critical for establishing functional islets.
Designing Wind and Solar Power Purchase Agreements to Support Grid Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Neill, Barbara; Chernyakhovskiy, Ilya
Power purchase agreements (PPAs) represent one of many institutional tools that power systems can use to improve grid services from variable renewable energy (VRE) generators. This fact sheet introduces the concept of PPAs for VRE generators and provides a brief summary of key PPA components that can facilitate VRE generators to enhance grid stability and serve as a source of power system flexibility.
General Pressurization Model in Simscape
NASA Technical Reports Server (NTRS)
Servin, Mario; Garcia, Vicky
2010-01-01
System integration is an essential part of the engineering design process. The Ares I Upper Stage (US) is a complex system which is made up of thousands of components assembled into subsystems including a J2-X engine, liquid hydrogen (LH2) and liquid oxygen (LO2) tanks, avionics, thrust vector control, motors, etc. System integration is the task of connecting together all of the subsystems into one large system. To ensure that all the components will "fit together" as well as safety and, quality, integration analysis is required. Integration analysis verifies that, as an integrated system, the system will behave as designed. Models that represent the actual subsystems are built for more comprehensive analysis. Matlab has been an instrument widely use by engineers to construct mathematical models of systems. Simulink, one of the tools offered by Matlab, provides multi-domain graphical environment to simulate and design time-varying systems. Simulink is a powerful tool to analyze the dynamic behavior of systems over time. Furthermore, Simscape, a tool provided by Simulink, allows users to model physical (such as mechanical, thermal and hydraulic) systems using physical networks. Using Simscape, a model representing an inflow of gas to a pressurized tank was created where the temperature and pressure of the tank are measured over time to show the behavior of the gas. By further incorporation of Simscape into model building, the full potential of this software can be discovered and it hopefully can become a more utilized tool.
The NRL relocatable ocean/acoustic ensemble forecast system
NASA Astrophysics Data System (ADS)
Rowley, C.; Martin, P.; Cummings, J.; Jacobs, G.; Coelho, E.; Bishop, C.; Hong, X.; Peggion, G.; Fabre, J.
2009-04-01
A globally relocatable regional ocean nowcast/forecast system has been developed to support rapid implementation of new regional forecast domains. The system is in operational use at the Naval Oceanographic Office for a growing number of regional and coastal implementations. The new system is the basis for an ocean acoustic ensemble forecast and adaptive sampling capability. We present an overview of the forecast system and the ocean ensemble and adaptive sampling methods. The forecast system consists of core ocean data analysis and forecast modules, software for domain configuration, surface and boundary condition forcing processing, and job control, and global databases for ocean climatology, bathymetry, tides, and river locations and transports. The analysis component is the Navy Coupled Ocean Data Assimilation (NCODA) system, a 3D multivariate optimum interpolation system that produces simultaneous analyses of temperature, salinity, geopotential, and vector velocity using remotely-sensed SST, SSH, and sea ice concentration, plus in situ observations of temperature, salinity, and currents from ships, buoys, XBTs, CTDs, profiling floats, and autonomous gliders. The forecast component is the Navy Coastal Ocean Model (NCOM). The system supports one-way nesting and multiple assimilation methods. The ensemble system uses the ensemble transform technique with error variance estimates from the NCODA analysis to represent initial condition error. Perturbed surface forcing or an atmospheric ensemble is used to represent errors in surface forcing. The ensemble transform Kalman filter is used to assess the impact of adaptive observations on future analysis and forecast uncertainty for both ocean and acoustic properties.
Modelling of robotic work cells using agent based-approach
NASA Astrophysics Data System (ADS)
Sękala, A.; Banaś, W.; Gwiazda, A.; Monica, Z.; Kost, G.; Hryniewicz, P.
2016-08-01
In the case of modern manufacturing systems the requirements, both according the scope and according characteristics of technical procedures are dynamically changing. This results in production system organization inability to keep up with changes in a market demand. Accordingly, there is a need for new design methods, characterized, on the one hand with a high efficiency and on the other with the adequate level of the generated organizational solutions. One of the tools that could be used for this purpose is the concept of agent systems. These systems are the tools of artificial intelligence. They allow assigning to agents the proper domains of procedures and knowledge so that they represent in a self-organizing system of an agent environment, components of a real system. The agent-based system for modelling robotic work cell should be designed taking into consideration many limitations considered with the characteristic of this production unit. It is possible to distinguish some grouped of structural components that constitute such a system. This confirms the structural complexity of a work cell as a specific production system. So it is necessary to develop agents depicting various aspects of the work cell structure. The main groups of agents that are used to model a robotic work cell should at least include next pattern representatives: machine tool agents, auxiliary equipment agents, robots agents, transport equipment agents, organizational agents as well as data and knowledge bases agents. In this way it is possible to create the holarchy of the agent-based system.
Investment portfolio management from cybernetic point of view
NASA Astrophysics Data System (ADS)
Marchev, Angel, Jr.; Marchev, Angel
2013-12-01
The theory of investment portfolios is a well defined component of financial science. While sound in principle, it faces some setbacks in its real-world implementation. In this paper the authors propose a reformulation of the investment portfolio problem as a cybernetic system where the Investor is the controlling system and the portfolio is the controlled system. Also the portfolio controlling process should be dissected in several ordered phases, so that each phase is represented as a subsystem within the structure of the controlling system Investor.
The Neural Basis of Selective Attention
Yantis, Steven
2009-01-01
Selective attention is an intrinsic component of perceptual representation in a visual system that is hierarchically organized. Modulatory signals originate in brain regions that represent behavioral goals; these signals specify which perceptual objects are to be represented by sensory neurons that are subject to contextual modulation. Attention can be deployed to spatial locations, features, or objects, and corresponding modulatory signals must be targeted within these domains. Open questions include how nonspatial perceptual domains are modulated by attention and how abstract goals are transformed into targeted modulatory signals. PMID:19444327
PcapDB: Search Optimized Packet Capture, Version 0.1.0.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrell, Paul; Steinfadt, Shannon
PcapDB is a packet capture system designed to optimize the captured data for fast search in the typical (network incident response) use case. The technology involved in this software has been submitted via the IDEAS system and has been filed as a provisional patent. It includes the following primary components: capture: The capture component utilizes existing capture libraries to retrieve packets from network interfaces. Once retrieved the packets are passed to additional threads for sorting into flows and indexing. The sorted flows and indexes are passed to other threads so that they can be written to disk. These components aremore » written in the C programming language. search: The search components provide a means to find relevant flows and the associated packets. A search query is parsed and represented as a search tree. Various search commands, written in C, are then used resolve this tree into a set of search results. The tree generation and search execution management components are written in python. interface: The PcapDB web interface is written in Python on the Django framework. It provides a series of pages, API's, and asynchronous tasks that allow the user to manage the capture system, perform searches, and retrieve results. Web page components are written in HTML,CSS and Javascript.« less
NASA Technical Reports Server (NTRS)
1974-01-01
The transient and steady state response of the respiratory control system for variations in volumetric fractions of inspired gases and special system parameters are modeled. The program contains the capability to change workload. The program is based on Grodins' respiratory control model and can be envisioned as a feedback control system comprised of a plant (the controlled system) and the regulating component (controlling system). The controlled system is partitioned into 3 compartments corresponding to lungs, brain, and tissue with a fluid interconnecting patch representing the blood.
Automated Environment Generation for Software Model Checking
NASA Technical Reports Server (NTRS)
Tkachuk, Oksana; Dwyer, Matthew B.; Pasareanu, Corina S.
2003-01-01
A key problem in model checking open systems is environment modeling (i.e., representing the behavior of the execution context of the system under analysis). Software systems are fundamentally open since their behavior is dependent on patterns of invocation of system components and values defined outside the system but referenced within the system. Whether reasoning about the behavior of whole programs or about program components, an abstract model of the environment can be essential in enabling sufficiently precise yet tractable verification. In this paper, we describe an approach to generating environments of Java program fragments. This approach integrates formally specified assumptions about environment behavior with sound abstractions of environment implementations to form a model of the environment. The approach is implemented in the Bandera Environment Generator (BEG) which we describe along with our experience using BEG to reason about properties of several non-trivial concurrent Java programs.
THE EARTH SYSTEM PREDICTION SUITE: Toward a Coordinated U.S. Modeling Capability
Theurich, Gerhard; DeLuca, C.; Campbell, T.; Liu, F.; Saint, K.; Vertenstein, M.; Chen, J.; Oehmke, R.; Doyle, J.; Whitcomb, T.; Wallcraft, A.; Iredell, M.; Black, T.; da Silva, AM; Clune, T.; Ferraro, R.; Li, P.; Kelley, M.; Aleinov, I.; Balaji, V.; Zadeh, N.; Jacob, R.; Kirtman, B.; Giraldo, F.; McCarren, D.; Sandgathe, S.; Peckham, S.; Dunlap, R.
2017-01-01
The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users. The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS®); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model. PMID:29568125
THE EARTH SYSTEM PREDICTION SUITE: Toward a Coordinated U.S. Modeling Capability.
Theurich, Gerhard; DeLuca, C; Campbell, T; Liu, F; Saint, K; Vertenstein, M; Chen, J; Oehmke, R; Doyle, J; Whitcomb, T; Wallcraft, A; Iredell, M; Black, T; da Silva, A M; Clune, T; Ferraro, R; Li, P; Kelley, M; Aleinov, I; Balaji, V; Zadeh, N; Jacob, R; Kirtman, B; Giraldo, F; McCarren, D; Sandgathe, S; Peckham, S; Dunlap, R
2016-07-01
The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users. The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS ® ); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model.
The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability
NASA Technical Reports Server (NTRS)
Theurich, Gerhard; DeLuca, C.; Campbell, T.; Liu, F.; Saint, K.; Vertenstein, M.; Chen, J.; Oehmke, R.; Doyle, J.; Whitcomb, T.;
2016-01-01
The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users.The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model.
Software Assists in Responding to Anomalous Conditions
NASA Technical Reports Server (NTRS)
James, Mark; Kronbert, F.; Weiner, A.; Morgan, T.; Stroozas, B.; Girouard, F.; Hopkins, A.; Wong, L.; Kneubuhl, J.; Malina, R.
2004-01-01
Fault Induced Document Retrieval Officer (FIDO) is a computer program that reduces the need for a large and costly team of engineers and/or technicians to monitor the state of a spacecraft and associated ground systems and respond to anomalies. FIDO includes artificial-intelligence components that imitate the reasoning of human experts with reference to a knowledge base of rules that represent failure modes and to a database of engineering documentation. These components act together to give an unskilled operator instantaneous expert assistance and access to information that can enable resolution of most anomalies, without the need for highly paid experts. FIDO provides a system state summary (a configurable engineering summary) and documentation for diagnosis of a potentially failing component that might have caused a given error message or anomaly. FIDO also enables high-level browsing of documentation by use of an interface indexed to the particular error message. The collection of available documents includes information on operations and associated procedures, engineering problem reports, documentation of components, and engineering drawings. FIDO also affords a capability for combining information on the state of ground systems with detailed, hierarchically-organized, hypertext- enabled documentation.
Online fault adaptive control for efficient resource management in Advanced Life Support Systems
NASA Technical Reports Server (NTRS)
Abdelwahed, Sherif; Wu, Jian; Biswas, Gautam; Ramirez, John; Manders, Eric-J
2005-01-01
This article presents the design and implementation of a controller scheme for efficient resource management in Advanced Life Support Systems. In the proposed approach, a switching hybrid system model is used to represent the dynamics of the system components and their interactions. The operational specifications for the controller are represented by utility functions, and the corresponding resource management problem is formulated as a safety control problem. The controller is designed as a limited-horizon online supervisory controller that performs a limited forward search on the state-space of the system at each time step, and uses the utility functions to decide on the best action. The feasibility and accuracy of the online algorithm can be assessed at design time. We demonstrate the effectiveness of the scheme by running a set of experiments on the Reverse Osmosis (RO) subsystem of the Water Recovery System (WRS).
Online fault adaptive control for efficient resource management in Advanced Life Support Systems.
Abdelwahed, Sherif; Wu, Jian; Biswas, Gautam; Ramirez, John; Manders, Eric-J
2005-01-01
This article presents the design and implementation of a controller scheme for efficient resource management in Advanced Life Support Systems. In the proposed approach, a switching hybrid system model is used to represent the dynamics of the system components and their interactions. The operational specifications for the controller are represented by utility functions, and the corresponding resource management problem is formulated as a safety control problem. The controller is designed as a limited-horizon online supervisory controller that performs a limited forward search on the state-space of the system at each time step, and uses the utility functions to decide on the best action. The feasibility and accuracy of the online algorithm can be assessed at design time. We demonstrate the effectiveness of the scheme by running a set of experiments on the Reverse Osmosis (RO) subsystem of the Water Recovery System (WRS).
NASA Technical Reports Server (NTRS)
Siljak, D. D.; Weissenberger, S.; Cuk, S. M.
1973-01-01
This report presents the development and description of the decomposition aggregation approach to stability investigations of high dimension mathematical models of dynamic systems. The high dimension vector differential equation describing a large dynamic system is decomposed into a number of lower dimension vector differential equations which represent interconnected subsystems. Then a method is described by which the stability properties of each subsystem are aggregated into a single vector Liapunov function, representing the aggregate system model, consisting of subsystem Liapunov functions as components. A linear vector differential inequality is then formed in terms of the vector Liapunov function. The matrix of the model, which reflects the stability properties of the subsystems and the nature of their interconnections, is analyzed to conclude over-all system stability characteristics. The technique is applied in detail to investigate the stability characteristics of a dynamic model of a hypothetical spinning Skylab.
Zhou, Leming; Watzlaf, Valerie; Abernathy, Paul; Abdelhak, Mervat
2017-01-01
To improve the health and well-being of the medically underserved in a free clinic in Pittsburgh, Pennsylvania, a multidisciplinary team representing several health information management and information technology (IT) professionals, including faculty, students, researchers, and clinicians, created a novel IT system called imHealthy. The imHealthy system includes four critical components: a multidomain well-being questionnaire, a mobile app for data collection and tracking, a customization of an open-source electronic health record (EHR), and a data integration and well-being evaluation program leading to recommendations for personalized interventions to caregivers serving the medically underserved. This multidisciplinary team has worked closely on this project and finished critical components of the imHealthy system. Evaluations of these components will be conducted, and factors facilitating the design and adoption of the imHealthy system will be presented. The results from this research can serve as a model for free clinics with similar needs that identified by the research team in Cleveland, Indianapolis, Minnesota, Motor City, Orange County, San Diego, and St. Louis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patriarca, Riccardo, E-mail: riccardo.patriarca@uniroma1.it; Di Gravio, Giulio; Costantino, Francesco
Environmental auditing is a main issue for any production plant and assessing environmental performance is crucial to identify risks factors. The complexity of current plants arises from interactions among technological, human and organizational system components, which are often transient and not easily detectable. The auditing thus requires a systemic perspective, rather than focusing on individual behaviors, as emerged in recent research in the safety domain for socio-technical systems. We explore the significance of modeling the interactions of system components in everyday work, by the application of a recent systemic method, i.e. the Functional Resonance Analysis Method (FRAM), in order tomore » define dynamically the system structure. We present also an innovative evolution of traditional FRAM following a semi-quantitative approach based on Monte Carlo simulation. This paper represents the first contribution related to the application of FRAM in the environmental context, moreover considering a consistent evolution based on Monte Carlo simulation. The case study of an environmental risk auditing in a sinter plant validates the research, showing the benefits in terms of identifying potential critical activities, related mitigating actions and comprehensive environmental monitoring indicators. - Highlights: • We discuss the relevance of a systemic risk based environmental audit. • We present FRAM to represent functional interactions of the system. • We develop a semi-quantitative FRAM framework to assess environmental risks. • We apply the semi-quantitative FRAM framework to build a model for a sinter plant.« less
Thermoelectric-Driven Sustainable Sensing and Actuation Systems for Fault-Tolerant Nuclear Incidents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longtin, Jon
2016-02-08
The Fukushima Daiichi nuclear incident in March 2011 represented an unprecedented stress test on the safety and backup systems of a nuclear power plant. The lack of reliable information from key components due to station blackout was a serious setback, leaving sensing, actuation, and reporting systems unable to communicate, and safety was compromised. Although there were several independent backup power sources for required safety function on site, ultimately the batteries were drained and the systems stopped working. If, however, key system components were instrumented with self-powered sensing and actuation packages that could report indefinitely on the status of the system,more » then critical system information could be obtained while providing core actuation and control during off-normal status for as long as needed. This research project focused on the development of such a self-powered sensing and actuation system. The electrical power is derived from intrinsic heat in the reactor components, which is both reliable and plentiful. The key concept was based around using thermoelectric generators that can be integrated directly onto key nuclear components, including pipes, pump housings, heat exchangers, reactor vessels, and shielding structures, as well as secondary-side components. Thermoelectric generators are solid-state devices capable of converting heat directly into electricity. They are commercially available technology. They are compact, have no moving parts, are silent, and have excellent reliability. The key components to the sensor package include a thermoelectric generator (TEG), microcontroller, signal processing, and a wireless radio package, environmental hardening to survive radiation, flooding, vibration, mechanical shock (explosions), corrosion, and excessive temperature. The energy harvested from the intrinsic heat of reactor components can be then made available to power sensors, provide bi-directional communication, recharge batteries for other safety systems, etc. Such an approach is intrinsically fault tolerant: in the event that system temperatures increase, the amount of available energy will increase, which will make more power available for applications. The system can also be used during normal conditions to provide enhanced monitoring of key system components.« less
NASA Astrophysics Data System (ADS)
Frayer, David; Maddalena, Ronald; Vanden Bout, Paul; Watts, Galen
2018-01-01
Using the Ka-band receiver on the GBT, we have uncovered a new velocity component in CO(1-0) associated the submillimeter galaxy SMM J02399-0136. Follow-up imaging with ALMA in CO(3-2) shows that this velocity component is associated with a large linear filament covering 8" on the sky (60 kpc). This component comprises 50% or more of the total molecular gas mass in the system, and may repesent tidal debris from a merger event or represents inflowing cold molecular gas that is fueling the ongoing starburst and AGN activity.
Adipose tissue represents an important and understudied component of the endocrine system. Recent evidence suggests that endocrine-disrupting chemicals (EDCs) may be able to alter lipid development (e.g., adipogenesis) and/or the balance of lipid metabolism. The environmentally a...
A Model-Driven Approach to e-Course Management
ERIC Educational Resources Information Center
Savic, Goran; Segedinac, Milan; Milenkovic, Dušica; Hrin, Tamara; Segedinac, Mirjana
2018-01-01
This paper presents research on using a model-driven approach to the development and management of electronic courses. We propose a course management system which stores a course model represented as distinct machine-readable components containing domain knowledge of different course aspects. Based on this formally defined platform-independent…
DOT National Transportation Integrated Search
1998-12-01
There is widespread perception among various trucking industry representatives and observers that commercial motor vehicle (CMV) operators are frequently forced to violate the Federal hours-of-service (HOS) regulations because of the tightness of the...
Developing an ecosystem diversity framework for landscape assessment
Robert D. Pfister; Michael D. Sweet
2000-01-01
Ecological diversity is being addressed in various research and management efforts, but a common foundation is not explicitly defined or displayed. A formal Ecosystem Diversity Framework (EDF) would improve landscape analysis and communication across multiple scales. The EDF represents a multiple-component vegetation classification system with inherent flexibility for...
Waste and Abuse: Public School Roofing Projects.
ERIC Educational Resources Information Center
2000
This report details the results of a comprehensive inquiry by New Jersey into one aspect of school construction, the repair and replacement of roof systems, which represents the single most expensive and integral component of a school's physical structure. The investigation began in late 1997 after confidential complaints suggested abuse in the…
Wanting and Liking: Components of Situated Motivation Constructs?
ERIC Educational Resources Information Center
Palmer, David
2017-01-01
Brain studies have revealed that 2 neurological systems, one for "wanting" and one for "liking," are responsible for many instances of motivated behavior. If wanting and liking are fundamental elements of motivation, then we should also expect to see them represented in educational models of motivation for learning. However, it…
DEVELOPMENT OF A CONTINUOUS MONITORING SYSTEM FOR PM10 AND COMPONENTS OF PM2.5. (R825305)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
An integrative assessment of the commercial air transportation system via adaptive agents
NASA Astrophysics Data System (ADS)
Lim, Choon Giap
The overarching research objective is to address the tightly-coupled interactions between the demand-side and supply-side components of the United States Commercial Air Transportation System (CATS) in a time-variant environment. A system-of-system perspective is adopted, where the scope is extended beyond the National Airspace System (NAS) level to the National Transportation System (NTS) level to capture the intermodal and multimodal relationships between the NTS stakeholders. The Agent-Based Modeling and Simulation technique is employed where the NTS/NAS is treated as an integrated Multi-Agent System comprising of consumer and service provider agents, representing the demand-side and supply-side components respectively. Successful calibration and validation of both model components against the observable real world data resulted in a CATS simulation tool where the aviation demand is estimated from socioeconomic and demographic properties of the population instead of merely based on enplanement growth multipliers. This valuable achievement enabled a 20-year outlook simulation study to investigate the implications of a global fuel price hike on the airline industry and the U.S. CATS at large. Simulation outcomes revealed insights into the airline competitive behaviors and the subsequent responses from transportation consumers.
NASA Technical Reports Server (NTRS)
Hudson, Nicolas; Lin, Ying; Barengoltz, Jack
2010-01-01
A method for evaluating the probability of a Viable Earth Microorganism (VEM) contaminating a sample during the sample acquisition and handling (SAH) process of a potential future Mars Sample Return mission is developed. A scenario where multiple core samples would be acquired using a rotary percussive coring tool, deployed from an arm on a MER class rover is analyzed. The analysis is conducted in a structured way by decomposing sample acquisition and handling process into a series of discrete time steps, and breaking the physical system into a set of relevant components. At each discrete time step, two key functions are defined: The probability of a VEM being released from each component, and the transport matrix, which represents the probability of VEM transport from one component to another. By defining the expected the number of VEMs on each component at the start of the sampling process, these decompositions allow the expected number of VEMs on each component at each sampling step to be represented as a Markov chain. This formalism provides a rigorous mathematical framework in which to analyze the probability of a VEM entering the sample chain, as well as making the analysis tractable by breaking the process down into small analyzable steps.
Dioptric power: its nature and its representation in three- and four-dimensional space.
Harris, W F
1997-06-01
Dioptric power expressed in the familiar three-component form of sphere, cylinder, and axis is unsuited to mathematical and statistical treatments; there is a particular class of power that cannot be represented in the familiar form; and it is possible that sphere, cylinder, and axis will prove inadequate in future clinical and research applications in optometry and ophthalmology. Dioptric power expressed as the four-component dioptric power matrix, however, overcomes these shortcomings. The intention in this paper is to provide a definitive statement on the nature, function, and mathematical representation of dioptric power in terms of the matrix and within the limitations of paraxial or linear optics. The approach is universal in the sense that its point of departure is not power of the familiar form (that is, of thin systems) but of systems in general (thick or thin). Familiar types of power are then seen within the context of power in general. Dioptric power is defined, for systems that may be thick and astigmatic, in terms of the ray transfer matrix. A functional definition is presented for dioptric power and its components: it defines the additive contribution of incident position to emergent direction of a ray passing through the system. For systems that are thin (or thin-equivalent) it becomes possible to describe an alternative and more familiar function; for such systems dioptric power can be regarded as the increase in reduced surface curvature of a wavefront brought about by the system as the wavefront passes through it. The curvital and torsional components of the power are explored in some detail. Dioptric power, at its most general, defines a four-dimensional inner product space called dioptric power space. The familiar types of power define a three-dimensional subspace called symmetric dioptric power space. For completeness a one-dimensional antisymmetric power space is also defined: it is orthogonal in four dimensions to symmetric dioptric power space. Various bases are defined for the spaces as are coordinate vectors with respect to them. Vectorial representations of power in the literature apply only to thin systems and are not obviously generalizable to systems in general. They are shown to be merely different coordinate representations of the same subspace, the space of symmetric powers. Some of the uses and disadvantages of the different representations are described. None of the coordinate vectors fully represent, by themselves, the essential character of dioptric power. Their use is limited to applications, such as finding a mean, where addition and scalar multiplication are involved. The full character of power is represented by the dioptric power matrix; it is in this form that power is appropriate for all mathematical relationships.
Principal components of wrist circumduction from electromagnetic surgical tracking.
Rasquinha, Brian J; Rainbow, Michael J; Zec, Michelle L; Pichora, David R; Ellis, Randy E
2017-02-01
An electromagnetic (EM) surgical tracking system was used for a functionally calibrated kinematic analysis of wrist motion. Circumduction motions were tested for differences in subject gender and for differences in the sense of the circumduction as clockwise or counter-clockwise motion. Twenty subjects were instrumented for EM tracking. Flexion-extension motion was used to identify the functional axis. Subjects performed unconstrained wrist circumduction in a clockwise and counter-clockwise sense. Data were decomposed into orthogonal flexion-extension motions and radial-ulnar deviation motions. PCA was used to concisely represent motions. Nonparametric Wilcoxon tests were used to distinguish the groups. Flexion-extension motions were projected onto a direction axis with a root-mean-square error of [Formula: see text]. Using the first three principal components, there was no statistically significant difference in gender (all [Formula: see text]). For motion sense, radial-ulnar deviation distinguished the sense of circumduction in the first principal component ([Formula: see text]) and in the third principal component ([Formula: see text]); flexion-extension distinguished the sense in the second principal component ([Formula: see text]). The clockwise sense of circumduction could be distinguished by a multifactorial combination of components; there were no gender differences in this small population. These data constitute a baseline for normal wrist circumduction. The multifactorial PCA findings suggest that a higher-dimensional method, such as manifold analysis, may be a more concise way of representing circumduction in human joints.
Exploring Propulsion System Requirements for More and All-Electric Helicopters
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2015-01-01
Helicopters offer unique capabilities that are important for certain missions. More and all-electric propulsion systems for helicopters offer the potential for improved efficiency, reliability, vehicle and mission capabilities as well as reduced harmful emissions. To achieve these propulsion system-based benefits, the relevant requirements must be understood and developed for the various component, sub-component and ancillary systems of the overall propulsion system. Three representative helicopters were used to explore propulsion and overall vehicle and mission requirements. These vehicles varied from light utility (one to three occupants) to highly capable (three crew members plus ten passengers and cargo). Assuming 15 and 30 year technology availability, analytical models for electric system components were developed to understand component and ancillary requirements. Overall propulsion system characteristics were developed and used for vehicle sizing and mission analyses to understand the tradeoffs of component performance and weight, with increase in vehicle size and mission capability. Study results indicate that only the light utility vehicle retained significant payload for an arbitrary 100 nautical mile range assuming 15 year technology. Thirty year technology assumptions for battery energy storage are sufficient to enable some range and payload capabilities, but further improvements in energy density are required to maintain or exceed payload and range capabilities versus present systems. Hydrocarbon-fueled range extenders can be prudently used to recover range and payload deficiencies resulting from battery energy density limitations. Thermal loads for electric systems are low heat quality, but seem manageable. To realize the benefits from more and all-electric systems, technology goals must be achieved, as well as vehicles, missions and systems identified that are best suited to take advantage of their unique characteristics.
Exploring Propulsion System Requirements for More and All-Electric Helicopters
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2015-01-01
Helicopters offer unique capabilities that are important for certain missions. More and all-electric propulsion systems for helicopters offer the potential for improved efficiency, reliability, vehicle and mission capabilities as well as reduced harmful emissions. To achieve these propulsion system-based benefits, the relevant requirements must be understood and developed for the various component, sub-component and ancillary systems of the overall propulsion system. Three representative helicopters were used to explore propulsion and overall vehicle and mission requirements. These vehicles varied from light utility (one to three occupants) to highly capable (three crew members plus ten passengers and cargo). Assuming 15 and 30 year technology availability, analytical models for electric system components were developed to understand component and ancillary requirements. Overall propulsion system characteristics were developed and used for vehicle sizing and mission analyses to understand the tradeoffs of component performance and weight, with increase in vehicle size and mission capability. Study results indicate that only the light utility vehicle retained significant payload for an arbitrary 100 nautical mile range assuming 15 year technology. Thirty year technology assumptions for battery energy storage are sufficient to enable some range and payload capabilities, but further improvements in energy density are required to maintain or exceed payload and range capabilities versus present systems. Hydrocarbon-fueled range extenders can be prudently used to recover range and payload deficiencies resulting from battery energy density limitations. Thermal loads for electric systems are low heat quality, but seem manageable. To realize the benefits from more and all-electric systems, technology goals must be achieved, as well as identify vehicles, missions and systems that are best suited to take advantage of their unique characteristics.
Defense strategies for cloud computing multi-site server infrastructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S.; Ma, Chris Y. T.; He, Fei
We consider cloud computing server infrastructures for big data applications, which consist of multiple server sites connected over a wide-area network. The sites house a number of servers, network elements and local-area connections, and the wide-area network plays a critical, asymmetric role of providing vital connectivity between them. We model this infrastructure as a system of systems, wherein the sites and wide-area network are represented by their cyber and physical components. These components can be disabled by cyber and physical attacks, and also can be protected against them using component reinforcements. The effects of attacks propagate within the systems, andmore » also beyond them via the wide-area network.We characterize these effects using correlations at two levels using: (a) aggregate failure correlation function that specifies the infrastructure failure probability given the failure of an individual site or network, and (b) first-order differential conditions on system survival probabilities that characterize the component-level correlations within individual systems. We formulate a game between an attacker and a provider using utility functions composed of survival probability and cost terms. At Nash Equilibrium, we derive expressions for the expected capacity of the infrastructure given by the number of operational servers connected to the network for sum-form, product-form and composite utility functions.« less
Neural Network Modeling of UH-60A Pilot Vibration
NASA Technical Reports Server (NTRS)
Kottapalli, Sesi
2003-01-01
Full-scale flight-test pilot floor vibration is modeled using neural networks and full-scale wind tunnel test data for low speed level flight conditions. Neural network connections between the wind tunnel test data and the tlxee flight test pilot vibration components (vertical, lateral, and longitudinal) are studied. Two full-scale UH-60A Black Hawk databases are used. The first database is the NASMArmy UH-60A Airloads Program flight test database. The second database is the UH-60A rotor-only wind tunnel database that was acquired in the NASA Ames SO- by 120- Foot Wind Tunnel with the Large Rotor Test Apparatus (LRTA). Using neural networks, the flight-test pilot vibration is modeled using the wind tunnel rotating system hub accelerations, and separately, using the hub loads. The results show that the wind tunnel rotating system hub accelerations and the operating parameters can represent the flight test pilot vibration. The six components of the wind tunnel N/rev balance-system hub loads and the operating parameters can also represent the flight test pilot vibration. The present neural network connections can significandy increase the value of wind tunnel testing.
NASA Astrophysics Data System (ADS)
Balla, Vamsi Krishna; Coox, Laurens; Deckers, Elke; Plyumers, Bert; Desmet, Wim; Marudachalam, Kannan
2018-01-01
The vibration response of a component or system can be predicted using the finite element method after ensuring numerical models represent realistic behaviour of the actual system under study. One of the methods to build high-fidelity finite element models is through a model updating procedure. In this work, a novel model updating method of deep-drawn components is demonstrated. Since the component is manufactured with a high draw ratio, significant deviations in both profile and thickness distributions occurred in the manufacturing process. A conventional model updating, involving Young's modulus, density and damping ratios, does not lead to a satisfactory match between simulated and experimental results. Hence a new model updating process is proposed, where geometry shape variables are incorporated, by carrying out morphing of the finite element model. This morphing process imitates the changes that occurred during the deep drawing process. An optimization procedure that uses the Global Response Surface Method (GRSM) algorithm to maximize diagonal terms of the Modal Assurance Criterion (MAC) matrix is presented. This optimization results in a more accurate finite element model. The advantage of the proposed methodology is that the CAD surface of the updated finite element model can be readily obtained after optimization. This CAD model can be used for carrying out analysis, as it represents the manufactured part more accurately. Hence, simulations performed using this updated model with an accurate geometry, will therefore yield more reliable results.
Hamberg, Yuval; Ruimy-Israeli, Vered; Dassa, Bareket; Barak, Yoav; Lamed, Raphael; Cameron, Kate; Fontes, Carlos M G A; Bayer, Edward A; Fried, Daniel B
2014-01-01
Cellulosic waste represents a significant and underutilized carbon source for the biofuel industry. Owing to the recalcitrance of crystalline cellulose to enzymatic degradation, it is necessary to design economical methods of liberating the fermentable sugars required for bioethanol production. One route towards unlocking the potential of cellulosic waste lies in a highly complex class of molecular machines, the cellulosomes. Secreted mainly by anaerobic bacteria, cellulosomes are structurally diverse, cell surface-bound protein assemblies that can contain dozens of catalytic components. The key feature of the cellulosome is its modularity, facilitated by the ultra-high affinity cohesin-dockerin interaction. Due to the enormous number of cohesin and dockerin modules found in a typical cellulolytic organism, a major bottleneck in understanding the biology of cellulosomics is the purification of each cohesin- and dockerin-containing component, prior to analyses of their interaction. As opposed to previous approaches, the present study utilized proteins contained in unpurified whole-cell extracts. This strategy was made possible due to an experimental design that allowed for the relevant proteins to be "purified" via targeted affinity interactions as a function of the binding assay. The approach thus represents a new strategy, appropriate for future medium- to high-throughput screening of whole genomes, to determine the interactions between cohesins and dockerins. We have selected the cellulosome of Acetivibrio cellulolyticus for this work due to its exceptionally complex cellulosome systems and intriguing diversity of its cellulosomal modular components. Containing 41 cohesins and 143 dockerins, A. cellulolyticus has one of the largest number of potential cohesin-dockerin interactions of any organism, and contains unusual and novel cellulosomal features. We have surveyed a representative library of cohesin and dockerin modules spanning the cellulosome's total cohesin and dockerin sequence diversity, emphasizing the testing of unusual and previously-unknown protein modules. The screen revealed several novel cell-bound cellulosome architectures, thus expanding on those previously known, as well as soluble cellulose systems that are not bound to the bacterial cell surface. This study sets the stage for screening the entire complement of cellulosomal components from A. cellulolyticus and other organisms with large cellulosome systems. The knowledge gained by such efforts brings us closer to understanding the exceptional catalytic abilities of cellulosomes and will allow the use of novel cellulosomal components in artificial assemblies and in enzyme cocktails for sustainable energy-related research programs.
Human auditory evoked potentials. I - Evaluation of components
NASA Technical Reports Server (NTRS)
Picton, T. W.; Hillyard, S. A.; Krausz, H. I.; Galambos, R.
1974-01-01
Fifteen distinct components can be identified in the scalp recorded average evoked potential to an abrupt auditory stimulus. The early components occurring in the first 8 msec after a stimulus represent the activation of the cochlea and the auditory nuclei of the brainstem. The middle latency components occurring between 8 and 50 msec after the stimulus probably represent activation of both auditory thalamus and cortex but can be seriously contaminated by concurrent scalp muscle reflex potentials. The longer latency components occurring between 50 and 300 msec after the stimulus are maximally recorded over fronto-central scalp regions and seem to represent widespread activation of frontal cortex.
Wilk, Szymon; Kezadri-Hamiaz, Mounira; Rosu, Daniela; Kuziemsky, Craig; Michalowski, Wojtek; Amyot, Daniel; Carrier, Marc
2016-02-01
In healthcare organizations, clinical workflows are executed by interdisciplinary healthcare teams (IHTs) that operate in ways that are difficult to manage. Responding to a need to support such teams, we designed and developed the MET4 multi-agent system that allows IHTs to manage patients according to presentation-specific clinical workflows. In this paper, we describe a significant extension of the MET4 system that allows for supporting rich team dynamics (understood as team formation, management and task-practitioner allocation), including selection and maintenance of the most responsible physician and more complex rules of selecting practitioners for the workflow tasks. In order to develop this extension, we introduced three semantic components: (1) a revised ontology describing concepts and relations pertinent to IHTs, workflows, and managed patients, (2) a set of behavioral rules describing the team dynamics, and (3) an instance base that stores facts corresponding to instances of concepts from the ontology and to relations between these instances. The semantic components are represented in first-order logic and they can be automatically processed using theorem proving and model finding techniques. We employ these techniques to find models that correspond to specific decisions controlling the dynamics of IHT. In the paper, we present the design of extended MET4 with a special focus on the new semantic components. We then describe its proof-of-concept implementation using the WADE multi-agent platform and the Z3 solver (theorem prover/model finder). We illustrate the main ideas discussed in the paper with a clinical scenario of an IHT managing a patient with chronic kidney disease.
Systems Analysis Initiated for All-Electric Aircraft Propulsion
NASA Technical Reports Server (NTRS)
Kohout, Lisa L.
2003-01-01
A multidisciplinary effort is underway at the NASA Glenn Research Center to develop concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. There is a growing interest in the use of fuel cells as a power source for electric propulsion as well as an auxiliary power unit to substantially reduce or eliminate environmentally harmful emissions. A systems analysis effort was initiated to assess potential concepts in an effort to identify those configurations with the highest payoff potential. Among the technologies under consideration are advanced proton exchange membrane (PEM) and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. Prior to this effort, the majority of fuel cell analysis done at Glenn was done for space applications. Because of this, a new suite of models was developed. These models include the hydrogen-air PEM fuel cell; internal reforming solid oxide fuel cell; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. Initial mass, volume, and performance estimates of a variety of PEM systems operating on hydrogen and reformate have been completed for a baseline general aviation aircraft. Solid oxide/turbine hybrid systems are being analyzed. In conjunction with the analysis efforts, a joint effort has been initiated with Glenn s Computer Services Division to integrate fuel cell stack and component models with the visualization environment that supports the GRUVE lab, Glenn s virtual reality facility. The objective of this work is to provide an environment to assist engineers in the integration of fuel cell propulsion systems into aircraft and provide a better understanding of the interaction between system components and the resulting effect on the overall design and performance of the aircraft. Initially, three-dimensional computer-aided design (CAD) models of representative PEM fuel cell stack and components were developed and integrated into the virtual reality environment along with an Excel-based model used to calculate fuel cell electrical performance on the basis of cell dimensions (see the figure). CAD models of a representative general aviation aircraft were also developed and added to the environment. With the use of special headgear, users will be able to virtually manipulate the fuel cell s physical characteristics and its placement within the aircraft while receiving information on the resultant fuel cell output power and performance. As the systems analysis effort progresses, we will add more component models to the GRUVE environment to help us more fully understand the effect of various system configurations on the aircraft.
Operational models of infrastructure resilience.
Alderson, David L; Brown, Gerald G; Carlyle, W Matthew
2015-04-01
We propose a definition of infrastructure resilience that is tied to the operation (or function) of an infrastructure as a system of interacting components and that can be objectively evaluated using quantitative models. Specifically, for any particular system, we use quantitative models of system operation to represent the decisions of an infrastructure operator who guides the behavior of the system as a whole, even in the presence of disruptions. Modeling infrastructure operation in this way makes it possible to systematically evaluate the consequences associated with the loss of infrastructure components, and leads to a precise notion of "operational resilience" that facilitates model verification, validation, and reproducible results. Using a simple example of a notional infrastructure, we demonstrate how to use these models for (1) assessing the operational resilience of an infrastructure system, (2) identifying critical vulnerabilities that threaten its continued function, and (3) advising policymakers on investments to improve resilience. © 2014 Society for Risk Analysis.
Does the Coherent Lidar System Corroborate Non-Interaction of Waves (NIW)?
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Roychoudhari, Chandrasekhar
2013-01-01
The NIW (non-interaction of waves) property has been proposed by one of the coauthors. The NIW property states that in the absence of any "obstructing" detectors, all the Huygens-Fresnel secondary wavelets will continue to propagate unhindered and without interacting (interfering) with each other. Since a coherent lidar system incorporates complex behaviors of optical components with different polarizations including circular polarization for the transmitted radiation, then the question arises whether the NIW principle accommodate elliptical polarization of light. Elliptical polarization presumes the summation of orthogonally polarized electric field vectors which contradicts the NIW principle. In this paper, we present working of a coherent lidar system using Jones matrix formulation. The Jones matrix elements represent the anisotropic dipolar properties of molecules of optical components. Accordingly, when we use the Jones matrix methodology to analyze the coherent lidar system, we find that the system behavior is congruent with the NIW property.
NASA Technical Reports Server (NTRS)
Chen, I. Y.; Ungar, E. K.; Lee, D. Y.; Beckstrom, P. S.
1993-01-01
To verify the on-orbit operation of the Space Station Freedom (SSF) two-phase external Active Thermal Control System (ATCS), a test and verification program will be performed prior to flight. The first system level test of the ATCS is the Prototype Test Article (PTA) test that will be performed in early 1994. All ATCS loops will be represented by prototypical components and the line sizes and lengths will be representative of the flight system. In this paper, the SSF ATCS and a portion of its verification process are described. The PTA design and the analytical methods that were used to quantify the gravity effects on PTA operation are detailed. Finally, the gravity effects are listed, and the applicability of the 1-g PTA test results to the validation of on-orbit ATCS operation is discussed.
NASA Astrophysics Data System (ADS)
Rogowitz, Bernice E.; Matasci, Naim
2011-03-01
The explosion of online scientific data from experiments, simulations, and observations has given rise to an avalanche of algorithmic, visualization and imaging methods. There has also been enormous growth in the introduction of tools that provide interactive interfaces for exploring these data dynamically. Most systems, however, do not support the realtime exploration of patterns and relationships across tools and do not provide guidance on which colors, colormaps or visual metaphors will be most effective. In this paper, we introduce a general architecture for sharing metadata between applications and a "Metadata Mapper" component that allows the analyst to decide how metadata from one component should be represented in another, guided by perceptual rules. This system is designed to support "brushing [1]," in which highlighting a region of interest in one application automatically highlights corresponding values in another, allowing the scientist to develop insights from multiple sources. Our work builds on the component-based iPlant Cyberinfrastructure [2] and provides a general approach to supporting interactive, exploration across independent visualization and visual analysis components.
Time-dependent water dynamics in hydrated uranyl fluoride
Miskowiec, Andrew J.; Anderson, Brian B.; Herwig, Kenneth W.; ...
2015-09-15
In this study, uranyl fluoride is a three-layer, hexagonal structure with significant stacking disorder in the c-direction. It supports a range of unsolved ‘thermodynamic’ hydrates with 0–2.5 water molecules per uranium atom, and perhaps more. However, the relationship between water, hydrate crystal structures, and thermodynamic results, collectively representing the chemical pathway through these hydrate structures, has not been sufficiently elucidated. We used high-resolution quasielastic neutron scattering to study the dynamics of water in partially hydrated uranyl fluoride powder over the course of 4 weeks under closed conditions. The spectra are composed of two quasielastic components: one is associated with translationalmore » diffusive motion of water that is approximately five to six times slower than bulk water, and the other is a slow (on the order of 2–300 ps), spatially bounded water motion. The translational component represents water diffusing between the weakly bonded layers in the crystal, while the bounded component may represent water trapped in subnanometre ‘pockets’ formed by the space between uranium-centred polymerisation units. Complementary neutron diffraction measurements do not show any significant structural changes, suggesting that a chemical conversion of the material does not occur in the thermodynamically isolated system on this timescale.« less
Atmospheric Constituents in GEOS-5: Components for an Earth System Model
NASA Technical Reports Server (NTRS)
Pawson, Steven; Douglass, Anne; Duncan, Bryan; Nielsen, Eric; Ott, Leslie; Strode, Sarah
2011-01-01
The GEOS-S model is being developed for weather and climate processes, including the implementation of "Earth System" components. While the stratospheric chemistry capabilities are mature, we are presently extending this to include predictions of the tropospheric composition and chemistry - this includes CO2, CH4, CO, nitrogen species, etc. (Aerosols are also implemented, but are beyond the scope of this paper.) This work will give an overview of our chemistry modules, the approaches taken to represent surface emissions and uptake of chemical species, and some studies of the sensitivity of the atmospheric circulation to changes in atmospheric composition. Results are obtained through focused experiments and multi-decadal simulations.
Simulation of the dynamic environment for missile component testing: Demonstration
NASA Technical Reports Server (NTRS)
Chang, Kurng Y.
1989-01-01
The problems in defining a realistic test requirement for missile and space vehicle components can be classified into two categories: (1) definition of the test environment representing the expected service condition, and (2) simulation of the desired environment in the test laboratory. Recently, a new three-dimensional (3-D) test facility was completed at the U.S. Army Harry Diamond Laboratory (HDL) to simulate triaxial vibration input to a test specimen. The vibration test system is designed to support multi-axial vibration tests over the frequency range of 5 to 2000 Hertz. The availability of this 3-D test system motivates the development of new methodologies addressing environmental definition and simulation.
Object-oriented analysis and design of a health care management information system.
Krol, M; Reich, D L
1999-04-01
We have created a prototype for a universal object-oriented model of a health care system compatible with the object-oriented approach used in version 3.0 of the HL7 standard for communication messages. A set of three models has been developed: (1) the Object Model describes the hierarchical structure of objects in a system--their identity, relationships, attributes, and operations; (2) the Dynamic Model represents the sequence of operations in time as a collection of state diagrams for object classes in the system; and (3) functional Diagram represents the transformation of data within a system by means of data flow diagrams. Within these models, we have defined major object classes of health care participants and their subclasses, associations, attributes and operators, states, and behavioral scenarios. We have also defined the major processes and subprocesses. The top-down design approach allows use, reuse, and cloning of standard components.
Carbone, Donatella; Faggio, Caterina
2016-07-01
Infectious diseases in fish represent a major problem for the aquaculture field as they produce extensive damages and loss. Over the last few years, with increased development of the aquaculture industry, different methods have been used to contrast these pathologies. Common interest has led to the use of components (as additives in diets) that could contrast diseases without causing any negative impact on the environment. These components are represented by prebiotics, probiotics, and plant extracts. In this review, the effects of prebiotics are described. Prebiotics are indigestible fibres fermented by gut enzymes and commensal bacteria, whose beneficial effects are due to the by-products generated from fermentation. The influence of pre-biotics on the immune system of fish is called immunosaccharides. Mannanoligosaccharides (MOS), Fructooligosaccharides (FOS) and Inulin act at different levels in the innate immune response. For example, through phagocytosis, lysozyme activity, and the complement system activity, an increase in fish growth and an amelioration of their health status is brought about. In this review, the use of prebiotics in aquaculture, such as immunostimulants, has been highlighted: particularly in two teleost fish species, Sparus aurata and Dicentrarchus labrax. The results demonstrate that the road is still long and further studies are required, but the use of prebiotics, individually or coupled together, can open the doors to pioneering a new model of alternative components to antimicrobial agents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Laser pulse detection method and apparatus
NASA Technical Reports Server (NTRS)
Goss, W.; Janesick, J. R. (Inventor)
1984-01-01
A sensor is described for detecting the difference in phase of a pair of returned light pulse components, such as two components of a light pulse of an optical gyro. In an optic gyro, the two light components have passed in opposite directions through a coil of optical fiber, with the difference in phase of the returned light components determining the intensity of light shining on the sensor. The sensor includes a CCD (charge coupled device) that receives the pair of returned light components to generate a charge proportional to the number of photons in the received light. The amount of the charge represents the phase difference between the two light components. At a time after the transmission of the light pulse and before the expected time of arrival of the interfering light components, charge accumulating in the CCD as a result of reflections from components in the system, are repeatedly removed from the CCD, by transferring out charges in the CCD and dumping these charges.
Systems biology of stored blood cells: can it help to extend the expiration date?
Paglia, Giuseppe; Palsson, Bernhard Ø; Sigurjonsson, Olafur E
2012-12-05
With increasingly stringent regulations regarding deferral and elimination of blood donors it will become increasingly important to extend the expiration date of blood components beyond the current allowed storage periods. One reason for the storage time limit for blood components is that platelets and red blood cells develop a condition called storage lesions during their storage in plastic blood containers. Systems biology provides comprehensive bio-chemical descriptions of organisms through quantitative measurements and data integration in mathematical models. The biological knowledge for a target organism can be translated in a mathematical format and used to compute physiological properties. The use of systems biology represents a concrete solution in the study of blood cell storage lesions, and it may open up new avenues towards developing better storage methods and better storage media, thereby extending the storage period of blood components. This article is part of a Special Issue entitled: Integrated omics. Copyright © 2012 Elsevier B.V. All rights reserved.
The dendritic spine story: an intriguing process of discovery.
DeFelipe, Javier
2015-01-01
Dendritic spines are key components of a variety of microcircuits and they represent the majority of postsynaptic targets of glutamatergic axon terminals in the brain. The present article will focus on the discovery of dendritic spines, which was possible thanks to the application of the Golgi technique to the study of the nervous system, and will also explore the early interpretation of these elements. This discovery represents an interesting chapter in the history of neuroscience as it shows us that progress in the study of the structure of the nervous system is based not only on the emergence of new techniques but also on our ability to exploit the methods already available and correctly interpret their microscopic images.
Ely, D.M.; Hill, M.C.; Tiedeman, C.R.; O'Brien, G. M.
2004-01-01
When a model is calibrated by nonlinear regression, calculated diagnostic and inferential statistics provide a wealth of information about many aspects of the system. This work uses linear inferential statistics that are measures of prediction uncertainty to investigate the likely importance of continued monitoring of hydraulic head to the accuracy of model predictions. The measurements evaluated are hydraulic heads; the predictions of interest are subsurface transport from 15 locations. The advective component of transport is considered because it is the component most affected by the system dynamics represented by the regional-scale model being used. The problem is addressed using the capabilities of the U.S. Geological Survey computer program MODFLOW-2000, with its Advective Travel Observation (ADV) Package. Copyright ASCE 2004.
NASA Astrophysics Data System (ADS)
Munigety, Caleb Ronald
2018-04-01
The traditional traffic microscopic simulation models consider driver and vehicle as a single unit to represent the movements of drivers in a traffic stream. Due to this very fact, the traditional car-following models have the driver behavior related parameters, but ignore the vehicle related aspects. This approach is appropriate for homogeneous traffic conditions where car is the major vehicle type. However, in heterogeneous traffic conditions where multiple vehicle types are present, it becomes important to incorporate the vehicle related parameters exclusively to account for the varying dynamic and static characteristics. Thus, this paper presents a driver-vehicle integrated model hinged on the principles involved in physics-based spring-mass-damper mechanical system. While the spring constant represents the driver’s aggressiveness, the damping constant and the mass component take care of the stability and size/weight related aspects, respectively. The proposed model when tested, behaved pragmatically in representing the vehicle-type dependent longitudinal movements of vehicles.
The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability
Theurich, Gerhard; DeLuca, C.; Campbell, T.; ...
2016-08-22
The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open-source terms or to credentialed users. Furthermore, the ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the United States. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC)more » Layer, a set of ESMF-based component templates and interoperability conventions. Our shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multiagency development of coupled modeling systems; controlled experimentation and testing; and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NAVGEM), the Hybrid Coordinate Ocean Model (HYCOM), and the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model.« less
The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theurich, Gerhard; DeLuca, C.; Campbell, T.
The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open-source terms or to credentialed users. Furthermore, the ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the United States. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC)more » Layer, a set of ESMF-based component templates and interoperability conventions. Our shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multiagency development of coupled modeling systems; controlled experimentation and testing; and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NAVGEM), the Hybrid Coordinate Ocean Model (HYCOM), and the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model.« less
Smart textiles: Challenges and opportunities
NASA Astrophysics Data System (ADS)
Cherenack, Kunigunde; van Pieterson, Liesbeth
2012-11-01
Smart textiles research represents a new model for generating creative and novel solutions for integrating electronics into unusual environments and will result in new discoveries that push the boundaries of science forward. A key driver for smart textiles research is the fact that both textile and electronics fabrication processes are capable of functionalizing large-area surfaces at very high speeds. In this article we review the history of smart textiles development, introducing the main trends and technological challenges faced in this field. Then, we identify key challenges that are the focus of ongoing research. We then proceed to discuss fundamentals of smart textiles: textile fabrication methods and textile interconnect lines, textile sensor, and output device components and integration of commercial components into textile architectures. Next we discuss representative smart textile systems and finally provide our outlook over the field and a prediction for the future.
Analyzing and Detecting Problems in Systems of Systems
NASA Technical Reports Server (NTRS)
Lindvall, Mikael; Ackermann, Christopher; Stratton, William C.; Sibol, Deane E.; Godfrey, Sally
2008-01-01
Many software systems are evolving complex system of systems (SoS) for which inter-system communication is mission-critical. Evidence indicates that transmission failures and performance issues are not uncommon occurrences. In a NASA-supported Software Assurance Research Program (SARP) project, we are researching a new approach addressing such problems. In this paper, we are presenting an approach for analyzing inter-system communications with the goal to uncover both transmission errors and performance problems. Our approach consists of a visualization and an evaluation component. While the visualization of the observed communication aims to facilitate understanding, the evaluation component automatically checks the conformance of an observed communication (actual) to a desired one (planned). The actual and the planned are represented as sequence diagrams. The evaluation algorithm checks the conformance of the actual to the planned diagram. We have applied our approach to the communication of aerospace systems and were successful in detecting and resolving even subtle and long existing transmission problems.
Dynamic analysis of Space Shuttle/RMS configuration using continuum approach
NASA Technical Reports Server (NTRS)
Ramakrishnan, Jayant; Taylor, Lawrence W., Jr.
1994-01-01
The initial assembly of Space Station Freedom involves the Space Shuttle, its Remote Manipulation System (RMS) and the evolving Space Station Freedom. The dynamics of this coupled system involves both the structural and the control system dynamics of each of these components. The modeling and analysis of such an assembly is made even more formidable by kinematic and joint nonlinearities. The current practice of modeling such flexible structures is to use finite element modeling in which the mass and interior dynamics is ignored between thousands of nodes, for each major component. The model characteristics of only tens of modes are kept out of thousands which are calculated. The components are then connected by approximating the boundary conditions and inserting the control system dynamics. In this paper continuum models are used instead of finite element models because of the improved accuracy, reduced number of model parameters, the avoidance of model order reduction, and the ability to represent the structural and control system dynamics in the same system of equations. Dynamic analysis of linear versions of the model is performed and compared with finite element model results. Additionally, the transfer matrix to continuum modeling is presented.
A CSP-Based Agent Modeling Framework for the Cougaar Agent-Based Architecture
NASA Technical Reports Server (NTRS)
Gracanin, Denis; Singh, H. Lally; Eltoweissy, Mohamed; Hinchey, Michael G.; Bohner, Shawn A.
2005-01-01
Cognitive Agent Architecture (Cougaar) is a Java-based architecture for large-scale distributed agent-based applications. A Cougaar agent is an autonomous software entity with behaviors that represent a real-world entity (e.g., a business process). A Cougaar-based Model Driven Architecture approach, currently under development, uses a description of system's functionality (requirements) to automatically implement the system in Cougaar. The Communicating Sequential Processes (CSP) formalism is used for the formal validation of the generated system. Two main agent components, a blackboard and a plugin, are modeled as CSP processes. A set of channels represents communications between the blackboard and individual plugins. The blackboard is represented as a CSP process that communicates with every agent in the collection. The developed CSP-based Cougaar modeling framework provides a starting point for a more complete formal verification of the automatically generated Cougaar code. Currently it is used to verify the behavior of an individual agent in terms of CSP properties and to analyze the corresponding Cougaar society.
The ac propulsion system for an electric vehicle, phase 1
NASA Astrophysics Data System (ADS)
Geppert, S.
1981-08-01
A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.
The ac propulsion system for an electric vehicle, phase 1
NASA Technical Reports Server (NTRS)
Geppert, S.
1981-01-01
A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.
FLAMMABLE GAS TECHNICAL BASIS DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
KRIPPS, L.J.
2005-02-18
This document describes the qualitative evaluation of frequency and consequences for double shell tank (DST) and single shell tank (SST) representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant SSCs and/or TSRS were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support of the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the needmore » for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.« less
Analysis of a dielectric EAP as smart component for a neonatal respiratory simulator.
Tognarelli, S; Deri, L; Cecchi, F; Scaramuzzo, R; Cuttano, A; Laschi, C; Menciassi, A; Dario, P
2013-01-01
Nowadays, respiratory syndrome represents the most common neonatal pathology. Nevertheless, being respiratory assistance in newborns a great challenge for neonatologists and nurses, use of simulation-based training is quickly becoming a valid meaning of clinical education for an optimal therapy outcome. Commercially available simulators, are, however, not able to represent complex breathing patterns and to evaluate specific alterations. The purpose of this work has been to develop a smart, lightweight, compliant system with variable rigidity able to replicate the anatomical behavior of the neonatal lung, with the final aim to integrate such system into an innovative mechatronic simulator device. A smart material based-system has been proposed and validated: Dielectric Electro Active Polymers (DEAP), coupled to a purposely shaped silicone camera, has been investigated as active element for a compliance change simulator able to replicate both physiological and pathological lung properties. Two different tests have been performed by using a bi-components camera (silicone shape coupled to PolyPower film) both as an isolated system and connected to an infant ventilator. By means of a pressure sensor held on the silicon structure, pressure values have been collected and compared for active and passive PolyPower working configuration. The obtained results confirm a slight pressure decrease in active configuration, that is in agreement with the film stiffness reduction under activation and demonstrates the real potentiality of DEAP for active volume changing of the proposed system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, C.H.; Ready, A.B.; Rea, J.
1995-06-01
Versions of the computer program PROATES (PROcess Analysis for Thermal Energy Systems) have been used since 1979 to analyse plant performance improvement proposals relating to existing plant and also to evaluate new plant designs. Several plant modifications have been made to improve performance based on the model predictions and the predicted performance has been realised in practice. The program was born out of a need to model the overall steady state performance of complex plant to enable proposals to change plant component items or operating strategy to be evaluated. To do this with confidence it is necessary to model themore » multiple thermodynamic interactions between the plant components. The modelling system is modular in concept allowing the configuration of individual plant components to represent any particular power plant design. A library exists of physics based modules which have been extensively validated and which provide representations of a wide range of boiler, turbine and CW system components. Changes to model data and construction is achieved via a user friendly graphical model editing/analysis front-end with results being presented via the computer screen or hard copy. The paper describes briefly the modelling system but concentrates mainly on the application of the modelling system to assess design re-optimisation, firing with different fuels and the re-powering of an existing plant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milton, Morgan E.; Allen, C. Leigh; Feldmann, Erik A.
With antibiotic resistance increasing at alarming rates, targets for new antimicrobial therapies must be identified. A particularly promising target is the bacterial two-component system. Two-component systems allow bacteria to detect, evaluate and protect themselves against changes in the environment, such as exposure to antibiotics and also to trigger production of virulence factors. Drugs that target the response regulator portion of two-component systems represent a potent new approach so far unexploited. Here, we focus efforts on the highly virulent bacterium Francisella tularensis tularensis. Francisella contains only three response regulators, making it an ideal system to study. In this study, we initiallymore » present the structure of the N-terminal domain of QseB, the response regulator responsible for biofilm formation. Subsequently, using binding assays, computational docking and cellular studies, we show that QseB interacts with2-aminoimidazole based compounds that impede its function. This information will assist in tailoring compounds to act as adjuvants that will enhance the effect of antibiotics.« less
Influence of Design Variations on Systems Performance
NASA Technical Reports Server (NTRS)
Tumer, Irem Y.; Stone, Robert B.; Huff, Edward M.; Norvig, Peter (Technical Monitor)
2000-01-01
High-risk aerospace components have to meet very stringent quality, performance, and safety requirements. Any source of variation is a concern, as it may result in scrap or rework. poor performance, and potentially unsafe flying conditions. The sources of variation during product development, including design, manufacturing, and assembly, and during operation are shown. Sources of static and dynamic variation during development need to be detected accurately in order to prevent failure when the components are placed in operation. The Systems' Health and Safety (SHAS) research at the NASA Ames Research Center addresses the problem of detecting and evaluating the statistical variation in helicopter transmissions. In this work, we focus on the variations caused by design, manufacturing, and assembly of these components, prior to being placed in operation (DMV). In particular, we aim to understand and represent the failure and variation information, and their correlation to performance and safety and feed this information back into the development cycle at an early stage. The feedback of such critical information will assure the development of more reliable components with less rework and scrap. Variations during design and manufacturing are a common source of concern in the development and production of such components. Accounting for these variations, especially those that have the potential to affect performance, is accomplished in a variety ways, including Taguchi methods, FMEA, quality control, statistical process control, and variation risk management. In this work, we start with the assumption that any of these variations can be represented mathematically, and accounted for by using analytical tools incorporating these mathematical representations. In this paper, we concentrate on variations that are introduced during design. Variations introduced during manufacturing are investigated in parallel work.
ERIC Educational Resources Information Center
Shoulders, Catherine W.; Toland, Hannah
2017-01-01
Classroom and laboratory instruction, FFA, and SAE have long represented the complete agricultural education program via the three-component model. While the model depicts three circles of equal size to represent these components, the focus and level of emphasis of each component within the agriculture program is the decision of the agriculture…
Rubrics for Evaluating Open Education Resource (OER) Objects
ERIC Educational Resources Information Center
Achieve, Inc., 2011
2011-01-01
The rubrics presented in this report represent an evaluation system for objects found within Open Education Resources. An object could include images, applets, lessons, units, assessments and more. For the purpose of this evaluation, any component that can exist as a stand-alone qualifies as an object. The rubrics in this packet can be applied…
ERIC Educational Resources Information Center
Iowa Department of Education, 2015
2015-01-01
One central component of a great school system is a clear set of expectations, or standards, that educators help all students reach. In Iowa, that effort is known as the Iowa Core. The Iowa Core represents the statewide academic standards, which describe what students should know and be able to do in math, science, English language arts, and…
1975 United Legislative Program of the Community College Legislative Council.
ERIC Educational Resources Information Center
Washington State Board for Community Coll. Education, Olympia.
The Community College Legislative Council was organized in 1971 to provide a means through which a uniform approach to the state legislature and legislation could be achieved by the various organizations representing components of the community college system. For each session of the legislature, the council prepares a United Legislative Program.…
Glacier Lakes Ecosystem Experiment Site: an "Experimental" wilderness
Douglas G. Fox; Anna W. Schoettle; Frank A. Vertucci
1987-01-01
This site, selected to be representative of high-mountain wilderness ecosystems, is being used to study the effects of air pollution and atmospheric deposition In alpine and subalpine, terrestrial and aquatic biotic communities. The research program includes (a) short-term experiments designed to quantify the response of system components hypothesized to be most...
Optimal control of raw timber production processes
Ivan Kolenka
1978-01-01
This paper demonstrates the possibility of optimal planning and control of timber harvesting activ-ities with mathematical optimization models. The separate phases of timber harvesting are represented by coordinated models which can be used to select the optimal decision for the execution of any given phase. The models form a system whose components are connected and...
Benchmarking performance measurement and lean manufacturing in the rough mill
Dan Cumbo; D. Earl Kline; Matthew S. Bumgardner
2006-01-01
Lean manufacturing represents a set of tools and a stepwise strategy for achieving smooth, predictable product flow, maximum product flexibility, and minimum system waste. While lean manufacturing principles have been successfully applied to some components of the secondary wood products value stream (e.g., moulding, turning, assembly, and finishing), the rough mill is...
First Visual Orbit for the Prototypical Colliding-wind Binary WR 140
NASA Astrophysics Data System (ADS)
Monnier, John D.; Zhao, M.; Pedretti, E.; Millan-Gabet, R.; Berger, J.; Schloerb, F.; Traub, W.; ten Brummelaar, T.; McAlister, H.; Ridgway, S.; Turner, N.; Sturmann, L.; Sturmann, J.; Baron, F.; Tannirkulam, A.; Kraus, S.; Williams, P.
2012-01-01
Wolf-Rayet stars represent one of the final stages of massive stellar evolution. Relatively little is known about this short-lived phase and we currently lack reliable mass, distance, and binarity determinations for a representative sample. Here we report the first visual orbit for WR 140 (=HD193793), a WC7+O5 binary system known for its periodic dust production episodes triggered by intense colliding winds near periastron passage. The IOTA and CHARA interferometers resolved the pair of stars in each year from 2003--2009, covering most of the highly-eccentric, 7.9 year orbit. Combining our results with the recent improved double-line spectroscopic orbit of Fahed et al. (2011), we can estimate the distance to WR 140 with about 2% error and estimate component masses with about 4% error. Our precision orbit yields key parameters with uncertainties about 6 times smaller than previous work and paves the way for detailed modeling of the system. Our newly measured flux ratios at the near-infrared H and Ks bands allow an SED decomposition and analysis of the component evolutionary states.
Extension of a System Level Tool for Component Level Analysis
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Schallhorn, Paul
2002-01-01
This paper presents an extension of a numerical algorithm for network flow analysis code to perform multi-dimensional flow calculation. The one dimensional momentum equation in network flow analysis code has been extended to include momentum transport due to shear stress and transverse component of velocity. Both laminar and turbulent flows are considered. Turbulence is represented by Prandtl's mixing length hypothesis. Three classical examples (Poiseuille flow, Couette flow and shear driven flow in a rectangular cavity) are presented as benchmark for the verification of the numerical scheme.
Extension of a System Level Tool for Component Level Analysis
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Schallhorn, Paul; McConnaughey, Paul K. (Technical Monitor)
2001-01-01
This paper presents an extension of a numerical algorithm for network flow analysis code to perform multi-dimensional flow calculation. The one dimensional momentum equation in network flow analysis code has been extended to include momentum transport due to shear stress and transverse component of velocity. Both laminar and turbulent flows are considered. Turbulence is represented by Prandtl's mixing length hypothesis. Three classical examples (Poiseuille flow, Couette flow, and shear driven flow in a rectangular cavity) are presented as benchmark for the verification of the numerical scheme.
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
2008-01-01
An error budget is a commonly used tool in design of complex aerospace systems. It represents system performance requirements in terms of allowable errors and flows these down through a hierarchical structure to lower assemblies and components. The requirements may simply be 'allocated' based upon heuristics or experience, or they may be designed through use of physics-based models. This paper presents a basis for developing an error budget for models of the system, as opposed to the system itself. The need for model error budgets arises when system models are a principle design agent as is increasingly more common for poorly testable high performance space systems.
Improved E-ELT subsystem and component specifications, thanks to M1 test facility
NASA Astrophysics Data System (ADS)
Dimmler, M.; Marrero, J.; Leveque, S.; Barriga, Pablo; Sedghi, B.; Kornweibel, N.
2014-07-01
During the last 2 years ESO has operated the "M1 Test Facility", a test stand consisting of a representative section of the E-ELT primary mirror equipped with 4 complete prototype segment subunits including sensors, actuators and control system. The purpose of the test facility is twofold: it serves to study and get familiar with component and system aspects like calibration, alignment and handling procedures and suitable control strategies on real hardware long before the primary mirror (hereafter M1) components are commissioned. Secondly, and of major benefit to the project, it offered the possibility to evaluate component and subsystem performance and interface issues in a system context in such detail, that issues could be identified early enough to feed back into the subsystem and component specifications. This considerably reduces risk and cost of the production units and allows refocusing the project team on important issues for the follow-up of the production contracts. Experiences are presented in which areas the results of the M1 Test Facility particularly helped to improve subsystem specifications and areas, where additional tests were adopted independent of the main test facility. Presented are the key experiences of the M1 Test Facility which lead to improved specifications or identified the need for additional testing outside of the M1 Test Facility.
Feng, Sha; Vogelmann, Andrew M.; Li, Zhijin; ...
2015-01-20
Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scalesmore » larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.« less
Heroven, Ann Kathrin; Böhme, Katja; Dersch, Petra
2012-04-01
This review emphasizes the function and regulation of the Csr regulatory system in the human enteropathogen Yersinia pseudotuberculosis and compares its features with the homologous Csr/Rsm systems of related pathogens. The Csr/Rsm systems of eubacteria form a complex regulatory network in which redundant non-translated Csr/Rsm-RNAs bind the RNA-binding protein CsrA/RsmA, thereby preventing its interaction with mRNA targets. The Csr system is controlled by the BarA/UvrY-type of two-component sensor-regulator systems. Apart from that, common or pathogen-specific regulators control the abundance of the Csr components. The coordinate control of virulence factors and infection-linked physiological traits by the Csr/Rsm systems helps the pathogens to adapt individually to rapidly changing conditions to which they are exposed during the different stages of an infection. As Csr/Rsm function is relevant for full virulence, it represents a target suitable for antimicrobial drug development.
Non-Equilibrium Green’s Function Study of Transport in Disordered Double-Layer Graphene Systems
2011-01-01
particles like electrons and holes. The Pauli exclusion principle prevents fermions from occupying the same quantum state, limiting the expectation...sity approximation. In Eq. 6.2, µ represents a vector that isolates each of the Cartesian components of the pairing vector, σµ represents the Pauli spin...devices on SiO2,” Nat. Nano, vol. 3, pp. 206–209, 2008. [35] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung , E
Fourier decomposition of payoff matrix for symmetric three-strategy games.
Szabó, György; Bodó, Kinga S; Allen, Benjamin; Nowak, Martin A
2014-10-01
In spatial evolutionary games the payoff matrices are used to describe pair interactions among neighboring players located on a lattice. Now we introduce a way how the payoff matrices can be built up as a sum of payoff components reflecting basic symmetries. For the two-strategy games this decomposition reproduces interactions characteristic to the Ising model. For the three-strategy symmetric games the Fourier components can be classified into four types representing games with self-dependent and cross-dependent payoffs, variants of three-strategy coordinations, and the rock-scissors-paper (RSP) game. In the absence of the RSP component the game is a potential game. The resultant potential matrix has been evaluated. The general features of these systems are analyzed when the game is expressed by the linear combinations of these components.
STS-135 crew during Rendezvous Training session in Building 16 dome
2011-03-23
JSC2011-E-028132 (23 March 2011) --- As news media representatives look on, NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; and Sandy Magnus, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth. Photo credit: NASA or National Aeronautics and Space Administration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duane, Greg; Tsonis, Anastasios; Kocarev, Ljupco
This collaborative reserach has several components but the main idea is that when imperfect copies of a given nonlinear dynamical system are coupled, they may synchronize for some set of coupling parameters. This idea is to be tested for several IPCC-like models each one with its own formulation and representing an “imperfect” copy of the true climate system. By computing the coupling parameters, which will lead the models to a synchronized state, a consensus on climate change simulations may be achieved.
Interface Reactions and Synthetic Reaction of Composite Systems
Park, Joon Sik; Kim, Jeong Min
2010-01-01
Interface reactions in composite systems often determine their overall properties, since product phases usually formed at interfaces during composite fabrication processing make up a large portion of the composites. Since most composite materials represent a ternary or higher order materials system, many studies have focused on analyses of diffusion phenomena and kinetics in multicomponent systems. However, the understanding of the kinetic behavior increases the complexity, since the kinetics of each component during interdiffusion reactions need to be defined for interpreting composite behaviors. From this standpoint, it is important to clarify the interface reactions for producing compatible interfaces with desired product phases. A thermodynamic evaluation such as a chemical potential of involving components can provide an understanding of the diffusion reactions, which govern diffusion pathways and product phase formation. A strategic approach for designing compatible interfaces is discussed in terms of chemical potential diagrams and interface morphology, with some material examples.
Plasma contactor technology for Space Station Freedom
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy; Soulas, George C.; Parkes, James; Ohlinger, Wayne L.; Schaffner, Michael S.; Nelson, Amy
1993-01-01
Hollow cathode plasma contactors were baselined for Space Station Freedom (SSF) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and in particular the technology development effort on ion thruster systems. Specific efforts include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contact or subsystems include the plasma contact or unit, a power electronics unit, and an expellant management unit. Under this program these will all be brought to breadboard and engineering model development status. New test facilities were developed, and existing facilities were augmented, to support characterizations and life testing of contactor components and systems. The magnitude, scope, and status of the plasma contactor hardware development program now underway and preliminary test results on system components are discussed.
Plasma contactor technology for Space Station Freedom
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy; Soulas, George C.; Parkes, James; Ohlinger, Wayne L.; Schaffner, Michael S.; Nelson, Amy
1993-01-01
Hollow cathode plasma contactors have been baselined for Space Station Freedom to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and in particular the technology development effort on ion thruster systems. Specific efforts include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contactor subsystems include the plasma contactor unit, a power electronics unit, and an expellant management unit. Under this program these will all be brought to breadboard and engineering model development status. New test facilities have been developed, and existing facilities have been augmented, to support characterizations and life testing of contactor components and systems. This paper discusses the magnitude, scope, and status of the plasma contactor hardware development program now under way and preliminary test results on system components.
Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases.
Pietrocola, Giampiero; Nobile, Giulia; Rindi, Simonetta; Speziale, Pietro
2017-01-01
Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus , a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases.
Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases
Pietrocola, Giampiero; Nobile, Giulia; Rindi, Simonetta; Speziale, Pietro
2017-01-01
Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus, a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases. PMID:28529927
A Network Flow Analysis of the Nitrogen Metabolism in Beijing, China.
Zhang, Yan; Lu, Hanjing; Fath, Brian D; Zheng, Hongmei; Sun, Xiaoxi; Li, Yanxian
2016-08-16
Rapid urbanization results in high nitrogen flows and subsequent environmental consequences. In this study, we identified the main metabolic components (nitrogen inputs, flows, and outputs) and used ecological network analysis to track the direct and integral (direct + indirect) metabolic flows of nitrogen in Beijing, China, from 1996 to 2012 and to quantify the structure of Beijing's nitrogen metabolic processes. We found that Beijing's input of new reactive nitrogen (Q, which represents nitrogen obtained from the atmosphere or nitrogen-containing materials used in production and consumption to support human activities) increased from 431 Gg in 1996 to 507 Gg in 2012. Flows to the industry, atmosphere, and household, and components of the system were clearly largest, with total integrated inputs plus outputs from these nodes accounting for 31, 29, and 15%, respectively, of the total integral flows for all paths. The flows through the sewage treatment and transportation components showed marked growth, with total integrated inputs plus outputs increasing to 3.7 and 5.2 times their 1996 values, respectively. Our results can help policymakers to locate the key nodes and pathways in an urban nitrogen metabolic system so they can monitor and manage these components of the system.
Evolution of Requirements and Assumptions for Future Exploration Missions
NASA Technical Reports Server (NTRS)
Anderson, Molly; Sargusingh, Miriam; Perry, Jay
2017-01-01
NASA programs are maturing technologies, systems, and architectures to enabling future exploration missions. To increase fidelity as technologies mature, developers must make assumptions that represent the requirements of a future program. Multiple efforts have begun to define these requirements, including team internal assumptions, planning system integration for early demonstrations, and discussions between international partners planning future collaborations. For many detailed life support system requirements, existing NASA documents set limits of acceptable values, but a future vehicle may be constrained in other ways, and select a limited range of conditions. Other requirements are effectively set by interfaces or operations, and may be different for the same technology depending on whether the hard-ware is a demonstration system on the International Space Station, or a critical component of a future vehicle. This paper highlights key assumptions representing potential life support requirements and explanations of the driving scenarios, constraints, or other issues that drive them.
Alarcon, Pablo; Velasova, Martina; Werling, Dirk; Stärk, Katharina D C; Chang, Yu-Mei; Nevel, Amanda; Pfeiffer, Dirk U; Wieland, Barbara
2011-01-01
Post-weaning multi-systemic wasting syndrome (PMWS) causes major economic losses for the English pig industry and severity of clinical signs and economic impact vary considerably between affected farms. We present here a novel approach to quantify severity of PMWS based on morbidity and mortality data and presence of porcine circovirus type 2 (PCV2). In 2008-2009, 147 pig farms across England, non-vaccinating for PCV2, were enrolled in a cross-sectional study. Factor analysis was used to generate variables representing biologically meaningful aspects of variation among qualitative and quantitative morbidity variables. Together with other known variables linked to PMWS, the resulting factors were included in a principal component analysis (PCA) to derive an algorithm for PMWS severity. Factor analysis resulted in two factors: Morbidity Factor 1 (MF1) representing mainly weaner and grower morbidity, and Morbidity Factor 2 (MF2) which mainly reflects variation in finisher morbidity. This indicates that farms either had high morbidity mainly in weaners/growers or mainly in finishers. Subsequent PCA resulted in the extraction of one component representing variation in MF1, post-weaning mortality and percentage of PCV2 PCR positive animals. Component scores were normalised to a value range from 0 to 10 and farms classified into: non or slightly affected farms with a score <4, moderately affected farms with scores 4-6.5 and highly affected farms with a score >6.5. The identified farm level PMWS severities will be used to identify risk factors related to these, to assess the efficacy of PCV2 vaccination and investigating the economic impact of potential control measures. Copyright © 2010 Elsevier B.V. All rights reserved.
Intelligent fault isolation and diagnosis for communication satellite systems
NASA Technical Reports Server (NTRS)
Tallo, Donald P.; Durkin, John; Petrik, Edward J.
1992-01-01
Discussed here is a prototype diagnosis expert system to provide the Advanced Communication Technology Satellite (ACTS) System with autonomous diagnosis capability. The system, the Fault Isolation and Diagnosis EXpert (FIDEX) system, is a frame-based system that uses hierarchical structures to represent such items as the satellite's subsystems, components, sensors, and fault states. This overall frame architecture integrates the hierarchical structures into a lattice that provides a flexible representation scheme and facilitates system maintenance. FIDEX uses an inexact reasoning technique based on the incrementally acquired evidence approach developed by Shortliffe. The system is designed with a primitive learning ability through which it maintains a record of past diagnosis studies.
An expert system based software sizing tool, phase 2
NASA Technical Reports Server (NTRS)
Friedlander, David
1990-01-01
A software tool was developed for predicting the size of a future computer program at an early stage in its development. The system is intended to enable a user who is not expert in Software Engineering to estimate software size in lines of source code with an accuracy similar to that of an expert, based on the program's functional specifications. The project was planned as a knowledge based system with a field prototype as the goal of Phase 2 and a commercial system planned for Phase 3. The researchers used techniques from Artificial Intelligence and knowledge from human experts and existing software from NASA's COSMIC database. They devised a classification scheme for the software specifications, and a small set of generic software components that represent complexity and apply to large classes of programs. The specifications are converted to generic components by a set of rules and the generic components are input to a nonlinear sizing function which makes the final prediction. The system developed for this project predicted code sizes from the database with a bias factor of 1.06 and a fluctuation factor of 1.77, an accuracy similar to that of human experts but without their significant optimistic bias.
Robotic Vision-Based Localization in an Urban Environment
NASA Technical Reports Server (NTRS)
Mchenry, Michael; Cheng, Yang; Matthies
2007-01-01
A system of electronic hardware and software, now undergoing development, automatically estimates the location of a robotic land vehicle in an urban environment using a somewhat imprecise map, which has been generated in advance from aerial imagery. This system does not utilize the Global Positioning System and does not include any odometry, inertial measurement units, or any other sensors except a stereoscopic pair of black-and-white digital video cameras mounted on the vehicle. Of course, the system also includes a computer running software that processes the video image data. The software consists mostly of three components corresponding to the three major image-data-processing functions: Visual Odometry This component automatically tracks point features in the imagery and computes the relative motion of the cameras between sequential image frames. This component incorporates a modified version of a visual-odometry algorithm originally published in 1989. The algorithm selects point features, performs multiresolution area-correlation computations to match the features in stereoscopic images, tracks the features through the sequence of images, and uses the tracking results to estimate the six-degree-of-freedom motion of the camera between consecutive stereoscopic pairs of images (see figure). Urban Feature Detection and Ranging Using the same data as those processed by the visual-odometry component, this component strives to determine the three-dimensional (3D) coordinates of vertical and horizontal lines that are likely to be parts of, or close to, the exterior surfaces of buildings. The basic sequence of processes performed by this component is the following: 1. An edge-detection algorithm is applied, yielding a set of linked lists of edge pixels, a horizontal-gradient image, and a vertical-gradient image. 2. Straight-line segments of edges are extracted from the linked lists generated in step 1. Any straight-line segments longer than an arbitrary threshold (e.g., 30 pixels) are assumed to belong to buildings or other artificial objects. 3. A gradient-filter algorithm is used to test straight-line segments longer than the threshold to determine whether they represent edges of natural or artificial objects. In somewhat oversimplified terms, the test is based on the assumption that the gradient of image intensity varies little along a segment that represents the edge of an artificial object.
Remotely piloted vehicle: Application of the GRASP analysis method
NASA Technical Reports Server (NTRS)
Andre, W. L.; Morris, J. B.
1981-01-01
The application of General Reliability Analysis Simulation Program (GRASP) to the remotely piloted vehicle (RPV) system is discussed. The model simulates the field operation of the RPV system. By using individual component reliabilities, the overall reliability of the RPV system is determined. The results of the simulations are given in operational days. The model represented is only a basis from which more detailed work could progress. The RPV system in this model is based on preliminary specifications and estimated values. The use of GRASP from basic system definition, to model input, and to model verification is demonstrated.
NASA Technical Reports Server (NTRS)
Cohen, Gerald C. (Inventor); McMann, Catherine M. (Inventor)
1991-01-01
An improved method and system for automatically generating reliability models for use with a reliability evaluation tool is described. The reliability model generator of the present invention includes means for storing a plurality of low level reliability models which represent the reliability characteristics for low level system components. In addition, the present invention includes means for defining the interconnection of the low level reliability models via a system architecture description. In accordance with the principles of the present invention, a reliability model for the entire system is automatically generated by aggregating the low level reliability models based on the system architecture description.
NASA Astrophysics Data System (ADS)
Ganguly, Jayanta; Ghosh, Manas
2015-07-01
We investigate the modulation of diagonal components of static linear (αxx, αyy) and first nonlinear (βxxx, βyyy) polarizabilities of quantum dots by Gaussian white noise. Quantum dot is doped with impurity represented by a Gaussian potential and repulsive in nature. The study reveals the importance of mode of application of noise (additive/multiplicative) on the polarizability components. The doped system is further exposed to a static external electric field of given intensity. As important observation we have found that the strength of additive noise becomes unable to influence the polarizability components. However, the multiplicative noise influences them conspicuously and gives rise to additional interesting features. Multiplicative noise even enhances the magnitude of the polarizability components immensely. The present investigation deems importance in view of the fact that noise seriously affects the optical properties of doped quantum dot devices.
Examining protein-lipid interactions in model systems with a new squarylium fluorescent dye.
Ioffe, Valeriya M; Gorbenko, Galyna P; Tatarets, Anatoliy L; Patsenker, Leonid D; Terpechnig, Ewald A
2006-07-01
The applicability of newly synthesized squarylium dye Sq to probing the changes in physical characteristics of lipid bilayer on the formation of protein-lipid complexes has been evaluated. Lipid vesicles composed of zwitterionic phospholipid phosphatidylcholine (PC) and its mixtures with positively charged detergent cetyltrimethylammonium bromide (CTAB), anionic phospholipid cardiolipin (CL), and cholesterol (Chol) were employed as lipid component of model membrane systems while protein constituent was represented by lysozyme (Lz). Fluorescence intensity of Sq was found to decrease on Lz association with lipid bilayer. This effect was observed in all kinds of model systems suggesting that Sq is sensitive to modification of lipid bilayer physical properties on hydrophobic protein-lipid interactions. It was found that Sq spectral response to variations in Chol content depends on relative contributions of electrostatic and hydrophobic components of Lz-membrane binding.
Emotion scents: a method of representing user emotions on GUI widgets
NASA Astrophysics Data System (ADS)
Cernea, Daniel; Weber, Christopher; Ebert, Achim; Kerren, Andreas
2013-01-01
The world of desktop interfaces has been dominated for years by the concept of windows and standardized user interface (UI) components. Still, while supporting the interaction and information exchange between the users and the computer system, graphical user interface (GUI) widgets are rather one-sided, neglecting to capture the subjective facets of the user experience. In this paper, we propose a set of design guidelines for visualizing user emotions on standard GUI widgets (e.g., buttons, check boxes, etc.) in order to enrich the interface with a new dimension of subjective information by adding support for emotion awareness as well as post-task analysis and decision making. We highlight the use of an EEG headset for recording the various emotional states of the user while he/she is interacting with the widgets of the interface. We propose a visualization approach, called emotion scents, that allows users to view emotional reactions corresponding to di erent GUI widgets without in uencing the layout or changing the positioning of these widgets. Our approach does not focus on highlighting the emotional experience during the interaction with an entire system, but on representing the emotional perceptions and reactions generated by the interaction with a particular UI component. Our research is motivated by enabling emotional self-awareness and subjectivity analysis through the proposed emotionenhanced UI components for desktop interfaces. These assumptions are further supported by an evaluation of emotion scents.
Sub-component modeling for face image reconstruction in video communications
NASA Astrophysics Data System (ADS)
Shiell, Derek J.; Xiao, Jing; Katsaggelos, Aggelos K.
2008-08-01
Emerging communications trends point to streaming video as a new form of content delivery. These systems are implemented over wired systems, such as cable or ethernet, and wireless networks, cell phones, and portable game systems. These communications systems require sophisticated methods of compression and error-resilience encoding to enable communications across band-limited and noisy delivery channels. Additionally, the transmitted video data must be of high enough quality to ensure a satisfactory end-user experience. Traditionally, video compression makes use of temporal and spatial coherence to reduce the information required to represent an image. In many communications systems, the communications channel is characterized by a probabilistic model which describes the capacity or fidelity of the channel. The implication is that information is lost or distorted in the channel, and requires concealment on the receiving end. We demonstrate a generative model based transmission scheme to compress human face images in video, which has the advantages of a potentially higher compression ratio, while maintaining robustness to errors and data corruption. This is accomplished by training an offline face model and using the model to reconstruct face images on the receiving end. We propose a sub-component AAM modeling the appearance of sub-facial components individually, and show face reconstruction results under different types of video degradation using a weighted and non-weighted version of the sub-component AAM.
Energy efficient engine high pressure turbine ceramic shroud support technology report
NASA Technical Reports Server (NTRS)
Nelson, W. A.; Carlson, R. G.
1982-01-01
This work represents the development and fabrication of ceramic HPT (high pressure turbine) shrouds for the Energy Efficient Engine (E3). Details are presented covering the work performed on the ceramic shroud development task of the NASA/GE Energy Efficient Engine (E3) component development program. The task consists of four phases which led to the selection of a ZrO2-BY2O3 ceramic shroud material system, the development of an automated plasma spray process to produce acceptable shroud structures, the fabrication of select shroud systems for evaluation in laboratory, component, and CF6-50 engine testing, and finally, the successful fabrication of ZrO2-8Y2O3/superpeg, engine quality shrouds for the E3 engine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed Abdelrahman; roger Haggard; Wagdy Mahmoud
The final goal of this project was the development of a system that is capable of controlling an industrial process effectively through the integration of information obtained through intelligent sensor fusion and intelligent control technologies. The industry of interest in this project was the metal casting industry as represented by cupola iron-melting furnaces. However, the developed technology is of generic type and hence applicable to several other industries. The system was divided into the following four major interacting components: 1. An object oriented generic architecture to integrate the developed software and hardware components @. Generic algorithms for intelligent signal analysismore » and sensor and model fusion 3. Development of supervisory structure for integration of intelligent sensor fusion data into the controller 4. Hardware implementation of intelligent signal analysis and fusion algorithms« less
Smart manufacturing of complex shaped pipe components
NASA Astrophysics Data System (ADS)
Salchak, Y. A.; Kotelnikov, A. A.; Sednev, D. A.; Borikov, V. N.
2018-03-01
Manufacturing industry is constantly improving. Nowadays the most relevant trend is widespread automation and optimization of the production process. This paper represents a novel approach for smart manufacturing of steel pipe valves. The system includes two main parts: mechanical treatment and quality assurance units. Mechanical treatment is performed by application of the milling machine with implementation of computerized numerical control, whilst the quality assurance unit contains three testing modules for different tasks, such as X-ray testing, optical scanning and ultrasound testing modules. The advances of each of them provide reliable results that contain information about any failures of the technological process, any deviations of geometrical parameters of the valves. The system also allows detecting defects on the surface or in the inner structure of the component.
Problem of nature of inert gases in lunar surface material
NASA Technical Reports Server (NTRS)
Levskiy, L. K.
1974-01-01
The origin of isotopes of inert gases in lunar surface material was investigated from the standpoint of the isotopic two-component status of inert gases in the solar system. Helium and neon represent the solar wind component, while krypton and xenon are planetary gases. Type A gases are trapped by the material of the regolith in the early stages of the existence of the solar system and were brought to the lunar surface together with dust. The material of the regolith therefore cannot be considered as the product of the erosion of the crystalline rocks of the moon and in this sense are extralunar. The regolith material containing type A gases must be identified with the high temperature minerals of the carbonaceous chondrites.
Safety of clinical and non-clinical decision makers in telephone triage: a narrative review.
Wheeler, Sheila Q; Greenberg, Mary E; Mahlmeister, Laura; Wolfe, Nicole
2015-09-01
Patient safety is a persistent problem in telephone triage research; however, studies have not differentiated between clinicians' and non-clinicians' respective safety. Currently, four groups of decision makers perform aspects of telephone triage: clinicians (physicians, nurses), and non-clinicians (emergency medical dispatchers (EMD) and clerical staff). Using studies published between 2002-2012, we applied Donabedian's structure-process-outcome model to examine groups' systems for evidence of system completeness (a minimum measure of structure and quality). We defined system completeness as the presence of a decision maker and four additional components: guidelines, documentation, training, and standards. Defining safety as appropriate referrals (AR) - (right time, right place with the right person), we measured each groups' corresponding AR rate percentages (outcomes). We analyzed each group's respective decision-making process as a safe match to the telephone triage task, based on each group's system structure completeness, process and AR rates (outcome). Studies uniformly noted system component presence: nurses (2-4), physicians (1), EMDs (2), clerical staff (1). Nurses had the highest average appropriate referral (AR) rates (91%), physicians' AR (82% average). Clerical staff had no system and did not perform telephone triage by standard definitions; EMDs may represent the use of the wrong system. Telephone triage appears least safe after hours when decision makers with the least complete systems (physicians, clerical staff) typically manage calls. At minimum, telephone triage decision makers should be clinicians; however, clinicians' safety calls for improvement. With improved training, standards and CDSS quality, the 24/7 clinical call center has potential to represent the national standard. © The Author(s) 2015.
Rodrigues, Camila Carneiro Dos Santos; Santos, Ewerton; Ramos, Brunalisa Silva; Damasceno, Flaviana Cardoso; Correa, José Augusto Martins
2018-06-01
The 16 priority PAH were determined in sediment samples from the insular zone of Guajará Bay and Guamá River (Southern Amazon River mouth). Low hydrocarbon levels were observed and naphthalene was the most representative PAH. The low molecular weight PAH represented 51% of the total PAH. Statistical analysis showed that the sampling sites are not significantly different. Source analysis by PAH ratios and principal component analysis revealed that PAH are primary from a few rate of fossil fuel combustion, mainly related to the local small community activity. All samples presented no biological stress or damage potencial according to the sediment quality guidelines. This study discuss baselines for PAH in surface sediments from Amazonic aquatic systems based on source determination by PAH ratios and principal component analysis, sediment quality guidelines and through comparison with previous studies data.
The dendritic spine story: an intriguing process of discovery
DeFelipe, Javier
2015-01-01
Dendritic spines are key components of a variety of microcircuits and they represent the majority of postsynaptic targets of glutamatergic axon terminals in the brain. The present article will focus on the discovery of dendritic spines, which was possible thanks to the application of the Golgi technique to the study of the nervous system, and will also explore the early interpretation of these elements. This discovery represents an interesting chapter in the history of neuroscience as it shows us that progress in the study of the structure of the nervous system is based not only on the emergence of new techniques but also on our ability to exploit the methods already available and correctly interpret their microscopic images. PMID:25798090
Conceptual and numerical modeling approach of the Guarani Aquifer System
NASA Astrophysics Data System (ADS)
Rodríguez, L.; Vives, L.; Gomez, A.
2013-01-01
In large aquifers, relevant for their considerable size, regional groundwater modeling remains challenging given geologic complexity and data scarcity in space and time. Yet, it may be conjectured that regional scale groundwater flow models can help in understanding the flow system functioning and the relative magnitude of water budget components, which are important for aquifer management. The Guaraní Aquifer System is the largest transboundary aquifer in South America. It contains an enormous volume of water; however, it is not well known, being difficult to assess the impact of exploitation currently used to supply over 25 million inhabitants. This is a sensitive issue because the aquifer is shared by four countries. Moreover, an integrated groundwater model, and therefore a global water balance, were not available. In this work, a transient regional scale model for the entire aquifer based upon five simplified, equally plausible conceptual models represented by different hydraulic conductivity parametrizations is used to analyze the flow system and water balance components. Combining an increasing number of hydraulic conductivity zones and an appropriate set of boundary conditions, the hypothesis of a continuous sedimentary unit yielded errors within the calibration target in a regional sense. The magnitude of the water budget terms resulted very similar for all parametrizations. Recharge and stream/aquifer fluxes were the dominant components representing, on average, 84.2% of total inflows and 61.4% of total outflows, respectively. However, leakage was small compared to stream discharges of main rivers. For instance, the simulated average leakage for the Uruguay River was 8 m3 s-1 while the observed absolute minimum discharge was 382 m3 s-1. Streams located in heavily pumped regions switched from a gaining condition in early years to a losing condition over time. Water is discharged through the aquifer boundaries, except at the eastern boundary. On average, pumping represented 16.2% of inflows while aquifer storage experienced a small overall increment. The model water balance indicates that the current rate of groundwater withdrawals does not exceed the rate of recharge in a regional sense.
Shock and Rarefaction Waves in a Heterogeneous Mantle
NASA Astrophysics Data System (ADS)
Jordan, J.; Hesse, M. A.
2012-12-01
We explore the effect of heterogeneities on partial melting and melt migration during active upwelling in the Earth's mantle. We have constructed simple, explicit nonlinear models in one dimension to examine heterogeneity and its dynamic affects on porosity, temperature and the magnesium number in a partially molten, porous medium comprised of olivine. The composition of the melt and solid are defined by a closed, binary phase diagram for a simplified, two-component olivine system. The two-component solid solution is represented by a phase loop where concentrations 0 and 1 to correspond to fayalite and forsterite, respectively. For analysis, we examine an advective system with a Riemann initial condition. Chromatographic tools and theory have primarily been used to track large, rare earth elements as tracers. In our case, we employ these theoretical tools to highlight the importance of the magnesium number, enthalpy and overall heterogeneity in the dynamics of melt migration. We calculate the eigenvectors and eigenvalues in the concentration-enthalpy space in order to glean the characteristics of the waves emerging the Riemann step. Analysis on Riemann problems of this nature shows us that the composition-enthalpy waves can be represented by self-similar solutions. The eigenvalues of the composition-enthalpy system represent the characteristic wave propagation speeds of the compositions and enthalpy through the domain. Furthermore, the corresponding eigenvectors are the directions of variation, or ``pathways," in concentration-enthalpy space that the characteristic waves follow. In the two-component system, the Riemann problem yields two waves connected by an intermediate concentration-enthalpy state determined by the intersections of the integral curves of the eigenvectors emanating from both the initial and boundary states. The first wave, ``slow path," and second wave, ``fast path," follow the aformentioned pathways set by the eigenvectors. The slow path wave has a zero eigenvalue, corresponding to a wave speed of zero, which preserves a residual imprint of the initial condition. Freezing fronts textemdash those that result in a negative change in porositytextemdash feature fast path waves that travel as shocks, whereas the fast path waves of melting fronts travel as spreading, rarefaction waves.
Learning as a Problem Solving Tool. Technical Report CS74018-R.
ERIC Educational Resources Information Center
Claybrook, Billy G.
This paper explores the use of learning as a practical tool in problem solving. The idea that learning should and eventually will be a vital component of most Artificial Intelligence programs is pursued. Current techniques in learning systems are compared. A detailed discussion of the problems of representing, modifying, and creating heuristics is…
James S. Kagan
2006-01-01
Researchers, land managers, and the public currently often are unable to obtain useful biodiversity information because the subject represents such a large component of biology and ecology, and systems to compile and organize this information do not exist. Information on vascular plant taxonomy, as addressed by the Global Biodiversity Information Facility and key...
USDA-ARS?s Scientific Manuscript database
Abstract: Dairy production, along with all other types of animal agriculture, is a recognized source of greenhouse gas (GHG) emissions, but little information exists on the net emissions from our farms. Component models for representing all important sources and sinks of CH4, N2O, and CO2 in dairy p...
ERIC Educational Resources Information Center
Kilgus, Stephen P.; Eklund, Katie R.
2016-01-01
Universal screening for behavioral and emotional risk represents an important component of multitiered systems of support, being a means by which schools identify at-risk students and evaluate the effectiveness of Tier 1 programming. Despite its importance, many schools have not adopted universal screening procedures, instead relying upon more…
STS-135 crew during Rendezvous Training session in Building 16 dome
2011-03-23
JSC2011-E-028144 (23 March 2011) --- NASA astronauts Chris Ferguson (left foreground), STS-135 commander; Doug Hurley (left background), pilot; and Sandy Magnus (left), mission specialist, speak with news media representatives during an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth. Photo credit: NASA or National Aeronautics and Space Administration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiskoot, R.J.J.
Accurate and reliable sampling systems are imperative when confirming natural gas' commercial value. Buyers and sellers need accurate hydrocarbon-composition information to conduct fair sale transactions. Because of poor sample extraction, preparation or analysis can invalidate the sale, more attention should be directed toward improving representative sampling. Consider all sampling components, i.e., gas types, line pressure and temperature, equipment maintenance and service needs, etc. The paper discusses gas sampling, design considerations (location, probe type, extraction devices, controller, and receivers), operating requirements, and system integration.
1988-09-01
the report. Field Testing Specific aspects of field procedures have been tested at Fort Devens , MA, and at the Consolidated Rail Corporation (Conrail...days of formalized training on the system, both field proce- dures and computer operations, were conducted by USA-CERL at Fort Devens , MA. Attendees...included representatives from TSC, Fort Devens , FORSCOM, and the T.K. Dyer Corp. Initial Track Segmenting and Component Identification The office work
Inconsistency of topologically massive hypergravity
NASA Technical Reports Server (NTRS)
Aragone, C.; Deser, S.
1985-01-01
The coupled topologically massive spin-5/2 gravity system in D = 3 dimensions whose kinematics represents dynamical propagating gauge invariant massive spin-5/2 and spin-2 excitations, is shown to be inconsistent, or equivalently, not locally hypersymmetric. In contrast to D = 4, the local constraints on the system arising from failure of the fermionic Bianchi identities do not involve the 'highest spin' components of the field, but rather the auxiliary spinor required to construct a consistent massive model.
Determination of SB2 masses and age: introduction of the mass ratio in the Bayesian analysis
NASA Astrophysics Data System (ADS)
Giarrusso, M.; Leone, F.; Tognelli, E.; Degl'Innocenti, S.; Prada Moroni, P. G.
2018-04-01
Stellar age assignment still represents a difficult task in Astrophysics. This unobservable fundamental parameter can be estimated only through indirect methods, as well as generally the mass. Bayesian analysis is a statistical approach largely used to derive stellar properties by taking into account the available information about the quantities we are looking for. In this paper we propose to apply the method to the double-lined spectroscopic binaries (SB2), for which the only available information about masses is the observed mass ratio of the two components. We validated the method on a synthetic sample of Pre-Main Sequence (PMS) SB2 systems showing the capability of the technique to recover the simulated age and masses. Then, we applied our procedure to the PMS eclipsing binaries Parenago 1802 and RX J0529.4+0041 A, whose masses of both components are known, by treating them as SB2 systems. The estimated masses are in agreement with those dynamically measured. We conclude that the method, if based on high resolution and high signal-to-noise spectroscopy, represents a robust way to infer the masses of the very numerous SB2 systems together with their age, allowing to date the hosting astrophysical environments.
Determination of SB2 masses and age: introduction of the mass ratio in the Bayesian analysis
NASA Astrophysics Data System (ADS)
Giarrusso, M.; Leone, F.; Tognelli, E.; Degl'Innocenti, S.; Prada Moroni, P. G.
2018-07-01
Stellar age assignment still represents a difficult task in Astrophysics. This unobservable fundamental parameter can be estimated only through indirect methods, as well as generally the mass. Bayesian analysis is a statistical approach largely used to derive stellar properties by taking into account the available information about the quantities we are looking for. In this paper, we propose to apply the method to the double-lined spectroscopic binaries (SB2), for which the only available information about masses is the observed mass ratio of the two components. We validated the method on a synthetic sample of pre-main-sequence (PMS) SB2 systems showing the capability of the technique to recover the simulated age and masses. Then, we applied our procedure to the PMS eclipsing binaries Parenago 1802 and RX J0529.4+0041 A, whose masses of both components are known, by treating them as SB2 systems. The estimated masses are in agreement with those dynamically measured. We conclude that the method, if based on high resolution and high signal-to-noise spectroscopy, represents a robust way to infer the masses of the very numerous SB2 systems together with their age, allowing to date the hosting astrophysical environments.
Robust encoding of stimulus identity and concentration in the accessory olfactory system.
Arnson, Hannah A; Holy, Timothy E
2013-08-14
Sensory systems represent stimulus identity and intensity, but in the neural periphery these two variables are typically intertwined. Moreover, stable detection may be complicated by environmental uncertainty; stimulus properties can differ over time and circumstance in ways that are not necessarily biologically relevant. We explored these issues in the context of the mouse accessory olfactory system, which specializes in detection of chemical social cues and infers myriad aspects of the identity and physiological state of conspecifics from complex mixtures, such as urine. Using mixtures of sulfated steroids, key constituents of urine, we found that spiking responses of individual vomeronasal sensory neurons encode both individual compounds and mixtures in a manner consistent with a simple model of receptor-ligand interactions. Although typical neurons did not accurately encode concentration over a large dynamic range, from population activity it was possible to reliably estimate the log-concentration of pure compounds over several orders of magnitude. For binary mixtures, simple models failed to accurately segment the individual components, largely because of the prevalence of neurons responsive to both components. By accounting for such overlaps during model tuning, we show that, from neuronal firing, one can accurately estimate log-concentration of both components, even when tested across widely varying concentrations. With this foundation, the difference of logarithms, log A - log B = log A/B, provides a natural mechanism to accurately estimate concentration ratios. Thus, we show that a biophysically plausible circuit model can reconstruct concentration ratios from observed neuronal firing, representing a powerful mechanism to separate stimulus identity from absolute concentration.
Integrated smart panel and support structure response
NASA Astrophysics Data System (ADS)
DeGiorgi, Virginia G.
1998-06-01
The performance of smart structures is a complex interaction between active and passive components. Active components, even when non-activated, can have an impact on structural performance and, conversely, structural characteristics of passive components can have a measurable impact on active component performance. The present work is an evaluation of the structural characteristics of an active panel designed for acoustic quieting. The support structure is included in the panel design as evaluated. Finite element methods are used to determine the active panel-support structure response. Two conditions are considered; a hollow unfilled support structure and the same structure filled with a polymer compound. Finite element models were defined so that stiffness values corresponding to the center of individual pistons could be determined. Superelement techniques were used to define mass and stiffness values representative of the combined active and support structure at the center of each piston. Results of interest obtained from the analysis include mode shapes, natural frequencies, and equivalent spring stuffiness for use in structural response models to represent the support structure. The effects on plate motion on piston performance cannot be obtained from this analysis, however mass and stiffness matrices for use in an integrated system model to determine piston head velocities can be obtained from this work.
Weight minimization of structural components for launch in space shuttle
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Gendy, Atef S.; Hopkins, Dale A.; Berke, Laszlo
1994-01-01
Minimizing the weight of structural components of the space station launched into orbit in a space shuttle can save cost, reduce the number of space shuttle missions, and facilitate on-orbit fabrication. Traditional manual design of such components, although feasible, cannot represent a minimum weight condition. At NASA Lewis Research Center, a design capability called CometBoards (Comparative Evaluation Test Bed of Optimization and Analysis Routines for the Design of Structures) has been developed especially for the design optimization of such flight components. Two components of the space station - a spacer structure and a support system - illustrate the capability of CometBoards. These components are designed for loads and behavior constraints that arise from a variety of flight accelerations and maneuvers. The optimization process using CometBoards reduced the weights of the components by one third from those obtained with traditional manual design. This paper presents a brief overview of the design code CometBoards and a description of the space station components, their design environments, behavior limitations, and attributes of their optimum designs.
Fallback level concepts for conventional and by-wire automotive brake systems
NASA Astrophysics Data System (ADS)
Retzer, H.; Mishra, R.; Ball, A.; Schmidt, K.
2012-05-01
Brake-by-wire represents the replacement of traditional brake components such as pumps, hoses, fluids, brake boosters, and master cylinders by electronic sensors and actuators. The different design of these brake concepts poses new challenges for the automotive industry with regard to availability and fallback levels in comparison to standard conventional brake systems. This contribution focuses on the development of appropriate fallback level concepts. Hardware-in-the-loop (HIL) techniques and field trials will be used to investigate the performance and the usability of such systems.
Validation environment for AIPS/ALS: Implementation and results
NASA Technical Reports Server (NTRS)
Segall, Zary; Siewiorek, Daniel; Caplan, Eddie; Chung, Alan; Czeck, Edward; Vrsalovic, Dalibor
1990-01-01
The work is presented which was performed in porting the Fault Injection-based Automated Testing (FIAT) and Programming and Instrumentation Environments (PIE) validation tools, to the Advanced Information Processing System (AIPS) in the context of the Ada Language System (ALS) application, as well as an initial fault free validation of the available AIPS system. The PIE components implemented on AIPS provide the monitoring mechanisms required for validation. These mechanisms represent a substantial portion of the FIAT system. Moreover, these are required for the implementation of the FIAT environment on AIPS. Using these components, an initial fault free validation of the AIPS system was performed. The implementation is described of the FIAT/PIE system, configured for fault free validation of the AIPS fault tolerant computer system. The PIE components were modified to support the Ada language. A special purpose AIPS/Ada runtime monitoring and data collection was implemented. A number of initial Ada programs running on the PIE/AIPS system were implemented. The instrumentation of the Ada programs was accomplished automatically inside the PIE programming environment. PIE's on-line graphical views show vividly and accurately the performance characteristics of Ada programs, AIPS kernel and the application's interaction with the AIPS kernel. The data collection mechanisms were written in a high level language, Ada, and provide a high degree of flexibility for implementation under various system conditions.
Kirkwood–Buff integrals for ideal solutions
Ploetz, Elizabeth A.; Bentenitis, Nikolaos; Smith, Paul E.
2010-01-01
The Kirkwood–Buff (KB) theory of solutions is a rigorous theory of solution mixtures which relates the molecular distributions between the solution components to the thermodynamic properties of the mixture. Ideal solutions represent a useful reference for understanding the properties of real solutions. Here, we derive expressions for the KB integrals, the central components of KB theory, in ideal solutions of any number of components corresponding to the three main concentration scales. The results are illustrated by use of molecular dynamics simulations for two binary solutions mixtures, benzene with toluene, and methanethiol with dimethylsulfide, which closely approach ideal behavior, and a binary mixture of benzene and methanol which is nonideal. Simulations of a quaternary mixture containing benzene, toluene, methanethiol, and dimethylsulfide suggest this system displays ideal behavior and that ideal behavior is not limited to mixtures containing a small number of components. PMID:20441282
Quantification of frequency-components contributions to the discharge of a karst spring
NASA Astrophysics Data System (ADS)
Taver, V.; Johannet, A.; Vinches, M.; Borrell, V.; Pistre, S.; Bertin, D.
2013-12-01
Karst aquifers represent important underground resources for water supplies, providing it to 25% of the population. Nevertheless such systems are currently underexploited because of their heterogeneity and complexity, which make work fields and physical measurements expensive, and frequently not representative of the whole aquifer. The systemic paradigm appears thus at a complementary approach to study and model karst aquifers in the framework of non-linear system analysis. Its input and output signals, namely rainfalls and discharge contain information about the function performed by the physical process. Therefore, improvement of knowledge about the karst system can be provided using time series analysis, for example Fourier analysis or orthogonal decomposition [1]. Another level of analysis consists in building non-linear models to identify rainfall/discharge relation, component by component [2]. In this context, this communication proposes to use neural networks to first model the rainfall-runoff relation using frequency components, and second to analyze the models, using the KnoX method [3], in order to quantify the importance of each component. Two different neural models were designed: (i) the recurrent model which implements a non-linear recurrent model fed by rainfalls, ETP and previous estimated discharge, (ii) the feed-forward model which implements a non-linear static model fed by rainfalls, ETP and previous observed discharges. The first model is known to better represent the rainfall-runoff relation; the second one to better predict the discharge based on previous discharge observations. KnoX method is based on a variable selection method, which simply considers values of parameters after the training without taking into account the non-linear behavior of the model during functioning. An amelioration of the KnoX method, is thus proposed in order to overcome this inadequacy. The proposed method, leads thus to both a hierarchization and a quantification of the input variables, here the frequency components, over output signal. Applied to the Lez karst aquifer, the combination of frequency decomposition and knowledge extraction improves knowledge on hydrological behavior. Both models and both extraction methods were applied and assessed using a fictitious reference model. Discussion is proposed in order to analyze efficiency of the methods compared to in situ measurements and tracing. [1] D. Labat et al. 'Rainfall-runoff relations for karst springs. Part II: continuous wavelet and discrete orthogonal multiresolution' In J of Hydrology, Vol. 238, 2000, pp. 149-178. [2] A. Johannet et al. 'Prediction of Lez Spring Discharge (Southern France) by Neural Networks using Orthogonal Wavelet Decomposition'.IJCNN Proceedings Brisbane 2012. [3] L. Kong A Siou et al. 'Modélisation hydrodynamique des karsts par réseaux de neurones : Comment dépasser la boîte noire. (Karst hydrodynamic modelling using artificial neural networks: how to surpass the black box ?)'. Proceedings of the 9th conference on limestone hydrogeology,2011 Besançon, France.
Schematic memory components converge within angular gyrus during retrieval
Wagner, Isabella C; van Buuren, Mariët; Kroes, Marijn CW; Gutteling, Tjerk P; van der Linden, Marieke; Morris, Richard G; Fernández, Guillén
2015-01-01
Mental schemas form associative knowledge structures that can promote the encoding and consolidation of new and related information. Schemas are facilitated by a distributed system that stores components separately, presumably in the form of inter-connected neocortical representations. During retrieval, these components need to be recombined into one representation, but where exactly such recombination takes place is unclear. Thus, we asked where different schema components are neuronally represented and converge during retrieval. Subjects acquired and retrieved two well-controlled, rule-based schema structures during fMRI on consecutive days. Schema retrieval was associated with midline, medial-temporal, and parietal processing. We identified the multi-voxel representations of different schema components, which converged within the angular gyrus during retrieval. Critically, convergence only happened after 24-hour-consolidation and during a transfer test where schema material was applied to novel but related trials. Therefore, the angular gyrus appears to recombine consolidated schema components into one memory representation. DOI: http://dx.doi.org/10.7554/eLife.09668.001 PMID:26575291
Knowledge based translation and problem solving in an intelligent individualized instruction system
NASA Technical Reports Server (NTRS)
Jung, Namho; Biegel, John E.
1994-01-01
An Intelligent Individualized Instruction I(sup 3) system is being built to provide computerized instruction. We present the roles of a translator and a problem solver in an intelligent computer system. The modular design of the system provides for easier development and allows for future expansion and maintenance. CLIPS modules and classes are utilized for the purpose of the modular design and inter module communications. CLIPS facts and rules are used to represent the system components and the knowledge base. CLIPS provides an inferencing mechanism to allow the I(sup 3) system to solve problems presented to it in English.
NASA Astrophysics Data System (ADS)
Balakrishnan, A.; Frei, M.; Kerzenmacher, S.; Reinecke, H.; Mueller, C.
2015-12-01
In this work we present the design and fabrication of the miniaturized PEM fuel cell combined microreactor system with hydrogen regulation mechanism and testing of prototype microreactor. The system consists of two components (i) fuel cell component and (ii) microreactor component. The fuel cell component represents the miniaturized PEM fuel cell system (combination of screen printed fuel cell assembly and an on-board hydrogen storage medium). Hydrogen production based on catalytic hydrolysis of chemical hydride takes place in the microreactor component. The self-regulated hydrogen mechanism based on the gaseous hydrogen produced from the catalytic hydrolysis of sodium borohydride (NaBH4) gets accumulated as bubbles at the vicinity of the hydrophobic coated hydrogen exhaust holes. When the built up hydrogen bubbles pressure exceeds the burst pressure at the hydrogen exhaust holes the bubble collapses. This collapse causes a surge of fresh NaBH4 solution onto the catalyst surface leading to the removal of the reaction by-products formed at the active sites of the catalyst. The catalyst used in the system is platinum deposited on a base substrate. Nickel foam, carbon porous medium (CPM) and ceramic plate were selected as candidates for base substrate for developing a robust catalyst surface. For the first time the platinum layer fabricated by pulsed electrodeposition and dealloying (EPDD) technique is used for hydrolysis of NaBH4. The major advantages of such platinum catalyst layers are its high surface area and their mechanical stability. Prototype microreactor system with self-regulated hydrogen mechanism is demonstrated.
Johnson, L; Kwok, M; Marks, D C
2015-02-01
The ErySep system represents an alternative to centrifuge-based whole blood (WB) separation, using gravity and filtration through hollow-fibres (0·2 µm pore size) to produce red blood cell (RBC) and plasma components. The aim of this study was to characterise the quality of ErySep RBC and plasma units compared with standard products from WB held overnight. Two ABO-compatible WB units (n = 24) were pooled and split to produce matched products. One of the WB units was separated into components using the ErySep system (ErySep; n = 12), whereas the other units were separated by centrifugation (control; n = 12). RBC units were stored at 2-6 °C and assessed for in vitro quality over 42 days of storage. Plasma was frozen at -30 °C and tested upon thawing. Processing WB with the ErySep system took longer than controls. The ErySep RBC units were of an appropriate volume (307 ± 17 mL) and contained sufficient Hb (50 ± 2 g unit(-1) ). ErySep RBC components contained more microparticles relative to controls at expiry. The plasma volume, total protein, coagulation factor activity (fibrinogen, FV, FVIII) and number of microparticles was lower in the ErySep units compared with controls. Following overnight hold of WB, the ErySep system was capable of producing RBC components that met specifications. However, the ErySep plasma components did not meet quality specifications. © 2015 British Blood Transfusion Society.
NASA Technical Reports Server (NTRS)
Penny, Stephen G.; Akella, Santha; Buehner, Mark; Chevallier, Matthieu; Counillon, Francois; Draper, Clara; Frolov, Sergey; Fujii, Yosuke; Karspeck, Alicia; Kumar, Arun
2017-01-01
The purpose of this report is to identify fundamental issues for coupled data assimilation (CDA), such as gaps in science and limitations in forecasting systems, in order to provide guidance to the World Meteorological Organization (WMO) on how to facilitate more rapid progress internationally. Coupled Earth system modeling provides the opportunity to extend skillful atmospheric forecasts beyond the traditional two-week barrier by extracting skill from low-frequency state components such as the land, ocean, and sea ice. More generally, coupled models are needed to support seamless prediction systems that span timescales from weather, subseasonal to seasonal (S2S), multiyear, and decadal. Therefore, initialization methods are needed for coupled Earth system models, either applied to each individual component (called Weakly Coupled Data Assimilation - WCDA) or applied the coupled Earth system model as a whole (called Strongly Coupled Data Assimilation - SCDA). Using CDA, in which model forecasts and potentially the state estimation are performed jointly, each model domain benefits from observations in other domains either directly using error covariance information known at the time of the analysis (SCDA), or indirectly through flux interactions at the model boundaries (WCDA). Because the non-atmospheric domains are generally under-observed compared to the atmosphere, CDA provides a significant advantage over single-domain analyses. Next, we provide a synopsis of goals, challenges, and recommendations to advance CDA: Goals: (a) Extend predictive skill beyond the current capability of NWP (e.g. as demonstrated by improving forecast skill scores), (b) produce physically consistent initial conditions for coupled numerical prediction systems and reanalyses (including consistent fluxes at the domain interfaces), (c) make best use of existing observations by allowing observations from each domain to influence and improve the full earth system analysis, (d) develop a robust observation-based identification and understanding of mechanisms that determine the variability of weather and climate, (e) identify critical weaknesses in coupled models and the earth observing system, (f) generate full-field estimates of unobserved or sparsely observed variables, (g) improve the estimation of the external forcings causing changes to climate, (h) transition successes from idealized CDA experiments to real-world applications. Challenges: (a) Modeling at the interfaces between interacting components of coupled Earth system models may be inadequate for estimating uncertainty or error covariances between domains, (b) current data assimilation methods may be insufficient to simultaneously analyze domains containing multiple spatiotemporal scales of interest, (c) there is no standardization of observation data or their delivery systems across domains, (d) the size and complexity of many large-scale coupled Earth system models makes it is difficult to accurately represent uncertainty due to model parameters and coupling parameters, (e) model errors lead to local biases that can transfer between the different Earth system components and lead to coupled model biases and long-term model drift, (e) information propagation across model components with different spatiotemporal scales is extremely complicated, and must be improved in current coupled modeling frameworks, (h) there is insufficient knowledge on how to represent evolving errors in non-atmospheric model components (e.g. as sea ice, land and ocean) on the timescales of NWP.
Tipping point analysis of ocean acoustic noise
NASA Astrophysics Data System (ADS)
Livina, Valerie N.; Brouwer, Albert; Harris, Peter; Wang, Lian; Sotirakopoulos, Kostas; Robinson, Stephen
2018-02-01
We apply tipping point analysis to a large record of ocean acoustic data to identify the main components of the acoustic dynamical system and study possible bifurcations and transitions of the system. The analysis is based on a statistical physics framework with stochastic modelling, where we represent the observed data as a composition of deterministic and stochastic components estimated from the data using time-series techniques. We analyse long-term and seasonal trends, system states and acoustic fluctuations to reconstruct a one-dimensional stochastic equation to approximate the acoustic dynamical system. We apply potential analysis to acoustic fluctuations and detect several changes in the system states in the past 14 years. These are most likely caused by climatic phenomena. We analyse trends in sound pressure level within different frequency bands and hypothesize a possible anthropogenic impact on the acoustic environment. The tipping point analysis framework provides insight into the structure of the acoustic data and helps identify its dynamic phenomena, correctly reproducing the probability distribution and scaling properties (power-law correlations) of the time series.
Unraveling Cajal's view of the olfactory system
Figueres-Oñate, María; Gutiérrez, Yolanda; López-Mascaraque, Laura
2014-01-01
The olfactory system has a highly regular organization of interconnected synaptic circuits from the periphery. It is therefore an excellent model for understanding general principles about how the brain processes information. Cajal revealed the basic cell types and their interconnections at the end of the XIX century. Since his original descriptions, the observation and analysis of the olfactory system and its components represents a major topic in neuroscience studies, providing important insights into the neural mechanisms. In this review, we will highlight the importance of Cajal contributions and his legacy to the actual knowledge of the olfactory system. PMID:25071462
Breadboard Solid Amine Water Desorbed CO2 Control System
NASA Technical Reports Server (NTRS)
Colling, A. K.; Hultman, M. M.
1980-01-01
A regenerable CO2 removal system was developed for potential use on the shuttle as an alternate to the baseline lithium hydroxide (LiOH) system. It uses a solid amine material to adsorb CO2 from the atmosphere. The material is regenerated by heating it with steam from a zero gravity water evaporator. A full sized, thermally representative breadboard canister and a preprototype water evaporator were built and tested to shuttle requirements for CO2 control. The test program was utilized to evaluate and verify the operation and performance of these two primary components of the SAWD system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haihua; Zhang, Hongbin; Zou, Ling
2014-10-01
The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The RELAP-7 code develop-ment effort started in October of 2011 and by the end of the second development year, a number of physical components with simplified two phase flow capability have been de-veloped to support the simplified boiling water reactor (BWR) extended station blackout (SBO) analyses. The demonstration case includes the major components for the primary system of a BWR, as well as the safety system components for the safety relief valve (SRV), the reactor core isolation cooling (RCIC)more » system, and the wet well. Three scenar-ios for the SBO simulations have been considered. Since RELAP-7 is not a severe acci-dent analysis code, the simulation stops when fuel clad temperature reaches damage point. Scenario I represents an extreme station blackout accident without any external cooling and cooling water injection. The system pressure is controlled by automatically releasing steam through SRVs. Scenario II includes the RCIC system but without SRV. The RCIC system is fully coupled with the reactor primary system and all the major components are dynamically simulated. The third scenario includes both the RCIC system and the SRV to provide a more realistic simulation. This paper will describe the major models and dis-cuss the results for the three scenarios. The RELAP-7 simulations for the three simplified SBO scenarios show the importance of dynamically simulating the SRVs, the RCIC sys-tem, and the wet well system to the reactor safety during extended SBO accidents.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bezler, P.; Hartzman, M.; Reich, M.
1980-08-01
A set of benchmark problems and solutions have been developed for verifying the adequacy of computer programs used for dynamic analysis and design of nuclear piping systems by the Response Spectrum Method. The problems range from simple to complex configurations which are assumed to experience linear elastic behavior. The dynamic loading is represented by uniform support motion, assumed to be induced by seismic excitation in three spatial directions. The solutions consist of frequencies, participation factors, nodal displacement components and internal force and moment components. Solutions to associated anchor point motion static problems are not included.
Analysis of Non-Uniform Gain for Control of a Deformable Mirror in an Adaptive-Optics System
2008-03-01
Turbulence Estimator SM Path SH WFS – DM Path Figure 3.6: Primary layout. The blue boxed components is representative of the SM path, the red boxed components...layout that was developed for the majority of the experiments conducted. 3.1.5.1 Steering Mirror Path. This path, boxed in blue in Figure 3.6, is used to...Christou, T.S. Duncan, R.J. Eager, M.A. Ealey, B.L. Ellerbroek, R.Q. Fugate , G.W. Jones, R.M. Kuhns, D.J. Lee, W.H. Lowrey, M.D. Oliker, R.E. Ruane
Dual-Shaft Electric Propulsion (DSEP) Technology Development Program
NASA Astrophysics Data System (ADS)
1992-08-01
The background, progress, and current state of the DOE-sponsored Advanced Dual-Shaft Electric Propulsion Technology Development are presented. Three electric-drive vehicles were build as conversions of a commercial gasoline-powered van, using program-designed components and systems as required. The vehicles were tested primarily on dynamometer or test tract. Component and system testing represented a major portion of the development effort. Test data are summarized in this report, and an Appendix contains the final component design specifications. This major programmatic concerns were the traction battery, the battery management system, the dc-to-ac inverter, the drive motor, the transaxle and its ancillary equipment, and the vehicle controller. Additional effort was devoted to vehicle-related equipment: gear selector, power steering, power brakes, accelerator, dashboard instrumentation, and heater. Design, development, and test activities are reported for each of these items, together with an appraisal (lessons learned) and recommendations for possible further work. Other programmatic results include a Cost and Commercialization Analysis, a Reliability and Hazards Analysis Study, Technical Recommendations for Next-Generation Development, and an assessment of overall program efforts.
Simulink models for performance analysis of high speed DQPSK modulated optical link
NASA Astrophysics Data System (ADS)
Sharan, Lucky; Rupanshi, Chaubey, V. K.
2016-03-01
This paper attempts to present the design approach for development of simulation models to study and analyze the transmission of 10 Gbps DQPSK signal over a single channel Peer to Peer link using Matlab Simulink. The simulation model considers the different optical components used in link design with their behavior represented initially by theoretical interpretation, including the transmitter topology, Mach Zehnder Modulator(MZM) module and, the propagation model for optical fibers etc. thus allowing scope for direct realization in experimental configurations. It provides the flexibility to incorporate the various photonic components as either user-defined or fixed and, can also be enhanced or removed from the model as per the design requirements. We describe the detailed operation and need of every component model and its representation in Simulink blocksets. Moreover the developed model can be extended in future to support Dense Wavelength Division Multiplexing (DWDM) system, thereby allowing high speed transmission with N × 40 Gbps systems. The various compensation techniques and their influence on system performance can be easily investigated by using such models.
Simulink models for performance analysis of high speed DQPSK modulated optical link
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharan, Lucky, E-mail: luckysharan@pilani.bits-pilani.ac.in; Rupanshi,, E-mail: f2011222@pilani.bits-pilani.ac.in; Chaubey, V. K., E-mail: vkc@pilani.bits-pilani.ac.in
2016-03-09
This paper attempts to present the design approach for development of simulation models to study and analyze the transmission of 10 Gbps DQPSK signal over a single channel Peer to Peer link using Matlab Simulink. The simulation model considers the different optical components used in link design with their behavior represented initially by theoretical interpretation, including the transmitter topology, Mach Zehnder Modulator(MZM) module and, the propagation model for optical fibers etc. thus allowing scope for direct realization in experimental configurations. It provides the flexibility to incorporate the various photonic components as either user-defined or fixed and, can also be enhancedmore » or removed from the model as per the design requirements. We describe the detailed operation and need of every component model and its representation in Simulink blocksets. Moreover the developed model can be extended in future to support Dense Wavelength Division Multiplexing (DWDM) system, thereby allowing high speed transmission with N × 40 Gbps systems. The various compensation techniques and their influence on system performance can be easily investigated by using such models.« less
Holub, Jan; Vantomme, Ghislaine; Lehn, Jean-Marie
2016-09-14
Constitutional dynamic libraries (CDLs) of hydrazones, acylhydrazones, and imines undergo reorganization and adaptation in response to chemical effectors (herein metal cations) via component exchange and selection. Such CDLs can be subjected to training by exposition to given effectors and keep memory of the information stored by interaction with a specific metal ion. The long-term storage of the acquired information into the set of constituents of the system allows for fast recognition on subsequent contacts with the same effector(s). Dynamic networks of constituents were designed to adapt orthogonally to different metal cations by up- and down-regulation of specific constituents in the final distribution. The memory may be erased by component exchange between the constituents so as to regenerate the initial (statistical) distribution. The libraries described represent constitutional dynamic systems capable of acting as information storage molecular devices, in which the presence of components linked by reversible covalent bonds in slow exchange and bearing adequate coordination sites allows for the adaptation to different metal ions by constitutional variation. The system thus performs information storage, recall, and erase processes.
Causal tapestries for psychology and physics.
Sulis, William H
2012-04-01
Archetypal dynamics is a formal approach to the modeling of information flow in complex systems used to study emergence. It is grounded in the Fundamental Triad of realisation (system), interpretation (archetype) and representation (formal model). Tapestries play a fundamental role in the framework of archetypal dynamics as a formal representational system. They represent information flow by means of multi layered, recursive, interlinked graphical structures that express both geometry (form or sign) and logic (semantics). This paper presents a detailed mathematical description of a specific tapestry model, the causal tapestry, selected for use in describing behaving systems such as appear in psychology and physics from the standpoint of Process Theory. Causal tapestries express an explicit Lorentz invariant transient now generated by means of a reality game. Observables are represented by tapestry informons while subjective or hidden components (for example intellectual and emotional processes) are incorporated into the reality game that determines the tapestry dynamics. As a specific example, we formulate a random graphical dynamical system using causal tapestries.
Global epidemiology and public health in the 21st century. Applications of new technology.
Laporte, R E; Barinas, E; Chang, Y F; Libman, I
1996-03-01
Epidemiology and public health need to change for the upcoming problems of the 21st century and beyond. We outline a four-point approach to produce this change. The first one is to take a systems approach to disease. The second approach discussed is the use of new techniques to "count" disease using capture-recapture. The third represents the application of telecommunications, especially the Internet, to public health. The fourth and final component represents the application, at the local health department level, of a total quality approach, as espoused by Deming, for the prevention of disease.
The representation of grammatical categories in the brain.
Shapiro, Kevin; Caramazza, Alfonso
2003-05-01
Language relies on the rule-based combination of words with different grammatical properties, such as nouns and verbs. Yet most research on the problem of word retrieval has focused on the production of concrete nouns, leaving open a crucial question: how is knowledge about different grammatical categories represented in the brain, and what components of the language production system make use of it? Drawing on evidence from neuropsychology, electrophysiology and neuroimaging, we argue that information about a word's grammatical category might be represented independently of its meaning at the levels of word form and morphological computation.
2007-03-01
specific contact resistivity of Ti/AlNi/Au 24 21 The full view 3D model of the IGBT ………………………………….. 25 22 2D temperature distribution of the SiC...comprised of multiple materials. The representative geometry of a Si isolated gated bipolar transistor ( IGBT ) was chosen for the initial simulation...samples annealed at 650°C for 30 minutes in either the tube furnace with an oxygen gettering system or in the vacuum chamber, represented the superior
Schierjott, Ronja A; Giurea, Alexander; Neuhaus, Hans-Joachim; Schwiesau, Jens; Pfaff, Andreas M; Utzschneider, Sandra; Tozzi, Gianluca; Grupp, Thomas M
2016-01-01
Carbon fiber reinforced poly-ether-ether-ketone (CFR-PEEK) represents a promising alternative material for bushings in total knee replacements, after early clinical failures of polyethylene in this application. The objective of the present study was to evaluate the damage modes and the extent of damage observed on CFR-PEEK hinge mechanism articulation components after in vivo service in a rotating hinge knee (RHK) system and to compare the results with corresponding components subjected to in vitro wear tests. Key question was if there were any similarities or differences between in vivo and in vitro damage characteristics. Twelve retrieved RHK systems after an average of 34.9 months in vivo underwent wear damage analysis with focus on the four integrated CFR-PEEK components and distinction between different damage modes and classification with a scoring system. The analysis included visual examination, scanning electron microscopy, and energy dispersive X-ray spectroscopy, as well as surface roughness and profile measurements. The main wear damage modes were comparable between retrieved and in vitro specimens ( n = 3), whereby the size of affected area on the retrieved components showed a higher variation. Overall, the retrieved specimens seemed to be slightly heavier damaged which was probably attributable to the more complex loading and kinematic conditions in vivo.
NASA Technical Reports Server (NTRS)
Sundermier, Amy (Inventor)
2002-01-01
A method for acquiring and assembling software components at execution time into a client program, where the components may be acquired from remote networked servers is disclosed. The acquired components are assembled according to knowledge represented within one or more acquired mediating components. A mediating component implements knowledge of an object model. A mediating component uses its implemented object model knowledge, acquired component class information and polymorphism to assemble components into an interacting program at execution time. The interactions or abstract relationships between components in the object model may be implemented by the mediating component as direct invocations or indirect events or software bus exchanges. The acquired components may establish communications with remote servers. The acquired components may also present a user interface representing data to be exchanged with the remote servers. The mediating components may be assembled into layers, allowing arbitrarily complex programs to be constructed at execution time.
U.S. Solar Photovoltaic System Cost Benchmark: Q1 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Ran; Feldman, David J.; Margolis, Robert M.
NREL has been modeling U.S. photovoltaic (PV) system costs since 2009. This year, our report benchmarks costs of U.S. solar PV for residential, commercial, and utility-scale systems built in the first quarter of 2017 (Q1 2017). Costs are represented from the perspective of the developer/installer, thus all hardware costs represent the price at which components are purchased by the developer/installer, not accounting for preexisting supply agreements or other contracts. Importantly, the benchmark this year (2017) also represents the sales price paid to the installer; therefore, it includes profit in the cost of the hardware, along with the profit the installer/developermore » receives, as a separate cost category. However, it does not include any additional net profit, such as a developer fee or price gross-up, which are common in the marketplace. We adopt this approach owing to the wide variation in developer profits in all three sectors, where project pricing is highly dependent on region and project specifics such as local retail electricity rate structures, local rebate and incentive structures, competitive environment, and overall project or deal structures.« less
NASA Technical Reports Server (NTRS)
Leung, K. C.
1989-01-01
Reverse Algols, binary systems with a semidetached configuration in which the more massive component is in contact with the critical equipotential surface, are examined. Observational evidence for reverse Algols is presented and the parameters of seven reverse Algols are listed. The evolution of Algols and reverse Algols is discussed. It is suggested that, because reverse Algols represent the premass-reversal semidetached phase of close binary evolution, the evolutionary time scale between regular and reverse Algols is the ratio of the number of confirmed systems of these two Algol types.
Acoustic transient classification with a template correlation processor.
Edwards, R T
1999-10-01
I present an architecture for acoustic pattern classification using trinary-trinary template correlation. In spite of its computational simplicity, the algorithm and architecture represent a method which greatly reduces bandwidth of the input, storage requirements of the classifier memory, and power consumption of the system without compromising classification accuracy. The linear system should be amenable to training using recently-developed methods such as Independent Component Analysis (ICA), and we predict that behavior will be qualitatively similar to that of structures in the auditory cortex.
The role of employee flexible spending accounts in health care financing.
Schweitzer, M; Asch, D A
1996-08-01
Employee flexible spending accounts for health care represent one component of the current health care financing system that merits serious reform. These accounts create a system of undesirable incentives, force employees and employers to take complicated gambles, reduce tax revenues, and fail to meet their purported policy objectives. This paper describes shortcomings in these accounts from both a theoretical and an empirical perspective. Some proposed alternatives; including medical spending accounts and zero balance accounts, resolve many of these concerns but not all of them.
NASA Technical Reports Server (NTRS)
Palusinski, O. A.; Allgyer, T. T.
1979-01-01
The elimination of Ampholine from the system by establishing the pH gradient with simple ampholytes is proposed. A mathematical model was exercised at the level of the two-component system by using values for mobilities, diffusion coefficients, and dissociation constants representative of glutamic acid and histidine. The constants assumed in the calculations are reported. The predictions of the model and computer simulation of isoelectric focusing experiments are in direct importance to obtain Ampholine-free, stable pH gradients.
NASA Technical Reports Server (NTRS)
Schuman, H. K.
1992-01-01
An assessment of the potential and limitations of phased array antennas in space-based geophysical precision radiometry is described. Mathematical models exhibiting the dependence of system and scene temperatures and system sensitivity on phased array antenna parameters and components such as phase shifters and low noise amplifiers (LNA) are developed. Emphasis is given to minimum noise temperature designs wherein the LNA's are located at the array level, one per element or subarray. Two types of combiners are considered: array lenses (space feeds) and corporate networks. The result of a survey of suitable components and devices is described. The data obtained from that survey are used in conjunction with the mathematical models to yield an assessment of effective array antenna noise temperature for representative geostationary and low Earth orbit systems. Practical methods of calibrating a space-based, phased array radiometer are briefly addressed as well.
Service Modeling Language Applied to Critical Infrastructure
NASA Astrophysics Data System (ADS)
Baldini, Gianmarco; Fovino, Igor Nai
The modeling of dependencies in complex infrastructure systems is still a very difficult task. Many methodologies have been proposed, but a number of challenges still remain, including the definition of the right level of abstraction, the presence of different views on the same critical infrastructure and how to adequately represent the temporal evolution of systems. We propose a modeling methodology where dependencies are described in terms of the service offered by the critical infrastructure and its components. The model provides a clear separation between services and the underlying organizational and technical elements, which may change in time. The model uses the Service Modeling Language proposed by the W3 consortium for describing critical infrastructure in terms of interdependent services nodes including constraints, behavior, information flows, relations, rules and other features. Each service node is characterized by its technological, organizational and process components. The model is then applied to a real case of an ICT system for users authentication.
Wearable devices for blood purification: principles, miniaturization, and technical challenges.
Armignacco, Paolo; Lorenzin, Anna; Neri, Mauro; Nalesso, Federico; Garzotto, Francesco; Ronco, Claudio
2015-01-01
The prevalences of end-stage renal disease (ESRD) and renal replacement therapy (RRT) continue to increase across the world imposing staggering costs on providers. Therefore, strategies to optimize the treatment and improve survival are of fundamental importance. Despite the benefits of daily dialysis, its implementation is difficult and wearable hemodialysis might represent an alternative by which frequent treatments can be delivered to ESRD patients with much less interference in their routines promoting better quality of life. The development of the wearable artificial kidney (WAK) requires incorporation of basic components of a dialysis system into a wearable device that allows mobility, miniaturization, and above all, patient-oriented management. The technical requirements necessary for WAK can be divided into the following broad categories: dialysis membranes, dialysis regeneration, vascular access, patient monitoring systems, and power sources. Pumping systems for blood and other fluids are the most critical components of the entire device. © 2015 Wiley Periodicals, Inc.
Drosophila as a model system to study autophagy.
Zirin, Jonathan; Perrimon, Norbert
2010-12-01
Originally identified as a response to starvation in yeast, autophagy is now understood to fulfill a variety of roles in higher eukaryotes, from the maintenance of cellular homeostasis to the cellular response to stress, starvation, and infection. Although genetics and biochemical studies in yeast have identified many components involved in autophagy, the findings that some of the essential components of the yeast pathway are missing in higher organisms underscore the need to study autophagy in more complex systems. This review focuses on the use of the fruitfly, Drosophila melanogaster as a model system for analysis of autophagy. Drosophila is an organism well-suited for genetic analysis and represents an intermediate between yeast and mammals with respect to conservation of the autophagy machinery. Furthermore, the complex biology and physiology of Drosophila presents an opportunity to model human diseases in a tissue specific and analogous context.
Modeling the Stress Strain Behavior of Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2006-01-01
Woven SiC fiber reinforced SiC matrix composites represent one of the most mature composite systems to date. Future components fabricated out of these woven ceramic matrix composites are expected to vary in shape, curvature, architecture, and thickness. The design of future components using woven ceramic matrix composites necessitates a modeling approach that can account for these variations which are physically controlled by local constituent contents and architecture. Research over the years supported primarily by NASA Glenn Research Center has led to the development of simple mechanistic-based models that can describe the entire stress-strain curve for composite systems fabricated with chemical vapor infiltrated matrices and melt-infiltrated matrices for a wide range of constituent content and architecture. Several examples will be presented that demonstrate the approach to modeling which incorporates a thorough understanding of the stress-dependent matrix cracking properties of the composite system.
Methods and systems for remote detection of gases
Johnson, Timothy J.
2007-11-27
Novel systems and methods for remotely detecting at least one constituent of a gas via infrared detection are provided. A system includes at least one extended source of broadband infrared radiation and a spectrally sensitive receiver positioned remotely from the source. The source and the receiver are oriented such that a surface of the source is in the field of view of the receiver. The source includes a heating component thermally coupled to the surface, and the heating component is configured to heat the surface to a temperature above ambient temperature. The receiver is operable to collect spectral infrared absorption data representative of a gas present between the source and the receiver. The invention advantageously overcomes significant difficulties associated with active infrared detection techniques known in the art, and provides an infrared detection technique with a much greater sensitivity than passive infrared detection techniques known in the art.
Methods and systems for remote detection of gases
Johnson, Timothy J
2012-09-18
Novel systems and methods for remotely detecting at least one constituent of a gas via infrared detection are provided. A system includes at least one extended source of broadband infrared radiation and a spectrally sensitive receiver positioned remotely from the source. The source and the receiver are oriented such that a surface of the source is in the field of view of the receiver. The source includes a heating component thermally coupled to the surface, and the heating component is configured to heat the surface to a temperature above ambient temperature. The receiver is operable to collect spectral infrared absorption data representative of a gas present between the source and the receiver. The invention advantageously overcomes significant difficulties associated with active infrared detection techniques known in the art, and provides an infrared detection technique with a much greater sensitivity than passive infrared detection techniques known in the art.
End-to-end network models encompassing terrestrial, wireless, and satellite components
NASA Astrophysics Data System (ADS)
Boyarko, Chandler L.; Britton, John S.; Flores, Phil E.; Lambert, Charles B.; Pendzick, John M.; Ryan, Christopher M.; Shankman, Gordon L.; Williams, Ramon P.
2004-08-01
Development of network models that reflect true end-to-end architectures such as the Transformational Communications Architecture need to encompass terrestrial, wireless and satellite component to truly represent all of the complexities in a world wide communications network. Use of best-in-class tools including OPNET, Satellite Tool Kit (STK), Popkin System Architect and their well known XML-friendly definitions, such as OPNET Modeler's Data Type Description (DTD), or socket-based data transfer modules, such as STK/Connect, enable the sharing of data between applications for more rapid development of end-to-end system architectures and a more complete system design. By sharing the results of and integrating best-in-class tools we are able to (1) promote sharing of data, (2) enhance the fidelity of our results and (3) allow network and application performance to be viewed in the context of the entire enterprise and its processes.
Creation of system of computer-aided design for technological objects
NASA Astrophysics Data System (ADS)
Zubkova, T. M.; Tokareva, M. A.; Sultanov, N. Z.
2018-05-01
Due to the competition in the market of process equipment, its production should be flexible, retuning to various product configurations, raw materials and productivity, depending on the current market needs. This process is not possible without CAD (computer-aided design). The formation of CAD begins with planning. Synthesizing, analyzing, evaluating, converting operations, as well as visualization and decision-making operations, can be automated. Based on formal description of the design procedures, the design route in the form of an oriented graph is constructed. The decomposition of the design process, represented by the formalized description of the design procedures, makes it possible to make an informed choice of the CAD component for the solution of the task. The object-oriented approach allows us to consider the CAD as an independent system whose properties are inherited from the components. The first step determines the range of tasks to be performed by the system, and a set of components for their implementation. The second one is the configuration of the selected components. The interaction between the selected components is carried out using the CALS standards. The chosen CAD / CAE-oriented approach allows creating a single model, which is stored in the database of the subject area. Each of the integration stages is implemented as a separate functional block. The transformation of the CAD model into the model of the internal representation is realized by the block of searching for the geometric parameters of the technological machine, in which the XML-model of the construction is obtained on the basis of the feature method from the theory of image recognition. The configuration of integrated components is divided into three consecutive steps: configuring tasks, components, interfaces. The configuration of the components is realized using the theory of "soft computations" using the Mamdani fuzzy inference algorithm.
Evaluation of Ammunition Data Cards (REDACTED)
2016-04-29
Procuring Contracting Officer ( PCO ), the manufacturer shall include, in the components sections on ADC representing the munition, all assemblies...lot components or evidence of PCO waiver approval. As a result, ADCs did not consistently include component items that make up the ammunition, and...Energetics PCO Procuring Contract Officer PQM Product Quality Manager QALI Quality Assurance Letter of Instruction QAR Quality Assurance Representative
Suitability of Missions for the Air Force Reserve Components
2014-01-01
Antenna Systems 116 9.2 123 6.9 1C21 Combat Control 492 9.2 35 6.1 3 1.7 1A81 Airborne Crypto Language Anal 1,365 8.9 79 5.2 28...requirements, represented by the RAP in the case of the F-16 and comparable currency and proficiency requirements for mobility units. Deployment demand and
2008 Gender Relations Survey of Reserve Component Members
2009-03-01
Sexual coercion is defined as classic quid pro quo instances of specific treatment or favoritism conditioned on...defined by both the U.S. legal system and DoD as behaviors that might lead to a hostile work environment, or represent quid pro quo harassment ...relationship; • Sexual coercion—classic quid pro quo instances of specific treatment or favoritism conditioned on sexual cooperation. For
iSAW: Integrating Structure, Actors, and Water to study socio-hydro-ecological systems
NASA Astrophysics Data System (ADS)
Hale, Rebecca L.; Armstrong, Andrea; Baker, Michelle A.; Bedingfield, Sean; Betts, David; Buahin, Caleb; Buchert, Martin; Crowl, Todd; Dupont, R. Ryan; Ehleringer, James R.; Endter-Wada, Joanna; Flint, Courtney; Grant, Jacqualine; Hinners, Sarah; Horsburgh, Jeffery S.; Jackson-Smith, Douglas; Jones, Amber S.; Licon, Carlos; Null, Sarah E.; Odame, Augustina; Pataki, Diane E.; Rosenberg, David; Runburg, Madlyn; Stoker, Philip; Strong, Courtenay
2015-03-01
Urbanization, climate, and ecosystem change represent major challenges for managing water resources. Although water systems are complex, a need exists for a generalized representation of these systems to identify important components and linkages to guide scientific inquiry and aid water management. We developed an integrated Structure-Actor-Water framework (iSAW) to facilitate the understanding of and transitions to sustainable water systems. Our goal was to produce an interdisciplinary framework for water resources research that could address management challenges across scales (e.g., plot to region) and domains (e.g., water supply and quality, transitioning, and urban landscapes). The framework was designed to be generalizable across all human-environment systems, yet with sufficient detail and flexibility to be customized to specific cases. iSAW includes three major components: structure (natural, built, and social), actors (individual and organizational), and water (quality and quantity). Key linkages among these components include: (1) ecological/hydrologic processes, (2) ecosystem/geomorphic feedbacks, (3) planning, design, and policy, (4) perceptions, information, and experience, (5) resource access and risk, and (6) operational water use and management. We illustrate the flexibility and utility of the iSAW framework by applying it to two research and management problems: understanding urban water supply and demand in a changing climate and expanding use of green storm water infrastructure in a semi-arid environment. The applications demonstrate that a generalized conceptual model can identify important components and linkages in complex and diverse water systems and facilitate communication about those systems among researchers from diverse disciplines.
Managing the Evolution of an Enterprise Architecture using a MAS-Product-Line Approach
NASA Technical Reports Server (NTRS)
Pena, Joaquin; Hinchey, Michael G.; Resinas, manuel; Sterritt, Roy; Rash, James L.
2006-01-01
We view an evolutionary system ns being n software product line. The core architecture is the unchanging part of the system, and each version of the system may be viewed as a product from the product line. Each "product" may be described as the core architecture with sonre agent-based additions. The result is a multiagent system software product line. We describe an approach to such n Software Product Line-based approach using the MaCMAS Agent-Oriented nzethoclology. The approach scales to enterprise nrchitectures as a multiagent system is an approprinre means of representing a changing enterprise nrchitectclre nnd the inferaction between components in it.
An image understanding system using attributed symbolic representation and inexact graph-matching
NASA Astrophysics Data System (ADS)
Eshera, M. A.; Fu, K.-S.
1986-09-01
A powerful image understanding system using a semantic-syntactic representation scheme consisting of attributed relational graphs (ARGs) is proposed for the analysis of the global information content of images. A multilayer graph transducer scheme performs the extraction of ARG representations from images, with ARG nodes representing the global image features, and the relations between features represented by the attributed branches between corresponding nodes. An efficient dynamic programming technique is employed to derive the distance between two ARGs and the inexact matching of their respective components. Noise, distortion and ambiguity in real-world images are handled through modeling in the transducer mapping rules and through the appropriate cost of error-transformation for the inexact matching of the representation. The system is demonstrated for the case of locating objects in a scene composed of complex overlapped objects, and the case of target detection in noisy and distorted synthetic aperture radar image.
Podgórski, Daniel
2005-01-01
Effective implementation of occupational safety and health (OSH) legislation based on European Union directives requires promotion of OSH management systems (OSH MS). To this end, voluntary Polish standards (PN-N-18000) have been adopted, setting forth OSH MS specifications and guidelines. However, the number of enterprises implementing OSH MS has increased slowly, falling short of expectations, which call for a new national policy on OSH MS promotion. To develop a national policy in this area, a survey was conducted in 40 enterprises with OSH MS in place. The survey was aimed at identifying motivational factors underlying OSH MS implementation decisions. Specifically, workers' and their representatives' involvement in OSH MS implementation was investigated. The results showed that the level of workers' involvement was relatively low, which may result in a low effectiveness of those systems. The same result also applies to the involvement of workers' representatives and that of trade unions.
Failure Analysis in Platelet Molded Composite Systems
NASA Astrophysics Data System (ADS)
Kravchenko, Sergii G.
Long-fiber discontinuous composite systems in the form of chopped prepreg tapes provide an advanced, structural grade, molding compound allowing for fabrication of complex three-dimensional components. Understanding of process-structure-property relationship is essential for application of prerpeg platelet molded components, especially because of their possible irregular disordered heterogeneous morphology. Herein, a structure-property relationship was analyzed in the composite systems of many platelets. Regular and irregular morphologies were considered. Platelet-based systems with more ordered morphology possess superior mechanical performance. While regular morphologies allow for a careful inspection of failure mechanisms derived from the morphological characteristics, irregular morphologies are representative of the composite architectures resulting from uncontrolled deposition and molding with chopped prerpegs. Progressive failure analysis (PFA) was used to study the damaged deformation up to ultimate failure in a platelet-based composite system. Computational damage mechanics approaches were utilized to conduct the PFA. The developed computational models granted understanding of how the composite structure details, meaning the platelet geometry and system morphology (geometrical arrangement and orientation distribution of platelets), define the effective mechanical properties of a platelet-molded composite system, its stiffness, strength and variability in properties.
Immunological dysregulation in multiple myeloma microenvironment.
Romano, Alessandra; Conticello, Concetta; Cavalli, Maide; Vetro, Calogero; La Fauci, Alessia; Parrinello, Nunziatina Laura; Di Raimondo, Francesco
2014-01-01
Multiple Myeloma (MM) is a systemic hematologic disease due to uncontrolled proliferation of monoclonal plasma cells (PC) in bone marrow (BM). Emerging in other solid and liquid cancers, the host immune system and the microenvironment have a pivotal role for PC growth, proliferation, survival, migration, and resistance to drugs and are responsible for some clinical manifestations of MM. In MM, microenvironment is represented by the cellular component of a normal bone marrow together with extracellular matrix proteins, adhesion molecules, cytokines, and growth factors produced by both stromal cells and PC themselves. All these components are able to protect PC from cytotoxic effect of chemo- and radiotherapy. This review is focused on the role of immunome to sustain MM progression, the emerging role of myeloid derived suppressor cells, and their potential clinical implications as novel therapeutic target.
A Automated Tool for Supporting FMEAs of Digital Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue,M.; Chu, T.-L.; Martinez-Guridi, G.
2008-09-07
Although designs of digital systems can be very different from each other, they typically use many of the same types of generic digital components. Determining the impacts of the failure modes of these generic components on a digital system can be used to support development of a reliability model of the system. A novel approach was proposed for such a purpose by decomposing the system into a level of the generic digital components and propagating failure modes to the system level, which generally is time-consuming and difficult to implement. To overcome the associated issues of implementing the proposed FMEA approach,more » an automated tool for a digital feedwater control system (DFWCS) has been developed in this study. The automated FMEA tool is in nature a simulation platform developed by using or recreating the original source code of the different module software interfaced by input and output variables that represent physical signals exchanged between modules, the system, and the controlled process. For any given failure mode, its impacts on associated signals are determined first and the variables that correspond to these signals are modified accordingly by the simulation. Criteria are also developed, as part of the simulation platform, to determine whether the system has lost its automatic control function, which is defined as a system failure in this study. The conceptual development of the automated FMEA support tool can be generalized and applied to support FMEAs for reliability assessment of complex digital systems.« less
A survey on the design of multiprocessing systems for artificial intelligence applications
NASA Technical Reports Server (NTRS)
Wah, Benjamin W.; Li, Guo Jie
1989-01-01
Some issues in designing computers for artificial intelligence (AI) processing are discussed. These issues are divided into three levels: the representation level, the control level, and the processor level. The representation level deals with the knowledge and methods used to solve the problem and the means to represent it. The control level is concerned with the detection of dependencies and parallelism in the algorithmic and program representations of the problem, and with the synchronization and sheduling of concurrent tasks. The processor level addresses the hardware and architectural components needed to evaluate the algorithmic and program representations. Solutions for the problems of each level are illustrated by a number of representative systems. Design decisions in existing projects on AI computers are classed into top-down, bottom-up, and middle-out approaches.
Hammerstein system represention of financial volatility processes
NASA Astrophysics Data System (ADS)
Capobianco, E.
2002-05-01
We show new modeling aspects of stock return volatility processes, by first representing them through Hammerstein Systems, and by then approximating the observed and transformed dynamics with wavelet-based atomic dictionaries. We thus propose an hybrid statistical methodology for volatility approximation and non-parametric estimation, and aim to use the information embedded in a bank of volatility sources obtained by decomposing the observed signal with multiresolution techniques. Scale dependent information refers both to market activity inherent to different temporally aggregated trading horizons, and to a variable degree of sparsity in representing the signal. A decomposition of the expansion coefficients in least dependent coordinates is then implemented through Independent Component Analysis. Based on the described steps, the features of volatility can be more effectively detected through global and greedy algorithms.
Space Suit Portable Life Support System (PLSS) 2.0 Unmanned Vacuum Environment Testing
NASA Technical Reports Server (NTRS)
Watts, Carly; Vogel, Matthew
2016-01-01
For the first time in more than 30 years, an advanced space suit Portable Life Support System (PLSS) design was operated inside a vacuum chamber representative of the flight operating environment. The test article, PLSS 2.0, was the second system-level integrated prototype of the advanced PLSS design, following the PLSS 1.0 Breadboard that was developed and tested throughout 2011. Whereas PLSS 1.0 included five technology development components with the balance the system simulated using commercial-off-the-shelf items, PLSS 2.0 featured first generation or later prototypes for all components less instrumentation, tubing and fittings. Developed throughout 2012, PLSS 2.0 was the first attempt to package the system into a flight-like representative volume. PLSS 2.0 testing included an extensive functional evaluation known as Pre-Installation Acceptance (PIA) testing, Human-in-the-Loop testing in which the PLSS 2.0 prototype was integrated via umbilicals to a manned prototype space suit for 19 two-hour simulated EVAs, and unmanned vacuum environment testing. Unmanned vacuum environment testing took place from 1/9/15-7/9/15 with PLSS 2.0 located inside a vacuum chamber. Test sequences included performance mapping of several components, carbon dioxide removal evaluations at simulated intravehicular activity (IVA) conditions, a regulator pressure schedule assessment, and culminated with 25 simulated extravehicular activities (EVAs). During the unmanned vacuum environment test series, PLSS 2.0 accumulated 378 hours of integrated testing including 291 hours of operation in a vacuum environment and 199 hours of simulated EVA time. The PLSS prototype performed nominally throughout the test series, with two notable exceptions including a pump failure and a Spacesuit Water Membrane Evaporator (SWME) leak, for which post-test failure investigations were performed. In addition to generating an extensive database of PLSS 2.0 performance data, achievements included requirements and operational concepts verification, as well as demonstration of vehicular interfaces, consumables sizing and recharge, and water quality control.
Rosburg, Timm; Weigl, Michael; Thiel, Ronja; Mager, Ralph
2018-05-01
Mismatch negativity (MMN) represents an event-related potential (ERP) component which is elicited by deviant sound events in an otherwise regular, repetitive stimulation. The MMN amplitude typically decreases when two identical deviants are presented in direct succession, but it remains stable when the two deviants vary from the standard in different features. Less is known about such repetition effects on another ERP component, the P3a, which usually follows the MMN. In the current study, we investigated how the P3a was affected by identical and non-identical repetitions of sound deviants. The ERP analysis revealed that the P3a amplitudes were strongly diminished when the repeated deviants were identical, but the P3a remained stable when the repeated deviants varied. The findings suggest that not only the deviance detection system, as reflected in the MMN, but also subsequent attention switch systems, as reflected in the P3a, operate independently across different sound features.
A Summary of NASA Research Exploring the Acoustics of Small Unmanned Aerial Systems
NASA Technical Reports Server (NTRS)
Zawodny, Nikolas S.; Christian, Andrew; Cabell, Randolph
2018-01-01
Proposed uses of small unmanned aerial systems (sUAS) have the potential to expose large portions of communities to a new noise source. In order to understand the potential noise impact of sUAS, NASA initiated acoustics research as one component of the 3-year DELIVER project, with the goal of documenting the feasibility of using existing aircraft design tools and methods on this class of vehicles. This paper summarizes the acoustics research conducted within the DELIVER project. The research described here represents an initial study, and subsequent research building on the findings of this work has been proposed for other NASA projects. The paper summarizes acoustics research in four areas: measurements of noise generated by flyovers of small unmanned aerial vehicles, measurements in controlled test facilities to understand the noise generated by components of these vehicles, computational predictions of component and full vehicle noise, and psychoacoustic tests including auralizations conducted to assess human annoyance to the noise generated by these vehicles.
RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
KOZLOWSKI, S.D.
2007-05-30
This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditionsmore » for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.« less
NASA Astrophysics Data System (ADS)
Saleh, F.; Ramaswamy, V.; Georgas, N.; Blumberg, A. F.; Wang, Y.
2016-12-01
Advances in computational resources and modeling techniques are opening the path to effectively integrate existing complex models. In the context of flood prediction, recent extreme events have demonstrated the importance of integrating components of the hydrosystem to better represent the interactions amongst different physical processes and phenomena. As such, there is a pressing need to develop holistic and cross-disciplinary modeling frameworks that effectively integrate existing models and better represent the operative dynamics. This work presents a novel Hydrologic-Hydraulic-Hydrodynamic Ensemble (H3E) flood prediction framework that operationally integrates existing predictive models representing coastal (New York Harbor Observing and Prediction System, NYHOPS), hydrologic (US Army Corps of Engineers Hydrologic Modeling System, HEC-HMS) and hydraulic (2-dimensional River Analysis System, HEC-RAS) components. The state-of-the-art framework is forced with 125 ensemble meteorological inputs from numerical weather prediction models including the Global Ensemble Forecast System, the European Centre for Medium-Range Weather Forecasts (ECMWF), the Canadian Meteorological Centre (CMC), the Short Range Ensemble Forecast (SREF) and the North American Mesoscale Forecast System (NAM). The framework produces, within a 96-hour forecast horizon, on-the-fly Google Earth flood maps that provide critical information for decision makers and emergency preparedness managers. The utility of the framework was demonstrated by retrospectively forecasting an extreme flood event, hurricane Sandy in the Passaic and Hackensack watersheds (New Jersey, USA). Hurricane Sandy caused significant damage to a number of critical facilities in this area including the New Jersey Transit's main storage and maintenance facility. The results of this work demonstrate that ensemble based frameworks provide improved flood predictions and useful information about associated uncertainties, thus improving the assessment of risks as when compared to a deterministic forecast. The work offers perspectives for short-term flood forecasts, flood mitigation strategies and best management practices for climate change scenarios.
Non-linear principal component analysis applied to Lorenz models and to North Atlantic SLP
NASA Astrophysics Data System (ADS)
Russo, A.; Trigo, R. M.
2003-04-01
A non-linear generalisation of Principal Component Analysis (PCA), denoted Non-Linear Principal Component Analysis (NLPCA), is introduced and applied to the analysis of three data sets. Non-Linear Principal Component Analysis allows for the detection and characterisation of low-dimensional non-linear structure in multivariate data sets. This method is implemented using a 5-layer feed-forward neural network introduced originally in the chemical engineering literature (Kramer, 1991). The method is described and details of its implementation are addressed. Non-Linear Principal Component Analysis is first applied to a data set sampled from the Lorenz attractor (1963). It is found that the NLPCA approximations are more representative of the data than are the corresponding PCA approximations. The same methodology was applied to the less known Lorenz attractor (1984). However, the results obtained weren't as good as those attained with the famous 'Butterfly' attractor. Further work with this model is underway in order to assess if NLPCA techniques can be more representative of the data characteristics than are the corresponding PCA approximations. The application of NLPCA to relatively 'simple' dynamical systems, such as those proposed by Lorenz, is well understood. However, the application of NLPCA to a large climatic data set is much more challenging. Here, we have applied NLPCA to the sea level pressure (SLP) field for the entire North Atlantic area and the results show a slight imcrement of explained variance associated. Finally, directions for future work are presented.%}
Potential of Progressive Construction Systems in Slovakia
NASA Astrophysics Data System (ADS)
Kozlovska, Maria; Spisakova, Marcela; Mackova, Daniela
2017-10-01
Construction industry is a sector with rapid development. Progressive technologies of construction and new construction materials also called modern methods of construction (MMC) are developed constantly. MMC represent the adoption of construction industrialisation and the use of prefabrication of components in building construction. One of these modern methods is also system Varianthaus, which is based on, insulated concrete forms principle and provides complete production plant for wall, ceiling and roof elements for a high thermal insulation house construction. Another progressive construction system is EcoB, which represents an insulated precast concrete panel based on combination of two layers, insulation and concrete, produced in a factory as a whole. Both modern methods of construction are not yet known and wide-spread in the Slovak construction market. The aim of this paper is focused on demonstration of MMC using potential in Slovakia. MMC potential is proved based on comparison of the selected parameters of construction process - construction costs and construction time. The subject of this study is family house modelled in three material variants - masonry construction (as a representative of traditional methods of construction), Varianthaus and EcoB (as the representatives of modern methods of construction). The results of this study provide the useful information in decision-making process for potential investors of construction.
Nonlinear dynamic simulation of single- and multi-spool core engines
NASA Technical Reports Server (NTRS)
Schobeiri, T.; Lippke, C.; Abouelkheir, M.
1993-01-01
In this paper a new computational method for accurate simulation of the nonlinear dynamic behavior of single- and multi-spool core engines, turbofan engines, and power generation gas turbine engines is presented. In order to perform the simulation, a modularly structured computer code has been developed which includes individual mathematical modules representing various engine components. The generic structure of the code enables the dynamic simulation of arbitrary engine configurations ranging from single-spool thrust generation to multi-spool thrust/power generation engines under adverse dynamic operating conditions. For precise simulation of turbine and compressor components, row-by-row calculation procedures were implemented that account for the specific turbine and compressor cascade and blade geometry and characteristics. The dynamic behavior of the subject engine is calculated by solving a number of systems of partial differential equations, which describe the unsteady behavior of the individual components. In order to ensure the capability, accuracy, robustness, and reliability of the code, comprehensive critical performance assessment and validation tests were performed. As representatives, three different transient cases with single- and multi-spool thrust and power generation engines were simulated. The transient cases range from operating with a prescribed fuel schedule, to extreme load changes, to generator and turbine shut down.
Global model of zenith tropospheric delay proposed based on EOF analysis
NASA Astrophysics Data System (ADS)
Sun, Langlang; Chen, Peng; Wei, Erhu; Li, Qinzheng
2017-07-01
Tropospheric delay is one of the main error budgets in Global Navigation Satellite System (GNSS) measurements. Many empirical correction models have been developed to compensate this delay, and models which do not require meteorological parameters have received the most attention. This study established a global troposphere zenith total delay (ZTD) model, called Global Empirical Orthogonal Function Troposphere (GEOFT), based on the empirical orthogonal function (EOF, also known as geographically weighted PCAs) analysis method and the Global Geodetic Observing System (GGOS) Atmosphere data from 2012 to 2015. The results showed that ZTD variation could be well represented by the characteristics of the EOF base function Ek and associated coefficients Pk. Here, E1 mainly signifies the equatorial anomaly; E2 represents north-south asymmetry, and E3 and E4 reflects regional variation. Moreover, P1 mainly reflects annual and semiannual variation components; P2 and P3 mainly contains annual variation components, and P4 displays semiannual variation components. We validated the proposed GEOFT model using tropospheric delay data of GGOS ZTD grid data and the tropospheric product of the International GNSS Service (IGS) over the year 2016. The results showed that GEOFT model has high accuracy with bias and RMS of -0.3 and 3.9 cm, respectively, with respect to the GGOS ZTD data, and of -0.8 and 4.1 cm, respectively, with respect to the global IGS tropospheric product. The accuracy of GEOFT demonstrating that the use of the EOF analysis method to characterize ZTD variation is reasonable.
NASA Astrophysics Data System (ADS)
Whaley, Gregory J.; Karnopp, Roger J.
2010-04-01
The goal of the Air Force Highly Integrated Photonics (HIP) program is to develop and demonstrate single photonic chip components which support a single mode fiber network architecture for use on mobile military platforms. We propose an optically transparent, broadcast and select fiber optic network as the next generation interconnect on avionics platforms. In support of this network, we have developed three principal, single-chip photonic components: a tunable laser transmitter, a 32x32 port star coupler, and a 32 port multi-channel receiver which are all compatible with demanding avionics environmental and size requirements. The performance of the developed components will be presented as well as the results of a demonstration system which integrates the components into a functional network representative of the form factor used in advanced avionics computing and signal processing applications.
Correlation Energies from the Two-Component Random Phase Approximation.
Kühn, Michael
2014-02-11
The correlation energy within the two-component random phase approximation accounting for spin-orbit effects is derived. The resulting plasmon equation is rewritten-analogously to the scalar relativistic case-in terms of the trace of two Hermitian matrices for (Kramers-restricted) closed-shell systems and then represented as an integral over imaginary frequency using the resolution of the identity approximation. The final expression is implemented in the TURBOMOLE program suite. The code is applied to the computation of equilibrium distances and vibrational frequencies of heavy diatomic molecules. The efficiency is demonstrated by calculation of the relative energies of the Oh-, D4h-, and C5v-symmetric isomers of Pb6. Results within the random phase approximation are obtained based on two-component Kohn-Sham reference-state calculations, using effective-core potentials. These values are finally compared to other two-component and scalar relativistic methods, as well as experimental data.
A Clinical Information Display System
Blum, Bruce J.; Lenhard, Raymond E.; Braine, Hayden; Kammer, Anne
1977-01-01
A clinical information display system has been implemented as part of a prototype Oncology Clinical Information System for the Johns Hopkins Oncology Center. The information system has been developed to support the management of patient therapy. Capabilities in the prototype include a patient data system, a patient abstract, a tumor registry, an appointment system, a census system, and a clinical information display system. This paper describes the clinical information display component of the prototype. It has the capability of supporting up to 10,000 patient records with online data entry and editing. At the present time, the system is being used only in the Oncology Center. There are plans, however, for trial use by other departments, and the system represents a tool with a potential for more general application.
Theoretical analysis and simulations of the generalized Lotka-Volterra model.
Malcai, Ofer; Biham, Ofer; Richmond, Peter; Solomon, Sorin
2002-09-01
The dynamics of generalized Lotka-Volterra systems is studied by theoretical techniques and computer simulations. These systems describe the time evolution of the wealth distribution of individuals in a society, as well as of the market values of firms in the stock market. The individual wealths or market values are given by a set of time dependent variables w(i), i=1,...,N. The equations include a stochastic autocatalytic term (representing investments), a drift term (representing social security payments), and a time dependent saturation term (due to the finite size of the economy). The w(i)'s turn out to exhibit a power-law distribution of the form P(w) approximately w(-1-alpha). It is shown analytically that the exponent alpha can be expressed as a function of one parameter, which is the ratio between the constant drift component (social security) and the fluctuating component (investments). This result provides a link between the lower and upper cutoffs of this distribution, namely, between the resources available to the poorest and those available to the richest in a given society. The value of alpha is found to be insensitive to variations in the saturation term, which represent the expansion or contraction of the economy. The results are of much relevance to empirical studies that show that the distribution of the individual wealth in different countries during different periods in the 20th century has followed a power-law distribution with 1
Theoretical analysis and simulations of the generalized Lotka-Volterra model
NASA Astrophysics Data System (ADS)
Malcai, Ofer; Biham, Ofer; Richmond, Peter; Solomon, Sorin
2002-09-01
The dynamics of generalized Lotka-Volterra systems is studied by theoretical techniques and computer simulations. These systems describe the time evolution of the wealth distribution of individuals in a society, as well as of the market values of firms in the stock market. The individual wealths or market values are given by a set of time dependent variables wi, i=1,...,N. The equations include a stochastic autocatalytic term (representing investments), a drift term (representing social security payments), and a time dependent saturation term (due to the finite size of the economy). The wi's turn out to exhibit a power-law distribution of the form P(w)~w-1-α. It is shown analytically that the exponent α can be expressed as a function of one parameter, which is the ratio between the constant drift component (social security) and the fluctuating component (investments). This result provides a link between the lower and upper cutoffs of this distribution, namely, between the resources available to the poorest and those available to the richest in a given society. The value of α is found to be insensitive to variations in the saturation term, which represent the expansion or contraction of the economy. The results are of much relevance to empirical studies that show that the distribution of the individual wealth in different countries during different periods in the 20th century has followed a power-law distribution with 1<α<2.
NASA Astrophysics Data System (ADS)
Gromov, Evgeny; Malomed, Boris
2017-11-01
New two-component soliton solutions of the coupled high-frequency (HF)—low-frequency (LF) system, based on Schrödinger-Korteweg-de Vries (KdV) system with the Zakharov's coupling, are obtained for arbitrary relative strengths of the nonlinearity and dispersion in the LF component. The complex HF field is governed by the linear Schrödinger equation with a potential generated by the real LF component, which, in turn, is governed by the KdV equation including the ponderomotive coupling term, representing the feedback of the HF field onto the LF component. First, we study the evolution of pulse-shaped pulses by means of direct simulations. In the case when the dispersion of the LF component is weak in comparison to its nonlinearity, the input gives rise to several solitons in which the HF component is much broader than its LF counterpart. In the opposite case, the system creates a single soliton with approximately equal widths of both components. Collisions between stable solitons are studied too, with a conclusion that the collisions are inelastic, with a greater soliton getting still stronger, and the smaller one suffering further attenuation. Robust intrinsic modes are excited in the colliding solitons. A new family of approximate analytical two-component soliton solutions with two free parameters is found for an arbitrary relative strength of the nonlinearity and dispersion of the LF component, assuming weak feedback of the HF field onto the LF component. Further, a one-parameter (non-generic) family of exact bright-soliton solutions, with mutually proportional HF and LF components, is produced too. Intrinsic dynamics of the two-component solitons, induced by a shift of their HF component against the LF one, is also studied, by means of numerical simulations, demonstrating excitation of a robust intrinsic mode. In addition to the above-mentioned results for LF-dominated two-component solitons, which always run in one (positive) velocities, we produce HF-dominated soliton complexes, which travel in the opposite (negative) direction. They are obtained in a numerical form and by means of a quasi-adiabatic analytical approximation. The solutions with positive and negative velocities correspond, respectively, to super- and subsonic Davydov-Scott solitons.
Test Results from a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit
NASA Technical Reports Server (NTRS)
Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.; Godfroy, Thomas J.
2010-01-01
Component level testing of power conversion units proposed for use in fission surface power systems has typically been done using relatively simple electric heaters for thermal input. These heaters do not adequately represent the geometry or response of proposed reactors. As testing of fission surface power systems transitions from the component level to the system level it becomes necessary to more accurately replicate these reactors using reactor simulators. The Direct Drive Gas-Brayton Power Conversion Unit test activity at the NASA Glenn Research Center integrates a reactor simulator with an existing Brayton test rig. The response of the reactor simulator to a change in Brayton shaft speed is shown as well as the response of the Brayton to an insertion of reactivity, corresponding to a drum reconfiguration. The lessons learned from these tests can be used to improve the design of future reactor simulators which can be used in system level fission surface power tests.
Venkataraman, Vinay; Turaga, Pavan; Baran, Michael; Lehrer, Nicole; Du, Tingfang; Cheng, Long; Rikakis, Thanassis; Wolf, Steven L.
2016-01-01
In this paper, we propose a general framework for tuning component-level kinematic features using therapists’ overall impressions of movement quality, in the context of a Home-based Adaptive Mixed Reality Rehabilitation (HAMRR) system. We propose a linear combination of non-linear kinematic features to model wrist movement, and propose an approach to learn feature thresholds and weights using high-level labels of overall movement quality provided by a therapist. The kinematic features are chosen such that they correlate with the quality of wrist movements to clinical assessment scores. Further, the proposed features are designed to be reliably extracted from an inexpensive and portable motion capture system using a single reflective marker on the wrist. Using a dataset collected from ten stroke survivors, we demonstrate that the framework can be reliably used for movement quality assessment in HAMRR systems. The system is currently being deployed for large-scale evaluations, and will represent an increasingly important application area of motion capture and activity analysis. PMID:25438331
Das, Narendra; Stampoulis, Dimitrios; Ines, Amor; Fisher, Joshua B.; Granger, Stephanie; Kawata, Jessie; Han, Eunjin; Behrangi, Ali
2017-01-01
The Regional Hydrologic Extremes Assessment System (RHEAS) is a prototype software framework for hydrologic modeling and data assimilation that automates the deployment of water resources nowcasting and forecasting applications. A spatially-enabled database is a key component of the software that can ingest a suite of satellite and model datasets while facilitating the interfacing with Geographic Information System (GIS) applications. The datasets ingested are obtained from numerous space-borne sensors and represent multiple components of the water cycle. The object-oriented design of the software allows for modularity and extensibility, showcased here with the coupling of the core hydrologic model with a crop growth model. RHEAS can exploit multi-threading to scale with increasing number of processors, while the database allows delivery of data products and associated uncertainty through a variety of GIS platforms. A set of three example implementations of RHEAS in the United States and Kenya are described to demonstrate the different features of the system in real-world applications. PMID:28545077
Andreadis, Konstantinos M; Das, Narendra; Stampoulis, Dimitrios; Ines, Amor; Fisher, Joshua B; Granger, Stephanie; Kawata, Jessie; Han, Eunjin; Behrangi, Ali
2017-01-01
The Regional Hydrologic Extremes Assessment System (RHEAS) is a prototype software framework for hydrologic modeling and data assimilation that automates the deployment of water resources nowcasting and forecasting applications. A spatially-enabled database is a key component of the software that can ingest a suite of satellite and model datasets while facilitating the interfacing with Geographic Information System (GIS) applications. The datasets ingested are obtained from numerous space-borne sensors and represent multiple components of the water cycle. The object-oriented design of the software allows for modularity and extensibility, showcased here with the coupling of the core hydrologic model with a crop growth model. RHEAS can exploit multi-threading to scale with increasing number of processors, while the database allows delivery of data products and associated uncertainty through a variety of GIS platforms. A set of three example implementations of RHEAS in the United States and Kenya are described to demonstrate the different features of the system in real-world applications.
RF control at SSCL — an object oriented design approach
NASA Astrophysics Data System (ADS)
Dohan, D. A.; Osberg, E.; Biggs, R.; Bossom, J.; Chillara, K.; Richter, R.; Wade, D.
1994-12-01
The Superconducting Super Collider (SSC) in Texas, the construction of which was stopped in 1994, would have represented a major challenge in accelerator research and development. This paper addresses the issues encountered in the parallel design and construction of the control systems for the RF equipment for the five accelerators comprising the SSC. An extensive analysis of the components of the RF control systems has been undertaken, based upon the Schlaer-Mellor object-oriented analysis and design (OOA/OOD) methodology. The RF subsystem components such as amplifiers, tubes, power supplies, PID loops, etc. were analyzed to produce OOA information, behavior and process models. Using these models, OOD was iteratively applied to develop a generic RF control system design. This paper describes the results of this analysis and the development of 'bridges' between the analysis objects, and the EPICS-based software and underlying VME-based hardware architectures. The application of this approach to several of the SSCL RF control systems is discussed.
Gaudino, Stefano; Goia, Irene; Grignani, Carlo; Monaco, Stefano; Sacco, Dario
2014-07-01
Dairy farms control an important share of the agricultural area of Northern Italy. Zero grazing, large maize-cropped areas, high stocking densities, and high milk production make them intensive and prone to impact the environment. Currently, few published studies have proposed indicator sets able to describe the entire dairy farm system and their internal components. This work had four aims: i) to propose a list of agro-environmental indicators to assess dairy farms; ii) to understand which indicators classify farms best; iii) to evaluate the dairy farms based on the proposed indicator list; iv) to link farmer decisions to the consequent environmental pressures. Forty agro-environmental indicators selected for this study are described. Northern Italy dairy systems were analysed considering both farmer decision indicators (farm management) and the resulting pressure indicators that demonstrate environmental stress on the entire farming system, and its components: cropping system, livestock system, and milk production. The correlations among single indicators identified redundant indicators. Principal Components Analysis distinguished which indicators provided meaningful information about each pressure indicator group. Analysis of the communalities and the correlations among indicators identified those that best represented farm variability: Farm Gate N Balance, Greenhouse Gas Emission, and Net Energy of the farm system; Net Energy and Gross P Balance of the cropping system component; Energy Use Efficiency and Purchased Feed N Input of the livestock system component; N Eco-Efficiency of the milk production component. Farm evaluation, based on the complete list of selected indicators demonstrated organic farming resulted in uniformly high values, while farms with low milk-producing herds resulted in uniformly low values. Yet on other farms, the environmental quality varied greatly when different groups of pressure indicators were considered, which highlighted the importance of expanding environmental analysis to effects within the farm. Statistical analysis demonstrated positive correlations between all farmer decision and pressure group indicators. Consumption of mineral fertiliser and pesticide negatively influenced the cropping system. Furthermore, stocking rate was found to correlate positively with the milk production component and negatively with the farm system. This study provides baseline references for ex ante policy evaluation, and monitoring tools for analysis both in itinere and ex post environment policy implementation. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Morales, Carmen E.; Anabalón, Valeria
2012-01-01
In the coastal system off Concepción, time series observations at a fixed station (St. 18) have shown strong seasonal changes in the oceanographic environment of the upper layer (<35 m depth), accompanied by large increases in phytoplankton biomass during the spring-summer upwelling season. These blooms, dominated by microplanktonic diatoms, have usually overshadowed the relevance of the smaller microbial components during upwelling. This study focuses on the variability of oceanographic conditions and their association with the structure of the planktonic community (size fractionated chlorophyll-a and microbial abundances) in the upper layer during the upwelling season, examining the extent to which St. 18 is representative of the coastal system off Concepción during springtime. For this purpose, data from three consecutive springs (2004, 2005, 2006) were compared, which included cruises for all years (8 stations around St. 18) as well as monthly sampling at St. 18. Most of the spatial (submesoscale) variability in chlorophyll-a and the microbial components was not significant, but data dispersion around mean values was high. Water column structure (temperature and salinity) in the upper layer explained a significant fraction (25-65%) of the spatial variability in most of the planktonic components; their responses to oceanographic variability were linear in some cases and non-linear in others. For the most part, St. 18 appears to adequately represent mean oceanographic conditions and the structure of planktonic communities in the coastal waters off Concepción during springtime, however spatial variability needs to be taken into account in the interpretations of temporal changes at this fixed station as well as in assessments of carbon flow within, and exportation processes from, this upwelling system.
Systems and methods for improved telepresence
Anderson, Matthew O.; Willis, W. David; Kinoshita, Robert A.
2005-10-25
The present invention provides a modular, flexible system for deploying multiple video perception technologies. The telepresence system of the present invention is capable of allowing an operator to control multiple mono and stereo video inputs in a hands-free manner. The raw data generated by the input devices is processed into a common zone structure that corresponds to the commands of the user, and the commands represented by the zone structure are transmitted to the appropriate device. This modularized approach permits input devices to be easily interfaced with various telepresence devices. Additionally, new input devices and telepresence devices are easily added to the system and are frequently interchangeable. The present invention also provides a modular configuration component that allows an operator to define a plurality of views each of which defines the telepresence devices to be controlled by a particular input device. The present invention provides a modular flexible system for providing telepresence for a wide range of applications. The modularization of the software components combined with the generalized zone concept allows the systems and methods of the present invention to be easily expanded to encompass new devices and new uses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biernat, W.; Aguzzi, A.; Sure, U.
Gliosarcomas are morphologically heterogeneous tumors of the central nervous system composed of gliomatous and sarcomatous components. The histogenesis of the latter is still a matter of debate. As mutations of the p53 tumor suppressor gene represent an early event in the development of gliomas, we attempted to determine whether both components of gliosarcomas share identical alterations of the p53 gene. Using single-strand conformation analysis (SSCA) and direct DNA sequencing of the p53 gene, we analyzed dissected gliomatous and sarcomatous parts of 12 formalin-fixed, paraffin-embedded gliosarcomas. The two tumors that contained a p53 alteration were found to carry the identical mutationmore » (exon 5; codon 151, CCC {r_arrow} TCC; codon 173, GTG {r_arrow} GTA) in the gliomatous and the sarcomatous components. These findings suggest a common origin of the two cellular components from neoplastic glial cells. 37 refs., 3 figs., 1 tab.« less
Kirkilionis, Markus; Janus, Ulrich; Sbano, Luca
2011-09-01
We model in detail a simple synthetic genetic clock that was engineered in Atkinson et al. (Cell 113(5):597-607, 2003) using Escherichia coli as a host organism. Based on this engineered clock its theoretical description uses the modelling framework presented in Kirkilionis et al. (Theory Biosci. doi: 10.1007/s12064-011-0125-0 , 2011, this volume). The main goal of this accompanying article was to illustrate that parts of the modelling process can be algorithmically automatised once the model framework we called 'average dynamics' is accepted (Sbano and Kirkilionis, WMI Preprint 7/2007, 2008c; Kirkilionis and Sbano, Adv Complex Syst 13(3):293-326, 2010). The advantage of the 'average dynamics' framework is that system components (especially in genetics) can be easier represented in the model. In particular, if once discovered and characterised, specific molecular players together with their function can be incorporated. This means that, for example, the 'gene' concept becomes more clear, for example, in the way the genetic component would react under different regulatory conditions. Using the framework it has become a realistic aim to link mathematical modelling to novel tools of bioinformatics in the future, at least if the number of regulatory units can be estimated. This should hold in any case in synthetic environments due to the fact that the different synthetic genetic components are simply known (Elowitz and Leibler, Nature 403(6767):335-338, 2000; Gardner et al., Nature 403(6767):339-342, 2000; Hasty et al., Nature 420(6912):224-230, 2002). The paper illustrates therefore as a necessary first step how a detailed modelling of molecular interactions with known molecular components leads to a dynamic mathematical model that can be compared to experimental results on various levels or scales. The different genetic modules or components are represented in different detail by model variants. We explain how the framework can be used for investigating other more complex genetic systems in terms of regulation and feedback.
Mathematical Modeling Of Life-Support Systems
NASA Technical Reports Server (NTRS)
Seshan, Panchalam K.; Ganapathi, Balasubramanian; Jan, Darrell L.; Ferrall, Joseph F.; Rohatgi, Naresh K.
1994-01-01
Generic hierarchical model of life-support system developed to facilitate comparisons of options in design of system. Model represents combinations of interdependent subsystems supporting microbes, plants, fish, and land animals (including humans). Generic model enables rapid configuration of variety of specific life support component models for tradeoff studies culminating in single system design. Enables rapid evaluation of effects of substituting alternate technologies and even entire groups of technologies and subsystems. Used to synthesize and analyze life-support systems ranging from relatively simple, nonregenerative units like aquariums to complex closed-loop systems aboard submarines or spacecraft. Model, called Generic Modular Flow Schematic (GMFS), coded in such chemical-process-simulation languages as Aspen Plus and expressed as three-dimensional spreadsheet.
An integrated approach to system design, reliability, and diagnosis
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Iverson, David L.
1990-01-01
The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems ingeneering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms.
Higher-order scene statistics of breast images
NASA Astrophysics Data System (ADS)
Abbey, Craig K.; Sohl-Dickstein, Jascha N.; Olshausen, Bruno A.; Eckstein, Miguel P.; Boone, John M.
2009-02-01
Researchers studying human and computer vision have found description and construction of these systems greatly aided by analysis of the statistical properties of naturally occurring scenes. More specifically, it has been found that receptive fields with directional selectivity and bandwidth properties similar to mammalian visual systems are more closely matched to the statistics of natural scenes. It is argued that this allows for sparse representation of the independent components of natural images [Olshausen and Field, Nature, 1996]. These theories have important implications for medical image perception. For example, will a system that is designed to represent the independent components of natural scenes, where objects occlude one another and illumination is typically reflected, be appropriate for X-ray imaging, where features superimpose on one another and illumination is transmissive? In this research we begin to examine these issues by evaluating higher-order statistical properties of breast images from X-ray projection mammography (PM) and dedicated breast computed tomography (bCT). We evaluate kurtosis in responses of octave bandwidth Gabor filters applied to PM and to coronal slices of bCT scans. We find that kurtosis in PM rises and quickly saturates for filter center frequencies with an average value above 0.95. By contrast, kurtosis in bCT peaks near 0.20 cyc/mm with kurtosis of approximately 2. Our findings suggest that the human visual system may be tuned to represent breast tissue more effectively in bCT over a specific range of spatial frequencies.
NASA Astrophysics Data System (ADS)
Takaya, Yuhei; Hirahara, Shoji; Yasuda, Tamaki; Matsueda, Satoko; Toyoda, Takahiro; Fujii, Yosuke; Sugimoto, Hiroyuki; Matsukawa, Chihiro; Ishikawa, Ichiro; Mori, Hirotoshi; Nagasawa, Ryoji; Kubo, Yutaro; Adachi, Noriyuki; Yamanaka, Goro; Kuragano, Tsurane; Shimpo, Akihiko; Maeda, Shuhei; Ose, Tomoaki
2018-02-01
This paper describes the Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 2 (JMA/MRI-CPS2), which was put into operation in June 2015 for the purpose of performing seasonal predictions. JMA/MRI-CPS2 has various upgrades from its predecessor, JMA/MRI-CPS1, including improved resolution and physics in its atmospheric and oceanic components, introduction of an interactive sea-ice model and realistic initialization of its land component. Verification of extensive re-forecasts covering a 30-year period (1981-2010) demonstrates that JMA/MRI-CPS2 possesses improved seasonal predictive skills for both atmospheric and oceanic interannual variability as well as key coupled variability such as the El Niño-Southern Oscillation (ENSO). For ENSO prediction, the new system better represents the forecast uncertainty and transition/duration of ENSO phases. Our analysis suggests that the enhanced predictive skills are attributable to incremental improvements resulting from all of the changes, as is apparent in the beneficial effects of sea-ice coupling and land initialization on 2-m temperature predictions. JMA/MRI-CPS2 is capable of reasonably representing the seasonal cycle and secular trends of sea ice. The sea-ice coupling remarkably enhances the predictive capability for the Arctic 2-m temperature, indicating the importance of this factor, particularly for seasonal predictions in the Arctic region.
Analytical models for coupling reliability in identical two-magnet systems during slow reversals
NASA Astrophysics Data System (ADS)
Kani, Nickvash; Naeemi, Azad
2017-12-01
This paper follows previous works which investigated the strength of dipolar coupling in two-magnet systems. While those works focused on qualitative analyses, this manuscript elucidates reversal through dipolar coupling culminating in analytical expressions for reversal reliability in identical two-magnet systems. The dipolar field generated by a mono-domain magnetic body can be represented by a tensor containing both longitudinal and perpendicular field components; this field changes orientation and magnitude based on the magnetization of neighboring nanomagnets. While the dipolar field does reduce to its longitudinal component at short time-scales, for slow magnetization reversals, the simple longitudinal field representation greatly underestimates the scope of parameters that ensure reliable coupling. For the first time, analytical models that map the geometric and material parameters required for reliable coupling in two-magnet systems are developed. It is shown that in biaxial nanomagnets, the x ̂ and y ̂ components of the dipolar field contribute to the coupling, while all three dimensions contribute to the coupling between a pair of uniaxial magnets. Additionally, the ratio of the longitudinal and perpendicular components of the dipolar field is also very important. If the perpendicular components in the dipolar tensor are too large, the nanomagnet pair may come to rest in an undesirable meta-stable state away from the free axis. The analytical models formulated in this manuscript map the minimum and maximum parameters for reliable coupling. Using these models, it is shown that there is a very small range of material parameters which can facilitate reliable coupling between perpendicular-magnetic-anisotropy nanomagnets; hence, in-plane nanomagnets are more suitable for coupled systems.
NASA Technical Reports Server (NTRS)
Parada, N. D. J.; Novo, E. M. L. M.
1983-01-01
Two sets of MSS/LANDSAT data with solar elevation ranging from 22 deg to 41 deg were used at the Image-100 System to implement the Eliason et alii technique for extracting the topographic modulation component. An unsupervised cluster analysis was used to obtain an average brightness image for each channel. Analysis of the enhanced imaged shows that the technique for extracting topographic modulation component is more appropriated to MSS data obtained under high sun elevation ngles. Low sun elevation increases the variance of each cluster so that the average brightness doesn't represent its albedo proprties. The topographic modulation component applied to low sun elevation angle damages rather than enhance topographic information. Better results were produced for channels 4 and 5 than for channels 6 and 7.
Role of Utility and Inference in the Evolution of Functional Information
Sharov, Alexei A.
2009-01-01
Functional information means an encoded network of functions in living organisms from molecular signaling pathways to an organism’s behavior. It is represented by two components: code and an interpretation system, which together form a self-sustaining semantic closure. Semantic closure allows some freedom between components because small variations of the code are still interpretable. The interpretation system consists of inference rules that control the correspondence between the code and the function (phenotype) and determines the shape of the fitness landscape. The utility factor operates at multiple time scales: short-term selection drives evolution towards higher survival and reproduction rate within a given fitness landscape, and long-term selection favors those fitness landscapes that support adaptability and lead to evolutionary expansion of certain lineages. Inference rules make short-term selection possible by shaping the fitness landscape and defining possible directions of evolution, but they are under control of the long-term selection of lineages. Communication normally occurs within a set of agents with compatible interpretation systems, which I call communication system. Functional information cannot be directly transferred between communication systems with incompatible inference rules. Each biological species is a genetic communication system that carries unique functional information together with inference rules that determine evolutionary directions and constraints. This view of the relation between utility and inference can resolve the conflict between realism/positivism and pragmatism. Realism overemphasizes the role of inference in evolution of human knowledge because it assumes that logic is embedded in reality. Pragmatism substitutes usefulness for truth and therefore ignores the advantage of inference. The proposed concept of evolutionary pragmatism rejects the idea that logic is embedded in reality; instead, inference rules are constructed within each communication system to represent reality and they evolve towards higher adaptability on a long time scale. PMID:20160960
C-Language Integrated Production System, Version 5.1
NASA Technical Reports Server (NTRS)
Riley, Gary; Donnell, Brian; Ly, Huyen-Anh VU; Culbert, Chris; Savely, Robert T.; Mccoy, Daniel J.; Giarratano, Joseph
1992-01-01
CLIPS 5.1 provides cohesive software tool for handling wide variety of knowledge with support for three different programming paradigms: rule-based, object-oriented, and procedural. Rule-based programming provides representation of knowledge by use of heuristics. Object-oriented programming enables modeling of complex systems as modular components. Procedural programming enables CLIPS to represent knowledge in ways similar to those allowed in such languages as C, Pascal, Ada, and LISP. Working with CLIPS 5.1, one can develop expert-system software by use of rule-based programming only, object-oriented programming only, procedural programming only, or combinations of the three.
NASA Astrophysics Data System (ADS)
Strassmann, Kuno M.; Joos, Fortunat
2018-05-01
The Bern Simple Climate Model (BernSCM) is a free open-source re-implementation of a reduced-form carbon cycle-climate model which has been used widely in previous scientific work and IPCC assessments. BernSCM represents the carbon cycle and climate system with a small set of equations for the heat and carbon budget, the parametrization of major nonlinearities, and the substitution of complex component systems with impulse response functions (IRFs). The IRF approach allows cost-efficient yet accurate substitution of detailed parent models of climate system components with near-linear behavior. Illustrative simulations of scenarios from previous multimodel studies show that BernSCM is broadly representative of the range of the climate-carbon cycle response simulated by more complex and detailed models. Model code (in Fortran) was written from scratch with transparency and extensibility in mind, and is provided open source. BernSCM makes scientifically sound carbon cycle-climate modeling available for many applications. Supporting up to decadal time steps with high accuracy, it is suitable for studies with high computational load and for coupling with integrated assessment models (IAMs), for example. Further applications include climate risk assessment in a business, public, or educational context and the estimation of CO2 and climate benefits of emission mitigation options.
Evaporative Mass Transfer Behavior of a Complex Immiscible Liquid
McColl, Colleen M.; Johnson, Gwynn R.; Brusseau, Mark L.
2010-01-01
A series of laboratory experiments was conducted with a multiple-component immiscible liquid, collected from the Picillo Farm Superfund Site in Rhode Island, to examine liquid-vapor mass-transfer behavior. The immiscible liquid, which comprises solvents, oils, pesticides, PCBs, paint sludges, explosives, and other compounds, was characterized using gas chromatography and gas chromatography/mass spectrometry to determine mole fractions of selected constituents. Batch experiments were conducted to evaluate equilibrium phase-partitioning behavior. Two sets of air-stripping column studies were conducted to examine the mass-transfer dynamics of five selected target compounds present in the immiscible-liquid mixture. One set of column experiments was designed to represent a system with free-phase immiscible liquid present; the other was designed to represent a system with a residual phase of immiscible liquid. Initial elution behavior of all target components generally appeared to be ideal for both systems, as the initial vapor-phase concentrations were similar to vapor-phase concentrations measured for the batch experiment and those estimated using Raoult’s law (incorporating the immiscible-liquid composition data). Later-stage removal of 1,2-dichlorobenzene appeared to be rate limited for the columns containing free-phase immiscible liquid and no porous medium. Conversely, evaporative mass transfer appeared to be ideal throughout the experiment conducted with immiscible liquid distributed relatively uniformly as a residual phase within a sandy porous medium. PMID:18614196
Evaporative mass transfer behavior of a complex immiscible liquid.
McColl, Colleen M; Johnson, Gwynn R; Brusseau, Mark L
2008-09-01
A series of laboratory experiments was conducted with a multiple-component immiscible liquid, collected from the Picillo Farm Superfund Site in Rhode Island, to examine liquid-vapor mass-transfer behavior. The immiscible liquid, which comprises solvents, oils, pesticides, PCBs, paint sludges, explosives, and other compounds, was characterized using gas chromatography and gas chromatography/mass spectrometry to determine mole fractions of selected constituents. Batch experiments were conducted to evaluate equilibrium phase-partitioning behavior. Two sets of air-stripping column studies were conducted to examine the mass-transfer dynamics of five selected target compounds present in the immiscible-liquid mixture. One set of column experiments was designed to represent a system with free-phase immiscible liquid present; the other was designed to represent a system with a residual phase of immiscible liquid. Initial elution behavior of all target components generally appeared to be ideal for both systems, as the initial vapor-phase concentrations were similar to vapor-phase concentrations measured for the batch experiment and those estimated using Raoult's law (incorporating the immiscible-liquid composition data). Later-stage removal of 1,2-dichlorobenzene appeared to be rate limited for the columns containing free-phase immiscible liquid and no porous medium. Conversely, evaporative mass transfer appeared to be ideal throughout the experiment conducted with immiscible liquid distributed relatively uniformly as a residual phase within a sandy porous medium.
Cardoso, Ana M; Morais, Catarina M; Silva, Sandra G; Marques, Eduardo F; de Lima, Maria C Pedroso; Jurado, Maria Amália S
2014-10-20
Gemini surfactants have been successfully used as components of gene delivery systems. In the present work, a family of gemini surfactants, represented by the general structure [CmH2m+1(CH3)2N(+)(CH2)sN(+)(CH3)2CmH2m+1]2Br(-), or simply m-s-m, was used to prepare cationic gene carriers, aiming at their application in transfection studies. An extensive characterization of the gemini surfactant-based complexes, produced with and without the helper lipids cholesterol and DOPE, was carried out in order to correlate their physico-chemical properties with transfection efficiency. The most efficient complexes were those containing helper lipids, which, combining amphiphiles with propensity to form structures with different intrinsic curvatures, displayed a morphologically labile architecture, putatively implicated in the efficient DNA release upon complex interaction with membranes. While complexes lacking helper lipids were translocated directly across the lipid bilayer, complexes containing helper lipids were taken up by cells also by macropinocytosis. This study contributes to shed light on the relationship between important physico-chemical properties of surfactant-based DNA vectors and their efficiency to promote gene transfer, which may represent a step forward to the rational design of gene delivery systems. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Turner, Mark G.; Reed, John A.; Ryder, Robert; Veres, Joseph P.
2004-01-01
A Zero-D cycle simulation of the GE90-94B high bypass turbofan engine has been achieved utilizing mini-maps generated from a high-fidelity simulation. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled 3D computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the 3D component models are integrated into the cycle model via partial performance maps generated from the CFD flow solutions using one-dimensional mean line turbomachinery programs. This paper highlights the generation of the high-pressure compressor, booster, and fan partial performance maps, as well as turbine maps for the high pressure and low pressure turbine. These are actually "mini-maps" in the sense that they are developed only for a narrow operating range of the component. Results are compared between actual cycle data at a take-off condition and the comparable condition utilizing these mini-maps. The mini-maps are also presented with comparison to actual component data where possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, R. W.; Gilliam, T. M.; Fowler, V. L.
An empirical model is presented for vapor-liquid equilibria and enthalpy for the CO$sub 2$-O$sub 2$ system. In the model, krypton and xenon in very low concentrations are combined with the CO$sub 2$-O$sub 2$ system, thereby representing the total system of primary interest in the High-Temperature Gas- Cooled Reactor program for removing krypton from off-gas generated during the reprocessing of spent fuel. Selected properties of the individual and combined components being considered are presented in the form of tables and empirical equations. (auth)
NASA Astrophysics Data System (ADS)
Thoma, Jean Ulrich
The fundamental principles and applications of the bond graph method, in which a system is represented on paper by letter elements and their interconnections (bonds), are presented in an introduction for engineering students. Chapters are devoted to simulation and graphical system models; bond graphs as networks for power and signal exchange; the simulation and design of mechanical engineering systems; the simulation of fluid power systems and hydrostatic devices; electrical circuits, drives, and components; practical procedures and problems of bond-graph-based numerical simulation; and applications to thermodynamics, chemistry, and biology. Also included are worked examples of applications to robotics, shocks and collisions, ac circuits, hydraulics, and a hydropneumatic fatigue-testing machine.
Hector G. Adegbidi; Nicholas B. Comerford; Hua Li; Eric J. Jokela; Nairam F. Barros
2002-01-01
Nutrient management represents a central component of intensive silvicultural systems that are designed to increase forest productivity in southern pine stands. Forest soils throughout the South are generally infertile, and fertilizers may be applied one or more times over the course of a rotation. Diagnostic techniques, such as foliar analysis and soil testing are...
Fuggetta, Giorgio; Duke, Philip A
2017-05-01
The operation of attention on visible objects involves a sequence of cognitive processes. The current study firstly aimed to elucidate the effects of practice on neural mechanisms underlying attentional processes as measured with both behavioural and electrophysiological measures. Secondly, it aimed to identify any pattern in the relationship between Event-Related Potential (ERP) components which play a role in the operation of attention in vision. Twenty-seven participants took part in two recording sessions one week apart, performing an experimental paradigm which combined a match-to-sample task with a memory-guided efficient visual-search task within one trial sequence. Overall, practice decreased behavioural response times, increased accuracy, and modulated several ERP components that represent cognitive and neural processing stages. This neuromodulation through practice was also associated with an enhanced link between behavioural measures and ERP components and with an enhanced cortico-cortical interaction of functionally interconnected ERP components. Principal component analysis (PCA) of the ERP amplitude data revealed three components, having different rostro-caudal topographic representations. The first component included both the centro-parietal and parieto-occipital mismatch triggered negativity - involved in integration of visual representations of the target with current task-relevant representations stored in visual working memory - loaded with second negative posterior-bilateral (N2pb) component, involved in categorising specific pop-out target features. The second component comprised the amplitude of bilateral anterior P2 - related to detection of a specific pop-out feature - loaded with bilateral anterior N2, related to detection of conflicting features, and fronto-central mismatch triggered negativity. The third component included the parieto-occipital N1 - related to early neural responses to the stimulus array - which loaded with the second negative posterior-contralateral (N2pc) component, mediating the process of orienting and focusing covert attention on peripheral target features. We discussed these three components as representing different neurocognitive systems modulated with practice within which the input selection process operates. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Regional Aquifer-System Analysis— Appalachian Valley and Piedmont
,
2004-01-01
The Regional Aquifer-System Analysis Program, RASA, represents a systematic effort to study a number of the Nation’s most important aquifer systems, which, in aggregate, underlie much of the country and which represent an important component of the Nation’s total water supply. In general, the boundaries of these studies are identified by the hydrologic extent of each system and, accordingly, transcend the political subdivisions to which investigations have often arbitrarily been limited in the past. The broad objective for each study is to assemble geologic, hydrologic, and geochemical information, to analyze and develop an understanding of the system, and to develop predictive capabilities that will contribute to the effective management of the system. The use of computer simulation is an important element of the RASA studies to develop an understanding of the natural, undisturbed hydrologic system and the changes brought about in it by human activities and to provide a means of predicting the regional effects of future pumping or other stresses.The final interpretive results of the RASA Program are presented in a series of U.S. Geological Survey Professional Papers that describe the geology, hydrology, and geochemistry of each regional aquifer system. Each study within the RASA Program is assigned a single Professional Paper number beginning with Professional Paper 1400.This paper, Professional Paper 1422, represents the Regional Aquifer-System Analysis— Appalachian Valley and Piedmont. It is published as several individual volumes over several years.
The composite load spectra project
NASA Technical Reports Server (NTRS)
Newell, J. F.; Ho, H.; Kurth, R. E.
1990-01-01
Probabilistic methods and generic load models capable of simulating the load spectra that are induced in space propulsion system components are being developed. Four engine component types (the transfer ducts, the turbine blades, the liquid oxygen posts and the turbopump oxidizer discharge duct) were selected as representative hardware examples. The composite load spectra that simulate the probabilistic loads for these components are typically used as the input loads for a probabilistic structural analysis. The knowledge-based system approach used for the composite load spectra project provides an ideal environment for incremental development. The intelligent database paradigm employed in developing the expert system provides a smooth coupling between the numerical processing and the symbolic (information) processing. Large volumes of engine load information and engineering data are stored in database format and managed by a database management system. Numerical procedures for probabilistic load simulation and database management functions are controlled by rule modules. Rules were hard-wired as decision trees into rule modules to perform process control tasks. There are modules to retrieve load information and models. There are modules to select loads and models to carry out quick load calculations or make an input file for full duty-cycle time dependent load simulation. The composite load spectra load expert system implemented today is capable of performing intelligent rocket engine load spectra simulation. Further development of the expert system will provide tutorial capability for users to learn from it.
Lee, Nam-Jin; Kang, Chul-Goo
2015-01-01
A brake hardware-in-the-loop simulation (HILS) system for a railway vehicle is widely applied to estimate and validate braking performance in research studies and field tests. When we develop a simulation model for a full vehicle system, the characteristics of all components are generally properly simplified based on the understanding of each component's purpose and interaction with other components. The friction coefficient between the brake disc and the pad used in simulations has been conventionally considered constant, and the effect of a variable friction coefficient is ignored with the assumption that the variability affects the performance of the vehicle braking very little. However, the friction coefficient of a disc pad changes significantly within a range due to environmental conditions, and thus, the friction coefficient can affect the performance of the brakes considerably, especially on the wheel slide. In this paper, we apply a variable friction coefficient and analyzed the effects of the variable friction coefficient on a mechanical brake system of a railway vehicle. We introduce a mathematical formula for the variable friction coefficient in which the variable friction is represented by two variables and five parameters. The proposed formula is applied to real-time simulations using a brake HILS system, and the effectiveness of the formula is verified experimentally by testing the mechanical braking performance of the brake HILS system.
Technology for return of planetary samples, 1977
NASA Technical Reports Server (NTRS)
1978-01-01
Recent progress on the development of a basic warning system (BWS) proposed to assess the biohazard of a Mars sample returned to earth, an earth orbiting spacecraft, or to a moon base was presented. The BWS package consists of terrestrial microorganisms representing major metabolic pathways. A vital processes component of the BWS will examine the effects of a Mars sample at terrestrial atmospheric conditions while a hardy organism component will examine the effects of a Mars sample under conditions approaching those of the Martian environment. Any deleterious insult on terrestrial metabolism effected by the Mars sample could be indicated long before the sample reached earth proximity.
Optimal Configuration of Human Motion Tracking Systems: A Systems Engineering Approach
NASA Technical Reports Server (NTRS)
Henderson, Steve
2005-01-01
Human motion tracking systems represent a crucial technology in the area of modeling and simulation. These systems, which allow engineers to capture human motion for study or replication in virtual environments, have broad applications in several research disciplines including human engineering, robotics, and psychology. These systems are based on several sensing paradigms, including electro-magnetic, infrared, and visual recognition. Each of these paradigms requires specialized environments and hardware configurations to optimize performance of the human motion tracking system. Ideally, these systems are used in a laboratory or other facility that was designed to accommodate the particular sensing technology. For example, electromagnetic systems are highly vulnerable to interference from metallic objects, and should be used in a specialized lab free of metal components.
Automated method for the systematic interpretation of resonance peaks in spectrum data
Damiano, B.; Wood, R.T.
1997-04-22
A method is described for spectral signature interpretation. The method includes the creation of a mathematical model of a system or process. A neural network training set is then developed based upon the mathematical model. The neural network training set is developed by using the mathematical model to generate measurable phenomena of the system or process based upon model input parameter that correspond to the physical condition of the system or process. The neural network training set is then used to adjust internal parameters of a neural network. The physical condition of an actual system or process represented by the mathematical model is then monitored by extracting spectral features from measured spectra of the actual process or system. The spectral features are then input into said neural network to determine the physical condition of the system or process represented by the mathematical model. More specifically, the neural network correlates the spectral features (i.e. measurable phenomena) of the actual process or system with the corresponding model input parameters. The model input parameters relate to specific components of the system or process, and, consequently, correspond to the physical condition of the process or system. 1 fig.
Automated method for the systematic interpretation of resonance peaks in spectrum data
Damiano, Brian; Wood, Richard T.
1997-01-01
A method for spectral signature interpretation. The method includes the creation of a mathematical model of a system or process. A neural network training set is then developed based upon the mathematical model. The neural network training set is developed by using the mathematical model to generate measurable phenomena of the system or process based upon model input parameter that correspond to the physical condition of the system or process. The neural network training set is then used to adjust internal parameters of a neural network. The physical condition of an actual system or process represented by the mathematical model is then monitored by extracting spectral features from measured spectra of the actual process or system. The spectral features are then input into said neural network to determine the physical condition of the system or process represented by the mathematical. More specifically, the neural network correlates the spectral features (i.e. measurable phenomena) of the actual process or system with the corresponding model input parameters. The model input parameters relate to specific components of the system or process, and, consequently, correspond to the physical condition of the process or system.
NASA Astrophysics Data System (ADS)
Lorenz, Robby; Hagenah, Hinnerk; Merklein, Marion
2018-05-01
Cold forging processes such as forward rod extrusion can be used to produce high quality components like connection rods, shafts and gears. The main advantages of these extruded components are sufficient surface quality, work hardening, compressive residual stresses and fatigue strength. Since one technical disadvantage of extruded components lies in the achievable tolerance classes, the improvement of these should be of crucial importance. For instance, the attainable workpiece accuracy and component quality can be influenced by adapting the tribological system in such a way that the resulting friction is specifically controlled in order to improve component forming. Lubricant modification is one practical way of adapting the tribological system to the requirements of the forming process. An industrial established and highly efficient lubricant system is the application of a zinc-phosphate conversion layer with a molybdenum disulfide-based lubricant. While offering many advantages, its tribological conditions seem to depend strongly on the layer weight and the application strategy. These parameters and the respective interdependencies have not been sufficiently investigated yet. In order to examine this, the tribological conditions depending on the layer weight are analyzed in greater detail using the Ring-Compression-Test (RCT). This tribometer provides a comparative representation of the forming conditions during cold forging. Furthermore, a potential dependency between the tribological conditions and two different coating techniques is analyzed. The latter are represented by the industrial standards dipping and dip-drumming.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Su, X. H.; Wang, M. H.; Li, Z. Y.; Li, E. K.; Xu, X.
2017-08-01
Water resources vulnerability control management is essential because it is related to the benign evolution of socio-economic, environmental and water resources system. Research on water resources system vulnerability is helpful to realization of water resources sustainable utilization. In this study, the DPSIR framework of driving forces-pressure-state-impact-response was adopted to construct the evaluation index system of water resources system vulnerability. Then the co-evolutionary genetic algorithm and projection pursuit were used to establish evaluation model of water resources system vulnerability. Tengzhou City in Shandong Province was selected as a study area. The system vulnerability was analyzed in terms of driving forces, pressure, state, impact and response on the basis of the projection value calculated by the model. The results show that the five components all belong to vulnerability Grade II, the vulnerability degree of impact and state were higher than other components due to the fierce imbalance in supply-demand and the unsatisfied condition of water resources utilization. It is indicated that the influence of high speed socio-economic development and the overuse of the pesticides have already disturbed the benign development of water environment to some extents. While the indexes in response represented lower vulnerability degree than the other components. The results of the evaluation model are coincident with the status of water resources system in the study area, which indicates that the model is feasible and effective.
Puchtel, I.S.; Walker, R.J.; James, O.B.; Kring, D.A.
2008-01-01
To characterize the compositions of materials accreted to the Earth-Moon system between about 4.5 and 3.8 Ga, we have determined Os isotopic compositions and some highly siderophile element (HSE: Re, Os, Ir, Ru, Pt, and Pd) abundances in 48 subsamples of six lunar breccias. These are: Apollo 17 poikilitic melt breccias 72395 and 76215; Apollo 17 aphanitic melt breccias 73215 and 73255; Apollo 14 polymict breccia 14321; and lunar meteorite NWA482, a crystallized impact melt. Plots of Ir versus other HSE define excellent linear correlations, indicating that all data sets likely represent dominantly two-component mixtures of a low-HSE target, presumably endogenous component, and a high-HSE, presumably exogenous component. Linear regressions of these trends yield intercepts that are statistically indistinguishable from zero for all HSE, except for Ru and Pd in two samples. The slopes of the linear regressions are insensitive to target rock contributions of Ru and Pd of the magnitude observed; thus, the trendline slopes approximate the elemental ratios present in the impactor components contributed to these rocks. The 187Os/188Os and regression-derived elemental ratios for the Apollo 17 aphanitic melt breccias and the lunar meteorite indicate that the impactor components in these samples have close affinities to chondritic meteorites. The HSE in the Apollo 17 aphanitic melt breccias, however, might partially or entirely reflect the HSE characteristics of HSE-rich granulitic breccia clasts that were incorporated in the impact melt at the time of its creation. In this case, the HSE characteristics of these rocks may reflect those of an impactor that predated the impact event that led to the creation of the melt breccias. The impactor components in the Apollo 17 poikilitic melt breccias and in the Apollo 14 breccia have higher 187Os/188Os, Pt/Ir, and Ru/Ir and lower Os/Ir than most chondrites. These compositions suggest that the impactors they represent were chemically distinct from known chondrite types, and possibly represent a type of primitive material not currently delivered to Earth as meteorites. ?? 2008 Elsevier Ltd.
Composite load spectra for select space propulsion structural components
NASA Technical Reports Server (NTRS)
Newell, J. F.; Kurth, R. E.; Ho, H.
1991-01-01
The objective of this program is to develop generic load models with multiple levels of progressive sophistication to simulate the composite (combined) load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen posts and system ducting. The first approach will consist of using state of the art probabilistic methods to describe the individual loading conditions and combinations of these loading conditions to synthesize the composite load spectra simulation. The second approach will consist of developing coupled models for composite load spectra simulation which combine the deterministic models for composite load dynamic, acoustic, high pressure, and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients will then be determined using advanced probabilistic simulation methods with and without strategically selected experimental data.
Solar energy system economic evaluation: Contemporary Newman, Georgia
NASA Technical Reports Server (NTRS)
1980-01-01
An economic evaluation of performance of the solar energy system (based on life cycle costs versus energy savings) for five cities considered to be representative of a broad range of environmental and economic conditions in the United States is discussed. The considered life cycle costs are: hardware, installation, maintenance, and operating costs for the solar unique components of the total system. The total system takes into consideration long term average environmental conditions, loads, fuel costs, and other economic factors applicable in each of five cities. Selection criteria are based on availability of long term weather data, heating degree days, cold water supply temperature, solar insolation, utility rates, market potential, and type of solar system.
Automated simulation as part of a design workstation
NASA Technical Reports Server (NTRS)
Cantwell, E.; Shenk, T.; Robinson, P.; Upadhye, R.
1990-01-01
A development project for a design workstation for advanced life-support systems incorporating qualitative simulation, required the implementation of a useful qualitative simulation capability and the integration of qualitative and quantitative simulations, such that simulation capabilities are maximized without duplication. The reason is that to produce design solutions to a system goal, the behavior of the system in both a steady and perturbed state must be represented. The paper reports on the Qualitative Simulation Tool (QST), on an expert-system-like model building and simulation interface toll called ScratchPad (SP), and on the integration of QST and SP with more conventional, commercially available simulation packages now being applied in the evaluation of life-support system processes and components.
Visualization of suspicious lesions in breast MRI based on intelligent neural systems
NASA Astrophysics Data System (ADS)
Twellmann, Thorsten; Lange, Oliver; Nattkemper, Tim Wilhelm; Meyer-Bäse, Anke
2006-05-01
Intelligent medical systems based on supervised and unsupervised artificial neural networks are applied to the automatic visualization and classification of suspicious lesions in breast MRI. These systems represent an important component of future sophisticated computer-aided diagnosis systems and enable the extraction of spatial and temporal features of dynamic MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogenity of the cancerous tissue, these techniques reveal the malignant, benign and normal kinetic signals and and provide a regional subclassification of pathological breast tissue. Intelligent medical systems are expected to have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging.
Solar energy system economic evaluation: Contemporary Newman, Georgia
NASA Astrophysics Data System (ADS)
1980-09-01
An economic evaluation of performance of the solar energy system (based on life cycle costs versus energy savings) for five cities considered to be representative of a broad range of environmental and economic conditions in the United States is discussed. The considered life cycle costs are: hardware, installation, maintenance, and operating costs for the solar unique components of the total system. The total system takes into consideration long term average environmental conditions, loads, fuel costs, and other economic factors applicable in each of five cities. Selection criteria are based on availability of long term weather data, heating degree days, cold water supply temperature, solar insolation, utility rates, market potential, and type of solar system.
Feasibility study of a solar domestic hot water system for Oliver Hall, the University of Kansas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, J.C.W.
1985-01-01
Solar water heating represents a low-temperature use of solar energy. It has been proven cost effective in residential applications with renewable energy tax credits. However, tax credits for solar application are not available for state owned buildings, which incur higher system costs and may not economically justify solar energy. The purpose of this project was to design a site assembled solar hot water heating system to reduce system costs. Oliver Hall, a dormitory building at the University of Kansas, was chosen for this research project. The optimum size of the solar system was determined via several different methods to bemore » approximately 1800 square feet. The site chosen for the location of solar arrays was a ground-mounting on the west side of the dormitory due to the adjacency to the mechanical room, ease of maintenance, and lower initial cost. System components and equipment were chosen as the product of performance, cost, maintenance and product life. After completion of the system design, the unit cost data for each component was collected and the initial system cost was estimated to be $49,244 which translates into a payback period of 16 years.« less
Spitzer, C; Rullkötter, N; Dally, A
2016-01-01
In German-speaking countries inpatient psychotherapy plays a major role in the mental healthcare system. Due to its characteristic features, i. e. multiprofessionalism, multimodality and method integration, the inpatient approach represents a unique and independent type of psychotherapy. In order to be helpful, the manifold verbal and non-verbal methods need to be embedded into an overall treatment plan. Additionally, the therapeutic milieu of the hospital represents an important effective factor and its organization requires a more active construction. The indications for inpatient psychotherapy are not only based on the mental disorder but also on illness, setting and healthcare system-related criteria. In integrative concepts, the multiprofessional team is a key component with many functions. The effectiveness of psychotherapeutic hospital treatment has been proven by meta-analysis studies; however, 20-30% of patients do not benefit from inpatient psychotherapy and almost 13% drop-out prematurely.
Investigation of Exoskeletal Engine Propulsion System Concept
NASA Technical Reports Server (NTRS)
Roche, Joseph M.; Palac, Donald T.; Hunter, James E.; Myers, David E.; Snyder, Christopher A.; Kosareo, Daniel N.; McCurdy, David R.; Dougherty, Kevin T.
2005-01-01
An innovative approach to gas turbine design involves mounting compressor and turbine blades to an outer rotating shell. Designated the exoskeletal engine, compression (preferable to tension for high-temperature ceramic materials, generally) becomes the dominant blade force. Exoskeletal engine feasibility lies in the structural and mechanical design (as opposed to cycle or aerothermodynamic design), so this study focused on the development and assessment of a structural-mechanical exoskeletal concept using the Rolls-Royce AE3007 regional airliner all-axial turbofan as a baseline. The effort was further limited to the definition of an exoskeletal high-pressure spool concept, where the major structural and thermal challenges are represented. The mass of the high-pressure spool was calculated and compared with the mass of AE3007 engine components. It was found that the exoskeletal engine rotating components can be significantly lighter than the rotating components of a conventional engine. However, bearing technology development is required, since the mass of existing bearing systems would exceed rotating machinery mass savings. It is recommended that once bearing technology is sufficiently advanced, a "clean sheet" preliminary design of an exoskeletal system be accomplished to better quantify the potential for the exoskeletal concept to deliver benefits in mass, structural efficiency, and cycle design flexibility.
Degradation mechanisms and accelerated testing in PEM fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borup, Rodney L; Mukundan, Rangachary
2010-01-01
The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise frommore » component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To achieve a deeper understanding and improve PEM fuel cell durability LANL is conducting research to better define fuel cell component degradation mechanisms and correlate AST measurements to component in 'real-world' situations.« less
A new synoptic scale resolving global climate simulation using the Community Earth System Model
NASA Astrophysics Data System (ADS)
Small, R. Justin; Bacmeister, Julio; Bailey, David; Baker, Allison; Bishop, Stuart; Bryan, Frank; Caron, Julie; Dennis, John; Gent, Peter; Hsu, Hsiao-ming; Jochum, Markus; Lawrence, David; Muñoz, Ernesto; diNezio, Pedro; Scheitlin, Tim; Tomas, Robert; Tribbia, Joseph; Tseng, Yu-heng; Vertenstein, Mariana
2014-12-01
High-resolution global climate modeling holds the promise of capturing planetary-scale climate modes and small-scale (regional and sometimes extreme) features simultaneously, including their mutual interaction. This paper discusses a new state-of-the-art high-resolution Community Earth System Model (CESM) simulation that was performed with these goals in mind. The atmospheric component was at 0.25° grid spacing, and ocean component at 0.1°. One hundred years of "present-day" simulation were completed. Major results were that annual mean sea surface temperature (SST) in the equatorial Pacific and El-Niño Southern Oscillation variability were well simulated compared to standard resolution models. Tropical and southern Atlantic SST also had much reduced bias compared to previous versions of the model. In addition, the high resolution of the model enabled small-scale features of the climate system to be represented, such as air-sea interaction over ocean frontal zones, mesoscale systems generated by the Rockies, and Tropical Cyclones. Associated single component runs and standard resolution coupled runs are used to help attribute the strengths and weaknesses of the fully coupled run. The high-resolution run employed 23,404 cores, costing 250 thousand processor-hours per simulated year and made about two simulated years per day on the NCAR-Wyoming supercomputer "Yellowstone."
Quebatte, Maxime; Dehio, Michaela; Tropel, David; Basler, Andrea; Toller, Isabella; Raddatz, Guenter; Engel, Philipp; Huser, Sonja; Schein, Hermine; Lindroos, Hillevi L.; Andersson, Siv G. E.; Dehio, Christoph
2010-01-01
Here, we report the first comprehensive study of Bartonella henselae gene expression during infection of human endothelial cells. Expression of the main cluster of upregulated genes, comprising the VirB type IV secretion system and its secreted protein substrates, is shown to be under the positive control of the transcriptional regulator BatR. We demonstrate binding of BatR to the promoters of the virB operon and a substrate-encoding gene and provide biochemical evidence that BatR and BatS constitute a functional two-component regulatory system. Moreover, in contrast to the acid-inducible (pH 5.5) homologs ChvG/ChvI of Agrobacterium tumefaciens, BatR/BatS are optimally activated at the physiological pH of blood (pH 7.4). By conservation analysis of the BatR regulon, we show that BatR/BatS are uniquely adapted to upregulate a genus-specific virulence regulon during hemotropic infection in mammals. Thus, we propose that BatR/BatS two-component system homologs represent vertically inherited pH sensors that control the expression of horizontally transmitted gene sets critical for the diverse host-associated life styles of the alphaproteobacteria. PMID:20418395
Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator
NASA Astrophysics Data System (ADS)
Kammer, Daniel C.; Allen, Mathew S.; Mayes, Randy L.
2015-12-01
Experimental-analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. The method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinates to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig-Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. These modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.
Canova, Marc J; Baronian, Grégory; Brelle, Solène; Cohen-Gonsaud, Martin; Bischoff, Markus; Molle, Virginie
2014-04-25
The Staphylococcus aureus Vancomycin-resistance-associated response regulator VraR is known as an important response regulator, member of the VraTSR three-component signal transduction system that modulates the expression of the cell wall stress stimulon in response to a number of different cell wall active antibiotics. Given its crucial role in regulating gene expression in response to antibiotic challenges, VraR must be tightly regulated. We report here for the first time in S. aureus convergence of two major signal transduction systems, serine/threonine protein kinase and two (three)-component systems. We demonstrate that VraR can be phosphorylated by the staphylococcal Ser/Thr protein kinase Stk1 and that phosphorylation negatively affects its DNA-binding properties. Mass spectrometric analyses and site-directed mutagenesis identified Thr106, Thr119, Thr175 and Thr178 as phosphoacceptors. A S. aureus ΔvraR mutant expressing a VraR derivative that mimics constitutive phosphorylation, VraR_Asp, still exhibited markedly decreased antibiotic resistance against different cell wall active antibiotics, when compared to the wild-type, suggesting that VraR phosphorylation may represent a novel and presumably more general mechanism of regulation of the two (three)-component systems in staphylococci. Copyright © 2014 Elsevier Inc. All rights reserved.
Cosmonaut Dezhurov Talks With Flight Controllers
NASA Technical Reports Server (NTRS)
2001-01-01
Aboard the International Space Station (ISS), Cosmonaut and Expedition Three flight engineer Vladimir N. Dezhurov, representing Rosaviakosmos, talks with flight controllers from the Zvezda Service Module. Russian-built Zvezda is linked to the Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.
Dynamic analysis of clamp band joint system subjected to axial vibration
NASA Astrophysics Data System (ADS)
Qin, Z. Y.; Yan, S. Z.; Chu, F. L.
2010-10-01
Clamp band joints are commonly used for connecting circular components together in industry. Some of the systems jointed by clamp band are subjected to dynamic load. However, very little research on the dynamic characteristics for this kind of joint can be found in the literature. In this paper, a dynamic model for clamp band joint system is developed. Contact and frictional slip between the components are accommodated in this model. Nonlinear finite element analysis is conducted to identify the model parameters. Then static experiments are carried out on a scaled model of the clamp band joint to validate the joint model. Finally, the model is adopted to study the dynamic characteristics of the clamp band joint system subjected to axial harmonic excitation and the effects of the wedge angle of the clamp band joint and the preload on the response. The model proposed in this paper can represent the nonlinearity of the clamp band joint and be used conveniently to investigate the effects of the structural and loading parameters on the dynamic characteristics of this type of joint system.
International Space Station (ISS)
2001-09-16
Aboard the International Space Station (ISS), Cosmonaut and Expedition Three flight engineer Vladimir N. Dezhurov, representing Rosaviakosmos, talks with flight controllers from the Zvezda Service Module. Russian-built Zvezda is linked to the Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.
Evolution of Fe/S cluster biogenesis in the anaerobic parasite Blastocystis
Tsaousis, Anastasios D.; Ollagnier de Choudens, Sandrine; Gentekaki, Eleni; Long, Shaojun; Gaston, Daniel; Stechmann, Alexandra; Vinella, Daniel; Py, Béatrice; Fontecave, Marc; Barras, Frédéric; Lukeš, Julius; Roger, Andrew J.
2012-01-01
Iron/sulfur cluster (ISC)-containing proteins are essential components of cells. In most eukaryotes, Fe/S clusters are synthesized by the mitochondrial ISC machinery, the cytosolic iron/sulfur assembly system, and, in photosynthetic species, a plastid sulfur-mobilization (SUF) system. Here we show that the anaerobic human protozoan parasite Blastocystis, in addition to possessing ISC and iron/sulfur assembly systems, expresses a fused version of the SufC and SufB proteins of prokaryotes that it has acquired by lateral transfer from an archaeon related to the Methanomicrobiales, an important lineage represented in the human gastrointestinal tract microbiome. Although components of the Blastocystis ISC system function within its anaerobic mitochondrion-related organelles and can functionally replace homologues in Trypanosoma brucei, its SufCB protein has similar biochemical properties to its prokaryotic homologues, functions within the parasite’s cytosol, and is up-regulated under oxygen stress. Blastocystis is unique among eukaryotic pathogens in having adapted to its parasitic lifestyle by acquiring a SUF system from nonpathogenic Archaea to synthesize Fe/S clusters under oxygen stress. PMID:22699510
NASA Astrophysics Data System (ADS)
Dai, H.; Chen, X.; Ye, M.; Song, X.; Zachara, J. M.
2016-12-01
Sensitivity analysis has been an important tool in groundwater modeling to identify the influential parameters. Among various sensitivity analysis methods, the variance-based global sensitivity analysis has gained popularity for its model independence characteristic and capability of providing accurate sensitivity measurements. However, the conventional variance-based method only considers uncertainty contribution of single model parameters. In this research, we extended the variance-based method to consider more uncertainty sources and developed a new framework to allow flexible combinations of different uncertainty components. We decompose the uncertainty sources into a hierarchical three-layer structure: scenario, model and parametric. Furthermore, each layer of uncertainty source is capable of containing multiple components. An uncertainty and sensitivity analysis framework was then constructed following this three-layer structure using Bayesian network. Different uncertainty components are represented as uncertain nodes in this network. Through the framework, variance-based sensitivity analysis can be implemented with great flexibility of using different grouping strategies for uncertainty components. The variance-based sensitivity analysis thus is improved to be able to investigate the importance of an extended range of uncertainty sources: scenario, model, and other different combinations of uncertainty components which can represent certain key model system processes (e.g., groundwater recharge process, flow reactive transport process). For test and demonstration purposes, the developed methodology was implemented into a test case of real-world groundwater reactive transport modeling with various uncertainty sources. The results demonstrate that the new sensitivity analysis method is able to estimate accurate importance measurements for any uncertainty sources which were formed by different combinations of uncertainty components. The new methodology can provide useful information for environmental management and decision-makers to formulate policies and strategies.
NASA Technical Reports Server (NTRS)
Falls, L. W.
1975-01-01
Vandenberg Air Force Base (AFB), California, wind component statistics are presented to be used for aerospace engineering applications that require component wind probabilities for various flight azimuths and selected altitudes. The normal (Gaussian) distribution is presented as a statistical model to represent component winds at Vandenberg AFB. Head tail, and crosswind components are tabulated for all flight azimuths for altitudes from 0 to 70 km by monthly reference periods. Wind components are given for 11 selected percentiles ranging from 0.135 percent to 99.865 percent for each month. The results of statistical goodness-of-fit tests are presented to verify the use of the Gaussian distribution as an adequate model to represent component winds at Vandenberg AFB.
NASA Technical Reports Server (NTRS)
Falls, L. W.
1973-01-01
This document replaces Cape Kennedy empirical wind component statistics which are presently being used for aerospace engineering applications that require component wind probabilities for various flight azimuths and selected altitudes. The normal (Gaussian) distribution is presented as an adequate statistical model to represent component winds at Cape Kennedy. Head-, tail-, and crosswind components are tabulated for all flight azimuths for altitudes from 0 to 70 km by monthly reference periods. Wind components are given for 11 selected percentiles ranging from 0.135 percent to 99,865 percent for each month. Results of statistical goodness-of-fit tests are presented to verify the use of the Gaussian distribution as an adequate model to represent component winds at Cape Kennedy, Florida.
A decoupled recursive approach for constrained flexible multibody system dynamics
NASA Technical Reports Server (NTRS)
Lai, Hao-Jan; Kim, Sung-Soo; Haug, Edward J.; Bae, Dae-Sung
1989-01-01
A variational-vector calculus approach is employed to derive a recursive formulation for dynamic analysis of flexible multibody systems. Kinematic relationships for adjacent flexible bodies are derived in a companion paper, using a state vector notation that represents translational and rotational components simultaneously. Cartesian generalized coordinates are assigned for all body and joint reference frames, to explicitly formulate deformation kinematics under small deformation kinematics and an efficient flexible dynamics recursive algorithm is developed. Dynamic analysis of a closed loop robot is performed to illustrate efficiency of the algorithm.
NASA Technical Reports Server (NTRS)
1987-01-01
The objective was to design, fabricate and test an integrated cryogenic test article incorporating both fluid and thermal propellant management subsystems. A 2.2 m (87 in) diameter aluminum test tank was outfitted with multilayer insulation, helium purge system, low-conductive tank supports, thermodynamic vent system, liquid acquisition device and immersed outflow pump. Tests and analysis performed on the start basket liquid acquisition device and studies of the liquid retention characteristics of fine mesh screens are discussed.
The Role of the Orthopaedic Surgeon in Workers' Compensation Cases.
Daniels, Alan H; Kuris, Eren O; Palumbo, Mark A
2017-03-01
Workers' compensation is an employer-funded insurance program that provides financial and medical benefits for employees injured at work. Because many occupational injuries are musculoskeletal in nature, the orthopaedic surgeon plays an important role in the workers' compensation system. Along with establishing the correct diagnosis and implementing an appropriate treatment plan, the clinician must understand the fundamental components of the workers' compensation system to manage an injured employee. Ultimately, effective claim management requires collaboration among the employer, the employee, the legal representatives, the insurance company, and the orthopaedic surgeon.
NASA Astrophysics Data System (ADS)
Farrell, Kathryn; Oden, J. Tinsley; Faghihi, Danial
2015-08-01
A general adaptive modeling algorithm for selection and validation of coarse-grained models of atomistic systems is presented. A Bayesian framework is developed to address uncertainties in parameters, data, and model selection. Algorithms for computing output sensitivities to parameter variances, model evidence and posterior model plausibilities for given data, and for computing what are referred to as Occam Categories in reference to a rough measure of model simplicity, make up components of the overall approach. Computational results are provided for representative applications.
Space Suit Portable Life Support System (PLSS) 2.0 Pre-Installation Acceptance (PIA) Testing
NASA Technical Reports Server (NTRS)
Watts, Carly; Vogel, Matthew
2016-01-01
Following successful completion of the space suit Portable Life Support System (PLSS) 1.0 development and testing in 2011, the second system-level prototype, PLSS 2.0, was developed in 2012 to continue the maturation of the advanced PLSS design which is intended to reduce consumables, improve reliability and robustness, and incorporate additional sensing and functional capabilities over the current Space Shuttle/International Space Station Extravehicular Mobility Unit (EMU) PLSS. PLSS 2.0 represents the first attempt at a packaged design comprising first generation or later component prototypes and medium fidelity interfaces within a flight-like representative volume. Pre-Installation Acceptance (PIA) is carryover terminology from the Space Shuttle Program referring to the series of test sequences used to verify functionality of the EMU PLSS prior to installation into the Space Shuttle airlock for launch. As applied to the PLSS 2.0 development and testing effort, PIA testing designated the series of 27 independent test sequences devised to verify component and subsystem functionality, perform in situ instrument calibrations, generate mapping data to define set-points for control algorithms, evaluate hardware performance against advanced PLSS design requirements, and provide quantitative and qualitative feedback on evolving design requirements and performance specifications. PLSS 2.0 PIA testing was carried out from 3/20/13 - 3/15/14 using a variety of test configurations to perform test sequences that ranged from stand-alone component testing to system-level testing, with evaluations becoming increasingly integrated as the test series progressed. Each of the 27 test sequences was vetted independently, with verification of basic functionality required before completion. Because PLSS 2.0 design requirements were evolving concurrently with PLSS 2.0 PIA testing, the requirements were used as guidelines to assess performance during the tests; after the completion of PIA testing, test data served to improve the fidelity and maturity of design requirements as well as plans for future advanced PLSS functional testing.
Space Suit Portable Life Support System (PLSS) 2.0 Pre-Installation Acceptance (PIA) Testing
NASA Technical Reports Server (NTRS)
Anchondo, Ian; Cox, Marlon; Meginnis, Carly; Westheimer, David; Vogel, Matt R.
2016-01-01
Following successful completion of the space suit Portable Life Support System (PLSS) 1.0 development and testing in 2011, the second system-level prototype, PLSS 2.0, was developed in 2012 to continue the maturation of the advanced PLSS design. This advanced PLSS is intended to reduce consumables, improve reliability and robustness, and incorporate additional sensing and functional capabilities over the current Space Shuttle/International Space Station Extravehicular Mobility Unit (EMU) PLSS. PLSS 2.0 represents the first attempt at a packaged design comprising first generation or later component prototypes and medium fidelity interfaces within a flight-like representative volume. Pre-Installation Acceptance (PIA) is carryover terminology from the Space Shuttle Program referring to the series of test sequences used to verify functionality of the EMU PLSS prior to installation into the Space Shuttle airlock for launch. As applied to the PLSS 2.0 development and testing effort, PIA testing designated the series of 27 independent test sequences devised to verify component and subsystem functionality, perform in situ instrument calibrations, generate mapping data, define set-points, evaluate control algorithms, evaluate hardware performance against advanced PLSS design requirements, and provide quantitative and qualitative feedback on evolving design requirements and performance specifications. PLSS 2.0 PIA testing was carried out in 2013 and 2014 using a variety of test configurations to perform test sequences that ranged from stand-alone component testing to system-level testing, with evaluations becoming increasingly integrated as the test series progressed. Each of the 27 test sequences was vetted independently, with verification of basic functionality required before completion. Because PLSS 2.0 design requirements were evolving concurrently with PLSS 2.0 PIA testing, the requirements were used as guidelines to assess performance during the tests; after the completion of PIA testing, test data served to improve the fidelity and maturity of design requirements as well as plans for future advanced PLSS functional testing.
Common IED exploitation target set ontology
NASA Astrophysics Data System (ADS)
Russomanno, David J.; Qualls, Joseph; Wowczuk, Zenovy; Franken, Paul; Robinson, William
2010-04-01
The Common IED Exploitation Target Set (CIEDETS) ontology provides a comprehensive semantic data model for capturing knowledge about sensors, platforms, missions, environments, and other aspects of systems under test. The ontology also includes representative IEDs; modeled as explosives, camouflage, concealment objects, and other background objects, which comprise an overall threat scene. The ontology is represented using the Web Ontology Language and the SPARQL Protocol and RDF Query Language, which ensures portability of the acquired knowledge base across applications. The resulting knowledge base is a component of the CIEDETS application, which is intended to support the end user sensor test and evaluation community. CIEDETS associates a system under test to a subset of cataloged threats based on the probability that the system will detect the threat. The associations between systems under test, threats, and the detection probabilities are established based on a hybrid reasoning strategy, which applies a combination of heuristics and simplified modeling techniques. Besides supporting the CIEDETS application, which is focused on efficient and consistent system testing, the ontology can be leveraged in a myriad of other applications, including serving as a knowledge source for mission planning tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-02-17
The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas.more » The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A.« less
NASA Astrophysics Data System (ADS)
Stajner, I.; Hou, Y. T.; McQueen, J.; Lee, P.; Stein, A. F.; Tong, D.; Pan, L.; Huang, J.; Huang, H. C.; Upadhayay, S.
2016-12-01
NOAA provides operational air quality predictions using the National Air Quality Forecast Capability (NAQFC): ozone and wildfire smoke for the United States and airborne dust for the contiguous 48 states at http://airquality.weather.gov. NOAA's predictions of fine particulate matter (PM2.5) became publicly available in February 2016. Ozone and PM2.5 predictions are produced using a system that operationally links the Community Multiscale Air Quality (CMAQ) model with meteorological inputs from the North American mesoscale forecast Model (NAM). Smoke and dust predictions are provided using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Current NAQFC focus is on updating CMAQ to version 5.0.2, improving PM2.5 predictions, and updating emissions estimates, especially for NOx using recently observed trends. Wildfire smoke emissions from a newer version of the USFS BlueSky system are being included in a new configuration of the NAQFC NAM-CMAQ system, which is re-run for the previous 24 hours when the wildfires were observed from satellites, to better represent wildfire emissions prior to initiating predictions for the next 48 hours. In addition, NOAA is developing the Next Generation Global Prediction System (NGGPS) to represent the earth system for extended weather prediction. NGGPS will include a representation of atmospheric dynamics, physics, aerosols and atmospheric composition as well as coupling with ocean, wave, ice and land components. NGGPS is being developed with a broad community involvement, including community developed components and academic research to develop and test potential improvements for potentially inclusion in NGGPS. Several investigators at NOAA's research laboratories and in academia are working to improve the aerosol and gaseous chemistry representation for NGGPS, to develop and evaluate the representation of atmospheric composition, and to establish and improve the coupling with radiation and microphysics. Additional efforts may include the improved use of predicted atmospheric composition in assimilation of observations and the linkage of full global atmospheric composition predictions with national air quality predictions.
Herrera-Martínez, Aura D; Gahete, Manuel D; Sánchez-Sánchez, Rafael; Salas, Rosa Ortega; Serrano-Blanch, Raquel; Salvatierra, Ángel; Hofland, Leo J; Luque, Raúl M; Gálvez-Moreno, María A; Castaño, Justo P
2017-07-01
Lung carcinoids (LCs) are rare tumors that comprise 1-5% of lung malignancies but represent 20-30% of neuroendocrine tumors. Their incidence is progressively increasing and a better characterization of these tumors is required. Alterations in somatostatin (SST)/cortistatin (CORT) and ghrelin systems have been associated to development/progression of various endocrine-related cancers, wherein they may become useful diagnostic, prognostic and therapeutic biomarkers. We aimed to evaluate the expression levels of ghrelin and SST/CORT system components in LCs, as well as to explore their putative relationship with histological/clinical characteristics. An observational retrospective study was performed; 75 LC patients with clinical/histological characteristics were included. Samples from 46 patients were processed to isolate mRNA from tumor and adjacent non-tumor region, and the expression levels of SST/CORT and ghrelin systems components, determined by quantitative-PCR, were compared to those of 7 normal lung tissues. Patient cohort was characterized by mean age 53±15 years, 48% males, 34% with tobacco exposure; 71.4/28.6% typical/atypical carcinoids, 21.7% incidental tumors, 4.3% functioning tumors, 17.7% with metastasis. SST/CORT and ghrelin system components were expressed at variable levels in a high proportion of tumors, as well as in adjacent non-tumor tissues, while a lower proportion of normal lung samples also expressed these molecules. A gradation was observed from normal non-neoplastic lung tissues, non-tumor adjacent tissue and LCs, being SST, sst4, sst5, GHS-R1a and GHS-R1b overexpressed in tumor tissue compared to normal tissue. Importantly, several SST/CORT and ghrelin system components displayed significant correlations with relevant clinical parameters, such as necrosis, peritumoral and vascular invasion, or metastasis. Altogether, these data reveal a prominent, widespread expression of key SST/CORT/ghrelin system components in LCs, where they display clinical-histological correlations, which could provide novel, valuable markers for NET patient management. Copyright © 2017 Elsevier B.V. All rights reserved.
Wilk, S; Michalowski, W; O'Sullivan, D; Farion, K; Sayyad-Shirabad, J; Kuziemsky, C; Kukawka, B
2013-01-01
The purpose of this study was to create a task-based support architecture for developing clinical decision support systems (CDSSs) that assist physicians in making decisions at the point-of-care in the emergency department (ED). The backbone of the proposed architecture was established by a task-based emergency workflow model for a patient-physician encounter. The architecture was designed according to an agent-oriented paradigm. Specifically, we used the O-MaSE (Organization-based Multi-agent System Engineering) method that allows for iterative translation of functional requirements into architectural components (e.g., agents). The agent-oriented paradigm was extended with ontology-driven design to implement ontological models representing knowledge required by specific agents to operate. The task-based architecture allows for the creation of a CDSS that is aligned with the task-based emergency workflow model. It facilitates decoupling of executable components (agents) from embedded domain knowledge (ontological models), thus supporting their interoperability, sharing, and reuse. The generic architecture was implemented as a pilot system, MET3-AE--a CDSS to help with the management of pediatric asthma exacerbation in the ED. The system was evaluated in a hospital ED. The architecture allows for the creation of a CDSS that integrates support for all tasks from the task-based emergency workflow model, and interacts with hospital information systems. Proposed architecture also allows for reusing and sharing system components and knowledge across disease-specific CDSSs.
NASA Astrophysics Data System (ADS)
Silva, N.; Esper, A.
2012-01-01
The work presented in this article represents the results of applying RAMS analysis to a critical space control system, both at system and software levels. The system level RAMS analysis allowed the assignment of criticalities to the high level components, which was further refined by a tailored software level RAMS analysis. The importance of the software level RAMS analysis in the identification of new failure modes and its impact on the system level RAMS analysis is discussed. Recommendations of changes in the software architecture have also been proposed in order to reduce the criticality of the SW components to an acceptable minimum. The dependability analysis was performed in accordance to ECSS-Q-ST-80, which had to be tailored and complemented in some aspects. This tailoring will also be detailed in the article and lessons learned from the application of this tailoring will be shared, stating the importance to space systems safety evaluations. The paper presents the applied techniques, the relevant results obtained, the effort required for performing the tasks and the planned strategy for ROI estimation, as well as the soft skills required and acquired during these activities.
Semantic interoperability--HL7 Version 3 compared to advanced architecture standards.
Blobel, B G M E; Engel, K; Pharow, P
2006-01-01
To meet the challenge for high quality and efficient care, highly specialized and distributed healthcare establishments have to communicate and co-operate in a semantically interoperable way. Information and communication technology must be open, flexible, scalable, knowledge-based and service-oriented as well as secure and safe. For enabling semantic interoperability, a unified process for defining and implementing the architecture, i.e. structure and functions of the cooperating systems' components, as well as the approach for knowledge representation, i.e. the used information and its interpretation, algorithms, etc. have to be defined in a harmonized way. Deploying the Generic Component Model, systems and their components, underlying concepts and applied constraints must be formally modeled, strictly separating platform-independent from platform-specific models. As HL7 Version 3 claims to represent the most successful standard for semantic interoperability, HL7 has been analyzed regarding the requirements for model-driven, service-oriented design of semantic interoperable information systems, thereby moving from a communication to an architecture paradigm. The approach is compared with advanced architectural approaches for information systems such as OMG's CORBA 3 or EHR systems such as GEHR/openEHR and CEN EN 13606 Electronic Health Record Communication. HL7 Version 3 is maturing towards an architectural approach for semantic interoperability. Despite current differences, there is a close collaboration between the teams involved guaranteeing a convergence between competing approaches.
Design concepts for bioreactors in space
NASA Technical Reports Server (NTRS)
Seshan, P. K.; Peterson, G. R.; Beard, B.; Boshe, C.; Dunlop, E. H.
1987-01-01
Microbial food sources are becoming viable and more efficient alternatives to conventional food sources, especially in the context of closed ecological life support systems (CELSS) in space habitats. Two bioreactor design concepts presented represent two dissimilar approaches to grappling with the absence of gravity in space habitats and deserve to be tested for adoption as important components of the life support function aboard spacecraft, space stations and other extra-terrestrial habitats.
Electricity Market Module - NEMS Documentation
2017-01-01
Documents the Electricity Market Module as it was used for the Annual Energy Outlook. The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The EMM represents the generation, transmission, and pricing of electricity. It consists of four submodules: the Electricity Capacity Planning (ECP) Submodule, the Electricity Fuel Dispatch (EFD) Submodule, the Electricity Finance and Pricing (EFP) Submodule, and the Electricity Load and Demand (ELD) Submodule.
Operational Cyber Testing Recommendations- Version 1
2014-05-02
be used to verify 5 representative pieces of the environment via sample test runs. Also, ideally, an early version of each test case can also be stood...extraneous effort). Comparing the sample results collected from the scripts with expected results can reveal deficiencies in the data collection techniques...the reporting mechanisms, and the system components themselves. The sample results can also be used for confirming that data is collected with high
Ganther, Jr., Kenneth R.; Snapp, Lowell D.
2002-09-10
A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.
Sensor Data Fusion with Z-Numbers and Its Application in Fault Diagnosis
Jiang, Wen; Xie, Chunhe; Zhuang, Miaoyan; Shou, Yehang; Tang, Yongchuan
2016-01-01
Sensor data fusion technology is widely employed in fault diagnosis. The information in a sensor data fusion system is characterized by not only fuzziness, but also partial reliability. Uncertain information of sensors, including randomness, fuzziness, etc., has been extensively studied recently. However, the reliability of a sensor is often overlooked or cannot be analyzed adequately. A Z-number, Z = (A, B), can represent the fuzziness and the reliability of information simultaneously, where the first component A represents a fuzzy restriction on the values of uncertain variables and the second component B is a measure of the reliability of A. In order to model and process the uncertainties in a sensor data fusion system reasonably, in this paper, a novel method combining the Z-number and Dempster–Shafer (D-S) evidence theory is proposed, where the Z-number is used to model the fuzziness and reliability of the sensor data and the D-S evidence theory is used to fuse the uncertain information of Z-numbers. The main advantages of the proposed method are that it provides a more robust measure of reliability to the sensor data, and the complementary information of multi-sensors reduces the uncertainty of the fault recognition, thus enhancing the reliability of fault detection. PMID:27649193
Tsotsos, John K.
2017-01-01
Much has been written about how the biological brain might represent and process visual information, and how this might inspire and inform machine vision systems. Indeed, tremendous progress has been made, and especially during the last decade in the latter area. However, a key question seems too often, if not mostly, be ignored. This question is simply: do proposed solutions scale with the reality of the brain's resources? This scaling question applies equally to brain and to machine solutions. A number of papers have examined the inherent computational difficulty of visual information processing using theoretical and empirical methods. The main goal of this activity had three components: to understand the deep nature of the computational problem of visual information processing; to discover how well the computational difficulty of vision matches to the fixed resources of biological seeing systems; and, to abstract from the matching exercise the key principles that lead to the observed characteristics of biological visual performance. This set of components was termed complexity level analysis in Tsotsos (1987) and was proposed as an important complement to Marr's three levels of analysis. This paper revisits that work with the advantage that decades of hindsight can provide. PMID:28848458
Tsotsos, John K
2017-01-01
Much has been written about how the biological brain might represent and process visual information, and how this might inspire and inform machine vision systems. Indeed, tremendous progress has been made, and especially during the last decade in the latter area. However, a key question seems too often, if not mostly, be ignored. This question is simply: do proposed solutions scale with the reality of the brain's resources? This scaling question applies equally to brain and to machine solutions. A number of papers have examined the inherent computational difficulty of visual information processing using theoretical and empirical methods. The main goal of this activity had three components: to understand the deep nature of the computational problem of visual information processing; to discover how well the computational difficulty of vision matches to the fixed resources of biological seeing systems; and, to abstract from the matching exercise the key principles that lead to the observed characteristics of biological visual performance. This set of components was termed complexity level analysis in Tsotsos (1987) and was proposed as an important complement to Marr's three levels of analysis. This paper revisits that work with the advantage that decades of hindsight can provide.
Electron correlation by polarization of interacting densities
NASA Astrophysics Data System (ADS)
Whitten, Jerry L.
2017-02-01
Coulomb interactions that occur in electronic structure calculations are correlated by allowing basis function components of the interacting densities to polarize dynamically, thereby reducing the magnitude of the interaction. Exchange integrals of molecular orbitals are not correlated. The modified Coulomb interactions are used in single-determinant or configuration interaction calculations. The objective is to account for dynamical correlation effects without explicitly introducing higher spherical harmonic functions into the molecular orbital basis. Molecular orbital densities are decomposed into a distribution of spherical components that conserve the charge and each of the interacting components is considered as a two-electron wavefunction embedded in the system acted on by an average field Hamiltonian plus r12-1. A method of avoiding redundancy is described. Applications to atoms, negative ions, and molecules representing different types of bonding and spin states are discussed.
An attention-gating recurrent working memory architecture for emergent speech representation
NASA Astrophysics Data System (ADS)
Elshaw, Mark; Moore, Roger K.; Klein, Michael
2010-06-01
This paper describes an attention-gating recurrent self-organising map approach for emergent speech representation. Inspired by evidence from human cognitive processing, the architecture combines two main neural components. The first component, the attention-gating mechanism, uses actor-critic learning to perform selective attention towards speech. Through this selective attention approach, the attention-gating mechanism controls access to working memory processing. The second component, the recurrent self-organising map memory, develops a temporal-distributed representation of speech using phone-like structures. Representing speech in terms of phonetic features in an emergent self-organised fashion, according to research on child cognitive development, recreates the approach found in infants. Using this representational approach, in a fashion similar to infants, should improve the performance of automatic recognition systems through aiding speech segmentation and fast word learning.
A model of heat flow in the sheep exposed to high levels of solar radiation.
Vera, R R; Koong, L J; Morris, J G
1975-08-01
The fleece is an important component in thermoregulation of sheep exposed to high levels of solar radiation. A model written in CSMP has been developed which represents the flow of energy between the sheep and its environment. This model is based on a set of differential equations which describe the flux of heat between the components of the system--fleece, tip, skin, body and environment. It requires as input parameters location, date, time of day, temperature, relative humidity, cloud cover, wind movement, animal weight and linear measurements and fleece length. At each integration interval incoming solar radiation and its components, the heat arising from the animal's metabolism and the heat exchange by long-wave radiation, convection, conduction and evaporative cooling are computed. Temperatures at the fleece tip, skin and body core are monitored.
Composite Load Spectra for Select Space Propulsion Structural Components
NASA Technical Reports Server (NTRS)
Ho, Hing W.; Newell, James F.
1994-01-01
Generic load models are described with multiple levels of progressive sophistication to simulate the composite (combined) load spectra (CLS) that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades and liquid oxygen (LOX) posts. These generic (coupled) models combine the deterministic models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients are then determined using advanced probabilistic simulation methods with and without strategically selected experimental data. The entire simulation process is included in a CLS computer code. Applications of the computer code to various components in conjunction with the PSAM (Probabilistic Structural Analysis Method) to perform probabilistic load evaluation and life prediction evaluations are also described to illustrate the effectiveness of the coupled model approach.
Automated Synthesis of Architecture of Avionic Systems
NASA Technical Reports Server (NTRS)
Chau, Savio; Xu, Joseph; Dang, Van; Lu, James F.
2006-01-01
The Architecture Synthesis Tool (AST) is software that automatically synthesizes software and hardware architectures of avionic systems. The AST is expected to be most helpful during initial formulation of an avionic-system design, when system requirements change frequently and manual modification of architecture is time-consuming and susceptible to error. The AST comprises two parts: (1) an architecture generator, which utilizes a genetic algorithm to create a multitude of architectures; and (2) a functionality evaluator, which analyzes the architectures for viability, rejecting most of the non-viable ones. The functionality evaluator generates and uses a viability tree a hierarchy representing functions and components that perform the functions such that the system as a whole performs system-level functions representing the requirements for the system as specified by a user. Architectures that survive the functionality evaluator are further evaluated by the selection process of the genetic algorithm. Architectures found to be most promising to satisfy the user s requirements and to perform optimally are selected as parents to the next generation of architectures. The foregoing process is iterated as many times as the user desires. The final output is one or a few viable architectures that satisfy the user s requirements.
Reactor Pressure Vessel Integrity Assessments with the Grizzly Aging Simulation Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin; Backman, Marie; Hoffman, William
Grizzly is a simulation tool being developed at Idaho National Laboratory (INL) as part of the US Department of Energy’s Light Water Reactor Sustainability program to provide improved safety assessments of systems, components, and structures in nuclear power plants subjected to age-related degradation. Its goal is to provide an improved scientific basis for decisions surrounding license renewal, which would permit operation of commercial nuclear power plants beyond 60 years. Grizzly is based on INL’s MOOSE framework, which enables multiphysics simulations in a parallel computing environment. It will address a wide variety of aging issues in nuclear power plant systems, components,more » and structures, modelling both the aging processes and the ability of age-degraded components to perform safely. The reactor pressure vessel (RPV) was chosen as the initial application for Grizzly. Grizzly solves tightly coupled equations of heat conduction and solid mechanics to simulate the global response of the RPV to accident conditions, and uses submodels to represent regions with pre-existing flaws. Domain integrals are used to calculate stress intensity factors on those flaws. A physically based empirical model is used to evaluate material embrittlement, and is used to evaluate whether crack growth would occur. Grizzly can represent the RPV in 2D or 3D, allowing it to evaluate effects that require higher dimensionality models to capture. Work is underway to use lower length scale models of material evolution to inform engineering models of embrittlement. This paper demonstrates an application of Grizzly to RPV failure assessment, and summarizes on-going work.« less
Web document ranking via active learning and kernel principal component analysis
NASA Astrophysics Data System (ADS)
Cai, Fei; Chen, Honghui; Shu, Zhen
2015-09-01
Web document ranking arises in many information retrieval (IR) applications, such as the search engine, recommendation system and online advertising. A challenging issue is how to select the representative query-document pairs and informative features as well for better learning and exploring new ranking models to produce an acceptable ranking list of candidate documents of each query. In this study, we propose an active sampling (AS) plus kernel principal component analysis (KPCA) based ranking model, viz. AS-KPCA Regression, to study the document ranking for a retrieval system, i.e. how to choose the representative query-document pairs and features for learning. More precisely, we fill those documents gradually into the training set by AS such that each of which will incur the highest expected DCG loss if unselected. Then, the KPCA is performed via projecting the selected query-document pairs onto p-principal components in the feature space to complete the regression. Hence, we can cut down the computational overhead and depress the impact incurred by noise simultaneously. To the best of our knowledge, we are the first to perform the document ranking via dimension reductions in two dimensions, namely, the number of documents and features simultaneously. Our experiments demonstrate that the performance of our approach is better than that of the baseline methods on the public LETOR 4.0 datasets. Our approach brings an improvement against RankBoost as well as other baselines near 20% in terms of MAP metric and less improvements using P@K and NDCG@K, respectively. Moreover, our approach is particularly suitable for document ranking on the noisy dataset in practice.
On Complex Networks Representation and Computation of Hydrologycal Quantities
NASA Astrophysics Data System (ADS)
Serafin, F.; Bancheri, M.; David, O.; Rigon, R.
2017-12-01
Water is our blue gold. Despite results of discovery-based science keep warning public opinion about the looming worldwide water crisis, water is still treated as a not worth taking resource. Could a different multi-scale perspective affect environmental decision-making more deeply? Can also a further pairing to a new graphical representation of processes interaction sway decision-making more effectively and public opinion consequently?This abstract introduces a complex networks driven way to represent catchments eco-hydrology and related flexible informatics to manage it. The representation is built upon mathematical category. A category is an algebraic structure that comprises "objects" linked by "arrows". It is an evolution of Petri Nets said Time Continuous Petri Nets (TCPN). It aims to display (water) budgets processes and catchment interactions using explicative and self-contained symbolism. The result improves readability of physical processes compared to current descriptions. The IT perspective hinges on the Object Modeling System (OMS) v3. The latter is a non-invasive flexible environmental modeling framework designed to support component-based model development. The implementation of a Directed Acyclic Graph (DAG) data structure, named Net3, has recently enhanced its flexibility. Net3 represents interacting systems as complex networks: vertices match up with any sort of time evolving quantity; edges correspond to their data (fluxes) interchange. It currently hosts JGrass-NewAge components, and those implementing travel time analysis of fluxes. Further bio-physical or management oriented components can be easily added.This talk introduces both graphical representation and related informatics exercising actual applications and examples.
Pérez-Hernández, Guillermo; Noé, Frank
2016-12-13
Analysis of molecular dynamics, for example using Markov models, often requires the identification of order parameters that are good indicators of the rare events, i.e. good reaction coordinates. Recently, it has been shown that the time-lagged independent component analysis (TICA) finds the linear combinations of input coordinates that optimally represent the slow kinetic modes and may serve in order to define reaction coordinates between the metastable states of the molecular system. A limitation of the method is that both computing time and memory requirements scale with the square of the number of input features. For large protein systems, this exacerbates the use of extensive feature sets such as the distances between all pairs of residues or even heavy atoms. Here we derive a hierarchical TICA (hTICA) method that approximates the full TICA solution by a hierarchical, divide-and-conquer calculation. By using hTICA on distances between heavy atoms we identify previously unknown relaxation processes in the bovine pancreatic trypsin inhibitor.
A method for the measurement and the statistical analysis of atmospheric turbulence
NASA Technical Reports Server (NTRS)
Tieleman, H. W.; Tavoularis, S. C.
1974-01-01
The instantaneous values of output voltages representing the wind velocity vector and the temperature at different elevations of the 250-foot meteorological tower located at NASA Wallops Flight Center are provided with the three dimensional split-film TSI Model 1080 anemometer system. The output voltages are sampled at a rate of one every 5 milliseconds, digitized and stored on digital magnetic tapes for a time period of approximately 40 minutes, with the use of a specially designed data acqusition system. A new calibration procedure permits the conversion of the digital voltages to the respective values of the temperature and the velocity components in a Cartesian coordinate system connected with the TSI probe with considerable accuracy. Power, cross, coincidence and quadrature spectra of the wind components and the temperature are obtained with the use of the fast Fourier transform. The cosine taper data window and ensemble and frequency smoothing techniques are used to provide smooth estimates of the spectral functions.
NASA Technical Reports Server (NTRS)
Wu, Shu-Chieh; Remington, Roger W.; Lewis, Richard
2006-01-01
Common tasks in daily life are often accomplished by a sequence of actions that interleave information acquisition through the eyes and action execution by the hands. How are eye movements coordinated with the release of manual responses and how may their coordination be represented at the level of component mental operations? We have previously presented data from a typing-like task requiring separate choice responses to a series of five stimuli. We found a consistent pattern of results in both motor and ocular timing, and hypothesized possible relationships among underlying components. Here we report a model of that task, which demonstrates how the observed timing of eye movements to successive stimuli could be accounted for by assuming systems: an open-loop system generating saccades at a periodic rate, and a closed-loop system commanding a saccade based on stimulus processing. We relate this model to models of reading and discuss the motivation for dual control.
Active Metal Brazing and Adhesive Bonding of Titanium to C/C Composites for Heat Rejection System
NASA Technical Reports Server (NTRS)
Singh, M.; Shpargel, Tarah; Cerny, Jennifer
2006-01-01
Robust assembly and integration technologies are critically needed for the manufacturing of heat rejection system (HRS) components for current and future space exploration missions. Active metal brazing and adhesive bonding technologies are being assessed for the bonding of titanium to high conductivity Carbon-Carbon composite sub components in various shapes and sizes. Currently a number of different silver and copper based active metal brazes and adhesive compositions are being evaluated. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). Several mechanical tests have been employed to ascertain the effectiveness of different brazing and adhesive approaches in tension and in shear that are both simple and representative of the actual system and relatively straightforward in analysis. The results of these mechanical tests along with the fractographic analysis will be discussed. In addition, advantages, technical issues and concerns in using different bonding approaches will also be presented.
NASA Astrophysics Data System (ADS)
Wallace, Jon Michael
2003-10-01
Reliability prediction of components operating in complex systems has historically been conducted in a statistically isolated manner. Current physics-based, i.e. mechanistic, component reliability approaches focus more on component-specific attributes and mathematical algorithms and not enough on the influence of the system. The result is that significant error can be introduced into the component reliability assessment process. The objective of this study is the development of a framework that infuses the needs and influence of the system into the process of conducting mechanistic-based component reliability assessments. The formulated framework consists of six primary steps. The first three steps, identification, decomposition, and synthesis, are primarily qualitative in nature and employ system reliability and safety engineering principles to construct an appropriate starting point for the component reliability assessment. The following two steps are the most unique. They involve a step to efficiently characterize and quantify the system-driven local parameter space and a subsequent step using this information to guide the reduction of the component parameter space. The local statistical space quantification step is accomplished using two proposed multivariate probability models: Multi-Response First Order Second Moment and Taylor-Based Inverse Transformation. Where existing joint probability models require preliminary distribution and correlation information of the responses, these models combine statistical information of the input parameters with an efficient sampling of the response analyses to produce the multi-response joint probability distribution. Parameter space reduction is accomplished using Approximate Canonical Correlation Analysis (ACCA) employed as a multi-response screening technique. The novelty of this approach is that each individual local parameter and even subsets of parameters representing entire contributing analyses can now be rank ordered with respect to their contribution to not just one response, but the entire vector of component responses simultaneously. The final step of the framework is the actual probabilistic assessment of the component. Although the same multivariate probability tools employed in the characterization step can be used for the component probability assessment, variations of this final step are given to allow for the utilization of existing probabilistic methods such as response surface Monte Carlo and Fast Probability Integration. The overall framework developed in this study is implemented to assess the finite-element based reliability prediction of a gas turbine airfoil involving several failure responses. Results of this implementation are compared to results generated using the conventional 'isolated' approach as well as a validation approach conducted through large sample Monte Carlo simulations. The framework resulted in a considerable improvement to the accuracy of the part reliability assessment and an improved understanding of the component failure behavior. Considerable statistical complexity in the form of joint non-normal behavior was found and accounted for using the framework. Future applications of the framework elements are discussed.
Palm, Noah W.; Rosenstein, Rachel K.; Yu, Shuang; Schenten, Dominik; Florsheim, Esther; Medzhitov, Ruslan
2013-01-01
SUMMARY Venoms consist of toxic components that are delivered to their victims via bites or stings. Venoms also represent a major class of allergens in humans. Phospholipase A2 (PLA2) is a conserved component of venoms from multiple species and is the major allergen in bee venom. Here we examined how bee venom PLA2 is sensed by the innate immune system and induces a type 2 immune response in mice. We found that bee venom PLA2 induced a T helper type 2 (Th2) cell-type response and group 2 innate lymphoid cell activation via the enzymatic cleavage of membrane phospholipids and release of interleukin-33. Furthermore, we showed that the IgE response to PLA2 could protect mice from future challenge with a near-lethal dose of PLA2. These data suggest that the innate immune system can detect the activity of a conserved component of venoms and induce a protective immune response against a venom toxin. PMID:24210353
2007-10-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew learn more about the mission payload, the Kibo Experiment Logistics Module Pressurized Section. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis
2007-10-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew get hands-on experience with some of the equipment related to the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis
2007-10-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew get hands-on experience with some of the equipment related to the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis
2007-10-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew get hands-on experience with some of the equipment related to the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis
2007-10-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew get hands-on experience with some of the equipment related to the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis
2007-10-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-123 crew get hands-on experience with some of the equipment related to the mission. Crew members are Commander Dominic Gorie, Pilot Gregory Johnson and Mission Specialists Richard Linnehan, Takao Doi, Robert Behnken, Gerrett Reisman and Michael Foreman. Doi represents the Japan Aerospace Exploration Agency. Reisman will remain on the space station after the mission as a flight engineer for Expedition 16. STS-123 will carry and install one of the components of the Japanese Experiment Module, or JEM. Known as Kibo, the JEM comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. The various components of JEM will be assembled in space over the course of three space shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the space shuttle Endeavour, targeted for launch in February 2008. Photo credit: NASA/Dimitrios Gerondidakis
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Simpson, John
2005-01-01
The development and application of advanced nondestructive evaluation techniques for the Reinforced Carbon-Carbon (RCC) components of the Space Shuttle Orbiter Leading Edge Structural Subsystem (LESS) was identified as a crucial step toward returning the shuttle fleet to service. In order to help meet this requirement, eddy current techniques have been developed for application to RCC components. Eddy current technology has been found to be particularly useful for measuring the protective coating thickness over the reinforced carbon-carbon and for the identification of near surface cracking and voids in the RCC matrix. Testing has been performed on as manufactured and flown RCC components with both actual and fabricated defects representing impact and oxidation damage. Encouraging initial results have led to the development of two separate eddy current systems for in-situ RCC inspections in the orbiter processing facility. Each of these systems has undergone blind validation testing on a full scale leading edge panel, and recently transitioned to Kennedy Space Center to be applied as a part of a comprehensive RCC inspection strategy to be performed in the orbiter processing facility after each shuttle flight.
49 CFR 171.1 - Applicability of Hazardous Materials Regulations (HMR) to persons and functions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... transportation of hazardous materials in commerce and to pre-transportation and transportation functions. (a..., reconditions, repairs, or tests a packaging or a component of a packaging that is represented, marked..., reconditions, repairs, or tests a packaging or a component of a packaging that is represented, marked...
Coordinating space telescope operations in an integrated planning and scheduling architecture
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Smith, Stephen F.; Cesta, Amedeo; D'Aloisi, Daniela
1992-01-01
The Heuristic Scheduling Testbed System (HSTS), a software architecture for integrated planning and scheduling, is discussed. The architecture has been applied to the problem of generating observation schedules for the Hubble Space Telescope. This problem is representative of the class of problems that can be addressed: their complexity lies in the interaction of resource allocation and auxiliary task expansion. The architecture deals with this interaction by viewing planning and scheduling as two complementary aspects of the more general process of constructing behaviors of a dynamical system. The principal components of the software architecture are described, indicating how to model the structure and dynamics of a system, how to represent schedules at multiple levels of abstraction in the temporal database, and how the problem solving machinery operates. A scheduler for the detailed management of Hubble Space Telescope operations that has been developed within HSTS is described. Experimental performance results are given that indicate the utility and practicality of the approach.
Fan, Bingfei; Li, Qingguo; Liu, Tao
2017-12-28
With the advancements in micro-electromechanical systems (MEMS) technologies, magnetic and inertial sensors are becoming more and more accurate, lightweight, smaller in size as well as low-cost, which in turn boosts their applications in human movement analysis. However, challenges still exist in the field of sensor orientation estimation, where magnetic disturbance represents one of the obstacles limiting their practical application. The objective of this paper is to systematically analyze exactly how magnetic disturbances affects the attitude and heading estimation for a magnetic and inertial sensor. First, we reviewed four major components dealing with magnetic disturbance, namely decoupling attitude estimation from magnetic reading, gyro bias estimation, adaptive strategies of compensating magnetic disturbance and sensor fusion algorithms. We review and analyze the features of existing methods of each component. Second, to understand each component in magnetic disturbance rejection, four representative sensor fusion methods were implemented, including gradient descent algorithms, improved explicit complementary filter, dual-linear Kalman filter and extended Kalman filter. Finally, a new standardized testing procedure has been developed to objectively assess the performance of each method against magnetic disturbance. Based upon the testing results, the strength and weakness of the existing sensor fusion methods were easily examined, and suggestions were presented for selecting a proper sensor fusion algorithm or developing new sensor fusion method.
Complexity of free energy landscapes of peptides revealed by nonlinear principal component analysis.
Nguyen, Phuong H
2006-12-01
Employing the recently developed hierarchical nonlinear principal component analysis (NLPCA) method of Saegusa et al. (Neurocomputing 2004;61:57-70 and IEICE Trans Inf Syst 2005;E88-D:2242-2248), the complexities of the free energy landscapes of several peptides, including triglycine, hexaalanine, and the C-terminal beta-hairpin of protein G, were studied. First, the performance of this NLPCA method was compared with the standard linear principal component analysis (PCA). In particular, we compared two methods according to (1) the ability of the dimensionality reduction and (2) the efficient representation of peptide conformations in low-dimensional spaces spanned by the first few principal components. The study revealed that NLPCA reduces the dimensionality of the considered systems much better, than did PCA. For example, in order to get the similar error, which is due to representation of the original data of beta-hairpin in low dimensional space, one needs 4 and 21 principal components of NLPCA and PCA, respectively. Second, by representing the free energy landscapes of the considered systems as a function of the first two principal components obtained from PCA, we obtained the relatively well-structured free energy landscapes. In contrast, the free energy landscapes of NLPCA are much more complicated, exhibiting many states which are hidden in the PCA maps, especially in the unfolded regions. Furthermore, the study also showed that many states in the PCA maps are mixed up by several peptide conformations, while those of the NLPCA maps are more pure. This finding suggests that the NLPCA should be used to capture the essential features of the systems. (c) 2006 Wiley-Liss, Inc.
Kim, Sung-Jin; Lai, David; Park, Joong Yull; Yokokawa, Ryuji
2012-01-01
This paper gives an overview of elastomeric valve- and droplet-based microfluidic systems designed to minimize the need of external pressure to control fluid flow. This concept article introduces the working principle of representative components in these devices along with relevant biochemical applications. This is followed by providing a perspective on the roles of different microfluidic valves and systems through comparison of their similarities and differences with transistors (valves) and systems in microelectronics. Despite some physical limitation of drawing analogies from electronic circuits, automated microfluidic circuit design can gain insights from electronic circuits to minimize external control units, while implementing high complexity and throughput analysis. PMID:22761019
GOATS Image Projection Component
NASA Technical Reports Server (NTRS)
Haber, Benjamin M.; Green, Joseph J.
2011-01-01
When doing mission analysis and design of an imaging system in orbit around the Earth, answering the fundamental question of imaging performance requires an understanding of the image products that will be produced by the imaging system. GOATS software represents a series of MATLAB functions to provide for geometric image projections. Unique features of the software include function modularity, a standard MATLAB interface, easy-to-understand first-principles-based analysis, and the ability to perform geometric image projections of framing type imaging systems. The software modules are created for maximum analysis utility, and can all be used independently for many varied analysis tasks, or used in conjunction with other orbit analysis tools.
Controls and guidance research
NASA Technical Reports Server (NTRS)
Homaifar, Abdollah; Dunn, Derome; Song, Yong-Duan; Lai, Steven H.-Y.
1992-01-01
The objectives of the control group are concentrated on research and education. The control problem of the hypersonic space vehicle represents an important and challenging issue in aerospace engineering. The work described in this report is part of our effort in developing advanced control strategies for such a system. In order to achieve the objectives stated in the NASA-CORE proposal, the tasks were divided among the group based upon their educational expertise. Within the educational component we are offering a Linear Systems and Control course for students in electrical and mechanical engineering. Also, we are proposing a new course in Digital Control Systems with a corresponding laboratory.
D'Elia, Paolo; Coppo, Alessandro; Di Stefano, Francesca; Charrier, Lorena; Piccinelli, Cristiano; Molinar, Roberta; Senore, Carlo; Giordano, Livia; Segnan, Nereo
2008-01-01
Community interventions represent a key component of the current anti-smoking strategies. We propose a conceptual framework for classifying these interventions, based on the concept of community utilised in different studies. We identified 5 different focuses: geographical areas (i.e. city, county, region); targets (sub-group of a population); settings (school, workplace); culture and individual attitudes; multilevel networks. These two latter views refer to functional rather than to structural aspects of a community and they represent the most promising approaches to design intervention strategies. Communities are represented as a group of organizations, systems and social networks investigating individual, environmental and cultural factors that can strongly influence behavioural changes. The great heterogeneity in what the authors mean as community interventions has in our opinion affected the evaluation of their impact. To facilitate their evaluation and to contribute to the detection of determinants, as well as of barriers, it is necessary to compare community interventions sharing similar theoretical approaches and focuses. Also, studies aimed at assessing the steps of the implementation process of community programmes may allow to identify those components related to specific levels of intervention, thus enabling the generalisation of results. To reach this goal it may be helpful to combine study designs allowing for both quantitative and qualitative assessments, such as action research and participatory evaluation research.
Structural Similitude and Scaling Laws
NASA Technical Reports Server (NTRS)
Simitses, George J.
1998-01-01
Aircraft and spacecraft comprise the class of aerospace structures that require efficiency and wisdom in design, sophistication and accuracy in analysis and numerous and careful experimental evaluations of components and prototype, in order to achieve the necessary system reliability, performance and safety. Preliminary and/or concept design entails the assemblage of system mission requirements, system expected performance and identification of components and their connections as well as of manufacturing and system assembly techniques. This is accomplished through experience based on previous similar designs, and through the possible use of models to simulate the entire system characteristics. Detail design is heavily dependent on information and concepts derived from the previous steps. This information identifies critical design areas which need sophisticated analyses, and design and redesign procedures to achieve the expected component performance. This step may require several independent analysis models, which, in many instances, require component testing. The last step in the design process, before going to production, is the verification of the design. This step necessitates the production of large components and prototypes in order to test component and system analytical predictions and verify strength and performance requirements under the worst loading conditions that the system is expected to encounter in service. Clearly then, full-scale testing is in many cases necessary and always very expensive. In the aircraft industry, in addition to full-scale tests, certification and safety necessitate large component static and dynamic testing. Such tests are extremely difficult, time consuming and definitely absolutely necessary. Clearly, one should not expect that prototype testing will be totally eliminated in the aircraft industry. It is hoped, though, that we can reduce full-scale testing to a minimum. Full-scale large component testing is necessary in other industries as well, Ship building, automobile and railway car construction all rely heavily on testing. Regardless of the application, a scaled-down (by a large factor) model (scale model) which closely represents the structural behavior of the full-scale system (prototype) can prove to be an extremely beneficial tool. This possible development must be based on the existence of certain structural parameters that control the behavior of a structural system when acted upon by static and/or dynamic loads. If such structural parameters exist, a scaled-down replica can be built, which will duplicate the response of the full-scale system. The two systems are then said to be structurally similar. The term, then, that best describes this similarity is structural similitude. Similarity of systems requires that the relevant system parameters be identical and these systems be governed by a unique set of characteristic equations. Thus, if a relation or equation of variables is written for a system, it is valid for all systems which are similar to it. Each variable in a model is proportional to the corresponding variable of the prototype. This ratio, which plays an essential role in predicting the relationship between the model and its prototype, is called the scale factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Ran; Feldman, David; Margolis, Robert
NREL has been modeling U.S. photovoltaic (PV) system costs since 2009. This year, our report benchmarks costs of U.S. solar PV for residential, commercial, and utility-scale systems built in the first quarter of 2017 (Q1 2017). Costs are represented from the perspective of the developer/installer, thus all hardware costs represent the price at which components are purchased by the developer/installer, not accounting for preexisting supply agreements or other contracts. Importantly, the benchmark this year (2017) also represents the sales price paid to the installer; therefore, it includes profit in the cost of the hardware, along with the profit the installer/developermore » receives, as a separate cost category. However, it does not include any additional net profit, such as a developer fee or price gross-up, which are common in the marketplace. We adopt this approach owing to the wide variation in developer profits in all three sectors, where project pricing is highly dependent on region and project specifics such as local retail electricity rate structures, local rebate and incentive structures, competitive environment, and overall project or deal structures.« less
Spacecraft attitude and velocity control system
NASA Technical Reports Server (NTRS)
Paluszek, Michael A. (Inventor); Piper, Jr., George E. (Inventor)
1992-01-01
A spacecraft attitude and/or velocity control system includes a controller which responds to at least attitude errors to produce command signals representing a force vector F and a torque vector T, each having three orthogonal components, which represent the forces and torques which are to be generated by the thrusters. The thrusters may include magnetic torquer or reaction wheels. Six difference equations are generated, three having the form ##EQU1## where a.sub.j is the maximum torque which the j.sup.th thruster can produce, b.sub.j is the maximum force which the j.sup.th thruster can produce, and .alpha..sub.j is a variable representing the throttling factor of the j.sup.th thruster, which may range from zero to unity. The six equations are summed to produce a single scalar equation relating variables .alpha..sub.j to a performance index Z: ##EQU2## Those values of .alpha. which maximize the value of Z are determined by a method for solving linear equations, such as a linear programming method. The Simplex method may be used. The values of .alpha..sub.j are applied to control the corresponding thrusters.
Investigation of digital encoding techniques for television transmission
NASA Technical Reports Server (NTRS)
Schilling, D. L.
1983-01-01
Composite color television signals are sampled at four times the color subcarrier and transformed using intraframe two dimensional Walsh functions. It is shown that by properly sampling a composite color signal and employing a Walsh transform the YIQ time signals which sum to produce the composite color signal can be represented, in the transform domain, by three component signals in space. By suitably zonal quantizing the transform coefficients, the YIQ signals can be processed independently to achieve data compression and obtain the same results as component coding. Computer simulations of three bandwidth compressors operating at 1.09, 1.53 and 1.8 bits/ sample are presented. The above results can also be applied to the PAL color system.
Levin, Yulia; Tzelgov, Joseph
2016-01-01
The present study suggests that the idea that Stroop interference originates from multiple components may gain theoretically from integrating two independent frameworks. The first framework is represented by the well-known notion of "semantic gradient" of interference and the second one is the distinction between two types of conflict - the task and the informational conflict - giving rise to the interference (MacLeod and MacDonald, 2000; Goldfarb and Henik, 2007). The proposed integration led to the conclusion that two (i.e., orthographic and lexical components) of the four theoretically distinct components represent task conflict, and the other two (i.e., indirect and direct informational conflict components) represent informational conflict. The four components were independently estimated in a series of experiments. The results confirmed the contribution of task conflict (estimated by a robust orthographic component) and of informational conflict (estimated by a strong direct informational conflict component) to Stroop interference. However, the performed critical review of the relevant literature (see General Discussion), as well as the results of the experiments reported, showed that the other two components expressing each type of conflict (i.e., the lexical component of task conflict and the indirect informational conflict) were small and unstable. The present analysis refines our knowledge of the origins of Stroop interference by providing evidence that each type of conflict has its major and minor contributions. The implications for cognitive control of an automatic reading process are also discussed.
Levin, Yulia; Tzelgov, Joseph
2016-01-01
The present study suggests that the idea that Stroop interference originates from multiple components may gain theoretically from integrating two independent frameworks. The first framework is represented by the well-known notion of “semantic gradient” of interference and the second one is the distinction between two types of conflict – the task and the informational conflict – giving rise to the interference (MacLeod and MacDonald, 2000; Goldfarb and Henik, 2007). The proposed integration led to the conclusion that two (i.e., orthographic and lexical components) of the four theoretically distinct components represent task conflict, and the other two (i.e., indirect and direct informational conflict components) represent informational conflict. The four components were independently estimated in a series of experiments. The results confirmed the contribution of task conflict (estimated by a robust orthographic component) and of informational conflict (estimated by a strong direct informational conflict component) to Stroop interference. However, the performed critical review of the relevant literature (see General Discussion), as well as the results of the experiments reported, showed that the other two components expressing each type of conflict (i.e., the lexical component of task conflict and the indirect informational conflict) were small and unstable. The present analysis refines our knowledge of the origins of Stroop interference by providing evidence that each type of conflict has its major and minor contributions. The implications for cognitive control of an automatic reading process are also discussed. PMID:26955363
Light-operated machines based on threaded molecular structures.
Credi, Alberto; Silvi, Serena; Venturi, Margherita
2014-01-01
Rotaxanes and related species represent the most common implementation of the concept of artificial molecular machines, because the supramolecular nature of the interactions between the components and their interlocked architecture allow a precise control on the position and movement of the molecular units. The use of light to power artificial molecular machines is particularly valuable because it can play the dual role of "writing" and "reading" the system. Moreover, light-driven machines can operate without accumulation of waste products, and photons are the ideal inputs to enable autonomous operation mechanisms. In appropriately designed molecular machines, light can be used to control not only the stability of the system, which affects the relative position of the molecular components but also the kinetics of the mechanical processes, thereby enabling control on the direction of the movements. This step forward is necessary in order to make a leap from molecular machines to molecular motors.
An integrtated approach to the use of Landsat TM data for gold exploration in west central Nevada
NASA Technical Reports Server (NTRS)
Mouat, D. A.; Myers, J. S.; Miller, N. L.
1987-01-01
This paper represents an integration of several Landsat TM image processing techniques with other data to discriminate the lithologies and associated areas of hydrothermal alteration in the vicinity of the Paradise Peak gold mine in west central Nevada. A microprocessor-based image processing system and an IDIMS system were used to analyze data from a 512 X 512 window of a Landsat-5 TM scene collected on June 30, 1984. Image processing techniques included simple band composites, band ratio composites, principal components composites, and baseline-based composites. These techniques were chosen based on their ability to discriminate the spectral characteristics of the products of hydrothermal alteration as well as of the associated regional lithologies. The simple band composite, ratio composite, two principal components composites, and the baseline-based composites separately can define the principal areas of alteration. Combined, they provide a very powerful exploration tool.
Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes☆
Liu, Lu-Ning
2016-01-01
The cyanobacterial thylakoid membrane represents a system that can carry out both oxygenic photosynthesis and respiration simultaneously. The organization, interactions and mobility of components of these two electron transport pathways are indispensable to the biosynthesis of thylakoid membrane modules and the optimization of bioenergetic electron flow in response to environmental changes. These are of fundamental importance to the metabolic robustness and plasticity of cyanobacteria. This review summarizes our current knowledge about the distribution and dynamics of electron transport components in cyanobacterial thylakoid membranes. Global understanding of the principles that govern the dynamic regulation of electron transport pathways in nature will provide a framework for the design and synthetic engineering of new bioenergetic machinery to improve photosynthesis and biofuel production. This article is part of a Special Issue entitled: Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux. PMID:26619924
Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes.
Liu, Lu-Ning
2016-03-01
The cyanobacterial thylakoid membrane represents a system that can carry out both oxygenic photosynthesis and respiration simultaneously. The organization, interactions and mobility of components of these two electron transport pathways are indispensable to the biosynthesis of thylakoid membrane modules and the optimization of bioenergetic electron flow in response to environmental changes. These are of fundamental importance to the metabolic robustness and plasticity of cyanobacteria. This review summarizes our current knowledge about the distribution and dynamics of electron transport components in cyanobacterial thylakoid membranes. Global understanding of the principles that govern the dynamic regulation of electron transport pathways in nature will provide a framework for the design and synthetic engineering of new bioenergetic machinery to improve photosynthesis and biofuel production. This article is part of a Special Issue entitled: Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux. Copyright © 2015 The Author. Published by Elsevier B.V. All rights reserved.
MS Hadfield works on the SSRMS in the SLP during the first EVA for STS-100
2001-04-22
S100-E-5236 (22 April 2001) --- Astronaut Chris A. Hadfield, STS-100 mission specialist representing the Canadian Space Agency (CSA), stands on one Canadian-built robot arm to work with another one. Called Canadarm2, the newest addition to the International Space Station (ISS) was ferried up to the orbital outpost by the STS-100 crew. Hadfield's feet are secured on a special foot restraint attached to the end of the Remote Manipulator System (RMS) arm, which represents one of the standard shuttle components for the majority of the 100-plus STS missions thus far. The picture was recorded with a digital still camera.
MS Hadfield works on the SSRMS in the SLP during the first EVA for STS-100
2001-04-22
S100-E-5239 (22 April 2001) --- Astronaut Chris A. Hadfield, STS-100 mission specialist representing the Canadian Space Agency (CSA), stands on one Canadian-built robot arm to work with another one. Called Canadarm2, the newest addition to the International Space Station (ISS) was ferried up to the orbital outpost by the STS-100 crew. Hadfield's feet are secured on a special foot restraint attached to the end of the Remote Manipulator System (RMS) arm, which represents one of the standard shuttle components for the majority of the 100-plus STS missions thus far. The picture was recorded with a digital still camera.
MS Hadfield works on the SSRMS in the SLP during the first EVA for STS-100
2001-04-22
S100-E-5238 (22 April 2001) --- Astronaut Chris A. Hadfield, STS-100 mission specialist representing the Canadian Space Agency (CSA), stands on one Canadian-built robot arm to work with another one. Called Canadarm2, the newest addition to the International Space Station (ISS) was ferried up to the orbital outpost by the STS-100 crew. Hadfield's feet are secured on a special foot restraint attached to the end of the Remote Manipulator System (RMS) arm, which represents one of the standard shuttle components for the majority of the 100-plus STS missions thus far. The picture was recorded with a digital still camera.
MS Hadfield works on the SSRMS in the SLP during the first EVA for STS-100
2001-04-22
S100-E-5243 (22 April 2001) --- Astronaut Chris A. Hadfield, STS-100 mission specialist representing the Canadian Space Agency (CSA), stands on one Canadian-built robot arm to work with another one. Called Canadarm2, the newest addition to the International Space Station (ISS) was ferried up to the orbital outpost by the STS-100 crew. Hadfield's feet are secured on a special foot restraint attached to the end of the Remote Manipulator System (RMS) arm, which represents one of the standard shuttle components for the majority of the 100-plus STS missions thus far. The picture was recorded with a digital still camera.
Laboratory Testing Protocols for Heparin-Induced Thrombocytopenia (HIT) Testing.
Lau, Kun Kan Edwin; Mohammed, Soma; Pasalic, Leonardo; Favaloro, Emmanuel J
2017-01-01
Heparin-induced thrombocytopenia (HIT) represents a significant high morbidity complication of heparin therapy. The clinicopathological diagnosis of HIT remains challenging for many reasons; thus, laboratory testing represents an important component of an accurate diagnosis. Although there are many assays available to assess HIT, these essentially fall into two categories-(a) immunological assays, and (b) functional assays. The current chapter presents protocols for several HIT assays, being those that are most commonly performed in laboratory practice and have the widest geographic distribution. These comprise a manual lateral flow-based system (STiC), a fully automated latex immunoturbidimetric assay, a fully automated chemiluminescent assay (CLIA), light transmission aggregation (LTA), and whole blood aggregation (Multiplate).
NASA Technical Reports Server (NTRS)
Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.
1996-01-01
This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.
Failure Impact Analysis of Key Management in AMI Using Cybernomic Situational Assessment (CSA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abercrombie, Robert K; Sheldon, Frederick T; Hauser, Katie R
2013-01-01
In earlier work, we presented a computational framework for quantifying the security of a system in terms of the average loss a stakeholder stands to sustain as a result of threats to the system. We named this system, the Cyberspace Security Econometrics System (CSES). In this paper, we refine the framework and apply it to cryptographic key management within the Advanced Metering Infrastructure (AMI) as an example. The stakeholders, requirements, components, and threats are determined. We then populate the matrices with justified values by addressing the AMI at a higher level, rather than trying to consider every piece of hardwaremore » and software involved. We accomplish this task by leveraging the recently established NISTR 7628 guideline for smart grid security. This allowed us to choose the stakeholders, requirements, components, and threats realistically. We reviewed the literature and selected an industry technical working group to select three representative threats from a collection of 29 threats. From this subset, we populate the stakes, dependency, and impact matrices, and the threat vector with realistic numbers. Each Stakeholder s Mean Failure Cost is then computed.« less
Fluid-Structure Model of Lymphatic Valve and Vessel
NASA Astrophysics Data System (ADS)
Wolf, Ki; Ballard, Matthew; Nepiyushchikh, Zhanna; Razavi, Mohammad; Dixon, Brandon; Alexeev, Alexander
The lymphatic system is a part of the circulatory system that performs a range of important functions such as transportation of interstitial fluid, fatty acid, and immune cells. The lymphatic vessels are composed of contractile walls to pump lymph against adverse pressure gradient and lymphatic valves that prevent back flow. Despite the importance of lymphatic system, the contribution of mechanical and geometric changes of lymphatic valves and vessels in pathologies of lymphatic dysfunction, such as lymphedema, is not well understood. We developed a coupled fluid-solid computational model to simultaneously simulate a lymphatic vessel, valve, and flow. A lattice Boltzmann model is used to represent the fluid component, while lattice spring model is used for the solid component of the lymphatic vessel, whose mechanical properties are derived experimentally. Behaviors such as lymph flow pattern and lymphatic valve performance against backflow and adverse pressure gradient under varied parameters of lymphatic valve and vessel geometry and mechanical properties are investigated to provide a better insight into the dynamics of lymphatic vessels, valves, and system and give insight into how they might fail in disease. NSF CMMI-1635133.
Self-organization: the fundament of cell biology
Betz, Timo
2018-01-01
Self-organization refers to the emergence of an overall order in time and space of a given system that results from the collective interactions of its individual components. This concept has been widely recognized as a core principle in pattern formation for multi-component systems of the physical, chemical and biological world. It can be distinguished from self-assembly by the constant input of energy required to maintain order—and self-organization therefore typically occurs in non-equilibrium or dissipative systems. Cells, with their constant energy consumption and myriads of local interactions between distinct proteins, lipids, carbohydrates and nucleic acids, represent the perfect playground for self-organization. It therefore comes as no surprise that many properties and features of self-organized systems, such as spontaneous formation of patterns, nonlinear coupling of reactions, bi-stable switches, waves and oscillations, are found in all aspects of modern cell biology. Ultimately, self-organization lies at the heart of the robustness and adaptability found in cellular and organismal organization, and hence constitutes a fundamental basis for natural selection and evolution. This article is part of the theme issue ‘Self-organization in cell biology’. PMID:29632257
Extreme close approaches in hierarchical triple systems with comparable masses
NASA Astrophysics Data System (ADS)
Haim, Niv; Katz, Boaz
2018-06-01
We study close approaches in hierarchical triple systems with comparable masses using full N-body simulations, motivated by a recent model for type Ia supernovae involving direct collisions of white dwarfs (WDs). For stable hierarchical systems where the inner binary components have equal masses, we show that the ability of the inner binary to achieve very close approaches, where the separation between the components of the inner binary reaches values which are orders of magnitude smaller than the semi-major axis, can be analytically predicted from initial conditions. The rate of close approaches is found to be roughly linear with the mass of the tertiary. The rate increases in systems with unequal inner binaries by a marginal factor of ≲ 2 for mass ratios 0.5 ≤ m1/m2 ≤ 1 relevant for the inner white-dwarf binaries. For an average tertiary mass of ˜0.3M⊙ which is representative of typical M-dwarfs, the chance for clean collisions is ˜1% setting challenging constraints on the collisional model for type Ia's.
Terrestrial analysis of the organic component of comet dust.
Sandford, Scott A
2008-01-01
The nature of cometary organics is of great interest, both because these materials are thought to represent a reservoir of the original carbon-containing materials from which everything else in our solar system was made and because these materials may have played key roles in the origin of life on Earth. Because these organic materials are the products of a series of universal chemical processes expected to operate in the interstellar media and star-formation regions of all galaxies, the nature of cometary organics also provides information on the composition of organics in other planetary systems and, by extension, provides insights into the possible abundance of life elsewhere in the universe. Our current understanding of cometary organics represents a synthesis of information from telescopic and spacecraft observations of individual comets, the study of meteoritic materials, laboratory simulations, and, now, the study of samples collected directly from a comet, Comet P81/Wild 2.
The effects of atmospheric chemistry on radiation budget in the Community Earth Systems Model
NASA Astrophysics Data System (ADS)
Choi, Y.; Czader, B.; Diao, L.; Rodriguez, J.; Jeong, G.
2013-12-01
The Community Earth Systems Model (CESM)-Whole Atmosphere Community Climate Model (WACCM) simulations were performed to study the impact of atmospheric chemistry on the radiation budget over the surface within a weather prediction time scale. The secondary goal is to get a simplified and optimized chemistry module for the short time period. Three different chemistry modules were utilized to represent tropospheric and stratospheric chemistry, which differ in how their reactions and species are represented: (1) simplified tropospheric and stratospheric chemistry (approximately 30 species), (2) simplified tropospheric chemistry and comprehensive stratospheric chemistry from the Model of Ozone and Related Chemical Tracers, version 3 (MOZART-3, approximately 60 species), and (3) comprehensive tropospheric and stratospheric chemistry (MOZART-4, approximately 120 species). Our results indicate the different details in chemistry treatment from these model components affect the surface temperature and impact the radiation budget.
Selected Cognitive Abilities in Elite Youth Soccer Players
Baláková, Veronika; Boschek, Petr; Skalíková, Lucie
2015-01-01
The identification of talent in soccer is critical to various programs. Although many research findings have been presented, there have been only a few attempts to assess their validity. The aim of this study was to determine the relationship between talent and achievement variables in the Vienna Test System. The participants were 91 Czech soccer players, representing four youth soccer teams, who were born in the year 2000. These boys were divided into two groups according to their coaches’ assessments using a TALENT questionnaire. A two-factor model (component 1: “kinetic finesse”; component 2: “mental strength”) was designed to interpret the responses of the coaches on the questionnaire. The Vienna Test System was used to determine the level of players’ cognitive abilities. In total, the subjects performed seven tests in the following order: Raven’s Standard Progressive Matrices (SPM), a reaction test (RT), a determination test (DT), a visual pursuit test (LVT), a Corsi Block-Tapping Test (CORSI), a time/movement anticipation test (ZBA), and a peripheral perception test (PP). To analyze the relationship between talent and achievement variables within the Vienna Test System, correlation analyses were performed. The results revealed that the talented group attained significantly better results on only 1 of the 16 variables, which was ZBA2: movement anticipation - deviation of movement median (r = .217, p = .019). A comparison of the two talent components showed that component 1 (“kinetic finesse”) was a more significant factor than component 2 (“mental strength”). Although we observed statistically significant correlations, their actual significance remains questionable; thus, further research is required. PMID:26839627
Effects of different broiler production systems on health care costs in the Netherlands.
Gocsik, É; Kortes, H E; Lansink, A G J M Oude; Saatkamp, H W
2014-06-01
This study analyzed the effects of different broiler production systems on health care costs in the Netherlands. In addition to the conventional production system, the analysis also included 5 alternative animal welfare systems representative of the Netherlands. The study was limited to the most prevalent and economically relevant endemic diseases in the broiler farms. Health care costs consisted of losses and expenditures. The study investigated whether higher animal welfare standards increased health care costs, in both absolute and relative terms, and also examined which cost components (losses or expenditures) were affected and, if so, to what extent. The results show that health care costs represent only a small proportion of total production costs in each production system. Losses account for the major part of health care costs, which makes it difficult to detect the actual effect of diseases on total health care costs. We conclude that, although differences in health care costs exist across production systems, health care costs only make a minor contribution to the total production costs relative to other costs, such as feed costs and purchase of 1-d-old chicks. Poultry Science Association Inc.
Automated simulation as part of a design workstation
NASA Technical Reports Server (NTRS)
Cantwell, Elizabeth; Shenk, T.; Robinson, P.; Upadhye, R.
1990-01-01
A development project for a design workstation for advanced life-support systems (called the DAWN Project, for Design Assistant Workstation), incorporating qualitative simulation, required the implementation of a useful qualitative simulation capability and the integration of qualitative and quantitative simulation such that simulation capabilities are maximized without duplication. The reason is that to produce design solutions to a system goal, the behavior of the system in both a steady and perturbed state must be represented. The Qualitative Simulation Tool (QST), on an expert-system-like model building and simulation interface toll called ScratchPad (SP), and on the integration of QST and SP with more conventional, commercially available simulation packages now being applied in the evaluation of life-support system processes and components are discussed.
Mobile-bearing knee systems: ultra-high molecular weight polyethylene wear and design issues.
Greenwald, A Seth; Heim, Christine S
2005-01-01
In June 2004, the U.S. Food and Drug Administration Orthopaedic Advisory Panel recommended the reclassification of mobile-bearing knee systems for general use. This reflects the increasing use of mobile-bearing knee systems internationally, which is currently limited in the United States by regulatory requirement. Mobile-bearing knee systems are distinguished from conventional, fixed-plateau systems in that they allow dual-surface articulation between an ultra-high molecular weight polyethylene insert and metallic femoral and tibial tray components. Their in vivo success is dependent on patient selection, design, and material choice, as well as surgical precision during implantation. Laboratory and clinical experience extending over 25 years with individual systems suggests that mobile-bearing knee systems represent a viable treatment option for patients with knee arthrosis.
The Two-Phase, Two-Velocity Ionized Absorber in the Seyfert 1 Galaxy NGC 5548
NASA Astrophysics Data System (ADS)
Andrade-Velázquez, Mercedes; Krongold, Yair; Elvis, Martin; Nicastro, Fabrizio; Brickhouse, Nancy; Binette, Luc; Mathur, Smita; Jiménez-Bailón, Elena
2010-03-01
We present an analysis of X-ray high-quality grating spectra of the Seyfert 1 galaxy NGC 5548 using archival Chandra-High Energy Transmission Grating Spectrometer and Low Energy Transmission Grating Spectrometer observations for a total exposure time of 800 ks. The continuum emission (between 0.2 keV and 8 keV) is well represented by a power law (Γ = 1.6) plus a blackbody component (kT = 0.1 keV). We find that the well-known X-ray warm absorber (WA) in this source consists of two different outflow velocity systems. One absorbing system has a velocity of -1110 ± 150 km s-1 and the other of -490 ± 150 km s-1. Recognizing the presence of these kinematically distinct components allows each system to be fitted independently, each with two absorption components with different ionization levels. The high-velocity system consists of two components, one with a temperature of 2.7 ± 0.6 × 106 K, log U = 1.23, and another with a temperature of 5.8 ± 1.0 × 105 K, log U = 0.67. The high-velocity, high-ionization component produces absorption by charge states Fe XXI-XXIV, while the high-velocity, low-ionization component produces absorption by Ne IX-X, Fe XVII-XX, and O VII-VIII. The low-velocity system also required two absorbing components, one with a temperature of 5.8 ± 0.8 × 105 K, log U = 0.67, producing absorption by Ne IX-X, Fe XVII-XX, and O VII-VIII, and the other with a lower temperature of 3.5 ± 0.35 × 104 K and a lower ionization of log U = -0.49, producing absorption by O VI-VII and the Fe VII-XII M-shell Unresolved Transitions Array. Once these components are considered, the data do not require any further absorbers. In particular, a model consisting of a continuous radial range of ionization structures (as suggested by a previous analysis) is not required. The two absorbing components in each velocity system are in pressure equilibrium with each other. This suggests that each velocity system consists of a multi-phase medium. This is the first time that different outflow velocity systems have been modeled independently in the X-ray band for this source. The kinematic components and column densities found from the X-rays are in agreement with the main kinematic components found in the UV absorber. This supports the idea that the UV and X-ray absorbing gas is part of the same phenomenon. NGC 5548 can now be seen to fit in a pattern established for other WAs: two or three discrete phases in pressure equilibrium. There are no remaining cases of a well-studied WA in which a model consisting of a multi-phase medium is not viable.
Mental health services costs within the Alberta criminal justice system.
Jacobs, Philip; Moffatt, Jessica; Dewa, Carolyn S; Nguyen, Thanh; Zhang, Ting; Lesage, Alain
2016-01-01
Mental illness has been widely cited as a driver of costs in the criminal justice system. The objective of this paper is to estimate the additional mental health service costs incurred within the criminal justice system that are incurred because of people with mental illnesses who go through the system. Our focus is on costs in Alberta. We set up a model of the flow of all persons through the criminal justice system, including police, court, and corrections components, and for mental health diversion, review, and forensic services. We estimate the transitional probabilities and costs that accrue as persons who have been charged move through the system. Costs are estimated for the Alberta criminal justice system as a whole, and for the mental illness component. Public expenditures for each person diverted or charged in Alberta in the criminal justice system, including mental health costs, were $16,138. The 95% range of this estimate was from $14,530 to $19,580. Of these costs, 87% were for criminal justice services and 13% were for mental illness-related services. Hospitalization for people with mental illness who were reviewed represented the greatest additional cost associated with mental illnesses. Treatment costs stemming from mental illnesses directly add about 13% onto those in the criminal justice system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rosen's (M,R) system in process algebra.
Gatherer, Derek; Galpin, Vashti
2013-11-17
Robert Rosen's Metabolism-Replacement, or (M,R), system can be represented as a compact network structure with a single source and three products derived from that source in three consecutive reactions. (M,R) has been claimed to be non-reducible to its components and algorithmically non-computable, in the sense of not being evaluable as a function by a Turing machine. If (M,R)-like structures are present in real biological networks, this suggests that many biological networks will be non-computable, with implications for those branches of systems biology that rely on in silico modelling for predictive purposes. We instantiate (M,R) using the process algebra Bio-PEPA, and discuss the extent to which our model represents a true realization of (M,R). We observe that under some starting conditions and parameter values, stable states can be achieved. Although formal demonstration of algorithmic computability remains elusive for (M,R), we discuss the extent to which our Bio-PEPA representation of (M,R) allows us to sidestep Rosen's fundamental objections to computational systems biology. We argue that the behaviour of (M,R) in Bio-PEPA shows life-like properties.
Tales from the Jungle: The Evolving Climate Services Ecosystem
NASA Astrophysics Data System (ADS)
Redmond, K. T.
2015-12-01
In 2001 the NRC Report "A Climate Services Vision: First Steps Toward the Future" examined the state and trends of climate services. That report included a definition of this term that has lost no relevance: "The timely production and delivery of useful climate data, information, and knowledge to decision makers." The original entities delivering such services, at the state level, are represented by the American Association of State Climatologists (AASC). In 1986 the NOAA Regional Climate Center program was initiated, followed in 1994 by the NOAA Regional Climate Sciences and Assessments. Since 2010 we have seen the establishment of the USDI Climate Science Centers and the Landscape Conservation Cooperatives, the NOAA Regional Climate Service Directors, and the USDA Regional Climate Hubs. The recent expansion of formal programs has essentially filled out the agency "niche space." Other non-governmental and private entities are also expanding into this space. The present profusion runs a risk of creating a perception of excessive duplication in some quarters, including those funding these enterprises. Collectively these activities form what can be thought of as an ecosystem of climate services. A certain amount of replication is desirable, healthy, and necessary, but beyond some point can be excessive unless the total capacity remains insufficient. Each component has come into existence for a different set of reasons. Since these components were invented by human beings, their subsequent evolution can in theory be guided by humans. The history and purpose of each component needs to be borne in mind, with capsule descriptions suitable for rapid delivery to the decision-makers who approve the support for the various components. Good communication among the components is therefore essential for a healthy and functional overall system. This in turn calls for the ability to adequately represent the role of each of those components, a purpose best informed through actual participation in multiple components, to obtain the necessary familiarity.
Connectionist model-based stereo vision for telerobotics
NASA Technical Reports Server (NTRS)
Hoff, William; Mathis, Donald
1989-01-01
Autonomous stereo vision for range measurement could greatly enhance the performance of telerobotic systems. Stereo vision could be a key component for autonomous object recognition and localization, thus enabling the system to perform low-level tasks, and allowing a human operator to perform a supervisory role. The central difficulty in stereo vision is the ambiguity in matching corresponding points in the left and right images. However, if one has a priori knowledge of the characteristics of the objects in the scene, as is often the case in telerobotics, a model-based approach can be taken. Researchers describe how matching ambiguities can be resolved by ensuring that the resulting three-dimensional points are consistent with surface models of the expected objects. A four-layer neural network hierarchy is used in which surface models of increasing complexity are represented in successive layers. These models are represented using a connectionist scheme called parameter networks, in which a parametrized object (for example, a planar patch p=f(h,m sub x, m sub y) is represented by a collection of processing units, each of which corresponds to a distinct combination of parameter values. The activity level of each unit in the parameter network can be thought of as representing the confidence with which the hypothesis represented by that unit is believed. Weights in the network are set so as to implement gradient descent in an energy function.
Method and Circuit for In-Situ Health Monitoring of Solar Cells in Space
NASA Technical Reports Server (NTRS)
Krasowski, Michael J.; Prokop, Norman F.
2010-01-01
This innovation represents a method and circuit realization of a system designed to make in-situ measurements of test solar-cell operational parameters on orbit using readily available high-temperature and high-ionizing-radiation- tolerant electronic components. This innovation enables on-orbit in-situ solar-array health monitoring and is in response to a need recognized by the U.S. Air Force for future solar arrays for unmanned spacecraft. This system can also be constructed out of commercial-grade electronics and can be embedded into terrestrial solar power system as a diagnostics instrument. This innovation represents a novel approach to I-V curve measurement that is radiation and temperature hard, consumes very few system resources, is economical, and utilizes commercially available components. The circuit will also operate at temperatures as low as 55 C and up to +225 C, allowing it to reside close to the array in direct sunlight. It uses a swept mode transistor functioning as a resistive load while utilizing the solar cells themselves as the biasing device, so the size of the instrument is small and there is no danger of over-driving the cells. Further, this innovation utilizes nearly universal spacecraft bus resources and therefore can be readily adapted to any spacecraft bus allowing for ease of retrofit, or designed into new systems without requiring the addition of infrastructure. One unique characteristic of this innovation is that it effects the measurement of I-V curves without the use of large resistor arrays or active current sources normally used to characterize cells. A single transistor is used as a variable resistive load across the cell. This multi-measurement instrument was constructed using operational amplifiers, analog switches, voltage regulators, MOSFETs, resistors, and capacitors. The operational amplifiers, analog switches, and voltage regulators are silicon-on-insulator (SOI) technology known for its hardness to the effects of ionizing radiation. The SOI components used can tolerate temperatures up to 225 C, which gives plenty of thermal headroom allowing this circuit to perhaps reside in the solar cell panel itself where temperatures can reach over 100 C.
Christie, Andrew E; Yu, Andy; Pascual, Micah G; Roncalli, Vittoria; Cieslak, Matthew C; Warner, Amanda N; Lameyer, Tess J; Stanhope, Meredith E; Dickinson, Patsy S; Joe Hull, J
2018-04-11
Essentially all organisms exhibit recurring patterns of physiology/behavior that oscillate with a period of ~24-h and are synchronized to the solar day. Crustaceans are no exception, with robust circadian rhythms having been documented in many members of this arthropod subphylum. However, little is known about the molecular underpinnings of their circadian rhythmicity. Moreover, the location of the crustacean central clock has not been firmly established, although both the brain and eyestalk ganglia have been hypothesized as loci. The American lobster, Homarus americanus, is known to exhibit multiple circadian rhythms, and immunodetection data suggest that its central clock is located within the eyestalk ganglia rather than in the brain. Here, brain- and eyestalk ganglia-specific transcriptomes were generated and used to assess the presence/absence of transcripts encoding the commonly recognized protein components of arthropod circadian signaling systems in these two regions of the lobster central nervous system. Transcripts encoding putative homologs of the core clock proteins clock, cryptochrome 2, cycle, period and timeless were found in both the brain and eyestalk ganglia assemblies, as were transcripts encoding similar complements of putative clock-associated, clock input pathway and clock output pathway proteins. The presence and identity of transcripts encoding core clock proteins in both regions were confirmed using PCR. These findings suggest that both the brain and eyestalk ganglia possess all of the molecular components needed for the establishment of a circadian signaling system. Whether the brain and eyestalk clocks are independent of one another or represent a single timekeeping system remains to be determined. Interestingly, while most of the proteins deduced from the identified transcripts are shared by both the brain and eyestalk ganglia, assembly-specific isoforms were also identified, e.g., several period variants, suggesting the possibility of region-specific variation in clock function, especially if the brain and eyestalk clocks represent independent oscillators. Copyright © 2018 Elsevier B.V. All rights reserved.
A specification of 3D manipulation in virtual environments
NASA Technical Reports Server (NTRS)
Su, S. Augustine; Furuta, Richard
1994-01-01
In this paper we discuss the modeling of three basic kinds of 3-D manipulations in the context of a logical hand device and our virtual panel architecture. The logical hand device is a useful software abstraction representing hands in virtual environments. The virtual panel architecture is the 3-D component of the 2-D window systems. Both of the abstractions are intended to form the foundation for adaptable 3-D manipulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, Kathryn, E-mail: kfarrell@ices.utexas.edu; Oden, J. Tinsley, E-mail: oden@ices.utexas.edu; Faghihi, Danial, E-mail: danial@ices.utexas.edu
A general adaptive modeling algorithm for selection and validation of coarse-grained models of atomistic systems is presented. A Bayesian framework is developed to address uncertainties in parameters, data, and model selection. Algorithms for computing output sensitivities to parameter variances, model evidence and posterior model plausibilities for given data, and for computing what are referred to as Occam Categories in reference to a rough measure of model simplicity, make up components of the overall approach. Computational results are provided for representative applications.
Quantitative Biofractal Feedback Part II ’Devices, Scalability & Robust Control’
2008-05-01
in the modelling of proton exchange membrane fuel cells ( PEMFC ) may work as a powerful tool in the development and widespread testing of alternative...energy sources in the next decade [9], where biofractal controllers will be used to control these complex systems. The dynamic model of PEMFC , is...dynamic response of the PEMFC . In the Iftukhar model, the fuel cell is represented by an equivalent circuit, whose components are identified with
Lunar Dust Simulant in Mechanical Component Testing - Paradigm and Practicality
NASA Technical Reports Server (NTRS)
Jett, T.; Street, K.; Abel, P.; Richmond, R.
2008-01-01
Due to the uniquely harsh lunar surface environment, terrestrial test activities may not adequately represent abrasive wear by lunar dust likely to be experienced in mechanical systems used in lunar exploration. Testing to identify potential moving mechanism problems has recently begun within the NASA Engineering and Safety Center Mechanical Systems Lunar Dust Assessment activity in coordination with the Exploration Technology and Development Program Dust Management Project, and these complimentary efforts will be described. Specific concerns about differences between simulant and lunar dust, and procedures for mechanical component testing with lunar simulant will be considered. In preparing for long term operations within a dusty lunar environment, the three fundamental approaches to keeping mechanical equipment functioning are dust avoidance, dust removal, and dust tolerance, with some combination of the three likely to be found in most engineering designs. Methods to exclude dust from contact with mechanical components would constitute mitigation by dust avoidance, so testing seals for dust exclusion efficacy as a function of particle size provides useful information for mechanism design. Dust of particle size less than a micron is not well documented for impact on lunar mechanical components. Therefore, creating a standardized lunar dust simulant in the particulate size range of ca. 0.1 to 1.0 micrometer is useful for testing effects on mechanical components such as bearings, gears, seals, bushings, and other moving mechanical assemblies. Approaching actual wear testing of mechanical components, it is beneficial to first establish relative wear rates caused by dust on commonly used mechanical component materials. The wear mode due to dust within mechanical components, such as abrasion caused by dust in grease(s), needs to be considered, as well as the effects of vacuum, lunar thermal cycle, and electrostatics on wear rate.
Fleming, Brandon J.; LaMotte, Andrew E.; Sekellick, Andrew J.
2013-01-01
Hydrogeologic regions in the fractured rock area of Maryland were classified using geographic information system tools with principal components and cluster analyses. A study area consisting of the 8-digit Hydrologic Unit Code (HUC) watersheds with rivers that flow through the fractured rock area of Maryland and bounded by the Fall Line was further subdivided into 21,431 catchments from the National Hydrography Dataset Plus. The catchments were then used as a common hydrologic unit to compile relevant climatic, topographic, and geologic variables. A principal components analysis was performed on 10 input variables, and 4 principal components that accounted for 83 percent of the variability in the original data were identified. A subsequent cluster analysis grouped the catchments based on four principal component scores into six hydrogeologic regions. Two crystalline rock hydrogeologic regions, including large parts of the Washington, D.C. and Baltimore metropolitan regions that represent over 50 percent of the fractured rock area of Maryland, are distinguished by differences in recharge, Precipitation minus Potential Evapotranspiration, sand content in soils, and groundwater contributions to streams. This classification system will provide a georeferenced digital hydrogeologic framework for future investigations of groundwater availability in the fractured rock area of Maryland.
Proteomic Dissection of the Mitochondrial DNA Metabolism Apparatus in Arabidopsis
DOE Office of Scientific and Technical Information (OSTI.GOV)
SAlly A. Mackenzie
2004-01-06
This study involves the investigation of nuclear genetic components that regulate mitochondrial genome behavior in higher plants. The approach utilizes the advanced plant model system of Arabidopsis thaliana to identify and functionally characterize multiple components of the mitochondrial DNA replication, recombination and mismatch repair system and their interaction partners. The rationale for the research stems from the central importance of mitochondria to overall cellular metabolism and the essential nature of the mitochondrial genome to mitochondrial function. Relatively little is understood about mitochondrial DNA maintenance and transmission in higher eukaryotes, and the higher plant mitochondrial genome displays unique properties and behavior.more » This investigation has revealed at least three important properties of plant mitochondrial DNA metabolism components. (1) Many are dual targeted to mitochondrial and chloroplasts by novel mechanisms, suggesting that the mitochondria a nd chloroplast share their genome maintenance apparatus. (2)The MSH1 gene, originating as a component of mismatch repair, has evolved uniquely in plants to participate in differential replication of the mitochondrial genome. (3) This mitochondrial differential replication process, termed substoichiometric shifting and also involving a RecA-related gene, appears to represent an adaptive mechanism to expand plant reproductive capacity and is likely present throughout the plant kingdom.« less