The Influence of Free Space Environment in the Mission Life Cycle: Material Selection
NASA Technical Reports Server (NTRS)
Edwards, David L.; Burns, Howard D.; de Groh, Kim K.
2014-01-01
The natural space environment has a great influence on the ability of space systems to perform according to mission design specification. Understanding the natural space environment and its influence on space system performance is critical to the concept formulation, design, development, and operation of space systems. Compatibility with the natural space environment is a primary factor in determining the functional lifetime of the space system. Space systems being designed and developed today are growing in complexity. In many instances, the increased complexity also increases its sensitivity to space environmental effects. Sensitivities to the natural space environment can be tempered through appropriate design measures, material selection, ground processing, mitigation strategies, and/or the acceptance of known risks. The design engineer must understand the effects of the natural space environment on the space system and its components. This paper will discuss the influence of the natural space environment in the mission life cycle with a specific focus on the role of material selection.
Spacecraft Environments Interactive: Space Radiation and Its Effects on Electronic System
NASA Technical Reports Server (NTRS)
Howard, J. W., Jr.; Hardage, D. M.
1999-01-01
The natural space environment is characterized by complex and subtle phenomena hostile to spacecraft. Effects of these phenomena impact spacecraft design, development, and operation. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of space radiation and its effects on electronic systems essential to accomplish overall mission objectives, especially in the current climate of smaller/better/cheaper faster. This primer outlines the radiation environments encountered in space, discusses regions and types of radiation, applies the information to effects that these environments have on electronic systems, addresses design guidelines and system reliability, and stresses the importance of early involvement of radiation specialists in mission planning, system design, and design review (part-by-part verification).
A Stochastic Model of Plausibility in Live Virtual Constructive Environments
2017-09-14
objective in virtual environment research and design is the maintenance of adequate consistency levels in the face of limited system resources such as...provides some commentary with regard to system design considerations and future research directions. II. SYSTEM MODEL DVEs are often designed as a...exceed the system’s requirements. Research into predictive models of virtual environment consistency is needed to provide designers the tools to
NASA Astrophysics Data System (ADS)
Zou, Yuan; Shen, Tianxing
2013-03-01
Besides illumination calculating during architecture and luminous environment design, to provide more varieties of photometric data, the paper presents combining relation between luminous environment design and SM light environment measuring system, which contains a set of experiment devices including light information collecting and processing modules, and can offer us various types of photometric data. During the research process, we introduced a simulation method for calibration, which mainly includes rebuilding experiment scenes in 3ds Max Design, calibrating this computer aid design software in simulated environment under conditions of various typical light sources, and fitting the exposure curves of rendered images. As analytical research went on, the operation sequence and points for attention during the simulated calibration were concluded, connections between Mental Ray renderer and SM light environment measuring system were established as well. From the paper, valuable reference conception for coordination between luminous environment design and SM light environment measuring system was pointed out.
Use of CDMA access technology in mobile satellite systems
NASA Technical Reports Server (NTRS)
Ramasastry, Jay; Wiedeman, Bob
1995-01-01
Use of Code Division Multiple Access (CDMA) technology in terrestrial wireless systems is fairly well understood. Similarly, design and operation of Power Control in a CDMA-based system in a terrestrial environment is also well established. Terrestrial multipath characteristics, and optimum design of the CDMA receiver to deal with multipath and fading conditions are reliably established. But the satellite environment is different. When the CDMA technology is adopted to the satellite environment, other design features need to be incorporated (for example; interleaving, open-loop and closed-loop power control design, diversity characteristics) to achieve comparable level of system performance. In fact, the GLOBALSTAR LEO/MSS system has incorporated all these features. Contrary to some published reports, CDMA retains the advantages in the satellite environment that are similar to those achieved in the terrestrial environment. This document gives a description of the CDMA waveform and other design features adopted for mobile satellite applications.
NASA Astrophysics Data System (ADS)
Watanuki, Keiichi; Kojima, Kazuyuki
The environment in which Japanese industry has achieved great respect is changing tremendously due to the globalization of world economies, while Asian countries are undergoing economic and technical development as well as benefiting from the advances in information technology. For example, in the design of custom-made casting products, a designer who lacks knowledge of casting may not be able to produce a good design. In order to obtain a good design and manufacturing result, it is necessary to equip the designer and manufacturer with a support system related to casting design, or a so-called knowledge transfer and creation system. This paper proposes a new virtual reality based knowledge acquisition and job training system for casting design, which is composed of the explicit and tacit knowledge transfer systems using synchronized multimedia and the knowledge internalization system using portable virtual environment. In our proposed system, the education content is displayed in the immersive virtual environment, whereby a trainee may experience work in the virtual site operation. Provided that the trainee has gained explicit and tacit knowledge of casting through the multimedia-based knowledge transfer system, the immersive virtual environment catalyzes the internalization of knowledge and also enables the trainee to gain tacit knowledge before undergoing on-the-job training at a real-time operation site.
ERIC Educational Resources Information Center
Lone, Jon Anders; Riege, Anine H.; Bjørklund, Roald; Hoff, Thomas; Bjørkli, Cato
2017-01-01
Recent work design theories propose that the work design configuration (i.e. "work system") in an organization interacts with its broader social and economic environment. Nevertheless, there are few studies of how the broader environment affects the work system. In the present study, the authors used a qualitative theory-elaboration…
Systematic analysis of signaling pathways using an integrative environment.
Visvanathan, Mahesh; Breit, Marc; Pfeifer, Bernhard; Baumgartner, Christian; Modre-Osprian, Robert; Tilg, Bernhard
2007-01-01
Understanding the biological processes of signaling pathways as a whole system requires an integrative software environment that has comprehensive capabilities. The environment should include tools for pathway design, visualization, simulation and a knowledge base concerning signaling pathways as one. In this paper we introduce a new integrative environment for the systematic analysis of signaling pathways. This system includes environments for pathway design, visualization, simulation and a knowledge base that combines biological and modeling information concerning signaling pathways that provides the basic understanding of the biological system, its structure and functioning. The system is designed with a client-server architecture. It contains a pathway designing environment and a simulation environment as upper layers with a relational knowledge base as the underlying layer. The TNFa-mediated NF-kB signal trans-duction pathway model was designed and tested using our integrative framework. It was also useful to define the structure of the knowledge base. Sensitivity analysis of this specific pathway was performed providing simulation data. Then the model was extended showing promising initial results. The proposed system offers a holistic view of pathways containing biological and modeling data. It will help us to perform biological interpretation of the simulation results and thus contribute to a better understanding of the biological system for drug identification.
EPSAT - A workbench for designing high-power systems for the space environment
NASA Technical Reports Server (NTRS)
Kuharski, R. A.; Jongeward, G. A.; Wilcox, K. G.; Kennedy, E. M.; Stevens, N. J.; Putnam, R. M.; Roche, J. C.
1990-01-01
The Environment Power System Analysis Tool (EPSAT) is being developed to provide space power system design engineers with an analysis tool for determining the performance of power systems in both naturally occurring and self-induced environments. This paper presents the results of the project after two years of a three-year development program. The relevance of the project result for SDI are pointed out, and models of the interaction of the environment and power systems are discussed.
Yu, Kaijun
2010-07-01
This paper Analys the design goals of Medical Instrumentation standard information retrieval system. Based on the B /S structure,we established a medical instrumentation standard retrieval system with ASP.NET C # programming language, IIS f Web server, SQL Server 2000 database, in the. NET environment. The paper also Introduces the system structure, retrieval system modules, system development environment and detailed design of the system.
Human Factors Considerations in System Design
NASA Technical Reports Server (NTRS)
Mitchell, C. M. (Editor); Vanbalen, P. M. (Editor); Moe, K. L. (Editor)
1983-01-01
Human factors considerations in systems design was examined. Human factors in automated command and control, in the efficiency of the human computer interface and system effectiveness are outlined. The following topics are discussed: human factors aspects of control room design; design of interactive systems; human computer dialogue, interaction tasks and techniques; guidelines on ergonomic aspects of control rooms and highly automated environments; system engineering for control by humans; conceptual models of information processing; information display and interaction in real time environments.
ERIC Educational Resources Information Center
Yang, Jie Chi; Chen, Chih Hung; Jeng, Ming Chang
2010-01-01
The aim of this study is to design and develop a Physically Interactive Learning Environment, the PILE system, by integrating video-capture virtual reality technology into a classroom. The system is designed for elementary school level English classes where students can interact with the system through physical movements. The system is designed to…
Aerospace Systems Design in NASA's Collaborative Engineering Environment
NASA Technical Reports Server (NTRS)
Monell, Donald W.; Piland, William M.
1999-01-01
Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.
Aerospace Systems Design in NASA's Collaborative Engineering Environment
NASA Technical Reports Server (NTRS)
Monell, Donald W.; Piland, William M.
2000-01-01
Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operation). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographical distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across Agency.
Aerospace Systems Design in NASA's Collaborative Engineering Environment
NASA Astrophysics Data System (ADS)
Monell, Donald W.; Piland, William M.
2000-07-01
Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.
System Engineering Issues for Avionics Survival in the Space Environment
NASA Technical Reports Server (NTRS)
Pavelitz, Steven
1999-01-01
This paper examines how the system engineering process influences the design of a spacecraft's avionics by considering the space environment. Avionics are susceptible to the thermal, radiation, plasma, and meteoroids/orbital debris environments. The environment definitions for various spacecraft mission orbits (LEO/low inclination, LEO/Polar, MEO, HEO, GTO, GEO and High ApogeeElliptical) are discussed. NASA models and commercial software used for environment analysis are reviewed. Applicability of technical references, such as NASA TM-4527 "Natural Orbital Environment Guidelines for Use in Aerospace Vehicle Development" is discussed. System engineering references, such as the MSFC System Engineering Handbook, are reviewed to determine how the environments are accounted for in the system engineering process. Tools and databases to assist the system engineer and avionics designer in addressing space environment effects on avionics are described and usefulness assessed.
NASA Technical Reports Server (NTRS)
1989-01-01
The ascent thermal environment and propulsion acoustic sources for the Martin-Marietta Corporation designed Liquid Rocket Boosters (LRB) to be used with the Space Shuttle Orbiter and External Tank are described. Two designs were proposed: one using a pump-fed propulsion system and the other using a pressure-fed propulsion system. Both designs use LOX/RP-1 propellants, but differences in performance of the two propulsion systems produce significant differences in the proposed stage geometries, exhaust plumes, and resulting environments. The general characteristics of the two designs which are significant for environmental predictions are described. The methods of analysis and predictions for environments in acoustics, aerodynamic heating, and base heating (from exhaust plume effects) are also described. The acoustic section will compare the proposed exhaust plumes with the current SRB from the standpoint of acoustics and ignition overpressure. The sections on thermal environments will provide details of the LRB heating rates and indications of possible changes in the Orbiter and ET environments as a result of the change from SRBs to LRBs.
PERTS: A Prototyping Environment for Real-Time Systems
NASA Technical Reports Server (NTRS)
Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.
1993-01-01
PERTS is a prototyping environment for real-time systems. It is being built incrementally and will contain basic building blocks of operating systems for time-critical applications, tools, and performance models for the analysis, evaluation and measurement of real-time systems and a simulation/emulation environment. It is designed to support the use and evaluation of new design approaches, experimentations with alternative system building blocks, and the analysis and performance profiling of prototype real-time systems.
Review of the environmental effects of the Space Station Freedom photovoltaic power module
NASA Technical Reports Server (NTRS)
Nahra, Henry K.
1989-01-01
An overview is provided of the environment in the low Earth orbit (LEO), the interaction of this environment with the Photovoltaic (PV) Power system of the Space Station Freedom is reviewed, and the environmental programs are described that are designed to investigate the interactions of the LEO environment with the photovoltaic power system. Such programs will support and impact the design of the subsystems of the PV module in order to survive the design lifetime in the LEO natural and induced environment.
ERIC Educational Resources Information Center
Thomas, Charles R.
Some of the major elements of administrative information systems design as applied to higher education are described. Differences between the application of computer technology in the commercial environment and the educational environment are discussed. The major steps in systems development from problem definition through implementation are…
ERIC Educational Resources Information Center
Vartiainen, Henriikka; Enkenberg, Jorma
2013-01-01
Sociocultural approaches emphasize the systemic, context-bound nature of learning, which is mediated by other people, physical and conceptual artifacts, and tools. However, current educational systems tend not to approach learning from the systemic perspective, and mostly situate learning within classroom environments. This design-based research…
PERTS: A Prototyping Environment for Real-Time Systems
NASA Technical Reports Server (NTRS)
Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.
1991-01-01
We discuss an ongoing project to build a Prototyping Environment for Real-Time Systems, called PERTS. PERTS is a unique prototyping environment in that it has (1) tools and performance models for the analysis and evaluation of real-time prototype systems, (2) building blocks for flexible real-time programs and the support system software, (3) basic building blocks of distributed and intelligent real time applications, and (4) an execution environment. PERTS will make the recent and future theoretical advances in real-time system design and engineering readily usable to practitioners. In particular, it will provide an environment for the use and evaluation of new design approaches, for experimentation with alternative system building blocks and for the analysis and performance profiling of prototype real-time systems.
The embodiment design of the heat rejection system for the portable life support system
NASA Technical Reports Server (NTRS)
Stuckwisch, Sue; Francois, Jason; Laughlin, Julia; Phillips, Lee; Carrion, Carlos A.
1994-01-01
The Portable Life Support System (PLSS) provides a suitable environment for the astronaut in the Extravehicular Mobility Unit (EMU), and the heat rejection system controls the thermal conditions in the space suit. The current PLSS sublimates water to the space environment; therefore, the system loses mass. Since additional supplies of fluid must be available on the Space Shuttle, NASA desires a closed heat rejecting system. This document presents the embodiment design for a radiative plate heat rejection system without mass transfer to the space environment. This project will transform the concept variant into a design complete with material selection, dimensions of the system, layouts of the heat rejection system, suggestions for manufacturing, and financial viability.
Simulation Environment for Orion Launch Abort System Control Design Studies
NASA Technical Reports Server (NTRS)
McMinn, J. Dana; Jackson, E. Bruce; Christhilf, David M.
2007-01-01
The development and use of an interactive environment to perform control system design and analysis of the proposed Crew Exploration Vehicle Launch Abort System is described. The environment, built using a commercial dynamic systems design package, includes use of an open-source configuration control software tool and a collaborative wiki to coordinate between the simulation developers, control law developers and users. A method for switching between multiple candidate control laws and vehicle configurations is described. Aerodynamic models, especially in a development program, change rapidly, so a means for automating the implementation of new aerodynamic models is described.
Total systems design analysis of high performance structures
NASA Technical Reports Server (NTRS)
Verderaime, V.
1993-01-01
Designer-control parameters were identified at interdiscipline interfaces to optimize structural systems performance and downstream development and operations with reliability and least life-cycle cost. Interface tasks and iterations are tracked through a matrix of performance disciplines integration versus manufacturing, verification, and operations interactions for a total system design analysis. Performance integration tasks include shapes, sizes, environments, and materials. Integrity integrating tasks are reliability and recurring structural costs. Significant interface designer control parameters were noted as shapes, dimensions, probability range factors, and cost. Structural failure concept is presented, and first-order reliability and deterministic methods, benefits, and limitations are discussed. A deterministic reliability technique combining benefits of both is proposed for static structures which is also timely and economically verifiable. Though launch vehicle environments were primarily considered, the system design process is applicable to any surface system using its own unique filed environments.
NASA Technical Reports Server (NTRS)
Banda, Carolyn; Bushnell, David; Chen, Scott; Chiu, Alex; Constantine, Betsy; Murray, Jerry; Neukom, Christian; Prevost, Michael; Shankar, Renuka; Staveland, Lowell
1991-01-01
The Man-Machine Integration Design and Analysis System (MIDAS) is an integrated suite of software components that constitutes a prototype workstation to aid designers in applying human factors principles to the design of complex human-machine systems. MIDAS is intended to be used at the very early stages of conceptual design to provide an environment wherein designers can use computational representations of the crew station and operator, instead of hardware simulators and man-in-the-loop studies, to discover problems and ask 'what if' questions regarding the projected mission, equipment, and environment. This document is the Software Product Specification for MIDAS. Introductory descriptions of the processing requirements, hardware/software environment, structure, I/O, and control are given in the main body of the document for the overall MIDAS system, with detailed discussion of the individual modules included in Annexes A-J.
NASA Technical Reports Server (NTRS)
Guman, W. J. (Editor)
1972-01-01
Design details are presented of the solid propellant pulsed plasma microthruster which was analyzed during the Task 1 effort. The design details presented show that the inherent functional simplicity underlying the flight proven LES-6 design can be maintained in the SMS systems design even with minimum weight constraints imposed. A 1293 hour uninterrupted vacuum test with the engineering thermal model, simulating an 18.8 to 33 g environment of the propellant, its feed system and electrode assembly, revealed that program thruster performance requirements could be met. This latter g environment is a more severe environment than will be ever encountered in the SMS spacecraft.
NASA Technical Reports Server (NTRS)
Dorney, Suzanne; Dorney, Daniel J.; Huber, Frank; Sheffler, David A.; Turner, James E. (Technical Monitor)
2001-01-01
The advent of advanced computer architectures and parallel computing have led to a revolutionary change in the design process for turbomachinery components. Two- and three-dimensional steady-state computational flow procedures are now routinely used in the early stages of design. Unsteady flow analyses, however, are just beginning to be incorporated into design systems. This paper outlines the transition of a three-dimensional unsteady viscous flow analysis from the research environment into the design environment. The test case used to demonstrate the analysis is the full turbine system (high-pressure turbine, inter-turbine duct and low-pressure turbine) from an advanced turboprop engine.
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1997-01-01
Economic stresses are forcing many industries to reduce cost and time-to-market, and to insert emerging technologies into their products. Engineers are asked to design faster, ever more complex systems. Hence, there is a need for novel design paradigms and effective design tools to reduce the design and development times. Several computational tools and facilities have been developed to support the design process. Some of these are described in subsequent presentations. The focus of the workshop is on the computational tools and facilities which have high potential for use in future design environment for aerospace systems. The outline for the introductory remarks is given. First, the characteristics and design drivers for future aerospace systems are outlined; second, simulation-based design environment, and some of its key modules are described; third, the vision for the next-generation design environment being planned by NASA, the UVA ACT Center and JPL is presented. The anticipated major benefits of the planned environment are listed; fourth, some of the government-supported programs related to simulation-based design are listed; and fifth, the objectives and format of the workshop are presented.
The Design of Future Airbreathing Engine Systems within an Intelligent Synthesis Environment
NASA Technical Reports Server (NTRS)
Malone, J. B.; Housner, J. M.; Lytle, J. K.
1999-01-01
This paper describes a new Initiative proposed by the National Aeronautics and Space Administration (NASA). The purpose of this initiative is to develop a future design environment for engineering and science mission synthesis for use by NASA scientists and engineers. This new initiative is called the Intelligent Synthesis Environment (ISE). The paper describes the mission of NASA, future aerospace system characteristics, the current engineering design process, the ISE concept, and concludes with a description of possible ISE applications for the decision of air-breathing propulsion systems.
The environment power system analysis tool development program
NASA Technical Reports Server (NTRS)
Jongeward, Gary A.; Kuharski, Robert A.; Kennedy, Eric M.; Stevens, N. John; Putnam, Rand M.; Roche, James C.; Wilcox, Katherine G.
1990-01-01
The Environment Power System Analysis Tool (EPSAT) is being developed to provide space power system design engineers with an analysis tool for determining system performance of power systems in both naturally occurring and self-induced environments. The program is producing an easy to use computer aided engineering (CAE) tool general enough to provide a vehicle for technology transfer from space scientists and engineers to power system design engineers. The results of the project after two years of a three year development program are given. The EPSAT approach separates the CAE tool into three distinct functional units: a modern user interface to present information, a data dictionary interpreter to coordinate analysis; and a data base for storing system designs and results of analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
Literature summarizing a study on the Saudi Arabian solar controlled environment agriculture system is presented. Specifications and performance requirements for the system components are revealed. Detailed performance and cost analyses are used to determine the optimum design. A preliminary design of an engineering field test is included. Some weather data are provided for Riyadh, Saudi Arabia. (BCS)
ELISA, a demonstrator environment for information systems architecture design
NASA Technical Reports Server (NTRS)
Panem, Chantal
1994-01-01
This paper describes an approach of reusability of software engineering technology in the area of ground space system design. System engineers have lots of needs similar to software developers: sharing of a common data base, capitalization of knowledge, definition of a common design process, communication between different technical domains. Moreover system designers need to simulate dynamically their system as early as possible. Software development environments, methods and tools now become operational and widely used. Their architecture is based on a unique object base, a set of common management services and they host a family of tools for each life cycle activity. In late '92, CNES decided to develop a demonstrative software environment supporting some system activities. The design of ground space data processing systems was chosen as the application domain. ELISA (Integrated Software Environment for Architectures Specification) was specified as a 'demonstrator', i.e. a sufficient basis for demonstrations, evaluation and future operational enhancements. A process with three phases was implemented: system requirements definition, design of system architectures models, and selection of physical architectures. Each phase is composed of several activities that can be performed in parallel, with the provision of Commercial Off the Shelves Tools. ELISA has been delivered to CNES in January 94, currently used for demonstrations and evaluations on real projects (e.g. SPOT4 Satellite Control Center). It is on the way of new evolutions.
Novel design of interactive multimodal biofeedback system for neurorehabilitation.
Huang, He; Chen, Y; Xu, W; Sundaram, H; Olson, L; Ingalls, T; Rikakis, T; He, Jiping
2006-01-01
A previous design of a biofeedback system for Neurorehabilitation in an interactive multimodal environment has demonstrated the potential of engaging stroke patients in task-oriented neuromotor rehabilitation. This report explores the new concept and alternative designs of multimedia based biofeedback systems. In this system, the new interactive multimodal environment was constructed with abstract presentation of movement parameters. Scenery images or pictures and their clarity and orientation are used to reflect the arm movement and relative position to the target instead of the animated arm. The multiple biofeedback parameters were classified into different hierarchical levels w.r.t. importance of each movement parameter to performance. A new quantified measurement for these parameters were developed to assess the patient's performance both real-time and offline. These parameters were represented by combined visual and auditory presentations with various distinct music instruments. Overall, the objective of newly designed system is to explore what information and how to feedback information in interactive virtual environment could enhance the sensorimotor integration that may facilitate the efficient design and application of virtual environment based therapeutic intervention.
Wang, Xianwen; Liu, Zhiguo; Zhang, Wenchang; Wu, Qingfu; Tan, Shulin
2013-08-01
We have designed a mobile operating room information management system. The system is composed of a client and a server. A client, consisting of a PC, medical equipments, PLC and sensors, provides the acquisition and processing of anesthesia and micro-environment data. A server is a powerful computer that stores the data of the system. The client gathers the medical device data by using the C/S mode, and analyzes the obtained HL7 messages through the class library call. The client collects the micro-environment information with PLC, and finishes the data reading with the OPC technology. Experiment results showed that the designed system could manage the patient anesthesia and micro-environment information well, and improve the efficiency of the doctors' works and the digital level of the mobile operating room.
Development of real-time software environments for NASA's modern telemetry systems
NASA Technical Reports Server (NTRS)
Horner, Ward; Sabia, Steve
1989-01-01
An effort has been made to maintain maximum performance and flexibility for NASA-Goddard's VLSI telemetry system elements through the development of two real-time systems: (1) the Base System Environment, which supports generic system integration and furnishes the basic porting of various manufacturers' cards, and (2) the Modular Environment for Data Systems, which supports application-specific developments and furnishes designers with a set of tested generic library functions that can be employed to speed up the development of such application-specific real-time codes. The performance goals and design rationale for these two systems are discussed.
The Telecommunications Environment and Its Implications for System Design.
ERIC Educational Resources Information Center
Learn, Larry L.; McGill, Michael J.
1984-01-01
Discusses changing telecommunications environment and effect these changes might have on information systems design. Major telecommunications factors and trends reviewed are classified as technical (application of computer technologies to classical telecommunications problems), economic, and regulatory policy related (divestiture of American…
Modeling of Radiowave Propagation in a Forested Environment
2014-09-01
is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Propagation models used in wireless communication system design play an...domains. Applications in both domains require communication devices and sensors to be operated in forested environments. Various methods have been...wireless communication system design play an important role in overall link performance. Propagation models in a forested environment, in particular
NASA Astrophysics Data System (ADS)
Sorensen, Ira Joseph
A primary objective of the effort reported here is to develop a radiometric instrument modeling environment to provide complete end-to-end numerical models of radiometric instruments, integrating the optical, electro-thermal, and electronic systems. The modeling environment consists of a Monte Carlo ray-trace (MCRT) model of the optical system coupled to a transient, three-dimensional finite-difference electrothermal model of the detector assembly with an analytic model of the signal-conditioning circuitry. The environment provides a complete simulation of the dynamic optical and electrothermal behavior of the instrument. The modeling environment is used to create an end-to-end model of the CERES scanning radiometer, and its performance is compared to the performance of an operational CERES total channel as a benchmark. A further objective of this effort is to formulate an efficient design environment for radiometric instruments. To this end, the modeling environment is then combined with evolutionary search algorithms known as genetic algorithms (GA's) to develop a methodology for optimal instrument design using high-level radiometric instrument models. GA's are applied to the design of the optical system and detector system separately and to both as an aggregate function with positive results.
SRB ascent aerodynamic heating design criteria reduction study, volume 1
NASA Technical Reports Server (NTRS)
Crain, W. K.; Frost, C. L.; Engel, C. D.
1989-01-01
An independent set of solid rocket booster (SRB) convective ascent design environments were produced which would serve as a check on the Rockwell IVBC-3 environments used to design the ascent phase of flight. In addition, support was provided for lowering the design environments such that Thermal Protection System (TPS), based on conservative estimates, could be removed leading to a reduction in SRB refurbishment time and cost. Ascent convective heating rates and loads were generated at locations in the SRB where lowering the thermal environment would impact the TPS design. The ascent thermal environments are documented along with the wind tunnel/flight test data base used as well as the trajectory and environment generation methodology. Methodology, as well as, environment summaries compared to the 1980 Design and Rockwell IVBC-3 Design Environment are presented in this volume, 1.
Computer-aided design development transition for IPAD environment
NASA Technical Reports Server (NTRS)
Owens, H. G.; Mock, W. D.; Mitchell, J. C.
1980-01-01
The relationship of federally sponsored computer-aided design/computer-aided manufacturing (CAD/CAM) programs to the aircraft life cycle design process, an overview of NAAD'S CAD development program, an evaluation of the CAD design process, a discussion of the current computing environment within which NAAD is developing its CAD system, some of the advantages/disadvantages of the NAAD-IPAD approach, and CAD developments during transition into the IPAD system are discussed.
Formal Assurance for Cognitive Architecture Based Autonomous Agent
NASA Technical Reports Server (NTRS)
Bhattacharyya, Siddhartha; Eskridge, Thomas; Neogi, Natasha; Carvalho, Marco
2017-01-01
Autonomous systems are designed and deployed in different modeling paradigms. These environments focus on specific concepts in designing the system. We focus our effort in the use of cognitive architectures to design autonomous agents to collaborate with humans to accomplish tasks in a mission. Our research focuses on introducing formal assurance methods to verify the behavior of agents designed in Soar, by translating the agent to the formal verification environment Uppaal.
ERIC Educational Resources Information Center
Wirussawa, Seatuch; Tesaputa, Kowat; Duangpaeng, Amporn
2016-01-01
This study aimed at 1) investigating the element of the learning environment management system in the secondary schools, 2) exploring the current states and problems of the system on the learning environment management in the secondary schools, 3) designing the learning environment management system for the secondary schools, and 4) identifying…
Executive control systems in the engineering design environment
NASA Technical Reports Server (NTRS)
Hurst, P. W.; Pratt, T. W.
1985-01-01
Executive Control Systems (ECSs) are software structures for the unification of various engineering design application programs into comprehensive systems with a central user interface (uniform access) method and a data management facility. Attention is presently given to the most significant determinations of a research program conducted for 24 ECSs, used in government and industry engineering design environments to integrate CAD/CAE applications programs. Characterizations are given for the systems' major architectural components and the alternative design approaches considered in their development. Attention is given to ECS development prospects in the areas of interdisciplinary usage, standardization, knowledge utilization, and computer science technology transfer.
Learning System Design Consideration in Creating an Online Learning Environment.
ERIC Educational Resources Information Center
Schaffer, Scott
This paper describes the design of a Web-based learning environment for leadership facilitators in a United States military organization. The overall aim of this project was to design a prototype of an online learning environment that supports leadership facilitators' knowledge development in the content area of motivation. The learning…
An Interactive, Web-based High Performance Modeling Environment for Computational Epidemiology.
Deodhar, Suruchi; Bisset, Keith R; Chen, Jiangzhuo; Ma, Yifei; Marathe, Madhav V
2014-07-01
We present an integrated interactive modeling environment to support public health epidemiology. The environment combines a high resolution individual-based model with a user-friendly web-based interface that allows analysts to access the models and the analytics back-end remotely from a desktop or a mobile device. The environment is based on a loosely-coupled service-oriented-architecture that allows analysts to explore various counter factual scenarios. As the modeling tools for public health epidemiology are getting more sophisticated, it is becoming increasingly hard for non-computational scientists to effectively use the systems that incorporate such models. Thus an important design consideration for an integrated modeling environment is to improve ease of use such that experimental simulations can be driven by the users. This is achieved by designing intuitive and user-friendly interfaces that allow users to design and analyze a computational experiment and steer the experiment based on the state of the system. A key feature of a system that supports this design goal is the ability to start, stop, pause and roll-back the disease propagation and intervention application process interactively. An analyst can access the state of the system at any point in time and formulate dynamic interventions based on additional information obtained through state assessment. In addition, the environment provides automated services for experiment set-up and management, thus reducing the overall time for conducting end-to-end experimental studies. We illustrate the applicability of the system by describing computational experiments based on realistic pandemic planning scenarios. The experiments are designed to demonstrate the system's capability and enhanced user productivity.
An Interactive, Web-based High Performance Modeling Environment for Computational Epidemiology
Deodhar, Suruchi; Bisset, Keith R.; Chen, Jiangzhuo; Ma, Yifei; Marathe, Madhav V.
2014-01-01
We present an integrated interactive modeling environment to support public health epidemiology. The environment combines a high resolution individual-based model with a user-friendly web-based interface that allows analysts to access the models and the analytics back-end remotely from a desktop or a mobile device. The environment is based on a loosely-coupled service-oriented-architecture that allows analysts to explore various counter factual scenarios. As the modeling tools for public health epidemiology are getting more sophisticated, it is becoming increasingly hard for non-computational scientists to effectively use the systems that incorporate such models. Thus an important design consideration for an integrated modeling environment is to improve ease of use such that experimental simulations can be driven by the users. This is achieved by designing intuitive and user-friendly interfaces that allow users to design and analyze a computational experiment and steer the experiment based on the state of the system. A key feature of a system that supports this design goal is the ability to start, stop, pause and roll-back the disease propagation and intervention application process interactively. An analyst can access the state of the system at any point in time and formulate dynamic interventions based on additional information obtained through state assessment. In addition, the environment provides automated services for experiment set-up and management, thus reducing the overall time for conducting end-to-end experimental studies. We illustrate the applicability of the system by describing computational experiments based on realistic pandemic planning scenarios. The experiments are designed to demonstrate the system's capability and enhanced user productivity. PMID:25530914
ERIC Educational Resources Information Center
Hung, Wei-Chen; Smith, Thomas J.; Smith, M. Cecil
2015-01-01
Technology provides the means to create useful learning and practice environments for learners. Well-designed cognitive tutor systems, for example, can provide appropriate learning environments that feature cognitive supports (ie, scaffolding) for students to increase their procedural knowledge. The purpose of this study was to conduct a series of…
Software Tools for Formal Specification and Verification of Distributed Real-Time Systems
1994-07-29
time systems and to evaluate the design. The evaluation of the design includes investigation of both the capability and potential usefulness of the toolkit environment and the feasibility of its implementation....The goals of Phase 1 are to design in detail a toolkit environment based on formal methods for the specification and verification of distributed real
Application of zonal model on indoor air sensor network design
NASA Astrophysics Data System (ADS)
Chen, Y. Lisa; Wen, Jin
2007-04-01
Growing concerns over the safety of the indoor environment have made the use of sensors ubiquitous. Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is more informed by intuition and experience rather by systematic design. To develop a sensor system design methodology, a proper indoor airflow modeling approach is needed. Various indoor airflow modeling techniques, from complicated computational fluid dynamics approaches to simplified multi-zone approaches, exist in the literature. In this study, the effects of two airflow modeling techniques, multi-zone modeling technique and zonal modeling technique, on indoor air protection sensor system design are discussed. Common building attack scenarios, using a typical CBW agent, are simulated. Both multi-zone and zonal models are used to predict airflows and contaminant dispersion. Genetic Algorithm is then applied to optimize the sensor location and quantity. Differences in the sensor system design resulting from the two airflow models are discussed for a typical office environment and a large hall environment.
Computational Tools and Facilities for the Next-Generation Analysis and Design Environment
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)
1997-01-01
This document contains presentations from the joint UVA/NASA Workshop on Computational Tools and Facilities for the Next-Generation Analysis and Design Environment held at the Virginia Consortium of Engineering and Science Universities in Hampton, Virginia on September 17-18, 1996. The presentations focused on the computational tools and facilities for analysis and design of engineering systems, including, real-time simulations, immersive systems, collaborative engineering environment, Web-based tools and interactive media for technical training. Workshop attendees represented NASA, commercial software developers, the aerospace industry, government labs, and academia. The workshop objectives were to assess the level of maturity of a number of computational tools and facilities and their potential for application to the next-generation integrated design environment.
NASA Astrophysics Data System (ADS)
Schubert, Oliver J.; Tolle, Charles R.
2004-09-01
Over the last decade the world has seen numerous autonomous vehicle programs. Wheels and track designs are the basis for many of these vehicles. This is primarily due to four main reasons: a vast preexisting knowledge base for these designs, energy efficiency of power sources, scalability of actuators, and the lack of control systems technologies for handling alternate highly complex distributed systems. Though large efforts seek to improve the mobility of these vehicles, many limitations still exist for these systems within unstructured environments, e.g. limited mobility within industrial and nuclear accident sites where existing plant configurations have been extensively changed. These unstructured operational environments include missions for exploration, reconnaissance, and emergency recovery of objects within reconfigured or collapsed structures, e.g. bombed buildings. More importantly, these environments present a clear and present danger for direct human interactions during the initial phases of recovery operations. Clearly, the current classes of autonomous vehicles are incapable of performing in these environments. Thus the next generation of designs must include highly reconfigurable and flexible autonomous robotic platforms. This new breed of autonomous vehicles will be both highly flexible and environmentally adaptable. Presented in this paper is one of the most successful designs from nature, the snake-eel-worm (SEW). This design implements shape memory alloy (SMA) actuators which allow for scaling of the robotic SEW designs from sub-micron scale to heavy industrial implementations without major conceptual redesigns as required in traditional hydraulic, pneumatic, or motor driven systems. Autonomous vehicles based on the SEW design posses the ability to easily move between air based environments and fluid based environments with limited or no reconfiguration. Under a SEW designed vehicle, one not only achieves vastly improved maneuverability within a highly unstructured environment, but also gains robotic manipulation abilities, normally relegated as secondary add-ons within existing vehicles, all within one small condensed package. The prototype design presented includes a Beowulf style computing system for advanced guidance calculations and visualization computations. All of the design and implementation pertaining to the SEW robot discussed in this paper is the product of a student team under the summer fellowship program at the DOEs INEEL.
Mission Operations and Navigation Toolkit Environment
NASA Technical Reports Server (NTRS)
Sunseri, Richard F.; Wu, Hsi-Cheng; Hanna, Robert A.; Mossey, Michael P.; Duncan, Courtney B.; Evans, Scott E.; Evans, James R.; Drain, Theodore R.; Guevara, Michelle M.; Martin Mur, Tomas J.;
2009-01-01
MONTE (Mission Operations and Navigation Toolkit Environment) Release 7.3 is an extensible software system designed to support trajectory and navigation analysis/design for space missions. MONTE is intended to replace the current navigation and trajectory analysis software systems, which, at the time of this reporting, are used by JPL's Navigation and Mission Design section. The software provides an integrated, simplified, and flexible system that can be easily maintained to serve the needs of future missions in need of navigation services.
The Role of Probabilistic Design Analysis Methods in Safety and Affordability
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.
2016-01-01
For the last several years, NASA and its contractors have been working together to build space launch systems to commercialize space. Developing commercial affordable and safe launch systems becomes very important and requires a paradigm shift. This paradigm shift enforces the need for an integrated systems engineering environment where cost, safety, reliability, and performance need to be considered to optimize the launch system design. In such an environment, rule based and deterministic engineering design practices alone may not be sufficient to optimize margins and fault tolerance to reduce cost. As a result, introduction of Probabilistic Design Analysis (PDA) methods to support the current deterministic engineering design practices becomes a necessity to reduce cost without compromising reliability and safety. This paper discusses the importance of PDA methods in NASA's new commercial environment, their applications, and the key role they can play in designing reliable, safe, and affordable launch systems. More specifically, this paper discusses: 1) The involvement of NASA in PDA 2) Why PDA is needed 3) A PDA model structure 4) A PDA example application 5) PDA link to safety and affordability.
ERIC Educational Resources Information Center
Forwood, Bruce S.
This bibliography has been produced as part of a research program attempting to develop a new approach to building environment and service systems design using computer-aided design techniques. As such it not only classifies available literature on the service systems themselves, but also contains sections on the application of computers and…
Research and Development of Rapid Design Systems for Aerospace Structure
NASA Technical Reports Server (NTRS)
Schaeffer, Harry G.
1999-01-01
This report describes the results of research activities associated with the development of rapid design systems for aerospace structures in support of the Intelligent Synthesis Environment (ISE). The specific subsystems investigated were the interface between model assembly and analysis; and, the high performance NASA GPS equation solver software system in the Windows NT environment on low cost high-performance PCs.
Overview of NASA's Integrated Design and Engineering Analysis (IDEA)Environment
NASA Technical Reports Server (NTRS)
Robinson, Jeffrey S.; Martin John G.
2008-01-01
Historically, the design of subsonic and supersonic aircraft has been divided into separate technical disciplines (such as propulsion, aerodynamics and structures) each of which performs their design and analysis in relative isolation from others. This is possible in most cases either because the amount of interdisciplinary coupling is minimal or because the interactions can be treated as linear. The design of hypersonic airbreathing vehicles, like NASA s X-43, is quite the opposite. Such systems are dominated by strong non-linear interactions between disciplines. The design of these systems demands that a multi-disciplinary approach be taken. Furthermore, increased analytical fidelity at the conceptual design phase is highly desirable as many of the non-linearities are not captured by lower fidelity tools. Only when these systems are designed from a true multi-disciplinary perspective can the real performance benefits be achieved and complete vehicle systems be fielded. Toward this end, the Vehicle Analysis Branch at NASA Langley Research Center has been developing the Integrated Design & Engineering Analysis (IDEA) Environment. IDEA is a collaborative environment for parametrically modeling conceptual and preliminary launch vehicle configurations using the Adaptive Modeling Language (AML) as the underlying framework. The environment integrates geometry, configuration, propulsion, aerodynamics, aerothermodynamics, trajectory, closure and structural analysis into a generative, parametric, unified computational model where data is shared seamlessly between the different disciplines. Plans are also in place to incorporate life cycle analysis tools into the environment which will estimate vehicle operability, reliability and cost. IDEA is currently being funded by NASA s Hypersonics Project, a part of the Fundamental Aeronautics Program within the Aeronautics Research Mission Directorate. The environment is currently focused around a two-stage-to-orbit configuration with a turbine based combined cycle (TBCC) first stage and reusable rocket second stage. This paper provides an overview of the development of the IDEA environment, a description of the current status and detail of future plans.
Embedded I&C for Extreme Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, Roger A.
2016-04-01
This project uses embedded instrumentation and control (I&C) technologies to demonstrate potential performance gains of nuclear power plant components in extreme environments. Extreme environments include high temperature, radiation, high pressure, high vibration, and high EMI conditions. For extreme environments, performance gains arise from moment-to-moment sensing of local variables and immediate application of local feedback control. Planning for embedding I&C during early system design phases contrasts with the traditional, serial design approach that incorporates minimal I&C after mechanical and electrical design is complete. The demonstration application involves the development and control of a novel, proof-of-concept motor/pump design. The motor and pumpmore » combination operate within the fluid environment, eliminating the need for rotating seals. Actively controlled magnetic bearings also replace failure-prone mechanical contact bearings that typically suspend rotating components. Such as design has the potential to significantly enhance the reliability and life of the pumping system and would not be possible without embedded I&C.« less
A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles
NASA Technical Reports Server (NTRS)
Cognata, Thomas J.; Hardtl, Darren; Sheth, Rubik; Dinsmore, Craig
2015-01-01
Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system is in other words required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a quite high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but for crew safety and environment compatibility these are massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design which employs the behavior of shape memory alloys (SMA) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, nor power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Stress and deformation analyses predict the desired morphing behavior of the concept. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept is demonstrated in proof-of-concept benchtop tests.
A Morphing Radiator for High-Turndown Thermal Control of Crewed Space Exploration Vehicles
NASA Technical Reports Server (NTRS)
Cognata, Thomas J.; Hartl, Darren J.; Sheth, Rubik; Dinsmore, Craig
2014-01-01
Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge, particularly in the case of crewed vehicles where the thermal control system (TCS) must maintain a relatively constant internal environment temperature despite a vastly varying external thermal environment and despite heat rejection needs that are contrary to the potential of the environment. A thermal control system may be required to reject a higher heat load to warm environments and a lower heat load to cold environments, necessitating a relatively high turndown ratio. A modern thermal control system is capable of a turndown ratio of on the order of 12:1, but crew safety and environment compatibility have constrained these solutions to massive multi-loop fluid systems. This paper discusses the analysis of a unique radiator design that employs the behavior of shape memory alloys (SMAs) to vary the turndown of, and thus enable, a single-loop vehicle thermal control system for space exploration vehicles. This design, a morphing radiator, varies its shape in response to facesheet temperature to control view of space and primary surface emissivity. Because temperature dependence is inherent to SMA behavior, the design requires no accommodation for control, instrumentation, or power supply in order to operate. Thermal and radiation modeling of the morphing radiator predict a turndown ranging from 11.9:1 to 35:1 independent of TCS configuration. Coupled thermal-stress analyses predict that the desired morphing behavior of the concept is attainable. A system level mass analysis shows that by enabling a single loop architecture this design could reduce the TCS mass by between 139 kg and 225 kg. The concept has been demonstrated in proof-of-concept benchtop tests.
Analyst-centered models for systems design, analysis, and development
NASA Technical Reports Server (NTRS)
Bukley, A. P.; Pritchard, Richard H.; Burke, Steven M.; Kiss, P. A.
1988-01-01
Much has been written about the possible use of Expert Systems (ES) technology for strategic defense system applications, particularly for battle management algorithms and mission planning. It is proposed that ES (or more accurately, Knowledge Based System (KBS)) technology can be used in situations for which no human expert exists, namely to create design and analysis environments that allow an analyst to rapidly pose many different possible problem resolutions in game like fashion and to then work through the solution space in search of the optimal solution. Portions of such an environment exist for expensive AI hardware/software combinations such as the Xerox LOOPS and Intellicorp KEE systems. Efforts are discussed to build an analyst centered model (ACM) using an ES programming environment, ExperOPS5 for a simple missile system tradeoff study. By analyst centered, it is meant that the focus of learning is for the benefit of the analyst, not the model. The model's environment allows the analyst to pose a variety of what if questions without resorting to programming changes. Although not an ES per se, the ACM would allow for a design and analysis environment that is much superior to that of current technologies.
NASA Astrophysics Data System (ADS)
Gerber, S.; Holsman, J. P.
1981-02-01
A proposed design analysis is presented of a passive solar energy efficient system for a typical three level, three bedroom, two story, garage under townhouse. The design incorporates the best, most performance proven and cost effective products, materials, processes, technologies, and subsystems which are available today. Seven distinct categories recognized for analysis are identified as: the exterior environment; the interior environment; conservation of energy; natural energy utilization; auxiliary energy utilization; control and distribution systems; and occupant adaptation. Preliminary design features, fenestration systems, the plenum supply system, the thermal storage party fire walls, direct gain storage, the radiant comfort system, and direct passive cooling systems are briefly described.
ERIC Educational Resources Information Center
Maceli, Monica Grace
2012-01-01
Meta-design theory emphasizes that system designers can never anticipate all future uses of their system at design time, when systems are being developed. Rather, end users shape their environments in response to emerging needs at use time. Meta-design theory suggests that systems should therefore be designed to adapt to future conditions in the…
Executive control systems in the engineering design environment. M.S. Thesis
NASA Technical Reports Server (NTRS)
Hurst, P. W.
1985-01-01
An executive control system (ECS) is a software structure for unifying various applications codes into a comprehensive system. It provides a library of applications, a uniform access method through a cental user interface, and a data management facility. A survey of twenty-four executive control systems designed to unify various CAD/CAE applications for use in diverse engineering design environments within government and industry was conducted. The goals of this research were to establish system requirements to survey state-of-the-art architectural design approaches, and to provide an overview of the historical evolution of these systems. Foundations for design are presented and include environmental settings, system requirements, major architectural components, and a system classification scheme based on knowledge of the supported engineering domain(s). An overview of the design approaches used in developing the major architectural components of an ECS is presented with examples taken from the surveyed systems. Attention is drawn to four major areas of ECS development: interdisciplinary usage; standardization; knowledge utilization; and computer science technology transfer.
The Development of a Web-Based Urban Soundscape Evaluation System
NASA Astrophysics Data System (ADS)
Sudarsono, A. S.; Sarwono, J.
2018-05-01
Acoustic quality is one of the important aspects of urban design. It is usually evaluated based on how loud the urban environment is. However, this approach does not consider people’s perception of the urban acoustic environment. Therefore, a different method has been developed based on the perception of the acoustic environment using the concept of soundscape. Soundscape is defined as the acoustic environment perceived by people who are part of the environment. This approach considers the relationship between the sound source, the environment, and the people. The analysis of soundscape considers many aspects such as cultural aspects, people’s expectations, people’s experience of space, and social aspects. Soundscape affects many aspects of human life such as culture, health, and the quality of life. Urban soundscape management and planning must be integrated with the other aspect of urban design, both in the design and the improvement stages. The soundscape concept seeks to make the acoustic environment as pleasant as possible in a space with or without uncomfortable sound sources. Soundscape planning includes the design of physical features to achieve a positive perceptual outcome. It is vital to gather data regarding the relationship between humans and the components of a soundscape, e.g., sound sources, features of the physical environment, the functions of a space, and the expectation of the sound source. The data can be measured and gathered using several soundscape evaluation methods. Soundscape evaluation is usually conducted using in-situ surveys and laboratory experiments using a multi-speaker system. Although these methods have been validated and are widely used in soundscape analysis, there are some limitations in the application. The in-situ survey needs to be done at one time with many people at the same time because it is hard to replicate the acoustic environment. Conversely, the laboratory experiment does not have a problem with the repetition of the experiment. This method requires a room with a multi-speaker reproduction system. This project used a different method to analyse soundscape developed using headphones via the internet. The internet system for data gathering has been established; a website has enabled to reproduce high-quality audio and it has a system to design online questionnaires. Furthermore, the development of a virtual reality system allows the reproduction of virtual audio-visual stimulus on a website. Although the website has an established system to gather the required data, the problem is the validation of the reproduction system for soundscape analysis, which needs to be done with consideration of several factors: the suitable recording system, the effect of headphone variation, the calibration of the system, and the perception result from internet-based acoustic environment reproduction. This study aims to develop and validate a web-based urban soundscape evaluation method. By using this method, the experiment can be repeated easily and data can be gathered from many respondents. Furthermore, the simplicity of the system allows for the application by the stakeholders in urban design. The data gathered from this system is important for the design of an urban area with consideration of the acoustic aspects.
ERIC Educational Resources Information Center
Bhagat, Kaushal Kumar; Subheesh, N. P.; Bhattacharya, Bani; Chang, Chun-Yen
2017-01-01
With the rapid development of technology, incorporation of Information Communication Technology (ICT) for formative assessment purpose has been increasing over the past decade. This article describes the design and development of identification of students' misconceptions in an individualized learning environment (iSMILE) system that includes…
Towards Engineering Biological Systems in a Broader Context.
Venturelli, Ophelia S; Egbert, Robert G; Arkin, Adam P
2016-02-27
Significant advances have been made in synthetic biology to program information processing capabilities in cells. While these designs can function predictably in controlled laboratory environments, the reliability of these devices in complex, temporally changing environments has not yet been characterized. As human society faces global challenges in agriculture, human health and energy, synthetic biology should develop predictive design principles for biological systems operating in complex environments. Natural biological systems have evolved mechanisms to overcome innumerable and diverse environmental challenges. Evolutionary design rules should be extracted and adapted to engineer stable and predictable ecological function. We highlight examples of natural biological responses spanning the cellular, population and microbial community levels that show promise in synthetic biology contexts. We argue that synthetic circuits embedded in host organisms or designed ecologies informed by suitable measurement of biotic and abiotic environmental parameters could be used as engineering substrates to achieve target functions in complex environments. Successful implementation of these methods will broaden the context in which synthetic biological systems can be applied to solve important problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of environmental design on patient outcome: a systematic review.
Laursen, Jannie; Danielsen, Anne; Rosenberg, Jacob
2014-01-01
The aim of this systematic review was to assess how inpatients were affected by the built environment design during their hospitalization. Over the last decade, the healthcare system has become increasingly aware of how focus on healthcare environment might affect patient satisfaction. The focus on environmental design has become a field with great potential because of its possible impact on cost control while improving quality of care. A systematic literature search was conducted to identify current and past studies about evidence-based healthcare design. The following databases were searched: Medline/PubMed, Cinahl, and Embase. Inclusion criteria were randomized clinical trials (RCTs) investigating the effect of built environment design interventions such as music, natural murals, and plants in relation to patients' health outcome. Built environment design aspects such as audio environment and visual environment had a positive influence on patients' health outcomes. Specifically the studies indicated a decrease in patients' anxiety, pain, and stress levels when exposed to certain built environment design interventions. The built environment, especially specific audio and visual aspects, seems to play an important role in patients' outcomes, making hospitals a better healing environment for patients. Built environment, evidence-based design, healing environments, hospitals, literature review.
NASA's Space Environments and Effects Program: Technology for the New Millennium
NASA Technical Reports Server (NTRS)
Hardage, Donna M.; Pearson, Steven D.
2000-01-01
Current trends in spacecraft development include the use of advanced technologies while maintaining the "faster, better, cheaper" philosophy. Spacecraft designers are continually designing with smaller and faster electronics as well as lighter and thinner materials providing better performance, lower weight, and ultimately lower costs. Given this technology trend, spacecraft will become increasingly susceptible to the harsh space environments, causing damaging or even disabling effects on space systems. NASA's Space Environments and Effects (SEE) Program defines the space environments and provides advanced technology development to support the design, development, and operation of spacecraft systems that will accommodate or mitigate effects due to the harsh space environments. This Program provides a comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this multitudinous information is properly maintained and inserted into spacecraft design programs. A description of the SEE Program, its accomplishments, and future activities is provided.
MACHETE: Environment for Space Networking Evaluation
NASA Technical Reports Server (NTRS)
Jennings, Esther H.; Segui, John S.; Woo, Simon
2010-01-01
Space Exploration missions requires the design and implementation of space networking that differs from terrestrial networks. In a space networking architecture, interplanetary communication protocols need to be designed, validated and evaluated carefully to support different mission requirements. As actual systems are expensive to build, it is essential to have a low cost method to validate and verify mission/system designs and operations. This can be accomplished through simulation. Simulation can aid design decisions where alternative solutions are being considered, support trade-studies and enable fast study of what-if scenarios. It can be used to identify risks, verify system performance against requirements, and as an initial test environment as one moves towards emulation and actual hardware implementation of the systems. We describe the development of Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) and its use cases in supporting architecture trade studies, protocol performance and its role in hybrid simulation/emulation. The MACHETE environment contains various tools and interfaces such that users may select the set of tools tailored for the specific simulation end goal. The use cases illustrate tool combinations for simulating space networking in different mission scenarios. This simulation environment is useful in supporting space networking design for planned and future missions as well as evaluating performance of existing networks where non-determinism exist in data traffic and/or link conditions.
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.; Oleson, Mel W.; Cullingford, Hatice S.
1990-01-01
Described here are the results of a study to develop a conceptual design for an experimental closed loop fluid handling system capable of monitoring, controlling, and supplying nutrient solution to higher plants. The Plant Feeder Experiment (PFE) is designed to be flight tested in a microgravity environment. When flown, the PFX will provide information on both the generic problems of microgravity fluid handling and the specific problems associated with the delivery of the nutrient solution in a microgravity environment. The experimental hardware is designed to fit into two middeck lockers on the Space Shuttle, and incorporates several components that have previously been flight tested.
Space and Atmospheric Environments: From Low Earth Orbits to Deep Space
NASA Technical Reports Server (NTRS)
Barth, Janet L.
2003-01-01
Natural space and atmospheric environments pose a difficult challenge for designers of technological systems in space. The deleterious effects of environment interactions with the systems include degradation of materials, thermal changes, contamination, excitation, spacecraft glow, charging, radiation damage, and induced background interference. Design accommodations must be realistic with minimum impact on performance while maintaining a balance between cost and risk. The goal of applied research in space environments and effects is to limit environmental impacts at low cost relative to spacecraft cost and to infuse enabling and commercial off-the-shelf technologies into space programs. The need to perform applied research to understand the space environment in a practical sense and to develop methods to mitigate these environment effects is frequently underestimated by space agencies and industry. Applied science research in this area is critical because the complexity of spacecraft systems is increasing, and they are exposed simultaneously to a multitude of space environments.
The development of internet based ship design support system for small and medium sized shipyards
NASA Astrophysics Data System (ADS)
Shin, Sung-Chul; Lee, Soon-Sup; Kang, Dong-Hoon; Lee, Kyung-Ho
2012-03-01
In this paper, a prototype of ship basic planning system is implemented for the small and medium sized shipyards based on the internet technology and concurrent engineering concept. The system is designed from the user requirements. Consequently, standardized development environment and tools are selected. These tools are used for the system development to define and evaluate core application technologies. The system will contribute to increasing competitiveness of small and medium sized shipyards in the 21st century industrial en-vironment.
40 CFR 264.1201 - Design and operating standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Design and operating standards. 264.1201 Section 264.1201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID... inspection procedures that assure the controls and containment systems are working as designed and that...
An assessment of DREAM, appendix E
NASA Technical Reports Server (NTRS)
Riddle, W. E.
1980-01-01
The design realization, evaluation and modelling (DREAM) system is evaluated. A short history of the DREAM research project is given as well as the significant characteristics of DREAM as a development environment. The design notation which is the basis for the DREAM system is reviewed, and the development tools envisioned as part of DREAM are discussed. Insights into development environments and their production are presented and used to make suggestions for future work in the area of development environments.
Visualising Learning Design in LAMS: A Historical View
ERIC Educational Resources Information Center
Dalziel, James
2011-01-01
The Learning Activity Management System (LAMS) provides a web-based environment for the creation, sharing, running and monitoring of Learning Designs. A central feature of LAMS is the visual authoring environment, where educators use a drag-and-drop environment to create sequences of learning activities. The visualisation is based on boxes…
CONDUIT: A New Multidisciplinary Integration Environment for Flight Control Development
NASA Technical Reports Server (NTRS)
Tischler, Mark B.; Colbourne, Jason D.; Morel, Mark R.; Biezad, Daniel J.; Levine, William S.; Moldoveanu, Veronica
1997-01-01
A state-of-the-art computational facility for aircraft flight control design, evaluation, and integration called CONDUIT (Control Designer's Unified Interface) has been developed. This paper describes the CONDUIT tool and case study applications to complex rotary- and fixed-wing fly-by-wire flight control problems. Control system analysis and design optimization methods are presented, including definition of design specifications and system models within CONDUIT, and the multi-objective function optimization (CONSOL-OPTCAD) used to tune the selected design parameters. Design examples are based on flight test programs for which extensive data are available for validation. CONDUIT is used to analyze baseline control laws against pertinent military handling qualities and control system specifications. In both case studies, CONDUIT successfully exploits trade-offs between forward loop and feedback dynamics to significantly improve the expected handling, qualities and minimize the required actuator authority. The CONDUIT system provides a new environment for integrated control system analysis and design, and has potential for significantly reducing the time and cost of control system flight test optimization.
Integration of a CAD System Into an MDO Framework
NASA Technical Reports Server (NTRS)
Townsend, J. C.; Samareh, J. A.; Weston, R. P.; Zorumski, W. E.
1998-01-01
NASA Langley has developed a heterogeneous distributed computing environment, called the Framework for Inter-disciplinary Design Optimization, or FIDO. Its purpose has been to demonstrate framework technical feasibility and usefulness for optimizing the preliminary design of complex systems and to provide a working environment for testing optimization schemes. Its initial implementation has been for a simplified model of preliminary design of a high-speed civil transport. Upgrades being considered for the FIDO system include a more complete geometry description, required by high-fidelity aerodynamics and structures codes and based on a commercial Computer Aided Design (CAD) system. This report presents the philosophy behind some of the decisions that have shaped the FIDO system and gives a brief case study of the problems and successes encountered in integrating a CAD system into the FEDO framework.
Interchange of electronic design through VHDL and EIS
NASA Technical Reports Server (NTRS)
Wallace, Richard M.
1987-01-01
The need for both robust and unambiguous electronic designs is a direct requirement of the astonishing growth in design and manufacturing capability during recent years. In order to manage the plethora of designs, and have the design data both interchangeable and interoperable, the Very High Speed Integrated Circuits (VHSIC) program is developing two major standards for the electronic design community. The VHSIC Hardware Description Language (VHDL) is designed to be the lingua franca for transmission of design data between designers and their environments. The Engineering Information System (EIS) is designed to ease the integration of data betweeen diverse design automation systems. This paper describes the rationale for the necessity for these two standards and how they provide a synergistic expressive capability across the macrocosm of design environments.
Optimization of MLS receivers for multipath environments
NASA Technical Reports Server (NTRS)
Mcalpine, G. A.; Highfill, J. H., III
1976-01-01
The design of a microwave landing system (MLS) aircraft receiver, capable of optimal performance in multipath environments found in air terminal areas, is reported. Special attention was given to the angle tracking problem of the receiver and includes tracking system design considerations, study and application of locally optimum estimation involving multipath adaptive reception and then envelope processing, and microcomputer system design. Results show processing is competitive in this application with i-f signal processing performance-wise and is much more simple and cheaper. A summary of the signal model is given.
ERIC Educational Resources Information Center
Wu, Hsin-Kai
2010-01-01
The purposes of this article are to present the design of a technology-enhanced learning environment (Air Pollution Modeling Environment [APoME]) that was informed by a novice-expert analysis and to discuss high school students' development of modelling practices in the learning environment. APoME was designed to help high school students…
40 CFR 1065.1105 - Sampling system design.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Sampling system design. 1065.1105... Compounds § 1065.1105 Sampling system design. (a) General. We recommend that you design your SVOC batch... practical, adjust sampling times based on the emission rate of target analytes from the engine to obtain...
Space Weather Effects on Spacecraft Systems
NASA Technical Reports Server (NTRS)
Barth, Janet L.
2003-01-01
Space-based systems are developing into critical infrastructure required to support the quality of life on Earth. Hence, spacecraft reliability is a serious issue that is complicated by exposure to the space environment. Complex mission designs along with rapidly evolving technologies have outpaced efforts to accommodate detrimental space environment impacts on systems. Hazardous space environments, the effects on systems, and the accommodation of the effects are described with a focus on the need to predict space environments.
Source Data Impacts on Epistemic Uncertainty for Launch Vehicle Fault Tree Models
NASA Technical Reports Server (NTRS)
Al Hassan, Mohammad; Novack, Steven; Ring, Robert
2016-01-01
Launch vehicle systems are designed and developed using both heritage and new hardware. Design modifications to the heritage hardware to fit new functional system requirements can impact the applicability of heritage reliability data. Risk estimates for newly designed systems must be developed from generic data sources such as commercially available reliability databases using reliability prediction methodologies, such as those addressed in MIL-HDBK-217F. Failure estimates must be converted from the generic environment to the specific operating environment of the system in which it is used. In addition, some qualification of applicability for the data source to the current system should be made. Characterizing data applicability under these circumstances is crucial to developing model estimations that support confident decisions on design changes and trade studies. This paper will demonstrate a data-source applicability classification method for suggesting epistemic component uncertainty to a target vehicle based on the source and operating environment of the originating data. The source applicability is determined using heuristic guidelines while translation of operating environments is accomplished by applying statistical methods to MIL-HDK-217F tables. The paper will provide one example for assigning environmental factors uncertainty when translating between operating environments for the microelectronic part-type components. The heuristic guidelines will be followed by uncertainty-importance routines to assess the need for more applicable data to reduce model uncertainty.
40 CFR 281.30 - New UST system design, construction, installation, and notification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false New UST system design, construction, installation, and notification. 281.30 Section 281.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVAL OF STATE UNDERGROUND STORAGE TANK PROGRAMS Criteria for No-Less-Stringent § 281.30 New UST...
40 CFR 281.30 - New UST system design, construction, installation, and notification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false New UST system design, construction, installation, and notification. 281.30 Section 281.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVAL OF STATE UNDERGROUND STORAGE TANK PROGRAMS Criteria for No-Less-Stringent § 281.30 New UST...
Aerodynamic heating environment definition/thermal protection system selection for the HL-20
NASA Astrophysics Data System (ADS)
Wurster, K. E.; Stone, H. W.
1993-09-01
Definition of the aerothermal environment is critical to any vehicle such as the HL-20 Personnel Launch System that operates within the hypersonic flight regime. Selection of an appropriate thermal protection system design is highly dependent on the accuracy of the heating-environment prediction. It is demonstrated that the entry environment determines the thermal protection system design for this vehicle. The methods used to predict the thermal environment for the HL-20 Personnel Launch System vehicle are described. Comparisons of the engineering solutions with computational fluid dynamic predictions, as well as wind-tunnel test results, show good agreement. The aeroheating predictions over several critical regions of the vehicle, including the stagnation areas of the nose and leading edges, windward centerline and wing surfaces, and leeward surfaces, are discussed. Results of predictions based on the engineering methods found within the MINIVER aerodynamic heating code are used in conjunction with the results of the extensive wind-tunnel tests on this configuration to define a flight thermal environment. Finally, the selection of the thermal protection system based on these predictions and current technology is described.
Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry
NASA Astrophysics Data System (ADS)
Sun, Daner; Looi, Chee-Kit
2013-02-01
The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as develop critical learning skills through model-based collaborative inquiry approach. It is intended to support collaborative inquiry, real-time social interaction, progressive modeling, and to provide multiple sources of scaffolding for students. We first discuss the theoretical underpinnings for synthesizing the WiMVT design framework, introduce the components and features of the system, and describe the proposed work flow of WiMVT instruction. We also elucidate our research approach that supports the development of the system. Finally, the findings of a pilot study are briefly presented to demonstrate of the potential for learning efficacy of the WiMVT implementation in science learning. Implications are drawn on how to improve the existing system, refine teaching strategies and provide feedback to researchers, designers and teachers. This pilot study informs designers like us on how to narrow the gap between the learning environment's intended design and its actual usage in the classroom.
I want what you've got: Cross platform portabiity and human-robot interaction assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Julie L. Marble, Ph.D.*.; Douglas A. Few; David J. Bruemmer
2005-08-01
Human-robot interaction is a subtle, yet critical aspect of design that must be assessed during the development of both the human-robot interface and robot behaviors if the human-robot team is to effectively meet the complexities of the task environment. Testing not only ensures that the system can successfully achieve the tasks for which it was designed, but more importantly, usability testing allows the designers to understand how humans and robots can, will, and should work together to optimize workload distribution. A lack of human-centered robot interface design, the rigidity of sensor configuration, and the platform-specific nature of research robot developmentmore » environments are a few factors preventing robotic solutions from reaching functional utility in real word environments. Often the difficult engineering challenge of implementing adroit reactive behavior, reliable communication, trustworthy autonomy that combines with system transparency and usable interfaces is overlooked in favor of other research aims. The result is that many robotic systems never reach a level of functional utility necessary even to evaluate the efficacy of the basic system, much less result in a system that can be used in a critical, real-world environment. Further, because control architectures and interfaces are often platform specific, it is difficult or even impossible to make usability comparisons between them. This paper discusses the challenges inherent to the conduct of human factors testing of variable autonomy control architectures and across platforms within a complex, real-world environment. It discusses the need to compare behaviors, architectures, and interfaces within a structured environment that contains challenging real-world tasks, and the implications for system acceptance and trust of autonomous robotic systems for how humans and robots interact in true interactive teams.« less
Design considerations for lunar base photovoltaic power systems
NASA Technical Reports Server (NTRS)
Hickman, J. Mark; Curtis, Henry B.; Landis, Geoffrey A.
1990-01-01
A survey was made of factors that may affect the design of photovoltaic arrays for a lunar base. These factors, which include the lunar environment and system design criteria, are examined. A photovoltaic power system design with a triangular array geometry is discussed and compared to a nuclear reactor power systems and a power system utilizing both nuclear and solar power sources.
Man-systems requirements for the control of teleoperators in space
NASA Technical Reports Server (NTRS)
Shields, Nicholas L., Jr.
1988-01-01
The microgravity of the space environment has profound effects on humans and, consequently, on the design requirements for subsystems and components with which humans interact. There are changes in the anthropometry, vision, the perception of orientation, posture, and the ways in which we exert energy. The design requirements for proper human engineering must reflect each of the changes that results, and this is especially true in the exercise of control over remote and teleoperated systems where the operator is removed from any direct sense of control. The National Aeronautics and Space Administration has recently completed the first NASA-wide human factors standard for microgravity. The Man-Systems Integration Standard, NASA-STD-3000, contains considerable information on the appropriate design criteria for microgravity, and there is information that is useful in the design for teleoperated systems. There is not, however, a dedicated collection of data which pertains directly to the special cases of remote and robotic operations. The design considerations for human-system interaction in the control of remote systems in space are discussed, with brief details on the information to be found in the NASA-STD-3000, and arguments for a dedicated section within the Standard which deals with robotic, teleoperated and remote systems and the design requirements for effective human control of these systems in the space environment, and from the space environment.
NASA Technical Reports Server (NTRS)
Allen, B. Danette; Alexandrov, Natalia
2016-01-01
Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that contains the system and other systems evolves with the CAS as well. The effects of the emerging adaptation and co-evolution are difficult to capture with only combined mathematical and computational experimentation. Therefore, an ab initio flight simulation environment must accommodate individual vehicles, groups of self-organizing vehicles, and large-scale infrastructure behavior. Inspired by Massively Multiplayer Online Role Playing Games (MMORPG) and Serious Gaming, the proposed ab initio simulation environment is similar to online gaming environments in which player participants interact with each other, affect their environment, and expect the simulation to persist and change regardless of any individual player's active participation.
Development and approach to low-frequency microgravity isolation systems
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.
1990-01-01
The low-gravity environment provided by space flight has afforded the science community a unique arena for the study of fundamental and technological sciences. However, the dynamic environment observed on space shuttle flights and predicted for Space Station Freedom has complicated the analysis of prior microgravity experiments and prompted concern for the viability of proposed space experiments requiring long-term, low-gravity environments. Thus, isolation systems capable of providing significant improvements to this random environment are being developed. The design constraints imposed by acceleration-sensitive, microgravity experiment payloads in the unique environment of space and a theoretical background for active isolation are discussed. A design is presented for a six-degree-of-freedom, active, inertial isolation system based on the baseline relative and inertial isolation techniques described.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 5 2014-07-01 2014-07-01 false National Highway Systems Designation... IMPLEMENTATION PLANS (CONTINUED) Utah § 52.2348 National Highway Systems Designation Act Motor Vehicle Inspection... the National Highway Systems Designation Act of 1995. If Utah County fails to start its program by...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 5 2013-07-01 2013-07-01 false National Highway Systems Designation... IMPLEMENTATION PLANS (CONTINUED) Utah § 52.2348 National Highway Systems Designation Act Motor Vehicle Inspection... the National Highway Systems Designation Act of 1995. If Utah County fails to start its program by...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 5 2012-07-01 2012-07-01 false National Highway Systems Designation... IMPLEMENTATION PLANS (CONTINUED) Utah § 52.2348 National Highway Systems Designation Act Motor Vehicle Inspection... the National Highway Systems Designation Act of 1995. If Utah County fails to start its program by...
Smart Sensor Node Development, Testing and Implementation for ISHM
NASA Technical Reports Server (NTRS)
Mengers, Timothy; Shipley, John; Merrill, Richard; Eggett, Mark; Lemon, Leon; Johnson, Mont; Morris, Jonathan; Figueroa, Fernando; Schmalzel, John; Turowski, Mark
2007-01-01
A main design criterion for a robust Integrated Systems Health Management (ISHM) system is summed up best by the statement "No data is better than bad data". Traditional data acquisition systems are calibrated in a controlled environment and guaranteed to perform bounded by their tested conditions. To successfully design and implement a real world ISHM system, the data acquisition and signal conditioning needs to function in an uncontrolled environment. Development and testing focuses on a design with the ability to self check in order to extend calibration times, report internal faults and drifts and notify the overall system when the data acquisition is not performing as it should. All of this will be designed in a system that is flexible, requiring little redesign to be deployed on a wide variety of systems. Development progress and testing results will be reported.
Source Data Applicability Impacts on Epistemic Uncertainty for Launch Vehicle Fault Tree Models
NASA Technical Reports Server (NTRS)
Al Hassan, Mohammad; Novack, Steven D.; Ring, Robert W.
2016-01-01
Launch vehicle systems are designed and developed using both heritage and new hardware. Design modifications to the heritage hardware to fit new functional system requirements can impact the applicability of heritage reliability data. Risk estimates for newly designed systems must be developed from generic data sources such as commercially available reliability databases using reliability prediction methodologies, such as those addressed in MIL-HDBK-217F. Failure estimates must be converted from the generic environment to the specific operating environment of the system where it is used. In addition, some qualification of applicability for the data source to the current system should be made. Characterizing data applicability under these circumstances is crucial to developing model estimations that support confident decisions on design changes and trade studies. This paper will demonstrate a data-source applicability classification method for assigning uncertainty to a target vehicle based on the source and operating environment of the originating data. The source applicability is determined using heuristic guidelines while translation of operating environments is accomplished by applying statistical methods to MIL-HDK-217F tables. The paper will provide a case study example by translating Ground Benign (GB) and Ground Mobile (GM) to the Airborne Uninhabited Fighter (AUF) environment for three electronic components often found in space launch vehicle control systems. The classification method will be followed by uncertainty-importance routines to assess the need to for more applicable data to reduce uncertainty.
ERIC Educational Resources Information Center
Jakovljevic, Maria; Ankiewicz, Piet; De swardt, Estelle; Gross, Elna
2004-01-01
Traditional instructional methodology in the Information System Design (ISD) environment lacks explicit strategies for promoting the cognitive skills of prospective system designers. This contributes to the fragmented knowledge and low motivational and creative involvement of learners in system design tasks. In addition, present ISD methodologies,…
Foil system fatigue load environments for commercial hydrofoil operation
NASA Technical Reports Server (NTRS)
Graves, D. L.
1979-01-01
The hydrofoil fatigue loads environment in the open sea is examined. The random nature of wave orbital velocities, periods and heights plus boat heading, speed and control system design are considered in the assessment of structural fatigue requirements. Major nonlinear load events such as hull slamming and foil unwetting are included in the fatigue environment. Full scale rough water load tests, field experience plus analytical loads work on the model 929 Jetfoil commercial hydrofoil are discussed. The problem of developing an overall sea environment for design is defined. State of the art analytical approaches are examined.
Planetary/DOD entry technology flight experiments. Volume 2: Planetary entry flight experiments
NASA Technical Reports Server (NTRS)
Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.
1976-01-01
The technical feasibility of launching a high speed, earth entry vehicle from the space shuttle to advance technology for the exploration of the outer planets' atmospheres was established. Disciplines of thermodynamics, orbital mechanics, aerodynamics propulsion, structures, design, electronics and system integration focused on the goal of producing outer planet environments on a probe shaped vehicle during an earth entry. Major aspects of analysis and vehicle design studied include: planetary environments, earth entry environment capability, mission maneuvers, capabilities of shuttle upper stages, a comparison of earth entry planetary environments, experiment design and vehicle design.
1980-12-01
type of personnel likely to he using them, (3) the physical environment , (4) health and operational safety considerations. Carefully selected portable...operated apparatus must have the battery and energy-limiting components located outside the hazardous environment , and be so constructed that a direct...designate effect on equipment or personnel), based upon the most severe result of personnel error, procedural deficiencies, environment , design
Center for the Built Environment: Research on Indoor Environmental Quality
Comfort System Speech Privacy Task Ambient Conditioning Team Space Design Study Thermal Comfort Automotive resulting from HVAC, building, and facade design decisions. Acoustical Analysis in Office Environments Using building energy. The Impact of Team Space Design on Collaboration Assessing individual and group worker
Designing Learning Environments to Teach Interactive Quantum Physics
ERIC Educational Resources Information Center
Puente, Sonia M. Gomez; Swagten, Henk J. M.
2012-01-01
This study aims at describing and analysing systematically an interactive learning environment designed to teach Quantum Physics, a second-year physics course. The instructional design of Quantum Physics is a combination of interactive lectures (using audience response systems), tutorials and self-study in unit blocks, carried out with small…
Reuseable Objects Software Environment (ROSE): Introduction to Air Force Software Reuse Workshop
NASA Technical Reports Server (NTRS)
Cottrell, William L.
1994-01-01
The Reusable Objects Software Environment (ROSE) is a common, consistent, consolidated implementation of software functionality using modern object oriented software engineering including designed-in reuse and adaptable requirements. ROSE is designed to minimize abstraction and reduce complexity. A planning model for the reverse engineering of selected objects through object oriented analysis is depicted. Dynamic and functional modeling are used to develop a system design, the object design, the language, and a database management system. The return on investment for a ROSE pilot program and timelines are charted.
NASA Technical Reports Server (NTRS)
1986-01-01
The Johnson Space Center Management Information System (JSCMIS) is an interface to computer data bases at NASA Johnson which allows an authorized user to browse and retrieve information from a variety of sources with minimum effort. This issue gives requirements definition and design specifications for versions 2.1 and 2.1.1, along with documented test scenario environments, and security object design and specifications.
Ada(R) Test and Verification System (ATVS)
NASA Technical Reports Server (NTRS)
Strelich, Tom
1986-01-01
The Ada Test and Verification System (ATVS) functional description and high level design are completed and summarized. The ATVS will provide a comprehensive set of test and verification capabilities specifically addressing the features of the Ada language, support for embedded system development, distributed environments, and advanced user interface capabilities. Its design emphasis was on effective software development environment integration and flexibility to ensure its long-term use in the Ada software development community.
The natural space environment: Effects on spacecraft
NASA Technical Reports Server (NTRS)
James, Bonnie F.; Norton, O. W. (Compiler); Alexander, Margaret B. (Editor)
1994-01-01
The effects of the natural space environments on spacecraft design, development, and operation are the topic of a series of NASA Reference Publications currently being developed by the Electromagnetics and Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center. This primer provides an overview of the natural space environments and their effect on spacecraft design, development, and operations, and also highlights some of the new developments in science and technology for each space environment. It is hoped that a better understanding of the space environment and its effect on spacecraft will enable program management to more effectively minimize program risks and costs, optimize design quality, and successfully achieve mission objectives.
Cranial implant design using augmented reality immersive system.
Ai, Zhuming; Evenhouse, Ray; Leigh, Jason; Charbel, Fady; Rasmussen, Mary
2007-01-01
Software tools that utilize haptics for sculpting precise fitting cranial implants are utilized in an augmented reality immersive system to create a virtual working environment for the modelers. The virtual environment is designed to mimic the traditional working environment as closely as possible, providing more functionality for the users. The implant design process uses patient CT data of a defective area. This volumetric data is displayed in an implant modeling tele-immersive augmented reality system where the modeler can build a patient specific implant that precisely fits the defect. To mimic the traditional sculpting workspace, the implant modeling augmented reality system includes stereo vision, viewer centered perspective, sense of touch, and collaboration. To achieve optimized performance, this system includes a dual-processor PC, fast volume rendering with three-dimensional texture mapping, the fast haptic rendering algorithm, and a multi-threading architecture. The system replaces the expensive and time consuming traditional sculpting steps such as physical sculpting, mold making, and defect stereolithography. This augmented reality system is part of a comprehensive tele-immersive system that includes a conference-room-sized system for tele-immersive small group consultation and an inexpensive, easily deployable networked desktop virtual reality system for surgical consultation, evaluation and collaboration. This system has been used to design patient-specific cranial implants with precise fit.
Kalawsky, R S
1999-02-01
A special questionnaire (VRUSE) has been designed to measure the usability of a VR system according to the attitude and perception of its users. Important aspects of VR systems were carefully derived to produce key usability factors for the questionnaire. Unlike questionnaires designed for generic interfaces VRUSE is specifically designed to cater for evaluating virtual environments, being a diagnostic tool providing a wealth of information about a user's viewpoint of the interface. VRUSE can be used to great effect with other evaluation techniques to pinpoint problematical areas of a VR interface. Other applications include bench-marking of competitor VR systems.
Implementation of a Learning Design Run-Time Environment for the .LRN Learning Management System
ERIC Educational Resources Information Center
del Cid, Jose Pablo Escobedo; de la Fuente Valentin, Luis; Gutierrez, Sergio; Pardo, Abelardo; Kloos, Carlos Delgado
2007-01-01
The IMS Learning Design specification aims at capturing the complete learning flow of courses, without being restricted to a particular pedagogical model. Such flow description for a course, called a Unit of Learning, must be able to be reproduced in different systems using a so called run-time environment. In the last few years there has been…
Space Vehicle Terrestrial Environment Design Requirements Guidelines
NASA Technical Reports Server (NTRS)
Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.
2006-01-01
The terrestrial environment is an important driver of space vehicle structural, control, and thermal system design. NASA is currently in the process of producing an update to an earlier Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development Handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, and sea state. In addition, the respective engineering design elements are discussed relative to terrestrial environment inputs that require consideration. Specific lessons learned that have contributed to the advancements made in the application and awareness of terrestrial environment inputs for aerospace engineering applications are presented.
Design of a Water Environment Monitoring System Based on Wireless Sensor Networks
Jiang, Peng; Xia, Hongbo; He, Zhiye; Wang, Zheming
2009-01-01
A water environmental monitoring system based on a wireless sensor network is proposed. It consists of three parts: data monitoring nodes, data base station and remote monitoring center. This system is suitable for the complex and large-scale water environment monitoring, such as for reservoirs, lakes, rivers, swamps, and shallow or deep groundwaters. This paper is devoted to the explanation and illustration for our new water environment monitoring system design. The system had successfully accomplished the online auto-monitoring of the water temperature and pH value environment of an artificial lake. The system's measurement capacity ranges from 0 to 80 °C for water temperature, with an accuracy of ±0.5 °C; from 0 to 14 on pH value, with an accuracy of ±0.05 pH units. Sensors applicable to different water quality scenarios should be installed at the nodes to meet the monitoring demands for a variety of water environments and to obtain different parameters. The monitoring system thus promises broad applicability prospects. PMID:22454592
One approach for evaluating the Distributed Computing Design System (DCDS)
NASA Technical Reports Server (NTRS)
Ellis, J. T.
1985-01-01
The Distributed Computer Design System (DCDS) provides an integrated environment to support the life cycle of developing real-time distributed computing systems. The primary focus of DCDS is to significantly increase system reliability and software development productivity, and to minimize schedule and cost risk. DCDS consists of integrated methodologies, languages, and tools to support the life cycle of developing distributed software and systems. Smooth and well-defined transistions from phase to phase, language to language, and tool to tool provide a unique and unified environment. An approach to evaluating DCDS highlights its benefits.
An Overview of NASA's Integrated Design and Engineering Analysis (IDEA) Environment
NASA Technical Reports Server (NTRS)
Robinson, Jeffrey S.
2011-01-01
Historically, the design of subsonic and supersonic aircraft has been divided into separate technical disciplines (such as propulsion, aerodynamics and structures), each of which performs design and analysis in relative isolation from others. This is possible, in most cases, either because the amount of interdisciplinary coupling is minimal, or because the interactions can be treated as linear. The design of hypersonic airbreathing vehicles, like NASA's X-43, is quite the opposite. Such systems are dominated by strong non-linear interactions between disciplines. The design of these systems demands that a multi-disciplinary approach be taken. Furthermore, increased analytical fidelity at the conceptual design phase is highly desirable, as many of the non-linearities are not captured by lower fidelity tools. Only when these systems are designed from a true multi-disciplinary perspective, can the real performance benefits be achieved and complete vehicle systems be fielded. Toward this end, the Vehicle Analysis Branch at NASA Langley Research Center has been developing the Integrated Design and Engineering Analysis (IDEA) Environment. IDEA is a collaborative environment for parametrically modeling conceptual and preliminary designs for launch vehicle and high speed atmospheric flight configurations using the Adaptive Modeling Language (AML) as the underlying framework. The environment integrates geometry, packaging, propulsion, trajectory, aerodynamics, aerothermodynamics, engine and airframe subsystem design, thermal and structural analysis, and vehicle closure into a generative, parametric, unified computational model where data is shared seamlessly between the different disciplines. Plans are also in place to incorporate life cycle analysis tools into the environment which will estimate vehicle operability, reliability and cost. IDEA is currently being funded by NASA?s Hypersonics Project, a part of the Fundamental Aeronautics Program within the Aeronautics Research Mission Directorate. The environment is currently focused around a two-stage-to-orbit configuration with a turbine-based combined cycle (TBCC) first stage and a reusable rocket second stage. IDEA will be rolled out in generations, with each successive generation providing a significant increase in capability, either through increased analytic fidelity, expansion of vehicle classes considered, or by the inclusion of advanced modeling techniques. This paper provides the motivation behind the current effort, an overview of the development of the IDEA environment (including the contents and capabilities to be included in Generation 1 and Generation 2), and a description of the current status and detail of future plans.
NASA Technical Reports Server (NTRS)
Evans, Richard K.; Hill, Gerald M.
2012-01-01
Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world?s largest space environment test facilities located at the NASA Glenn Research Center?s Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.
NASA Technical Reports Server (NTRS)
Evans, Richard K.; Hill, Gerald M.
2014-01-01
Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world's largest space environment test facilities located at the NASA Glenn Research Center's Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.
Design of a Low Power, Fast-Spectrum, Liquid-Metal Cooled Surface Reactor System
NASA Astrophysics Data System (ADS)
Marcille, T. F.; Dixon, D. D.; Fischer, G. A.; Doherty, S. P.; Poston, D. I.; Kapernick, R. J.
2006-01-01
In the current 2005 US budget environment, competition for fiscal resources make funding for comprehensive space reactor development programs difficult to justify and accommodate. Simultaneously, the need to develop these systems to provide planetary and deep space-enabling power systems is increasing. Given that environment, designs intended to satisfy reasonable near-term surface missions, using affordable technology-ready materials and processes warrant serious consideration. An initial lunar application design incorporating a stainless structure, 880 K pumped NaK coolant system and a stainless/UO2 fuel system can be designed, fabricated and tested for a fraction of the cost of recent high-profile reactor programs (JIMO, SP-100). Along with the cost reductions associated with the use of qualified materials and processes, this design offers a low-risk, high-reliability implementation associated with mission specific low temperature, low burnup, five year operating lifetime requirements.
ROSIE: A Programming Environment for Expert Systems
1985-10-01
ence on Artificial Inteligence , Tbilisi, USSR, 1975. Fain, J., D. Gorlin, F. Hayes-Roth, S. Rosenschein, H. Sowizral, and D. Waterman, The ROSIE Language...gramming environment for artificial intelligence (AI) applications. It provides particular support for designing expert systems, systems that embody
Comparing Acquisition Strategies: Open Architecture versus Product Lines
2010-04-30
software • New SOW language for accepting software deliveries – Enables third-party reuse • Additional SOW language regarding conducting software code walkthroughs and for using integrated development environments ...change the business environment must be the primary factor that drives the technical approach. Accordingly, there are business case decisions to be...elements of a system design should be made available to the customer to observe throughout the design process. Electronic access to the design environment
Information Retrieval System Design Issues in a Microcomputer-Based Relational DBMS Environment.
ERIC Educational Resources Information Center
Wolfram, Dietmar
1992-01-01
Outlines the file structure requirements for a microcomputer-based information retrieval system using FoxPro, a relational database management system (DBMS). Issues relating to the design and implementation of such systems are discussed, and two possible designs are examined in terms of space economy and practicality of implementation. (15…
Indoor navigation by image recognition
NASA Astrophysics Data System (ADS)
Choi, Io Teng; Leong, Chi Chong; Hong, Ka Wo; Pun, Chi-Man
2017-07-01
With the progress of smartphones hardware, it is simple on smartphone using image recognition technique such as face detection. In addition, indoor navigation system development is much slower than outdoor navigation system. Hence, this research proves a usage of image recognition technique for navigation in indoor environment. In this paper, we introduced an indoor navigation application that uses the indoor environment features to locate user's location and a route calculating algorithm to generate an appropriate path for user. The application is implemented on Android smartphone rather than iPhone. Yet, the application design can also be applied on iOS because the design is implemented without using special features only for Android. We found that digital navigation system provides better and clearer location information than paper map. Also, the indoor environment is ideal for Image recognition processing. Hence, the results motivate us to design an indoor navigation system using image recognition.
FAME, a microprocessor based front-end analysis and modeling environment
NASA Technical Reports Server (NTRS)
Rosenbaum, J. D.; Kutin, E. B.
1980-01-01
Higher order software (HOS) is a methodology for the specification and verification of large scale, complex, real time systems. The HOS methodology was implemented as FAME (front end analysis and modeling environment), a microprocessor based system for interactively developing, analyzing, and displaying system models in a low cost user-friendly environment. The nature of the model is such that when completed it can be the basis for projection to a variety of forms such as structured design diagrams, Petri-nets, data flow diagrams, and PSL/PSA source code. The user's interface with the analyzer is easily recognized by any current user of a structured modeling approach; therefore extensive training is unnecessary. Furthermore, when all the system capabilities are used one can check on proper usage of data types, functions, and control structures thereby adding a new dimension to the design process that will lead to better and more easily verified software designs.
Fifth International Symposium on Liquid Space Propulsion
NASA Technical Reports Server (NTRS)
Garcia, R. (Compiler)
2005-01-01
Contents include the fiollowing: Theme: Life-life Combustion Devices Technology. Technical Sessions: International Perspectives. System Level Effects. Component Level Processes. Material Considerations. Design Environments -- Predictions. Injector Design Technology. Design Environments -- Measurements. Panel Discussion: Views on future research and development needs and Symposium observations. Aquarium Welcome and Southern Belle Riverboat Recognition Banquet evening events.
Radiation and Plasma Environments for Lunar Missions
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Edwards, David L.; Altstatt, Richard L.; Diekmann, Anne M.; Blackwell, William C., Jr.; Harine, Katherine J.
2006-01-01
Space system design for lunar orbit and extended operations on the lunar surface requires analysis of potential system vulnerabilities to plasma and radiation environments to minimize anomalies and assure that environmental failures do not occur during the mission. Individual environments include the trapped particles in Earth s radiation belts, solar energetic particles and galactic cosmic rays, plasma environments encountered in transit to the moon and on the lunar surface (solar wind, terrestrial magnetosheath and magnetotail, and lunar photoelectrons), and solar ultraviolet and extreme ultraviolet photons. These are the plasma and radiation environments which contribute to a variety of effects on space systems including total ionizing dose and dose rate effects in electronics, degradation of materials in the space environment, and charging of spacecraft and lunar dust. This paper provides a survey of the relevant charged particle and photon environments of importance to lunar mission design ranging from the lowest (approx.few 10 s eV) photoelectron energies to the highest (approx.GeV) cosmic ray energies.
Design and Effects of a Concept Focused Discussion Environment in E-Learning
ERIC Educational Resources Information Center
Yilmaz, Erdi Okan; Yurdugul, Halil
2016-01-01
Problem Statement: Within the frame of learning management systems, this study develops a concept focused discussion environment and validates the effectiveness of this environment's use through an experimental study. Purpose of the Study: Online discussion forums, which are commonly used in learning management systems (LMS), can negatively…
Total-System Approach To Design And Analysis Of Structures
NASA Technical Reports Server (NTRS)
Verderaime, V.
1995-01-01
Paper presents overview and study of, and comprehensive approach to, multidisciplinary engineering design and analysis of structures. Emphasizes issues related to design of semistatic structures in environments in which spacecraft launched, underlying concepts applicable to other structures within unique terrestrial, marine, or flight environments. Purpose of study to understand interactions among traditionally separate engineering design disciplines with view toward optimizing not only structure but also overall design process.
Hori, Hajime
2013-10-01
In Japan, working environment measurement is prescribed in the designated workplaces using hazardous materials. Measurements should be carried out periodically and countermeasures are performed depending on the results. By introducing such a system, working environments have remarkably improved. However, in the designated workplaces, measurements should be continued even in work environments found safe. On the other hand, measurement need not be obliged for non-designated workplaces even if hazardous materials are utilized.In the United States of America and many European countries, work environment management and work management are carried out by measuring personal exposure concentrations. In Japan, the Ministry of Health, Labour and Welfare is now discussing the introduction of personal exposure monitoring. However, many problems exist to prevent the simple introduction of American and European methods. This paper describes the brief history, present state and problems of work environment control in Japan, comparing with the systems of American and European countries.
The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset
NASA Technical Reports Server (NTRS)
Zank, G. P.; Spann, James F.
2014-01-01
The goal of this project is to serve the needs of space system designers and operators by developing an interplanetary radiation environment model within 10 AU:Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) toolset: (1) The RISCS toolset will provide specific reference environments for space system designers and nowcasting and forecasting capabilities for space system operators; (2) We envision the RISCS toolset providing the spatial and temporal radiation environment external to the Earth's (and other planets') magnetosphere, as well as possessing the modularity to integrate separate applications (apps) that can map to specific magnetosphere locations and/or perform the subsequent radiation transport and dosimetry for a specific target.
NASA Technical Reports Server (NTRS)
Ungar, Eugene K.
2008-01-01
Spacecraft radiators are sized for their maximum heat load in their warmest thermal environment, but must operate at reduced heat loads and in colder environments. For systems where the radiator environment can be colder than the working fluid freezing temperature, radiator freezing becomes an issue. Radiator freezing has not been a major issue for the Space Shuttle and the International Space Station (ISS) active thermal control systems (ATCSs) because they operate in environments that are warm relative to the freezing point of their external coolants (Freon-21 and ammonia, respectively). For a vehicle that lands at the Lunar South Pole, the design thermal environment is 215K, but the radiator working fluid must also be kept from freezing during the 0 K sink of transit. A radiator bypass flow control design such as those used on the Space Shuttle and ISS requires more than 30% of the design heat load to avoid radiator freezing during transit - even with a very low freezing point working fluid. By changing the traditional ATCS architecture to include a regenerating heat exchanger inboard of the radiator and by using a regenerator bypass flow control valve to maintain system setpoint, the required minimum heat load can be reduced by more than half. This gives the spacecraft much more flexibility in design and operation. The present work describes the regenerator bypass ATCS setpoint control methodology. It includes analytical results comparing the performance of this system to the traditional radiator bypass system. Finally, a summary of the advantages of the regenerator bypass system are presented.
Research issues in implementing remote presence in teleoperator control
NASA Technical Reports Server (NTRS)
Corker, K.; Mishkin, A. H.; Lyman, J.
1981-01-01
The concept of remote presence in telemanipulation is presented. A conceptual design of a prototype teleoperator system incorporating remote presence is described. The design is presented in functional terms, sensor, display, and control subsystem. An intermediate environment, in which the human operator is made to feel present, is explicated. The intermediate environment differs from the task environment due to the quantity and type of information presented to an operator and due to scaling factors protecting the operator from the hazards of the task environment. Potential benefits of remote presence systems, both for manipulation and for the study of human cognition and preception are discussed.
Uncertainty management in intelligent design aiding systems
NASA Technical Reports Server (NTRS)
Brown, Donald E.; Gabbert, Paula S.
1988-01-01
A novel approach to uncertainty management which is particularly effective in intelligent design aiding systems for large-scale systems is presented. The use of this approach in the materials handling system design domain is discussed. It is noted that, during any point in the design process, a point value can be obtained for the evaluation of feasible designs; however, the techniques described provide unique solutions for these point values using only the current information about the design environment.
A network identity authentication system based on Fingerprint identification technology
NASA Astrophysics Data System (ADS)
Xia, Hong-Bin; Xu, Wen-Bo; Liu, Yuan
2005-10-01
Fingerprint verification is one of the most reliable personal identification methods. However, most of the automatic fingerprint identification system (AFIS) is not run via Internet/Intranet environment to meet today's increasing Electric commerce requirements. This paper describes the design and implementation of the archetype system of identity authentication based on fingerprint biometrics technology, and the system can run via Internet environment. And in our system the COM and ASP technology are used to integrate Fingerprint technology with Web database technology, The Fingerprint image preprocessing algorithms are programmed into COM, which deployed on the internet information server. The system's design and structure are proposed, and the key points are discussed. The prototype system of identity authentication based on Fingerprint have been successfully tested and evaluated on our university's distant education applications in an internet environment.
A Virtual Environment System for the Comparison of Dome and HMD Systems
NASA Technical Reports Server (NTRS)
Chen, Jian; Harm, Deboran L.; Loftin, R. Bowen; Lin, Ching-yao; Leiss, Ernst L.
2002-01-01
For effective astronaut training applications, choosing the right display devices to present images is crucial. In order to assess what devices are appropriate, it is important to design a successful virtual environment for a comparison study of the display devices. We present a comprehensive system for the comparison of Dome and head-mounted display (HMD) systems. In particular, we address interactions techniques and playback environments.
NASA Technical Reports Server (NTRS)
Altino, Karen M.; Burns, K. Lee; Barbre, Robert E.; Leahy, Frank B.
2014-01-01
NASA is developing new capabilities for human and scientific exploration beyond Earth orbit. Natural environments information is an important asset for NASA's development of the next generation space transportation system as part of the Exploration Systems Development Program, which includes the Space Launch System (SLS) and MultiPurpose Crew Vehicle (MPCV) Programs. Natural terrestrial environment conditions - such as wind, lightning and sea states - can affect vehicle safety and performance during multiple mission phases ranging from prelaunch ground processing to landing and recovery operations, including all potential abort scenarios. Space vehicles are particularly sensitive to these environments during the launch/ascent and the entry/landing phases of mission operations. The Marshall Space Flight Center (MSFC) Natural Environments Branch provides engineering design support for NASA space vehicle projects and programs by providing design engineers and mission planners with natural environments definitions as well as performing custom analyses to help characterize the impacts the natural environment may have on vehicle performance. One such analysis involves assessing the impact of natural environments to operational availability. Climatological time series of operational surface weather observations are used to calculate probabilities of meeting or exceeding various sets of hypothetical vehicle-specific parametric constraint thresholds.
Common approach to solving SGEMP, DEMP, and ESD survivability
NASA Technical Reports Server (NTRS)
Ling, D.
1977-01-01
System Generated Electromagnetic Pulse (SGEMP) and Dispersed Electromagnetic Pulse DEMP) are nuclear generated spacecraft environments. Electrostatic discharge (ESD) is a natural spacecraft environment resulting from differential charging in magnetic substorms. All three phenomena, though differing in origin, result in the same problem to the spacecraft and that is Electromagnetic Interference (EMI). A common design approach utilizing a spacecraft structural Faraday Cage is presented which helps solve the EMI problem. Also, other system design techniques are discussed which minimize the magnitude of these environments through control of materials and electrical grounding configuration.
Optical mounts for harsh environments
NASA Astrophysics Data System (ADS)
Mimovich, Mark E.; Griffee, Jonathan C.; Goodding, James C.
2009-08-01
Development and testing of a lightweight-kinematic optical mount with integrated passive vibration-and-shock mitigation technologies and simple / robust optical alignment functionality is presented. Traditionally, optical mounts are designed for use in laboratory environments where the thermal-mechanical environments are carefully controlled to preserve beam path conditions and background disturbances are minimized to facilitate precise optically based measurements. Today's weapon and surveillance systems, however, have optical sensor suites where static and dynamic alignment performance in the presence of harsh operating environments is required to nearly the same precision and where the system cannot afford the mass of laboratory-grade stabilized mounting systems. Jitter and alignment stability is particularly challenging for larger optics operating within moving vehicles and aircraft where high shock and significant temperature excursions occur. The design intent is to have the mount be suitable for integration into existing defense and security optical systems while also targeting new commercial and military components for improved structural dynamic and thermal distortion performance. A mount suitable for moderate-sized optics and an integrated disturbance-optical metrology system are described. The mount design has performance enhancements derived from the integration of proven aerospace mechanical vibration and shock mitigation technologies (i.e. multi-axis passive isolation and integral damping), precision alignment adjustment and lock-out functionality, high dimensional stability materials and design practices which provide benign optical surface figure errors under harsh thermal-mechanical loading. Optical jitter, alignment, and wave-front performance testing of an eight-inch-aperture optical mount based on this design approach are presented to validate predicted performance improvements over an existing commercial off-the-shelf (COTS) design.
Constructed wetlands in UK urban surface drainage systems.
Shutes, B; Ellis, J B; Revitt, D M; Scholes, L N L
2005-01-01
This paper presents the outcome of an inventory of planted wetland systems in the UK which are classified according to land use type and are all examples of sustainable drainage systems. The introduction of constructed wetlands to treat surface runoff essentially followed a 1997 Environment Agency for England and Wales report advocating the use of "soft engineered" facilities including wetlands in the context of sustainable development and Agenda 21. Subsequently published reports by the UK Construction Industry Research and Information Association (CIRIA) have promoted the potential benefits to both developer and the community of adopting constructed wetlands and other vegetated systems as a sustainable drainage approach. In addition, the UK Environment Agency and Highways Agency (HA) have recently published their own design criteria and requirements for vegetative control and treatment of road runoff. A case study of the design and performance of a constructed wetland system for the treatment of road runoff is discussed. The performance of these systems will be assessed in terms of their design criteria, runoff loadings as well as vegetation and structure maintenance procedures. The differing design approaches in guidance documents published in the UK by the Environment Agency, CIRIA and HA will also be evaluated.
NASA Technical Reports Server (NTRS)
Rowell, Lawrence F.; Davis, John S.
1989-01-01
The Environment for Application Software Integration and Execution (EASIE) provides a methodology and a set of software utility programs to ease the task of coordinating engineering design and analysis codes. EASIE was designed to meet the needs of conceptual design engineers that face the task of integrating many stand-alone engineering analysis programs. Using EASIE, programs are integrated through a relational database management system. Volume 1, Executive Overview, gives an overview of the functions provided by EASIE and describes their use. Three operational design systems based upon the EASIE software are briefly described.
NASA Technical Reports Server (NTRS)
STACK S. H.
1981-01-01
A computer-aided design system has recently been developed specifically for the small research group environment. The system is implemented on a Prime 400 minicomputer linked with a CDC 6600 computer. The goal was to assign the minicomputer specific tasks, such as data input and graphics, thereby reserving the large mainframe computer for time-consuming analysis codes. The basic structure of the design system consists of GEMPAK, a computer code that generates detailed configuration geometry from a minimum of input; interface programs that reformat GEMPAK geometry for input to the analysis codes; and utility programs that simplify computer access and data interpretation. The working system has had a large positive impact on the quantity and quality of research performed by the originating group. This paper describes the system, the major factors that contributed to its particular form, and presents examples of its application.
Nunnerley, Joanne; Gupta, Swati; Snell, Deborah; King, Marcus
2017-05-01
A user-centred design was used to develop and test the feasibility of an immersive 3D virtual reality wheelchair training tool for people with spinal cord injury (SCI). A Wheelchair Training System was designed and modelled using the Oculus Rift headset and a Dynamic Control wheelchair joystick. The system was tested by clinicians and expert wheelchair users with SCI. Data from focus groups and individual interviews were analysed using a general inductive approach to thematic analysis. Four themes emerged: Realistic System, which described the advantages of a realistic virtual environment; a Wheelchair Training System, which described participants' thoughts on the wheelchair training applications; Overcoming Resistance to Technology, the obstacles to introducing technology within the clinical setting; and Working outside the Rehabilitation Bubble which described the protective hospital environment. The Oculus Rift Wheelchair Training System has the potential to provide a virtual rehabilitation setting which could allow wheelchair users to learn valuable community wheelchair use in a safe environment. Nausea appears to be a side effect of the system, which will need to be resolved before this can be a viable clinical tool. Implications for Rehabilitation Immersive virtual reality shows promising benefit for wheelchair training in a rehabilitation setting. Early engagement with consumers can improve product development.
An integrated approach to system design, reliability, and diagnosis
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Iverson, David L.
1990-01-01
The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized.
An integrated approach to system design, reliability, and diagnosis
NASA Astrophysics Data System (ADS)
Patterson-Hine, F. A.; Iverson, David L.
1990-12-01
The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized.
Advanced Engineering Environment FY09/10 pilot project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamph, Jane Ann; Kiba, Grant W.; Pomplun, Alan R.
2010-06-01
The Advanced Engineering Environment (AEE) project identifies emerging engineering environment tools and assesses their value to Sandia National Laboratories and our partners in the Nuclear Security Enterprise (NSE) by testing them in our design environment. This project accomplished several pilot activities, including: the preliminary definition of an engineering bill of materials (BOM) based product structure in the Windchill PDMLink 9.0 application; an evaluation of Mentor Graphics Data Management System (DMS) application for electrical computer-aided design (ECAD) library administration; and implementation and documentation of a Windchill 9.1 application upgrade. The project also supported the migration of legacy data from existing corporatemore » product lifecycle management systems into new classified and unclassified Windchill PDMLink 9.0 systems. The project included two infrastructure modernization efforts: the replacement of two aging AEE development servers for reliable platforms for ongoing AEE project work; and the replacement of four critical application and license servers that support design and engineering work at the Sandia National Laboratories/California site.« less
NASA Technical Reports Server (NTRS)
Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.
2005-01-01
The description and interpretation of the terrestrial environment (0-90 km altitude) is an important driver of aerospace vehicle structural, control, and thermal system design. NASA is currently in the process of reviewing the meteorological information acquired over the past decade and producing an update to the 1993 Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, sea state, etc. In addition, the respective engineering design elements will be discussed relative to the importance and influence of terrestrial environment inputs that require consideration and interpretation for design applications. Specific lessons learned that have contributed to the advancements made in the acquisition, interpretation, application and awareness of terrestrial environment inputs for aerospace engineering applications are discussed.
Knowledge-based environment for optical system design
NASA Astrophysics Data System (ADS)
Johnson, R. Barry
1991-01-01
Optical systems are extensively utilized by industry government and military organizations. The conceptual design engineering design fabrication and testing of these systems presently requires significant time typically on the order of 3-5 years. The Knowledge-Based Environment for Optical System Design (KB-OSD) Program has as its principal objectives the development of a methodology and tool(s) that will make a notable reduction in the development time of optical system projects reduce technical risk and overall cost. KB-OSD can be considered as a computer-based optical design associate for system engineers and design engineers. By utilizing artificial intelligence technology coupled with extensive design/evaluation computer application programs and knowledge bases the KB-OSD will provide the user with assistance and guidance to accomplish such activities as (i) develop system level and hardware level requirements from mission requirements (ii) formulate conceptual designs (iii) construct a statement of work for an RFP (iv) develop engineering level designs (v) evaluate an existing design and (vi) explore the sensitivity of a system to changing scenarios. The KB-OSD comprises a variety of computer platforms including a Stardent Titan supercomputer numerous design programs (lens design coating design thermal materials structural atmospherics etc. ) data bases and heuristic knowledge bases. An important element of the KB-OSD Program is the inclusion of the knowledge of individual experts in various areas of optics and optical system engineering. This knowledge is obtained by KB-OSD knowledge engineers performing
Smart Sensor Node Development, Testing and Implementation for Rocket Propulsion Systems
NASA Technical Reports Server (NTRS)
Mengers, Timothy R.; Shipley, John; Merrill, Richard; Eggett, Leon; Johnson, Mont; Morris, Jonathan; Figueroa, Fernando; Schmalzel, John; Turowski, Mark P.
2007-01-01
Successful design and implementation of an Integrated System Health Management (ISHM) approach for rocket propulsion systems requires the capability improve the reliability of complex systems by detecting and diagnosing problems. One of the critical elements in the ISHM is an intelligent sensor node for data acquisition that meets specific requirements for rocket motor testing including accuracy, sample rate and size/weight. Traditional data acquisition systems are calibrated in a controlled environment and guaranteed to perform bounded by their tested conditions. In a real world ISHM system, the data acquisition and signal conditioning needs to function in an uncontrolled environment. Development and testing of this sensor node focuses on a design with the ability to self check in order to extend calibration times, report internal faults and drifts and notify the overall system when the data acquisition is not performing as it should. All of this will be designed within a system that is flexible, requiring little re-design to be deployed on a wide variety of systems. Progress in this design and initial testing of prototype units will be reported.
Environmental interactions in space exploration: Environmental interactions working group
NASA Technical Reports Server (NTRS)
Kolecki, Joseph C.; Hillard, G. Barry
1992-01-01
With the advent of the Space Exploration Initiative, the possibility of designing and using systems on scales heretofore unattempted presents exciting new challenges in systems design and space science. The environments addressed by the Space Exploration Initiative include the surfaces of the Moon and Mars, as well as the varied plasma and field environments which will be encountered by humans and cargo enroute to these destinations. Systems designers will need to understand environmental interactions and be able to model these mechanisms from the earliest conceptual design stages through design completion. To the end of understanding environmental interactions and establishing robotic precursor mission requirements, an Environmental Interactions Working Group was established as part of the Robotic Missions Working Group. The working group is described, and its current activities are updated.
40 CFR 265.1201 - Design and operating standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Design and operating standards. 265.1201 Section 265.1201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID...) Provide monitoring and inspection procedures that assure the controls and containment systems are working...
ERIC Educational Resources Information Center
Gutierrez-Santos, S.; Geraniou, E.; Pearce-Lazard, D.; Poulovassilis, A.
2012-01-01
The MiGen project is designing and developing an intelligent exploratory environment to support 11-14-year-old students in their learning of algebraic generalization. Deployed within the classroom, the system also provides tools to assist teachers in monitoring students' activities and progress. This paper describes the design of these Teacher…
ERIC Educational Resources Information Center
Mavrikis, Manolis; Gutierrez-Santos, Sergio
2010-01-01
This paper presents a methodology for the design of intelligent learning environments. We recognise that in the educational technology field, theory development and system-design should be integrated and rely on an iterative process that addresses: (a) the difficulty to elicit precise, concise, and operationalized knowledge from "experts" and (b)…
Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry
ERIC Educational Resources Information Center
Sun, Daner; Looi, Chee-Kit
2013-01-01
The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as…
Integrated self-cleaning window assembly for optical transmission in combustion environments
Kass, Michael D [Oak Ridge, TN
2007-07-24
An integrated window design for optical transmission in combustion environments is described. The invention consists of an integrated optical window design that prevents and removes the accumulation of carbon-based particulate matter and gaseous hydrocarbons through a combination of heat and catalysis. These windows will enable established optical technologies to be applied to combustion environments and their exhaust systems.
Personal pervasive environments: practice and experience.
Ballesteros, Francisco J; Guardiola, Gorka; Soriano, Enrique
2012-01-01
In this paper we present our experience designing and developing two different systems to enable personal pervasive computing environments, Plan B and the Octopus. These systems were fully implemented and have been used on a daily basis for years. Both are based on synthetic (virtual) file system interfaces and provide mechanisms to adapt to changes in the context and reconfigure the system to support pervasive applications. We also present the main differences between them, focusing on architectural and reconfiguration aspects. Finally, we analyze the pitfalls and successes of both systems and review the lessons we learned while designing, developing, and using them.
Personal Pervasive Environments: Practice and Experience
Ballesteros, Francisco J.; Guardiola, Gorka; Soriano, Enrique
2012-01-01
In this paper we present our experience designing and developing two different systems to enable personal pervasive computing environments, Plan B and the Octopus. These systems were fully implemented and have been used on a daily basis for years. Both are based on synthetic (virtual) file system interfaces and provide mechanisms to adapt to changes in the context and reconfigure the system to support pervasive applications. We also present the main differences between them, focusing on architectural and reconfiguration aspects. Finally, we analyze the pitfalls and successes of both systems and review the lessons we learned while designing, developing, and using them. PMID:22969340
Random Access Frame (RAF) System Neutral Buoyancy Evaluations
NASA Technical Reports Server (NTRS)
Howe, A. Scott; Polit-Casillas, Raul; Akin, David L.; McBryan, Katherine; Carlsen, Christopher
2015-01-01
The Random Access Frame (RAF) concept is a system for organizing internal layouts of space habitats, vehicles, and outposts. The RAF system is designed as a more efficient improvement over the current International Standard Payload Rack (ISPR) used on the International Space Station (ISS), which was originally designed to allow for swapping and resupply by the Space Shuttle. The RAF system is intended to be applied in variable gravity or microgravity environments. This paper discusses evaluations and results of testing the RAF system in a neutral buoyancy facility simulating low levels of gravity that might be encountered in a deep space environment.
ERIC Educational Resources Information Center
Peng, Hsinyi; Chou, Chien; Chang, Chun-Yu
2008-01-01
Computing devices and applications are now used beyond the desktop, in diverse environments, and this trend toward ubiquitous computing is evolving. In this study, we re-visit the interactivity concept and its applications for interactive function design in a ubiquitous-learning system (ULS). Further, we compare interactivity dimensions and…
Long-Life, Lightweight, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration
NASA Technical Reports Server (NTRS)
Klein, Richard C.; Fusaro, Robert L.; Dimofte, Florin
2012-01-01
NASA s initiative for Lunar and Martian exploration will require long lived, robust drive systems for manned vehicles that must operate in hostile environments. The operation of these mechanical drives will pose a problem because of the existing extreme operating conditions. Some of these extreme conditions include operating at a very high or very cold temperature, operating over a wide range of temperatures, operating in very dusty environments, operating in a very high radiation environment, and operating in possibly corrosive environments. Current drive systems use gears with various configurations of teeth. These gears must be lubricated with oil (or grease) and must have some sort of a lubricant resupply system. For drive systems, oil poses problems such as evaporation, becoming too viscous and eventually freezing at cold temperatures, being too thin to lubricate at high temperatures, being degraded by the radiation environment, being contaminated by the regolith (soil), and if vaporized (and not sealed), it will contaminate the regolith. Thus, it may not be advisable or even possible to use oil because of these limitations. An oil-less, compact traction vehicle drive is a drive designed for use in hostile environments like those that will be encountered on planetary surfaces. Initially, traction roller tests in vacuum were conducted to obtain traction and endurance data needed for designing the drives. From that data, a traction drive was designed that would fit into a prototype lunar rover vehicle, and this design data was used to construct several traction drives. These drives were then tested in air to determine their performance characteristics, and if any final corrections to the designs were necessary. A limitation with current speed reducer systems such as planetary gears and harmonic drives is the high-contact stresses that occur at tooth engagement and in the harmonic drive wave generator interface. These high stresses induce high wear of solid lubricant coatings, thus necessitating the use of liquid lubricants for long life.
2013-09-01
sprinkler , fire alarm, and mass-notification systems ). Piping required for the sprinkler system uses dielectric couplers at each penetration of the...environment for neuroscience research designed for studying Soldier- system interactions in support of the U.S. Army Research Laboratory’s (ARL’s...Engineers, of Towson, MD, —designed the heating, ventilation, and air conditioning and electrical systems ; Hi-Tech Services, Inc., of Ferndale, WA
A preliminary 6 DOF attitude and translation control system design for Starprobe
NASA Technical Reports Server (NTRS)
Mak, P.; Mettler, E.; Vijayarahgavan, A.
1981-01-01
The extreme thermal environment near perihelion and the high-accuracy gravitational science experiments impose unique design requirements on various subsystems of Starprobe. This paper examines some of these requirements and their impact on the preliminary design of a six-degree-of-freedom attitude and translational control system. Attention is given to design considerations, the baseline attitude/translational control system, system modeling, and simulation studies.
NASA Astrophysics Data System (ADS)
Berland, Matthew W.
As scientists use the tools of computational and complex systems theory to broaden science perspectives (e.g., Bar-Yam, 1997; Holland, 1995; Wolfram, 2002), so can middle-school students broaden their perspectives using appropriate tools. The goals of this dissertation project are to build, study, evaluate, and compare activities designed to foster both computational and complex systems fluencies through collaborative constructionist virtual and physical robotics. In these activities, each student builds an agent (e.g., a robot-bird) that must interact with fellow students' agents to generate a complex aggregate (e.g., a flock of robot-birds) in a participatory simulation environment (Wilensky & Stroup, 1999a). In a participatory simulation, students collaborate by acting in a common space, teaching each other, and discussing content with one another. As a result, the students improve both their computational fluency and their complex systems fluency, where fluency is defined as the ability to both consume and produce relevant content (DiSessa, 2000). To date, several systems have been designed to foster computational and complex systems fluencies through computer programming and collaborative play (e.g., Hancock, 2003; Wilensky & Stroup, 1999b); this study suggests that, by supporting the relevant fluencies through collaborative play, they become mutually reinforcing. In this work, I will present both the design of the VBOT virtual/physical constructionist robotics learning environment and a comparative study of student interaction with the virtual and physical environments across four middle-school classrooms, focusing on the contrast in systems perspectives differently afforded by the two environments. In particular, I found that while performance gains were similar overall, the physical environment supported agent perspectives on aggregate behavior, and the virtual environment supported aggregate perspectives on agent behavior. The primary research questions are: (1) What are the relative affordances of virtual and physical constructionist robotics systems towards computational and complex systems fluencies? (2) What can middle school students learn using computational/complex systems learning environments in a collaborative setting? (3) In what ways are these environments and activities effective in teaching students computational and complex systems fluencies?
Color Choice is Everything - Impacts Color makes to the Lighting Environment
NASA Technical Reports Server (NTRS)
Clark, Toni A.
2012-01-01
When contracts are let out to design multiple systems in a vehicle, it is a challenge to maintain integration between system leads. Designers on niche systems, like lighting and control panel design, often get caught up in the challenge of designing the light source or visual interface and fail to include time in their schedule to work with system architects on how their lighting system will be integrated. Additionally, behavioral scientists, industrial designers, and materials engineers get caught up with the materials and look of the system, but often fail to consider how the selection of their materials could affect the certification or performance of electronic devices like lighting systems. Additionally, computer modeling of the system architecture often assumes a perfect environment without the clutter of actual human use (dirt, stowage, crowding). As a result, lighting systems, and backlit displays run the risk of being overdesigned or under designed. Engineers making the assumption that because they have no input or there is no requirement on work surface reflectance, make the assumption that they can t count on good material choices and thus may install more lighting than is necessary. While having more lights may seem better, for a vehicle that is trying to conserve power, more lights may not be a good option. On the other hand, designers who made the opposite assumption and designed a lighting system that only produced just enough light, often wind up with a system that did conserve power, but didn t produce enough light. These situations are exasperated when the system starts to be used and the models are not perfect anymore. The lack of coordination and iterative design not only can impact lighting levels within an environment, but also can affect color perception. This is because, if materials do not represent a gradation of white or black, the material unevenly absorbs and reflects light at different wavelengths of the visual spectrum. The lighting designer may have built a light that meets light spectra requirements, but the eventual light reaching the human user may not be the spectra of light architects intended, if materials near the light source change the spectrum just by how much color is absorbed or reflected. With the recent findings concerning Circadian rhythm, where the spectra of light is extremely important for addressing crew sleep and wake cycles, system architects should pay considerable attention on the impact material choices have in changing the light spectrum in an environment. This presentation will show examples of how material choices impact the resulting illuminance, color spectrum, and power usage of an illuminated space. Its goal is to encourage system designers and planners to use more care in development of requirements and the verification of systems intended for the human visual interface.
Design Criteria For Networked Image Analysis System
NASA Astrophysics Data System (ADS)
Reader, Cliff; Nitteberg, Alan
1982-01-01
Image systems design is currently undergoing a metamorphosis from the conventional computing systems of the past into a new generation of special purpose designs. This change is motivated by several factors, notably among which is the increased opportunity for high performance with low cost offered by advances in semiconductor technology. Another key issue is a maturing in understanding of problems and the applicability of digital processing techniques. These factors allow the design of cost-effective systems that are functionally dedicated to specific applications and used in a utilitarian fashion. Following an overview of the above stated issues, the paper presents a top-down approach to the design of networked image analysis systems. The requirements for such a system are presented, with orientation toward the hospital environment. The three main areas are image data base management, viewing of image data and image data processing. This is followed by a survey of the current state of the art, covering image display systems, data base techniques, communications networks and software systems control. The paper concludes with a description of the functional subystems and architectural framework for networked image analysis in a production environment.
40 CFR 280.21 - Upgrading of existing UST systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Upgrading of existing UST systems. 280.21 Section 280.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... STORAGE TANKS (UST) UST Systems: Design, Construction, Installation and Notification § 280.21 Upgrading of...
40 CFR 280.21 - Upgrading of existing UST systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Upgrading of existing UST systems. 280.21 Section 280.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... STORAGE TANKS (UST) UST Systems: Design, Construction, Installation and Notification § 280.21 Upgrading of...
40 CFR 280.21 - Upgrading of existing UST systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Upgrading of existing UST systems. 280.21 Section 280.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... STORAGE TANKS (UST) UST Systems: Design, Construction, Installation and Notification § 280.21 Upgrading of...
Models Required to Mitigate Impacts of Space Weather on Space Systems
NASA Technical Reports Server (NTRS)
Barth, Janet L.
2003-01-01
This viewgraph presentation attempts to develop a model of factors which need to be considered in the design and construction of spacecraft to lessen the effects of space weather on these vehicles. Topics considered include: space environments and effects, radiation environments and effects, space weather drivers, space weather models, climate models, solar proton activity and mission design for the GOES mission. The authors conclude that space environment models need to address issues from mission planning through operations and a program to develop and validate authoritative space environment models for application to spacecraft design does not exist at this time.
System Level Uncertainty Assessment for Collaborative RLV Design
NASA Technical Reports Server (NTRS)
Charania, A. C.; Bradford, John E.; Olds, John R.; Graham, Matthew
2002-01-01
A collaborative design process utilizing Probabilistic Data Assessment (PDA) is showcased. Given the limitation of financial resources by both the government and industry, strategic decision makers need more than just traditional point designs, they need to be aware of the likelihood of these future designs to meet their objectives. This uncertainty, an ever-present character in the design process, can be embraced through a probabilistic design environment. A conceptual design process is presented that encapsulates the major engineering disciplines for a Third Generation Reusable Launch Vehicle (RLV). Toolsets consist of aerospace industry standard tools in disciplines such as trajectory, propulsion, mass properties, cost, operations, safety, and economics. Variations of the design process are presented that use different fidelities of tools. The disciplinary engineering models are used in a collaborative engineering framework utilizing Phoenix Integration's ModelCenter and AnalysisServer environment. These tools allow the designer to join disparate models and simulations together in a unified environment wherein each discipline can interact with any other discipline. The design process also uses probabilistic methods to generate the system level output metrics of interest for a RLV conceptual design. The specific system being examined is the Advanced Concept Rocket Engine 92 (ACRE-92) RLV. Previous experience and knowledge (in terms of input uncertainty distributions from experts and modeling and simulation codes) can be coupled with Monte Carlo processes to best predict the chances of program success.
Radiation Hardness Assurance (RHA) for Space Systems
NASA Technical Reports Server (NTRS)
Poivey, Christian; Buchner, Stephen
2007-01-01
This presentation discusses radiation hardness assurance (RHA) for space systems, providing both the programmatic aspects of RHA and the RHA procedure. RHA consists of all activities undertaken to ensure that the electronics and materials of a space system perform to their design specifications after exposure to the space radiation environment. RHA also pertains to environment definition, part selection, part testing, spacecraft layout, radiation tolerant design, and mission/system/subsystems requirements. RHA procedure consists of establishing mission requirements, defining and evaluating the radiation hazard, selecting and categorizing the appropriate parts, and evaluating circuit response to hazard. The RHA approach is based on risk management and is confined only to parts, it includes spacecraft layout, system/subsystem/circuit design, and system requirements and system operations. RHA should be taken into account in the early phases of a program including the proposal and feasibility analysis phases.
The Transportable Applications Environment - An interactive design-to-production development system
NASA Technical Reports Server (NTRS)
Perkins, Dorothy C.; Howell, David R.; Szczur, Martha R.
1988-01-01
An account is given of the design philosophy and architecture of the Transportable Applications Environment (TAE), an executive program binding a system of applications programs into a single, easily operable whole. TAE simplifies the job of a system developer by furnishing a stable framework for system-building; it also integrates system activities, and cooperates with the host operating system in order to perform such functions as task-scheduling and I/O. The initial TAE human/computer interface supported command and menu interfaces, data displays, parameter-prompting, error-reporting, and online help. Recent extensions support graphics workstations with a window-based, modeless user interface.
Continuous zoom antenna for mobile visible light communication.
Zhang, Xuebin; Tang, Yi; Cui, Lu; Bai, Tingzhu
2015-11-10
In this paper, we design a continuous zoom antenna for mobile visible light communication (VLC). In the design, a right-angle reflecting prism was adopted to fold the space optical path, thus decreasing the antenna thickness. The surface of each lens in the antenna is spherical, and the system cost is relatively low. Simulation results indicated that the designed system achieved the following performance: zoom ratio of 2.44, field of view (FOV) range of 18°-48°, system gain of 16.8, and system size of 18 mm×6 mm. Finally, we established an indoor VLC system model in a room the size of 5 m ×5 m ×3 m and compared the detection results of the zoom antenna and fixed-focus antenna obtained in a multisource communication environment, a mobile VLC environment, and a multiple-input multiple-output communication environment. The simulation results indicated that the continuous zoom antenna could realize large FOV and high gain. Moreover, the system showed improved stability, mobility, and environmental applicability.
Pánek, J; Vohradský, J
1997-06-01
The principal motivation was to design an environment for the development of image-analysis applications which would allow the integration of independent modules into one frame and make available tools for their build-up, running, management and mutual communication. The system was designed as modular, consisting of the core and work modules. The system core focuses on overall management and provides a library of classes for build-up of the work modules, their user interface and data communication. The work modules carry practical implementation of algorithms and data structures for the solution of a particular problem, and were implemented as dynamic-link libraries. They are mutually independent and run as individual threads, communicating with each other via a unified mechanism. The environment was designed to simplify the development and testing of new algorithms or applications. An example of implementation for the particular problem of the analysis of two-dimensional (2D) gel electrophoretograms is presented. The environment was designed for the Windows NT operating system with the use of Microsoft Foundation Class Library employing the possibilities of C++ programming language. Available on request from the authors.
NASA Technical Reports Server (NTRS)
Lukash, James A.; Daley, Earl
2011-01-01
This work describes the design and development effort to adapt rapid-development space hardware by creating a ground system using solutions of low complexity, mass, & cost. The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft is based on the modular common spacecraft bus architecture developed at NASA Ames Research Center. The challenge was building upon the existing modular common bus design and development work and improving the LADEE spacecraft design by adding an Equipotential Voltage Reference (EVeR) system, commonly referred to as a ground system. This would aid LADEE in meeting Electromagnetic Environmental Effects (E3) requirements, thereby making the spacecraft more compatible with itself and its space environment. The methods used to adapt existing hardware are presented, including provisions which may be used on future spacecraft.
Artificial Intelligence and Educational Technology: A Natural Synergy. Extended Abstract.
ERIC Educational Resources Information Center
McCalla, Gordon I.
Educational technology and artificial intelligence (AI) are natural partners in the development of environments to support human learning. Designing systems with the characteristics of a rich learning environment is the long term goal of research in intelligent tutoring systems (ITS). Building these characteristics into a system is extremely…
Flexible radiator thermal vacuum test report
NASA Technical Reports Server (NTRS)
Oren, J. A.; Hixon, C. W.
1982-01-01
Two flexible, deployable/retraction radiators were designed and fabricated. The two radiator panels are distinguishable by their mission life design. One panel is designed with a 90 percent probability of withstanding the micrometeoroid environment of a low earth orbit for 30 days. This panel is designated the soft tube radiator after the PFA Teflon tubes which distribute the transport fluid over the panel. The second panel is designed with armored flow tubes to withstand the same micrometeoroid environment for 5 years. It is designated the hard tube radiator after its stainless steel flow tubes. The thermal performance of the radiators was tested under anticipated environmental conditions. The two deployment systems of the radiators were evaluated in a thermal vacuum environment.
Overview of the Ares I Scale Model Acoustic Test Program
NASA Technical Reports Server (NTRS)
Counter, Douglas D.; Houston, Janice D.
2011-01-01
Launch environments, such as lift-off acoustic (LOA) and ignition overpressure (IOP), are important design factors for any vehicle and are dependent upon the design of both the vehicle and the ground systems. LOA environments are used directly in the development of vehicle vibro-acoustic environments and IOP is used in the loads assessment. The NASA Constellation Program had several risks to the development of the Ares I vehicle linked to LOA. The risks included cost, schedule and technical impacts for component qualification due to high predicted vibro-acoustic environments. One solution is to mitigate the environment at the component level. However, where the environment is too severe for component survivability, reduction of the environment itself is required. The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the Ares I LOA and IOP environments for the vehicle and ground systems including the Mobile Launcher (ML) and tower. An additional objective was to determine the acoustic reduction for the LOA environment with an above deck water sound suppression system. ASMAT was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116 (TS 116). The ASMAT program is described in this presentation.
NASA Technical Reports Server (NTRS)
Clark, Toni A.
2014-01-01
In our day to day lives, the availability of light, with which to see our environment, is often taken for granted. The designers of land based lighting systems use sunlight and artificial light as their toolset. The availability of power, quantity of light sources, and variety of design options are often unlimited. The accessibility of most land based lighting systems makes it easy for the architect and engineer to verify and validate their design ideas. Failures with an implementation, while sometimes costly, can easily be addressed by renovation. Consider now, an architectural facility orbiting in space, 260 miles above the surface of the earth. This human rated architectural facility, the International Space Station (ISS) must maintain operations every day, including life support and appropriate human comforts without fail. The facility must also handle logistics of regular shipments of cargo, including new passengers. The ISS requires accommodations necessary for human control of machine systems. Additionally, the ISS is a research facility and supports investigations performed inside and outside its livable volume. Finally, the facility must support remote operations and observations by ground controllers. All of these architectural needs require a functional, safe, and even an aesthetic lighting environment. At Johnson Space Center, our Habitability and Human Factors team assists our diverse customers with their lighting environment challenges, via physical test and computer based analysis. Because of the complexity of ISS operational environment, our team has learned and developed processes that help ISS operate safely. Because of the dynamic exterior lighting environment, uses computational modeling to predict the lighting environment. The ISS' orbit exposes it to a sunrise every 90 minutes, causing work surfaces to quickly change from direct sunlight to earthshine to total darkness. Proper planning of vehicle approaches, robotics operations, and crewed Extra Vehicular Activities are mandatory to ensure safety to the crew and all others involved. Innovation in testing techniques is important as well. The advent of Solid State Lighting technology and the lack of stable national and international standards for its implementation pose new challenges on how to design, test and verify individual light fixtures and the environment that uses them. The ISS will soon be replacing its internal fluorescent lighting system to a solid state LED system. The Solid State Lighting Assembly will be used not only for general lighting, but also as a medical countermeasure to control the circadian rhythm of the crew. The new light source has performance criteria very specific to its spectral fingerprint, creating new challenges that were originally not as significant during the original design of the ISS. This presentation will showcase findings and toolsets our team is using to assist in the planning of tasks, and design of operational lighting environments on the International Space Station.
An Integrated Modeling and Simulation Methodology for Intelligent Systems Design and Testing
2002-08-01
simulation and actual execution. KEYWORDS: Model Continuity, Modeling, Simulation, Experimental Frame, Real Time Systems , Intelligent Systems...the methodology for a stand-alone real time system. Then it will scale up to distributed real time systems . For both systems, step-wise simulation...MODEL CONTINUITY Intelligent real time systems monitor, respond to, or control, an external environment. This environment is connected to the digital
A Distributed Control System Prototyping Environment to Support Control Room Modernization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lew, Roger Thomas; Boring, Ronald Laurids; Ulrich, Thomas Anthony
Operators of critical processes, such as nuclear power production, must contend with highly complex systems, procedures, and regulations. Developing human-machine interfaces (HMIs) that better support operators is a high priority for ensuring the safe and reliable operation of critical processes. Human factors engineering (HFE) provides a rich and mature set of tools for evaluating the performance of HMIs, however the set of tools for developing and designing HMIs is still in its infancy. Here we propose a rapid prototyping approach for integrating proposed HMIs into their native environments before a design is finalized. This approach allows researchers and developers tomore » test design ideas and eliminate design flaws prior to fully developing the new system. We illustrate this approach with four prototype designs developed using Microsoft’s Windows Presentation Foundation (WPF). One example is integrated into a microworld environment to test the functionality of the design and identify the optimal level of automation for a new system in a nuclear power plant. The other three examples are integrated into a full-scale, glasstop digital simulator of a nuclear power plant. One example demonstrates the capabilities of next generation control concepts; another aims to expand the current state of the art; lastly, an HMI prototype was developed as a test platform for a new control system currently in development at U.S. nuclear power plants. WPF possesses several characteristics that make it well suited to HMI design. It provides a tremendous amount of flexibility, agility, robustness, and extensibility. Distributed control system (DCS) specific environments tend to focus on the safety and reliability requirements for real-world interfaces and consequently have less emphasis on providing functionality to support novel interaction paradigms. Because of WPF’s large user-base, Microsoft can provide an extremely mature tool. Within process control applications,WPF is platform independent and can communicate with popular full-scope process control simulator vendor plant models and DCS platforms.« less
Aerospace Meteorology Lessons Learned Relative to Aerospace Vehicle Design and Operations
NASA Technical Reports Server (NTRS)
Vaughan, William W.; Anderson, B. Jeffrey
2004-01-01
Aerospace Meteorology came into being in the 1950s as the development of rockets for military and civilian usage grew in the United States. The term was coined to identify those involved in the development of natural environment models, design/operational requirements, and environment measurement systems to support the needs of aerospace vehicles, both launch vehicles and spacecraft. It encompassed the atmospheric environment of the Earth, including Earth orbit environments. Several groups within the United States were active in this area, including the Department of Defense, National Aeronautics and Space Administration, and a few of the aerospace industry groups. Some aerospace meteorology efforts were similar to those being undertaken relative to aviation interests. As part of the aerospace meteorology activities a number of lessons learned resulted that produced follow on efforts which benefited from these experiences, thus leading to the rather efficient and technologically current descriptions of terrestrial environment design requirements, prelaunch monitoring systems, and forecast capabilities available to support the development and operations of aerospace vehicles.
DOT National Transportation Integrated Search
1975-10-01
This document forms part of the Subway Environmental Design Handbook. It contains the background information and instructions to enable an engineer to perform an analysis of a subway system by using the Subway Environment Simulation (SES) computer pr...
The design of electric vehicle intelligent charger
NASA Astrophysics Data System (ADS)
Xu, Yangyang; Wang, Ying
2018-05-01
As the situation of the lack of energy and environment pollution deteriorates rapidly, electric vehicle, a new type of traffic tool, is being researched worldwide. As the core components of electric vehicle, the battery and charger's performance play an important roles in the quality of electric vehicle. So the design of the Electric Vehicle Intelligent Charger based on language-C is designed in this paper. The hardware system is used to produce the input signals of Electric Vehicle Intelligent Charger. The software system adopts the language-C software as development environment. The design can accomplish the test of the parametric such as voltage-current and temperature.
The environment workbench: A design tool for Space Station Freedom
NASA Technical Reports Server (NTRS)
Jongeward, Gary A.; Kuharski, Robert A.; Rankin, Thomas V.; Wilcox, Katherine G.; Roche, James C.
1991-01-01
The environment workbench (EWB) is being developed for NASA by S-CUBED to provide a standard tool that can be used by the Space Station Freedom (SSF) design and user community for requirements verification. The desktop tool will predict and analyze the interactions of SSF with its natural and self-generated environments. A brief review of the EWB design and capabilities is presented. Calculations using a prototype EWB of the on-orbit floating potentials and contaminant environment of SSF are also presented. Both the positive and negative grounding configurations for the solar arrays are examined to demonstrate the capability of the EWB to provide quick estimates of environments, interactions, and system effects.
Intelligent control of a planning system for astronaut training.
Ortiz, J; Chen, G
1999-07-01
This work intends to design, analyze and solve, from the systems control perspective, a complex, dynamic, and multiconstrained planning system for generating training plans for crew members of the NASA-led International Space Station. Various intelligent planning systems have been developed within the framework of artificial intelligence. These planning systems generally lack a rigorous mathematical formalism to allow a reliable and flexible methodology for their design, modeling, and performance analysis in a dynamical, time-critical, and multiconstrained environment. Formulating the planning problem in the domain of discrete-event systems under a unified framework such that it can be modeled, designed, and analyzed as a control system will provide a self-contained theory for such planning systems. This will also provide a means to certify various planning systems for operations in the dynamical and complex environments in space. The work presented here completes the design, development, and analysis of an intricate, large-scale, and representative mathematical formulation for intelligent control of a real planning system for Space Station crew training. This planning system has been tested and used at NASA-Johnson Space Center.
Exercise countermeasure protocol management expert system.
Webster, L; Chen, J G; Flores, L; Tan, S
1993-04-01
Exercise will be used primarily to countermeasure against deconditioning on extended space flight. In this paper we describe the development and evaluation of an expert system for exercise countermeasure protocol management. Currently, the system includes two major subsystems: baseline prescription and prescription adjustment. The baseline prescription subsystem is designed to provide initial exercise prescriptions while prescription adjustment subsystem is designed to modify the initial prescription based on the exercised progress. The system runs under three different environments: PC, SUN workstation, and Symbolic machine. The inference engine, baseline prescription module, prescription adjustment module and explanation module are developed under the Symbolic environment by using the ART (Automated Reasoning Tool) software. The Sun environment handles database management features and interfaces with PC environment to obtain physical and physiological data from exercise units on-board during the flight. Eight subjects' data have been used to evaluate the system performance by comparing the prescription of nine experienced exercise physiologists and the one prescribed by the expert system. The results of the validation test indicated that the performance of the expert system was acceptable.
Exercise countermeasure protocol management expert system
NASA Technical Reports Server (NTRS)
Webster, L.; Chen, J. G.; Flores, L.; Tan, S.
1993-01-01
Exercise will be used primarily to countermeasure against deconditioning on extended space flight. In this paper we describe the development and evaluation of an expert system for exercise countermeasure protocol management. Currently, the system includes two major subsystems: baseline prescription and prescription adjustment. The baseline prescription subsystem is designed to provide initial exercise prescriptions while prescription adjustment subsystem is designed to modify the initial prescription based on the exercised progress. The system runs under three different environments: PC, SUN workstation, and Symbolic machine. The inference engine, baseline prescription module, prescription adjustment module and explanation module are developed under the Symbolic environment by using the ART (Automated Reasoning Tool) software. The Sun environment handles database management features and interfaces with PC environment to obtain physical and physiological data from exercise units on-board during the flight. Eight subjects' data have been used to evaluate the system performance by comparing the prescription of nine experienced exercise physiologists and the one prescribed by the expert system. The results of the validation test indicated that the performance of the expert system was acceptable.
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Housner, Jerrold M.
1993-01-01
Recent advances in computer technology that are likely to impact structural analysis and design of flight vehicles are reviewed. A brief summary is given of the advances in microelectronics, networking technologies, and in the user-interface hardware and software. The major features of new and projected computing systems, including high performance computers, parallel processing machines, and small systems, are described. Advances in programming environments, numerical algorithms, and computational strategies for new computing systems are reviewed. The impact of the advances in computer technology on structural analysis and the design of flight vehicles is described. A scenario for future computing paradigms is presented, and the near-term needs in the computational structures area are outlined.
Design and implementation of dynamic hybrid Honeypot network
NASA Astrophysics Data System (ADS)
Qiao, Peili; Hu, Shan-Shan; Zhai, Ji-Qiang
2013-05-01
The method of constructing a dynamic and self-adaptive virtual network is suggested to puzzle adversaries, delay and divert attacks, exhaust attacker resources and collect attacking information. The concepts of Honeypot and Honeyd, which is the frame of virtual Honeypot are introduced. The techniques of network scanning including active fingerprint recognition are analyzed. Dynamic virtual network system is designed and implemented. A virtual network similar to real network topology is built according to the collected messages from real environments in this system. By doing this, the system can perplex the attackers when Hackers attack and can further analyze and research the attacks. The tests to this system prove that this design can successfully simulate real network environment and can be used in network security analysis.
Military applications of emission and susceptibility data
NASA Astrophysics Data System (ADS)
Kohlbacher, Howard; Walker, William
A basic design consideration for new military communications-electronics (C-E) equipment is that it be electromagnetically compatible with the environment in which it will operate. A military standard (MIL-STD-461B) describes the design requirements for the control of the unintentional electromagnetic emission and susceptibility characteristics of electronic equipment and subsystems designed or procured by the US Department of Defense. For new systems which fail the test standards of MIL-STD-461B with regard to radiated susceptibility (RSO3) or radiated emissions (RE02), a decision must be made to fix the new system or to field it without a fix. A procedure to aid in the decision process is outlined. The minimum separation distances required between a failed test system and other C-E equipment in its environment to avoid interference are determined. If this distance is operationally acceptable, the failed unit may be considered to be operationally compatible with its electromagnetic environment.
Negotiation Support System’s Impact on the Socio-Emotional Environment: A Research Design Framework
1992-03-01
conflict environment and develop some proposed effects that Negotiation Support Systems (NSS) have on the socio- emotional climate. This introduction of...assessment of current NSS structure, processes and capabilities. Section IV provides a theoretical discussion of conflict and the socio- emotional environment ...model. First, strict economic rationalization does not take into account social/normative issues present --n the negotiation environment . Thus, in an
A Markovian state-space framework for integrating flexibility into space system design decisions
NASA Astrophysics Data System (ADS)
Lafleur, Jarret M.
The past decades have seen the state of the art in aerospace system design progress from a scope of simple optimization to one including robustness, with the objective of permitting a single system to perform well even in off-nominal future environments. Integrating flexibility, or the capability to easily modify a system after it has been fielded in response to changing environments, into system design represents a further step forward. One challenge in accomplishing this rests in that the decision-maker must consider not only the present system design decision, but also sequential future design and operation decisions. Despite extensive interest in the topic, the state of the art in designing flexibility into aerospace systems, and particularly space systems, tends to be limited to analyses that are qualitative, deterministic, single-objective, and/or limited to consider a single future time period. To address these gaps, this thesis develops a stochastic, multi-objective, and multi-period framework for integrating flexibility into space system design decisions. Central to the framework are five steps. First, system configuration options are identified and costs of switching from one configuration to another are compiled into a cost transition matrix. Second, probabilities that demand on the system will transition from one mission to another are compiled into a mission demand Markov chain. Third, one performance matrix for each design objective is populated to describe how well the identified system configurations perform in each of the identified mission demand environments. The fourth step employs multi-period decision analysis techniques, including Markov decision processes from the field of operations research, to find efficient paths and policies a decision-maker may follow. The final step examines the implications of these paths and policies for the primary goal of informing initial system selection. Overall, this thesis unifies state-centric concepts of flexibility from economics and engineering literature with sequential decision-making techniques from operations research. The end objective of this thesis’ framework and its supporting tools is to enable selection of the next-generation space systems today, tailored to decision-maker budget and performance preferences, that will be best able to adapt and perform in a future of changing environments and requirements. Following extensive theoretical development, the framework and its steps are applied to space system planning problems of (1) DARPA-motivated multiple- or distributed-payload satellite selection and (2) NASA human space exploration architecture selection.
Real, Kevin; Bardach, Shoshana H; Bardach, David R
2017-12-01
Increasingly, health communication scholars are attending to how hospital built environments shape communication, patient care processes, and patient outcomes. This multimethod study was conducted on two floors of a newly designed urban hospital. Nine focus groups interviews were conducted with 35 health care professionals from 10 provider groups. Seven of the groups were homogeneous by profession or level: nursing (three groups), nurse managers (two groups), and one group each of nurse care technicians ("techs") and physicians. Two mixed groups were comprised of staff from pharmacy, occupational therapy, patient care facilitators, physical therapy, social work, and pastoral care. Systematic qualitative analysis was conducted using a conceptual framework based on systems theory and prior health care design and communication research. Additionally, quantitative modeling was employed to assess walking distances in two different hospital designs. Results indicate nurses walked significantly more in the new hospital environment. Qualitative analysis revealed three insights developed in relationship to system structures, processes, and outcomes. First, decentralized nurse stations changed system interdependencies by reducing nurse-to-nurse interactions and teamwork while heightening nurse interdependencies and teamwork with other health care occupations. Second, many nursing-related processes remained centralized while nurse stations were decentralized, creating systems-based problems for nursing care. Third, nursing communities of practices were adversely affected by the new design. Implications of this study suggest that nurse station design shapes communication, patient care processes, and patient outcomes. Further, it is important to understand how the built environment, often treated as invisible in communication research, is crucial to understanding communication within complex health care systems.
Packaging of fiber lasers and components for use in harsh environments
NASA Astrophysics Data System (ADS)
Creeden, Daniel; Johnson, Benjamin R.; Jones, Casey; Ibach, Charles; Lemons, Michael; Budni, Peter A.; Zona, James P.; Marcinuk, Adam; Willis, Chris; Sweeney, James; Setzler, Scott D.
2016-03-01
High power continuous and pulsed fiber lasers and amplifiers have become more prevalent in laser systems over the last ten years. In fielding such systems, strong environmental and operational factors drive the packaging of the components. These include large operational temperature ranges, non-standard wavelengths of operation, strong vibration, and lack of water cooling. Typical commercial fiber components are not designed to survive these types of environments. Based on these constraints, we have had to develop and test a wide range of customized fiber-based components and systems to survive in these conditions. In this paper, we discuss some of those designs and detail the testing performed on those systems and components. This includes the use of commercial off-the-shelf (COTS) components, modified to survive extended temperature ranges, as well as customized components designed specifically for performance in harsh environments. Some of these custom components include: ruggedized/monolithic fiber spools; detachable and repeatable fiber collimators; low loss fiber-to-fiber coupling schemes; and high power fiber-coupled isolators.
Advanced Collaborative Environments Supporting Systems Integration and Design
2003-03-01
concurrently view a virtual system or product model while maintaining natural, human communication . These virtual systems operate within a computer-generated...These environments allow multiple individuals to concurrently view a virtual system or product model while simultaneously maintaining natural, human ... communication . As a result, TARDEC researchers and system developers are using this advanced high-end visualization technology to develop future
Safety System Design for Technology Education. A Safety Guide for Technology Education Courses K-12.
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education.
This manual is designed to involve both teachers and students in planning and controlling a safety system for technology education classrooms. The safety program involves students in the design and maintenance of the system by including them in the analysis of the classroom environment, job safety analysis, safety inspection, and machine safety…
A New Handbook for the Development of Space Vehicle Terrestrial Environment Design Requirements.
NASA Technical Reports Server (NTRS)
Johnson, Dale L.; Vaughan, William W.
2008-01-01
A new NASA document entitled "Terrestrial Environment (Climatic) Criteria Handbook for Use in Aerospace Vehicle Development (NASA-HDBK-1001A) has been developed. The Handbook provides terrestrial environment information, data bases, models, recommendations, etc. for use in the design, development, trade studies, testing, and mission analyses for space (or launch) .vehicles. This document is organized into fourteen specific natural environment disciplines of which some are winds, atmospheric models, thermal radiation, precipitation-for-icing, cloud cover, atmospheric electricity, geologic hazards, toxic chemical release by propulsion systems, and sea state. Atmospheric phenomena play a significant role in the design and flight of aerospace vehicles and in the integrity of the associated aerospace systems and structures. Environmental design criteria guidelines in this document are based on measurements and observations of atmospheric and climatic phenomena relative to various aerospace development, operational, and vehicle launch locations. The natural environment criteria guidelines data presented in this Handbook were formulated based on discussions with and requests from engineers involved in aerospace vehicle development and operations. Therefore, they represent responses to actual engineering problems and are not just a general compilation of environmental data. The Handbook addresses the basis for the information presented, the interpretations of the terrestrial environment guideline given in the Handbook, and its application to the development of aerospace vehicle design requirements. Specific examples of the Handbook content and associated "lessons lenmed" are given in this paper.
A New Handbook for the Development of Space Vehicle Terrestrial Environment Design Requirements
NASA Technical Reports Server (NTRS)
Johnson, Dale L.; Vaughan, William W.
2008-01-01
A new NASA document entitled "Terrestrial Environment (Climatic) Criteria Handbook for Use in Aerospace Vehicle Development (NASA-HDBK-IOO1A) has been developed. The Handbook provides terrestrial environment information, data bases, models, recommendations, etc. for use in the design, development, trade studies, testing, and mission analyses for space (or launch) vehicles. This document is organized into fourteen specific natural environment disciplines of which some are winds, atmospheric models, thermal radiation, precipitation-for-icing, cloud cover, atmospheric electricity, geologic hazards, toxic chemical release by propulsion systems, and sea state. Atmospheric phenomena play a significant role in the design and flight of aerospace vehicles and in the integrity of the associated aerospace systems and structures. Environmental design criteria guidelines in this document are based on measurements and observations of atmospheric and climatic phenomena relative to various aerospace development, operational, and vehicle launch locations. The natural environment criteria guidelines data presented in this Handbook were formulated based on discussions with and requests from engineers involved in aerospace vehicle development and operations. Therefore, they represent responses to actual engineering problems and are not just a general compilation of environmental data. The Handbook addresses the basis for the information presented, the interpretations of the terrestrial environment guideline given in the Handbook, and its application to the development of aerospace vehicle design requirements. Specific examples of the Handbook content and associated "lessons lenmed" are given in this paper.
Jacelon, Cynthia S; Hanson, Allen
2013-01-01
Smart environments are being developed to support older adults aging in place. However, the design contributions of the older users have not been explicated. The purpose of this review of literature was to determine how older adults' ideas are being incorporated into the design of smart environments. Twenty-one research articles, incorporating older adults' preferences into the design and evaluation of smart environments are presented. Although only one study was found that used findings from older adult focus groups in the design and development of their system, the findings indicate that older adults are open to living in technically advanced environments if doing so would improve their quality of life and help them stay in their own homes, and that incorporating older adults ideas about smart environments improve the desirability of smart homes. Copyright © 2013 Mosby, Inc. All rights reserved.
Advanced EVA system design requirements study, executive summary
NASA Technical Reports Server (NTRS)
1986-01-01
Design requirements and criteria for the space station advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related EVA support equipment were established. The EVA mission requirements, environments, and medical and physiological requirements, as well as operational, procedures and training issues were considered.
DOT National Transportation Integrated Search
2017-10-27
This report describes the system architecture and design of the Experimental Prototype System (EPS) for the demonstration of the use of mobile devices in a connected vehicle environment. Specifically, it defines the system structure and behavior, the...
ERIC Educational Resources Information Center
Lee, Fong-Lok; Liang, Steven; Chan, Tak-Wai
1999-01-01
Describes the design, implementation, and preliminary evaluation of three synchronous distributed learning prototype systems: Co-Working System, Working Along System, and Hybrid System. Each supports a particular style of interaction, referred to a socio-activity learning model, between members of student dyads (pairs). All systems were…
The Intelligent Control System and Experiments for an Unmanned Wave Glider.
Liao, Yulei; Wang, Leifeng; Li, Yiming; Li, Ye; Jiang, Quanquan
2016-01-01
The control system designing of Unmanned Wave Glider (UWG) is challenging since the control system is weak maneuvering, large time-lag and large disturbance, which is difficult to establish accurate mathematical model. Meanwhile, to complete marine environment monitoring in long time scale and large spatial scale autonomously, UWG asks high requirements of intelligence and reliability. This paper focuses on the "Ocean Rambler" UWG. First, the intelligent control system architecture is designed based on the cerebrum basic function combination zone theory and hierarchic control method. The hardware and software designing of the embedded motion control system are mainly discussed. A motion control system based on rational behavior model of four layers is proposed. Then, combining with the line-of sight method(LOS), a self-adapting PID guidance law is proposed to compensate the steady state error in path following of UWG caused by marine environment disturbance especially current. Based on S-surface control method, an improved S-surface heading controller is proposed to solve the heading control problem of the weak maneuvering carrier under large disturbance. Finally, the simulation experiments were carried out and the UWG completed autonomous path following and marine environment monitoring in sea trials. The simulation experiments and sea trial results prove that the proposed intelligent control system, guidance law, controller have favorable control performance, and the feasibility and reliability of the designed intelligent control system of UWG are verified.
The Intelligent Control System and Experiments for an Unmanned Wave Glider
Liao, Yulei; Wang, Leifeng; Li, Yiming; Li, Ye; Jiang, Quanquan
2016-01-01
The control system designing of Unmanned Wave Glider (UWG) is challenging since the control system is weak maneuvering, large time-lag and large disturbance, which is difficult to establish accurate mathematical model. Meanwhile, to complete marine environment monitoring in long time scale and large spatial scale autonomously, UWG asks high requirements of intelligence and reliability. This paper focuses on the “Ocean Rambler” UWG. First, the intelligent control system architecture is designed based on the cerebrum basic function combination zone theory and hierarchic control method. The hardware and software designing of the embedded motion control system are mainly discussed. A motion control system based on rational behavior model of four layers is proposed. Then, combining with the line-of sight method(LOS), a self-adapting PID guidance law is proposed to compensate the steady state error in path following of UWG caused by marine environment disturbance especially current. Based on S-surface control method, an improved S-surface heading controller is proposed to solve the heading control problem of the weak maneuvering carrier under large disturbance. Finally, the simulation experiments were carried out and the UWG completed autonomous path following and marine environment monitoring in sea trials. The simulation experiments and sea trial results prove that the proposed intelligent control system, guidance law, controller have favorable control performance, and the feasibility and reliability of the designed intelligent control system of UWG are verified. PMID:28005956
NASA wiring for space applications program test results
NASA Astrophysics Data System (ADS)
Stavnes, Mark; Hammoud, Ahmad
1995-11-01
The electrical power wiring tests results from the NASA Wiring for Space Applications program are presented. The goal of the program was to develop a base for the building of a lightweight, arc track-resistant electrical wiring system for aerospace applications. This new wiring system would be applied to such structures as pressurized modules, trans-atmospheric vehicles, LEO/GEO environments, and lunar and Martian environments. Technological developments from this program include the fabrication of new insulating materials, the production of new wiring constructions, an improved system design, and an advanced circuit protection design.
A Dust Aggregation and Concentration System (DACS) for the Microgravity Space Environment
NASA Technical Reports Server (NTRS)
Giovane, F. J.; Blum, J.
1999-01-01
The Dust Aggregation and Concentration System, DACS, Project is an international effort intended to complete the preliminary definition of a system for suspending and concentrating dust particles in a microgravity environment for extended periods of time. The DACS design concept is based on extensive ground, drop tower, and parabolic flight tests. During the present proposed work, the DACS design will be completed, and a Science Requirements Document generated. At the end of the proposed 2 year project, DACS will be positioned to enter the advanced definition phase.
ERIC Educational Resources Information Center
Schaffer, Scott P.; Reyes, Lisette; Kim, Hannah; Collins, Bart
2010-01-01
Learning designs aimed at supporting transformational change could significantly benefit from the adoption of socio-historical and socio-cultural analysis approaches. Such systemic perspectives are gaining more importance in education as they facilitate understanding of complex interactions between learning environments and human activity. The…
Building Ecology & School Design. Technical Bulletin.
ERIC Educational Resources Information Center
Maryland State Dept. of Education, Baltimore.
To better understand construction's impact, an overview of building ecology as a concept and as a decision-making model for school systems is provided. "Building ecology" is defined as the interrelationships among people, the built environment, and the natural environment. It has special relevance for school design because most of the…
NASA Astrophysics Data System (ADS)
Mosier, Gary E.; Femiano, Michael; Ha, Kong; Bely, Pierre Y.; Burg, Richard; Redding, David C.; Kissil, Andrew; Rakoczy, John; Craig, Larry
1998-08-01
All current concepts for the NGST are innovative designs which present unique systems-level challenges. The goals are to outperform existing observatories at a fraction of the current price/performance ratio. Standard practices for developing systems error budgets, such as the 'root-sum-of- squares' error tree, are insufficient for designs of this complexity. Simulation and optimization are the tools needed for this project; in particular tools that integrate controls, optics, thermal and structural analysis, and design optimization. This paper describes such an environment which allows sub-system performance specifications to be analyzed parametrically, and includes optimizing metrics that capture the science requirements. The resulting systems-level design trades are greatly facilitated, and significant cost savings can be realized. This modeling environment, built around a tightly integrated combination of commercial off-the-shelf and in-house- developed codes, provides the foundation for linear and non- linear analysis on both the time and frequency-domains, statistical analysis, and design optimization. It features an interactive user interface and integrated graphics that allow highly-effective, real-time work to be done by multidisciplinary design teams. For the NGST, it has been applied to issues such as pointing control, dynamic isolation of spacecraft disturbances, wavefront sensing and control, on-orbit thermal stability of the optics, and development of systems-level error budgets. In this paper, results are presented from parametric trade studies that assess requirements for pointing control, structural dynamics, reaction wheel dynamic disturbances, and vibration isolation. These studies attempt to define requirements bounds such that the resulting design is optimized at the systems level, without attempting to optimize each subsystem individually. The performance metrics are defined in terms of image quality, specifically centroiding error and RMS wavefront error, which directly links to science requirements.
Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il
2014-01-01
Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected. PMID:25051037
Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il
2014-07-21
Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected.
Multi-level Simulation of a Real Time Vibration Monitoring System Component
NASA Technical Reports Server (NTRS)
Robertson, Bryan A.; Wilkerson, Delisa
2005-01-01
This paper describes the development of a custom built Digital Signal Processing (DSP) printed circuit board designed to implement the Advanced Real Time Vibration Monitoring Subsystem proposed by Marshall Space Flight Center (MSFC) Transportation Directorate in 2000 for the Space Shuttle Main Engine Advanced Health Management System (AHMS). This Real Time Vibration Monitoring System (RTVMS) is being developed for ground use as part of the AHMS Health Management Computer-Integrated Rack Assembly (HMC-IRA). The HMC-IRA RTVMS design contains five DSPs which are highly interconnected through individual communication ports, shared memory, and a unique communication router that allows all the DSPs to receive digitized data fiom two multi-channel analog boards simultaneously. This paper will briefly cover the overall board design but will focus primarily on the state-of-the-art simulation environment within which this board was developed. This 16-layer board with over 1800 components and an additional mezzanine card has been an extremely challenging design. Utilization of a Mentor Graphics simulation environment provided the unique board and system level simulation capability to ascertain any timing or functional concerns before production. By combining VHDL, Synopsys Software and Hardware Models, and the Mentor Design Capture Environment, multiple simulations were developed to verify the RTVMS design. This multi-level simulation allowed the designers to achieve complete operability without error the first time the RTVMS printed circuit board was powered. The HMC-IRA design has completed all engineering and deliverable unit testing. P
Multi-level Simulation of a Real Time Vibration Monitoring System Component
NASA Technical Reports Server (NTRS)
Roberston, Bryan; Wilkerson, DeLisa
2004-01-01
This paper describes the development of a custom built Digital Signal Processing (DSP) printed circuit board designed to implement the Advanced Real Time Vibration Monitoring Subsystem proposed by MSFC Transportation Directorate in 2000 for the Space Shuttle Main Engine Advanced Health Management System (AHMS). This Real Time Vibration Monitoring System (RTVMS) is being developed for ground use as part of the AHMS Health Management Computer-Integrated Rack Assembly (HMC-IRA). The HMC-IRA RTVMS design contains five DSPs which are highly interconnected through individual communication ports, shared memory, and a unique communication router that allows all the DSPs to receive digitized data from two multi-channel analog boards simultaneously. This paper will briefly cover the overall board design but will focus primarily on the state-of-the-art simulation environment within which this board was developed. This 16-layer board with over 1800 components and an additional mezzanine card has been an extremely challenging design. Utilization of a Mentor Graphics simulation environment provided the unique board and system level simulation capability to ascertain any timing or functional concerns before production. By combining VHDL, Synopsys Software and Hardware Models, and the Mentor Design Capture Environment, multiple simulations were developed to verify the RTVMS design. This multi-level simulation allowed the designers to achieve complete operability without error the first time the RTVMS printed circuit board was powered. The HMCIRA design has completed all engineering unit testing and the deliverable unit is currently under development.
NASA Astrophysics Data System (ADS)
Wang, Ruozhu; Liu, Pengda; Qian, Yongmei
2018-02-01
This paper analyzes the design technology of controlling indoor quality in engineering practice, it is proposed that, in framework system of green residential building design, how to realize the design idea of controlling the indoor environment quality, and the design technology with feasibility, including the sunshine and lighting, indoor air quality and thermal environment, sound insulation and noise reduction measures, etc.. The results of all will provide a good theoretical supportting for the design of green residential building.
Mallam, Steven C; Lundh, Monica
2016-08-12
Physical environments influence how individuals perceive a space and behave within it. Previous research has revealed deficiencies in ship engine department work environments, and their impact on crew productivity, health and wellbeing. Connect operational task demands to pragmatic physical design and layout solutions by implementing a user-centric perspective. Three focus groups, each consisting of three marine engineers participated in this study. Focus groups were divided into two sessions: first, to investigate the end-user's operational requirements and their relationship with ship physical design and layout. Second, criteria formulated from group discussions were applied to a ship design case study. All focus group sessions were audio recorded and transcribed verbatim. The data were analyzed using Grounded Theory. Design choices made in a ships general arrangement were described to inherently influence how individuals and teams are able to function within the system. Participants detailed logistical relationships between key areas, stressing that the work environment and physical linkages must allow for flexibility of work organization and task execution. Traditional engine control paradigms do not allow effective mitigation of traditional engine department challenges. The influence of technology and modernization of ship systems can facilitate improvement of physical environments and work organization if effectively utilized.
An Elementary Overview of the Selection of Materials for Service in Oxygen-Enriched Environments
NASA Technical Reports Server (NTRS)
Davis, Samuel Eddie
2012-01-01
The process for selecting materials for use in oxygen or oxygen-enriched environments is one that continues to be investigated by many industries due to the importance to those industries of oxygen systems. There are several excellent resources available to assist oxygen systems design engineers and end-users, with the most comprehensive being ASTM MNL-36, Safe Use of Oxygen and Oxygen Systems: Handbook for Design, Operation and Maintenance, 2nd Edition. ASTM also makes available several standards for oxygen systems. However, the ASTM publications are extremely detailed, and typically designed for professionals who already possess a working knowledge of oxygen systems. No notable resource exists, whether an ASTM or other organizational publication, which can be used to educate engineers or technicians who have no prior knowledge of the nuances of oxygen system design and safety. This paper will fill the void for information needed by organizations that design or operate oxygen systems. The information in this paper is not new information, but is a concise and easily understood summary of selecting materials for oxygen systems. This paper will serve well as an employee s first introduction to oxygen system materials selection, and probably the employee s first introduction to ASTM.
NASA Technical Reports Server (NTRS)
Edwards, D. L.; Burns, H. D.; Clinton, R. G.; Schumacher, D.; Spann, J. F.
2012-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous organizations specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline organizations, a concept is presented focusing on the development of a space environment and spacecraft effects organization. This includes space climate, space weather, natural and induced space environments, and effects on spacecraft materials and systems. This space environment and spacecraft effects organization would be comprised of Technical Working Groups (TWG) focusing on, for example: a) Charged Particles (CP), b) Space Environmental Effects (SEE), and c) Interplanetary and Extraterrestrial Environments (IEE). These technical working groups will generate products and provide knowledge supporting four functional areas: design environments, environment effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather observations to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA and other federal agencies to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lesson learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and spacecraft effects organization are suitable for use in anomaly investigations. This paper will describe the organizational structure for this space environments and spacecraft effects organization, and outline the scope of conceptual TWG's and their relationship to the functional areas.
Heating and Cooling System Design for a Modern Transportable Container
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Jason E.
Sandia National Laboratories (SNL) has been tasked with the design of a modern transportable container (MTC) for use in high reliability transportation environments. The container is required to transport cargo capable of generating its own heat and operate under the United States’ climatic extremes. In response to these requirements, active heating and cooling is necessary to maintain a controlled environment inside the container. The following thesis project documents the design of an active heating, active cooling, and combined active heating and cooling system (now referred to as active heating and cooling systems) through computational thermal analyses, scoping of commercial systemmore » options, and mechanical integration with the container’s structure.« less
NASA Astrophysics Data System (ADS)
Majerska-Pałubicka, Beata
2017-10-01
Currently, there is a tendency in architecture to search for solutions implementing the assumptions of the sustainable development paradigm. A number of them are components of architecture, which in the future will certainly affect urban planning and architecture to a much greater extent. On the one hand, an issue of great significance is the need to integrate sustainable system elements with the spatial structure of environmentally friendly architectural facilities and complexes and to determine their influence on design solutions as well as the implementation, operation and recycling, while on the other hand, it is very important to solve the problem of how to design buildings, housing estates and towns so that their impact on the environment will be acceptable, i.e. will not exceed the possibilities of natural environment regeneration and, how to cooperate in interdisciplinary design teams to reach an agreement and acceptance so as to achieve harmony between the built and natural environment, which is a basis of sustainable development. In this broad interdisciplinary context an increasing importance is being attached to design strategies, systems of evaluating designs and buildings as well as tools to support integrated activities in the field of architectural design. The above topics are the subject of research presented in this paper. The basic research aim of the paper is: to look for a current method of solving design tasks within the framework of Integrated Design Process (IDP) using modern design tools and technical possibilities, in the context of sustainable development imperative, including, the optimisation of IDP design strategies regarding the assumptions of conscious creation of sustainable built environment, adjusted to Polish conditions. As a case study used examples of Scandinavian housing settlements, sustainable in a broad context.
An Overview of the Space Environments and Spacecraft Effects Organization Concept
NASA Technical Reports Server (NTRS)
Edwards, David L.; Burns, Howard D.; Garrett, Henry B.; Miller, Sharon K.; Peddie, Darilyn; Porter Ron; Spann, James F.; Xapsos, Michael A.
2012-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore our Earth, and the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge on the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments fields that will serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environment and spacecraft effects (SESE) organization. This SESE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems, and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system, and system-level response to the space environment and include the selection and testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal government agencies, and the commercial sector to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lessons learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support all mission phases from mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will describe the scope and purpose of the space environments and spacecraft effects organization and describe the TWG's and their relationship to the functional areas.
NASA Astrophysics Data System (ADS)
Hazeli, K.; Kingstedt, O. T.
2017-05-01
It is critical to investigate the performance of electronic systems and their components under the environments experienced during proposed missions to improve spacecraft and robotic vehicle functionality and performance in extreme environments.
NASA Technical Reports Server (NTRS)
Phillips, M. A.
1973-01-01
Results are presented of an analysis which compares the performance predictions of a thermal model of a multi-panel modular radiator system with thermal vacuum test data. Comparisons between measured and predicted individual panel outlet temperatures and pressure drops and system outlet temperatures have been made over the full range of heat loads, environments and plumbing arrangements expected for the shuttle radiators. Both two sided and one sided radiation have been included. The model predictions show excellent agreement with the test data for the maximum design conditions of high load and hot environment. Predictions under minimum design conditions of low load-cold environments indicate good agreement with the measured data, but evaluation of low load predictions should consider the possibility of parallel flow instabilities due to main system freezing. Performance predictions under intermediate conditions in which the majority of the flow is not in either the main or prime system are adequate although model improvements in this area may be desired. The primary modeling objective of providing an analytical technique for performance predictions of a multi-panel radiator system under the design conditions has been met.
Pushing the Limits of Cubesat Attitude Control: A Ground Demonstration
NASA Technical Reports Server (NTRS)
Sanders, Devon S.; Heater, Daniel L.; Peeples, Steven R.; Sules. James K.; Huang, Po-Hao Adam
2013-01-01
A cubesat attitude control system (ACS) was designed at the NASA Marshall Space Flight Center (MSFC) to provide sub-degree pointing capabilities using low cost, COTS attitude sensors, COTS miniature reaction wheels, and a developmental micro-propulsion system. The ACS sensors and actuators were integrated onto a 3D-printed plastic 3U cubesat breadboard (10 cm x 10 cm x 30 cm) with a custom designed instrument board and typical cubesat COTS hardware for the electrical, power, and data handling and processing systems. In addition to the cubesat development, a low-cost air bearing was designed and 3D printed in order to float the cubesat in the test environment. Systems integration and verification were performed at the MSFC Small Projects Rapid Integration & Test Environment laboratory. Using a combination of both the miniature reaction wheels and the micro-propulsion system, the open and closed loop control capabilities of the ACS were tested in the Flight Robotics Laboratory. The testing demonstrated the desired sub-degree pointing capability of the ACS and also revealed the challenges of creating a relevant environment for development testin
NASA Technical Reports Server (NTRS)
1980-01-01
Different engineering problems associated with the design of mechanisms and systems to operate in a cryogenic environment are discussed. The focal point for the entire engineering effort was the design of the National Transonic Facility, which is a closed-circuit cryogenic wind tunnel. The papers covered a variety of mechanical, structural, and systems design subjects including thermal structures insulation systems, noise, seals, and materials.
Personalized Recommender System for e-Learning Environment
ERIC Educational Resources Information Center
Benhamdi, Soulef; Babouri, Abdesselam; Chiky, Raja
2017-01-01
Traditional e-Learning environments are based on static contents considering that all learners are similar, so they are not able to respond to each learner's needs. These systems are less adaptive and once a system that supports a particular strategy has been designed and implemented, it is less likely to change according to student's interactions…
Geneho Kim; Donald Nute; H. Michael Rauscher; David L. Loftis
2000-01-01
A programming environment for developing complex decision support systems (DSSs) should support rapid prototyping and modular design, feature a flexible knowledge representation scheme and sound inference mechanisms, provide project management, and be domain independent. We have previously developed DSSTools (Decision Support System Tools), a reusable, domain-...
NASA Technical Reports Server (NTRS)
Eckhardt, Dave E., Jr.; Jipping, Michael J.; Wild, Chris J.; Zeil, Steven J.; Roberts, Cathy C.
1993-01-01
A study of computer engineering tool integration using the Portable Common Tool Environment (PCTE) Public Interface Standard is presented. Over a 10-week time frame, three existing software products were encapsulated to work in the Emeraude environment, an implementation of the PCTE version 1.5 standard. The software products used were a computer-aided software engineering (CASE) design tool, a software reuse tool, and a computer architecture design and analysis tool. The tool set was then demonstrated to work in a coordinated design process in the Emeraude environment. The project and the features of PCTE used are described, experience with the use of Emeraude environment over the project time frame is summarized, and several related areas for future research are summarized.
Space Launch System Base Heating Test: Environments and Base Flow Physics
NASA Technical Reports Server (NTRS)
Mehta, Manish; Knox, Kyle; Seaford, Mark; Dufrene, Aaron
2016-01-01
NASA MSFC and CUBRC designed and developed a 2% scale SLS propulsive wind tunnel test program to investigate base flow effects during flight from lift-off to MECO. This type of test program has not been conducted in 40+ years during the NASA Shuttle Program. Dufrene et al paper described the operation, instrumentation type and layout, facility and propulsion performance, test matrix and conditions and some raw results. This paper will focus on the SLS base flow physics and the generation and results of the design environments being used to design the thermal protection system.
CAD/CAM approach to improving industry productivity gathers momentum
NASA Technical Reports Server (NTRS)
Fulton, R. E.
1982-01-01
Recent results and planning for the NASA/industry Integrated Programs for Aerospace-Vehicle Design (IPAD) program for improving productivity with CAD/CAM methods are outlined. The industrial group work is being mainly done by Boeing, and progress has been made in defining the designer work environment, developing requirements and a preliminary design for a future CAD/CAM system, and developing CAD/CAM technology. The work environment was defined by conducting a detailed study of a reference design process, and key software elements for a CAD/CAM system have been defined, specifically for interactive design or experiment control processes. Further work is proceeding on executive, data management, geometry and graphics, and general utility software, and dynamic aspects of the programs being developed are outlined
Harsh environment sensor development for advanced energy systems
NASA Astrophysics Data System (ADS)
Romanosky, Robert R.; Maley, Susan M.
2013-05-01
Highly efficient, low emission power systems have extreme conditions of high temperature, high pressure, and corrosivity that require monitoring. Sensing in these harsh environments can provide key information that directly impacts process control and system reliability. To achieve the goals and demands of clean energy, the conditions under which fossil fuels are converted into heat and power are harsh compared to traditional combustion/steam cycles. Temperatures can extend as high as 1600 Celsius (°C) in certain systems and pressures can reach as high as 5000 pounds per square inch (psi)/340 atmospheres (atm). The lack of suitable measurement technology serves as a driver for the innovations in harsh environment sensor development. Two major considerations in the development of harsh environments sensors are the materials used for sensing and the design of the sensing device. This paper will highlight the U.S. Department of Energy's, Office of Fossil Energy and National Energy Technology Laboratory's Program in advanced sensing concepts that are aimed at addressing the technology needs and drivers through the development of new sensor materials and designs capable of withstanding harsh environment conditions. Recent developments with harsh environment sensors will be highlighted and future directions towards in advanced sensing will be introduced.
SLS-SPEC-159 Cross-Program Design Specification for Natural Environments (DSNE) Revision D
NASA Technical Reports Server (NTRS)
Roberts, Barry C.
2015-01-01
This document is derived from the former National Aeronautics and Space Administration (NASA) Constellation Program (CxP) document CxP 70023, titled "The Design Specification for Natural Environments (DSNE), Revision C." The original document has been modified to represent updated Design Reference Missions (DRMs) for the NASA Exploration Systems Development (ESD) Programs. The DSNE completes environment-related specifications for architecture, system-level, and lower-tier documents by specifying the ranges of environmental conditions that must be accounted for by NASA ESD Programs. To assure clarity and consistency, and to prevent requirements documents from becoming cluttered with extensive amounts of technical material, natural environment specifications have been compiled into this document. The intent is to keep a unified specification for natural environments that each Program calls out for appropriate application. This document defines the natural environments parameter limits (maximum and minimum values, energy spectra, or precise model inputs, assumptions, model options, etc.), for all ESD Programs. These environments are developed by the NASA Marshall Space Flight Center (MSFC) Natural Environments Branch (MSFC organization code: EV44). Many of the parameter limits are based on experience with previous programs, such as the Space Shuttle Program. The parameter limits contain no margin and are meant to be evaluated individually to ensure they are reasonable (i.e., do not apply unrealistic extreme-on-extreme conditions). The natural environments specifications in this document should be accounted for by robust design of the flight vehicle and support systems. However, it is understood that in some cases the Programs will find it more effective to account for portions of the environment ranges by operational mitigation or acceptance of risk in accordance with an appropriate program risk management plan and/or hazard analysis process. The DSNE is not intended as a definition of operational models or operational constraints, nor is it adequate, alone, for ground facilities which may have additional requirements (for example, building codes and local environmental constraints). "Natural environments," as the term is used here, refers to the environments that are not the result of intended human activity or intervention. It consists of a variety of external environmental factors (most of natural origin and a few of human origin) which impose restrictions or otherwise impact the development or operation of flight vehicles and destination surface systems. These natural environments include the following types of environments: Terrestrial environments at launch, abort, and normal landing sites (winds, temperatures, pressures, surface roughness, sea conditions, etc.); Space environments (ionizing radiation, orbital debris, meteoroids, thermosphere density, plasma, solar, Earth, and lunar-emitted thermal radiation, etc.); Destination environments (Lunar surface and orbital, Mars atmosphere and surface, near Earth asteroids, etc.). Many of the environmental specifications in this document are based on models, data, and environment descriptions contained in the CxP 70044, Constellation Program Natural Environment Definition for Design (NEDD). The NEDD provides additional detailed environment data and model descriptions to support analytical studies for ESD Programs. For background information on specific environments and their effects on spacecraft design and operations, the environment models, and the data used to generate the specifications contained in the DSNE, the reader is referred to the NEDD paragraphs listed in each section of the DSNE. Also, most of the environmental specifications in this document are tied specifically to the ESD DRMs in ESD-10012, Revision B, Exploration Systems Development Concept of Operations (ConOps). Coordination between these environment specifications and the DRMs must be maintained. This document should be compatible with the current ESD DRMs, but updates to the mission definitions and variations in interpretation may require adjustments to the environment specifications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Kisner, Roger A.; Drira, Anis
Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings tomore » support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.« less
DEPEND: A simulation-based environment for system level dependability analysis
NASA Technical Reports Server (NTRS)
Goswami, Kumar; Iyer, Ravishankar K.
1992-01-01
The design and evaluation of highly reliable computer systems is a complex issue. Designers mostly develop such systems based on prior knowledge and experience and occasionally from analytical evaluations of simplified designs. A simulation-based environment called DEPEND which is especially geared for the design and evaluation of fault-tolerant architectures is presented. DEPEND is unique in that it exploits the properties of object-oriented programming to provide a flexible framework with which a user can rapidly model and evaluate various fault-tolerant systems. The key features of the DEPEND environment are described, and its capabilities are illustrated with a detailed analysis of a real design. In particular, DEPEND is used to simulate the Unix based Tandem Integrity fault-tolerance and evaluate how well it handles near-coincident errors caused by correlated and latent faults. Issues such as memory scrubbing, re-integration policies, and workload dependent repair times which affect how the system handles near-coincident errors are also evaluated. Issues such as the method used by DEPEND to simulate error latency and the time acceleration technique that provides enormous simulation speed up are also discussed. Unlike any other simulation-based dependability studies, the use of these approaches and the accuracy of the simulation model are validated by comparing the results of the simulations, with measurements obtained from fault injection experiments conducted on a production Tandem Integrity machine.
System and method for seamless task-directed autonomy for robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Curtis; Bruemmer, David; Few, Douglas
Systems, methods, and user interfaces are used for controlling a robot. An environment map and a robot designator are presented to a user. The user may place, move, and modify task designators on the environment map. The task designators indicate a position in the environment map and indicate a task for the robot to achieve. A control intermediary links task designators with robot instructions issued to the robot. The control intermediary analyzes a relative position between the task designators and the robot. The control intermediary uses the analysis to determine a task-oriented autonomy level for the robot and communicates targetmore » achievement information to the robot. The target achievement information may include instructions for directly guiding the robot if the task-oriented autonomy level indicates low robot initiative and may include instructions for directing the robot to determine a robot plan for achieving the task if the task-oriented autonomy level indicates high robot initiative.« less
Executing CLIPS expert systems in a distributed environment
NASA Technical Reports Server (NTRS)
Taylor, James; Myers, Leonard
1990-01-01
This paper describes a framework for running cooperating agents in a distributed environment to support the Intelligent Computer Aided Design System (ICADS), a project in progress at the CAD Research Unit of the Design Institute at the California Polytechnic State University. Currently, the systems aids an architectural designer in creating a floor plan that satisfies some general architectural constraints and project specific requirements. At the core of ICADS is the Blackboard Control System. Connected to the blackboard are any number of domain experts called Intelligent Design Tools (IDT). The Blackboard Control System monitors the evolving design as it is being drawn and helps resolve conflicts from the domain experts. The user serves as a partner in this system by manipulating the floor plan in the CAD system and validating recommendations made by the domain experts. The primary components of the Blackboard Control System are two expert systems executed by a modified CLIPS shell. The first is the Message Handler. The second is the Conflict Resolver. The Conflict Resolver synthesizes the suggestions made by the domain experts, which can be either CLIPS expert systems, or compiled C programs. In DEMO1, the current ICADS prototype, the CLIPS domain expert systems are Acoustics, Lighting, Structural, and Thermal; the compiled C domain experts are the CAD system and the User Interface.
Lunar lander ground support system
NASA Technical Reports Server (NTRS)
1991-01-01
The design of the Lunar Lander Ground Support System (LLGSS) is examined. The basic design time line is around 2010 to 2030 and is referred to as a second generation system, as lunar bases and equipment would have been present. Present plans for lunar colonization call for a phased return of personnel and materials to the moons's surface. During settlement of lunar bases, the lunar lander is stationary in a very hostile environment and would have to be in a state of readiness for use in case of an emergency. Cargo and personnel would have to be removed from the lander and transported to a safe environment at the lunar base. An integrated system is required to perform these functions. These needs are addressed which center around the design of a lunar lander servicing system. The servicing system could perform several servicing functions to the lander in addition to cargo servicing. The following were considered: (1) reliquify hydrogen boiloff; (2) supply power; and (3) remove or add heat as necessary. The final design incorporates both original designs and existing vehicles and equipment on the surface of the moon at the time considered. The importance of commonality is foremost in the design of any lunar machinery.
Passive Wireless Hermetic Environment Monitoring System for Spray Painting Workshop
Wang, Lifeng; Ma, Jingjing; Huang, Yan; Tang, Dan; Huang, Qing-An
2016-01-01
Passive wireless sensors have the advantages of operating without a power supply and remote sensing capability. Hence, they are very suitable for some harsh environments, such as hermetic environments, rotating parts, or very high temperature environments. The spray painting workshop is such a harsh environment, containing a large amount of flammable paint mist and organic gas. Aiming at this special environment of spray painting workshop, a passive wireless hermetic environment monitoring system was designed, fabricated, and demonstrated. The proposed system is composed of a transponder and a reader, and the circuit design of each part is given in detail in this paper. The power and the data transmission between the transponder and the reader are realized by the inductive coupling mechanism. Utilizing the back scatter modulation and channel multiplexing, the frequency signals generated by three different environmental sensors—together with their interfaces in the transponder—are wirelessly read out by the reader. Because of the harsh environment of the spray painting room, the package of the monitoring system is quite important. Three different kinds of filter films for the system package were compared. The experimental results show that the composite filter film aluminum anodic oxide/polytetrafluoroethylene (AAO/PTFE) has the best performance. After fabrication, the measured temperature, humidity, and pressure sensitivities were measured and found to be 180 Hz/°C in the range of 0~60 °C, 100 Hz/%RH in the range of 15~95 %RH, and 42 Hz/hPa in the range of 600~1100 hPa, respectively. Additionally, the remote sensing distance of the monitoring system reaches 4 cm. Finally, the passive wireless hermetic environment monitoring system was installed on the glass wall of the spray painting workshop and was successfully demonstrated. PMID:27490546
CAPS Simulation Environment Development
NASA Technical Reports Server (NTRS)
Murphy, Douglas G.; Hoffman, James A.
2005-01-01
The final design for an effective Comet/Asteroid Protection System (CAPS) will likely come after a number of competing designs have been simulated and evaluated. Because of the large number of design parameters involved in a system capable of detecting an object, accurately determining its orbit, and diverting the impact threat, a comprehensive simulation environment will be an extremely valuable tool for the CAPS designers. A successful simulation/design tool will aid the user in identifying the critical parameters in the system and eventually allow for automatic optimization of the design once the relationships of the key parameters are understood. A CAPS configuration will consist of space-based detectors whose purpose is to scan the celestial sphere in search of objects likely to make a close approach to Earth and to determine with the greatest possible accuracy the orbits of those objects. Other components of a CAPS configuration may include systems for modifying the orbits of approaching objects, either for the purpose of preventing a collision or for positioning the object into an orbit where it can be studied or used as a mineral resource. The Synergistic Engineering Environment (SEE) is a space-systems design, evaluation, and visualization software tool being leveraged to simulate these aspects of the CAPS study. The long-term goal of the SEE is to provide capabilities to allow the user to build and compare various CAPS designs by running end-to-end simulations that encompass the scanning phase, the orbit determination phase, and the orbit modification phase of a given scenario. Herein, a brief description of the expected simulation phases is provided, the current status and available features of the SEE software system is reported, and examples are shown of how the system is used to build and evaluate a CAPS detection design. Conclusions and the roadmap for future development of the SEE are also presented.
Live Virtual Constructive Distributed Test Environment Characterization Report
NASA Technical Reports Server (NTRS)
Murphy, Jim; Kim, Sam K.
2013-01-01
This report documents message latencies observed over various Live, Virtual, Constructive, (LVC) simulation environment configurations designed to emulate possible system architectures for the Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project integrated tests. For each configuration, four scenarios with progressively increasing air traffic loads were used to determine system throughput and bandwidth impacts on message latency.
Varela, Gervasio; Paz-Lopez, Alejandro; Becerra, Jose A; Duro, Richard
2016-07-07
This paper addresses the problem of developing user interfaces for Ubiquitous Computing (UC) and Ambient Intelligence (AmI) systems. These kind of systems are expected to provide a natural user experience, considering interaction modalities adapted to the user abilities and preferences and using whatever interaction devices are present in the environment. These interaction devices are not necessarily known at design time. The task is quite complicated due to the variety of devices and technologies, and the diversity of scenarios, and it usually burdens the developer with the need to create many different UIs in order to consider the foreseeable user-environment combinations. Here, we propose an UI abstraction framework for UC and AmI systems that effectively improves the portability of those systems between different environments and for different users. It allows developers to design and implement a single UI capable of being deployed with different devices and modalities regardless the physical location.
NASA Astrophysics Data System (ADS)
Guo, Bing; Documet, Jorge; Liu, Brent; King, Nelson; Shrestha, Rasu; Wang, Kevin; Huang, H. K.; Grant, Edward G.
2006-03-01
The paper describes the methodology for the clinical design and implementation of a Location Tracking and Verification System (LTVS) that has distinct benefits for the Imaging Department at the Healthcare Consultation Center II (HCCII), an outpatient imaging facility located on the USC Health Science Campus. A novel system for tracking and verification of patients and staff in a clinical environment using wireless and facial biometric technology to monitor and automatically identify patients and staff was developed in order to streamline patient workflow, protect against erroneous examinations and create a security zone to prevent and audit unauthorized access to patient healthcare data under the HIPAA mandate. This paper describes the system design and integration methodology based on initial clinical workflow studies within a clinical environment. An outpatient center was chosen as an initial first step for the development and implementation of this system.
Utilizing Advanced Vibration Isolation Technology to Enable Microgravity Science Operations
NASA Technical Reports Server (NTRS)
Alhorn, Dean Carl
1999-01-01
Microgravity scientific research is performed in space to determine the effects of gravity upon experiments. Until recently, experiments had to accept the environment aboard various carriers: reduced-gravity aircraft, sub-orbital payloads, Space Shuttle, and Mir. If the environment is unacceptable, then most scientists would rather not expend the resources without the assurance of true microgravity conditions. This is currently the case on the International Space Station, because the ambient acceleration environment will exceed desirable levels. For this reason, the g-LIMIT (Glovebox Integrated Microgravity Isolation Technology) system is currently being developed to provide a quiescent acceleration environment for scientific operations. This sub-rack isolation system will provide a generic interface for a variety of experiments for the Microgravity Science Glovebox. This paper describes the motivation for developing of the g-LIMIT system, presents the design concept and details some of the advanced technologies utilized in the g-LIMIT flight design.
A Multigroup Method for the Calculation of Neutron Fluence with a Source Term
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.; Clowdsley, M. S.
1998-01-01
Current research on the Grant involves the development of a multigroup method for the calculation of low energy evaporation neutron fluences associated with the Boltzmann equation. This research will enable one to predict radiation exposure under a variety of circumstances. Knowledge of radiation exposure in a free-space environment is a necessity for space travel, high altitude space planes and satellite design. This is because certain radiation environments can cause damage to biological and electronic systems involving both short term and long term effects. By having apriori knowledge of the environment one can use prediction techniques to estimate radiation damage to such systems. Appropriate shielding can be designed to protect both humans and electronic systems that are exposed to a known radiation environment. This is the goal of the current research efforts involving the multi-group method and the Green's function approach.
NASA Technical Reports Server (NTRS)
Kuharski, Robert A.; Jongeward, Gary A.; Wilcox, Katherine G.; Rankin, Tom R.; Roche, James C.
1991-01-01
The authors review the Environment Power System Analysis Tool (EPSAT) design and demonstrate its capabilities by using it to address some questions that arose in designing the SPEAR III experiment. It is shown that that the rocket body cannot be driven to large positive voltages under the constraints of this experiment. Hence, attempts to measure the effects of a highly positive rocket body in the plasma environment should not be made in this experiment. It is determined that a hollow cathode will need to draw only about 50 mA to ground the rocket body. It is shown that a relatively small amount of gas needs to be released to induce a bulk breakdown near the rocket body, and this gas release should not discharge the sphere. Therefore, the experiment provides an excellent opportunity to study the neutralization of a differential charge.
The single event upset environment for avionics at high latitude
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sims, A.J.; Dyer, C.S.; Peerless, C.L.
1994-12-01
Modern avionic systems for civil and military applications are becoming increasingly reliant upon embedded microprocessors and associated memory devices. The phenomenon of single event upset (SEU) is well known in space systems and designers have generally been careful to use SEU tolerant devices or to implement error detection and correction (EDAC) techniques where appropriate. In the past, avionics designers have had no reason to consider SEU effects but is clear that the more prevalent use of memory devices combined with increasing levels of IC integration will make SEU mitigation an important design consideration for future avionic systems. To this end,more » it is necessary to work towards producing models of the avionics SEU environment which will permit system designers to choose components and EDAC techniques which are based on predictions of SEU rates correct to much better than an order of magnitude. Measurements of the high latitude SEU environment at avionics altitude have been made on board a commercial airliner. Results are compared with models of primary and secondary cosmic rays and atmospheric neutrons. Ground based SEU tests of static RAMs are used to predict rates in flight.« less
System for Removing Pollutants from Incinerator Exhaust
NASA Technical Reports Server (NTRS)
Wickham, David t.; Bahr, James; Dubovik, Rita; Gebhard, Steven C.; Lind, Jeffrey
2008-01-01
A system for removing pollutants -- primarily sulfur dioxide and mixed oxides of nitrogen (NOx) -- from incinerator exhaust has been demonstrated. The system is also designed secondarily to remove particles, hydrocarbons, and CO. The system is intended for use in an enclosed environment, for which a prior NOx-and-SO2-removal system designed for industrial settings would not be suitable.
The Design, Development and Evaluation of a Virtual Reality Based Learning Environment
ERIC Educational Resources Information Center
Chen, Chwen Jen
2006-01-01
Many researchers and instructional designers increasingly recognise the benefits of utilising three dimensional virtual reality (VR) technology in instruction. In general, there are two types of VR system, the immersive system and the non-immersive system. This article focuses on the latter system that merely uses the conventional personal…
Advanced EVA system design requirements study
NASA Technical Reports Server (NTRS)
1986-01-01
Design requirements and criteria for the Space Station Advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related extravehicular activity (EVA) support equipment were defined and established. The EVA mission requirements, environments, and medical and physiological requirements, as well as opertional, procedures, and training issues were considered.
Designing learning environments to promote student learning: ergonomics in all but name.
Smith, Thomas J
2013-01-01
This report introduces evidence for the conclusion that a common theme underlies almost all proposed solutions for improving the performance of K-12 students, namely their reliance on the design of educational system environments, features and operations. Two categories of design factors impacting such performance are addressed: (1) 9 factors reliably shown to have a strong influence - namely environmental design of classroom and building facilities, longer exposure to learning, cooperative learning designs, early childhood education, teaching quality, nutritional adequacy, participation in physical activity, good physical fitness, and school-community integration; and (2) 11 factors with an equivocal, varied or weak influence - classroom technology, online learning environments, smaller class size, school choice, school funding, school size, school start times, teacher training level, amount of homework, student self-confidence and informal learning. It is concluded that: (1) student learning outcomes, and more broadly the edifice of education itself, are largely defined in terms of an extensive system of design factors and conditions; (2) the time is long overdue for the educational system to acknowledge the central role of E/HF design as the major influence on student performance and learning; and (3) K-12 educators and administrators should emphasize allocation of resources to design factors reliably shown to have a strongly positive impact on student performance, but should treat expenditure on factors with equivocal, varied or weak influence on such performance with more caution and/or skepticism.
Advanced S-Band studies using the TDRSS communications satellite
NASA Technical Reports Server (NTRS)
Jenkins, Jeffrey D.; Osborne, William P.; Fan, Yiping
1994-01-01
This report will describe the design, implementation, and results of a propagation experiment which used TDRSS to transmit spread signals at S-Band to an instrumented mobile receiver. The results consist of fade measurements and distribution functions in 21 environments across the Continental United States (CONUS). From these distribution functions, some idea may be gained about what system designers should expect for excess path loss in many mobile environments. Some of these results may be compared against similar measurements made with narrowband beacon measurements. Such comparisons provide insight into what gains the spread signaling system may or may not have in multipath and shadowing environments.
NASA Technical Reports Server (NTRS)
Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Ackley, Keith A.; Crump, John W., IV; Henderson, Richard; Futrell, Michael T.
1991-01-01
The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software environment. Guided by the model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated. The focus here is on the design of components that make up the FPP. These components serve as supporting systems for the Integration Mechanism and the Framework Processor and provide the 'glue' that ties the FPP together. Also discussed are the components that allow the platform to operate in a distributed, heterogeneous environment and to manage the development and evolution of software system artifacts.
Declarative Knowledge Acquisition in Immersive Virtual Learning Environments
ERIC Educational Resources Information Center
Webster, Rustin
2016-01-01
The author investigated the interaction effect of immersive virtual reality (VR) in the classroom. The objective of the project was to develop and provide a low-cost, scalable, and portable VR system containing purposely designed and developed immersive virtual learning environments for the US Army. The purpose of the mixed design experiment was…
A Technology-Enhanced Intervention for Self-Regulated Learning in Science
ERIC Educational Resources Information Center
Berglas-Shapiro, Tali; Eylon, Bat-Sheva; Scherz, Zahava
2017-01-01
This article describes the development of a technology-enhanced self-regulated learning (Te- SRL) environment designed to foster students' SRL of complex science topics. The environment consists of three components, one of which is a specially designed computerized system that offers students a choice between different types of scaffolding and…
NASA Technical Reports Server (NTRS)
Redhed, D. D.; Tripp, L. L.; Kawaguchi, A. S.; Miller, R. E., Jr.
1973-01-01
The strategy of the IPAD implementation plan presented, proposes a three phase development of the IPAD system and technical modules, and the transfer of this capability from the development environment to the aerospace vehicle design environment. The system and technical module capabilities for each phase of development are described. The system and technical module programming languages are recommended as well as the initial host computer system hardware and operating system. The cost of developing the IPAD technology is estimated. A schedule displaying the flowtime required for each development task is given. A PERT chart gives the developmental relationships of each of the tasks and an estimate of the operational cost of the IPAD system is offered.
Propulsion System Modeling and Simulation
NASA Technical Reports Server (NTRS)
Tai, Jimmy C. M.; McClure, Erin K.; Mavris, Dimitri N.; Burg, Cecile
2002-01-01
The Aerospace Systems Design Laboratory at the School of Aerospace Engineering in Georgia Institute of Technology has developed a core competency that enables propulsion technology managers to make technology investment decisions substantiated by propulsion and airframe technology system studies. This method assists the designer/manager in selecting appropriate technology concepts while accounting for the presence of risk and uncertainty as well as interactions between disciplines. This capability is incorporated into a single design simulation system that is described in this paper. This propulsion system design environment is created with a commercially available software called iSIGHT, which is a generic computational framework, and with analysis programs for engine cycle, engine flowpath, mission, and economic analyses. iSIGHT is used to integrate these analysis tools within a single computer platform and facilitate information transfer amongst the various codes. The resulting modeling and simulation (M&S) environment in conjunction with the response surface method provides the designer/decision-maker an analytical means to examine the entire design space from either a subsystem and/or system perspective. The results of this paper will enable managers to analytically play what-if games to gain insight in to the benefits (and/or degradation) of changing engine cycle design parameters. Furthermore, the propulsion design space will be explored probabilistically to show the feasibility and viability of the propulsion system integrated with a vehicle.
Using of Group-Modeling in Predesign Phase of New Healthcare Environments: Stakeholders Experiences.
Elf, Marie; Eldh, Ann Catrine; Malmqvist, Inga; Öhrn, Kerstin; von Koch, Lena
2016-01-01
Current research shows a relationship between healthcare architecture and patient-related outcomes. The planning and designing of new healthcare environments is a complex process. The needs of the various end users of the environment must be considered, including the patients, the patients' significant others, and the staff. The aim of this study was to explore the experiences of healthcare professionals participating in group modeling utilizing system dynamics in the predesign phase of new healthcare environments. We engaged healthcare professionals in a series of workshops using system dynamics to discuss the planning of healthcare environments in the beginning of a construction and then interviewed them about their experience. An explorative and qualitative design was used to describe participants' experiences of participating in the group-modeling projects. Participants (N = 20) were recruited from a larger intervention study using group modeling and system dynamics in planning and designing projects. The interviews were analyzed by qualitative content analysis. Two themes were formed, representing the experiences in the group-modeling process: "Participation in the group modeling generated knowledge and was empowering" and "Participation in the group modeling differed from what was expected and required the dedication of time and skills." The method can support participants in design teams to focus more on their healthcare organization, their care activities, and their aims rather than focusing on detailed layout solutions. This clarification is important when decisions about the design are discussed and prepared and will most likely lead to greater readiness for future building process. © The Author(s) 2015.
Program Aids Design Of Fluid-Circulating Systems
NASA Technical Reports Server (NTRS)
Bacskay, Allen; Dalee, Robert
1992-01-01
Computer Aided Systems Engineering and Analysis (CASE/A) program is interactive software tool for trade study and analysis, designed to increase productivity during all phases of systems engineering. Graphics-based command-driven software package provides user-friendly computing environment in which engineer analyzes performance and interface characteristics of ECLS/ATC system. Useful during all phases of spacecraft-design program, from initial conceptual design trade studies to actual flight, including pre-flight prediction and in-flight analysis of anomalies. Written in FORTRAN 77.
Analysis and specification tools in relation to the APSE
NASA Technical Reports Server (NTRS)
Hendricks, John W.
1986-01-01
Ada and the Ada Programming Support Environment (APSE) specifically address the phases of the system/software life cycle which follow after the user's problem was translated into system and software development specifications. The waterfall model of the life cycle identifies the analysis and requirements definition phases as preceeding program design and coding. Since Ada is a programming language and the APSE is a programming support environment, they are primarily targeted to support program (code) development, tecting, and maintenance. The use of Ada based or Ada related specification languages (SLs) and program design languages (PDLs) can extend the use of Ada back into the software design phases of the life cycle. Recall that the standardization of the APSE as a programming support environment is only now happening after many years of evolutionary experience with diverse sets of programming support tools. Restricting consideration to one, or even a few chosen specification and design tools, could be a real mistake for an organization or a major project such as the Space Station, which will need to deal with an increasingly complex level of system problems. To require that everything be Ada-like, be implemented in Ada, run directly under the APSE, and fit into a rigid waterfall model of the life cycle would turn a promising support environment into a straight jacket for progress.
Natural Environments Definition for Design
NASA Technical Reports Server (NTRS)
Justh, H. L.; Altino, K. M.; Decker, R. K.; Koehler, H. M.; Leahy, F. B.; Minow, J. I.; Roberts, B. C.; Suggs, R. M.; Suggs, R. J.; White, P. W.;
2016-01-01
Planning for future National Aeronautics and Space Administration (NASA) missions will encompass a variety of operational and engineering activities that involve a multitude of issues, constraints, and influences derived from the natural environment. This Technical Memorandum (TM) presents a definition of the natural environment, i.e., a description in engineering handbook format of models and data specifically selected to support the architecture development, engineering design, and technology development for NASA's Exploration Systems Development (ESD) initiatives.
2017-07-01
work , the guideline document (1) provides a basis for identifying high voltage design risks, (2) defines areas of concern as a function of environment ... work , the guideline document 1) provides a basis for identifying high voltage design risks, 2) defines areas of concern as a function of environment ...pressures (y-axis - breakdown voltage [volts-peak]) As an example of the impact of the aerospace environment , consider the calculation of the safe
SAGA: A project to automate the management of software production systems
NASA Technical Reports Server (NTRS)
Campbell, Roy H.; Beckman, Carol S.; Benzinger, Leonora; Beshers, George; Hammerslag, David; Kimball, John; Kirslis, Peter A.; Render, Hal; Richards, Paul; Terwilliger, Robert
1985-01-01
The SAGA system is a software environment that is designed to support most of the software development activities that occur in a software lifecycle. The system can be configured to support specific software development applications using given programming languages, tools, and methodologies. Meta-tools are provided to ease configuration. The SAGA system consists of a small number of software components that are adapted by the meta-tools into specific tools for use in the software development application. The modules are design so that the meta-tools can construct an environment which is both integrated and flexible. The SAGA project is documented in several papers which are presented.
Measurement-based reliability prediction methodology. M.S. Thesis
NASA Technical Reports Server (NTRS)
Linn, Linda Shen
1991-01-01
In the past, analytical and measurement based models were developed to characterize computer system behavior. An open issue is how these models can be used, if at all, for system design improvement. The issue is addressed here. A combined statistical/analytical approach to use measurements from one environment to model the system failure behavior in a new environment is proposed. A comparison of the predicted results with the actual data from the new environment shows a close correspondence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Kisner, Roger A.
2016-09-01
Embedded instrumentation and control systems that can operate in extreme environments are challenging to design and operate. Extreme environments limit the options for sensors and actuators and degrade their performance. Because sensors and actuators are necessary for feedback control, these limitations mean that designing embedded instrumentation and control systems for the challenging environments of nuclear reactors requires advanced technical solutions that are not available commercially. This report details the development of testbed that will be used for cross-cutting embedded instrumentation and control research for nuclear power applications. This research is funded by the Department of Energy's Nuclear Energy Enabling Technologymore » program's Advanced Sensors and Instrumentation topic. The design goal of the loop-scale testbed is to build a low temperature pump that utilizes magnetic bearing that will be incorporated into a water loop to test control system performance and self-sensing techniques. Specifically, this testbed will be used to analyze control system performance in response to nonlinear and cross-coupling fluid effects between the shaft axes of motion, rotordynamics and gyroscopic effects, and impeller disturbances. This testbed will also be used to characterize the performance losses when using self-sensing position measurement techniques. Active magnetic bearings are a technology that can reduce failures and maintenance costs in nuclear power plants. They are particularly relevant to liquid salt reactors that operate at high temperatures (700 C). Pumps used in the extreme environment of liquid salt reactors provide many engineering challenges that can be overcome with magnetic bearings and their associated embedded instrumentation and control. This report will give details of the mechanical design and electromagnetic design of the loop-scale embedded instrumentation and control testbed.« less
Design and realization of tourism spatial decision support system based on GIS
NASA Astrophysics Data System (ADS)
Ma, Zhangbao; Qi, Qingwen; Xu, Li
2008-10-01
In this paper, the existing problems of current tourism management information system are analyzed. GIS, tourism as well as spatial decision support system are introduced, and the application of geographic information system technology and spatial decision support system to tourism management and the establishment of tourism spatial decision support system based on GIS are proposed. System total structure, system hardware and software environment, database design and structure module design of this system are introduced. Finally, realization methods of this systemic core functions are elaborated.
33 CFR 157.128 - Stripping system.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.128 Stripping...) must have a stripping system that is designed to remove crude oil from— (1) Each cargo tank at 1.25...
33 CFR 157.128 - Stripping system.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.128 Stripping...) must have a stripping system that is designed to remove crude oil from— (1) Each cargo tank at 1.25...
33 CFR 157.128 - Stripping system.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.128 Stripping...) must have a stripping system that is designed to remove crude oil from— (1) Each cargo tank at 1.25...
33 CFR 157.128 - Stripping system.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.128 Stripping...) must have a stripping system that is designed to remove crude oil from— (1) Each cargo tank at 1.25...
Ask Systems: Interrogative Access to Multiple Ways of Thinking
ERIC Educational Resources Information Center
Jonassen, David H.
2011-01-01
The purpose of this paper is to familiarize instructional designers and researchers with a useful design and research paradigm known as "Ask Systems." Ask Systems are interrogative interfaces to information and learning environments that model conversations with a skilled, reflective practitioner (Schon, The reflective practitioner, "1983") or…
Software Development Technologies for Reactive, Real-Time, and Hybrid Systems
NASA Technical Reports Server (NTRS)
Manna, Zohar
1996-01-01
The research is directed towards the design and implementation of a comprehensive deductive environment for the development of high-assurance systems, especially reactive (concurrent, real-time, and hybrid) systems. Reactive systems maintain an ongoing interaction with their environment, and are among the most difficult to design and verify. The project aims to provide engineers with a wide variety of tools within a single, general, formal framework in which the tools will be most effective. The entire development process is considered, including the construction, transformation, validation, verification, debugging, and maintenance of computer systems. The goal is to automate the process as much as possible and reduce the errors that pervade hardware and software development.
NASA Technical Reports Server (NTRS)
Hughes, Mark S.; Davis, Dawn M.; Bakker, Henry J.; Jensen, Scott L.
2007-01-01
This viewgraph presentation reviews the design of the electrical systems that are required for the testing of rockets at the Rocket Propulsion Facility at NASA Stennis Space Center (NASA SSC). NASA/SSC s Mission in Rocket Propulsion Testing Is to Acquire Test Performance Data for Verification, Validation and Qualification of Propulsion Systems Hardware. These must be accurate reliable comprehensive and timely. Data acquisition in a rocket propulsion test environment is challenging: severe temporal transient dynamic environments, large thermal gradients, vacuum to 15 ksi pressure regimes SSC has developed and employs DAS, control systems and control systems and robust instrumentation that effectively satisfies these challenges.
Multi-level Expression Design Language: Requirement level (MEDL-R) system evaluation
NASA Technical Reports Server (NTRS)
1980-01-01
An evaluation of the Multi-Level Expression Design Language Requirements Level (MEDL-R) system was conducted to determine whether it would be of use in the Goddard Space Flight Center Code 580 software development environment. The evaluation is based upon a study of the MEDL-R concept of requirement languages, the functions performed by MEDL-R, and the MEDL-R language syntax. Recommendations are made for changes to MEDL-R that would make it useful in the Code 580 environment.
1982-10-01
class queueing system with a preemptive -resume priority service discipline, as depicted in Figure 4.2. Concerning a SPLICLAN configuration a node can...processor can be modeled as a single resource, multi-class queueing system with a preemptive -resume priority structure as the one given in Figure 4.2. An...LOCAL AREA NETWORK DESIGN IN SUPPORT OF STOCK POINT LOGISTICS INTEGRATED COMMUNICATIONS ENVIRONMENT (SPLICE) by Ioannis Th. Mastrocostopoulos October
NASA Technical Reports Server (NTRS)
Hwang, James; Campbell, Perry; Ross, Mike; Price, Charles R.; Barron, Don
1989-01-01
An integrated operating environment was designed to incorporate three general purpose robots, sensors, and end effectors, including Force/Torque Sensors, Tactile Array sensors, Tactile force sensors, and Force-sensing grippers. The design and implementation of: (1) the teleoperation of a general purpose PUMA robot; (2) an integrated sensor hardware/software system; (3) the force-sensing gripper control; (4) the host computer system for dual Robotic Research arms; and (5) the Ethernet integration are described.
NASA Technical Reports Server (NTRS)
Davarian, Faramaz; Bishop, Dennis
1993-01-01
Propagation models that can be used for the design of earth-space land mobile-satellite telecommunications systems are presented. These models include: empirical roadside shadowing, attenuation frequency scaling, fade and non-fade duration distribution, multipath in a mountain environment, and multipath in a roadside tree environment. Propagation data from helicopter-mobile and satellite-mobile measurements in Australia and the United States were used to develop the models.
NASA Technical Reports Server (NTRS)
Davarian, F.; Bishop, D.
1993-01-01
Propogation models that can be used for the design of Earth-space land mobile-satellite telecommunications systems are presented. These models include: empirical roadside shadowing, attenuation frequency scaling, fade and non-fade duration distribution, multipath in a mountain environment, and multipath in a roadside tree environment. Propogation data from helicopter-mobile and satellite-mobile measurements in Australia and the United States were used to develop the models.
DELIVERing Library Resources to the Virtual Learning Environment
ERIC Educational Resources Information Center
Secker, Jane
2005-01-01
Purpose: Examines a project to integrate digital libraries and virtual learning environments (VLE) focusing on requirements for online reading list systems. Design/methodology/approach: Conducted a user needs analysis using interviews and focus groups and evaluated three reading or resource list management systems. Findings: Provides a technical…
Designing and Securing an Event Processing System for Smart Spaces
ERIC Educational Resources Information Center
Li, Zang
2011-01-01
Smart spaces, or smart environments, represent the next evolutionary development in buildings, banking, homes, hospitals, transportation systems, industries, cities, and government automation. By riding the tide of sensor and event processing technologies, the smart environment captures and processes information about its surroundings as well as…
Simulation system architecture design for generic communications link
NASA Technical Reports Server (NTRS)
Tsang, Chit-Sang; Ratliff, Jim
1986-01-01
This paper addresses a computer simulation system architecture design for generic digital communications systems. It addresses the issues of an overall system architecture in order to achieve a user-friendly, efficient, and yet easily implementable simulation system. The system block diagram and its individual functional components are described in detail. Software implementation is discussed with the VAX/VMS operating system used as a target environment.
Kagawa, Yuki; Miyahara, Hirotaka; Ota, Yuri; Tsuneda, Satoshi
2016-01-01
Estimating the oxygen consumption rates (OCRs) of mammalian cells in hypoxic environments is essential for designing and developing a three-dimensional (3-D) cell culture system. However, OCR measurements under hypoxic conditions are infrequently reported in the literature. Here, we developed a system for measuring OCRs at low oxygen levels. The system injects nitrogen gas into the environment and measures the oxygen concentration by an optical oxygen microsensor that consumes no oxygen. The developed system was applied to HepG2 cells in static culture. Specifically, we measured the spatial profiles of the local dissolved oxygen concentration in the medium, then estimated the OCRs of the cells. The OCRs, and also the pericellular oxygen concentrations, decreased nonlinearly as the oxygen partial pressure in the environment decreased from 19% to 1%. The OCRs also depended on the culture period and the matrix used for coating the dish surface. Using this system, we can precisely estimate the OCRs of various cell types under environments that mimic 3-D culture conditions, contributing crucial data for an efficient 3-D culture system design. © 2015 American Institute of Chemical Engineers.
Center for the Built Environment: Research on Building HVAC Systems
, and lessons learned. Underfloor Air Distribution (UFAD) Cooling Airflow Design Tool Developing simplified design tools for optimization of underfloor systems. Underfloor Air Distribution (UFAD) Cost Near-ZNE Buildings Setpoint Energy Savings Calculator UFAD Case Studies UFAD Cooling Design Tool UFAD
Analyzing Feedback Control Systems
NASA Technical Reports Server (NTRS)
Bauer, Frank H.; Downing, John P.
1987-01-01
Interactive controls analysis (INCA) program developed to provide user-friendly environment for design and analysis of linear control systems, primarily feedback control. Designed for use with both small- and large-order systems. Using interactive-graphics capability, INCA user quickly plots root locus, frequency response, or time response of either continuous-time system or sampled-data system. Configuration and parameters easily changed, allowing user to design compensation networks and perform sensitivity analyses in very convenient manner. Written in Pascal and FORTRAN.
NASA Technical Reports Server (NTRS)
Roberts, Barry C.; Batts, Wade
1997-01-01
The National Aeronautics and Space Administration (NASA) designated Marshall Space Flight Center (MSFC) the center of excellence for space transportation. The Aerospace Environments and Effects (AEE) team of the Electromagnetics and Aerospace Environments Branch (EL23) in the Systems Analysis and Integration Laboratory at MSFC, supports the center of excellence designation by providing near-Earth space, deep space, planetary, and terrestrial environments expertise to projects as required. The Terrestrial Environment (TE) group within the AEE team maintains an extensive TE data base. Statistics and models derived from this data are applied to the design and development of new aerospace vehicles, as well as performance enhancement of operational vehicles such as the Space Shuttle. The TE is defined as the Earth's atmospheric environment extending from the surface to orbital insertion altitudes (approximately 90 km).
Informatics for the Modern Intensive Care Unit.
Anderson, Diana C; Jackson, Ashley A; Halpern, Neil A
Advanced informatics systems can help improve health care delivery and the environment of care for critically ill patients. However, identifying, testing, and deploying advanced informatics systems can be quite challenging. These processes often require involvement from a collaborative group of health care professionals of varied disciplines with knowledge of the complexities related to designing the modern and "smart" intensive care unit (ICU). In this article, we explore the connectivity environment within the ICU, middleware technologies to address a host of patient care initiatives, and the core informatics concepts necessary for both the design and implementation of advanced informatics systems.
Alpha LAMP Integration Facility
NASA Technical Reports Server (NTRS)
Oshiro, Richard; Sowers, Dennis; Gargiulo, Joe; Mcgahey, Mark
1994-01-01
This paper describes the activity recently completed to meet the simulated space environment requirements for the ground-based testing of an integrated Space Based Laser (SBL) system experiment. The need to maintain optical alignment in the challenging dynamic environment of the pressure recovery system required to simulate space dominated the design requirements. A robust system design was established which minimized the total program costs, most notably by reducing the cost of integrating the components of the experiment. The components of the experiment are integrated on an optical bench in a clean area adjacent to the vacuum chamber and moved on air bearings into the chamber for testing.
NASA Technical Reports Server (NTRS)
Mog, Robert A.
1999-01-01
Unique and innovative graph theory, neural network, organizational modeling, and genetic algorithms are applied to the design and evolution of programmatic and organizational architectures. Graph theory representations of programs and organizations increase modeling capabilities and flexibility, while illuminating preferable programmatic/organizational design features. Treating programs and organizations as neural networks results in better system synthesis, and more robust data modeling. Organizational modeling using covariance structures enhances the determination of organizational risk factors. Genetic algorithms improve programmatic evolution characteristics, while shedding light on rulebase requirements for achieving specified technological readiness levels, given budget and schedule resources. This program of research improves the robustness and verifiability of systems synthesis tools, including the Complex Organizational Metric for Programmatic Risk Environments (COMPRE).
Team Expo: A State-of-the-Art JSC Advanced Design Team
NASA Technical Reports Server (NTRS)
Tripathi, Abhishek
2001-01-01
In concert with the NASA-wide Intelligent Synthesis Environment Program, the Exploration Office at the Johnson Space Center has assembled an Advanced Design Team. The purpose of this team is two-fold. The first is to identify, use, and develop software applications, tools, and design processes that streamline and enhance a collaborative engineering environment. The second is to use this collaborative engineering environment to produce conceptual, system-level-of-detail designs in a relatively short turnaround time, using a standing team of systems and integration experts. This includes running rapid trade studies on varying mission architectures, as well as producing vehicle and/or subsystem designs. The standing core team is made up of experts from all of the relevant engineering divisions (e.g. Power, Thermal, Structures, etc.) as well as representatives from Risk and Safety, Mission Operations, and Crew Life Sciences among others. The Team works together during 2- hour sessions in the same specially enhanced room to ensure real-time integration/identification of cross-disciplinary issues and solutions. All subsystem designs are collectively reviewed and approved during these same sessions. In addition there is an Information sub-team that captures and formats all data and makes it accessible for use by the following day. The result is Team Expo: an Advanced Design Team that is leading the change from a philosophy of "over the fence" design to one of collaborative engineering that pushes the envelope to achieve the next-generation analysis and design environment.
2017-05-25
Guessing Right for the Next War: Streamlining, Pooling, and Right-Timing Force Design Decisions for an Environment of Uncertainty A...JUN 2016 – MAY 2017 4. TITLE AND SUBTITLE Guessing Right for the Next War: Streamlining, Pooling, and Right- Timing Force Design Decisions for an...committing to one force design solution to modern combat. The Army after World War II shied away from temporary organizational systems like these in
High-Fidelity e-Learning: SEI’s Virtual Training Environment (VTE)
2009-01-01
Assessment 2.4 Collaboration 2.4.1 Peer-Student Collaboration 2.4.2 Instructor Support 2.5 Accessibility 2.6 Modularity 2.6.1 Design for Re-Use 2.6.2 Design ...ing Environment as an implementation of a high-fidelity e-Ieaming system. This report does not cover concepts of pedagogy or instructional design in e...pedagogical agents. This is the basis for Clark and Mayer’s Personalization principle for designing media for e-learning [Clark & Mayer 2003]. E-learning
Design reuse experience of space and hazardous operations robots
NASA Technical Reports Server (NTRS)
Oneil, P. Graham
1994-01-01
A comparison of design drivers for space and hazardous nuclear waste operating robots details similarities and differences in operations, performance and environmental parameters for these critical environments. The similarities are exploited to provide low risk system components based on reuse principles and design knowledge. Risk reduction techniques are used for bridging areas of significant differences. As an example, risk reduction of a new sensor design for nuclear environment operations is employed to provide upgradeable replacement units in a reusable architecture for significantly higher levels of radiation.
NASA Technical Reports Server (NTRS)
Kamhawi, Hilmi N.
2011-01-01
This report documents the work performed during from March 2010 October 2011. The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative environment based on an object-oriented, multidisciplinary, distributed environment using the Adaptive Modeling Language (AML) as the underlying framework. This report will focus on describing the work done in the area of extending the aerodynamics, and aerothermodynamics module using S/HABP, CBAERO, PREMIN and LANMIN. It will also detail the work done integrating EXITS as the TPS sizing tool.
Systemic Operational Design: An Alternative to Estimate Planning
2009-05-04
relationships found in the COE. Framing and campaign design, with emphasis on systems theory , have therefore made their way to the forefront of doctrinal...short explanation of the systems theory behind SOD, examines how the SOD process happens, and compares SOD with the time proven “Commander’s Estimate... Theory , Campaign planning, Contemporary Operating Environment, Commander’s Estimate Process, Operational design 16. SECURITY CLASSIFICATION OF
An Overview of the Characterization of the Space Launch Vehicle Aerodynamic Environments
NASA Technical Reports Server (NTRS)
Blevins, John A.; Campbell, John R., Jr.; Bennett, David W.; Rausch, Russ D.; Gomez, Reynaldo J.; Kiris, Cetin C.
2014-01-01
Aerodynamic environments are some of the rst engineering data products that are needed to design a space launch vehicle. These products are used in performance predic- tions, vehicle control algorithm design, as well as determing loads on primary and secondary structures in multiple discipline areas. When the National Aeronautics and Space Admin- istration (NASA) Space Launch System (SLS) Program was established with the goal of designing a new, heavy-lift launch vehicle rst capable of lifting the Orion Program Multi- Purpose Crew Vehicle (MPCV) to low-earth orbit and preserving the potential to evolve the design to a 200 metric ton cargo launcher, the data needs were no di erent. Upon commencement of the new program, a characterization of aerodynamic environments were immediately initiated. In the time since, the SLS Aerodynamics Team has produced data describing the majority of the aerodynamic environment de nitions needed for structural design and vehicle control under nominal ight conditions. This paper provides an overview of select SLS aerodynamic environments completed to date.
40 CFR 1036.801 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... control device means any element of design that senses temperature, motive speed, engine RPM, transmission.... Emission control system means any device, system, or element of design that controls or reduces the... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...
40 CFR 1036.801 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... control device means any element of design that senses temperature, motive speed, engine RPM, transmission.... Emission control system means any device, system, or element of design that controls or reduces the... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF...
The design and implementation of image query system based on color feature
NASA Astrophysics Data System (ADS)
Yao, Xu-Dong; Jia, Da-Chun; Li, Lin
2013-07-01
ASP.NET technology was used to construct the B/S mode image query system. The theory and technology of database design, color feature extraction from image, index and retrieval in the construction of the image repository were researched. The campus LAN and WAN environment were used to test the system. From the test results, the needs of user queries about related resources were achieved by system architecture design.
ISYS-MD: A Surgeon's Influence on System Design
Cavaye, Graham
1982-01-01
ISYS-MD, the Integrated SYStem in MUMPS for MD's, is a new design and a completely re-written system for a computerized medical record. It possesses the functionality of COSTAR combined with a comprehensive accountancy system. In addition, various ideas have been incorporated from the author's extensive experience in medical practice, making the system very practical in a clinical environment.
Empirical studies of software design: Implications for SSEs
NASA Technical Reports Server (NTRS)
Krasner, Herb
1988-01-01
Implications for Software Engineering Environments (SEEs) are presented in viewgraph format for characteristics of projects studied; significant problems and crucial problem areas in software design for large systems; layered behavioral model of software processes; implications of field study results; software project as an ecological system; results of the LIFT study; information model of design exploration; software design strategies; results of the team design study; and a list of publications.
Space Environments and Spacecraft Effects Organization Concept
NASA Technical Reports Server (NTRS)
Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael
2012-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal government agencies, and the commercial sector to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lessons learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support all mission phases from mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will describe the scope of the TWGs and their relationship to the functional areas, and discuss an organizational structure for this space environments and spacecraft effects organization.
Rotorcraft Conceptual Design Environment
2009-10-01
systems engineering design tool sets. The DaVinci Project vision is to develop software architecture and tools specifically for acquisition system...enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described. Introduction...information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION
Vibration Isolation for Launch of a Space Station Orbital Replacement Unit
NASA Technical Reports Server (NTRS)
Maly, Joseph R.; Sills, Joel W., Jr.; Pendleton, Scott C.; James, George H., III; Mimovich, Mark
2004-01-01
Delivery of Orbital Replacement Units (ORUs) to on-orbit destinations such a the International Space Station (ISS) and the Hubble Space Telescope is an important component of the space program. ORUs are integrated on orbit with space assets to maintain and upgrade functionality. For ORUs comprised of sensitive equipment, the dynamic launch environment drives design and testing requirements, and high frequency random vibrations are generally the cause for failure. Vibration isolation can mitigate the structure-borne vibration environment during launch, and hardware has been developed that can provide a reduced environment for current and future launch environments. Random vibration testing of one ORU to equivalent Space Shuttle launch levels revealed that its qualification and acceptance requirements were exceeded. An isolation system was designed to mitigate the structure-borne launch vibration environment. To protect this ORU, the random vibration levels at 50 Hz must be attenuated by a factor of two and those at higher frequencies even more. Design load factors for Shuttle launch are high, so a metallic load path is needed to maintain strength margins. Isolation system design was performed using a finite element model of the ORU on its carrier with representative disturbance inputs. Iterations on the modelled to an optimized design based on flight proven SoftRide MultiFlex isolators. Component testing has been performed on prototype isolators to validate analytical predictions.
Cheng, Yufang; Huang, Ruowen
2012-01-01
The focus of this study is using data glove to practice Joint attention skill in virtual reality environment for people with pervasive developmental disorder (PDD). The virtual reality environment provides a safe environment for PDD people. Especially, when they made errors during practice in virtual reality environment, there is no suffering or dangerous consequences to deal with. Joint attention is a critical skill in the disorder characteristics of children with PDD. The absence of joint attention is a deficit frequently affects their social relationship in daily life. Therefore, this study designed the Joint Attention Skills Learning (JASL) systems with data glove tool to help children with PDD to practice joint attention behavior skills. The JASL specifically focus the skills of pointing, showing, sharing things and behavior interaction with other children with PDD. The system is designed in playroom-scene and presented in the first-person perspectives for users. The functions contain pointing and showing, moving virtual objects, 3D animation, text, speaking sounds, and feedback. The method was employed single subject multiple-probe design across subjects' designs, and analysis of visual inspection in this study. It took 3 months to finish the experimental section. Surprisingly, the experiment results reveal that the participants have further extension in improving the joint attention skills in their daily life after using the JASL system. The significant potential in this particular treatment of joint attention for each participant will be discussed in details in this paper. Copyright © 2012 Elsevier Ltd. All rights reserved.
Design of early warning system for nuclear preparedness case study at Serpong
NASA Astrophysics Data System (ADS)
Farid, M. M.; Prawito, Susila, I. P.; Yuniarto, A.
2017-07-01
One effort to protect the environment from the increasing of potentially environmental radiation hazards as an impact of radiation discharge around nuclear facilities is by a continuous monitoring of the environmental radiation in real time It is important to disclose the dose rate information to public or authorities for radiological protection. In this research, we have designed a nuclear preparedness early warning system around the Serpong nuclear facility. The design is based on Arduino program, general packet radio service (GPRS) shield, and radio frequencies technology to transmit environmental radiation result of the measurement and meteorological data. Data was collected at a certain location at The Center for Informatics and Nuclear Strategic Zone Utilization BATAN Serpong. The system consistency models are defined by the quality of data and the level of radiation exposure in the deployed environment. Online users can access the website which displays the radiation dose on the environment marked on Google Map. This system is capable to issue an early warning emergency when the dose reaches three times of the background radiation exposure value, 250 nSv/hour.
NASA Technical Reports Server (NTRS)
Panczak, Tim; Ring, Steve; Welch, Mark
1999-01-01
Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.
WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings
Ghayvat, Hemant; Mukhopadhyay, Subhas; Gui, Xiang; Suryadevara, Nagender
2015-01-01
Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses) to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance. PMID:25946630
WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings.
Ghayvat, Hemant; Mukhopadhyay, Subhas; Gui, Xiang; Suryadevara, Nagender
2015-05-04
Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses) to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance.
The development of a program analysis environment for Ada
NASA Technical Reports Server (NTRS)
Brown, David B.; Carlisle, Homer W.; Chang, Kai-Hsiung; Cross, James H.; Deason, William H.; Haga, Kevin D.; Huggins, John R.; Keleher, William R. A.; Starke, Benjamin B.; Weyrich, Orville R.
1989-01-01
A unit level, Ada software module testing system, called Query Utility Environment for Software Testing of Ada (QUEST/Ada), is described. The project calls for the design and development of a prototype system. QUEST/Ada design began with a definition of the overall system structure and a description of component dependencies. The project team was divided into three groups to resolve the preliminary designs of the parser/scanner: the test data generator, and the test coverage analyzer. The Phase 1 report is a working document from which the system documentation will evolve. It provides history, a guide to report sections, a literature review, the definition of the system structure and high level interfaces, descriptions of the prototype scope, the three major components, and the plan for the remainder of the project. The appendices include specifications, statistics, two papers derived from the current research, a preliminary users' manual, and the proposal and work plan for Phase 2.
Template Authoring Environment for the Automatic Generation of Narrative Content
ERIC Educational Resources Information Center
Caropreso, Maria Fernanda; Inkpen, Diana; Keshtkar, Fazel; Khan, Shahzad
2012-01-01
Natural Language Generation (NLG) systems can make data accessible in an easily digestible textual form; but using such systems requires sophisticated linguistic and sometimes even programming knowledge. We have designed and implemented an environment for creating and modifying NLG templates that requires no programming knowledge, and can operate…
ERIC Educational Resources Information Center
Connor, Carol McDonald; Morrison, Frederick J.; Fishman, Barry J.; Ponitz, Claire Cameron; Glasney, Stephanie; Underwood, Phyllis S.; Piasta, Shayne B.; Crowe, Elizabeth Coyne; Schatschneider, Christopher
2009-01-01
The Individualizing Student Instruction (ISI) classroom observation and coding system is designed to provide a detailed picture of the classroom environment at the level of the individual student. Using a multidimensional conceptualization of the classroom environment, foundational elements (teacher warmth and responsiveness to students, classroom…
Proceedings of Tenth Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1985-01-01
Papers are presented on the following topics: measurement of software technology, recent studies of the Software Engineering Lab, software management tools, expert systems, error seeding as a program validation technique, software quality assurance, software engineering environments (including knowledge-based environments), the Distributed Computing Design System, and various Ada experiments.
Skylab Medical Experiments Altitude Test /SMEAT/ facility design and operation.
NASA Technical Reports Server (NTRS)
Hinners, A. H., Jr.; Correale, J. V.
1973-01-01
This paper presents the design approaches and test facility operation methods used to successfully accomplish a 56-day test for Skylab to permit evaluation of selected Skylab medical experiments in a ground test simulation of the Skylab environment with an astronaut crew. The systems designed for this test include the two-gas environmental control system, the fire suppression and detection system, equipment transfer lock, ground support equipment, safety systems, potable water system, waste management system, lighting and power system, television monitoring, communications and recreation systems, and food freezer.
Aerodynamic design and optimization of high altitude environment simulation system based on CFD
NASA Astrophysics Data System (ADS)
Ma, Pingchang; Yan, Lutao; Li, Hong
2017-05-01
High altitude environment simulation system (HAES) is built to provide a true flight environment for subsonic vehicles, with low density, high speed, and short time characteristics. Normally, wind tunnel experiments are based on similar principal, such as parameters of Re or Ma, in order to shorten test product size. However, the test products in HAES are trim size, so more attention is put on the true flight environment simulation. It includes real flight environment pressure, destiny and real flight velocity, and its type velocity is Ma=0.8. In this paper, the aerodynamic design of HAES is introduced and its rationality is explained according to CFD calculation based on Fluent. Besides, the initial pressure of vacuum tank in HAES is optimized, which is not only to meet the economic requirements, but also to decrease the effect of additional stress on the test product in the process of the establishment of the target flow field.
Reducing the Cost of RLS: Waste Heat from Crop Production Can Be Used for Waste Processing
NASA Technical Reports Server (NTRS)
Lamparter, Richard; Flynn, Michael; Kliss, Mark (Technical Monitor)
1997-01-01
The applicability of plant-based life support systems has traditionally suffered from the limitations imposed by the high energy demand of controlled environment growth chambers. Theme types of systems are typically less than 2% efficient at converting electrical energy into biomass. The remaining 98% of supplied energy is converted to thermal energy. Traditionally this thermal energy is discharged to the ambient environment as waste heat. This paper describes an energy efficient plant-based life support system which has been designed for use at the Amundsen-Scott South Pole Station. At the South Pole energy is not lost to the environment. What is lost is the ability to extract useful work from it. The CELSS Antarctic Analog Program (CAAP) has developed a system which is designed to extract useful work from the waste thermal energy generated from plant growth lighting systems. In the CAAP system this energy is used to purify Station Sewage.
Mobility Systems For Robotic Vehicles
NASA Astrophysics Data System (ADS)
Chun, Wendell
1987-02-01
The majority of existing robotic systems can be decomposed into five distinct subsystems: locomotion, control/man-machine interface (MMI), sensors, power source, and manipulator. When designing robotic vehicles, there are two main requirements: first, to design for the environment and second, for the task. The environment can be correlated with known missions. This can be seen by analyzing existing mobile robots. Ground mobile systems are generally wheeled, tracked, or legged. More recently, underwater vehicles have gained greater attention. For example, Jason Jr. made history by surveying the sunken luxury liner, the Titanic. The next big surge of robotic vehicles will be in space. This will evolve as a result of NASA's commitment to the Space Station. The foreseeable robots will interface with current systems as well as standalone, free-flying systems. A space robotic vehicle is similar to its underwater counterpart with very few differences. Their commonality includes missions and degrees-of-freedom. The issues of stability and communication are inherent in both systems and environment.
Space tug thermal control. [design criteria and specifications
NASA Technical Reports Server (NTRS)
1974-01-01
It was determined that space tug will require the capability to perform its mission within a broad range of thermal environments with currently planned mission durations of up to seven days, so an investigation was conducted to define a thermal design for the forward and intertank compartments and fuel cell heat rejection system that satisfies tug requirements for low inclination geosynchronous deploy and retrieve missions. Passive concepts were demonstrated analytically for both the forward and intertank compartments, and a worst case external heating environment was determined for use during the study. The thermal control system specifications and designs which resulted from the research are shown.
Enroute flight planning: The design of cooperative planning systems
NASA Technical Reports Server (NTRS)
Smith, Philip J.; Layton, Chuck; Mccoy, Elaine
1990-01-01
Design concepts and principles to guide in the building of cooperative problem solving systems are being developed and evaluated. In particular, the design of cooperative systems for enroute flight planning is being studied. The investigation involves a three stage process, modeling human performance in existing environments, building cognitive artifacts, and studying the performance of people working in collaboration with these artifacts. The most significant design concepts and principles identified thus far are the principle focus.
Arcade: A Web-Java Based Framework for Distributed Computing
NASA Technical Reports Server (NTRS)
Chen, Zhikai; Maly, Kurt; Mehrotra, Piyush; Zubair, Mohammad; Bushnell, Dennis M. (Technical Monitor)
2000-01-01
Distributed heterogeneous environments are being increasingly used to execute a variety of large size simulations and computational problems. We are developing Arcade, a web-based environment to design, execute, monitor, and control distributed applications. These targeted applications consist of independent heterogeneous modules which can be executed on a distributed heterogeneous environment. In this paper we describe the overall design of the system and discuss the prototype implementation of the core functionalities required to support such a framework.
A synthetic design environment for ship design
NASA Technical Reports Server (NTRS)
Chipman, Richard R.
1995-01-01
Rapid advances in computer science and information system technology have made possible the creation of synthetic design environments (SDE) which use virtual prototypes to increase the efficiency and agility of the design process. This next generation of computer-based design tools will rely heavily on simulation and advanced visualization techniques to enable integrated product and process teams to concurrently conceptualize, design, and test a product and its fabrication processes. This paper summarizes a successful demonstration of the feasibility of using a simulation based design environment in the shipbuilding industry. As computer science and information science technologies have evolved, there have been many attempts to apply and integrate the new capabilities into systems for the improvement of the process of design. We see the benefits of those efforts in the abundance of highly reliable, technologically complex products and services in the modern marketplace. Furthermore, the computer-based technologies have been so cost effective that the improvements embodied in modern products have been accompanied by lowered costs. Today the state-of-the-art in computerized design has advanced so dramatically that the focus is no longer on merely improving design methodology; rather the goal is to revolutionize the entire process by which complex products are conceived, designed, fabricated, tested, deployed, operated, maintained, refurbished and eventually decommissioned. By concurrently addressing all life-cycle issues, the basic decision making process within an enterprise will be improved dramatically, leading to new levels of quality, innovation, efficiency, and customer responsiveness. By integrating functions and people with an enterprise, such systems will change the fundamental way American industries are organized, creating companies that are more competitive, creative, and productive.
ERIC Educational Resources Information Center
Roscoe, Rod D.; Segedy, James R.; Sulcer, Brian; Jeong, Hogyeong; Biswas, Gautam
2013-01-01
To support self-regulated learning (SRL), computer-based learning environments (CBLEs) are often designed to be open-ended and multidimensional. These systems incorporate diverse features that allow students to enact and reveal their SRL strategies via the choices they make. However, research shows that students' use of such features is limited;…
Analyzing User Interaction to Design an Intelligent e-Learning Environment
ERIC Educational Resources Information Center
Sharma, Richa
2011-01-01
Building intelligent course designing systems adaptable to the learners' needs is one of the key goals of research in e-learning. This goal is all the more crucial as gaining knowledge in an e-learning environment depends solely on computer mediated interaction within the learner group and among the learners and instructors. The patterns generated…
40 CFR 1033.901 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... means any device, system, or element of design that controls or reduces the regulated emissions from a... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF... means any device, system, or element of design that someone can adjust (including those which are...
40 CFR 1033.901 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... means any device, system, or element of design that controls or reduces the regulated emissions from a... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF... means any device, system, or element of design that someone can adjust (including those which are...
40 CFR 1033.901 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... means any device, system, or element of design that controls or reduces the regulated emissions from a... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF... means any device, system, or element of design that someone can adjust (including those which are...
40 CFR 1033.901 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... means any device, system, or element of design that controls or reduces the regulated emissions from a... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF... means any device, system, or element of design that someone can adjust (including those which are...
40 CFR 1033.901 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... means any device, system, or element of design that controls or reduces the regulated emissions from a... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF... means any device, system, or element of design that someone can adjust (including those which are...
NASA Technical Reports Server (NTRS)
Rasmussen, John
1990-01-01
Structural optimization has attracted the attention since the days of Galileo. Olhoff and Taylor have produced an excellent overview of the classical research within this field. However, the interest in structural optimization has increased greatly during the last decade due to the advent of reliable general numerical analysis methods and the computer power necessary to use them efficiently. This has created the possibility of developing general numerical systems for shape optimization. Several authors, eg., Esping; Braibant & Fleury; Bennet & Botkin; Botkin, Yang, and Bennet; and Stanton have published practical and successful applications of general optimization systems. Ding and Homlein have produced extensive overviews of available systems. Furthermore, a number of commercial optimization systems based on well-established finite element codes have been introduced. Systems like ANSYS, IDEAS, OASIS, and NISAOPT are widely known examples. In parallel to this development, the technology of computer aided design (CAD) has gained a large influence on the design process of mechanical engineering. The CAD technology has already lived through a rapid development driven by the drastically growing capabilities of digital computers. However, the systems of today are still considered as being only the first generation of a long row of computer integrated manufacturing (CIM) systems. These systems to come will offer an integrated environment for design, analysis, and fabrication of products of almost any character. Thus, the CAD system could be regarded as simply a database for geometrical information equipped with a number of tools with the purpose of helping the user in the design process. Among these tools are facilities for structural analysis and optimization as well as present standard CAD features like drawing, modeling, and visualization tools. The state of the art of structural optimization is that a large amount of mathematical and mechanical techniques are available for the solution of single problems. By implementing collections of the available techniques into general software systems, operational environments for structural optimization have been created. The forthcoming years must bring solutions to the problem of integrating such systems into more general design environments. The result of this work should be CAD systems for rational design in which structural optimization is one important design tool among many others.
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2011-01-01
As automation and advanced technologies are introduced into transport systems ranging from the Next Generation Air Transportation System termed NextGen, to the advanced surface transportation systems as exemplified by the Intelligent Transportations Systems, to future systems designed for space exploration, there is an increased need to validly predict how the future systems will be vulnerable to error given the demands imposed by the assistive technologies. One formalized approach to study the impact of assistive technologies on the human operator in a safe and non-obtrusive manner is through the use of human performance models (HPMs). HPMs play an integral role when complex human-system designs are proposed, developed, and tested. One HPM tool termed the Man-machine Integration Design and Analysis System (MIDAS) is a NASA Ames Research Center HPM software tool that has been applied to predict human-system performance in various domains since 1986. MIDAS is a dynamic, integrated HPM and simulation environment that facilitates the design, visualization, and computational evaluation of complex man-machine system concepts in simulated operational environments. The paper will discuss a range of aviation specific applications including an approach used to model human error for NASA s Aviation Safety Program, and what-if analyses to evaluate flight deck technologies for NextGen operations. This chapter will culminate by raising two challenges for the field of predictive HPMs for complex human-system designs that evaluate assistive technologies: that of (1) model transparency and (2) model validation.
Microbiological assay of the Marshall Space Flight Center neutral buoyancy simulator
NASA Technical Reports Server (NTRS)
Beyerle, F. J.
1973-01-01
A neutral buoyancy simulator tank system is described in terms of microbiological and medical safety for astronauts. The system was designed to simulate a gravity-free state for evaluation of orbital operations in a microorganism-free environment. Methods for the identification and elimination of specific microorganisms are dealt with as measures for a pure system of space environment simulation.
ERIC Educational Resources Information Center
Listyawardani, Dwi; Hariastuti, Iswari
2016-01-01
Systems thinking is needed due to the growing complexity of the problems faced family planning field workers in the external environment that is constantly changing. System thinking ability could not be separated from efforts to develop learning for the workers, both learning at the individual, group, or organization level. The design of the study…
ERIC Educational Resources Information Center
Barhoumi, Chokri; Rossi, Pier Giuseppe
2013-01-01
The use of hypertext systems for learning and teaching complex and ill-structured domain of knowledge has been attracting attention in design of instruction. In this context, an experimental research has been conducted to explore the effectiveness of instructional design oriented hypertext systems. Cognitive flexibility hypertext theory is…
An Economic Analysis of Solar Water & Space Heating.
ERIC Educational Resources Information Center
Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.
Solar system designs for 13 cities were optimized so as to minimize the life cycle cost over the assumed 20-year lifetime of the solar energy systems. A number of major assumptions were made regarding the solar system, type and use of building, financial considerations, and economic environment used in the design optimization. Seven optimum…
A Situated Cultural Festival Learning System Based on Motion Sensing
ERIC Educational Resources Information Center
Chang, Yi-Hsing; Lin, Yu-Kai; Fang, Rong-Jyue; Lu, You-Te
2017-01-01
A situated Chinese cultural festival learning system based on motion sensing is developed in this study. The primary design principle is to create a highly interactive learning environment, allowing learners to interact with Kinect through natural gestures in the designed learning situation to achieve efficient learning. The system has the…
Designing Online Information Systems for Portfolio-Based Assessment: Design Criteria and Heuristics
ERIC Educational Resources Information Center
Love, Terence; Cooper, Trudi
2004-01-01
This paper outlines the main findings of research about online portfolio information systems. This research focused on the educational integrity of these educational systems and the maximisation of value across all stakeholders, in particular the value gained from the automation and interaction potential of the online environment. The findings and…
PC-based Multiple Information System Interface (PC/MISI) design plan
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Hall, Philip P.
1985-01-01
The general design plan for the implementation of a common user interface to multiple remote information systems within a microcomputer-based environment is presented. The intent is to provide a framework for the development of detailed specifications which will be used as guidelines for the actual development of the system.
Collaborative Annotation System Environment (CASE) for Online Learning
ERIC Educational Resources Information Center
Glover, Ian; Hardaker, Glenn; Xu, Zhijie
2004-01-01
This paper outlines the design and development process of an online annotation system and how it is applied to the sphere of collaborative online learning. The architecture and design of the annotation system, illustrated in this paper, have been developed to enrich collaborative learning content through adding a layer of information in online…
A Low-Cost Sensor Buoy System for Monitoring Shallow Marine Environments
Albaladejo, Cristina; Soto, Fulgencio; Torres, Roque; Sánchez, Pedro; López, Juan A.
2012-01-01
Monitoring of marine ecosystems is essential to identify the parameters that determine their condition. The data derived from the sensors used to monitor them are a fundamental source for the development of mathematical models with which to predict the behaviour of conditions of the water, the sea bed and the living creatures inhabiting it. This paper is intended to explain and illustrate a design and implementation for a new multisensor monitoring buoy system. The system design is based on a number of fundamental requirements that set it apart from other recent proposals: low cost of implementation, the possibility of application in coastal shallow-water marine environments, suitable dimensions for deployment and stability of the sensor system in a shifting environment like the sea bed, and total autonomy of power supply and data recording. The buoy system has successfully performed remote monitoring of temperature and marine pressure (SBE 39 sensor), temperature (MCP9700 sensor) and atmospheric pressure (YOUNG 61302L sensor). The above requirements have been satisfactorily validated by operational trials in a marine environment. The proposed buoy sensor system thus seems to offer a broad range of applications. PMID:23012562
Current Issues in Human Spacecraft Thermal Control Technology
NASA Technical Reports Server (NTRS)
Ungar, Eugene K.
2008-01-01
Efficient thermal management of Earth-orbiting human spacecraft, lunar transit spacecraft and landers, as well as a lunar habitat will require advanced thermal technology. These future spacecraft will require more sophisticated thermal control systems that can dissipate or reject greater heat loads at higher input heat fluxes while using fewer of the limited spacecraft mass, volume and power resources. The thermal control designs also must accommodate the harsh environments associated with these missions including dust and high sink temperatures. The lunar environment presents several challenges to the design and operation of active thermal control systems. During the Apollo program, landings were located and timed to occur at lunar twilight, resulting in a benign thermal environment. The long duration polar lunar bases that are foreseen in 15 years will see extremely cold thermal environments. Long sojourns remote from low-Earth orbit will require lightweight, but robust and reliable systems. Innovative thermal management components and systems are needed to accomplish the rejection of heat from lunar bases. Advances are required in the general areas of radiators, thermal control loops and equipment. Radiators on the Moon's poles must operate and survive in very cold environments. Also, the dusty environment of an active lunar base may require dust mitigation and removal techniques to maintain radiator performance over the long term.
DEPEND - A design environment for prediction and evaluation of system dependability
NASA Technical Reports Server (NTRS)
Goswami, Kumar K.; Iyer, Ravishankar K.
1990-01-01
The development of DEPEND, an integrated simulation environment for the design and dependability analysis of fault-tolerant systems, is described. DEPEND models both hardware and software components at a functional level, and allows automatic failure injection to assess system performance and reliability. It relieves the user of the work needed to inject failures, maintain statistics, and output reports. The automatic failure injection scheme is geared toward evaluating a system under high stress (workload) conditions. The failures that are injected can affect both hardware and software components. To illustrate the capability of the simulator, a distributed system which employs a prediction-based, dynamic load-balancing heuristic is evaluated. Experiments were conducted to determine the impact of failures on system performance and to identify the failures to which the system is especially susceptible.
Night vision imaging system design, integration and verification in spacecraft vacuum thermal test
NASA Astrophysics Data System (ADS)
Shang, Yonghong; Wang, Jing; Gong, Zhe; Li, Xiyuan; Pei, Yifei; Bai, Tingzhu; Zhen, Haijing
2015-08-01
The purposes of spacecraft vacuum thermal test are to characterize the thermal control systems of the spacecraft and its component in its cruise configuration and to allow for early retirement of risks associated with mission-specific and novel thermal designs. The orbit heat flux is simulating by infrared lamp, infrared cage or electric heater. As infrared cage and electric heater do not emit visible light, or infrared lamp just emits limited visible light test, ordinary camera could not operate due to low luminous density in test. Moreover, some special instruments such as satellite-borne infrared sensors are sensitive to visible light and it couldn't compensate light during test. For improving the ability of fine monitoring on spacecraft and exhibition of test progress in condition of ultra-low luminous density, night vision imaging system is designed and integrated by BISEE. System is consist of high-gain image intensifier ICCD camera, assistant luminance system, glare protect system, thermal control system and computer control system. The multi-frame accumulation target detect technology is adopted for high quality image recognition in captive test. Optical system, mechanical system and electrical system are designed and integrated highly adaptable to vacuum environment. Molybdenum/Polyimide thin film electrical heater controls the temperature of ICCD camera. The results of performance validation test shown that system could operate under vacuum thermal environment of 1.33×10-3Pa vacuum degree and 100K shroud temperature in the space environment simulator, and its working temperature is maintains at 5° during two-day test. The night vision imaging system could obtain video quality of 60lp/mm resolving power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borchers, W.A.; Markowski, E.S.
1986-01-01
Future nuclear steam supply systems (NSSSs) will be designed in an environment of powerful micro hardware and software and these systems will be linked by local area networks (LAN). With such systems, individual NSSS designers and design groups will establish and maintain local data bases to replace existing manual files and data sources. One such effort of this type in Combustion Engineering's (C-E's) NSSS engineering organization is the establishment of a data base of historical manufacturing, installation, and operating experience to provide designers with information to improve on current designs and practices. In contrast to large mainframe or minicomputer datamore » bases, which compile industry-wide data, the data base described here is implemented on a microcomputer, is design specific, and contains a level of detail that is of interest to system and component designers. DBASE III, a popular microcomputer data base management software package, is used. In addition to the immediate benefits provided by the data base, the development itself provided a vehicle for identifying procedural and control aspects that need to be addressed in the environment of local microcomputer data bases. This paper describes the data base and provides some observations on the development, use, and control of local microcomputer data bases in a design organization.« less
Homeward Bound: Ecological Design of Domestic Information Systems
NASA Astrophysics Data System (ADS)
Wastell, David G.; Sauer, Juergen S.; Schmeink, Claudia
Information technology artefacts are steadily permeating everyday life, just as they have colonized the business domain. Although research in our field has largely addressed the workplace, researchers are beginning to take an interest in the home environment too. Here, we address the domestic realm, focusing on the design of complex, interactive information systems. As such, our work sits in the design science version rather than behavioral science paradigm of IS research. We argue that the home is in many ways a more challenging environment for the designer than the workplace, making good design of critical importance. Regrettably, the opposite would appear to be the norm. Two experiments are reported, both concerned with the design of the user interface for domestic heating systems. Of note is our use of a medium-fidelity laboratory simulation or "microworld" in this work. Two main substantive findings resulted. First, that ecologically designed feedback, embodying a strong mapping between task goals and system status, produced superior task performance. Second, that predictive decision aids provided clear benefits over other forms of user support, such as advisory systems. General implications for the design of domestic information systems are discussed, followed by reflections on the nature of design work in IS, and on the design science project itself. It is concluded that the microworld approach has considerable potential for developing IS design theory. The methodological challenges of design research are highlighted, especially the presence of additional validity threats posed by the need to construct artefacts in order to evaluate theory. It is argued that design theory is necessarily complex, modal, and uncertain, and that design science (like design itself) should be prosecuted in an open, heuristic spirit, drawing more on the proven methods of "good design" (e.g.,prototyping, user participation) in terms of its own praxis.
New directions for Artificial Intelligence (AI) methods in optimum design
NASA Technical Reports Server (NTRS)
Hajela, Prabhat
1989-01-01
Developments and applications of artificial intelligence (AI) methods in the design of structural systems is reviewed. Principal shortcomings in the current approach are emphasized, and the need for some degree of formalism in the development environment for such design tools is underscored. Emphasis is placed on efforts to integrate algorithmic computations in expert systems.
Virtual Display Design and Evaluation of Clothing: A Design Process Support System
ERIC Educational Resources Information Center
Zhang, Xue-Fang; Huang, Ren-Qun
2014-01-01
This paper proposes a new computer-aided educational system for clothing visual merchandising and display. It aims to provide an operating environment that supports the various stages of display design in a user-friendly and intuitive manner. First, this paper provides a brief introduction to current software applications in the field of…
Space and Atmospheric Environments
NASA Technical Reports Server (NTRS)
Barth, Janet L.; Day, John H. (Technical Monitor)
2002-01-01
This viewgraph presentation provides information on space environments and the protection of materials and structures from their harsh conditions. Space environments are complex, and the complexity of spacecraft systems is increasing. Design accommodation must be realistic. Environmental problems can be limited at low cost relative to spacecraft cost.
Emerging Technologies, ISD, and Learning Environments: Critical Perspectives.
ERIC Educational Resources Information Center
Hannafin, Michael J.
1992-01-01
Reviews the evolution of instructional systems design and computer-based learning environments, focusing on the effects of technological advances. Classification of learning environments is discussed in the context of the dimensions of scope (macrolevel or microlevel), user activity (generative or mathemagenic), educational activity (goal-directed…
Introduction to human factors considerations in system design
NASA Technical Reports Server (NTRS)
Chapanis, A.
1983-01-01
A definition for human factors or ergonomics and its industrial and domestic application is presented. Human factors engineering, which discovers and applies information about human abilities, limitations, and other characteristics to the design of tools, machines, systems, tasks, jobs, and environments for safe, comfortable, and effective human use, is outlined. The origins of human factors and ergonomics, the philosophy of human factors, goals and objectives, systems development and design, are reviewed.
Analysis and Design of Complex Network Environments
2012-03-01
and J. Lowe, “The myths and facts behind cyber security risks for industrial control systems ,” in the Proceedings of the VDE Kongress, VDE Congress...questions about 1) how to model them, 2) the design of experiments necessary to discover their structure (and thus adapt system inputs to optimize the...theoretical work that clarifies fundamental limitations of complex networks with network engineering and systems biology to implement specific designs and
NASA Astrophysics Data System (ADS)
Enescu (Balaş, M. L.; Alexandru, C.
2016-08-01
The paper deals with the optimal design of the control system for a 6-DOF robot used in thin layers deposition. The optimization is based on parametric technique, by modelling the design objective as a numerical function, and then establishing the optimal values of the design variables so that to minimize the objective function. The robotic system is a mechatronic product, which integrates the mechanical device and the controlled operating device.The mechanical device of the robot was designed in the CAD (Computer Aided Design) software CATIA, the 3D-model being then transferred to the MBS (Multi-Body Systems) environment ADAMS/View. The control system was developed in the concurrent engineering concept, through the integration with the MBS mechanical model, by using the DFC (Design for Control) software solution EASY5. The necessary angular motions in the six joints of the robot, in order to obtain the imposed trajectory of the end-effector, have been established by performing the inverse kinematic analysis. The positioning error in each joint of the robot is used as design objective, the optimization goal being to minimize the root mean square during simulation, which is a measure of the magnitude of the positioning error varying quantity.
A methodology for identification and control of electro-mechanical actuators
Tutunji, Tarek A.; Saleem, Ashraf
2015-01-01
Mechatronic systems are fully-integrated engineering systems that are composed of mechanical, electronic, and computer control sub-systems. These integrated systems use electro-mechanical actuators to cause the required motion. Therefore, the design of appropriate controllers for these actuators are an essential step in mechatronic system design. In this paper, a three-stage methodology for real-time identification and control of electro-mechanical actuator plants is presented, tested, and validated. First, identification models are constructed from experimental data to approximate the plants’ response. Second, the identified model is used in a simulation environment for the purpose of designing a suitable controller. Finally, the designed controller is applied and tested on the real plant through Hardware-in-the-Loop (HIL) environment. The described three-stage methodology provides the following practical contributions: • Establishes an easy-to-follow methodology for controller design of electro-mechanical actuators. • Combines off-line and on-line controller design for practical performance. • Modifies the HIL concept by using physical plants with computer control (rather than virtual plants with physical controllers). Simulated and experimental results for two case studies, induction motor and vehicle drive system, are presented in order to validate the proposed methodology. These results showed that electromechanical actuators can be identified and controlled using an easy-to-duplicate and flexible procedure. PMID:26150992
A methodology for identification and control of electro-mechanical actuators.
Tutunji, Tarek A; Saleem, Ashraf
2015-01-01
Mechatronic systems are fully-integrated engineering systems that are composed of mechanical, electronic, and computer control sub-systems. These integrated systems use electro-mechanical actuators to cause the required motion. Therefore, the design of appropriate controllers for these actuators are an essential step in mechatronic system design. In this paper, a three-stage methodology for real-time identification and control of electro-mechanical actuator plants is presented, tested, and validated. First, identification models are constructed from experimental data to approximate the plants' response. Second, the identified model is used in a simulation environment for the purpose of designing a suitable controller. Finally, the designed controller is applied and tested on the real plant through Hardware-in-the-Loop (HIL) environment. The described three-stage methodology provides the following practical contributions: •Establishes an easy-to-follow methodology for controller design of electro-mechanical actuators.•Combines off-line and on-line controller design for practical performance.•Modifies the HIL concept by using physical plants with computer control (rather than virtual plants with physical controllers). Simulated and experimental results for two case studies, induction motor and vehicle drive system, are presented in order to validate the proposed methodology. These results showed that electromechanical actuators can be identified and controlled using an easy-to-duplicate and flexible procedure.
A Prototype Decision Support System for the Location of Military Water Points.
1980-06-01
create an environ- ment which is conductive to an efficient man/machine decision making system . This could be accomplished by designing the operating...Figure 12. Flowchart of Program COMPUTE 50 Procedure This Decision Support System was designed to be interactive. That is, it requests data from the user...Pg. 82-114, 1974. 24. Geoffrion, A.M. and G.W. Graves, "Multicomodity Distribution System Design by Benders Partition", Management Science, Vol. 20, Pg
Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark
2011-01-01
A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.
Lessons about Virtual-Environment Software Systems from 20 years of VE building
Taylor, Russell M.; Jerald, Jason; VanderKnyff, Chris; Wendt, Jeremy; Borland, David; Marshburn, David; Sherman, William R.; Whitton, Mary C.
2010-01-01
What are desirable and undesirable features of virtual-environment (VE) software architectures? What should be present (and absent) from such systems if they are to be optimally useful? How should they be structured? To help answer these questions we present experience from application designers, toolkit designers, and VE system architects along with examples of useful features from existing systems. Topics are organized under the major headings of: 3D space management, supporting display hardware, interaction, event management, time management, computation, portability, and the observation that less can be better. Lessons learned are presented as discussion of the issues, field experiences, nuggets of knowledge, and case studies. PMID:20567602
A new intelligent curtain control system based on 51 single chip microcomputer
NASA Astrophysics Data System (ADS)
Sun, Tuan; Wang, Yanhua; Wu, Mengmeng
2017-04-01
This paper uses 51 (single chip microcomputer) SCM as the operation and data processing center. According to the change of sunshine intensity and ambient temperature, a new type of intelligent curtain control system is designed by adopting photosensitive element and temperature sensor. In addition, the design also has a manual control mode. In the rain, when the light intensity is weak, the open position of the curtain can be set by the user. The system can maximize the user to provide user-friendly operation and comfortable living environment. The system can be applied to home or office environment, with a wide range of applications and simple operation and so on.
Design of a Multi-Sensor Cooperation Travel Environment Perception System for Autonomous Vehicle
Chen, Long; Li, Qingquan; Li, Ming; Zhang, Liang; Mao, Qingzhou
2012-01-01
This paper describes the environment perception system designed for intelligent vehicle SmartV-II, which won the 2010 Future Challenge. This system utilizes the cooperation of multiple lasers and cameras to realize several necessary functions of autonomous navigation: road curb detection, lane detection and traffic sign recognition. Multiple single scan lasers are integrated to detect the road curb based on Z-variance method. Vision based lane detection is realized by two scans method combining with image model. Haar-like feature based method is applied for traffic sign detection and SURF matching method is used for sign classification. The results of experiments validate the effectiveness of the proposed algorithms and the whole system.
A Web-Based Monitoring System for Multidisciplinary Design Projects
NASA Technical Reports Server (NTRS)
Rogers, James L.; Salas, Andrea O.; Weston, Robert P.
1998-01-01
In today's competitive environment, both industry and government agencies are under pressure to reduce the time and cost of multidisciplinary design projects. New tools have been introduced to assist in this process by facilitating the integration of and communication among diverse disciplinary codes. One such tool, a framework for multidisciplinary computational environments, is defined as a hardware and software architecture that enables integration, execution, and communication among diverse disciplinary processes. An examination of current frameworks reveals weaknesses in various areas, such as sequencing, displaying, monitoring, and controlling the design process. The objective of this research is to explore how Web technology, integrated with an existing framework, can improve these areas of weakness. This paper describes a Web-based system that optimizes and controls the execution sequence of design processes; and monitors the project status and results. The three-stage evolution of the system with increasingly complex problems demonstrates the feasibility of this approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, Timothy S.
Normal tolerance limits are frequently used in dynamic environments specifications of aerospace systems as a method to account for aleatory variability in the environments. Upper tolerance limits, when used in this way, are computed from records of the environment and used to enforce conservatism in the specification by describing upper extreme values the environment may take in the future. Components and systems are designed to withstand these extreme loads to ensure they do not fail under normal use conditions. The degree of conservatism in the upper tolerance limits is controlled by specifying the coverage and confidence level (usually written inmore » “coverage/confidence” form). Moreover, in high-consequence systems it is common to specify tolerance limits at 95% or 99% coverage and confidence at the 50% or 90% level. Despite the ubiquity of upper tolerance limits in the aerospace community, analysts and decision-makers frequently misinterpret their meaning. The misinterpretation extends into the standards that govern much of the acceptance and qualification of commercial and government aerospace systems. As a result, the risk of a future observation of the environment exceeding the upper tolerance limit is sometimes significantly underestimated by decision makers. This note explains the meaning of upper tolerance limits and a related measure, the upper prediction limit. So, the objective of this work is to clarify the probability of exceeding these limits in flight so that decision-makers can better understand the risk associated with exceeding design and test levels during flight and balance the cost of design and development with that of mission failure.« less
Aerothermodynamic Design of the Mars Science Laboratory Backshell and Parachute Cone
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Dyakonov, Artem A.; Wright, Michael J.; Tang, Chun Y.
2009-01-01
Aerothermodynamic design environments are presented for the Mars Science Laboratory entry capsule backshell and parachute cone. The design conditions are based on Navier-Stokes flowfield simulations on shallow (maximum total heat load) and steep (maximum heat flux) design entry trajectories from a 2009 launch. Transient interference effects from reaction control system thruster plumes were included in the design environments when necessary. The limiting backshell design heating conditions of 6.3 W/sq cm for heat flux and 377 J/sq cm for total heat load are not influenced by thruster firings. Similarly, the thrusters do not affect the parachute cover lid design environments (13 W/sq cm and 499 J/sq cm). If thruster jet firings occur near peak dynamic pressure, they will augment the design environments at the interface between the backshell and parachute cone (7 W/sq cm and 174 J/sq cm). Localized heat fluxes are higher near the thruster fairing during jet firings, but these areas did not require additional thermal protection material. Finally, heating bump factors were developed for antenna radomes on the parachute cone
al-Wahish, Amal; Armitage, D; al-Binni, U; Hill, B; Mills, R; Jalarvo, N; Santodonato, L; Herwig, K W; Mandrus, D
2015-09-01
A design for a sample cell system suitable for high temperature Quasi-Elastic Neutron Scattering (QENS) experiments is presented. The apparatus was developed at the Spallation Neutron Source in Oak Ridge National Lab where it is currently in use. The design provides a special sample cell environment under controlled humid or dry gas flow over a wide range of temperature up to 950 °C. Using such a cell, chemical, dynamical, and physical changes can be studied in situ under various operating conditions. While the cell combined with portable automated gas environment system is especially useful for in situ studies of microscopic dynamics under operational conditions that are similar to those of solid oxide fuel cells, it can additionally be used to study a wide variety of materials, such as high temperature proton conductors. The cell can also be used in many different neutron experiments when a suitable sample holder material is selected. The sample cell system has recently been used to reveal fast dynamic processes in quasi-elastic neutron scattering experiments, which standard probes (such as electrochemical impedance spectroscopy) could not detect. In this work, we outline the design of the sample cell system and present results demonstrating its abilities in high temperature QENS experiments.
Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment
Zhou, Ao; Wong, Kwun-Wah
2014-01-01
Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes. PMID:25177718
Thermal insulating concrete wall panel design for sustainable built environment.
Zhou, Ao; Wong, Kwun-Wah; Lau, Denvid
2014-01-01
Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes.
Geometric modeling for computer aided design
NASA Technical Reports Server (NTRS)
Schwing, James L.; Olariu, Stephen
1995-01-01
The primary goal of this grant has been the design and implementation of software to be used in the conceptual design of aerospace vehicles particularly focused on the elements of geometric design, graphical user interfaces, and the interaction of the multitude of software typically used in this engineering environment. This has resulted in the development of several analysis packages and design studies. These include two major software systems currently used in the conceptual level design of aerospace vehicles. These tools are SMART, the Solid Modeling Aerospace Research Tool, and EASIE, the Environment for Software Integration and Execution. Additional software tools were designed and implemented to address the needs of the engineer working in the conceptual design environment. SMART provides conceptual designers with a rapid prototyping capability and several engineering analysis capabilities. In addition, SMART has a carefully engineered user interface that makes it easy to learn and use. Finally, a number of specialty characteristics have been built into SMART which allow it to be used efficiently as a front end geometry processor for other analysis packages. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand-alone, analysis codes. Resulting in a streamlining of the exchange of data between programs reducing errors and improving the efficiency. EASIE provides both a methodology and a collection of software tools to ease the task of coordinating engineering design and analysis codes.
1988-09-01
could use the assistance of a microcomputer-based management information system . However, adequate system design and development requires an in-depth...understanding of the Equipment Management Section and the environment in which it functions were asked and answered. Then, a management information system was...designed, developed, and tested. The management information system is called the Equipment Management Information System (EMIS).
Mechanical design of experimental apparatus for FIREX cryo-target cooling
NASA Astrophysics Data System (ADS)
Iwamoto, A.; Norimatsu, T.; Nakai, M.; Sakagami, H.; Fujioka, S.; Shiraga, H.; Azechi, H.
2016-05-01
Mechanical design of an experimental apparatus for FIREX cryo-target cooling is described. Gaseous helium (GHe) sealing system at a cryogenic environment is an important issue for laser fusion experiments. The dedicated loading system was designed for a metal gasket. We take U-TIGHTSEAL® (Usui Kokusai Sangyo Kaisha. Ltd.) with an indium plated copper jacket as an example. According to its specification, a linear load of 110 N/m along its circumference is the optimum compression; however a lower load would still maintain helium (He) leak below the required level. Its sealing performance was investigated systematically. Our system demanded 27 N/mm of the load to keep He leak tightness in a cryogenic environment. Once leak tightness was obtained, it could be reduced to 9.5 N/mm.
New multivariable capabilities of the INCA program
NASA Technical Reports Server (NTRS)
Bauer, Frank H.; Downing, John P.; Thorpe, Christopher J.
1989-01-01
The INteractive Controls Analysis (INCA) program was developed at NASA's Goddard Space Flight Center to provide a user friendly, efficient environment for the design and analysis of control systems, specifically spacecraft control systems. Since its inception, INCA has found extensive use in the design, development, and analysis of control systems for spacecraft, instruments, robotics, and pointing systems. The (INCA) program was initially developed as a comprehensive classical design analysis tool for small and large order control systems. The latest version of INCA, expected to be released in February of 1990, was expanded to include the capability to perform multivariable controls analysis and design.
Innovation for integrated command environments
NASA Astrophysics Data System (ADS)
Perry, Amie A.; McKneely, Jennifer A.
2000-11-01
Command environments have rarely been able to easily accommodate rapid changes in technology and mission. Yet, command personnel, by their selection criteria, experience, and very nature, tend to be extremely adaptive and flexible, and able to learn new missions and address new challenges fairly easily. Instead, the hardware and software components of the systems do no provide the needed flexibility and scalability for command personnel. How do we solve this problem? In order to even dream of keeping pace with a rapidly changing world, we must begin to think differently about the command environment and its systems. What is the correct definition of the integrated command environment system? What types of tasks must be performed in this environment, and how might they change in the next five to twenty-five years? How should the command environment be developed, maintained, and evolved to provide needed flexibility and scalability? The issues and concepts to be considered as new Integrated Command/Control Environments (ICEs) are designed following a human-centered process. A futuristic model, the Dream Integrated Command Environment (DICE) will be described which demonstrates specific ICE innovations. The major paradigm shift required to be able to think differently about this problem is to center the DICE around the command personnel from its inception. Conference participants may not agree with every concept or idea presented, but will hopefully come away with a clear understanding that to radically improve future systems, designers must focus on the end users.
Bartley, Judene; Streifel, Andrew J
2010-08-01
We review the context of the environment of care in the intensive care unit setting in relation to patient safety and quality, specifically addressing healthcare-associated infection issues and solutions involving interdisciplinary teams. Issues addressed include current and future architectural design and layout trends, construction trends affecting intensive care units, and prevention of construction-associated healthcare-associated infections related to airborne and waterborne risks and design solutions. Specific elements include single-occupancy, acuity-scalable intensive care unit rooms; environmental aspects of hand hygiene, such as water risks, sink design/location, human waste management, surface selection (floor covering, countertops, furniture, and equipment) and cleaning, antimicrobial-treated or similar materials, ultraviolet germicidal irradiation, specialized rooms (airborne infection isolation and protective environments), and water system design and strategies for safe use of potable water and mitigation of water intrusion. Effective design and operational use of the intensive care unit environment of care must engage critical care personnel from initial planning and design through occupancy of the new/renovated intensive care unit as part of the infection control risk assessment team. The interdisciplinary infection control risk assessment team can address key environment of care design features to enhance the safety of intensive care unit patients, personnel, and visitors. This perspective will ensure the environment of care supports human factors and behavioral aspects of the interaction between the environment of care and its occupants.
Scripting for Construction of a Transactive Memory System in Multidisciplinary CSCL Environments
ERIC Educational Resources Information Center
Noroozi, Omid; Biemans, Harm J. A.; Weinberger, Armin; Mulder, Martin; Chizari, Mohammad
2013-01-01
Establishing a Transactive Memory System (TMS) is essential for groups of learners, when they are multidisciplinary and collaborate online. Environments for Computer-Supported Collaborative Learning (CSCL) could be designed to facilitate the TMS. This study investigates how various aspects of a TMS (i.e., specialization, coordination, and trust)…
ESCAPE: Eco-Behavioral System for Complex Assessments of Preschool Environments. Research Draft.
ERIC Educational Resources Information Center
Carta, Judith J.; And Others
The manual details an observational code designed to track a child during an entire day in a preschool setting. The Eco-Behavioral System for Complex Assessments of Preschool Environments (ESCAPE) encompasses assessment of the following three major categories of variables with their respective subcategories: (1) ecological variables (designated…
ERIC Educational Resources Information Center
Sanborn, Mark
2011-01-01
Wireless sensor networks (WSNs) represent a class of miniaturized information systems designed to monitor physical environments. These smart monitoring systems form collaborative networks utilizing autonomous sensing, data-collection, and processing to provide real-time analytics of observed environments. As a fundamental research area in…
Exergy Analysis of Rocket Systems
NASA Technical Reports Server (NTRS)
Gilbert, Andrew; Mesmer, Bryan; Watson, Michael D.
2015-01-01
Exergy is defined as the useful work available from a system in a specified environment. Exergy analysis allows for comparison between different system designs, and allows for comparison of subsystem efficiencies within system designs. The proposed paper explores the relationship between the fundamental rocket equation and an exergy balance equation. A previously derived exergy equation related to rocket systems is investigated, and a higher fidelity analysis will be derived. The exergy assessments will enable informed, value-based decision making when comparing alternative rocket system designs, and will allow the most efficient configuration among candidate configurations to be determined.
VHDL simulation with access to transistor models
NASA Technical Reports Server (NTRS)
Gibson, J.
1991-01-01
Hardware description languages such as VHDL have evolved to aid in the design of systems with large numbers of elements and a wide range of electronic and logical abstractions. For high performance circuits, behavioral models may not be able to efficiently include enough detail to give designers confidence in a simulation's accuracy. One option is to provide a link between the VHDL environment and a transistor level simulation environment. The coupling of the Vantage Analysis Systems VHDL simulator and the NOVA simulator provides the combination of VHDL modeling and transistor modeling.
Knowledge acquisition and learning process description in context of e-learning
NASA Astrophysics Data System (ADS)
Kiselev, B. G.; Yakutenko, V. A.; Yuriev, M. A.
2017-01-01
This paper investigates the problem of design of e-learning and MOOC systems. It describes instructional design-based approaches to e-learning systems design: IMS Learning Design, MISA and TELOS. To solve this problem we present Knowledge Field of Educational Environment with Competence boundary conditions - instructional engineering method for self-learning systems design. It is based on the simplified TELOS approach and enables a user to create their individual learning path by choosing prerequisite and target competencies. The paper provides the ontology model for the described instructional engineering method, real life use cases and the classification of the presented model. Ontology model consists of 13 classes and 15 properties. Some of them are inherited from Knowledge Field of Educational Environment and some are new and describe competence boundary conditions and knowledge validation objects. Ontology model uses logical constraints and is described using OWL 2 standard. To give TELOS users better understanding of our approach we list mapping between TELOS and KFEEC.
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Moreau, Dennis R.
1987-01-01
The object-oriented design strategy as both a problem decomposition and system development paradigm has made impressive inroads into the various areas of the computing sciences. Substantial development productivity improvements have been demonstrated in areas ranging from artificial intelligence to user interface design. However, there has been very little progress in the formal characterization of these productivity improvements and in the identification of the underlying cognitive mechanisms. The development and validation of models and metrics of this sort require large amounts of systematically-gathered structural and productivity data. There has, however, been a notable lack of systematically-gathered information on these development environments. A large part of this problem is attributable to the lack of a systematic programming environment evaluation methodology that is appropriate to the evaluation of object-oriented systems.
An Integrated Way of Using a Tangible User Interface in a Classroom
ERIC Educational Resources Information Center
Cuendet, Sébastien; Dehler-Zufferey, Jessica; Ortoleva, Giulia; Dillenbourg, Pierre
2015-01-01
Despite many years of research in CSCL, computers are still scarcely used in classrooms today. One reason for this is that the constraints of the classroom environment are neglected by designers. In this contribution, we present a CSCL environment designed for a classroom usage from the start. The system, called TapaCarp, is based on a tangible…
vPELS: An E-Learning Social Environment for VLSI Design with Content Security Using DRM
ERIC Educational Resources Information Center
Dewan, Jahangir; Chowdhury, Morshed; Batten, Lynn
2014-01-01
This article provides a proposal for personal e-learning system (vPELS [where "v" stands for VLSI: very large scale integrated circuit])) architecture in the context of social network environment for VLSI Design. The main objective of vPELS is to develop individual skills on a specific subject--say, VLSI--and share resources with peers.…
QUICK - An interactive software environment for engineering design
NASA Technical Reports Server (NTRS)
Skinner, David L.
1989-01-01
QUICK, an interactive software environment for engineering design, provides a programmable FORTRAN-like calculator interface to a wide range of data structures as well as both built-in and user created functions. QUICK also provides direct access to the operating systems of eight different machine architectures. The evolution of QUICK and a brief overview of the current version are presented.
A Programming Language Environment for the Unassisted Learner.
ERIC Educational Resources Information Center
Thomas, P. G.; Ince, D. C.
1982-01-01
Describes the computing environment and command language for a new programing language called OUSBASIC which is designed to enable naive users to interact usefully, with little assistance, with a computer system. (Author/CHC)
Varela, Gervasio; Paz-Lopez, Alejandro; Becerra, Jose A.; Duro, Richard
2016-01-01
This paper addresses the problem of developing user interfaces for Ubiquitous Computing (UC) and Ambient Intelligence (AmI) systems. These kind of systems are expected to provide a natural user experience, considering interaction modalities adapted to the user abilities and preferences and using whatever interaction devices are present in the environment. These interaction devices are not necessarily known at design time. The task is quite complicated due to the variety of devices and technologies, and the diversity of scenarios, and it usually burdens the developer with the need to create many different UIs in order to consider the foreseeable user-environment combinations. Here, we propose an UI abstraction framework for UC and AmI systems that effectively improves the portability of those systems between different environments and for different users. It allows developers to design and implement a single UI capable of being deployed with different devices and modalities regardless the physical location. PMID:27399711
Event detection in an assisted living environment.
Stroiescu, Florin; Daly, Kieran; Kuris, Benjamin
2011-01-01
This paper presents the design of a wireless event detection and in building location awareness system. The systems architecture is based on using a body worn sensor to detect events such as falls where they occur in an assisted living environment. This process involves developing event detection algorithms and transmitting such events wirelessly to an in house network based on the 802.15.4 protocol. The network would then generate alerts both in the assisted living facility and remotely to an offsite monitoring facility. The focus of this paper is on the design of the system architecture and the compliance challenges in applying this technology.
Design of a Micro Cable Tunnel Inspection Robot
NASA Astrophysics Data System (ADS)
Song, Wei; Liu, Lei; Zhou, Xiaolong; Wang, Chengjiang
2016-11-01
As the ventilation system in cable tunnel is not perfect and the environment is closed, it is easy to accumulate toxic and harmful gas. It is a serious threat to the life safety of inspection staff. Therefore, a micro cable tunnel inspection robot is designed. The whole design plan mainly includes two parts: mechanical structure design and control system design. According to the functional requirements of the tunnel inspection robot, a wheel arm structure with crawler type is proposed. Some sensors are used to collect temperature, gas and image and transmit the information to the host computer in real time. The result shows the robot with crawler wheel arm structure has the advantages of small volume, quick action and high performance-price ratio. Besides, it has high obstacle crossing and avoidance ability and can adapt to a variety of complex cable tunnel environment.
Patients and their families weigh in on evidence-based hospital design.
Trochelman, Kathleen; Albert, Nancy; Spence, Jacqueline; Murray, Terri; Slifcak, Ellen
2012-02-01
In 2 landmark publications, the Institute of Medicine reported on significant deficiencies in our current health care system. In response, an area of research examining the role of the physical environment in influencing outcomes for patients and staff gained momentum. The concept of evidence-based design has evolved, and the development of structural guidelines for new hospital construction was instituted by the American Institute of Architects in 2006. To determine perceptions of patients and their families of evidence-based design features in a new heart center. Hospitalized patients and their families, most of whom were in intensive care and step-down units, were surveyed and data from the Hospital Consumer Assessment of Healthcare Providers and Systems were reviewed to determine perceptions of evidence-based design features incorporated into a new heart center and to assess patients' satisfaction with the environment. Results Responses were reviewed and categorized descriptively. Five general environment topics of focus emerged: privacy, space, noise, light, and overall atmosphere. Characteristics perceived as being dissatisfying and satisfying are discussed. Critical care nurses must be aware of the current need to recognize how much the physical environment influences care delivery and take steps to maximize patients' safety, satisfaction, and quality of care.
Preliminary base heating environments for a generalized ALS LO2/LH2 launch vehicle, appendix 1 and 2
NASA Technical Reports Server (NTRS)
Bender, Robert L.; Reardon, John E.
1989-01-01
A secondary objective of contract NAS8-39141 is to provide base heating assessments, as required, to support Advanced Launch System (ALS) preliminary launch vehicle and propulsion system design studies. The ALS propulsion systems integration working group meeting (No. 3) recently completed in San Diego, California, focused attention on the need for base heating environment determination to provide preliminary requirements for LO2/LH2 propulsion systems currently being considered for ALS. We were requested to provide these environments for a range of possible propellant mixture and nozzle area ratios. Base heating environments can only be determined as a function of altitude when the engine operating conditions and vehicle base region geometry (engine arrangement) are known. If time dependent environments are needed to assess thermal loads, a trajectory must also be provided. These parameters are not fixed at this time since the ALS configurations and propulsion operating conditions are varied and continue to be studied by Phase B contractors. Therefore, for this study, a generalized LO2/LH2 system was selected along with a vehicle configuration consisting of a seven-engine booster and a three-engine core. MSFC provided guidance for the selection. We also selected a limited number of body points on the booster and core vehicles and engines for the environment estimates. Environments at these locations are representative of maximum heating conditions in the base region and are provided as a function of altitude only. Guidelines and assumptions for this assessment, methodology for determining the environments, and preliminary results are provided in this technical note. Refinements in the environments will be provided as the ALS design matures.
NASA Technical Reports Server (NTRS)
Pearson, S. D.; Vaughan, W. W.; Batts, G. W.; Jasper, G. L.
1996-01-01
The terrestrial environment is an important forcing function in the design and development of the launch vehicle. The scope of the terrestrial environment includes the following phenomena: Winds; Atmospheric Thermodynamic Models and Properties; Thermal Radiation; U.S. and World Surface Environment Extremes; Humidity; Precipitation, Fog, and Icing; Cloud Characteristics and Cloud Cover Models; Atmospheric Electricity; Atmospheric Constituents; Vehicle Engine Exhaust and Toxic Chemical Release; Occurrences of Tornadoes and Hurricanes; Geological Hazards, and Sea States. One must remember that the flight profile of any launch vehicle is in the terrestrial environment. Terrestrial environment definitions are usually limited to information below 90 km. Thus, a launch vehicle's operations will always be influenced to some degree by the terrestrial environment with which it interacts. As a result, the definition of the terrestrial environment and its interpretation is one of the key launch vehicle design and development inputs. This definition is a significant role, for example, in the areas of structures, control systems, trajectory shaping (performance), aerodynamic heating and take off/landing capabilities. The launch vehicle's capabilities which result from the design, in turn, determines the constraints and flight opportunities for tests and operations.
Rotorcraft Conceptual Design Environment
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Sinsay, Jeffrey
2009-01-01
Requirements for a rotorcraft conceptual design environment are discussed, from the perspective of a government laboratory. Rotorcraft design work in a government laboratory must support research, by producing technology impact assessments and defining the context for research and development; and must support the acquisition process, including capability assessments and quantitative evaluation of designs, concepts, and alternatives. An information manager that will enable increased fidelity of analysis early in the design effort is described. This manager will be a framework to organize information that describes the aircraft, and enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described.
Rotorcraft Conceptual Design Environment
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Sinsay, Jeffrey D.
2010-01-01
Requirements for a rotorcraft conceptual design environment are discussed, from the perspective of a government laboratory. Rotorcraft design work in a government laboratory must support research, by producing technology impact assessments and defining the context for research and development; and must support the acquisition process, including capability assessments and quantitative evaluation of designs, concepts, and alternatives. An information manager that will enable increased fidelity of analysis early in the design effort is described. This manager will be a framework to organize information that describes the aircraft, and enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described.
Game engines and immersive displays
NASA Astrophysics Data System (ADS)
Chang, Benjamin; Destefano, Marc
2014-02-01
While virtual reality and digital games share many core technologies, the programming environments, toolkits, and workflows for developing games and VR environments are often distinct. VR toolkits designed for applications in visualization and simulation often have a different feature set or design philosophy than game engines, while popular game engines often lack support for VR hardware. Extending a game engine to support systems such as the CAVE gives developers a unified development environment and the ability to easily port projects, but involves challenges beyond just adding stereo 3D visuals. In this paper we outline the issues involved in adapting a game engine for use with an immersive display system including stereoscopy, tracking, and clustering, and present example implementation details using Unity3D. We discuss application development and workflow approaches including camera management, rendering synchronization, GUI design, and issues specific to Unity3D, and present examples of projects created for a multi-wall, clustered, stereoscopic display.
Verification of Ares I Liftoff Acoustic Environments via the Ares I Scale Model Acoustic Test
NASA Technical Reports Server (NTRS)
Counter, Douglas D.; Houston, Janice D.
2012-01-01
Launch environments, such as Liftoff Acoustic (LOA) and Ignition Overpressure (IOP), are important design factors for any vehicle and are dependent upon the design of both the vehicle and the ground systems. The NASA Constellation Program had several risks to the development of the Ares I vehicle linked to LOA which are used in the development of the vibro-acoustic environments. The risks included cost, schedule and technical impacts for component qualification due to high predicted vibro-acoustic environments. One solution is to mitigate the environment at the component level. However, where the environment is too severe to mitigate at the component level, reduction of the launch environments is required. The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the predicted Ares I launch environments and to determine the acoustic reduction for the LOA environment with an above deck water sound suppression system. The test article included a 5% scale Ares I vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments. The ASMAT results are compared to the Ares I LOA predictions and water suppression effectiveness results are presented.
Verification of Ares I Liftoff Acoustic Environments via the Ares Scale Model Acoustic Test
NASA Technical Reports Server (NTRS)
Counter, Douglas D.; Houston, Janice D.
2012-01-01
Launch environments, such as Liftoff Acoustic (LOA) and Ignition Overpressure (IOP), are important design factors for any vehicle and are dependent upon the design of both the vehicle and the ground systems. The NASA Constellation Program had several risks to the development of the Ares I vehicle linked to LOA which are used in the development of the vibro-acoustic environments. The risks included cost, schedule and technical impacts for component qualification due to high predicted vibro-acoustic environments. One solution is to mitigate the environment at the component level. However, where the environment is too severe to mitigate at the component level, reduction of the launch environments is required. The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the predicted Ares I launch environments and to determine the acoustic reduction for the LOA environment with an above deck water sound suppression system. The test article included a 5% scale Ares I vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments. The ASMAT results are compared to the Ares I LOA predictions and water suppression effectiveness results are presented.
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Miner, Paul S.; Koppen, Sandra V.
2008-01-01
This report describes the design of the test articles and monitoring systems developed to characterize the response of a fault-tolerant computer communication system when stressed beyond the theoretical limits for guaranteed correct performance. A high-intensity radiated electromagnetic field (HIRF) environment was selected as the means of injecting faults, as such environments are known to have the potential to cause arbitrary and coincident common-mode fault manifestations that can overwhelm redundancy management mechanisms. The monitors generate stimuli for the systems-under-test (SUTs) and collect data in real-time on the internal state and the response at the external interfaces. A real-time health assessment capability was developed to support the automation of the test. A detailed description of the nature and structure of the collected data is included. The goal of the report is to provide insight into the design and operation of these systems, and to serve as a reference document for use in post-test analyses.
NASA Technical Reports Server (NTRS)
Greenspan, Sol; Feblowitz, Mark
1992-01-01
ACME is an experimental environment for investigating new approaches to modeling and analysis of system requirements and designs. ACME is built on and extends object-oriented conceptual modeling techniques and knowledge representation and reasoning (KRR) tools. The most immediate intended use for ACME is to help represent, understand, and communicate system designs during the early stages of system planning and requirements engineering. While our research is ostensibly aimed at software systems in general, we are particularly motivated to make an impact in the telecommunications domain, especially in the area referred to as Intelligent Networks (IN's). IN systems contain the software to provide services to users of a telecommunications network (e.g., call processing services, information services, etc.) as well as the software that provides the internal infrastructure for providing the services (e.g., resource management, billing, etc.). The software includes not only systems developed by the network proprietors but also by a growing group of independent service software providers.
NASA Astrophysics Data System (ADS)
Makarov, M.; Shchanikov, S.; Trantina, N.
2017-01-01
We have conducted a research into the major, in terms of their future application, properties of nanoscale objects, based on modelling these objects as free-standing physical elements beyond the structure of an engineering system designed for their integration as well as a part of a system that operates under the influence of the external environment. For the empirical research suggested within the scope of this work, we have chosen a nanoscale electronic element intended to be used while designing information processing systems with the parallel architecture - a memristor. The target function of the research was to provide the maximum fault-tolerance index of a memristor-based system when affected by all possible impacts of the internal destabilizing factors and external environment. The research results have enabled us to receive and classify all the factors predetermining the fault-tolerance index of the hardware implementation of a computing system based on the nanoscale electronic element base.
Graphical user interface for a robotic workstation in a surgical environment.
Bielski, A; Lohmann, C P; Maier, M; Zapp, D; Nasseri, M A
2016-08-01
Surgery using a robotic system has proven to have significant potential but is still a highly challenging task for the surgeon. An eye surgery assistant has been developed to eliminate the problem of tremor caused by human motions endangering the outcome of ophthalmic surgery. In order to exploit the full potential of the robot and improve the workflow of the surgeon, providing the ability to change control parameters live in the system as well as the ability to connect additional ancillary systems is necessary. Additionally the surgeon should always be able to get an overview over the status of all systems with a quick glance. Therefore a workstation has been built. The contribution of this paper is the design and the implementation of an intuitive graphical user interface for this workstation. The interface has been designed with feedback from surgeons and technical staff in order to ensure its usability in a surgical environment. Furthermore, the system was designed with the intent of supporting additional systems with minimal additional effort.
Design of Composite Structures Using Knowledge-Based and Case Based Reasoning
NASA Technical Reports Server (NTRS)
Lambright, Jonathan Paul
1996-01-01
A method of using knowledge based and case based reasoning to assist designers during conceptual design tasks of composite structures was proposed. The cooperative use of heuristics, procedural knowledge, and previous similar design cases suggests a potential reduction in design cycle time and ultimately product lead time. The hypothesis of this work is that the design process of composite structures can be improved by using Case-Based Reasoning (CBR) and Knowledge-Based (KB) reasoning in the early design stages. The technique of using knowledge-based and case-based reasoning facilitates the gathering of disparate information into one location that is easily and readily available. The method suggests that the inclusion of downstream life-cycle issues into the conceptual design phase reduces potential of defective, and sub-optimal composite structures. Three industry experts were interviewed extensively. The experts provided design rules, previous design cases, and test problems. A Knowledge Based Reasoning system was developed using the CLIPS (C Language Interpretive Procedural System) environment and a Case Based Reasoning System was developed using the Design Memory Utility For Sharing Experiences (MUSE) xviii environment. A Design Characteristic State (DCS) was used to document the design specifications, constraints, and problem areas using attribute-value pair relationships. The DCS provided consistent design information between the knowledge base and case base. Results indicated that the use of knowledge based and case based reasoning provided a robust design environment for composite structures. The knowledge base provided design guidance from well defined rules and procedural knowledge. The case base provided suggestions on design and manufacturing techniques based on previous similar designs and warnings of potential problems and pitfalls. The case base complemented the knowledge base and extended the problem solving capability beyond the existence of limited well defined rules. The findings indicated that the technique is most effective when used as a design aid and not as a tool to totally automate the composites design process. Other areas of application and implications for future research are discussed.
Integrating labview into a distributed computing environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasemir, K. U.; Pieck, M.; Dalesio, L. R.
2001-01-01
Being easy to learn and well suited for a selfcontained desktop laboratory setup, many casual programmers prefer to use the National Instruments Lab-VIEW environment to develop their logic. An ActiveX interface is presented that allows integration into a plant-wide distributed environment based on the Experimental Physics and Industrial Control System (EPICS). This paper discusses the design decisions and provides performance information, especially considering requirements for the Spallation Neutron Source (SNS) diagnostics system.
Data management in an object-oriented distributed aircraft conceptual design environment
NASA Astrophysics Data System (ADS)
Lu, Zhijie
In the competitive global market place, aerospace companies are forced to deliver the right products to the right market, with the right cost, and at the right time. However, the rapid development of technologies and new business opportunities, such as mergers, acquisitions, supply chain management, etc., have dramatically increased the complexity of designing an aircraft. Therefore, the pressure to reduce design cycle time and cost is enormous. One way to solve such a dilemma is to develop and apply advanced engineering environments (AEEs), which are distributed collaborative virtual design environments linking researchers, technologists, designers, etc., together by incorporating application tools and advanced computational, communications, and networking facilities. Aircraft conceptual design, as the first design stage, provides major opportunity to compress design cycle time and is the cheapest place for making design changes. However, traditional aircraft conceptual design programs, which are monolithic programs, cannot provide satisfactory functionality to meet new design requirements due to the lack of domain flexibility and analysis scalability. Therefore, we are in need of the next generation aircraft conceptual design environment (NextADE). To build the NextADE, the framework and the data management problem are two major problems that need to be addressed at the forefront. Solving these two problems, particularly the data management problem, is the focus of this research. In this dissertation, in light of AEEs, a distributed object-oriented framework is firstly formulated and tested for the NextADE. In order to improve interoperability and simplify the integration of heterogeneous application tools, data management is one of the major problems that need to be tackled. To solve this problem, taking into account the characteristics of aircraft conceptual design data, a robust, extensible object-oriented data model is then proposed according to the distributed object-oriented framework. By overcoming the shortcomings of the traditional approach of modeling aircraft conceptual design data, this data model makes it possible to capture specific detailed information of aircraft conceptual design without sacrificing generality, which is one of the most desired features of a data model for aircraft conceptual design. Based upon this data model, a prototype of the data management system, which is one of the fundamental building blocks of the NextADE, is implemented utilizing the state of the art information technologies. Using a general-purpose integration software package to demonstrate the efficacy of the proposed framework and the data management system, the NextADE is initially implemented by integrating the prototype of the data management system with other building blocks of the design environment, such as disciplinary analyses programs and mission analyses programs. As experiments, two case studies are conducted in the integrated design environments. One is based upon a simplified conceptual design of a notional conventional aircraft; the other is a simplified conceptual design of an unconventional aircraft. As a result of the experiments, the proposed framework and the data management approach are shown to be feasible solutions to the research problems.
Virtual Collaborative Environments for System of Systems Engineering and Applications for ISAT
NASA Technical Reports Server (NTRS)
Dryer, David A.
2002-01-01
This paper describes an system of systems or metasystems approach and models developed to help prepare engineering organizations for distributed engineering environments. These changes in engineering enterprises include competition in increasingly global environments; new partnering opportunities caused by advances in information and communication technologies, and virtual collaboration issues associated with dispersed teams. To help address challenges and needs in this environment, a framework is proposed that can be customized and adapted for NASA to assist in improved engineering activities conducted in distributed, enhanced engineering environments. The approach is designed to prepare engineers for such distributed collaborative environments by learning and applying e-engineering methods and tools to a real-world engineering development scenario. The approach consists of two phases: an e-engineering basics phase and e-engineering application phase. The e-engineering basics phase addresses skills required for e-engineering. The e-engineering application phase applies these skills in a distributed collaborative environment to system development projects.
Hampicke, M; Schadow, B; Rossdeutscher, W; Fellbaum, K; Boenick, U
2002-11-01
Progress in microtechnology and radio transmission technology has enabled the development of highly reliable emergency-call systems. The present article describes systems that have been specially designed to improve the safety and independence of handicapped and elderly persons living at home. For such persons immediate help in an emergency situation is of crucial importance. The technical state of the art of emergency-call systems specially developed for use by the elderly, is briefly discussed, in particular the well-known radio emergency-call button, with the aid of which an alarm can be activated manually. This system, however, does not offer adequate safety in all emergency situations. Alternative or complementary systems designed to automatically trigger an alarm on the basis of the recording and evaluation of so-called vital parameters, are therefore proposed. In addition, in a smart-home environment with networked devices, further parameters--so-called environment parameters can be used. It is found that the identification of an emergency situation becomes more reliable as the number of parameters employed increases.
Physiological evaluation of men wearing three different toxicological protective systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, L.; Cadarette, B.S.; Sawka, M.N.
1989-08-01
This study examined the physiological responses of seven volunteers exercising in the heat while wearing three different toxicological protective systems. The Toxicological Agent Protective (TAP) suit has been available for use for more than 30 years while the other two protective systems are developmental efforts. The Self-Contained Toxicological Environmental Protection Outfit (STEPO) includes either a backpack-rebreather (with CO{sub 2} scrubber) and ice-cooling vest (STEPO-R), or a tether system which supplies breathing/cooling air inside the suit (STEPO-T). After the volunteers were heat acclimated, the three toxicological protection systems were evaluated utilizing a counter-balanced experimental design initially in a hot and thenmore » in a cool environment while subjects walked at 1.12 m/s, 0% grade for an attempted two hours. There was no statistical advantage of any one system in terms of exercise time in the cool environment. While evaporated sweating rate was greater for the STEPO-T in the cool environment compared to both STEPO-R and TAP. Development efforts to improve the STEPO system designs continue, and physiological evaluation of new developmental models is underway.« less
Management accounting for advanced technological environments.
Kaplan, R S
1989-08-25
Management accounting systems designed decades ago no longer provide timely, relevant information for companies in today's highly competitive environment. New operational control and performance measurement systems are recognizing the importance of direct measurement of quality, manufacturing lead times, flexibility, and customer responsiveness, as well as more accurate measures of the actual costs of consumed resources. Activity-based cost systems can assign the costs of indirect and support resources to the specific products and activities that benefit from these resources. Both operational control and activity-based systems represent new opportunities for improved managerial information in complex, technologically advanced environments.
NASA Technical Reports Server (NTRS)
Jacklin, S. A.; Leyland, J. A.; Warmbrodt, W.
1985-01-01
Modern control systems must typically perform real-time identification and control, as well as coordinate a host of other activities related to user interaction, online graphics, and file management. This paper discusses five global design considerations which are useful to integrate array processor, multimicroprocessor, and host computer system architectures into versatile, high-speed controllers. Such controllers are capable of very high control throughput, and can maintain constant interaction with the nonreal-time or user environment. As an application example, the architecture of a high-speed, closed-loop controller used to actively control helicopter vibration is briefly discussed. Although this system has been designed for use as the controller for real-time rotorcraft dynamics and control studies in a wind tunnel environment, the controller architecture can generally be applied to a wide range of automatic control applications.
Mars Lander/Rover vehicle development: An advanced space design project for USRA and NASA/OAST
NASA Technical Reports Server (NTRS)
1987-01-01
The accomplishments of the Utah State University (USU) Mars Lander/Rover (MLR) design class during the Winter Quarter are delineated and explained. Environment and trajectory, ground systems, balloon system, and payload system are described. Results from this effort will provide a valid and useful basis for further studies of Mars exploratory vehicles.
Pressure Safety: Advanced Live 11459
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, George
Many Los Alamos National Laboratory (LANL) operations use pressure equipment and systems. Failure to follow proper procedures when designing or operating pressure systems can result in injuries to personnel and damage to equipment and/or the environment. This manual presents an overview of the requirements and recommendations that address the safe design and operation of pressure systems at LANL.
IPAD: Integrated Programs for Aerospace-vehicle Design
NASA Technical Reports Server (NTRS)
Miller, R. E., Jr.
1985-01-01
Early work was performed to apply data base technology in support of the management of engineering data in the design and manufacturing environments. The principal objective of the IPAD project is to develop a computer software system for use in the design of aerospace vehicles. Two prototype systems are created for this purpose. Relational Information Manager (RIM) is a successful commercial product. The IPAD Information Processor (IPIP), a much more sophisticated system, is still under development.
Control Law Design in a Computational Aeroelasticity Environment
NASA Technical Reports Server (NTRS)
Newsom, Jerry R.; Robertshaw, Harry H.; Kapania, Rakesh K.
2003-01-01
A methodology for designing active control laws in a computational aeroelasticity environment is given. The methodology involves employing a systems identification technique to develop an explicit state-space model for control law design from the output of a computational aeroelasticity code. The particular computational aeroelasticity code employed in this paper solves the transonic small disturbance aerodynamic equation using a time-accurate, finite-difference scheme. Linear structural dynamics equations are integrated simultaneously with the computational fluid dynamics equations to determine the time responses of the structure. These structural responses are employed as the input to a modern systems identification technique that determines the Markov parameters of an "equivalent linear system". The Eigensystem Realization Algorithm is then employed to develop an explicit state-space model of the equivalent linear system. The Linear Quadratic Guassian control law design technique is employed to design a control law. The computational aeroelasticity code is modified to accept control laws and perform closed-loop simulations. Flutter control of a rectangular wing model is chosen to demonstrate the methodology. Various cases are used to illustrate the usefulness of the methodology as the nonlinearity of the aeroelastic system is increased through increased angle-of-attack changes.
NASA Technical Reports Server (NTRS)
Jensen, Ralph H.; Dever, Timothy P.
2006-01-01
Design of a flywheel module, designated the G2 module, is described. The G2 flywheel is a 60,000 RPM, 525 W-hr, 1 kW system designed for a laboratory environment; it will be used for component testing and system demonstrations, with the goal of applying flywheels to aerospace energy storage and integrated power and attitude control (IPACS) applications. G2 has a modular design, which allows for new motors, magnetic bearings, touchdown bearings, and rotors to be installed without a complete redesign of the system. This design process involves several engineering disciplines, and requirements are developed for the speed, energy storage, power level, and operating environment. The G2 rotor system consists of a multilayer carbon fiber rim with a titanium hub on which the other components mount, and rotordynamics analysis is conducted to ensure rigid and flexible rotor modes are controllable or outside of the operating speed range. Magnetic bearings are sized using 1-D magnetic circuit analysis and refined using 3-D finite element analysis. The G2 magnetic bearing system was designed by Texas A&M and has redundancy which allows derated operation after the loss of some components, and an existing liquid cooled two pole permanent magnet motor/generator is used. The touchdown bearing system is designed with a squeeze film damper system allowing spin down from full operating speed in case of a magnetic bearing failure. The G2 flywheel will enable module level demonstrations of component technology, and will be a key building block in system level attitude control and IPACS demonstrations.
Design considerations for implementation of large scale automatic meter reading systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mak, S.; Radford, D.
1995-01-01
This paper discusses the requirements imposed on the design of an AMR system expected to serve a large (> 1 million) customer base spread over a large geographical area. Issues such as system throughput response time, and multi-application expendability are addressed, all of which are intimately dependent on the underlying communication system infrastructure, the local geography, the customer base, and the regulatory environment. A methodology for analysis, assessment, and design of large systems is presented. For illustration, two communication systems -- a low power RF/PLC system and a power frequency carrier system -- are analyzed and discussed.
A dedicated database system for handling multi-level data in systems biology.
Pornputtapong, Natapol; Wanichthanarak, Kwanjeera; Nilsson, Avlant; Nookaew, Intawat; Nielsen, Jens
2014-01-01
Advances in high-throughput technologies have enabled extensive generation of multi-level omics data. These data are crucial for systems biology research, though they are complex, heterogeneous, highly dynamic, incomplete and distributed among public databases. This leads to difficulties in data accessibility and often results in errors when data are merged and integrated from varied resources. Therefore, integration and management of systems biological data remain very challenging. To overcome this, we designed and developed a dedicated database system that can serve and solve the vital issues in data management and hereby facilitate data integration, modeling and analysis in systems biology within a sole database. In addition, a yeast data repository was implemented as an integrated database environment which is operated by the database system. Two applications were implemented to demonstrate extensibility and utilization of the system. Both illustrate how the user can access the database via the web query function and implemented scripts. These scripts are specific for two sample cases: 1) Detecting the pheromone pathway in protein interaction networks; and 2) Finding metabolic reactions regulated by Snf1 kinase. In this study we present the design of database system which offers an extensible environment to efficiently capture the majority of biological entities and relations encountered in systems biology. Critical functions and control processes were designed and implemented to ensure consistent, efficient, secure and reliable transactions. The two sample cases on the yeast integrated data clearly demonstrate the value of a sole database environment for systems biology research.
Applying Multiagent Simulation to Planetary Surface Operations
NASA Technical Reports Server (NTRS)
Sierhuis, Maarten; Sims, Michael H.; Clancey, William J.; Lee, Pascal; Swanson, Keith (Technical Monitor)
2000-01-01
This paper describes a multiagent modeling and simulation approach for designing cooperative systems. Issues addressed include the use of multiagent modeling and simulation for the design of human and robotic operations, as a theory for human/robot cooperation on planetary surface missions. We describe a design process for cooperative systems centered around the Brahms modeling and simulation environment being developed at NASA Ames.
Jiang, Feng; Bai, Jingfeng; Chen, Yazhu
2005-08-01
Small-scale intellectualized medical instrument has attracted great attention in the field of biomedical engineering, and LabVIEW (Laboratory Virtual Instrument Engineering Workbench) provides a convenient environment for this application due to its inherent advantages. The principle and system structure of the hyperthermia instrument are presented. Type T thermocouples are employed as thermotransducers, whose amplifier consists of two stages, providing built-in ice point compensation and thus improving work stability over temperature. Control signals produced by specially designed circuit drive the programmable counter/timer 8254 chip to generate PWM (Pulse width modulation) wave, which is used as ultrasound radiation energy control signal. Subroutine design topics such as inner-tissue real time feedback temperature control algorithm, water temperature control in the ultrasound applicator are also described. In the cancer tissue temperature control subroutine, the authors exert new improvments to PID (Proportional Integral Differential) algorithm according to the specific demands of the system and achieve strict temperature control to the target tissue region. The system design and PID algorithm improvement have experimentally proved to be reliable and excellent, meeting the requirements of the hyperthermia system.
NASA Technical Reports Server (NTRS)
Szczur, Martha R.
1989-01-01
The Transportable Applications Environment Plus (TAE Plus), developed by NASA's Goddard Space Flight Center, is a portable User Interface Management System (UIMS), which provides an intuitive WYSIWYG WorkBench for prototyping and designing an application's user interface, integrated with tools for efficiently implementing the designed user interface and effective management of the user interface during an application's active domain. During the development of TAE Plus, many design and implementation decisions were based on the state-of-the-art within graphics workstations, windowing system and object-oriented programming languages. Some of the problems and issues experienced during implementation are discussed. A description of the next development steps planned for TAE Plus is also given.
Spacecraft attitude control using a smart control system
NASA Technical Reports Server (NTRS)
Buckley, Brian; Wheatcraft, Louis
1992-01-01
Traditionally, spacecraft attitude control has been implemented using control loops written in native code for a space hardened processor. The Naval Research Lab has taken this approach during the development of the Attitude Control Electronics (ACE) package. After the system was developed and delivered, NRL decided to explore alternate technologies to accomplish this same task more efficiently. The approach taken by NRL was to implement the ACE control loops using systems technologies. The purpose of this effort was to: (1) research capabilities required of an expert system in processing a classic closed-loop control algorithm; (2) research the development environment required to design and test an embedded expert systems environment; (3) research the complexity of design and development of expert systems versus a conventional approach; and (4) test the resulting systems against the flight acceptance test software for both response and accuracy. Two expert systems were selected to implement the control loops. Criteria used for the selection of the expert systems included that they had to run in both embedded systems and ground based environments. Using two different expert systems allowed a comparison of the real-time capabilities, inferencing capabilities, and the ground-based development environment. The two expert systems chosen for the evaluation were Spacecraft Command Language (SCL), and NEXTPERT Object. SCL is a smart control system produced for the NRL by Interface and Control Systems (ICS). SCL was developed to be used for real-time command, control, and monitoring of a new generation of spacecraft. NEXPERT Object is a commercially available product developed by Neuron Data. Results of the effort were evaluated using the ACE test bed. The ACE test bed had been developed and used to test the original flight hardware and software using simulators and flight-like interfaces. The test bed was used for testing the expert systems in a 'near-flight' environment. The technical approach, the system architecture, the development environments, knowledge base development, and results of this effort are detailed.
PISCES: An environment for parallel scientific computation
NASA Technical Reports Server (NTRS)
Pratt, T. W.
1985-01-01
The parallel implementation of scientific computing environment (PISCES) is a project to provide high-level programming environments for parallel MIMD computers. Pisces 1, the first of these environments, is a FORTRAN 77 based environment which runs under the UNIX operating system. The Pisces 1 user programs in Pisces FORTRAN, an extension of FORTRAN 77 for parallel processing. The major emphasis in the Pisces 1 design is in providing a carefully specified virtual machine that defines the run-time environment within which Pisces FORTRAN programs are executed. Each implementation then provides the same virtual machine, regardless of differences in the underlying architecture. The design is intended to be portable to a variety of architectures. Currently Pisces 1 is implemented on a network of Apollo workstations and on a DEC VAX uniprocessor via simulation of the task level parallelism. An implementation for the Flexible Computing Corp. FLEX/32 is under construction. An introduction to the Pisces 1 virtual computer and the FORTRAN 77 extensions is presented. An example of an algorithm for the iterative solution of a system of equations is given. The most notable features of the design are the provision for several granularities of parallelism in programs and the provision of a window mechanism for distributed access to large arrays of data.
Measuring the Internal Environment of Solid Rocket Motors During Ignition
NASA Technical Reports Server (NTRS)
Weisenberg, Brent; Smith, Doug; Speas, Kyle; Corliss, Adam
2003-01-01
A new instrumentation system has been developed to measure the internal environment of solid rocket test motors during motor ignition. The system leverages conventional, analog gages with custom designed, electronics modules to provide safe, accurate, high speed data acquisition capability. To date, the instrumentation system has been demonstrated in a laboratory environment and on subscale static fire test motors ranging in size from 5-inches to 24-inches in diameter. Ultimately, this system is intended to be installed on a full-scale Reusable Solid Rocket Motor. This paper explains the need for the data, the components and capabilities of the system, and the test results.
2017-05-05
The Community Preventive Services Task Force recently posted new information on its website: "Physical Activity: Built Environment Approaches Combining Transportation System Interventions with Land Use and Environmental Design." This information is available at https://www.thecommunityguide.org/findings/physical-activity-built-environment-approaches.
Towards a behavioral-matching based compilation of synthetic biology functions.
Basso-Blandin, Adrien; Delaplace, Franck
2015-09-01
The field of synthetic biology is looking forward engineering framework for safely designing reliable de-novo biological functions. In this undertaking, Computer-Aided-Design (CAD) environments should play a central role for facilitating the design. Although, CAD environment is widely used to engineer artificial systems the application in synthetic biology is still in its infancy. In this article we address the problem of the design of a high level language which at the core of CAD environment. More specifically the Gubs (Genomic Unified Behavioural Specification) language is a specification language used to describe the observations of the expected behaviour. The compiler appropriately selects components such that the observation of the synthetic biological function resulting to their assembly complies to the programmed behaviour.
Implementation of and Ada real-time executive: A case study
NASA Technical Reports Server (NTRS)
Laird, James D.; Burton, Bruce A.; Koppes, Mary R.
1986-01-01
Current Ada language implementations and runtime environments are immature, unproven and are a key risk area for real-time embedded computer system (ECS). A test-case environment is provided in which the concerns of the real-time, ECS community are addressed. A priority driven executive is selected to be implemented in the Ada programming language. The model selected is representative of real-time executives tailored for embedded systems used missile, spacecraft, and avionics applications. An Ada-based design methodology is utilized, and two designs are considered. The first of these designs requires the use of vendor supplied runtime and tasking support. An alternative high-level design is also considered for an implementation requiring no vendor supplied runtime or tasking support. The former approach is carried through to implementation.
Simple Thermal Environment Model (STEM) User's Guide
NASA Technical Reports Server (NTRS)
Justus, C.G.; Batts, G. W.; Anderson, B. J.; James, B. F.
2001-01-01
This report presents a Simple Thermal Environment Model (STEM) for determining appropriate engineering design values to specify the thermal environment of Earth-orbiting satellites. The thermal environment of a satellite, consists of three components: (1) direct solar radiation, (2) Earth-atmosphere reflected shortwave radiation, as characterized by Earth's albedo, and (3) Earth-atmosphere-emitted outgoing longwave radiation (OLR). This report, together with a companion "guidelines" report provides methodology and guidelines for selecting "design points" for thermal environment parameters for satellites and spacecraft systems. The methods and models reported here are outgrowths of Earth Radiation Budget Experiment (ERBE) satellite data analysis and thermal environment specifications discussed by Anderson and Smith (1994). In large part, this report is intended to update (and supersede) those results.
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.
1993-01-01
The low gravity environment provided by space flight has afforded the science community a unique area for the study of fundamental and technological sciences. However, the dynamic environment observed on space shuttle flights and predicted for Space Station Freedom has complicated the analysis of prior 'microgravity' experiments and prompted concern for the viability of proposed space experiments requiring long term, low gravity environments. Thus, isolation systems capable of providing significant improvements to this random environment have been developed. This dissertation deals with the design constraints imposed by acceleration sensitive, microgravity experiment payloads in the unique environment of space. A theoretical background for the inertial feedback and feedforward isolation of a payload was developed giving the basis for two experimental active inertial isolation systems developed for the demonstration of these advanced active isolation techniques. A prototype six degree of freedom digital active isolation system was designed and developed for the ground based testing of an actively isolated payload in three horizontal degrees of freedom. A second functionally equivalent system was built for the multi-dimensional testing of an active inertial isolation system in a reduced gravity environment during low gravity aircraft trajectories. These multi-input multi-output control systems are discussed in detail with estimates on acceleration noise floor performance as well as the actual performance acceleration data. The attenuation performance is also given for both systems demonstrating the advantages between inertial and non-inertial control of a payload for both the ground base environment and the low gravity aircraft acceleration environment. A future goal for this area of research is to validate the technical approaches developed to the 0.01 Hz regime by demonstrating a functional active inertial feedforward/feedback isolation system during orbital flight. A NASA IN-STEP flight experiment has been proposed to accomplish this goal, and the expected selection for the IN-STEP program has been set for Jul. of 1993.
Radiation Hardness Assurance for Space Systems
NASA Technical Reports Server (NTRS)
Poivey, Christian; Day, John H. (Technical Monitor)
2002-01-01
The space radiation environment can lead to extremely harsh operating conditions for on-board electronic box and systems. The characteristics of the radiation environment are highly dependent on the type of mission (date, duration and orbit). Radiation accelerates the aging of the electronic parts and material and can lead to a degradation of electrical performance; it can also create transient phenomena on parts. Such damage at the part level can induce damage or functional failure at electronic box, subsystem, and system levels. A rigorous methodology is needed to ensure that the radiation environment does not compromise the functionality and performance of the electronics during the system life. This methodology is called hardness assurance. It consists of those activities undertaken to ensure that the electronic piece parts placed in the space system perform to their design specifications after exposure to the space environment. It deals with system requirements, environmental definitions, part selection, part testing, shielding and radiation tolerant design. All these elements should play together in order to produce a system tolerant to.the radiation environment. An overview of the different steps of a space system hardness assurance program is given in section 2. In order to define the mission radiation specifications and compare these requirements to radiation test data, a detailed knowledge of the space environment and the corresponding electronic device failure mechanisms is required. The presentation by J. Mazur deals with the Earth space radiation environment as well as the internal environment of a spacecraft. The presentation by J. Schwank deals with ionization effects, and the presentation by T. Weatherford deals with Single particle Event Phenomena (SEP) in semiconductor devices and microcircuits. These three presentations provide more detailed background to complement the sections 3 and 4. Part selection and categorization are discussed in section 5. Section 6 presents the organization of the hardness assurance within a project. Section 7 discusses emerging radiation hardness assurance issues.
Integrating automated structured analysis and design with Ada programming support environments
NASA Technical Reports Server (NTRS)
Hecht, Alan; Simmons, Andy
1986-01-01
Ada Programming Support Environments (APSE) include many powerful tools that address the implementation of Ada code. These tools do not address the entire software development process. Structured analysis is a methodology that addresses the creation of complete and accurate system specifications. Structured design takes a specification and derives a plan to decompose the system subcomponents, and provides heuristics to optimize the software design to minimize errors and maintenance. It can also produce the creation of useable modules. Studies have shown that most software errors result from poor system specifications, and that these errors also become more expensive to fix as the development process continues. Structured analysis and design help to uncover error in the early stages of development. The APSE tools help to insure that the code produced is correct, and aid in finding obscure coding errors. However, they do not have the capability to detect errors in specifications or to detect poor designs. An automated system for structured analysis and design TEAMWORK, which can be integrated with an APSE to support software systems development from specification through implementation is described. These tools completement each other to help developers improve quality and productivity, as well as to reduce development and maintenance costs. Complete system documentation and reusable code also resultss from the use of these tools. Integrating an APSE with automated tools for structured analysis and design provide capabilities and advantages beyond those realized with any of these systems used by themselves.
NASA Technical Reports Server (NTRS)
Rauw, Marc O.
1993-01-01
The design of advanced Automatic Aircraft Control Systems (AACS's) can be improved upon considerably if the designer can access all models and tools required for control system design and analysis through a graphical user interface, from within one software environment. This MSc-thesis presents the first step in the development of such an environment, which is currently being done at the Section for Stability and Control of Delft University of Technology, Faculty of Aerospace Engineering. The environment is implemented within the commercially available software package MATLAB/SIMULINK. The report consists of two parts. Part 1 gives a detailed description of the AACS design environment. The heart of this environment is formed by the SIMULINK implementation of a nonlinear aircraft model in block-diagram format. The model has been worked out for the old laboratory aircraft of the Faculty, the DeHavilland DHC-2 'Beaver', but due to its modular structure, it can easily be adapted for other aircraft. Part 1 also describes MATLAB programs which can be applied for finding steady-state trimmed-flight conditions and for linearization of the aircraft model, and it shows how the built-in simulation routines of SIMULINK have been used for open-loop analysis of the aircraft dynamics. Apart from the implementation of the models and tools, a thorough treatment of the theoretical backgrounds is presented. Part 2 of this report presents a part of an autopilot design process for the 'Beaver' aircraft, which clearly demonstrates the power and flexibility of the AACS design environment from part 1. Evaluations of all longitudinal and lateral control laws by means of nonlinear simulations are treated in detail. A floppy disk containing all relevant MATLAB programs and SIMULINK models is provided as a supplement.
Adaptation of Control Center Software to Commerical Real-Time Display Applications
NASA Technical Reports Server (NTRS)
Collier, Mark D.
1994-01-01
NASA-Marshall Space Flight Center (MSFC) is currently developing an enhanced Huntsville Operation Support Center (HOSC) system designed to support multiple spacecraft missions. The Enhanced HOSC is based upon a distributed computing architecture using graphic workstation hardware and industry standard software including POSIX, X Windows, Motif, TCP/IP, and ANSI C. Southwest Research Institute (SwRI) is currently developing a prototype of the Display Services application for this system. Display Services provides the capability to generate and operate real-time data-driven graphic displays. This prototype is a highly functional application designed to allow system end users to easily generate complex data-driven displays. The prototype is easy to use, flexible, highly functional, and portable. Although this prototype is being developed for NASA-MSFC, the general-purpose real-time display capability can be reused in similar mission and process control environments. This includes any environment depending heavily upon real-time data acquisition and display. Reuse of the prototype will be a straight-forward transition because the prototype is portable, is designed to add new display types easily, has a user interface which is separated from the application code, and is very independent of the specifics of NASA-MSFC's system. Reuse of this prototype in other environments is a excellent alternative to creation of a new custom application, or for environments with a large number of users, to purchasing a COTS package.
Branton, Scott; Lile, Lawrence
2011-01-01
By incorporating even the basic elements of a more environmentally friendly, "green"construction and design in an MRI setting can create a safer, more pleasant space for the patients and staff, better images, and operational cost savings. Using building systems that have reduced amounts of steel can decrease construction time, increase thermal insulation, and reduce the weight of the structure meaning less energy required to transport and install. HVAC systems and lighting design can also play a major role in creating a "green"MRI suite. LEED certification places a focus on quality of the built environment, life cycle cost, and a productive indoor environment, as well as impact on the exterior environment. An LEED certified building considers costs and benefits for the lifetime of the building.
Research on Design of MUH Attitude Stability Augmentation Control System
NASA Astrophysics Data System (ADS)
Fan, Shigang
2017-09-01
Attitude stability augmentation control system with a lower cost need to be designed so that MUH (Mini Unmanned Helicopter) can adapt to different types of geographic environment and fly steadily although the weather may be bad. Attitude feedback was calculated mainly by filtering estimation within attitude acquisition module in this system. Stability augmentation can be improved mainly by PI. This paper will depict running principle and designing process of MUH attitude stability augmentation control system and algorithm that is considered as an important part in this system.
Cyber Threat Assessment of Uplink and Commanding System for Mission Operation
NASA Technical Reports Server (NTRS)
Ko, Adans Y.; Tan, Kymie M. C.; Cilloniz-Bicchi, Ferner; Faris, Grant
2014-01-01
Most of today's Mission Operations Systems (MOS) rely on Ground Data System (GDS) segment to mitigate cyber security risks. Unfortunately, IT security design is done separately from the design of GDS' mission operational capabilities. This incoherent practice leaves many security vulnerabilities in the system without any notice. This paper describes a new way to system engineering MOS, to include cyber threat risk assessments throughout the MOS development cycle, without this, it is impossible to design a dependable and reliable MOS to meet today's rapid changing cyber threat environment.
Remote Systems Design & Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ
2009-08-28
The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.
Engineering for Autonomous Seismic Stations at the IRIS PASSCAL Instrument Center
NASA Astrophysics Data System (ADS)
Anderson, K. R.; Carpenter, P.; Beaudoin, B. C.; Parker, T.; Hebert, J.; Childs, D.; Chung, P.; Reusch, A. M.
2015-12-01
The NSF funded Incorporated Research Institutions for Seismology (IRIS) through New Mexico Tech operates the PASSCAL Instrument Center (PIC) in Socorro New Mexico. The engineering effort at the PIC seeks to optimize seismic station operations for all portable experiments, include those in extremely remote and harsh polar environments. Recent advances have resulted in improved station design, allowing improved operational efficiencies, data quality return and reduction in station logistics associated with installation, maintenance and decommissioning of stations. These include: Battery and power system designs. Incorporating primary Lithium Thionyl Chloride (LTC) technology with rechargeable Lithium Iron Phosphate (LiFePO4) batteries allows systems to operate in areas with long-term solar autonomy (high latitudes). Development includes charge controller systems to switch between primary and secondary technologies efficiently. Enclosures: Engineered solutions to efficiently manage waste heat, maintain operational environment and provide light-weight and durable housing for seismic instrumentation. Communications: In collaboration with Xeos Technologies Inc., we deliver Iridium-based SOH/Command and Control telemetry as well as full bandwidth seismic data communications in high latitude environments at low power requirements. Smaller-lighter-instrumentation: Through the GEOICE MRI, we are working with Nanometrics on next generation "all-in-one" seismic systems that can be deployed in polar environments - easing logistics, minimizing installation time and improving data quality return for these expensive deployments. All autonomous station designs are openly and freely available at the IRIS PASSCAL webpage (www.passcal.nmt.edu/polar/design-drawings). More information on GEOICE and data quality from various seismometer emplacements will be presented in other posters at this AGU meeting.
Automated design of spacecraft systems power subsystems
NASA Technical Reports Server (NTRS)
Terrile, Richard J.; Kordon, Mark; Mandutianu, Dan; Salcedo, Jose; Wood, Eric; Hashemi, Mona
2006-01-01
This paper discusses the application of evolutionary computing to a dynamic space vehicle power subsystem resource and performance simulation in a parallel processing environment. Our objective is to demonstrate the feasibility, application and advantage of using evolutionary computation techniques for the early design search and optimization of space systems.
System specification for the reusable reentry satellite
NASA Technical Reports Server (NTRS)
1991-01-01
The RRS design shall provide a relatively inexpensive method of access to micro and fractional gravity space environments for an extended period of time, with eventual intact recovery on the surface of the Earth. This specification establishes the performance, design, development, and test requirements for the Reusable Reentry Satellite (RRS) system.
Constructing an Affective Tutoring System for Designing Course Learning and Evaluation
ERIC Educational Resources Information Center
Wang, Cheng-Hung; Lin, Hao-Chiang Koong
2018-01-01
Computers and the Internet are indispensable in modern life. Increasingly useful digital environments and technological developments have reshaped models of knowledge acquisition. Studies on the development of online learning have yielded valuable insights. In the design of online teaching systems that can replicate face-to-face teaching,…
A Virtual Mission Operations Center: Collaborative Environment
NASA Technical Reports Server (NTRS)
Medina, Barbara; Bussman, Marie; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
The Virtual Mission Operations Center - Collaborative Environment (VMOC-CE) intent is to have a central access point for all the resources used in a collaborative mission operations environment to assist mission operators in communicating on-site and off-site in the investigation and resolution of anomalies. It is a framework that as a minimum incorporates online chat, realtime file sharing and remote application sharing components in one central location. The use of a collaborative environment in mission operations opens up the possibilities for a central framework for other project members to access and interact with mission operations staff remotely. The goal of the Virtual Mission Operations Center (VMOC) Project is to identify, develop, and infuse technology to enable mission control by on-call personnel in geographically dispersed locations. In order to achieve this goal, the following capabilities are needed: Autonomous mission control systems Automated systems to contact on-call personnel Synthesis and presentation of mission control status and history information Desktop tools for data and situation analysis Secure mechanism for remote collaboration commanding Collaborative environment for remote cooperative work The VMOC-CE is a collaborative environment that facilitates remote cooperative work. It is an application instance of the Virtual System Design Environment (VSDE), developed by NASA Goddard Space Flight Center's (GSFC) Systems Engineering Services & Advanced Concepts (SESAC) Branch. The VSDE is a web-based portal that includes a knowledge repository and collaborative environment to serve science and engineering teams in product development. It is a "one stop shop" for product design, providing users real-time access to product development data, engineering and management tools, and relevant design specifications and resources through the Internet. The initial focus of the VSDE has been to serve teams working in the early portion of the system/product lifecycle - concept development, proposal preparation, and formulation. The VMOC-CE expands the application of the VSDE into the operations portion of the system lifecycle. It will enable meaningful and real-time collaboration regardless of the geographical distribution of project team members. Team members will be able to interact in satellite operations, specifically for resolving anomalies, through access to a desktop computer and the Internet. Mission Operations Management will be able to participate and monitor up to the minute status of anomalies or other mission operations issues. In this paper we present the VMOC-CE project, system capabilities, and technologies.
New design environment for defect detection in web inspection systems
NASA Astrophysics Data System (ADS)
Hajimowlana, S. Hossain; Muscedere, Roberto; Jullien, Graham A.; Roberts, James W.
1997-09-01
One of the aims of industrial machine vision is to develop computer and electronic systems destined to replace human vision in the process of quality control of industrial production. In this paper we discuss the development of a new design environment developed for real-time defect detection using reconfigurable FPGA and DSP processor mounted inside a DALSA programmable CCD camera. The FPGA is directly connected to the video data-stream and outputs data to a low bandwidth output bus. The system is targeted for web inspection but has the potential for broader application areas. We describe and show test results of the prototype system board, mounted inside a DALSA camera and discuss some of the algorithms currently simulated and implemented for web inspection applications.
The design and implementation of photoacoustic based laser warning receiver for harsh environments
NASA Astrophysics Data System (ADS)
El-Sherif, Ashraf F.; Ayoub, H. S.; El-Sharkawy, Yasser H.; Gomaa, Walid; Hassan, H. H.
2018-01-01
This paper discusses the implementation of new type of laser warning receiver (LWR) system, based on the detection of photoacoustic signals, induced by high power infrared laser designators pulses on target's surfaces. This system appends conventional optoelectronic based LWR to decrease the false alarm rate (FAR) in harsh environments, where ambient conditions are expected to obstruct optical LWR. To improve the sensitivity of the photoacoustic based LWR system, some metallic and polymeric target shielding materials were studied, in order to cover a friendly civil structure, vehicle or a maritime entity with a low cost large area acoustic detector array shield. A thermographic investigation of target surface material- laser reaction, signal processing and system configuration and functional analysis are also presented.
NASA Technical Reports Server (NTRS)
Altino, Karen M.; Burns, K. Lee; Barbre, Robert E., Jr.; Leahy, Frank B.
2014-01-01
The National Aeronautics and Space Administration (NASA) is developing new capabilities for human and scientific exploration beyond Earth orbit. Natural environments information is an important asset for NASA's development of the next generation space transportation system as part of the Exploration Systems Development (ESD) Programs, which includes the Space Launch System (SLS) and Multi-Purpose Crew Vehicle (MPCV) Programs. Natural terrestrial environment conditions - such as wind, lightning and sea states - can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing to landing and recovery operations, including all potential abort scenarios. Space vehicles are particularly sensitive to these environments during the launch/ascent and the entry/landing phases of mission operations. The Marshall Space Flight Center (MSFC) Natural Environments Branch provides engineering design support for NASA space vehicle projects and programs by providing design engineers and mission planners with natural environments definitions as well as performing custom analyses to help characterize the impacts the natural environment may have on vehicle performance. One such analysis involves assessing the impact of natural environments to operational availability. Climatological time series of operational surface weather observations are used to calculate probabilities of meeting/exceeding various sets of hypothetical vehicle-specific parametric constraint thresholds. Outputs are tabulated by month and hour of day to show both seasonal and diurnal variation. This paper will discuss how climate analyses are performed by the MSFC Natural Environments Branch to support the ESD Launch Availability (LA) Technical Performance Measure (TPM), the SLS Launch Availability due to Natural Environments TPM, and several MPCV (Orion) launch and landing availability analyses - including the 2014 Orion Exploration Flight Test 1 (EFT-1) mission.
ERIC Educational Resources Information Center
Redondo, Miguel A.; Bravo, Crescencio; Ortega, Manuel; Verdejo, M. Felisa
2007-01-01
Experimental learning environments based on simulation usually require monitoring and adaptation to the actions the users carry out. Some systems provide this functionality, but they do so in a way which is static or cannot be applied to problem solving tasks. In response to this problem, we propose a method based on the use of intermediate…
NASA Technical Reports Server (NTRS)
Radovcich, N. A.
1984-01-01
The design experience associated with a benchmark aeroelastic design of an out of production transport aircraft is discussed. Current work being performed on a high aspect ratio wing design is reported. The Preliminary Aeroelastic Design of Structures (PADS) system is briefly summarized and some operational aspects of generating the design in an automated aeroelastic design environment are discussed.
Automation of closed environments in space for human comfort and safety
NASA Technical Reports Server (NTRS)
Cogley, Allen C.; Tucker, Nathan P.
1992-01-01
For prolonged missions into space and colonization outside the Earth's atmosphere, development of Environmental Control and Life Support Systems (ECLSS) are essential to provide astronauts with habitable environments. The Kansas State University Advanced Design Team have researched and designed a control system for an ECLSS like that on Space Station Freedom. The following milestones have been accomplished: (1) completed computer simulation of the CO2 Removal Assembly; (2) created a set of rules for the expert control system of the CO2 Removal Assembly; (3) created a classical controls system for the CO2 Removal Assembly; (4) established a means of communication between the mathematical model and the two controls systems; and (5) analyzed the dynamic response of the simulation and compared the two methods of control.
ToonTalk(TM)--An Animated Programming Environment for Children.
ERIC Educational Resources Information Center
Kahn, Ken
This paper describes ToonTalk, a general-purpose concurrent programming system in which the source code is animated and the programming environment is a video game. The design objectives of ToonTalk were to create a self-teaching programming system for children that was also a very powerful and flexible programming tool. A keyboard can be used for…
NASA Technical Reports Server (NTRS)
Calhoun, Philip C.; Hampton, R. David
2004-01-01
The acceleration environment on the International Space Station (ISS) exceeds the requirements of many microgravity experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) has been built by the NASA Marshall Space Flight Center to attenuate the nominal acceleration environment and provide some isolation for microgravity science experiments. The g-LIMIT uses Lorentz (voice-coil) magnetic actuators to isolate a platform, for mounting science payloads, from the nominal acceleration environment. The system utilizes payload-acceleration, relative-position, and relative-orientation measurements in a feedback controller to accomplish the vibration isolation task. The controller provides current commands to six magnetic actuators, producing the required experiment isolation from the ISS acceleration environment. The present work documents the development of a candidate control law to meet the acceleration attenuation requirements for the g-LIMIT experiment platform. The controller design is developed using linear optimal control techniques for frequency-weighted H2 norms. Comparison of performance and robustness to plant uncertainty for this control design approach is included in the discussion. System performance is demonstrated in the presence of plant modeling error.
Overview of the LINCS architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, J.G.; Watson, R.W.
1982-01-13
Computing at the Lawrence Livermore National Laboratory (LLNL) has evolved over the past 15 years with a computer network based resource sharing environment. The increasing use of low cost and high performance micro, mini and midi computers and commercially available local networking systems will accelerate this trend. Further, even the large scale computer systems, on which much of the LLNL scientific computing depends, are evolving into multiprocessor systems. It is our belief that the most cost effective use of this environment will depend on the development of application systems structured into cooperating concurrent program modules (processes) distributed appropriately over differentmore » nodes of the environment. A node is defined as one or more processors with a local (shared) high speed memory. Given the latter view, the environment can be characterized as consisting of: multiple nodes communicating over noisy channels with arbitrary delays and throughput, heterogenous base resources and information encodings, no single administration controlling all resources, distributed system state, and no uniform time base. The system design problem is - how to turn the heterogeneous base hardware/firmware/software resources of this environment into a coherent set of resources that facilitate development of cost effective, reliable, and human engineered applications. We believe the answer lies in developing a layered, communication oriented distributed system architecture; layered and modular to support ease of understanding, reconfiguration, extensibility, and hiding of implementation or nonessential local details; communication oriented because that is a central feature of the environment. The Livermore Interactive Network Communication System (LINCS) is a hierarchical architecture designed to meet the above needs. While having characteristics in common with other architectures, it differs in several respects.« less
The development of a collaborative virtual environment for finite element simulation
NASA Astrophysics Data System (ADS)
Abdul-Jalil, Mohamad Kasim
Communication between geographically distributed designers has been a major hurdle in traditional engineering design. Conventional methods of communication, such as video conferencing, telephone, and email, are less efficient especially when dealing with complex design models. Complex shapes, intricate features and hidden parts are often difficult to describe verbally or even using traditional 2-D or 3-D visual representations. Virtual Reality (VR) and Internet technologies have provided a substantial potential to bridge the present communication barrier. VR technology allows designers to immerse themselves in a virtual environment to view and manipulate this model just as in real-life. Fast Internet connectivity has enabled fast data transfer between remote locations. Although various collaborative virtual environment (CVE) systems have been developed in the past decade, they are limited to high-end technology that is not accessible to typical designers. The objective of this dissertation is to discover and develop a new approach to increase the efficiency of the design process, particularly for large-scale applications wherein participants are geographically distributed. A multi-platform and easily accessible collaborative virtual environment (CVRoom), is developed to accomplish the stated research objective. Geographically dispersed designers can meet in a single shared virtual environment to discuss issues pertaining to the engineering design process and to make trade-off decisions more quickly than before, thereby speeding the entire process. This 'faster' design process will be achieved through the development of capabilities to better enable the multidisciplinary and modeling the trade-off decisions that are so critical before launching into a formal detailed design. The features of the environment developed as a result of this research include the ability to view design models, use voice interaction, and to link engineering analysis modules (such as Finite Element Analysis module, such as is demonstrated in this work). One of the major issues in developing a CVE system for engineering design purposes is to obtain any pertinent simulation results in real-time. This is critical so that the designers can make decisions based on these results quickly. For example, in a finite element analysis, if a design model is changed or perturbed, the analysis results must be obtained in real-time or near real-time to make the virtual meeting environment realistic. In this research, the finite difference-based Design Sensitivity Analysis (DSA) approach is employed to approximate structural responses (i.e. stress, displacement, etc), so as to demonstrate the applicability of CVRoom for engineering design trade-offs. This DSA approach provides for fast approximation and is well-suited for the virtual meeting environment where fast response time is required. The DSA-based approach is tested on several example test problems to show its applicability and limitations. This dissertation demonstrates that an increase in efficiency and reduction of time required for a complex design processing can be accomplished using the approach developed in this dissertation research. Several implementations of CVRoom by students working on common design tasks were investigated. All participants confirmed the preference of using the collaborative virtual environment developed in this dissertation work (CVRoom) over other modes of interactions. It is proposed here that CVRoom is representative of the type of collaborative virtual environment that will be used by most designers in the future to reduce the time required in a design cycle and thereby reduce the associated cost.
Designing Communication and Learning Environments.
ERIC Educational Resources Information Center
Gayeski, Diane M., Ed.
Designing and remodeling educational facilities are becoming more complex with options that include computer-based collaboration, classrooms with multimedia podiums, conference centers, and workplaces with desktop communication systems. This book provides a collection of articles that address educational facility design categorized in the…
Basic avionics module design for general aviation aircraft
NASA Technical Reports Server (NTRS)
Smyth, R. K.; Smyth, D. E.
1978-01-01
The design of an advanced digital avionics system (basic avionics module) for general aviation aircraft operated with a single pilot under IFR conditions is described. The microprocessor based system provided all avionic functions, including flight management, navigation, and lateral flight control. The mode selection was interactive with the pilot. The system used a navigation map data base to provide operation in the current and planned air traffic control environment. The system design included software design listings for some of the required modules. The distributed microcomputer uses the IEEE 488 bus for interconnecting the microcomputer and sensors.
Control system design and analysis using the INteractive Controls Analysis (INCA) program
NASA Technical Reports Server (NTRS)
Bauer, Frank H.; Downing, John P.
1987-01-01
The INteractive Controls Analysis (INCA) program was developed at the Goddard Space Flight Center to provide a user friendly efficient environment for the design and analysis of linear control systems. Since its inception, INCA has found extensive use in the design, development, and analysis of control systems for spacecraft, instruments, robotics, and pointing systems. Moreover, the results of the analytic tools imbedded in INCA have been flight proven with at least three currently orbiting spacecraft. This paper describes the INCA program and illustrates, using a flight proven example, how the package can perform complex design analyses with relative ease.
A New Time-varying Concept of Risk in a Changing Climate.
Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P
2016-10-20
In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.
Enabling Co-Design of Multi-Layer Exascale Storage Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carothers, Christopher
Growing demands for computing power in applications such as energy production, climate analysis, computational chemistry, and bioinformatics have propelled computing systems toward the exascale: systems with 10 18 floating-point operations per second. These systems, to be designed and constructed over the next decade, will create unprecedented challenges in component counts, power consumption, resource limitations, and system complexity. Data storage and access are an increasingly important and complex component in extreme-scale computing systems, and significant design work is needed to develop successful storage hardware and software architectures at exascale. Co-design of these systems will be necessary to find the best possiblemore » design points for exascale systems. The goal of this work has been to enable the exploration and co-design of exascale storage systems by providing a detailed, accurate, and highly parallel simulation of exascale storage and the surrounding environment. Specifically, this simulation has (1) portrayed realistic application checkpointing and analysis workloads, (2) captured the complexity, scale, and multilayer nature of exascale storage hardware and software, and (3) executed in a timeframe that enables “what if'” exploration of design concepts. We developed models of the major hardware and software components in an exascale storage system, as well as the application I/O workloads that drive them. We used our simulation system to investigate critical questions in reliability and concurrency at exascale, helping guide the design of future exascale hardware and software architectures. Additionally, we provided this system to interested vendors and researchers so that others can explore the design space. We validated the capabilities of our simulation environment by configuring the simulation to represent the Argonne Leadership Computing Facility Blue Gene/Q system and comparing simulation results for application I/O patterns to the results of executions of these I/O kernels on the actual system.« less
Applied Space Systems Engineering. Chapter 17; Manage Technical Data
NASA Technical Reports Server (NTRS)
Kent, Peter
2008-01-01
Effective space systems engineering (SSE) is conducted in a fully electronic manner. Competitive hardware, software, and system designs are created in a totally digital environment that enables rapid product design and manufacturing cycles, as well as a multitude of techniques such as modeling, simulation, and lean manufacturing that significantly reduce the lifecycle cost of systems. Because the SSE lifecycle depends on the digital environment, managing the enormous volumes of technical data needed to describe, build, deploy, and operate systems is a critical factor in the success of a project. This chapter presents the key aspects of Technical Data Management (TDM) within the SSE process. It is written from the perspective of the System Engineer tasked with establishing the TDM process and infrastructure for a major project. Additional perspectives are reflected from the point of view of the engineers on the project who work within the digital engineering environment established by the TDM toolset and infrastructure, and from the point of view of the contactors who interface via the TDM infrastructure. Table 17.1 lists the TDM process as it relates to SSE.
Integrating Computer Architectures into the Design of High-Performance Controllers
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.; Leyland, Jane A.; Warmbrodt, William
1986-01-01
Modern control systems must typically perform real-time identification and control, as well as coordinate a host of other activities related to user interaction, on-line graphics, and file management. This paper discusses five global design considerations that are useful to integrate array processor, multimicroprocessor, and host computer system architecture into versatile, high-speed controllers. Such controllers are capable of very high control throughput, and can maintain constant interaction with the non-real-time or user environment. As an application example, the architecture of a high-speed, closed-loop controller used to actively control helicopter vibration will be briefly discussed. Although this system has been designed for use as the controller for real-time rotorcraft dynamics and control studies in a wind-tunnel environment, the control architecture can generally be applied to a wide range of automatic control applications.
Design of an SolidWorks-based household substrate cultivation device
NASA Astrophysics Data System (ADS)
Yi, Guo; Yueying, Wang
2018-03-01
Rapid urbanization has caused increasingly severe environmental problems and smaller tillable land area. Even worse, negative reports on vegetable production are repeatedly found. In this case, home gardening has become an inexorable trend. To meet demand for vegetable cultivation in the home environment, an SolidWorks-based household substrate cultivation device has been designed. This device is composed of the cultivation tank, upright post, base, irrigation system, supplemental lighting system and control system. The household substrate cultivation device manufactured based on the design results has shown in practice that this device features an esthetic appearance, low cost, automatic irrigation and lighting supplementation, good vegetable growing conditions, full of ornamental value and practicability and thus is suitable for vegetable growing in the home environment. Hence it has a higher promotion value in the home gardening field.
Adaptive multisensor fusion for planetary exploration rovers
NASA Technical Reports Server (NTRS)
Collin, Marie-France; Kumar, Krishen; Pampagnin, Luc-Henri
1992-01-01
The purpose of the adaptive multisensor fusion system currently being designed at NASA/Johnson Space Center is to provide a robotic rover with assured vision and safe navigation capabilities during robotic missions on planetary surfaces. Our approach consists of using multispectral sensing devices ranging from visible to microwave wavelengths to fulfill the needs of perception for space robotics. Based on the illumination conditions and the sensors capabilities knowledge, the designed perception system should automatically select the best subset of sensors and their sensing modalities that will allow the perception and interpretation of the environment. Then, based on reflectance and emittance theoretical models, the sensor data are fused to extract the physical and geometrical surface properties of the environment surface slope, dielectric constant, temperature and roughness. The theoretical concepts, the design and first results of the multisensor perception system are presented.
Developing a Decision Support System for Tobacco Use Counseling Using Primary Care Physicians
Marcy, Theodore W.; Kaplan, Bonnie; Connolly, Scott W.; Michel, George; Shiffman, Richard N.; Flynn, Brian S.
2009-01-01
Background Clinical decision support systems (CDSS) have the potential to improve adherence to guidelines, but only if they are designed to work in the complex environment of ambulatory clinics as otherwise physicians may not use them. Objective To gain input from primary care physicians in designing a CDSS for smoking cessation to ensure that the design is appropriate to a clinical environment before attempts to test this CDSS in a clinical trial. This approach is of general interest to those designing similar systems. Design and Approach We employed an iterative ethnographic process that used multiple evaluation methods to understand physician preferences and workflow integration. Using results from our prior survey of physicians and clinic managers, we developed a prototype CDSS, validated content and design with an expert panel, and then subjected it to usability testing by physicians, followed by iterative design changes based on their feedback. We then performed clinical testing with individual patients, and conducted field tests of the CDSS in two primary care clinics during which four physicians used it for routine patient visits. Results The CDSS prototype was substantially modified through these cycles of usability and clinical testing, including removing a potentially fatal design flaw. During field tests in primary care clinics, physicians incorporated the final CDSS prototype into their workflow, and used it to assist in smoking cessation interventions up to eight times daily. Conclusions A multi-method evaluation process utilizing primary care physicians proved useful for developing a CDSS that was acceptable to physicians and patients, and feasible to use in their clinical environment. PMID:18713526
A Design Problem of Assembly Line Systems using Genetic Algorithm under the BTO Environment
NASA Astrophysics Data System (ADS)
Abe, Kazuaki; Yamada, Tetsuo; Matsui, Masayuki
Under the BTO environment, stochastic assembly lines require design methods which shorten not only the production lead time but also the ready time for the line design. We propose a design method for Assembly Line Systems (ALS) in Yamada et al. (2001) by using Genetic Algorithm (GA) and Adam-Eve GA, in which all design variables are determined in consideration of constraints such as line length related to the production lead time. First, an ALS model with a line length constraint is introduced, and an optimal design problem is set to maximize the net reward under shorter lead time. Next, a simulation optimization method is developed using Adam-Eve GA and traditional GA. Finally, an optimal design example is shown and discussed by comparing the 2-stage design by Yamada et al. (2001) and both the GA designs. It is shown that the Adam-Eve GA is superior to the traditional GA design in terms of computational time though there is only a slight difference in terms of net reward.
Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.
2015-01-01
To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.
Ontological Problem-Solving Framework for Dynamically Configuring Sensor Systems and Algorithms
Qualls, Joseph; Russomanno, David J.
2011-01-01
The deployment of ubiquitous sensor systems and algorithms has led to many challenges, such as matching sensor systems to compatible algorithms which are capable of satisfying a task. Compounding the challenges is the lack of the requisite knowledge models needed to discover sensors and algorithms and to subsequently integrate their capabilities to satisfy a specific task. A novel ontological problem-solving framework has been designed to match sensors to compatible algorithms to form synthesized systems, which are capable of satisfying a task and then assigning the synthesized systems to high-level missions. The approach designed for the ontological problem-solving framework has been instantiated in the context of a persistence surveillance prototype environment, which includes profiling sensor systems and algorithms to demonstrate proof-of-concept principles. Even though the problem-solving approach was instantiated with profiling sensor systems and algorithms, the ontological framework may be useful with other heterogeneous sensing-system environments. PMID:22163793
Conceptual design of a thermal control system for an inflatable lunar habitat module
NASA Technical Reports Server (NTRS)
Gadkari, Ketan; Goyal, Sanjay K.; Vanniasinkam, Joseph
1991-01-01
NASA is considering the establishment of a manned lunar base within the next few decades. To house and protect the crew from the harsh lunar environment, a habitat is required. A proposed habitat is an spherical, inflatable module. Heat generated in the module must be rejected to maintain a temperature suitable for human habitation. This report presents a conceptual design of a thermal control system for an inflatable lunar module. The design solution includes heat acquisition, heat transport, and heat rejection subsystems. The report discusses alternative designs and design solutions for each of the three subsystems mentioned above. Alternative subsystems for heat acquisition include a single water-loop, a single air-loop, and a double water-loop. The vapor compression cycle, vapor absorption cycle, and metal hydride absorption cycle are the three alternative transport subsystems. Alternative rejection subsystems include flat plate radiators, the liquid droplet radiator, and reflux boiler radiators. Feasibility studies on alternatives of each subsystem showed that the single water-loop, the vapor compression cycle, and the reflux boiler radiator were the most feasible alternatives. The design team combined the three subsystems to come up with an overall system design. Methods of controlling the system to adapt it for varying conditions within the module and in the environment are presented. Finally, the report gives conclusions and recommendations for further study of thermal control systems for lunar applications.
2013-05-23
This monograph borrows from multiple disciplines to argue for an organizational shift from process reengineering to system design to improve...government customer-service delivery. Specifically, the monograph proposes a transformation in claims processing within the Veterans Benefits Administration...required. The proposed system design is an attempt to place the disability claims process within a larger environment encompassing multiple dimensions of customers.
Cardiological database management system as a mediator to clinical decision support.
Pappas, C; Mavromatis, A; Maglaveras, N; Tsikotis, A; Pangalos, G; Ambrosiadou, V
1996-03-01
An object-oriented medical database management system is presented for a typical cardiologic center, facilitating epidemiological trials. Object-oriented analysis and design were used for the system design, offering advantages for the integrity and extendibility of medical information systems. The system was developed using object-oriented design and programming methodology, the C++ language and the Borland Paradox Relational Data Base Management System on an MS-Windows NT environment. Particular attention was paid to system compatibility, portability, the ease of use, and the suitable design of the patient record so as to support the decisions of medical personnel in cardiovascular centers. The system was designed to accept complex, heterogeneous, distributed data in various formats and from different kinds of examinations such as Holter, Doppler and electrocardiography.
NASA Astrophysics Data System (ADS)
Harms, Justin D.; Bachmann, Charles M.; Ambeau, Brittany L.; Faulring, Jason W.; Ruiz Torres, Andres J.; Badura, Gregory; Myers, Emily
2017-10-01
Field-portable goniometers are created for a wide variety of applications. Many of these applications require specific types of instruments and measurement schemes and must operate in challenging environments. Therefore, designs are based on the requirements that are specific to the application. We present a field-portable goniometer that was designed for measuring the hemispherical-conical reflectance factor (HCRF) of various soils and low-growing vegetation in austere coastal and desert environments and biconical reflectance factors in laboratory settings. Unlike some goniometers, this system features a requirement for "target-plane tracking" to ensure that measurements can be collected on sloped surfaces, without compromising angular accuracy. The system also features a second upward-looking spectrometer to measure the spatially dependent incoming illumination, an integrated software package to provide full automation, an automated leveling system to ensure a standard frame of reference, a design that minimizes the obscuration due to self-shading to measure the opposition effect, and the ability to record a digital elevation model of the target region. This fully automated and highly mobile system obtains accurate and precise measurements of HCRF in a wide variety of terrain and in less time than most other systems while not sacrificing consistency or repeatability in laboratory environments.
Model-based engineering for laser weapons systems
NASA Astrophysics Data System (ADS)
Panthaki, Malcolm; Coy, Steve
2011-10-01
The Comet Performance Engineering Workspace is an environment that enables integrated, multidisciplinary modeling and design/simulation process automation. One of the many multi-disciplinary applications of the Comet Workspace is for the integrated Structural, Thermal, Optical Performance (STOP) analysis of complex, multi-disciplinary space systems containing Electro-Optical (EO) sensors such as those which are designed and developed by and for NASA and the Department of Defense. The CometTM software is currently able to integrate performance simulation data and processes from a wide range of 3-D CAD and analysis software programs including CODE VTM from Optical Research Associates and SigFitTM from Sigmadyne Inc. which are used to simulate the optics performance of EO sensor systems in space-borne applications. Over the past year, Comet Solutions has been working with MZA Associates of Albuquerque, NM, under a contract with the Air Force Research Laboratories. This funded effort is a "risk reduction effort", to help determine whether the combination of Comet and WaveTrainTM, a wave optics systems engineering analysis environment developed and maintained by MZA Associates and used by the Air Force Research Laboratory, will result in an effective Model-Based Engineering (MBE) environment for the analysis and design of laser weapons systems. This paper will review the results of this effort and future steps.
Computer Applications and Virtual Environments (CAVE)
NASA Technical Reports Server (NTRS)
1993-01-01
Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall SPace Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).
ComputerApplications and Virtual Environments (CAVE)
NASA Technical Reports Server (NTRS)
1993-01-01
Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Center (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability providedgeneral visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.
ComputerApplications and Virtual Environments (CAVE)
NASA Technical Reports Server (NTRS)
1993-01-01
Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Centerr (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provided general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.
Derived virtual devices: a secure distributed file system mechanism
NASA Technical Reports Server (NTRS)
VanMeter, Rodney; Hotz, Steve; Finn, Gregory
1996-01-01
This paper presents the design of derived virtual devices (DVDs). DVDs are the mechanism used by the Netstation Project to provide secure shared access to network-attached peripherals distributed in an untrusted network environment. DVDs improve Input/Output efficiency by allowing user processes to perform I/O operations directly from devices without intermediate transfer through the controlling operating system kernel. The security enforced at the device through the DVD mechanism includes resource boundary checking, user authentication, and restricted operations, e.g., read-only access. To illustrate the application of DVDs, we present the interactions between a network-attached disk and a file system designed to exploit the DVD abstraction. We further discuss third-party transfer as a mechanism intended to provide for efficient data transfer in a typical NAP environment. We show how DVDs facilitate third-party transfer, and provide the security required in a more open network environment.
Design requirements for ubiquitous computing environments for healthcare professionals.
Bång, Magnus; Larsson, Anders; Eriksson, Henrik
2004-01-01
Ubiquitous computing environments can support clinical administrative routines in new ways. The aim of such computing approaches is to enhance routine physical work, thus it is important to identify specific design requirements. We studied healthcare professionals in an emergency room and developed the computer-augmented environment NOSTOS to support teamwork in that setting. NOSTOS uses digital pens and paper-based media as the primary input interface for data capture and as a means of controlling the system. NOSTOS also includes a digital desk, walk-up displays, and sensor technology that allow the system to track documents and activities in the workplace. We propose a set of requirements and discuss the value of tangible user interfaces for healthcare personnel. Our results suggest that the key requirements are flexibility in terms of system usage and seamless integration between digital and physical components. We also discuss how ubiquitous computing approaches like NOSTOS can be beneficial in the medical workplace.
NASA Astrophysics Data System (ADS)
Chetty, S.; Field, L. A.
2014-12-01
SWIMS III, is a low cost, autonomous sensor data gathering platform developed specifically for extreme/harsh cold environments. Arctic ocean's continuing decrease of summer-time ice is related to rapidly diminishing multi-year ice due to the effects of climate change. Ice911 Research aims to develop environmentally inert materials that when deployed will increase the albedo, enabling the formation and/preservation of multi-year ice. SWIMS III's sophisticated autonomous sensors are designed to measure the albedo, weather, water temperature and other environmental parameters. This platform uses low cost, high accuracy/precision sensors, extreme environment command and data handling computer system using satellite and terrestrial wireless solution. The system also incorporates tilt sensors and sonar based ice thickness sensors. The system is light weight and can be deployed by hand by a single person. This presentation covers the technical, and design challenges in developing and deploying these platforms.
Spreading DIRT with Web Services
NASA Astrophysics Data System (ADS)
Pound, M. W.; Wolfire, M. G.; Amarnath, N. S.; Plante, R. L.
2005-12-01
Most of the systems currently used to analyze astronomical data were designed and implemented more than a decade ago. Although they still are very useful for analysis, one often would like a better interface to newer concepts like archives, Virtual Observatories and GRID. Further, incompatibilities between most of the current systems with respect to control language and semantics make it cumbersome to mix applications from different origins. An OPTICON Network, funded by the Sixth Framework Programme of the European Commission, started this year to discuss high-level needs for an astronomical data analysis environment which could provide a flexible access to both legacy applications and new astronomical resources. The main objective of the Network is to establish widely accepted requirements and basic design recommendations for such an environment. The hope is that this effort will help other projects, which consider to implement such systems, in collaborating and achieving a common environment.
Moving HAIRS: Towards adaptive, homeostatic materials
NASA Astrophysics Data System (ADS)
Aizenberg, Joanna
Dynamic structures that respond reversibly to changes in their environment are central to self-regulating thermal and lighting systems, targeted drug delivery, sensors, and self-propelled locomotion. Since an adaptive change requires energy input, an ideal strategy would be to design materials that harvest energy directly from the environment and use it to drive an appropriate response. This lecture will present the design of a novel class of reconfigurable materials that use surfaces bearing arrays of nanostructures put in motion by environment-responsive gels. Their unique hybrid architecture, and chemical and mechanical properties can be optimized to confer a wide range of adaptive behaviors. Using both experimental and modeling approaches, we are developing these hydrogel-actuated integrated responsive systems (HAIRS) as new materials with reversible optical and wetting properties, as a multifunctional platform for controlling cell differentiation and function, and as a first homeostatic system with autonomous self-regulation.
NASA Technical Reports Server (NTRS)
Benford, Steve; Bowers, John; Fahlen, Lennart E.; Greenhalgh, Chris; Snowdon, Dave
1994-01-01
This paper explores the issue of user embodiment within collaborative virtual environments. By user embodiment we mean the provision of users with appropriate body images so as to represent them to others and also to themselves. By collaborative virtual environments we mean multi-user virtual reality systems which support cooperative work (although we argue that the results of our exploration may also be applied to other kinds of collaborative systems). The main part of the paper identifies a list of embodiment design issues including: presence, location, identity, activity, availability, history of activity, viewpoint, action point, gesture, facial expression, voluntary versus involuntary expression, degree of presence, reflecting capabilities, manipulating the user's view of others, representation across multiple media, autonomous and distributed body parts, truthfulness and efficiency. Following this, we show how these issues are reflected in our own DIVE and MASSIVE prototype collaborative virtual environments.
Probability of Future Observations Exceeding One-Sided, Normal, Upper Tolerance Limits
Edwards, Timothy S.
2014-10-29
Normal tolerance limits are frequently used in dynamic environments specifications of aerospace systems as a method to account for aleatory variability in the environments. Upper tolerance limits, when used in this way, are computed from records of the environment and used to enforce conservatism in the specification by describing upper extreme values the environment may take in the future. Components and systems are designed to withstand these extreme loads to ensure they do not fail under normal use conditions. The degree of conservatism in the upper tolerance limits is controlled by specifying the coverage and confidence level (usually written inmore » “coverage/confidence” form). Moreover, in high-consequence systems it is common to specify tolerance limits at 95% or 99% coverage and confidence at the 50% or 90% level. Despite the ubiquity of upper tolerance limits in the aerospace community, analysts and decision-makers frequently misinterpret their meaning. The misinterpretation extends into the standards that govern much of the acceptance and qualification of commercial and government aerospace systems. As a result, the risk of a future observation of the environment exceeding the upper tolerance limit is sometimes significantly underestimated by decision makers. This note explains the meaning of upper tolerance limits and a related measure, the upper prediction limit. So, the objective of this work is to clarify the probability of exceeding these limits in flight so that decision-makers can better understand the risk associated with exceeding design and test levels during flight and balance the cost of design and development with that of mission failure.« less
The UNIX Operating System: A Model for Software Design.
ERIC Educational Resources Information Center
Kernighan, Brian W.; Morgan, Samuel P.
1982-01-01
Describes UNIX time-sharing operating system, including the program environment, software development tools, flexibility and ease of change, portability and other advantages, and five applications and three nonapplications of the system. (JN)
Portable Mass Spectrometer Applications for In Situ Environmental Gas Monitoring
NASA Technical Reports Server (NTRS)
Griffin, Timothy P.; Diaz, J. Andres; Arkin, C. Richard; Conejo, Elian
2005-01-01
Primary Goal of this project is to (1) Design/build a flexible system to monitor air contamination (2) Learn requirements for operating system in low pressure and low temperature environments (3) Design/build system for integration into aircraft and automobiles Secondary Goals/Offshoots are (1) Fly aboard different aircraft (2)Hand-carry unit (3) Drive unit in automobiles.
Performance prediction evaluation of ceramic materials in point-focusing solar receivers
NASA Technical Reports Server (NTRS)
Ewing, J.; Zwissler, J.
1979-01-01
A performance prediction was adapted to evaluate the use of ceramic materials in solar receivers for point focusing distributed applications. System requirements were determined including the receiver operating environment and system operating parameters for various engine types. Preliminary receiver designs were evolved from these system requirements. Specific receiver designs were then evaluated to determine material functional requirements.
Wang, Jing-Min; Yang, Ming-Ta; Chen, Po-Lin
2017-01-01
With the advance of science and technology, people have a desire for convenient and comfortable living. Creating comfortable and healthy indoor environments is a major consideration for designing smart homes. As handheld devices become increasingly powerful and ubiquitous, this paper proposes an innovative use of smart handheld devices (SHD), using MIT App Inventor and fuzzy control, to perform the real-time monitoring and smart control of the designed intelligent windowsill system (IWS) in a smart home. A compact weather station that consists of environment sensors was constructed in the IWS for measuring of indoor illuminance, temperature-humidity, carbon dioxide (CO2) concentration and outdoor rain and wind direction. According to the measured environment information, the proposed system can automatically send a command to a fuzzy microcontroller performed by Arduino UNO to fully or partly open the electric curtain and electric window for adapting to climate changes in the indoor and outdoor environment. Moreover, the IWS can automatically close windows for rain splashing on the window. The presented novel control method for the windowsill not only expands the SHD applications, but greatly enhances convenience to users. To validate the feasibility and effectiveness of the IWS, a laboratory prototype was built and confirmed experimentally. PMID:28398266
Orion Exploration Flight Test Post-Flight Inspection and Analysis
NASA Technical Reports Server (NTRS)
Miller, J. E.; Berger, E. L.; Bohl, W. E.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.; Enriquez, P. A.; Garcia, M. A.; Hyde, J. L.; Oliveras, O. M.
2017-01-01
The multipurpose crew vehicle, Orion, is being designed and built for NASA to handle the rigors of crew launch, sustainment and return from scientific missions beyond Earth orbit. In this role, the Orion vehicle is meant to operate in the space environments like the naturally occurring meteoroid and the artificial orbital debris environments (MMOD) with successful atmospheric reentry at the conclusion of the flight. As a result, Orion's reentry module uses durable porous, ceramic tiles on almost thirty square meters of exposed surfaces to accomplish both of these functions. These durable, non-ablative surfaces maintain their surface profile through atmospheric reentry; thus, they preserve any surface imperfections that occur prior to atmospheric reentry. Furthermore, Orion's launch abort system includes a shroud that protects the thermal protection system while awaiting launch and during ascent. The combination of these design features and a careful pre-flight inspection to identify any manufacturing imperfections results in a high confidence that damage to the thermal protection system identified post-flight is due to the in-flight solid particle environments. These favorable design features of Orion along with the unique flight profile of the first exploration flight test of Orion (EFT-1) have yielded solid particle environment measurements that have never been obtained before this flight.
Wang, Jing-Min; Yang, Ming-Ta; Chen, Po-Lin
2017-04-11
With the advance of science and technology, people have a desire for convenient and comfortable living. Creating comfortable and healthy indoor environments is a major consideration for designing smart homes. As handheld devices become increasingly powerful and ubiquitous, this paper proposes an innovative use of smart handheld devices (SHD), using MIT App Inventor and fuzzy control, to perform the real-time monitoring and smart control of the designed intelligent windowsill system (IWS) in a smart home. A compact weather station that consists of environment sensors was constructed in the IWS for measuring of indoor illuminance, temperature-humidity, carbon dioxide (CO₂) concentration and outdoor rain and wind direction. According to the measured environment information, the proposed system can automatically send a command to a fuzzy microcontroller performed by Arduino UNO to fully or partly open the electric curtain and electric window for adapting to climate changes in the indoor and outdoor environment. Moreover, the IWS can automatically close windows for rain splashing on the window. The presented novel control method for the windowsill not only expands the SHD applications, but greatly enhances convenience to users. To validate the feasibility and effectiveness of the IWS, a laboratory prototype was built and confirmed experimentally.
Testing of a Wireless Sensor System for Instrumented Thermal Protection Systems
NASA Technical Reports Server (NTRS)
Kummer, Allen T.; Weir, Erik D.; Morris, Trey J.; Friedenberger, Corey W.; Singh, Aseem; Capuro, Robert M.; Bilen, Sven G.; Fu, Johnny; Swanson, Gregory T.; Hash, David B.
2011-01-01
Funded by NASA's Constellation Universities Institutes Project (CUIP), we have been developing and testing a system to wirelessly power and collect data from sensors on space platforms in general and, in particular, the harsh environment of spacecraft re-entry. The elimination of wires and associated failures such as chafing, sparking, ageing, and connector issues can increase reliability and design flexibility while reducing costs. These factors present an appealing case for the pursuit of wireless solutions for harsh environments, particularly for their use in space and on spacecraft. We have designed and built a prototype wireless sensor system. The system, with capabilities similar to that of a wired sensor system, was tested in NASA Ames Research Center s Aerodynamic Heating Facility and Interaction Heating Facility. This paper discusses the overall development effort, testing results, as well as future directions.
A Next-Generation Parallel File System Environment for the OLCF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillow, David A; Fuller, Douglas; Gunasekaran, Raghul
2012-01-01
When deployed in 2008/2009 the Spider system at the Oak Ridge National Laboratory s Leadership Computing Facility (OLCF) was the world s largest scale Lustre parallel file system. Envisioned as a shared parallel file system capable of delivering both the bandwidth and capacity requirements of the OLCF s diverse computational environment, Spider has since become a blueprint for shared Lustre environments deployed worldwide. Designed to support the parallel I/O requirements of the Jaguar XT5 system and other smallerscale platforms at the OLCF, the upgrade to the Titan XK6 heterogeneous system will begin to push the limits of Spider s originalmore » design by mid 2013. With a doubling in total system memory and a 10x increase in FLOPS, Titan will require both higher bandwidth and larger total capacity. Our goal is to provide a 4x increase in total I/O bandwidth from over 240GB=sec today to 1TB=sec and a doubling in total capacity. While aggregate bandwidth and total capacity remain important capabilities, an equally important goal in our efforts is dramatically increasing metadata performance, currently the Achilles heel of parallel file systems at leadership. We present in this paper an analysis of our current I/O workloads, our operational experiences with the Spider parallel file systems, the high-level design of our Spider upgrade, and our efforts in developing benchmarks that synthesize our performance requirements based on our workload characterization studies.« less
A multi-sensor oceanographic measurement system for coastal environments
Martini, Marinna A.; Strahle, William J.
1993-01-01
An instrument system has been developed for long-term sediment transport studies that uses a modular design to combine off the shelf components into a complete and flexible package. A common data storage format is used in each instrument system so that the same hardware can be assembled in different ways to address specific scientific studies with minimal engineering support and modification. Three systems have been constructed and successfully deployed to date in two different coastal environments.
Research environments that promote integrity.
Jeffers, Brenda Recchia; Whittemore, Robin
2005-01-01
The body of empirical knowledge about research integrity and the factors that promote research integrity in nursing research environments remains small. To propose an internal control model as an innovative framework for the design and structure of nursing research environments that promote integrity. An internal control model is adapted to illustrate its use for conceptualizing and designing research environments that promote integrity. The internal control model integrates both the organizational elements necessary to promote research integrity and the processes needed to assess research environments. The model provides five interrelated process components within which any number of research integrity variables and processes may be used and studied: internal control environment, risk assessment, internal control activities, monitoring, and information and communication. The components of the proposed research integrity internal control model proposed comprise an integrated conceptualization of the processes that provide reasonable assurance that research integrity will be promoted within the nursing research environment. Schools of nursing can use the model to design, implement, and evaluate systems that promote research integrity. The model process components need further exploration to substantiate the use of the model in nursing research environments.
Foundational Terminal Operations HITL: Experimental Design Slides
NASA Technical Reports Server (NTRS)
Rorie, Robert Conrad
2017-01-01
The UAS (Unmanned Aircraft Systems) in the NAS (National Airspace System) project is conducting its first investigation of UAS operations in the terminal environment. A workshop is being held to get input from key stakeholders on the experimental design and scenario development occuring for this simulation, which intends to begin data collection in September 2017. These slides cover the proposed design and methodolgy for the experiment.
ERIC Educational Resources Information Center
Selby, Les; Russell, David
2005-01-01
Purpose: To report on the progress of Digital Media U, a tailor-made portal, learning environment and management system. Design/methodology/approach: Discusses the design of the learning content domains, acquisition of the content and the systems for managing the curriculum in the future, including the application of a new model of accreditation.…
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Hall, Philip P.
1985-01-01
This Working Paper Series entry represents a collection of presentation visuals associated with the companion report entitled, The Design of PC/MISI, a PC-Based Common User Interface to Remote Information Storage and Retrieval Systems, USL/DBMS NASA/RECON Working Paper Series report number DBMS.NASA/RECON-15. The paper discusses the following: problem definition; the PC solution; the goals of system design; the design description; future considerations, the research environment; conclusions.
49 CFR 195.102 - Design temperature.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Design temperature. 195.102 Section 195.102... PIPELINE Design Requirements § 195.102 Design temperature. (a) Material for components of the system must be chosen for the temperature environment in which the components will be used so that the pipeline...
49 CFR 195.102 - Design temperature.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Design temperature. 195.102 Section 195.102... PIPELINE Design Requirements § 195.102 Design temperature. (a) Material for components of the system must be chosen for the temperature environment in which the components will be used so that the pipeline...
The KASE approach to domain-specific software systems
NASA Technical Reports Server (NTRS)
Bhansali, Sanjay; Nii, H. Penny
1992-01-01
Designing software systems, like all design activities, is a knowledge-intensive task. Several studies have found that the predominant cause of failures among system designers is lack of knowledge: knowledge about the application domain, knowledge about design schemes, knowledge about design processes, etc. The goal of domain-specific software design systems is to explicitly represent knowledge relevant to a class of applications and use it to partially or completely automate various aspects of the designing systems within that domain. The hope is that this would reduce the intellectual burden on the human designers and lead to more efficient software development. In this paper, we present a domain-specific system built on top of KASE, a knowledge-assisted software engineering environment being developed at the Stanford Knowledge Systems Laboratory. We introduce the main ideas underlying the construction of domain specific systems within KASE, illustrate the application of the idea in the synthesis of a system for tracking aircraft from radar signals, and discuss some of the issues in constructing domain-specific systems.
Value-informed space systems design and acquisition
NASA Astrophysics Data System (ADS)
Brathwaite, Joy
Investments in space systems are substantial, indivisible, and irreversible, characteristics that make them high-risk, especially when coupled with an uncertain demand environment. Traditional approaches to system design and acquisition, derived from a performance- or cost-centric mindset, incorporate little information about the spacecraft in relation to its environment and its value to its stakeholders. These traditional approaches, while appropriate in stable environments, are ill-suited for the current, distinctly uncertain, and rapidly changing technical and economic conditions; as such, they have to be revisited and adapted to the present context. This thesis proposes that in uncertain environments, decision-making with respect to space system design and acquisition should be value-based, or at a minimum value-informed. This research advances the value-centric paradigm by providing the theoretical basis, foundational frameworks, and supporting analytical tools for value assessment of priced and unpriced space systems. For priced systems, stochastic models of the market environment and financial models of stakeholder preferences are developed and integrated with a spacecraft-sizing tool to assess the system's net present value. The analytical framework is applied to a case study of a communications satellite, with market, financial, and technical data obtained from the satellite operator, Intelsat. The case study investigates the implications of the value-centric versus the cost-centric design and acquisition choices. Results identify the ways in which value-optimal spacecraft design choices are contingent on both technical and market conditions, and that larger spacecraft for example, which reap economies of scale benefits, as reflected by their decreasing cost-per-transponder, are not always the best (most valuable) choices. Market conditions and technical constraints for which convergence occurs between design choices under a cost-centric and a value-centric approach are identified and discussed. In addition, an innovative approach for characterizing value uncertainty through partial moments, a technique used in finance, is adapted to an engineering context and applied to priced space systems. Partial moments disaggregate uncertainty into upside potential and downside risk, and as such, they provide the decision-maker with additional insights for value-uncertainty management in design and acquisition. For unpriced space systems, this research first posits that their value derives from, and can be assessed through, the value of information they provide. To this effect, a Bayesian framework is created to assess system value in which the system is viewed as an information provider and the stakeholder an information recipient. Information has value to stakeholders as it changes their rational beliefs enabling them to yield higher expected pay-offs. Based on this marginal increase in expected pay-offs, a new metric, Value-of-Design (VoD), is introduced to quantify the unpriced system’s value. The Bayesian framework is applied to the case of an Earth Science satellite that provides hurricane information to oil rig operators using nested Monte Carlo modeling and simulation. Probability models of stakeholders’ beliefs, and economic models of pay-offs are developed and integrated with a spacecraft payload generation tool. The case study investigates the information value generated by each payload, with results pointing to clusters of payload instruments that yielded higher information value, and minimum information thresholds below which it is difficult to justify the acquisition of the system. In addition, an analytical decision tool, probabilistic Pareto fronts, is developed in the Cost-VoD trade space to provide the decision-maker with additional insights into the coupling of a system's probable value generation and its associated cost risk.
Design of Simple Landslide Monitoring System
NASA Astrophysics Data System (ADS)
Meng, Qingjia; Cai, Lingling
2018-01-01
The simple landslide monitoring system is mainly designed for slope, collapse body and surface crack. In the harsh environment, the dynamic displacement data of the disaster body is transmitted to the terminal acquisition system in real time. The main body of the system adopt is PIC32MX795F512. This chip is to realize low power design, wakes the system up through the clock chip, and turns on the switching power supply at set time, which makes the wireless transmission module running during the interval to ensure the maximum battery consumption, so that the system can be stable long term work.
Qian, Jun; Zi, Bin; Ma, Yangang; Zhang, Dan
2017-01-01
In order to transport materials flexibly and smoothly in a tight plant environment, an omni-directional mobile robot based on four Mecanum wheels was designed. The mechanical system of the mobile robot is made up of three separable layers so as to simplify its combination and reorganization. Each modularized wheel was installed on a vertical suspension mechanism, which ensures the moving stability and keeps the distances of four wheels invariable. The control system consists of two-level controllers that implement motion control and multi-sensor data processing, respectively. In order to make the mobile robot navigate in an unknown semi-structured indoor environment, the data from a Kinect visual sensor and four wheel encoders were fused to localize the mobile robot using an extended Kalman filter with specific processing. Finally, the mobile robot was integrated in an intelligent manufacturing system for material conveying. Experimental results show that the omni-directional mobile robot can move stably and autonomously in an indoor environment and in industrial fields. PMID:28891964
Simulation and animation of sensor-driven robots.
Chen, C; Trivedi, M M; Bidlack, C R
1994-10-01
Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aid the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the users visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.
High voltage interactions of a sounding rocket with the ambient and system-generated environments
NASA Technical Reports Server (NTRS)
Kuharski, Robert A.; Jongeward, Gary A.; Wilcox, Katherine G.; Rankin, Thomas V.; Roche, James C.
1990-01-01
EPSAT (environment power system analysis tool) is used to examine the design of SPEAR III, which is scheduled to fly in early 1991. It will test high-voltage designs in both ambient and system-generated environments. Two of the key questions that the experiment hopes to address are whether or not the earth's magnetic field can cause the current that a high-voltage object draws from the plasma to be far less than the current that would be drawn in the absence of the magnetic field and under what neutral environmental conditions a discharge from the high-voltage object to the plasma will occur. The EPSAT program makes it possible to perform a variety of analyses on a preliminary or conceptual-level description of a system in a short period of time. The calculations presented on SPEAR III are all done for a conceptual-level description. The calculations indicate that the experiment will produce the conditions necessary to address these questions.
Qian, Jun; Zi, Bin; Wang, Daoming; Ma, Yangang; Zhang, Dan
2017-09-10
In order to transport materials flexibly and smoothly in a tight plant environment, an omni-directional mobile robot based on four Mecanum wheels was designed. The mechanical system of the mobile robot is made up of three separable layers so as to simplify its combination and reorganization. Each modularized wheel was installed on a vertical suspension mechanism, which ensures the moving stability and keeps the distances of four wheels invariable. The control system consists of two-level controllers that implement motion control and multi-sensor data processing, respectively. In order to make the mobile robot navigate in an unknown semi-structured indoor environment, the data from a Kinect visual sensor and four wheel encoders were fused to localize the mobile robot using an extended Kalman filter with specific processing. Finally, the mobile robot was integrated in an intelligent manufacturing system for material conveying. Experimental results show that the omni-directional mobile robot can move stably and autonomously in an indoor environment and in industrial fields.
Effect of Voltage Level on Power System Design for Solar Electric Propulsion Missions
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.
2003-01-01
This paper presents study results quantifying the benefits of higher voltage, electric power system designs for a typical solar electric propulsion spacecraft Earth orbiting mission. A conceptual power system architecture was defined and design points were generated for system voltages of 28-V, 50-V, 120-V, and 300-V using state-of-the-art or advanced technologies. A 300-V 'direct-drive' architecture was also analyzed to assess the benefits of directly powering the electric thruster from the photovoltaic array without up-conversion. Fortran and spreadsheet computational models were exercised to predict the performance and size power system components to meet spacecraft mission requirements. Pertinent space environments, such as electron and proton radiation, were calculated along the spiral trajectory. In addition, a simplified electron current collection model was developed to estimate photovoltaic array losses for the orbital plasma environment and that created by the thruster plume. The secondary benefits of power system mass savings for spacecraft propulsion and attitude control systems were also quantified. Results indicate that considerable spacecraft wet mass savings were achieved by the 300-V and 300-V direct-drive architectures.
Development, Demonstration, and Analysis of an Integrated Iodine Hall Thruster Feed System
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Peeples, Steven R.; Burt, Adam O.; Martin, Adam K.; Martinez, Armando; Seixal, Joao F.; Mauro, Stephanie
2016-01-01
The design of an in-space iodine-vapor-fed Hall effect thruster propellant management system is described. The solid-iodine propellant tank has unique issues associated with the microgravity environment, requiring a solution where the iodine is maintained in intimate thermal contact with the heated tank walls. The flow control valves required alterations from earlier iterations to survive for extended periods of time in the corrosive iodine-vapor environment. Materials have been selected for the entire feed system that can chemically resist the iodine vapor, with the design now featuring Hastelloy or Inconel for almost all the wetted components. An integrated iodine feed system/Hall thruster demonstration unit was fabricated and tested, with all control being handled by an onboard electronics card specifically designed to operate the feed system. Structural analysis shows that the feed system can survive launch loads after the implementation of some minor reinforcement. Flow modeling, while still requiring significant additional validation, is presented to show its potential in capturing the behavior of components in this low-flow, low-pressure system.
The R-Shell approach - Using scheduling agents in complex distributed real-time systems
NASA Technical Reports Server (NTRS)
Natarajan, Swaminathan; Zhao, Wei; Goforth, Andre
1993-01-01
Large, complex real-time systems such as space and avionics systems are extremely demanding in their scheduling requirements. The current OS design approaches are quite limited in the capabilities they provide for task scheduling. Typically, they simply implement a particular uniprocessor scheduling strategy and do not provide any special support for network scheduling, overload handling, fault tolerance, distributed processing, etc. Our design of the R-Shell real-time environment fcilitates the implementation of a variety of sophisticated but efficient scheduling strategies, including incorporation of all these capabilities. This is accomplished by the use of scheduling agents which reside in the application run-time environment and are responsible for coordinating the scheduling of the application.
Study on initiative vibration absorbing technology of optics in strong disturbed environment
NASA Astrophysics Data System (ADS)
Jia, Si-nan; Xiong, Mu-di; Zou, Xiao-jie
2007-12-01
Strong disturbed environment is apt to cause irregular vibration, which seriously affects optical collimation. To improve the performance of laser beam, three-point dynamic vibration absorbing method is proposed, and laser beam initiative vibration absorbing system is designed. The maladjustment signal is detected by position sensitive device (PSD), three groups of PZT are driven to adjust optical element in real-time, so the performance of output-beam is improved. The coupling model of the system is presented. Multivariable adaptive closed-loop decoupling arithmetic is used to design three-input-three-output decoupling controller, so that high precision dynamic adjusting is realized. Experiments indicate that the system has good shock absorbing efficiency.
NASA Technical Reports Server (NTRS)
Greenhow, W. A.; Lewis, J. H.
1972-01-01
This study has been carried out to evaluate flight-qualified Saturn 5 materials, components, and systems for use, with or without modification, in the radiation environment of the nuclear flight system. The results reported herein are primarily intended to aid designers in their evaluation and selection of off-the-shelf equipments which may meet the stringent requirements and specifications associated with application on a reusable nuclear powered space system, i.e., the reusable nuclear shuttle. One of the factors which must be evaluated in the design of the RNS is the effects of radiation on materials; and it is toward this aspect of the overall effort that this analysis has been directed.
Design of a simulation environment for laboratory management by robot organizations
NASA Technical Reports Server (NTRS)
Zeigler, Bernard P.; Cellier, Francois E.; Rozenblit, Jerzy W.
1988-01-01
This paper describes the basic concepts needed for a simulation environment capable of supporting the design of robot organizations for managing chemical, or similar, laboratories on the planned U.S. Space Station. The environment should facilitate a thorough study of the problems to be encountered in assigning the responsibility of managing a non-life-critical, but mission valuable, process to an organized group of robots. In the first phase of the work, we seek to employ the simulation environment to develop robot cognitive systems and strategies for effective multi-robot management of chemical experiments. Later phases will explore human-robot interaction and development of robot autonomy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Wahish, Amal; Armitage, D.; Hill, B.
A design for a sample cell system suitable for high temperature Quasi-Elastic Neutron Scattering (QENS) experiments is presented. The apparatus was developed at the Spallation Neutron Source in Oak Ridge National Lab where it is currently in use. The design provides a special sample cell environment under controlled humid or dry gas flow over a wide range of temperature up to 950 °C. Using such a cell, chemical, dynamical, and physical changes can be studied in situ under various operating conditions. While the cell combined with portable automated gas environment system is especially useful for in situ studies of microscopic dynamicsmore » under operational conditions that are similar to those of solid oxide fuel cells, it can additionally be used to study a wide variety of materials, such as high temperature proton conductors. The cell can also be used in many different neutron experiments when a suitable sample holder material is selected. The sample cell system has recently been used to reveal fast dynamic processes in quasi-elastic neutron scattering experiments, which standard probes (such as electrochemical impedance spectroscopy) could not detect. In this work, we outline the design of the sample cell system and present results demonstrating its abilities in high temperature QENS experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
al-Wahish, Amal; Armitage, D.; al-Binni, U.
Our design for a sample cell system suitable for high temperature Quasi-Elastic Neutron Scattering (QENS) experiments is presented. The apparatus was developed at the Spallation Neutron Source in Oak Ridge National Lab where it is currently in use. The design provides a special sample cell environment under controlled humid or dry gas flow over a wide range of temperature up to 950°C. Using such a cell, chemical, dynamical, and physical changes can be studied in situ under various operating conditions. And while the cell combined with portable automated gas environment system is especially useful for in situ studies of microscopicmore » dynamics under operational conditions that are similar to those of solid oxide fuel cells, it can additionally be used to study a wide variety of materials, such as high temperature protonconductors. The cell can also be used in many different neutron experiments when a suitable sample holder material is selected. Finally, the sample cell system has recently been used to reveal fast dynamic processes in quasi-elastic neutron scattering experiments, which standard probes (such as electrochemical impedance spectroscopy) could not detect. In this work, we outline the design of the sample cell system and present results demonstrating its abilities in high temperature QENS experiments.« less
Man and machine design for space flight
NASA Technical Reports Server (NTRS)
Louviere, A. J.
1979-01-01
The factors involved in creating effective designs for living and working in a weightless environment are discussed. Among the areas covered are special provisions for eating and drinking, a special shower nozzle to remove soap, electric shavers designed for vacuum containment of the clippings, and the need for restraint systems at the crew's workstations. Attention is given to the fact that the crewmen assume a neutral body posture in weightlessness which is an important consideration in designing displays, controls, and windows. It is concluded that the incorporation of the change in body posture and the requirement for restraint into future designs will greatly facilitate the crewman's task in the weightless environment.