Sample records for system design framework

  1. Advanced Information Technology in Simulation Based Life Cycle Design

    NASA Technical Reports Server (NTRS)

    Renaud, John E.

    2003-01-01

    In this research a Collaborative Optimization (CO) approach for multidisciplinary systems design is used to develop a decision based design framework for non-deterministic optimization. To date CO strategies have been developed for use in application to deterministic systems design problems. In this research the decision based design (DBD) framework proposed by Hazelrigg is modified for use in a collaborative optimization framework. The Hazelrigg framework as originally proposed provides a single level optimization strategy that combines engineering decisions with business decisions in a single level optimization. By transforming this framework for use in collaborative optimization one can decompose the business and engineering decision making processes. In the new multilevel framework of Decision Based Collaborative Optimization (DBCO) the business decisions are made at the system level. These business decisions result in a set of engineering performance targets that disciplinary engineering design teams seek to satisfy as part of subspace optimizations. The Decision Based Collaborative Optimization framework more accurately models the existing relationship between business and engineering in multidisciplinary systems design.

  2. Choices, Frameworks and Refinement

    NASA Technical Reports Server (NTRS)

    Campbell, Roy H.; Islam, Nayeem; Johnson, Ralph; Kougiouris, Panos; Madany, Peter

    1991-01-01

    In this paper we present a method for designing operating systems using object-oriented frameworks. A framework can be refined into subframeworks. Constraints specify the interactions between the subframeworks. We describe how we used object-oriented frameworks to design Choices, an object-oriented operating system.

  3. A Framework of Working Across Disciplines in Early Design and R&D of Large Complex Engineered Systems

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria Rivas; Papalambros, Panos Y.; Baker, Wayne E.

    2015-01-01

    This paper examines four primary methods of working across disciplines during R&D and early design of large-scale complex engineered systems such as aerospace systems. A conceptualized framework, called the Combining System Elements framework, is presented to delineate several aspects of cross-discipline and system integration practice. The framework is derived from a theoretical and empirical analysis of current work practices in actual operational settings and is informed by theories from organization science and engineering. The explanatory framework may be used by teams to clarify assumptions and associated work practices, which may reduce ambiguity in understanding diverse approaches to early systems research, development and design. The framework also highlights that very different engineering results may be obtained depending on work practices, even when the goals for the engineered system are the same.

  4. Ergonomics action research II: a framework for integrating HF into work system design.

    PubMed

    Neumann, W P; Village, J

    2012-01-01

    This paper presents a conceptual framework that can support efforts to integrate human factors (HF) into the work system design process, where improved and cost-effective application of HF is possible. The framework advocates strategies of broad stakeholder participation, linking of performance and health goals, and process focussed change tools that can help practitioners engage in improvements to embed HF into a firm's work system design process. Recommended tools include business process mapping of the design process, implementing design criteria, using cognitive mapping to connect to managers' strategic goals, tactical use of training and adopting virtual HF (VHF) tools to support the integration effort. Consistent with organisational change research, the framework provides guidance but does not suggest a strict set of steps. This allows more adaptability for the practitioner who must navigate within a particular organisational context to secure support for embedding HF into the design process for improved operator wellbeing and system performance. There has been little scientific literature about how a practitioner might integrate HF into a company's work system design process. This paper proposes a framework for this effort by presenting a coherent conceptual framework, process tools, design tools and procedural advice that can be adapted for a target organisation.

  5. Integration of a CAD System Into an MDO Framework

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.; Samareh, J. A.; Weston, R. P.; Zorumski, W. E.

    1998-01-01

    NASA Langley has developed a heterogeneous distributed computing environment, called the Framework for Inter-disciplinary Design Optimization, or FIDO. Its purpose has been to demonstrate framework technical feasibility and usefulness for optimizing the preliminary design of complex systems and to provide a working environment for testing optimization schemes. Its initial implementation has been for a simplified model of preliminary design of a high-speed civil transport. Upgrades being considered for the FIDO system include a more complete geometry description, required by high-fidelity aerodynamics and structures codes and based on a commercial Computer Aided Design (CAD) system. This report presents the philosophy behind some of the decisions that have shaped the FIDO system and gives a brief case study of the problems and successes encountered in integrating a CAD system into the FEDO framework.

  6. Research and Design of the Three-tier Distributed Network Management System Based on COM / COM + and DNA

    NASA Astrophysics Data System (ADS)

    Liang, Likai; Bi, Yushen

    Considered on the distributed network management system's demand of high distributives, extensibility and reusability, a framework model of Three-tier distributed network management system based on COM/COM+ and DNA is proposed, which adopts software component technology and N-tier application software framework design idea. We also give the concrete design plan of each layer of this model. Finally, we discuss the internal running process of each layer in the distributed network management system's framework model.

  7. A framework for development of an intelligent system for design and manufacturing of stamping dies

    NASA Astrophysics Data System (ADS)

    Hussein, H. M. A.; Kumar, S.

    2014-07-01

    An integration of computer aided design (CAD), computer aided process planning (CAPP) and computer aided manufacturing (CAM) is required for development of an intelligent system to design and manufacture stamping dies in sheet metal industries. In this paper, a framework for development of an intelligent system for design and manufacturing of stamping dies is proposed. In the proposed framework, the intelligent system is structured in form of various expert system modules for different activities of design and manufacturing of dies. All system modules are integrated with each other. The proposed system takes its input in form of a CAD file of sheet metal part, and then system modules automate all tasks related to design and manufacturing of stamping dies. Modules are coded using Visual Basic (VB) and developed on the platform of AutoCAD software.

  8. A Function-Behavior-State Approach to Designing Human Machine Interface for Nuclear Power Plant Operators

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Zhang, W. J.

    2005-02-01

    This paper presents an approach to human-machine interface design for control room operators of nuclear power plants. The first step in designing an interface for a particular application is to determine information content that needs to be displayed. The design methodology for this step is called the interface design framework (called framework ). Several frameworks have been proposed for applications at varying levels, including process plants. However, none is based on the design and manufacture of a plant system for which the interface is designed. This paper presents an interface design framework which originates from design theory and methodology for general technical systems. Specifically, the framework is based on a set of core concepts of a function-behavior-state model originally proposed by the artificial intelligence research community and widely applied in the design research community. Benefits of this new framework include the provision of a model-based fault diagnosis facility, and the seamless integration of the design (manufacture, maintenance) of plants and the design of human-machine interfaces. The missing linkage between design and operation of a plant was one of the causes of the Three Mile Island nuclear reactor incident. A simulated plant system is presented to explain how to apply this framework in designing an interface. The resulting human-machine interface is discussed; specifically, several fault diagnosis examples are elaborated to demonstrate how this interface could support operators' fault diagnosis in an unanticipated situation.

  9. Development of a Design Supporting System for Nano-Materials based on a Framework for Integrated Knowledge of Functioning-Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Tarumi, Shinya; Kozaki, Kouji; Kitamura, Yoshinobu; Mizoguchi, Riichiro

    In the recent materials research, much work aims at realization of ``functional materials'' by changing structure and/or manufacturing process with nanotechnology. However, knowledge about the relationship among function, structure and manufacturing process is not well organized. So, material designers have to consider a lot of things at the same time. It would be very helpful for them to support their design process by a computer system. In this article, we discuss a conceptual design supporting system for nano-materials. Firstly, we consider a framework for representing functional structures and manufacturing processes of nano-materials with relationships among them. We expand our former framework for representing functional knowledge based on our investigation through discussion with experts of nano-materials. The extended framework has two features: 1) it represents functional structures and manufacturing processes comprehensively, 2) it expresses parameters of function and ways with their dependencies because they are important for material design. Next, we describe a conceptual design support system we developed based on the framework with its functionalities. Lastly, we evaluate the utility of our system in terms of functionality for design supports. For this purpose, we tried to represent two real examples of material design. And then we did an evaluation experiment on conceptual design of material using our system with the collaboration of domain experts.

  10. Development and Application of a Systems Engineering Framework to Support Online Course Design and Delivery

    ERIC Educational Resources Information Center

    Bozkurt, Ipek; Helm, James

    2013-01-01

    This paper develops a systems engineering-based framework to assist in the design of an online engineering course. Specifically, the purpose of the framework is to provide a structured methodology for the design, development and delivery of a fully online course, either brand new or modified from an existing face-to-face course. The main strength…

  11. Applying systems thinking to inform studies of wildlife trade in primates.

    PubMed

    Blair, Mary E; Le, Minh D; Thạch, Hoàng M; Panariello, Anna; Vũ, Ngọc B; Birchette, Mark G; Sethi, Gautam; Sterling, Eleanor J

    2017-11-01

    Wildlife trade presents a major threat to primate populations, which are in demand from local to international scales for a variety of uses from food and traditional medicine to the exotic pet trade. We argue that an interdisciplinary framework to facilitate integration of socioeconomic, anthropological, and biological data across multiple spatial and temporal scales is essential to guide the study of wildlife trade dynamics and its impacts on primate populations. Here, we present a new way to design research on wildlife trade in primates using a systems thinking framework. We discuss how we constructed our framework, which follows a social-ecological system framework, to design an ongoing study of local, regional, and international slow loris (Nycticebus spp.) trade in Vietnam. We outline the process of iterative variable exploration and selection via this framework to inform study design. Our framework, guided by systems thinking, enables recognition of complexity in study design, from which the results can inform more holistic, site-appropriate, and effective trade management practices. We place our framework in the context of other approaches to studying wildlife trade and discuss options to address foreseeable challenges to implementing this new framework. © 2017 Wiley Periodicals, Inc.

  12. Onyx-Advanced Aeropropulsion Simulation Framework Created

    NASA Technical Reports Server (NTRS)

    Reed, John A.

    2001-01-01

    The Numerical Propulsion System Simulation (NPSS) project at the NASA Glenn Research Center is developing a new software environment for analyzing and designing aircraft engines and, eventually, space transportation systems. Its purpose is to dramatically reduce the time, effort, and expense necessary to design and test jet engines by creating sophisticated computer simulations of an aerospace object or system (refs. 1 and 2). Through a university grant as part of that effort, researchers at the University of Toledo have developed Onyx, an extensible Java-based (Sun Micro-systems, Inc.), objectoriented simulation framework, to investigate how advanced software design techniques can be successfully applied to aeropropulsion system simulation (refs. 3 and 4). The design of Onyx's architecture enables users to customize and extend the framework to add new functionality or adapt simulation behavior as required. It exploits object-oriented technologies, such as design patterns, domain frameworks, and software components, to develop a modular system in which users can dynamically replace components with others having different functionality.

  13. A business rules design framework for a pharmaceutical validation and alert system.

    PubMed

    Boussadi, A; Bousquet, C; Sabatier, B; Caruba, T; Durieux, P; Degoulet, P

    2011-01-01

    Several alert systems have been developed to improve the patient safety aspects of clinical information systems (CIS). Most studies have focused on the evaluation of these systems, with little information provided about the methodology leading to system implementation. We propose here an 'agile' business rule design framework (BRDF) supporting both the design of alerts for the validation of drug prescriptions and the incorporation of the end user into the design process. We analyzed the unified process (UP) design life cycle and defined the activities, subactivities, actors and UML artifacts that could be used to enhance the agility of the proposed framework. We then applied the proposed framework to two different sets of data in the context of the Georges Pompidou University Hospital (HEGP) CIS. We introduced two new subactivities into UP: business rule specification and business rule instantiation activity. The pharmacist made an effective contribution to five of the eight BRDF design activities. Validation of the two new subactivities was effected in the context of drug dosage adaption to the patients' clinical and biological contexts. Pilot experiment shows that business rules modeled with BRDF and implemented as an alert system triggered an alert for 5824 of the 71,413 prescriptions considered (8.16%). A business rule design framework approach meets one of the strategic objectives for decision support design by taking into account three important criteria posing a particular challenge to system designers: 1) business processes, 2) knowledge modeling of the context of application, and 3) the agility of the various design steps.

  14. Heartbeat-based error diagnosis framework for distributed embedded systems

    NASA Astrophysics Data System (ADS)

    Mishra, Swagat; Khilar, Pabitra Mohan

    2012-01-01

    Distributed Embedded Systems have significant applications in automobile industry as steer-by-wire, fly-by-wire and brake-by-wire systems. In this paper, we provide a general framework for fault detection in a distributed embedded real time system. We use heartbeat monitoring, check pointing and model based redundancy to design a scalable framework that takes care of task scheduling, temperature control and diagnosis of faulty nodes in a distributed embedded system. This helps in diagnosis and shutting down of faulty actuators before the system becomes unsafe. The framework is designed and tested using a new simulation model consisting of virtual nodes working on a message passing system.

  15. Heartbeat-based error diagnosis framework for distributed embedded systems

    NASA Astrophysics Data System (ADS)

    Mishra, Swagat; Khilar, Pabitra Mohan

    2011-12-01

    Distributed Embedded Systems have significant applications in automobile industry as steer-by-wire, fly-by-wire and brake-by-wire systems. In this paper, we provide a general framework for fault detection in a distributed embedded real time system. We use heartbeat monitoring, check pointing and model based redundancy to design a scalable framework that takes care of task scheduling, temperature control and diagnosis of faulty nodes in a distributed embedded system. This helps in diagnosis and shutting down of faulty actuators before the system becomes unsafe. The framework is designed and tested using a new simulation model consisting of virtual nodes working on a message passing system.

  16. Design framework for spherical microphone and loudspeaker arrays in a multiple-input multiple-output system.

    PubMed

    Morgenstern, Hai; Rafaely, Boaz; Noisternig, Markus

    2017-03-01

    Spherical microphone arrays (SMAs) and spherical loudspeaker arrays (SLAs) facilitate the study of room acoustics due to the three-dimensional analysis they provide. More recently, systems that combine both arrays, referred to as multiple-input multiple-output (MIMO) systems, have been proposed due to the added spatial diversity they facilitate. The literature provides frameworks for designing SMAs and SLAs separately, including error analysis from which the operating frequency range (OFR) of an array is defined. However, such a framework does not exist for the joint design of a SMA and a SLA that comprise a MIMO system. This paper develops a design framework for MIMO systems based on a model that addresses errors and highlights the importance of a matched design. Expanding on a free-field assumption, errors are incorporated separately for each array and error bounds are defined, facilitating error analysis for the system. The dependency of the error bounds on the SLA and SMA parameters is studied and it is recommended that parameters should be chosen to assure matched OFRs of the arrays in MIMO system design. A design example is provided, demonstrating the superiority of a matched system over an unmatched system in the synthesis of directional room impulse responses.

  17. A Framework for the Design of Service Systems

    NASA Astrophysics Data System (ADS)

    Tan, Yao-Hua; Hofman, Wout; Gordijn, Jaap; Hulstijn, Joris

    We propose a framework for the design and implementation of service systems, especially to design controls for long-term sustainable value co-creation. The framework is based on the software support tool e3-control. To illustrate the framework we use a large-scale case study, the Beer Living Lab, for simplification of customs procedures in international trade. The BeerLL shows how value co-creation can be achieved by reduction of administrative burden in international beer export due to electronic customs. Participants in the BeerLL are Heineken, IBM and Dutch Tax & Customs.

  18. Framework for Development of Object-Oriented Software

    NASA Technical Reports Server (NTRS)

    Perez-Poveda, Gus; Ciavarella, Tony; Nieten, Dan

    2004-01-01

    The Real-Time Control (RTC) Application Framework is a high-level software framework written in C++ that supports the rapid design and implementation of object-oriented application programs. This framework provides built-in functionality that solves common software development problems within distributed client-server, multi-threaded, and embedded programming environments. When using the RTC Framework to develop software for a specific domain, designers and implementers can focus entirely on the details of the domain-specific software rather than on creating custom solutions, utilities, and frameworks for the complexities of the programming environment. The RTC Framework was originally developed as part of a Space Shuttle Launch Processing System (LPS) replacement project called Checkout and Launch Control System (CLCS). As a result of the framework s development, CLCS software development time was reduced by 66 percent. The framework is generic enough for developing applications outside of the launch-processing system domain. Other applicable high-level domains include command and control systems and simulation/ training systems.

  19. A unifying framework for systems modeling, control systems design, and system operation

    NASA Technical Reports Server (NTRS)

    Dvorak, Daniel L.; Indictor, Mark B.; Ingham, Michel D.; Rasmussen, Robert D.; Stringfellow, Margaret V.

    2005-01-01

    Current engineering practice in the analysis and design of large-scale multi-disciplinary control systems is typified by some form of decomposition- whether functional or physical or discipline-based-that enables multiple teams to work in parallel and in relative isolation. Too often, the resulting system after integration is an awkward marriage of different control and data mechanisms with poor end-to-end accountability. System of systems engineering, which faces this problem on a large scale, cries out for a unifying framework to guide analysis, design, and operation. This paper describes such a framework based on a state-, model-, and goal-based architecture for semi-autonomous control systems that guides analysis and modeling, shapes control system software design, and directly specifies operational intent. This paper illustrates the key concepts in the context of a large-scale, concurrent, globally distributed system of systems: NASA's proposed Array-based Deep Space Network.

  20. [Computer aided design and rapid manufacturing of removable partial denture frameworks].

    PubMed

    Han, Jing; Lü, Pei-jun; Wang, Yong

    2010-08-01

    To introduce a method of digital modeling and fabricating removable partial denture (RPD) frameworks using self-developed software for RPD design and rapid manufacturing system. The three-dimensional data of two partially dentate dental casts were obtained using a three-dimensional crossing section scanner. Self-developed software package for RPD design was used to decide the path of insertion and to design different components of RPD frameworks. The components included occlusal rest, clasp, lingual bar, polymeric retention framework and maxillary major connector. The design procedure for the components was as following: first, determine the outline of the component. Second, build the tissue surface of the component using the scanned data within the outline. Third, preset cross section was used to produce the polished surface. Finally, different RPD components were modeled respectively and connected by minor connectors to form an integrated RPD framework. The finished data were imported into a self-developed selective laser melting (SLM) machine and metal frameworks were fabricated directly. RPD frameworks for the two scanned dental casts were modeled with this self-developed program and metal RPD frameworks were successfully fabricated using SLM method. The finished metal frameworks fit well on the plaster models. The self-developed computer aided design and computer aided manufacture (CAD-CAM) system for RPD design and fabrication has completely independent intellectual property rights. It provides a new method of manufacturing metal RPD frameworks.

  1. Vulnerability detection using data-flow graphs and SMT solvers

    DTIC Science & Technology

    2016-10-31

    concerns. The framework is modular and pipelined to allow scalable analysis on distributed systems. Our vulnerability detection framework employs machine...Design We designed the framework to be modular to enable flexible reuse and extendibility. In its current form, our framework performs the following

  2. Design and applications of a multimodality image data warehouse framework.

    PubMed

    Wong, Stephen T C; Hoo, Kent Soo; Knowlton, Robert C; Laxer, Kenneth D; Cao, Xinhau; Hawkins, Randall A; Dillon, William P; Arenson, Ronald L

    2002-01-01

    A comprehensive data warehouse framework is needed, which encompasses imaging and non-imaging information in supporting disease management and research. The authors propose such a framework, describe general design principles and system architecture, and illustrate a multimodality neuroimaging data warehouse system implemented for clinical epilepsy research. The data warehouse system is built on top of a picture archiving and communication system (PACS) environment and applies an iterative object-oriented analysis and design (OOAD) approach and recognized data interface and design standards. The implementation is based on a Java CORBA (Common Object Request Broker Architecture) and Web-based architecture that separates the graphical user interface presentation, data warehouse business services, data staging area, and backend source systems into distinct software layers. To illustrate the practicality of the data warehouse system, the authors describe two distinct biomedical applications--namely, clinical diagnostic workup of multimodality neuroimaging cases and research data analysis and decision threshold on seizure foci lateralization. The image data warehouse framework can be modified and generalized for new application domains.

  3. Design and Applications of a Multimodality Image Data Warehouse Framework

    PubMed Central

    Wong, Stephen T.C.; Hoo, Kent Soo; Knowlton, Robert C.; Laxer, Kenneth D.; Cao, Xinhau; Hawkins, Randall A.; Dillon, William P.; Arenson, Ronald L.

    2002-01-01

    A comprehensive data warehouse framework is needed, which encompasses imaging and non-imaging information in supporting disease management and research. The authors propose such a framework, describe general design principles and system architecture, and illustrate a multimodality neuroimaging data warehouse system implemented for clinical epilepsy research. The data warehouse system is built on top of a picture archiving and communication system (PACS) environment and applies an iterative object-oriented analysis and design (OOAD) approach and recognized data interface and design standards. The implementation is based on a Java CORBA (Common Object Request Broker Architecture) and Web-based architecture that separates the graphical user interface presentation, data warehouse business services, data staging area, and backend source systems into distinct software layers. To illustrate the practicality of the data warehouse system, the authors describe two distinct biomedical applications—namely, clinical diagnostic workup of multimodality neuroimaging cases and research data analysis and decision threshold on seizure foci lateralization. The image data warehouse framework can be modified and generalized for new application domains. PMID:11971885

  4. Fault Management Design Strategies

    NASA Technical Reports Server (NTRS)

    Day, John C.; Johnson, Stephen B.

    2014-01-01

    Development of dependable systems relies on the ability of the system to determine and respond to off-nominal system behavior. Specification and development of these fault management capabilities must be done in a structured and principled manner to improve our understanding of these systems, and to make significant gains in dependability (safety, reliability and availability). Prior work has described a fundamental taxonomy and theory of System Health Management (SHM), and of its operational subset, Fault Management (FM). This conceptual foundation provides a basis to develop framework to design and implement FM design strategies that protect mission objectives and account for system design limitations. Selection of an SHM strategy has implications for the functions required to perform the strategy, and it places constraints on the set of possible design solutions. The framework developed in this paper provides a rigorous and principled approach to classifying SHM strategies, as well as methods for determination and implementation of SHM strategies. An illustrative example is used to describe the application of the framework and the resulting benefits to system and FM design and dependability.

  5. 6-D, A Process Framework for the Design and Development of Web-based Systems.

    ERIC Educational Resources Information Center

    Christian, Phillip

    2001-01-01

    Explores how the 6-D framework can form the core of a comprehensive systemic strategy and help provide a supporting structure for more robust design and development while allowing organizations to support whatever methods and models best suit their purpose. 6-D stands for the phases of Web design and development: Discovery, Definition, Design,…

  6. System Software Framework for System of Systems Avionics

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.; Peterson, Benjamin L; Thompson, Hiram C.

    2005-01-01

    Project Constellation implements NASA's vision for space exploration to expand human presence in our solar system. The engineering focus of this project is developing a system of systems architecture. This architecture allows for the incremental development of the overall program. Systems can be built and connected in a "Lego style" manner to generate configurations supporting various mission objectives. The development of the avionics or control systems of such a massive project will result in concurrent engineering. Also, each system will have software and the need to communicate with other (possibly heterogeneous) systems. Fortunately, this design problem has already been solved during the creation and evolution of systems such as the Internet and the Department of Defense's successful effort to standardize distributed simulation (now IEEE 1516). The solution relies on the use of a standard layered software framework and a communication protocol. A standard framework and communication protocol is suggested for the development and maintenance of Project Constellation systems. The ARINC 653 standard is a great start for such a common software framework. This paper proposes a common system software framework that uses the Real Time Publish/Subscribe protocol for framework-to-framework communication to extend ARINC 653. It is highly recommended that such a framework be established before development. This is important for the success of concurrent engineering. The framework provides an infrastructure for general system services and is designed for flexibility to support a spiral development effort.

  7. Model-theoretic framework for sensor data fusion

    NASA Astrophysics Data System (ADS)

    Zavoleas, Kyriakos P.; Kokar, Mieczyslaw M.

    1993-09-01

    The main goal of our research in sensory data fusion (SDF) is the development of a systematic approach (a methodology) to designing systems for interpreting sensory information and for reasoning about the situation based upon this information and upon available data bases and knowledge bases. To achieve such a goal, two kinds of subgoals have been set: (1) develop a theoretical framework in which rational design/implementation decisions can be made, and (2) design a prototype SDF system along the lines of the framework. Our initial design of the framework has been described in our previous papers. In this paper we concentrate on the model-theoretic aspects of this framework. We postulate that data are embedded in data models, and information processing mechanisms are embedded in model operators. The paper is devoted to analyzing the classes of model operators and their significance in SDF. We investigate transformation abstraction and fusion operators. A prototype SDF system, fusing data from range and intensity sensors, is presented, exemplifying the structures introduced. Our framework is justified by the fact that it provides modularity, traceability of information flow, and a basis for a specification language for SDF.

  8. A Conceptual Framework for Evolving, Recommender Online Learning Systems

    ERIC Educational Resources Information Center

    Peiris, K. Dharini Amitha; Gallupe, R. Brent

    2012-01-01

    A comprehensive conceptual framework is developed and described for evolving recommender-driven online learning systems (ROLS). This framework describes how such systems can support students, course authors, course instructors, systems administrators, and policy makers in developing and using these ROLS. The design science information systems…

  9. On Developing a Taxonomy for Multidisciplinary Design Optimization: A Decision-Based Perspective

    NASA Technical Reports Server (NTRS)

    Lewis, Kemper; Mistree, Farrokh

    1995-01-01

    In this paper, we approach MDO from a Decision-Based Design (DBD) perspective and explore classification schemes for designing complex systems and processes. Specifically, we focus on decisions, which are only a small portion of the Decision Support Problem (DSP) Technique, our implementation of DBD. We map coupled nonhierarchical and hierarchical representations from the DSP Technique into the Balling-Sobieski (B-S) framework (Balling and Sobieszczanski-Sobieski, 1994), and integrate domain-independent linguistic terms to complete our taxonomy. Application of DSPs to the design of complex, multidisciplinary systems include passenger aircraft, ships, damage tolerant structural and mechanical systems, and thermal energy systems. In this paper we show that Balling-Sobieski framework is consistent with that of the Decision Support Problem Technique through the use of linguistic entities to describe the same type of formulations. We show that the underlying linguistics of the solution approaches are the same and can be coalesced into a homogeneous framework with which to base the research, application, and technology MDO upon. We introduce, in the Balling-Sobieski framework, examples of multidisciplinary design, namely, aircraft, damage tolerant structural and mechanical systems, and thermal energy systems.

  10. A Systematic Approach for Quantitative Analysis of Multidisciplinary Design Optimization Framework

    NASA Astrophysics Data System (ADS)

    Kim, Sangho; Park, Jungkeun; Lee, Jeong-Oog; Lee, Jae-Woo

    An efficient Multidisciplinary Design and Optimization (MDO) framework for an aerospace engineering system should use and integrate distributed resources such as various analysis codes, optimization codes, Computer Aided Design (CAD) tools, Data Base Management Systems (DBMS), etc. in a heterogeneous environment, and need to provide user-friendly graphical user interfaces. In this paper, we propose a systematic approach for determining a reference MDO framework and for evaluating MDO frameworks. The proposed approach incorporates two well-known methods, Analytic Hierarchy Process (AHP) and Quality Function Deployment (QFD), in order to provide a quantitative analysis of the qualitative criteria of MDO frameworks. Identification and hierarchy of the framework requirements and the corresponding solutions for the reference MDO frameworks, the general one and the aircraft oriented one were carefully investigated. The reference frameworks were also quantitatively identified using AHP and QFD. An assessment of three in-house frameworks was then performed. The results produced clear and useful guidelines for improvement of the in-house MDO frameworks and showed the feasibility of the proposed approach for evaluating an MDO framework without a human interference.

  11. Rule-based graph theory to enable exploration of the space system architecture design space

    NASA Astrophysics Data System (ADS)

    Arney, Dale Curtis

    The primary goal of this research is to improve upon system architecture modeling in order to enable the exploration of design space options. A system architecture is the description of the functional and physical allocation of elements and the relationships, interactions, and interfaces between those elements necessary to satisfy a set of constraints and requirements. The functional allocation defines the functions that each system (element) performs, and the physical allocation defines the systems required to meet those functions. Trading the functionality between systems leads to the architecture-level design space that is available to the system architect. The research presents a methodology that enables the modeling of complex space system architectures using a mathematical framework. To accomplish the goal of improved architecture modeling, the framework meets five goals: technical credibility, adaptability, flexibility, intuitiveness, and exhaustiveness. The framework is technically credible, in that it produces an accurate and complete representation of the system architecture under consideration. The framework is adaptable, in that it provides the ability to create user-specified locations, steady states, and functions. The framework is flexible, in that it allows the user to model system architectures to multiple destinations without changing the underlying framework. The framework is intuitive for user input while still creating a comprehensive mathematical representation that maintains the necessary information to completely model complex system architectures. Finally, the framework is exhaustive, in that it provides the ability to explore the entire system architecture design space. After an extensive search of the literature, graph theory presents a valuable mechanism for representing the flow of information or vehicles within a simple mathematical framework. Graph theory has been used in developing mathematical models of many transportation and network flow problems in the past, where nodes represent physical locations and edges represent the means by which information or vehicles travel between those locations. In space system architecting, expressing the physical locations (low-Earth orbit, low-lunar orbit, etc.) and steady states (interplanetary trajectory) as nodes and the different means of moving between the nodes (propulsive maneuvers, etc.) as edges formulates a mathematical representation of this design space. The selection of a given system architecture using graph theory entails defining the paths that the systems take through the space system architecture graph. A path through the graph is defined as a list of edges that are traversed, which in turn defines functions performed by the system. A structure to compactly represent this information is a matrix, called the system map, in which the column indices are associated with the systems that exist and row indices are associated with the edges, or functions, to which each system has access. Several contributions have been added to the state of the art in space system architecture analysis. The framework adds the capability to rapidly explore the design space without the need to limit trade options or the need for user interaction during the exploration process. The unique mathematical representation of a system architecture, through the use of the adjacency, incidence, and system map matrices, enables automated design space exploration using stochastic optimization processes. The innovative rule-based graph traversal algorithm ensures functional feasibility of each system architecture that is analyzed, and the automatic generation of the system hierarchy eliminates the need for the user to manually determine the relationships between systems during or before the design space exploration process. Finally, the rapid evaluation of system architectures for various mission types enables analysis of the system architecture design space for multiple destinations within an evolutionary exploration program. (Abstract shortened by UMI.).

  12. The joint use of resilience engineering and lean production for work system design: A study in healthcare.

    PubMed

    Rosso, Caroline Brum; Saurin, Tarcisio Abreu

    2018-09-01

    Although lean production (LP) has been increasingly adopted in healthcare systems, its benefits often fall short of expectations. This might be partially due to the failure of lean to account for the complexity of healthcare. This paper discusses the joint use of principles of LP and resilience engineering (RE), which is an approach for system design inspired by complexity science. Thus, a framework for supporting the design of socio-technical systems, which combines insights from LP and RE, was developed and tested in a system involving a patient flow from an emergency department to an intensive care unit. Based on this empirical study, as well as on extant theory, eight design propositions that support the framework application were developed. Both the framework and its corresponding propositions can contribute to the design of socio-technical systems that are at the same time safe and efficient. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Design of the HELICS High-Performance Transmission-Distribution-Communication-Market Co-Simulation Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmintier, Bryan S; Krishnamurthy, Dheepak; Top, Philip

    This paper describes the design rationale for a new cyber-physical-energy co-simulation framework for electric power systems. This new framework will support very large-scale (100,000+ federates) co-simulations with off-the-shelf power-systems, communication, and end-use models. Other key features include cross-platform operating system support, integration of both event-driven (e.g. packetized communication) and time-series (e.g. power flow) simulation, and the ability to co-iterate among federates to ensure model convergence at each time step. After describing requirements, we begin by evaluating existing co-simulation frameworks, including HLA and FMI, and conclude that none provide the required features. Then we describe the design for the new layeredmore » co-simulation architecture.« less

  14. Design of the HELICS High-Performance Transmission-Distribution-Communication-Market Co-Simulation Framework: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmintier, Bryan S; Krishnamurthy, Dheepak; Top, Philip

    This paper describes the design rationale for a new cyber-physical-energy co-simulation framework for electric power systems. This new framework will support very large-scale (100,000+ federates) co-simulations with off-the-shelf power-systems, communication, and end-use models. Other key features include cross-platform operating system support, integration of both event-driven (e.g. packetized communication) and time-series (e.g. power flow) simulation, and the ability to co-iterate among federates to ensure model convergence at each time step. After describing requirements, we begin by evaluating existing co-simulation frameworks, including HLA and FMI, and conclude that none provide the required features. Then we describe the design for the new layeredmore » co-simulation architecture.« less

  15. Knowledge Interaction Design for Creative Knowledge Work

    NASA Astrophysics Data System (ADS)

    Nakakoji, Kumiyo; Yamamoto, Yasuhiro

    This paper describes our approach for the development of application systems for creative knowledge work, particularly for early stages of information design tasks. Being a cognitive tool serving as a means of externalization, an application system affects how the user is engaged in the creative process through its visual interaction design. Knowledge interaction design described in this paper is a framework where a set of application systems for different information design domains are developed based on an interaction model, which is designed for a particular model of a thinking process. We have developed two sets of application systems using the knowledge interaction design framework: one includes systems for linear information design, such as writing, movie-editing, and video-analysis; the other includes systems for network information design, such as file-system navigation and hypertext authoring. Our experience shows that the resulting systems encourage users to follow a certain cognitive path through graceful user experience.

  16. Integrated Systems Oriented Student-Centric Learning Environment: A Framework for Curriculum Development

    ERIC Educational Resources Information Center

    Mayur, S. Desai

    2013-01-01

    Purpose: The purpose of this paper is to propose a framework that serves as a guide to develop a curriculum and instructional strategy that is systems oriented and student-centric. Design/methodology/approach: The framework is based on the theories in the field of education by prominent researchers. The framework is divided into four sub-systems,…

  17. A Mixed Integer Efficient Global Optimization Framework: Applied to the Simultaneous Aircraft Design, Airline Allocation and Revenue Management Problem

    NASA Astrophysics Data System (ADS)

    Roy, Satadru

    Traditional approaches to design and optimize a new system, often, use a system-centric objective and do not take into consideration how the operator will use this new system alongside of other existing systems. This "hand-off" between the design of the new system and how the new system operates alongside other systems might lead to a sub-optimal performance with respect to the operator-level objective. In other words, the system that is optimal for its system-level objective might not be best for the system-of-systems level objective of the operator. Among the few available references that describe attempts to address this hand-off, most follow an MDO-motivated subspace decomposition approach of first designing a very good system and then provide this system to the operator who decides the best way to use this new system along with the existing systems. The motivating example in this dissertation presents one such similar problem that includes aircraft design, airline operations and revenue management "subspaces". The research here develops an approach that could simultaneously solve these subspaces posed as a monolithic optimization problem. The monolithic approach makes the problem a Mixed Integer/Discrete Non-Linear Programming (MINLP/MDNLP) problem, which are extremely difficult to solve. The presence of expensive, sophisticated engineering analyses further aggravate the problem. To tackle this challenge problem, the work here presents a new optimization framework that simultaneously solves the subspaces to capture the "synergism" in the problem that the previous decomposition approaches may not have exploited, addresses mixed-integer/discrete type design variables in an efficient manner, and accounts for computationally expensive analysis tools. The framework combines concepts from efficient global optimization, Kriging partial least squares, and gradient-based optimization. This approach then demonstrates its ability to solve an 11 route airline network problem consisting of 94 decision variables including 33 integer and 61 continuous type variables. This application problem is a representation of an interacting group of systems and provides key challenges to the optimization framework to solve the MINLP problem, as reflected by the presence of a moderate number of integer and continuous type design variables and expensive analysis tool. The result indicates simultaneously solving the subspaces could lead to significant improvement in the fleet-level objective of the airline when compared to the previously developed sequential subspace decomposition approach. In developing the approach to solve the MINLP/MDNLP challenge problem, several test problems provided the ability to explore performance of the framework. While solving these test problems, the framework showed that it could solve other MDNLP problems including categorically discrete variables, indicating that the framework could have broader application than the new aircraft design-fleet allocation-revenue management problem.

  18. Multidisciplinary Design Optimization of A Highly Flexible Aeroservoelastic Wing

    NASA Astrophysics Data System (ADS)

    Haghighat, Sohrab

    A multidisciplinary design optimization framework is developed that integrates control system design with aerostructural design for a highly-deformable wing. The objective of this framework is to surpass the existing aircraft endurance limits through the use of an active load alleviation system designed concurrently with the rest of the aircraft. The novelty of this work is two fold. First, a unified dynamics framework is developed to represent the full six-degree-of-freedom rigid-body along with the structural dynamics. It allows for an integrated control design to account for both manoeuvrability (flying quality) and aeroelasticity criteria simultaneously. Secondly, by synthesizing the aircraft control system along with the structural sizing and aerodynamic shape design, the final design has the potential to exploit synergies among the three disciplines and yield higher performing aircraft. A co-rotational structural framework featuring Euler--Bernoulli beam elements is developed to capture the wing's nonlinear deformations under the effect of aerodynamic and inertial loadings. In this work, a three-dimensional aerodynamic panel code, capable of calculating both steady and unsteady loadings is used. Two different control methods, a model predictive controller (MPC) and a 2-DOF mixed-norm robust controller, are considered in this work to control a highly flexible aircraft. Both control techniques offer unique advantages that make them promising for controlling a highly flexible aircraft. The control system works towards executing time-dependent manoeuvres along with performing gust/manoeuvre load alleviation. The developed framework is investigated for demonstration in two design cases: one in which the control system simply worked towards achieving or maintaining a target altitude, and another where the control system is also performing load alleviation. The use of the active load alleviation system results in a significant improvement in the aircraft performance relative to the optimum result without load alleviation. The results show that the inclusion of control system discipline along with other disciplines at early stages of aircraft design improves aircraft performance. It is also shown that structural stresses due to gust excitations can be better controlled by the use of active structural control systems which can improve the fatigue life of the structure.

  19. Using Evidence-Centered Design to Create a Special Educator Observation System

    ERIC Educational Resources Information Center

    Johnson, Evelyn S.; Crawford, Angela R.; Moylan, Laura A.; Zheng, Yuzhu

    2018-01-01

    The Evidence-Centered Design (ECD) framework was used to create a special education teacher observation system, Recognizing Effective Special Education Teachers (RESET). Extensive reviews of research informed the domain analysis and modeling stages, and led to the conceptual framework in which effective special education teaching is…

  20. Framework for Architecture Trade Study Using MBSE and Performance Simulation

    NASA Technical Reports Server (NTRS)

    Ryan, Jessica; Sarkani, Shahram; Mazzuchim, Thomas

    2012-01-01

    Increasing complexity in modern systems as well as cost and schedule constraints require a new paradigm of system engineering to fulfill stakeholder needs. Challenges facing efficient trade studies include poor tool interoperability, lack of simulation coordination (design parameters) and requirements flowdown. A recent trend toward Model Based System Engineering (MBSE) includes flexible architecture definition, program documentation, requirements traceability and system engineering reuse. As a new domain MBSE still lacks governing standards and commonly accepted frameworks. This paper proposes a framework for efficient architecture definition using MBSE in conjunction with Domain Specific simulation to evaluate trade studies. A general framework is provided followed with a specific example including a method for designing a trade study, defining candidate architectures, planning simulations to fulfill requirements and finally a weighted decision analysis to optimize system objectives.

  1. Design and Implementation of Distributed Crawler System Based on Scrapy

    NASA Astrophysics Data System (ADS)

    Fan, Yuhao

    2018-01-01

    At present, some large-scale search engines at home and abroad only provide users with non-custom search services, and a single-machine web crawler cannot sovle the difficult task. In this paper, Through the study and research of the original Scrapy framework, the original Scrapy framework is improved by combining Scrapy and Redis, a distributed crawler system based on Web information Scrapy framework is designed and implemented, and Bloom Filter algorithm is applied to dupefilter modul to reduce memory consumption. The movie information captured from douban is stored in MongoDB, so that the data can be processed and analyzed. The results show that distributed crawler system based on Scrapy framework is more efficient and stable than the single-machine web crawler system.

  2. Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation

    NASA Technical Reports Server (NTRS)

    Afjeh, Abdollah A.; Reed, John A.

    2003-01-01

    The following reports are presented on this project:A first year progress report on: Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; A second year progress report on: Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design; Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration; and Improving the Aircraft Design Process Using Web-based Modeling and Simulation.

  3. Feedback (F) Fueling Adaptation (A) Network Growth (N) and Self-Organization (S): A Complex Systems Design and Evaluation Approach to Professional Development

    ERIC Educational Resources Information Center

    Yoon, Susan A.; Klopfer, Eric

    2006-01-01

    This paper reports on the efficacy of a professional development framework premised on four complex systems design principles: Feedback, Adaptation, Network Growth and Self-organization (FANS). The framework is applied to the design and delivery of the first 2 years of a 3-year study aimed at improving teacher and student understanding of…

  4. Ontological Problem-Solving Framework for Dynamically Configuring Sensor Systems and Algorithms

    PubMed Central

    Qualls, Joseph; Russomanno, David J.

    2011-01-01

    The deployment of ubiquitous sensor systems and algorithms has led to many challenges, such as matching sensor systems to compatible algorithms which are capable of satisfying a task. Compounding the challenges is the lack of the requisite knowledge models needed to discover sensors and algorithms and to subsequently integrate their capabilities to satisfy a specific task. A novel ontological problem-solving framework has been designed to match sensors to compatible algorithms to form synthesized systems, which are capable of satisfying a task and then assigning the synthesized systems to high-level missions. The approach designed for the ontological problem-solving framework has been instantiated in the context of a persistence surveillance prototype environment, which includes profiling sensor systems and algorithms to demonstrate proof-of-concept principles. Even though the problem-solving approach was instantiated with profiling sensor systems and algorithms, the ontological framework may be useful with other heterogeneous sensing-system environments. PMID:22163793

  5. Simulation Framework for Intelligent Transportation Systems

    DOT National Transportation Integrated Search

    1996-10-01

    A simulation framework has been developed for a large-scale, comprehensive, scaleable simulation of an Intelligent Transportation System. The simulator is designed for running on parellel computers and distributed (networked) computer systems, but ca...

  6. Initial Multidisciplinary Design and Analysis Framework

    NASA Technical Reports Server (NTRS)

    Ozoroski, L. P.; Geiselhart, K. A.; Padula, S. L.; Li, W.; Olson, E. D.; Campbell, R. L.; Shields, E. W.; Berton, J. J.; Gray, J. S.; Jones, S. M.; hide

    2010-01-01

    Within the Supersonics (SUP) Project of the Fundamental Aeronautics Program (FAP), an initial multidisciplinary design & analysis framework has been developed. A set of low- and intermediate-fidelity discipline design and analysis codes were integrated within a multidisciplinary design and analysis framework and demonstrated on two challenging test cases. The first test case demonstrates an initial capability to design for low boom and performance. The second test case demonstrates rapid assessment of a well-characterized design. The current system has been shown to greatly increase the design and analysis speed and capability, and many future areas for development were identified. This work has established a state-of-the-art capability for immediate use by supersonic concept designers and systems analysts at NASA, while also providing a strong base to build upon for future releases as more multifidelity capabilities are developed and integrated.

  7. Rethinking modeling framework design: object modeling system 3.0

    USDA-ARS?s Scientific Manuscript database

    The Object Modeling System (OMS) is a framework for environmental model development, data provisioning, testing, validation, and deployment. It provides a bridge for transferring technology from the research organization to the program delivery agency. The framework provides a consistent and efficie...

  8. A framework to support decision making in the selection of sustainable drainage system design alternatives.

    PubMed

    Wang, Mingming; Sweetapple, Chris; Fu, Guangtao; Farmani, Raziyeh; Butler, David

    2017-10-01

    This paper presents a new framework for decision making in sustainable drainage system (SuDS) scheme design. It integrates resilience, hydraulic performance, pollution control, rainwater usage, energy analysis, greenhouse gas (GHG) emissions and costs, and has 12 indicators. The multi-criteria analysis methods of entropy weight and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) were selected to support SuDS scheme selection. The effectiveness of the framework is demonstrated with a SuDS case in China. Indicators used include flood volume, flood duration, a hydraulic performance indicator, cost and resilience. Resilience is an important design consideration, and it supports scheme selection in the case study. The proposed framework will help a decision maker to choose an appropriate design scheme for implementation without subjectivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A framework of knowledge creation processes in participatory simulation of hospital work systems.

    PubMed

    Andersen, Simone Nyholm; Broberg, Ole

    2017-04-01

    Participatory simulation (PS) is a method to involve workers in simulating and designing their own future work system. Existing PS studies have focused on analysing the outcome, and minimal attention has been devoted to the process of creating this outcome. In order to study this process, we suggest applying a knowledge creation perspective. The aim of this study was to develop a framework describing the process of how ergonomics knowledge is created in PS. Video recordings from three projects applying PS of hospital work systems constituted the foundation of process mining analysis. The analysis resulted in a framework revealing the sources of ergonomics knowledge creation as sequential relationships between the activities of simulation participants sharing work experiences; experimenting with scenarios; and reflecting on ergonomics consequences. We argue that this framework reveals the hidden steps of PS that are essential when planning and facilitating PS that aims at designing work systems. Practitioner Summary: When facilitating participatory simulation (PS) in work system design, achieving an understanding of the PS process is essential. By applying a knowledge creation perspective and process mining, we investigated the knowledge-creating activities constituting the PS process. The analysis resulted in a framework of the knowledge-creating process in PS.

  10. A 3D Human-Machine Integrated Design and Analysis Framework for Squat Exercises with a Smith Machine.

    PubMed

    Lee, Haerin; Jung, Moonki; Lee, Ki-Kwang; Lee, Sang Hun

    2017-02-06

    In this paper, we propose a three-dimensional design and evaluation framework and process based on a probabilistic-based motion synthesis algorithm and biomechanical analysis system for the design of the Smith machine and squat training programs. Moreover, we implemented a prototype system to validate the proposed framework. The framework consists of an integrated human-machine-environment model as well as a squat motion synthesis system and biomechanical analysis system. In the design and evaluation process, we created an integrated model in which interactions between a human body and machine or the ground are modeled as joints with constraints at contact points. Next, we generated Smith squat motion using the motion synthesis program based on a Gaussian process regression algorithm with a set of given values for independent variables. Then, using the biomechanical analysis system, we simulated joint moments and muscle activities from the input of the integrated model and squat motion. We validated the model and algorithm through physical experiments measuring the electromyography (EMG) signals, ground forces, and squat motions as well as through a biomechanical simulation of muscle forces. The proposed approach enables the incorporation of biomechanics in the design process and reduces the need for physical experiments and prototypes in the development of training programs and new Smith machines.

  11. A 3D Human-Machine Integrated Design and Analysis Framework for Squat Exercises with a Smith Machine

    PubMed Central

    Lee, Haerin; Jung, Moonki; Lee, Ki-Kwang; Lee, Sang Hun

    2017-01-01

    In this paper, we propose a three-dimensional design and evaluation framework and process based on a probabilistic-based motion synthesis algorithm and biomechanical analysis system for the design of the Smith machine and squat training programs. Moreover, we implemented a prototype system to validate the proposed framework. The framework consists of an integrated human–machine–environment model as well as a squat motion synthesis system and biomechanical analysis system. In the design and evaluation process, we created an integrated model in which interactions between a human body and machine or the ground are modeled as joints with constraints at contact points. Next, we generated Smith squat motion using the motion synthesis program based on a Gaussian process regression algorithm with a set of given values for independent variables. Then, using the biomechanical analysis system, we simulated joint moments and muscle activities from the input of the integrated model and squat motion. We validated the model and algorithm through physical experiments measuring the electromyography (EMG) signals, ground forces, and squat motions as well as through a biomechanical simulation of muscle forces. The proposed approach enables the incorporation of biomechanics in the design process and reduces the need for physical experiments and prototypes in the development of training programs and new Smith machines. PMID:28178184

  12. An Information Technology Framework for Strengthening Telehealthcare Service Delivery

    PubMed Central

    Chen, Chi-Wen; Weng, Yung-Ching; Shang, Rung-Ji; Yu, Hui-Chu; Chung, Yufang; Lai, Feipei

    2012-01-01

    Abstract Objective: Telehealthcare has been used to provide healthcare service, and information technology infrastructure appears to be essential while providing telehealthcare service. Insufficiencies have been identified, such as lack of integration, need of accommodation of diverse biometric sensors, and accessing diverse networks as different houses have varying facilities, which challenge the promotion of telehealthcare. This study designs an information technology framework to strengthen telehealthcare delivery. Materials and Methods: The proposed framework consists of a system architecture design and a network transmission design. The aim of the framework is to integrate data from existing information systems, to adopt medical informatics standards, to integrate diverse biometric sensors, and to provide different data transmission networks to support a patient's house network despite the facilities. The proposed framework has been evaluated with a case study of two telehealthcare programs, with and without the adoption of the framework. Results: The proposed framework facilitates the functionality of the program and enables steady patient enrollments. The overall patient participations are increased, and the patient outcomes appear positive. The attitudes toward the service and self-improvement also are positive. Conclusions: The findings of this study add up to the construction of a telehealthcare system. Implementing the proposed framework further assists the functionality of the service and enhances the availability of the service and patient acceptances. PMID:23061641

  13. An information technology framework for strengthening telehealthcare service delivery.

    PubMed

    Chen, Li-Chin; Chen, Chi-Wen; Weng, Yung-Ching; Shang, Rung-Ji; Yu, Hui-Chu; Chung, Yufang; Lai, Feipei

    2012-10-01

    Telehealthcare has been used to provide healthcare service, and information technology infrastructure appears to be essential while providing telehealthcare service. Insufficiencies have been identified, such as lack of integration, need of accommodation of diverse biometric sensors, and accessing diverse networks as different houses have varying facilities, which challenge the promotion of telehealthcare. This study designs an information technology framework to strengthen telehealthcare delivery. The proposed framework consists of a system architecture design and a network transmission design. The aim of the framework is to integrate data from existing information systems, to adopt medical informatics standards, to integrate diverse biometric sensors, and to provide different data transmission networks to support a patient's house network despite the facilities. The proposed framework has been evaluated with a case study of two telehealthcare programs, with and without the adoption of the framework. The proposed framework facilitates the functionality of the program and enables steady patient enrollments. The overall patient participations are increased, and the patient outcomes appear positive. The attitudes toward the service and self-improvement also are positive. The findings of this study add up to the construction of a telehealthcare system. Implementing the proposed framework further assists the functionality of the service and enhances the availability of the service and patient acceptances.

  14. Aesthetic taste versus utility: the emotional and rational of the individual.

    PubMed

    Mourthé, Claudia; Dejean, Pierre-Henri

    2012-01-01

    This article explores the development of an aesthetics framework that aims to provide designers with parameters to understand emotion, taste, and aesthetic judgment under their own cultural influence. This framework will equip designers with tangible criteria for judging cultural influences that have an impact on industrial design while preventing designers from adopting subjective options or being "followers of the current trend." To address the complexity of the topic, a systemic approach is taken so as to be able to capture its several elements. Therefore, the aesthetics framework adopts a systemic approach, which enables its constituents to be compared and the interplay or "links" between these different elements to be identified.

  15. Real Time Global Tests of the ALICE High Level Trigger Data Transport Framework

    NASA Astrophysics Data System (ADS)

    Becker, B.; Chattopadhyay, S.; Cicalo, C.; Cleymans, J.; de Vaux, G.; Fearick, R. W.; Lindenstruth, V.; Richter, M.; Rohrich, D.; Staley, F.; Steinbeck, T. M.; Szostak, A.; Tilsner, H.; Weis, R.; Vilakazi, Z. Z.

    2008-04-01

    The High Level Trigger (HLT) system of the ALICE experiment is an online event filter and trigger system designed for input bandwidths of up to 25 GB/s at event rates of up to 1 kHz. The system is designed as a scalable PC cluster, implementing several hundred nodes. The transport of data in the system is handled by an object-oriented data flow framework operating on the basis of the publisher-subscriber principle, being designed fully pipelined with lowest processing overhead and communication latency in the cluster. In this paper, we report the latest measurements where this framework has been operated on five different sites over a global north-south link extending more than 10,000 km, processing a ldquoreal-timerdquo data flow.

  16. PRISM framework: a paradigm shift for designing, strengthening and evaluating routine health information systems

    PubMed Central

    Aqil, Anwer; Lippeveld, Theo; Hozumi, Dairiku

    2009-01-01

    The utility and effectiveness of routine health information systems (RHIS) in improving health system performance in developing countries has been questioned. This paper argues that the health system needs internal mechanisms to develop performance targets, track progress, and create and manage knowledge for continuous improvement. Based on documented RHIS weaknesses, we have developed the Performance of Routine Information System Management (PRISM) framework, an innovative approach to design, strengthen and evaluate RHIS. The PRISM framework offers a paradigm shift by putting emphasis on RHIS performance and incorporating the organizational, technical and behavioural determinants of performance. By describing causal pathways of these determinants, the PRISM framework encourages and guides the development of interventions for strengthening or reforming RHIS. Furthermore, it conceptualizes and proposes a methodology for measuring the impact of RHIS on health system performance. Ultimately, the PRISM framework, in spite of its challenges and competing paradigms, proposes a new agenda for building and sustaining information systems, for the promotion of an information culture, and for encouraging accountability in health systems. PMID:19304786

  17. A Generic Guidance and Control Structure for Six-Degree-of-Freedom Conceptual Aircraft Design

    NASA Technical Reports Server (NTRS)

    Cotting, M. Christopher; Cox, Timothy H.

    2005-01-01

    A control system framework is presented for both real-time and batch six-degree-of-freedom simulation. This framework allows stabilization and control with multiple command options, from body rate control to waypoint guidance. Also, pilot commands can be used to operate the simulation in a pilot-in-the-loop environment. This control system framework is created by using direct vehicle state feedback with nonlinear dynamic inversion. A direct control allocation scheme is used to command aircraft effectors. Online B-matrix estimation is used in the control allocation algorithm for maximum algorithm flexibility. Primary uses for this framework include conceptual design and early preliminary design of aircraft, where vehicle models change rapidly and a knowledge of vehicle six-degree-of-freedom performance is required. A simulated airbreathing hypersonic vehicle and a simulated high performance fighter are controlled to demonstrate the flexibility and utility of the control system.

  18. A Model-Driven Co-Design Framework for Fusing Control and Scheduling Viewpoints.

    PubMed

    Sundharam, Sakthivel Manikandan; Navet, Nicolas; Altmeyer, Sebastian; Havet, Lionel

    2018-02-20

    Model-Driven Engineering (MDE) is widely applied in the industry to develop new software functions and integrate them into the existing run-time environment of a Cyber-Physical System (CPS). The design of a software component involves designers from various viewpoints such as control theory, software engineering, safety, etc. In practice, while a designer from one discipline focuses on the core aspects of his field (for instance, a control engineer concentrates on designing a stable controller), he neglects or considers less importantly the other engineering aspects (for instance, real-time software engineering or energy efficiency). This may cause some of the functional and non-functional requirements not to be met satisfactorily. In this work, we present a co-design framework based on timing tolerance contract to address such design gaps between control and real-time software engineering. The framework consists of three steps: controller design, verified by jitter margin analysis along with co-simulation, software design verified by a novel schedulability analysis, and the run-time verification by monitoring the execution of the models on target. This framework builds on CPAL (Cyber-Physical Action Language), an MDE design environment based on model-interpretation, which enforces a timing-realistic behavior in simulation through timing and scheduling annotations. The application of our framework is exemplified in the design of an automotive cruise control system.

  19. A Model-Driven Co-Design Framework for Fusing Control and Scheduling Viewpoints

    PubMed Central

    Navet, Nicolas; Havet, Lionel

    2018-01-01

    Model-Driven Engineering (MDE) is widely applied in the industry to develop new software functions and integrate them into the existing run-time environment of a Cyber-Physical System (CPS). The design of a software component involves designers from various viewpoints such as control theory, software engineering, safety, etc. In practice, while a designer from one discipline focuses on the core aspects of his field (for instance, a control engineer concentrates on designing a stable controller), he neglects or considers less importantly the other engineering aspects (for instance, real-time software engineering or energy efficiency). This may cause some of the functional and non-functional requirements not to be met satisfactorily. In this work, we present a co-design framework based on timing tolerance contract to address such design gaps between control and real-time software engineering. The framework consists of three steps: controller design, verified by jitter margin analysis along with co-simulation, software design verified by a novel schedulability analysis, and the run-time verification by monitoring the execution of the models on target. This framework builds on CPAL (Cyber-Physical Action Language), an MDE design environment based on model-interpretation, which enforces a timing-realistic behavior in simulation through timing and scheduling annotations. The application of our framework is exemplified in the design of an automotive cruise control system. PMID:29461489

  20. A General Cross-Layer Cloud Scheduling Framework for Multiple IoT Computer Tasks.

    PubMed

    Wu, Guanlin; Bao, Weidong; Zhu, Xiaomin; Zhang, Xiongtao

    2018-05-23

    The diversity of IoT services and applications brings enormous challenges to improving the performance of multiple computer tasks' scheduling in cross-layer cloud computing systems. Unfortunately, the commonly-employed frameworks fail to adapt to the new patterns on the cross-layer cloud. To solve this issue, we design a new computer task scheduling framework for multiple IoT services in cross-layer cloud computing systems. Specifically, we first analyze the features of the cross-layer cloud and computer tasks. Then, we design the scheduling framework based on the analysis and present detailed models to illustrate the procedures of using the framework. With the proposed framework, the IoT services deployed in cross-layer cloud computing systems can dynamically select suitable algorithms and use resources more effectively to finish computer tasks with different objectives. Finally, the algorithms are given based on the framework, and extensive experiments are also given to validate its effectiveness, as well as its superiority.

  1. Design tool for estimating chemical hydrogen storage system characteristics for light-duty fuel cell vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.

    The U.S. Department of Energy (DOE) has developed a vehicle framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to DOE’s Technical Targets using four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework model for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be easily estimated. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates the systems parameters required to run the storage system model. Additionally, this design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the framework model and compare it to the DOE Technical Targets. These models will be explained and exercised with existing hydrogen storage materials.« less

  2. Two theories/a sharper lens: the staff nurse voice in the workplace.

    PubMed

    DeMarco, Rosanna

    2002-06-01

    This paper (1) introduces the two theoretical frameworks, Silencing the Self and the Framework of Systemic Organization (2) describes the design and findings briefly of a study exploring spillover in nurses utilizing the frameworks, and (3) discusses the process and value of theory triangulation when conducting research in the context of complex nursing systems phenomena where gender, professional work, and gender identity merge. A research study was designed to analyse the actual workplace behaviours of nurses in the context of their lives at work and outside work. An exploration of theoretical frameworks that could direct the measurement of the phenomena in question led to the use of two frameworks, the Framework of Systemic Organization (Friedemann 1995) and the Silencing the Self Theory (Jack 1991), and the creation of a valid and reliable summative rating instrument (the Staff Nurse Workplace Behaviours Scale, SNWBS). A descriptive correlational design was used to measure behaviours between work and home. There were statistically significant relationships found between workplace behaviours, family behaviours, and silencing behaviours as measured by the two separate scales measuring framework concepts. Although both theories had different origins and philosophical tenets, the findings of a research study created an opportunity to integrate the concepts of each and unexpectedly increase and broaden the understanding of spillover for women who are often nurses.

  3. Implementation of sustainability in bridge design, construction and maintenance.

    DOT National Transportation Integrated Search

    2012-12-01

    The focus of this research is to develop a framework for more sustainable design and construction : processes for new bridges, and sustainable maintenance practices for existing bridges. The framework : includes a green rating system for bridges. The...

  4. Framework Programmable Platform for the Advanced Software Development Workstation: Preliminary system design document

    NASA Technical Reports Server (NTRS)

    Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Ackley, Keith A.; Crump, John W., IV; Henderson, Richard; Futrell, Michael T.

    1991-01-01

    The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software environment. Guided by the model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated. The focus here is on the design of components that make up the FPP. These components serve as supporting systems for the Integration Mechanism and the Framework Processor and provide the 'glue' that ties the FPP together. Also discussed are the components that allow the platform to operate in a distributed, heterogeneous environment and to manage the development and evolution of software system artifacts.

  5. A human-oriented framework for developing assistive service robots.

    PubMed

    McGinn, Conor; Cullinan, Michael F; Culleton, Mark; Kelly, Kevin

    2018-04-01

    Multipurpose robots that can perform a range of useful tasks have the potential to increase the quality of life for many people living with disabilities. Owing to factors such as high system complexity, as-yet unresolved research questions and current technology limitations, there is a need for effective strategies to coordinate the development process. Integrating established methodologies based on human-centred design and universal design, a framework was formulated to coordinate the robot design process over successive iterations of prototype development. An account is given of how the framework was practically applied to the problem of developing a personal service robot. Application of the framework led to the formation of several design goals which addressed a wide range of identified user needs. The resultant prototype solution, which consisted of several component elements, succeeded in demonstrating the performance stipulated by all of the proposed metrics. Application of the framework resulted in the development of a complex prototype that addressed many aspects of the functional and usability requirements of a personal service robot. Following the process led to several important insights which directly benefit the development of subsequent prototypes. Implications for Rehabilitation This research shows how universal design might be used to formulate usability requirements for assistive service robots. A framework is presented that guides the process of designing service robots in a human-centred way. Through practical application of the framework, a prototype robot system that addressed a range of identified user needs was developed.

  6. From Instructional Systems Design to Managing the Life Cycle of Knowledge in Organizations

    ERIC Educational Resources Information Center

    Salisbury, Mark

    2008-01-01

    This article describes a framework for managing the life cycle of knowledge in organizations. The framework emerges from years of work with the laboratories and facilities that are under the direction of the U.S. Department of Energy (DOE). The article begins by describing the instructional systems design (ISD) process and how it is used to…

  7. Systems science and obesity policy: a novel framework for analyzing and rethinking population-level planning.

    PubMed

    Johnston, Lee M; Matteson, Carrie L; Finegood, Diane T

    2014-07-01

    We demonstrate the use of a systems-based framework to assess solutions to complex health problems such as obesity. We coded 12 documents published between 2004 and 2013 aimed at influencing obesity planning for complex systems design (9 reports from US and Canadian governmental or health authorities, 1 Cochrane review, and 2 Institute of Medicine reports). We sorted data using the intervention-level framework (ILF), a novel solutions-oriented approach to complex problems. An in-depth comparison of 3 documents provides further insight into complexity and systems design in obesity policy. The majority of strategies focused mainly on changing the determinants of energy imbalance (food intake and physical activity). ILF analysis brings to the surface actions aimed at higher levels of system function and points to a need for more innovative policy design. Although many policymakers acknowledge obesity as a complex problem, many strategies stem from the paradigm of individual choice and are limited in scope. The ILF provides a template to encourage natural systems thinking and more strategic policy design grounded in complexity science.

  8. A Web-Based Monitoring System for Multidisciplinary Design Projects

    NASA Technical Reports Server (NTRS)

    Rogers, James L.; Salas, Andrea O.; Weston, Robert P.

    1998-01-01

    In today's competitive environment, both industry and government agencies are under pressure to reduce the time and cost of multidisciplinary design projects. New tools have been introduced to assist in this process by facilitating the integration of and communication among diverse disciplinary codes. One such tool, a framework for multidisciplinary computational environments, is defined as a hardware and software architecture that enables integration, execution, and communication among diverse disciplinary processes. An examination of current frameworks reveals weaknesses in various areas, such as sequencing, displaying, monitoring, and controlling the design process. The objective of this research is to explore how Web technology, integrated with an existing framework, can improve these areas of weakness. This paper describes a Web-based system that optimizes and controls the execution sequence of design processes; and monitors the project status and results. The three-stage evolution of the system with increasingly complex problems demonstrates the feasibility of this approach.

  9. A Conceptual Framework for Educational Design at Modular Level to Promote Transfer of Learning

    ERIC Educational Resources Information Center

    Botma, Yvonne; Van Rensburg, G. H.; Coetzee, I. M.; Heyns, T.

    2015-01-01

    Students bridge the theory-practice gap when they apply in practice what they have learned in class. A conceptual framework was developed that can serve as foundation to design for learning transfer at modular level. The framework is based on an adopted and adapted systemic model of transfer of learning, existing learning theories, constructive…

  10. Implementation of sustainable and green design and construction practices for bridges.

    DOT National Transportation Integrated Search

    2012-12-01

    The focus of this research is to develop a framework for more sustainable design and construction : processes for new bridges, and sustainable maintenance practices for existing bridges. The framework : includes a green rating system for bridges. The...

  11. Argonne Simulation Framework for Intelligent Transportation Systems

    DOT National Transportation Integrated Search

    1996-01-01

    A simulation framework has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS). The simulator is designed to run on parallel computers and distribu...

  12. A Markovian state-space framework for integrating flexibility into space system design decisions

    NASA Astrophysics Data System (ADS)

    Lafleur, Jarret M.

    The past decades have seen the state of the art in aerospace system design progress from a scope of simple optimization to one including robustness, with the objective of permitting a single system to perform well even in off-nominal future environments. Integrating flexibility, or the capability to easily modify a system after it has been fielded in response to changing environments, into system design represents a further step forward. One challenge in accomplishing this rests in that the decision-maker must consider not only the present system design decision, but also sequential future design and operation decisions. Despite extensive interest in the topic, the state of the art in designing flexibility into aerospace systems, and particularly space systems, tends to be limited to analyses that are qualitative, deterministic, single-objective, and/or limited to consider a single future time period. To address these gaps, this thesis develops a stochastic, multi-objective, and multi-period framework for integrating flexibility into space system design decisions. Central to the framework are five steps. First, system configuration options are identified and costs of switching from one configuration to another are compiled into a cost transition matrix. Second, probabilities that demand on the system will transition from one mission to another are compiled into a mission demand Markov chain. Third, one performance matrix for each design objective is populated to describe how well the identified system configurations perform in each of the identified mission demand environments. The fourth step employs multi-period decision analysis techniques, including Markov decision processes from the field of operations research, to find efficient paths and policies a decision-maker may follow. The final step examines the implications of these paths and policies for the primary goal of informing initial system selection. Overall, this thesis unifies state-centric concepts of flexibility from economics and engineering literature with sequential decision-making techniques from operations research. The end objective of this thesis’ framework and its supporting tools is to enable selection of the next-generation space systems today, tailored to decision-maker budget and performance preferences, that will be best able to adapt and perform in a future of changing environments and requirements. Following extensive theoretical development, the framework and its steps are applied to space system planning problems of (1) DARPA-motivated multiple- or distributed-payload satellite selection and (2) NASA human space exploration architecture selection.

  13. Estimating parameters with pre-specified accuracies in distributed parameter systems using optimal experiment design

    NASA Astrophysics Data System (ADS)

    Potters, M. G.; Bombois, X.; Mansoori, M.; Hof, Paul M. J. Van den

    2016-08-01

    Estimation of physical parameters in dynamical systems driven by linear partial differential equations is an important problem. In this paper, we introduce the least costly experiment design framework for these systems. It enables parameter estimation with an accuracy that is specified by the experimenter prior to the identification experiment, while at the same time minimising the cost of the experiment. We show how to adapt the classical framework for these systems and take into account scaling and stability issues. We also introduce a progressive subdivision algorithm that further generalises the experiment design framework in the sense that it returns the lowest cost by finding the optimal input signal, and optimal sensor and actuator locations. Our methodology is then applied to a relevant problem in heat transfer studies: estimation of conductivity and diffusivity parameters in front-face experiments. We find good correspondence between numerical and theoretical results.

  14. From Human Factors to Human Actors to Human Crafters: A Meta-Design Inspired Participatory Framework for Designing in Use

    ERIC Educational Resources Information Center

    Maceli, Monica Grace

    2012-01-01

    Meta-design theory emphasizes that system designers can never anticipate all future uses of their system at design time, when systems are being developed. Rather, end users shape their environments in response to emerging needs at use time. Meta-design theory suggests that systems should therefore be designed to adapt to future conditions in the…

  15. Reusable rocket engine intelligent control system framework design, phase 2

    NASA Technical Reports Server (NTRS)

    Nemeth, ED; Anderson, Ron; Ols, Joe; Olsasky, Mark

    1991-01-01

    Elements of an advanced functional framework for reusable rocket engine propulsion system control are presented for the Space Shuttle Main Engine (SSME) demonstration case. Functional elements of the baseline functional framework are defined in detail. The SSME failure modes are evaluated and specific failure modes identified for inclusion in the advanced functional framework diagnostic system. Active control of the SSME start transient is investigated, leading to the identification of a promising approach to mitigating start transient excursions. Key elements of the functional framework are simulated and demonstration cases are provided. Finally, the advanced function framework for control of reusable rocket engines is presented.

  16. Sequential-Optimization-Based Framework for Robust Modeling and Design of Heterogeneous Catalytic Systems

    DOE PAGES

    Rangarajan, Srinivas; Maravelias, Christos T.; Mavrikakis, Manos

    2017-11-09

    Here, we present a general optimization-based framework for (i) ab initio and experimental data driven mechanistic modeling and (ii) optimal catalyst design of heterogeneous catalytic systems. Both cases are formulated as a nonlinear optimization problem that is subject to a mean-field microkinetic model and thermodynamic consistency requirements as constraints, for which we seek sparse solutions through a ridge (L 2 regularization) penalty. The solution procedure involves an iterative sequence of forward simulation of the differential algebraic equations pertaining to the microkinetic model using a numerical tool capable of handling stiff systems, sensitivity calculations using linear algebra, and gradient-based nonlinear optimization.more » A multistart approach is used to explore the solution space, and a hierarchical clustering procedure is implemented for statistically classifying potentially competing solutions. An example of methanol synthesis through hydrogenation of CO and CO 2 on a Cu-based catalyst is used to illustrate the framework. The framework is fast, is robust, and can be used to comprehensively explore the model solution and design space of any heterogeneous catalytic system.« less

  17. Sequential-Optimization-Based Framework for Robust Modeling and Design of Heterogeneous Catalytic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rangarajan, Srinivas; Maravelias, Christos T.; Mavrikakis, Manos

    Here, we present a general optimization-based framework for (i) ab initio and experimental data driven mechanistic modeling and (ii) optimal catalyst design of heterogeneous catalytic systems. Both cases are formulated as a nonlinear optimization problem that is subject to a mean-field microkinetic model and thermodynamic consistency requirements as constraints, for which we seek sparse solutions through a ridge (L 2 regularization) penalty. The solution procedure involves an iterative sequence of forward simulation of the differential algebraic equations pertaining to the microkinetic model using a numerical tool capable of handling stiff systems, sensitivity calculations using linear algebra, and gradient-based nonlinear optimization.more » A multistart approach is used to explore the solution space, and a hierarchical clustering procedure is implemented for statistically classifying potentially competing solutions. An example of methanol synthesis through hydrogenation of CO and CO 2 on a Cu-based catalyst is used to illustrate the framework. The framework is fast, is robust, and can be used to comprehensively explore the model solution and design space of any heterogeneous catalytic system.« less

  18. Reactive system verification case study: Fault-tolerant transputer communication

    NASA Technical Reports Server (NTRS)

    Crane, D. Francis; Hamory, Philip J.

    1993-01-01

    A reactive program is one which engages in an ongoing interaction with its environment. A system which is controlled by an embedded reactive program is called a reactive system. Examples of reactive systems are aircraft flight management systems, bank automatic teller machine (ATM) networks, airline reservation systems, and computer operating systems. Reactive systems are often naturally modeled (for logical design purposes) as a composition of autonomous processes which progress concurrently and which communicate to share information and/or to coordinate activities. Formal (i.e., mathematical) frameworks for system verification are tools used to increase the users' confidence that a system design satisfies its specification. A framework for reactive system verification includes formal languages for system modeling and for behavior specification and decision procedures and/or proof-systems for verifying that the system model satisfies the system specifications. Using the Ostroff framework for reactive system verification, an approach to achieving fault-tolerant communication between transputers was shown to be effective. The key components of the design, the decoupler processes, may be viewed as discrete-event-controllers introduced to constrain system behavior such that system specifications are satisfied. The Ostroff framework was also effective. The expressiveness of the modeling language permitted construction of a faithful model of the transputer network. The relevant specifications were readily expressed in the specification language. The set of decision procedures provided was adequate to verify the specifications of interest. The need for improved support for system behavior visualization is emphasized.

  19. Real-time long term measurement using integrated framework for ubiquitous smart monitoring

    NASA Astrophysics Data System (ADS)

    Heo, Gwanghee; Lee, Giu; Lee, Woosang; Jeon, Joonryong; Kim, Pil-Joong

    2007-04-01

    Ubiquitous monitoring combining internet technologies and wireless communication is one of the most promising technologies of infrastructure health monitoring against the natural of man-made hazards. In this paper, an integrated framework of the ubiquitous monitoring is developed for real-time long term measurement in internet environment. This framework develops a wireless sensor system based on Bluetooth technology and sends measured acceleration data to the host computer through TCP/IP protocol. And it is also designed to respond to the request of web user on real time basis. In order to verify this system, real time monitoring tests are carried out on a prototype self-anchored suspension bridge. Also, wireless measurement system is analyzed to estimate its sensing capacity and evaluate its performance for monitoring purpose. Based on the evaluation, this paper proposes the effective strategies for integrated framework in order to detect structural deficiencies and to design an early warning system.

  20. Using the CMS threaded framework in a production environment

    DOE PAGES

    Jones, C. D.; Contreras, L.; Gartung, P.; ...

    2015-12-23

    During 2014, the CMS Offline and Computing Organization completed the necessary changes to use the CMS threaded framework in the full production environment. We will briefly discuss the design of the CMS Threaded Framework, in particular how the design affects scaling performance. We will then cover the effort involved in getting both the CMSSW application software and the workflow management system ready for using multiple threads for production. Finally, we will present metrics on the performance of the application and workflow system as well as the difficulties which were uncovered. As a result, we will end with CMS' plans formore » using the threaded framework to do production for LHC Run 2.« less

  1. Design tool for estimating chemical hydrogen storage system characteristics for light-duty fuel cell vehicles

    DOE PAGES

    Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.; ...

    2018-04-07

    The U.S. Department of Energy (DOE) developed a vehicle Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to Technical Targets established by DOE for four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be estimated easily. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates system parameters required to run the storage system model. Additionally, the design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the Framework model. Here, these models will be explained and exercised with the representative hydrogen storage materials exothermic ammonia borane (NH 3BH 3) and endothermic alane (AlH 3).« less

  2. Design tool for estimating chemical hydrogen storage system characteristics for light-duty fuel cell vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.

    The U.S. Department of Energy (DOE) developed a vehicle Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to Technical Targets established by DOE for four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be estimated easily. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates system parameters required to run the storage system model. Additionally, the design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the Framework model. Here, these models will be explained and exercised with the representative hydrogen storage materials exothermic ammonia borane (NH 3BH 3) and endothermic alane (AlH 3).« less

  3. A Real-Time Data Acquisition and Processing Framework Based on FlexRIO FPGA and ITER Fast Plant System Controller

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zheng, W.; Zhang, M.; Yuan, T.; Zhuang, G.; Pan, Y.

    2016-06-01

    Measurement and control of the plasma in real-time are critical for advanced Tokamak operation. It requires high speed real-time data acquisition and processing. ITER has designed the Fast Plant System Controllers (FPSC) for these purposes. At J-TEXT Tokamak, a real-time data acquisition and processing framework has been designed and implemented using standard ITER FPSC technologies. The main hardware components of this framework are an Industrial Personal Computer (IPC) with a real-time system and FlexRIO devices based on FPGA. With FlexRIO devices, data can be processed by FPGA in real-time before they are passed to the CPU. The software elements are based on a real-time framework which runs under Red Hat Enterprise Linux MRG-R and uses Experimental Physics and Industrial Control System (EPICS) for monitoring and configuring. That makes the framework accord with ITER FPSC standard technology. With this framework, any kind of data acquisition and processing FlexRIO FPGA program can be configured with a FPSC. An application using the framework has been implemented for the polarimeter-interferometer diagnostic system on J-TEXT. The application is able to extract phase-shift information from the intermediate frequency signal produced by the polarimeter-interferometer diagnostic system and calculate plasma density profile in real-time. Different algorithms implementations on the FlexRIO FPGA are compared in the paper.

  4. Designing Business Games for the Service Industries.

    ERIC Educational Resources Information Center

    Sculli, Domenic; Ng, Wing Cheong

    1985-01-01

    Presents a conceptual framework for design of business games in which output is in the form of service. The framework is presented as three separate systems--the physical, the financial, and the external environment. A hotel management game is used to illustrate the discussion. (Author/MBR)

  5. Developing a framework for qualitative engineering: Research in design and analysis of complex structural systems

    NASA Technical Reports Server (NTRS)

    Franck, Bruno M.

    1990-01-01

    The research is focused on automating the evaluation of complex structural systems, whether for the design of a new system or the analysis of an existing one, by developing new structural analysis techniques based on qualitative reasoning. The problem is to identify and better understand: (1) the requirements for the automation of design, and (2) the qualitative reasoning associated with the conceptual development of a complex system. The long-term objective is to develop an integrated design-risk assessment environment for the evaluation of complex structural systems. The scope of this short presentation is to describe the design and cognition components of the research. Design has received special attention in cognitive science because it is now identified as a problem solving activity that is different from other information processing tasks (1). Before an attempt can be made to automate design, a thorough understanding of the underlying design theory and methodology is needed, since the design process is, in many cases, multi-disciplinary, complex in size and motivation, and uses various reasoning processes involving different kinds of knowledge in ways which vary from one context to another. The objective is to unify all the various types of knowledge under one framework of cognition. This presentation focuses on the cognitive science framework that we are using to represent the knowledge aspects associated with the human mind's abstraction abilities and how we apply it to the engineering knowledge and engineering reasoning in design.

  6. On extracting design principles from biology: I. Method-General answers to high-level design questions for bioinspired robots.

    PubMed

    Haberland, M; Kim, S

    2015-02-02

    When millions of years of evolution suggest a particular design solution, we may be tempted to abandon traditional design methods and copy the biological example. However, biological solutions do not often translate directly into the engineering domain, and even when they do, copying eliminates the opportunity to improve. A better approach is to extract design principles relevant to the task of interest, incorporate them in engineering designs, and vet these candidates against others. This paper presents the first general framework for determining whether biologically inspired relationships between design input variables and output objectives and constraints are applicable to a variety of engineering systems. Using optimization and statistics to generalize the results beyond a particular system, the framework overcomes shortcomings observed of ad hoc methods, particularly those used in the challenging study of legged locomotion. The utility of the framework is demonstrated in a case study of the relative running efficiency of rotary-kneed and telescoping-legged robots.

  7. Toward a More Flexible Web-Based Framework for Multidisciplinary Design

    NASA Technical Reports Server (NTRS)

    Rogers, J. L.; Salas, A. O.

    1999-01-01

    In today's competitive environment, both industry and government agencies are under pressure to reduce the time and cost of multidisciplinary design projects. New tools have been introduced to assist in this process by facilitating the integration of and communication among diverse disciplinary codes. One such tool, a framework for multidisciplinary design, is defined as a hardware-software architecture that enables integration, execution, and communication among diverse disciplinary processes. An examination of current frameworks reveals weaknesses in various areas, such as sequencing, monitoring, controlling, and displaying the design process. The objective of this research is to explore how Web technology can improve these areas of weakness and lead toward a more flexible framework. This article describes a Web-based system that optimizes and controls the execution sequence of design processes in addition to monitoring the project status and displaying the design results.

  8. System of systems design: Evaluating aircraft in a fleet context using reliability and non-deterministic approaches

    NASA Astrophysics Data System (ADS)

    Frommer, Joshua B.

    This work develops and implements a solution framework that allows for an integrated solution to a resource allocation system-of-systems problem associated with designing vehicles for integration into an existing fleet to extend that fleet's capability while improving efficiency. Typically, aircraft design focuses on using a specific design mission while a fleet perspective would provide a broader capability. Aspects of design for both the vehicles and missions may be, for simplicity, deterministic in nature or, in a model that reflects actual conditions, uncertain. Toward this end, the set of tasks or goals for the to-be-planned system-of-systems will be modeled more accurately with non-deterministic values, and the designed platforms will be evaluated using reliability analysis. The reliability, defined as the probability of a platform or set of platforms to complete possible missions, will contribute to the fitness of the overall system. The framework includes building surrogate models for metrics such as capability and cost, and includes the ideas of reliability in the overall system-level design space. The concurrent design and allocation system-of-systems problem is a multi-objective mixed integer nonlinear programming (MINLP) problem. This study considered two system-of-systems problems that seek to simultaneously design new aircraft and allocate these aircraft into a fleet to provide a desired capability. The Coast Guard's Integrated Deepwater System program inspired the first problem, which consists of a suite of search-and-find missions for aircraft based on descriptions from the National Search and Rescue Manual. The second represents suppression of enemy air defense operations similar to those carried out by the U.S. Air Force, proposed as part of the Department of Defense Network Centric Warfare structure, and depicted in MILSTD-3013. The two problems seem similar, with long surveillance segments, but because of the complex nature of aircraft design, the analysis of the vehicle for high-speed attack combined with a long loiter period is considerably different from that for quick cruise to an area combined with a low speed search. However, the framework developed to solve this class of system-of-systems problem handles both scenarios and leads to a solution type for this kind of problem. On the vehicle-level of the problem, different technology can have an impact on the fleet-level. One such technology is Morphing, the ability to change shape, which is an ideal candidate technology for missions with dissimilar segments, such as the aforementioned two. A framework, using surrogate models based on optimally-sized aircraft, and using probabilistic parameters to define a concept of operations, is investigated; this has provided insight into the setup of the optimization problem, the use of the reliability metric, and the measurement of fleet level impacts of morphing aircraft. The research consisted of four phases. The two initial phases built and defined the framework to solve system-of-systems problem; these investigations used the search-and-find scenario as the example application. The first phase included the design of fixed-geometry and morphing aircraft for a range of missions and evaluated the aircraft capability using non-deterministic mission parameters. The second phase introduced the idea of multiple aircraft in a fleet, but only considered a fleet consisting of one aircraft type. The third phase incorporated the simultaneous design of a new vehicle and allocation into a fleet for the search-and-find scenario; in this phase, multiple types of aircraft are considered. The fourth phase repeated the simultaneous new aircraft design and fleet allocation for the SEAD scenario to show that the approach is not specific to the search-and-find scenario. The framework presented in this work appears to be a viable approach for concurrently designing and allocating constituents in a system, specifically aircraft in a fleet. The research also shows that new technology impact can be assessed at the fleet level using conceptual design principles.

  9. Development of a conceptual framework toward an integrated transportation system (continued).

    DOT National Transportation Integrated Search

    2011-07-01

    As a continuing effort documented in the first phase project UMAR19-13, this research focuses : on the design of a prototype application under the framework toward an Integrated : Transportation System. More specifically, this research aims at improv...

  10. Development of bilateral data transferability in the Virginia Department of Transportation's Geotechnical Database Management System Framework.

    DOT National Transportation Integrated Search

    2006-01-01

    An Internet-based, spatiotemporal Geotechnical Database Management System (GDBMS) Framework was designed, developed, and implemented at the Virginia Department of Transportation (VDOT) in 2002 to retrieve, manage, archive, and analyze geotechnical da...

  11. Framework for evaluating public health surveillance systems for early detection of outbreaks: recommendations from the CDC Working Group.

    PubMed

    Buehler, James W; Hopkins, Richard S; Overhage, J Marc; Sosin, Daniel M; Tong, Van

    2004-05-07

    The threat of terrorism and high-profile disease outbreaks has drawn attention to public health surveillance systems for early detection of outbreaks. State and local health departments are enhancing existing surveillance systems and developing new systems to better detect outbreaks through public health surveillance. However, information is limited about the usefulness of surveillance systems for outbreak detection or the best ways to support this function. This report supplements previous guidelines for evaluating public health surveillance systems. Use of this framework is intended to improve decision-making regarding the implementation of surveillance for outbreak detection. Use of a standardized evaluation methodology, including description of system design and operation, also will enhance the exchange of information regarding methods to improve early detection of outbreaks. The framework directs particular attention to the measurement of timeliness and validity for outbreak detection. The evaluation framework is designed to support assessment and description of all surveillance approaches to early detection, whether through traditional disease reporting, specialized analytic routines for aberration detection, or surveillance using early indicators of disease outbreaks, such as syndromic surveillance.

  12. The Customer Flow Toolkit: A Framework for Designing High Quality Customer Services.

    ERIC Educational Resources Information Center

    New York Association of Training and Employment Professionals, Albany.

    This document presents a toolkit to assist staff involved in the design and development of New York's one-stop system. Section 1 describes the preplanning issues to be addressed and the intended outcomes that serve as the framework for creation of the customer flow toolkit. Section 2 outlines the following strategies to assist in designing local…

  13. A framework for designing and analyzing binary decision-making strategies in cellular systems†

    PubMed Central

    Porter, Joshua R.; Andrews, Burton W.; Iglesias, Pablo A.

    2015-01-01

    Cells make many binary (all-or-nothing) decisions based on noisy signals gathered from their environment and processed through noisy decision-making pathways. Reducing the effect of noise to improve the fidelity of decision-making comes at the expense of increased complexity, creating a tradeoff between performance and metabolic cost. We present a framework based on rate distortion theory, a branch of information theory, to quantify this tradeoff and design binary decision-making strategies that balance low cost and accuracy in optimal ways. With this framework, we show that several observed behaviors of binary decision-making systems, including random strategies, hysteresis, and irreversibility, are optimal in an information-theoretic sense for various situations. This framework can also be used to quantify the goals around which a decision-making system is optimized and to evaluate the optimality of cellular decision-making systems by a fundamental information-theoretic criterion. As proof of concept, we use the framework to quantify the goals of the externally triggered apoptosis pathway. PMID:22370552

  14. Surrogate assisted multidisciplinary design optimization for an all-electric GEO satellite

    NASA Astrophysics Data System (ADS)

    Shi, Renhe; Liu, Li; Long, Teng; Liu, Jian; Yuan, Bin

    2017-09-01

    State-of-the-art all-electric geostationary earth orbit (GEO) satellites use electric thrusters to execute all propulsive duties, which significantly differ from the traditional all-chemical ones in orbit-raising, station-keeping, radiation damage protection, and power budget, etc. Design optimization task of an all-electric GEO satellite is therefore a complex multidisciplinary design optimization (MDO) problem involving unique design considerations. However, solving the all-electric GEO satellite MDO problem faces big challenges in disciplinary modeling techniques and efficient optimization strategy. To address these challenges, we presents a surrogate assisted MDO framework consisting of several modules, i.e., MDO problem definition, multidisciplinary modeling, multidisciplinary analysis (MDA), and surrogate assisted optimizer. Based on the proposed framework, the all-electric GEO satellite MDO problem is formulated to minimize the total mass of the satellite system under a number of practical constraints. Then considerable efforts are spent on multidisciplinary modeling involving geosynchronous transfer, GEO station-keeping, power, thermal control, attitude control, and structure disciplines. Since orbit dynamics models and finite element structural model are computationally expensive, an adaptive response surface surrogate based optimizer is incorporated in the proposed framework to solve the satellite MDO problem with moderate computational cost, where a response surface surrogate is gradually refined to represent the computationally expensive MDA process. After optimization, the total mass of the studied GEO satellite is decreased by 185.3 kg (i.e., 7.3% of the total mass). Finally, the optimal design is further discussed to demonstrate the effectiveness of our proposed framework to cope with the all-electric GEO satellite system design optimization problems. This proposed surrogate assisted MDO framework can also provide valuable references for other all-electric spacecraft system design.

  15. Multi-Scale Multi-Domain Model | Transportation Research | NREL

    Science.gov Websites

    framework for NREL's MSMD model. NREL's MSMD model quantifies the impacts of electrical/thermal pathway : NREL Macroscopic design factors and highly dynamic environmental conditions significantly influence the design of affordable, long-lasting, high-performing, and safe large battery systems. The MSMD framework

  16. A Framework for Open, Flexible and Distributed Learning.

    ERIC Educational Resources Information Center

    Khan, Badrul H.

    Designing open, flexible distance learning systems on the World Wide Web requires thoughtful analysis and investigation combined with an understanding of both the Web's attributes and resources and the ways instructional design principles can be applied to tap the Web's potential. A framework for open, flexible, and distributed learning has been…

  17. An interdisciplinary team communication framework and its application to healthcare 'e-teams' systems design

    PubMed Central

    2009-01-01

    Background There are few studies that examine the processes that interdisciplinary teams engage in and how we can design health information systems (HIS) to support those team processes. This was an exploratory study with two purposes: (1) To develop a framework for interdisciplinary team communication based on structures, processes and outcomes that were identified as having occurred during weekly team meetings. (2) To use the framework to guide 'e-teams' HIS design to support interdisciplinary team meeting communication. Methods An ethnographic approach was used to collect data on two interdisciplinary teams. Qualitative content analysis was used to analyze the data according to structures, processes and outcomes. Results We present details for team meta-concepts of structures, processes and outcomes and the concepts and sub concepts within each meta-concept. We also provide an exploratory framework for interdisciplinary team communication and describe how the framework can guide HIS design to support 'e-teams'. Conclusion The structures, processes and outcomes that describe interdisciplinary teams are complex and often occur in a non-linear fashion. Electronic data support, process facilitation and team video conferencing are three HIS tools that can enhance team function. PMID:19754966

  18. An interdisciplinary team communication framework and its application to healthcare 'e-teams' systems design.

    PubMed

    Kuziemsky, Craig E; Borycki, Elizabeth M; Purkis, Mary Ellen; Black, Fraser; Boyle, Michael; Cloutier-Fisher, Denise; Fox, Lee Ann; MacKenzie, Patricia; Syme, Ann; Tschanz, Coby; Wainwright, Wendy; Wong, Helen

    2009-09-15

    There are few studies that examine the processes that interdisciplinary teams engage in and how we can design health information systems (HIS) to support those team processes. This was an exploratory study with two purposes: (1) To develop a framework for interdisciplinary team communication based on structures, processes and outcomes that were identified as having occurred during weekly team meetings. (2) To use the framework to guide 'e-teams' HIS design to support interdisciplinary team meeting communication. An ethnographic approach was used to collect data on two interdisciplinary teams. Qualitative content analysis was used to analyze the data according to structures, processes and outcomes. We present details for team meta-concepts of structures, processes and outcomes and the concepts and sub concepts within each meta-concept. We also provide an exploratory framework for interdisciplinary team communication and describe how the framework can guide HIS design to support 'e-teams'. The structures, processes and outcomes that describe interdisciplinary teams are complex and often occur in a non-linear fashion. Electronic data support, process facilitation and team video conferencing are three HIS tools that can enhance team function.

  19. Brain imaging registry for neurologic diagnosis and research

    NASA Astrophysics Data System (ADS)

    Hoo, Kent S., Jr.; Wong, Stephen T. C.; Knowlton, Robert C.; Young, Geoffrey S.; Walker, John; Cao, Xinhua; Dillon, William P.; Hawkins, Randall A.; Laxer, Kenneth D.

    2002-05-01

    The purpose of this paper is to demonstrate the importance of building a brain imaging registry (BIR) on top of existing medical information systems including Picture Archiving Communication Systems (PACS) environment. We describe the design framework for a cluster of data marts whose purpose is to provide clinicians and researchers efficient access to a large volume of raw and processed patient images and associated data originating from multiple operational systems over time and spread out across different hospital departments and laboratories. The framework is designed using object-oriented analysis and design methodology. The BIR data marts each contain complete image and textual data relating to patients with a particular disease.

  20. The Command and Control of the Grand Armee: Napoleon as Organizational Designer

    DTIC Science & Technology

    2009-06-01

    AUTHOR(S) Norman L. Durham 5. FUNDING NUMBERS 7 . PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000...served as the framework for a highly effective command and control system. This command and control network allowed Napoleon to dominate a war with...within his organizational design was a vast information network that served as the framework for a highly effective command and control system. This

  1. Distributed software framework and continuous integration in hydroinformatics systems

    NASA Astrophysics Data System (ADS)

    Zhou, Jianzhong; Zhang, Wei; Xie, Mengfei; Lu, Chengwei; Chen, Xiao

    2017-08-01

    When encountering multiple and complicated models, multisource structured and unstructured data, complex requirements analysis, the platform design and integration of hydroinformatics systems become a challenge. To properly solve these problems, we describe a distributed software framework and it’s continuous integration process in hydroinformatics systems. This distributed framework mainly consists of server cluster for models, distributed database, GIS (Geographic Information System) servers, master node and clients. Based on it, a GIS - based decision support system for joint regulating of water quantity and water quality of group lakes in Wuhan China is established.

  2. SYFSA: A Framework for Systematic Yet Flexible Systems Analysis

    PubMed Central

    Johnson, Todd R.; Markowitz, Eliz; Bernstam, Elmer V.; Herskovic, Jorge R.; Thimbleby, Harold

    2013-01-01

    Although technological or organizational systems that enforce systematic procedures and best practices can lead to improvements in quality, these systems must also be designed to allow users to adapt to the inherent uncertainty, complexity, and variations in healthcare. We present a framework, called Systematic Yet Flexible Systems Analysis (SYFSA) that supports the design and analysis of Systematic Yet Flexible (SYF) systems (whether organizational or technical) by formally considering the tradeoffs between systematicity and flexibility. SYFSA is based on analyzing a task using three related problem spaces: the idealized space, the natural space, and the system space. The idealized space represents the best practice—how the task is to be accomplished under ideal conditions. The natural space captures the task actions and constraints on how the task is currently done. The system space specifies how the task is done in a redesigned system, including how it may deviate from the idealized space, and how the system supports or enforces task constraints. The goal of the framework is to support the design of systems that allow graceful degradation from the idealized space to the natural space. We demonstrate the application of SYFSA for the analysis of a simplified central line insertion task. We also describe several information-theoretic measures of flexibility that can be used to compare alternative designs, and to measure how efficiently a system supports a given task, the relative cognitive workload, and learnability. PMID:23727053

  3. Development of Network Interface Cards for TRIDAQ systems with the NaNet framework

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Cretaro, P.; Di Lorenzo, S.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Valente, P.; Vicini, P.

    2017-03-01

    NaNet is a framework for the development of FPGA-based PCI Express (PCIe) Network Interface Cards (NICs) with real-time data transport architecture that can be effectively employed in TRIDAQ systems. Key features of the architecture are the flexibility in the configuration of the number and kind of the I/O channels, the hardware offloading of the network protocol stack, the stream processing capability, and the zero-copy CPU and GPU Remote Direct Memory Access (RDMA). Three NIC designs have been developed with the NaNet framework: NaNet-1 and NaNet-10 for the CERN NA62 low level trigger and NaNet3 for the KM3NeT-IT underwater neutrino telescope DAQ system. We will focus our description on the NaNet-10 design, as it is the most complete of the three in terms of capabilities and integrated IPs of the framework.

  4. Review article: A systematic review of emergency department incident classification frameworks.

    PubMed

    Murray, Matthew; McCarthy, Sally

    2018-06-01

    As in any part of the hospital system, safety incidents can occur in the ED. These incidents arguably have a distinct character, as the ED involves unscheduled flows of urgent patients who require disparate services. To aid understanding of safety issues and support risk management of the ED, a comparison of published ED specific incident classification frameworks was performed. A review of emergency medicine, health management and general medical publications, using Ovid SP to interrogate Medline (1976-2016) was undertaken to identify any type of taxonomy or classification-like framework for ED related incidents. These frameworks were then analysed and compared. The review identified 17 publications containing an incident classification framework. Comparison of factors and themes making up the classification constituent elements revealed some commonality, but no overall consistency, nor evolution towards an ideal framework. Inconsistency arises from differences in the evidential basis and design methodology of classifications, with design itself being an inherently subjective process. It was not possible to identify an 'ideal' incident classification framework for ED risk management, and there is significant variation in the selection of categories used by frameworks. The variation in classification could risk an unbalanced emphasis in findings through application of a particular framework. Design of an ED specific, ideal incident classification framework should be informed by a much wider range of theories of how organisations and systems work, in addition to clinical and human factors. © 2017 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  5. Activity Theory Framework and Cognitive Perspectives in Designing Technology-Based Support Systems.

    ERIC Educational Resources Information Center

    Sheu, Feng-Ru

    With the increased demand and interest in electronic performance support systems (EPSS), particularly for supporting knowledge-based problems solving expertise in the information age (Gustafson, 2000; Dickelman, 2000; Kasvi & Vartiainen, 2000), instructional designers are facing a new challenge designing a system that could deliver (or…

  6. A Health Systems Approach to Integrated Community Case Management of Childhood Illness: Methods and Tools

    PubMed Central

    McGorman, Laura; Marsh, David R.; Guenther, Tanya; Gilroy, Kate; Barat, Lawrence M.; Hammamy, Diaa; Wansi, Emmanuel; Peterson, Stefan; Hamer, Davidson H.; George, Asha

    2012-01-01

    Integrated community case management (iCCM) of childhood illness is an increasingly popular strategy to expand life-saving health services to underserved communities. However, community health approaches vary widely across countries and do not always distribute resources evenly across local health systems. We present a harmonized framework, developed through interagency consultation and review, which supports the design of CCM by using a systems approach. To verify that the framework produces results, we also suggest a list of complementary indicators, including nine global metrics, and a menu of 39 country-specific measures. When used by program managers and evaluators, we propose that the framework and indicators can facilitate the design, implementation, and evaluation of community case management. PMID:23136280

  7. Feasibility study of an Integrated Program for Aerospace-vehicle Design (IPAD) system. Volume 5: Design of the IPAD system. Part 2: System design. Part 3: General purpose utilities, phase 1, task 2

    NASA Technical Reports Server (NTRS)

    Garrocq, C. A.; Hurley, M. J.

    1973-01-01

    Viable designs are presented of various elements of the IPAD framework software, data base management system, and required new languages in relation to the capabilities of operating systems software. A thorough evaluation was made of the basic systems functions to be provide by each software element, its requirements defined in the conceptual design, the operating systems features affecting its design, and the engineering/design functions which it was intended to enhance.

  8. National Ecosystem Services Classification System (NESCS): Framework Design and Policy Application

    EPA Science Inventory

    Understanding the ways in which ecosystems provide flows of “services” to humans is critical for decision making in many contexts; however, relationships between natural and human systems are complex. A well-defined framework for classifying ecosystem services is essential for sy...

  9. A generalizable NLP framework for fast development of pattern-based biomedical relation extraction systems.

    PubMed

    Peng, Yifan; Torii, Manabu; Wu, Cathy H; Vijay-Shanker, K

    2014-08-23

    Text mining is increasingly used in the biomedical domain because of its ability to automatically gather information from large amount of scientific articles. One important task in biomedical text mining is relation extraction, which aims to identify designated relations among biological entities reported in literature. A relation extraction system achieving high performance is expensive to develop because of the substantial time and effort required for its design and implementation. Here, we report a novel framework to facilitate the development of a pattern-based biomedical relation extraction system. It has several unique design features: (1) leveraging syntactic variations possible in a language and automatically generating extraction patterns in a systematic manner, (2) applying sentence simplification to improve the coverage of extraction patterns, and (3) identifying referential relations between a syntactic argument of a predicate and the actual target expected in the relation extraction task. A relation extraction system derived using the proposed framework achieved overall F-scores of 72.66% for the Simple events and 55.57% for the Binding events on the BioNLP-ST 2011 GE test set, comparing favorably with the top performing systems that participated in the BioNLP-ST 2011 GE task. We obtained similar results on the BioNLP-ST 2013 GE test set (80.07% and 60.58%, respectively). We conducted additional experiments on the training and development sets to provide a more detailed analysis of the system and its individual modules. This analysis indicates that without increasing the number of patterns, simplification and referential relation linking play a key role in the effective extraction of biomedical relations. In this paper, we present a novel framework for fast development of relation extraction systems. The framework requires only a list of triggers as input, and does not need information from an annotated corpus. Thus, we reduce the involvement of domain experts, who would otherwise have to provide manual annotations and help with the design of hand crafted patterns. We demonstrate how our framework is used to develop a system which achieves state-of-the-art performance on a public benchmark corpus.

  10. System modeling with the DISC framework: evidence from safety-critical domains.

    PubMed

    Reiman, Teemu; Pietikäinen, Elina; Oedewald, Pia; Gotcheva, Nadezhda

    2012-01-01

    The objective of this paper is to illustrate the development and application of the Design for Integrated Safety Culture (DISC) framework for system modeling by evaluating organizational potential for safety in nuclear and healthcare domains. The DISC framework includes criteria for good safety culture and a description of functions that the organization needs to implement in order to orient the organization toward the criteria. Three case studies will be used to illustrate the utilization of the DISC framework in practice.

  11. [Computer aided design for fixed partial denture framework based on reverse engineering technology].

    PubMed

    Sun, Yu-chun; Lü, Pei-jun; Wang, Yong

    2006-03-01

    To explore a computer aided design (CAD) route for the framework of domestic fixed partial denture (FPD) and confirm the suitable method of 3-D CAD. The working area of a dentition model was scanned with a 3-D mechanical scanner. Using the reverse engineering (RE) software, margin and border curves were extracted and several reference curves were created to ensure the dimension and location of pontic framework that was taken from the standard database. The shoulder parts of the retainers were created after axial surfaces constructed. The connecting areas, axial line and curving surface of the framework connector were finally created. The framework of a three-unit FPD was designed with RE technology, which showed smooth surfaces and continuous contours. The design route is practical. The result of this study is significant in theory and practice, which will provide a reference for establishing the computer aided design/computer aided manufacture (CAD/CAM) system of domestic FPD.

  12. CAD-Based Aerodynamic Design of Complex Configurations using a Cartesian Method

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.

    2003-01-01

    A modular framework for aerodynamic optimization of complex geometries is developed. By working directly with a parametric CAD system, complex-geometry models are modified nnd tessellated in an automatic fashion. The use of a component-based Cartesian method significantly reduces the demands on the CAD system, and also provides for robust and efficient flowfield analysis. The optimization is controlled using either a genetic or quasi-Newton algorithm. Parallel efficiency of the framework is maintained even when subject to limited CAD resources by dynamically re-allocating the processors of the flow solver. Overall, the resulting framework can explore designs incorporating large shape modifications and changes in topology.

  13. The blackboard model - A framework for integrating multiple cooperating expert systems

    NASA Technical Reports Server (NTRS)

    Erickson, W. K.

    1985-01-01

    The use of an artificial intelligence (AI) architecture known as the blackboard model is examined as a framework for designing and building distributed systems requiring the integration of multiple cooperating expert systems (MCXS). Aerospace vehicles provide many examples of potential systems, ranging from commercial and military aircraft to spacecraft such as satellites, the Space Shuttle, and the Space Station. One such system, free-flying, spaceborne telerobots to be used in construction, servicing, inspection, and repair tasks around NASA's Space Station, is examined. The major difficulties found in designing and integrating the individual expert system components necessary to implement such a robot are outlined. The blackboard model, a general expert system architecture which seems to address many of the problems found in designing and building such a system, is discussed. A progress report on a prototype system under development called DBB (Distributed BlackBoard model) is given. The prototype will act as a testbed for investigating the feasibility, utility, and efficiency of MCXS-based designs developed under the blackboard model.

  14. Efficient evaluation of wireless real-time control networks.

    PubMed

    Horvath, Peter; Yampolskiy, Mark; Koutsoukos, Xenofon

    2015-02-11

    In this paper, we present a system simulation framework for the design and performance evaluation of complex wireless cyber-physical systems. We describe the simulator architecture and the specific developments that are required to simulate cyber-physical systems relying on multi-channel, multihop mesh networks. We introduce realistic and efficient physical layer models and a system simulation methodology, which provides statistically significant performance evaluation results with low computational complexity. The capabilities of the proposed framework are illustrated in the example of WirelessHART, a centralized, real-time, multi-hop mesh network designed for industrial control and monitor applications.

  15. A Web-Based System for Monitoring and Controlling Multidisciplinary Design Projects

    NASA Technical Reports Server (NTRS)

    Salas, Andrea O.; Rogers, James L.

    1997-01-01

    In today's competitive environment, both industry and government agencies are under enormous pressure to reduce the time and cost of multidisciplinary design projects. A number of frameworks have been introduced to assist in this process by facilitating the integration of and communication among diverse disciplinary codes. An examination of current frameworks reveals weaknesses in various areas such as sequencing, displaying, monitoring, and controlling the design process. The objective of this research is to explore how Web technology, in conjunction with an existing framework, can improve these areas of weakness. This paper describes a system that executes a sequence of programs, monitors and controls the design process through a Web-based interface, and visualizes intermediate and final results through the use of Java(Tm) applets. A small sample problem, which includes nine processes with two analysis programs that are coupled to an optimizer, is used to demonstrate the feasibility of this approach.

  16. Extending the FairRoot framework to allow for simulation and reconstruction of free streaming data

    NASA Astrophysics Data System (ADS)

    Al-Turany, M.; Klein, D.; Manafov, A.; Rybalchenko, A.; Uhlig, F.

    2014-06-01

    The FairRoot framework is the standard framework for simulation, reconstruction and data analysis for the FAIR experiments. The framework is designed to optimise the accessibility for beginners and developers, to be flexible and to cope with future developments. FairRoot enhances the synergy between the different physics experiments. As a first step toward simulation of free streaming data, the time based simulation was introduced to the framework. The next step is the event source simulation. This is achieved via a client server system. After digitization the so called "samplers" can be started, where sampler can read the data of the corresponding detector from the simulation files and make it available for the reconstruction clients. The system makes it possible to develop and validate the online reconstruction algorithms. In this work, the design and implementation of the new architecture and the communication layer will be described.

  17. Software Engineering Support of the Third Round of Scientific Grand Challenge Investigations: An Earth Modeling System Software Framework Strawman Design that Integrates Cactus and UCLA/UCB Distributed Data Broker

    NASA Technical Reports Server (NTRS)

    Talbot, Bryan; Zhou, Shu-Jia; Higgins, Glenn

    2002-01-01

    One of the most significant challenges in large-scale climate modeling, as well as in high-performance computing in other scientific fields, is that of effectively integrating many software models from multiple contributors. A software framework facilitates the integration task. both in the development and runtime stages of the simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them to focus more on the science and less on the parallel communication implementation, while maintaining high performance across numerous supercomputer and workstation architectures. This document proposes a strawman framework design for the climate community based on the integration of Cactus, from the relativistic physics community, and UCLA/UCB Distributed Data Broker (DDB) from the climate community. This design is the result of an extensive survey of climate models and frameworks in the climate community as well as frameworks from many other scientific communities. The design addresses fundamental development and runtime needs using Cactus, a framework with interfaces for FORTRAN and C-based languages, and high-performance model communication needs using DDB. This document also specifically explores object-oriented design issues in the context of climate modeling as well as climate modeling issues in terms of object-oriented design.

  18. Information system modeling for biomedical imaging applications

    NASA Astrophysics Data System (ADS)

    Hoo, Kent S., Jr.; Wong, Stephen T. C.

    1999-07-01

    Information system modeling has historically been relegated to a low priority among the designers of information systems. Often times, there is a rush to design and implement hardware and software solutions after only the briefest assessments of the domain requirements. Although this process results in a rapid development cycle, the system usually does not satisfy the needs of the users and the developers are forced to re-program certain aspects of the system. It would be much better to create an accurate model of the system based on the domain needs so that the implementation of the solution satisfies the needs of the users immediately. It would also be advantageous to build extensibility into the model so that updates to the system could be carried out in an organized fashion. The significance of this research is the development of a new formal framework for the construction of a multimedia medical information system. This formal framework is constructed using visual modeling which provides a way of thinking about problems using models organized around real- world ideas. These models provide an abstract way to view complex problems, making them easier for one to understand. The formal framework is the result of an object-oriented analysis and design process that translates the systems requirements and functionality into software models. The usefulness of this information framework is demonstrated with two different applications in epilepsy research and care, i.e., surgical planning of epilepsy and decision threshold determination.

  19. Designing for Discovery Learning of Complexity Principles of Congestion by Driving Together in the TrafficJams Simulation

    ERIC Educational Resources Information Center

    Levy, Sharona T.; Peleg, Ran; Ofeck, Eyal; Tabor, Naamit; Dubovi, Ilana; Bluestein, Shiri; Ben-Zur, Hadar

    2018-01-01

    We propose and evaluate a framework supporting collaborative discovery learning of complex systems. The framework blends five design principles: (1) individual action: amidst (2) social interactions; challenged with (3) multiple tasks; set in (4) a constrained interactive learning environment that draws attention to (5) highlighted target…

  20. Computational Model for Ethnographically Informed Systems Design

    NASA Astrophysics Data System (ADS)

    Iqbal, Rahat; James, Anne; Shah, Nazaraf; Terken, Jacuqes

    This paper presents a computational model for ethnographically informed systems design that can support complex and distributed cooperative activities. This model is based on an ethnographic framework consisting of three important dimensions (e.g., distributed coordination, awareness of work and plans and procedure), and the BDI (Belief, Desire and Intention) model of intelligent agents. The ethnographic framework is used to conduct ethnographic analysis and to organise ethnographically driven information into three dimensions, whereas the BDI model allows such information to be mapped upon the underlying concepts of multi-agent systems. The advantage of this model is that it is built upon an adaptation of existing mature and well-understood techniques. By the use of this model, we also address the cognitive aspects of systems design.

  1. A user-centered model for designing consumer mobile health (mHealth) applications (apps).

    PubMed

    Schnall, Rebecca; Rojas, Marlene; Bakken, Suzanne; Brown, William; Carballo-Dieguez, Alex; Carry, Monique; Gelaude, Deborah; Mosley, Jocelyn Patterson; Travers, Jasmine

    2016-04-01

    Mobile technologies are a useful platform for the delivery of health behavior interventions. Yet little work has been done to create a rigorous and standardized process for the design of mobile health (mHealth) apps. This project sought to explore the use of the Information Systems Research (ISR) framework as guide for the design of mHealth apps. Our work was guided by the ISR framework which is comprised of 3 cycles: Relevance, Rigor and Design. In the Relevance cycle, we conducted 5 focus groups with 33 targeted end-users. In the Rigor cycle, we performed a review to identify technology-based interventions for meeting the health prevention needs of our target population. In the Design Cycle, we employed usability evaluation methods to iteratively develop and refine mock-ups for a mHealth app. Through an iterative process, we identified barriers and facilitators to the use of mHealth technology for HIV prevention for high-risk MSM, developed 'use cases' and identified relevant functional content and features for inclusion in a design document to guide future app development. Findings from our work support the use of the ISR framework as a guide for designing future mHealth apps. Results from this work provide detailed descriptions of the user-centered design and system development and have heuristic value for those venturing into the area of technology-based intervention work. Findings from this study support the use of the ISR framework as a guide for future mHealth app development. Use of the ISR framework is a potentially useful approach for the design of a mobile app that incorporates end-users' design preferences. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Principles and Actions: A Framework for Systemic Change.

    ERIC Educational Resources Information Center

    Barkley, Robert, Jr.; Castle, Shari

    This paper outlines a framework designed to help school districts evaluate themselves during the implementation of systemic change. Based on the experiences of districts that participated in the NEA Learning Laboratories Initiative, a process called "rapporteuring" was developed. The process provokes the particular site into serious…

  3. Designing flexible engineering systems utilizing embedded architecture options

    NASA Astrophysics Data System (ADS)

    Pierce, Jeff G.

    This dissertation develops and applies an integrated framework for embedding flexibility in an engineered system architecture. Systems are constantly faced with unpredictability in the operational environment, threats from competing systems, obsolescence of technology, and general uncertainty in future system demands. Current systems engineering and risk management practices have focused almost exclusively on mitigating or preventing the negative consequences of uncertainty. This research recognizes that high uncertainty also presents an opportunity to design systems that can flexibly respond to changing requirements and capture additional value throughout the design life. There does not exist however a formalized approach to designing appropriately flexible systems. This research develops a three stage integrated flexibility framework based on the concept of architecture options embedded in the system design. Stage One defines an eight step systems engineering process to identify candidate architecture options. This process encapsulates the operational uncertainty though scenario development, traces new functional requirements to the affected design variables, and clusters the variables most sensitive to change. The resulting clusters can generate insight into the most promising regions in the architecture to embed flexibility in the form of architecture options. Stage Two develops a quantitative option valuation technique, grounded in real options theory, which is able to value embedded architecture options that exhibit variable expiration behavior. Stage Three proposes a portfolio optimization algorithm, for both discrete and continuous options, to select the optimal subset of architecture options, subject to budget and risk constraints. Finally, the feasibility, extensibility and limitations of the framework are assessed by its application to a reconnaissance satellite system development problem. Detailed technical data, performance models, and cost estimates were compiled for the Tactical Imaging Constellation Architecture Study and leveraged to complete a realistic proof-of-concept.

  4. A Hierarchical Learning Control Framework for an Aerial Manipulation System

    NASA Astrophysics Data System (ADS)

    Ma, Le; Chi, yanxun; Li, Jiapeng; Li, Zhongsheng; Ding, Yalei; Liu, Lixing

    2017-07-01

    A hierarchical learning control framework for an aerial manipulation system is proposed. Firstly, the mechanical design of aerial manipulation system is introduced and analyzed, and the kinematics and the dynamics based on Newton-Euler equation are modeled. Secondly, the framework of hierarchical learning for this system is presented, in which flight platform and manipulator are controlled by different controller respectively. The RBF (Radial Basis Function) neural networks are employed to estimate parameters and control. The Simulation and experiment demonstrate that the methods proposed effective and advanced.

  5. A Semantics-Based Information Distribution Framework for Large Web-Based Course Forum System

    ERIC Educational Resources Information Center

    Chim, Hung; Deng, Xiaotie

    2008-01-01

    We propose a novel data distribution framework for developing a large Web-based course forum system. In the distributed architectural design, each forum server is fully equipped with the ability to support some course forums independently. The forum servers collaborating with each other constitute the whole forum system. Therefore, the workload of…

  6. Screening Systems and Decision Making at the Preschool Level: Application of a Comprehensive Validity Framework

    ERIC Educational Resources Information Center

    Kettler, Ryan J.; Feeney-Kettler, Kelly A.

    2011-01-01

    Universal screening is designed to be an efficient method for identifying preschool students with mental health problems, but prior to use, screening systems must be evaluated to determine their appropriateness within a specific setting. In this article, an evidence-based validity framework is applied to four screening systems for identifying…

  7. A framework for evaluating the appropriateness of clinical decision support alerts and responses

    PubMed Central

    Waitman, Lemuel R; Lewis, Julia B; Wright, Julie A; Choma, David P; Miller, Randolph A; Peterson, Josh F

    2011-01-01

    Objective Alerting systems, a type of clinical decision support, are increasingly prevalent in healthcare, yet few studies have concurrently measured the appropriateness of alerts with provider responses to alerts. Recent reports of suboptimal alert system design and implementation highlight the need for better evaluation to inform future designs. The authors present a comprehensive framework for evaluating the clinical appropriateness of synchronous, interruptive medication safety alerts. Methods Through literature review and iterative testing, metrics were developed that describe successes, justifiable overrides, provider non-adherence, and unintended adverse consequences of clinical decision support alerts. The framework was validated by applying it to a medication alerting system for patients with acute kidney injury (AKI). Results Through expert review, the framework assesses each alert episode for appropriateness of the alert display and the necessity and urgency of a clinical response. Primary outcomes of the framework include the false positive alert rate, alert override rate, provider non-adherence rate, and rate of provider response appropriateness. Application of the framework to evaluate an existing AKI medication alerting system provided a more complete understanding of the process outcomes measured in the AKI medication alerting system. The authors confirmed that previous alerts and provider responses were most often appropriate. Conclusion The new evaluation model offers a potentially effective method for assessing the clinical appropriateness of synchronous interruptive medication alerts prior to evaluating patient outcomes in a comparative trial. More work can determine the generalizability of the framework for use in other settings and other alert types. PMID:21849334

  8. A distributed cloud-based cyberinfrastructure framework for integrated bridge monitoring

    NASA Astrophysics Data System (ADS)

    Jeong, Seongwoon; Hou, Rui; Lynch, Jerome P.; Sohn, Hoon; Law, Kincho H.

    2017-04-01

    This paper describes a cloud-based cyberinfrastructure framework for the management of the diverse data involved in bridge monitoring. Bridge monitoring involves various hardware systems, software tools and laborious activities that include, for examples, a structural health monitoring (SHM), sensor network, engineering analysis programs and visual inspection. Very often, these monitoring systems, tools and activities are not coordinated, and the collected information are not shared. A well-designed integrated data management framework can support the effective use of the data and, thereby, enhance bridge management and maintenance operations. The cloud-based cyberinfrastructure framework presented herein is designed to manage not only sensor measurement data acquired from the SHM system, but also other relevant information, such as bridge engineering model and traffic videos, in an integrated manner. For the scalability and flexibility, cloud computing services and distributed database systems are employed. The information stored can be accessed through standard web interfaces. For demonstration, the cyberinfrastructure system is implemented for the monitoring of the bridges located along the I-275 Corridor in the state of Michigan.

  9. Persuasive Technology in Mobile Applications Promoting Physical Activity: a Systematic Review.

    PubMed

    Matthews, John; Win, Khin Than; Oinas-Kukkonen, Harri; Freeman, Mark

    2016-03-01

    Persuasive technology in mobile applications can be used to influence the behaviour of users. A framework known as the Persuasive Systems Design model has been developed for designing and evaluating systems that influence the attitudes or behaviours of users. This paper reviews the current state of mobile applications for health behavioural change with an emphasis on applications that promote physical activity. The inbuilt persuasive features of mobile applications were evaluated using the Persuasive Systems Design model. A database search was conducted to identify relevant articles. Articles were then reviewed using the Persuasive Systems Design model as a framework for analysis. Primary task support, dialogue support, and social support were found to be moderately represented in the selected articles. However, system credibility support was found to have only low levels of representation as a persuasive systems design feature in mobile applications for supporting physical activity. To ensure that available mobile technology resources are best used to improve the wellbeing of people, it is important that the design principles that influence the effectiveness of persuasive technology be understood.

  10. The Power of the Frame: Systems Transformation Framework for Health Care Leaders.

    PubMed

    Scott, Kathy A; Pringle, Janice

    Health care leaders are responsible for oversight of multiple and competing change interventions. These interventions regularly fail to achieve the desired outcomes and/or sustainable results. This often occurs because of the mental models and approaches that are used to plan, design, implement, and evaluate the system. These do not account for inherent characteristics that determine the system's likely ability to innovate while maintaining operational effectiveness. Theories exist on how to assess a system's readiness to change, but the definitions, constructs, and assessments are diverse and often look at facets of systems in isolation. The Systems Transformation Framework prescriptively defines and characterizes system domains on the basis of complex adaptive systems theory so that domains can be assessed in tandem. As a result, strengths and challenges to implementation are recognized before implementation begins. The Systems Transformation Framework defines 8 major domains: vision, leadership, organizational culture, organizational behavior, organizational structure, performance measurements, internal learning, and external learning. Each domain has principles that are critical for creating the conditions that lead to successful organizational adaptation and change. The Systems Transformation Framework can serve as a guide for health care leaders at all levels of the organization to (1) create environments that are change ready and (2) plan, design, implement, and evaluate change within complex adaptive systems.

  11. Design of a Model Execution Framework: Repetitive Object-Oriented Simulation Environment (ROSE)

    NASA Technical Reports Server (NTRS)

    Gray, Justin S.; Briggs, Jeffery L.

    2008-01-01

    The ROSE framework was designed to facilitate complex system analyses. It completely divorces the model execution process from the model itself. By doing so ROSE frees the modeler to develop a library of standard modeling processes such as Design of Experiments, optimizers, parameter studies, and sensitivity studies which can then be applied to any of their available models. The ROSE framework accomplishes this by means of a well defined API and object structure. Both the API and object structure are presented here with enough detail to implement ROSE in any object-oriented language or modeling tool.

  12. Sensemaking in a Value Based Context for Large Scale Complex Engineered Systems

    NASA Astrophysics Data System (ADS)

    Sikkandar Basha, Nazareen

    The design and the development of Large-Scale Complex Engineered Systems (LSCES) requires the involvement of multiple teams and numerous levels of the organization and interactions with large numbers of people and interdisciplinary departments. Traditionally, requirements-driven Systems Engineering (SE) is used in the design and development of these LSCES. The requirements are used to capture the preferences of the stakeholder for the LSCES. Due to the complexity of the system, multiple levels of interactions are required to elicit the requirements of the system within the organization. Since LSCES involves people and interactions between the teams and interdisciplinary departments, it should be socio-technical in nature. The elicitation of the requirements of most large-scale system projects are subjected to creep in time and cost due to the uncertainty and ambiguity of requirements during the design and development. In an organization structure, the cost and time overrun can occur at any level and iterate back and forth thus increasing the cost and time. To avoid such creep past researches have shown that rigorous approaches such as value based designing can be used to control it. But before the rigorous approaches can be used, the decision maker should have a proper understanding of requirements creep and the state of the system when the creep occurs. Sensemaking is used to understand the state of system when the creep occurs and provide a guidance to decision maker. This research proposes the use of the Cynefin framework, sensemaking framework which can be used in the design and development of LSCES. It can aide in understanding the system and decision making to minimize the value gap due to requirements creep by eliminating ambiguity which occurs during design and development. A sample hierarchical organization is used to demonstrate the state of the system at the occurrence of requirements creep in terms of cost and time using the Cynefin framework. These trials are continued for different requirements and at different sub-system level. The results obtained show that the Cynefin framework can be used to improve the value of the system and can be used for predictive analysis. The decision makers can use these findings and use rigorous approaches and improve the design of Large Scale Complex Engineered Systems.

  13. Active pharmaceutical ingredient (API) production involving continuous processes--a process system engineering (PSE)-assisted design framework.

    PubMed

    Cervera-Padrell, Albert E; Skovby, Tommy; Kiil, Søren; Gani, Rafiqul; Gernaey, Krist V

    2012-10-01

    A systematic framework is proposed for the design of continuous pharmaceutical manufacturing processes. Specifically, the design framework focuses on organic chemistry based, active pharmaceutical ingredient (API) synthetic processes, but could potentially be extended to biocatalytic and fermentation-based products. The method exploits the synergic combination of continuous flow technologies (e.g., microfluidic techniques) and process systems engineering (PSE) methods and tools for faster process design and increased process understanding throughout the whole drug product and process development cycle. The design framework structures the many different and challenging design problems (e.g., solvent selection, reactor design, and design of separation and purification operations), driving the user from the initial drug discovery steps--where process knowledge is very limited--toward the detailed design and analysis. Examples from the literature of PSE methods and tools applied to pharmaceutical process design and novel pharmaceutical production technologies are provided along the text, assisting in the accumulation and interpretation of process knowledge. Different criteria are suggested for the selection of batch and continuous processes so that the whole design results in low capital and operational costs as well as low environmental footprint. The design framework has been applied to the retrofit of an existing batch-wise process used by H. Lundbeck A/S to produce an API: zuclopenthixol. Some of its batch operations were successfully converted into continuous mode, obtaining higher yields that allowed a significant simplification of the whole process. The material and environmental footprint of the process--evaluated through the process mass intensity index, that is, kg of material used per kg of product--was reduced to half of its initial value, with potential for further reduction. The case-study includes reaction steps typically used by the pharmaceutical industry featuring different characteristic reaction times, as well as L-L separation and distillation-based solvent exchange steps, and thus constitutes a good example of how the design framework can be useful to efficiently design novel or already existing API manufacturing processes taking advantage of continuous processes. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. A Design Support Framework through Dynamic Deployment of Hypothesis and Verification in the Design Process

    NASA Astrophysics Data System (ADS)

    Nomaguch, Yutaka; Fujita, Kikuo

    This paper proposes a design support framework, named DRIFT (Design Rationale Integration Framework of Three layers), which dynamically captures and manages hypothesis and verification in the design process. A core of DRIFT is a three-layered design process model of action, model operation and argumentation. This model integrates various design support tools and captures design operations performed on them. Action level captures the sequence of design operations. Model operation level captures the transition of design states, which records a design snapshot over design tools. Argumentation level captures the process of setting problems and alternatives. The linkage of three levels enables to automatically and efficiently capture and manage iterative hypothesis and verification processes through design operations over design tools. In DRIFT, such a linkage is extracted through the templates of design operations, which are extracted from the patterns embeded in design tools such as Design-For-X (DFX) approaches, and design tools are integrated through ontology-based representation of design concepts. An argumentation model, gIBIS (graphical Issue-Based Information System), is used for representing dependencies among problems and alternatives. A mechanism of TMS (Truth Maintenance System) is used for managing multiple hypothetical design stages. This paper also demonstrates a prototype implementation of DRIFT and its application to a simple design problem. Further, it is concluded with discussion of some future issues.

  15. Examining the Relationship between Organization Systems and Information Security Awareness

    ERIC Educational Resources Information Center

    Tintamusik, Yanarong

    2010-01-01

    The focus of this dissertation was to examine the crucial relationship between organization systems within the framework of the organizational behavior theory and information security awareness (ISA) of users within the framework of the information security theory. Despite advanced security technologies designed to protect information assets,…

  16. A Framework for a WAP-Based Course Registration System

    ERIC Educational Resources Information Center

    AL-Bastaki, Yousif; Al-Ajeeli, Abid

    2005-01-01

    This paper describes a WAP-based course registration system designed and implemented to facilitating the process of students' registration at Bahrain University. The framework will support many opportunities for applying WAP based technology to many services such as wireless commerce, cashless payment... and location-based services. The paper…

  17. Graphical Means for Inspecting Qualitative Models of System Behaviour

    ERIC Educational Resources Information Center

    Bouwer, Anders; Bredeweg, Bert

    2010-01-01

    This article presents the design and evaluation of a tool for inspecting conceptual models of system behaviour. The basis for this research is the Garp framework for qualitative simulation. This framework includes modelling primitives, such as entities, quantities and causal dependencies, which are combined into model fragments and scenarios.…

  18. LIFE CYCLE DESIGN GUIDANCE MANUAL - ENVIRONMENTAL REQUIREMENTS AND THE PRODUCT SYSTEM

    EPA Science Inventory

    The U.S Environmental Protection Agency's (EPA) Risk Reduction Engineering Laboratory and the University of Michigan are cooperating in a project to reduce environmental impacts and health risks through product system design. The resulting framework for life cycle design is pr...

  19. Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation

    NASA Technical Reports Server (NTRS)

    Afjeh, Abdollah A.; Reed, John A.

    2003-01-01

    This research is aimed at developing a neiv and advanced simulation framework that will significantly improve the overall efficiency of aerospace systems design and development. This objective will be accomplished through an innovative integration of object-oriented and Web-based technologies ivith both new and proven simulation methodologies. The basic approach involves Ihree major areas of research: Aerospace system and component representation using a hierarchical object-oriented component model which enables the use of multimodels and enforces component interoperability. Collaborative software environment that streamlines the process of developing, sharing and integrating aerospace design and analysis models. . Development of a distributed infrastructure which enables Web-based exchange of models to simplify the collaborative design process, and to support computationally intensive aerospace design and analysis processes. Research for the first year dealt with the design of the basic architecture and supporting infrastructure, an initial implementation of that design, and a demonstration of its application to an example aircraft engine system simulation.

  20. Microgravity isolation system design: A modern control analysis framework

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.

    1994-01-01

    Many acceleration-sensitive, microgravity science experiments will require active vibration isolation from the manned orbiters on which they will be mounted. The isolation problem, especially in the case of a tethered payload, is a complex three-dimensional one that is best suited to modern-control design methods. These methods, although more powerful than their classical counterparts, can nonetheless go only so far in meeting the design requirements for practical systems. Once a tentative controller design is available, it must still be evaluated to determine whether or not it is fully acceptable, and to compare it with other possible design candidates. Realistically, such evaluation will be an inherent part of a necessary iterative design process. In this paper, an approach is presented for applying complex mu-analysis methods to a closed-loop vibration isolation system (experiment plus controller). An analysis framework is presented for evaluating nominal stability, nominal performance, robust stability, and robust performance of active microgravity isolation systems, with emphasis on the effective use of mu-analysis methods.

  1. Molecular system identification for enzyme directed evolution and design

    NASA Astrophysics Data System (ADS)

    Guan, Xiangying; Chakrabarti, Raj

    2017-09-01

    The rational design of chemical catalysts requires methods for the measurement of free energy differences in the catalytic mechanism for any given catalyst Hamiltonian. The scope of experimental learning algorithms that can be applied to catalyst design would also be expanded by the availability of such methods. Methods for catalyst characterization typically either estimate apparent kinetic parameters that do not necessarily correspond to free energy differences in the catalytic mechanism or measure individual free energy differences that are not sufficient for establishing the relationship between the potential energy surface and catalytic activity. Moreover, in order to enhance the duty cycle of catalyst design, statistically efficient methods for the estimation of the complete set of free energy differences relevant to the catalytic activity based on high-throughput measurements are preferred. In this paper, we present a theoretical and algorithmic system identification framework for the optimal estimation of free energy differences in solution phase catalysts, with a focus on one- and two-substrate enzymes. This framework, which can be automated using programmable logic, prescribes a choice of feasible experimental measurements and manipulated input variables that identify the complete set of free energy differences relevant to the catalytic activity and minimize the uncertainty in these free energy estimates for each successive Hamiltonian design. The framework also employs decision-theoretic logic to determine when model reduction can be applied to improve the duty cycle of high-throughput catalyst design. Automation of the algorithm using fluidic control systems is proposed, and applications of the framework to the problem of enzyme design are discussed.

  2. From MetroII to Metronomy, Designing Contract-based Function-Architecture Co-simulation Framework for Timing Verification of Cyber-Physical Systems

    DTIC Science & Technology

    2015-03-13

    A. Lee. “A Programming Model for Time - Synchronized Distributed Real- Time Systems”. In: Proceedings of Real Time and Em- bedded Technology and Applications Symposium. 2007, pp. 259–268. ...From MetroII to Metronomy, Designing Contract-based Function-Architecture Co-simulation Framework for Timing Verification of Cyber-Physical Systems...the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data

  3. A Methodological Framework for Enterprise Information System Requirements Derivation

    NASA Astrophysics Data System (ADS)

    Caplinskas, Albertas; Paškevičiūtė, Lina

    Current information systems (IS) are enterprise-wide systems supporting strategic goals of the enterprise and meeting its operational business needs. They are supported by information and communication technologies (ICT) and other software that should be fully integrated. To develop software responding to real business needs, we need requirements engineering (RE) methodology that ensures the alignment of requirements for all levels of enterprise system. The main contribution of this chapter is a requirement-oriented methodological framework allowing to transform business requirements level by level into software ones. The structure of the proposed framework reflects the structure of Zachman's framework. However, it has other intentions and is purposed to support not the design but the RE issues.

  4. US Army Research Laboratory Visualization Framework Architecture Document

    DTIC Science & Technology

    2018-01-11

    this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. Citation of...release; distribution is unlimited. 14. ABSTRACT Visualization of network science experimentation results is generally achieved using stovepipe...report documents the ARL Visualization Framework system design and specific details of its implementation. 15. SUBJECT TERMS visualization

  5. Zeolite-like metal–organic frameworks (ZMOFs): Design, synthesis, and properties

    DOE PAGES

    Eddaoudi, Mohamed; Sava, Dorina F.; Eubank, Jarrod F.; ...

    2015-10-24

    This study highlights various design and synthesis approaches toward the construction of ZMOFs, which are metal–organic frameworks (MOFs) with topologies and, in some cases, features akin to traditional inorganic zeolites. The interest in this unique subset of MOFs is correlated with their exceptional characteristics arising from the periodic pore systems and distinctive cage-like cavities, in conjunction with modular intra- and/or extra-framework components, which ultimately allow for tailoring of the pore size, pore shape, and properties towards specific applications.

  6. An Experience-Based Learning Framework: Activities for the Initial Development of Sustainability Competencies

    ERIC Educational Resources Information Center

    Caniglia, Guido; John, Beatrice; Kohler, Martin; Bellina, Leonie; Wiek, Arnim; Rojas, Christopher; Laubichler, Manfred D.; Lang, Daniel

    2016-01-01

    Purpose: This paper aims to present an experience-based learning framework that provides a bottom-up, student-centered entrance point for the development of systems thinking, normative and collaborative competencies in sustainability. Design/methodology/approach: The framework combines mental mapping with exploratory walking. It interweaves…

  7. Intelligent control of a planning system for astronaut training.

    PubMed

    Ortiz, J; Chen, G

    1999-07-01

    This work intends to design, analyze and solve, from the systems control perspective, a complex, dynamic, and multiconstrained planning system for generating training plans for crew members of the NASA-led International Space Station. Various intelligent planning systems have been developed within the framework of artificial intelligence. These planning systems generally lack a rigorous mathematical formalism to allow a reliable and flexible methodology for their design, modeling, and performance analysis in a dynamical, time-critical, and multiconstrained environment. Formulating the planning problem in the domain of discrete-event systems under a unified framework such that it can be modeled, designed, and analyzed as a control system will provide a self-contained theory for such planning systems. This will also provide a means to certify various planning systems for operations in the dynamical and complex environments in space. The work presented here completes the design, development, and analysis of an intricate, large-scale, and representative mathematical formulation for intelligent control of a real planning system for Space Station crew training. This planning system has been tested and used at NASA-Johnson Space Center.

  8. Axiomatic Design of a Framework for the Comprehensive Optimization of Patient Flows in Hospitals

    PubMed Central

    Matt, Dominik T.

    2017-01-01

    Lean Management and Six Sigma are nowadays applied not only to the manufacturing industry but also to service industry and public administration. The manifold variables affecting the Health Care system minimize the effect of a narrow Lean intervention. Therefore, this paper aims to discuss a comprehensive, system-based approach to achieve a factual holistic optimization of patient flows. This paper debates the efficacy of Lean principles applied to the optimization of patient flows and related activities, structures, and resources, developing a theoretical framework based on the principles of the Axiomatic Design. The demand for patient-oriented and efficient health services leads to use these methodologies to improve hospital processes. In the framework, patients with similar characteristics are clustered in families to achieve homogeneous flows through the value stream. An optimization checklist is outlined as the result of the mapping between Functional Requirements and Design Parameters, with the right sequence of the steps to optimize the patient flow according to the principles of Axiomatic Design. The Axiomatic Design-based top-down implementation of Health Care evidence, according to Lean principles, results in a holistic optimization of hospital patient flows, by reducing the complexity of the system. PMID:29065578

  9. Axiomatic Design of a Framework for the Comprehensive Optimization of Patient Flows in Hospitals.

    PubMed

    Arcidiacono, Gabriele; Matt, Dominik T; Rauch, Erwin

    2017-01-01

    Lean Management and Six Sigma are nowadays applied not only to the manufacturing industry but also to service industry and public administration. The manifold variables affecting the Health Care system minimize the effect of a narrow Lean intervention. Therefore, this paper aims to discuss a comprehensive, system-based approach to achieve a factual holistic optimization of patient flows. This paper debates the efficacy of Lean principles applied to the optimization of patient flows and related activities, structures, and resources, developing a theoretical framework based on the principles of the Axiomatic Design. The demand for patient-oriented and efficient health services leads to use these methodologies to improve hospital processes. In the framework, patients with similar characteristics are clustered in families to achieve homogeneous flows through the value stream. An optimization checklist is outlined as the result of the mapping between Functional Requirements and Design Parameters, with the right sequence of the steps to optimize the patient flow according to the principles of Axiomatic Design. The Axiomatic Design-based top-down implementation of Health Care evidence, according to Lean principles, results in a holistic optimization of hospital patient flows, by reducing the complexity of the system.

  10. Axiomatic Design of a Framework for the Comprehensive Optimization of Patient Flows in Hospitals

    PubMed

    Arcidiacono, Gabriele; Matt, Dominik T.; Rauch, Erwin

    2017-01-01

    Lean Management and Six Sigma are nowadays applied not only to the manufacturing industry but also to service industry and public administration. The manifold variables affecting the Health Care system minimize the effect of a narrow Lean intervention. Therefore, this paper aims to discuss a comprehensive, system-based approach to achieve a factual holistic optimization of patient flows. This paper debates the efficacy of Lean principles applied to the optimization of patient flows and related activities, structures, and resources, developing a theoretical framework based on the principles of the Axiomatic Design. The demand for patient-oriented and efficient health services leads to use these methodologies to improve hospital processes. In the framework, patients with similar characteristics are clustered in families to achieve homogeneous flows through the value stream. An optimization checklist is outlined as the result of the mapping between Functional Requirements and Design Parameters, with the right sequence of the steps to optimize the patient flow according to the principles of Axiomatic Design. The Axiomatic Design-based top-down implementation of Health Care evidence, according to Lean principles, results in a holistic optimization of hospital patient flows, by reducing the complexity of the system. © 2017 Gabriele Arcidiacono et al.

  11. FRANOPP: Framework for analysis and optimization problems user's guide

    NASA Technical Reports Server (NTRS)

    Riley, K. M.

    1981-01-01

    Framework for analysis and optimization problems (FRANOPP) is a software aid for the study and solution of design (optimization) problems which provides the driving program and plotting capability for a user generated programming system. In addition to FRANOPP, the programming system also contains the optimization code CONMIN, and two user supplied codes, one for analysis and one for output. With FRANOPP the user is provided with five options for studying a design problem. Three of the options utilize the plot capability and present an indepth study of the design problem. The study can be focused on a history of the optimization process or on the interaction of variables within the design problem.

  12. Decoupling Coupled Constraints Through Utility Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, N; Marden, JR

    2014-08-01

    Several multiagent systems exemplify the need for establishing distributed control laws that ensure the resulting agents' collective behavior satisfies a given coupled constraint. This technical note focuses on the design of such control laws through a game-theoretic framework. In particular, this technical note provides two systematic methodologies for the design of local agent objective functions that guarantee all resulting Nash equilibria optimize the system level objective while also satisfying a given coupled constraint. Furthermore, the designed local agent objective functions fit into the framework of state based potential games. Consequently, one can appeal to existing results in game-theoretic learning tomore » derive a distributed process that guarantees the agents will reach such an equilibrium.« less

  13. A Proposed Performance-Based System for Teacher Interactive Electronic Continuous Professional Development (TIE-CPD)

    ERIC Educational Resources Information Center

    Razak, Rafiza Abdul; Yusop, Farrah Dina; Idris, Aizal Yusrina; Al-Sinaiyah, Yanbu; Halili, Siti Hajar

    2016-01-01

    The paper introduces Teacher Interactive Electronic Continuous Professional Development (TIE-CPD), an online interactive training system. The framework and methodology of TIE-CPD are designed with functionalities comparable with existing e-training systems. The system design and development literature offers several methodology and framework…

  14. 77 FR 8217 - Evaluating the Usability of Electronic Health Record (EHR) Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... interface design guidelines for EHRs. Manufacturers interested in participating in this research will be... the usability of health information technology (HIT) systems. NIST research is designed to: (1... develop performance-oriented user interface design guidelines for EHRs, and a framework for assessing the...

  15. Engineering entrainment and adaptation in limit cycle systems : From biological inspiration to applications in robotics.

    PubMed

    Buchli, Jonas; Righetti, Ludovic; Ijspeert, Auke Jan

    2006-12-01

    Periodic behavior is key to life and is observed in multiple instances and at multiple time scales in our metabolism, our natural environment, and our engineered environment. A natural way of modeling or generating periodic behavior is done by using oscillators, i.e., dynamical systems that exhibit limit cycle behavior. While there is extensive literature on methods to analyze such dynamical systems, much less work has been done on methods to synthesize an oscillator to exhibit some specific desired characteristics. The goal of this article is twofold: (1) to provide a framework for characterizing and designing oscillators and (2) to review how classes of well-known oscillators can be understood and related to this framework. The basis of the framework is to characterize oscillators in terms of their fundamental temporal and spatial behavior and in terms of properties that these two behaviors can be designed to exhibit. This focus on fundamental properties is important because it allows us to systematically compare a large variety of oscillators that might at first sight appear very different from each other. We identify several specifications that are useful for design, such as frequency-locking behavior, phase-locking behavior, and specific output signal shape. We also identify two classes of design methods by which these specifications can be met, namely offline methods and online methods. By relating these specifications to our framework and by presenting several examples of how oscillators have been designed in the literature, this article provides a useful methodology and toolbox for designing oscillators for a wide range of purposes. In particular, the focus on synthesis of limit cycle dynamical systems should be useful both for engineering and for computational modeling of physical or biological phenomena.

  16. Enabling parallel simulation of large-scale HPC network systems

    DOE PAGES

    Mubarak, Misbah; Carothers, Christopher D.; Ross, Robert B.; ...

    2016-04-07

    Here, with the increasing complexity of today’s high-performance computing (HPC) architectures, simulation has become an indispensable tool for exploring the design space of HPC systems—in particular, networks. In order to make effective design decisions, simulations of these systems must possess the following properties: (1) have high accuracy and fidelity, (2) produce results in a timely manner, and (3) be able to analyze a broad range of network workloads. Most state-of-the-art HPC network simulation frameworks, however, are constrained in one or more of these areas. In this work, we present a simulation framework for modeling two important classes of networks usedmore » in today’s IBM and Cray supercomputers: torus and dragonfly networks. We use the Co-Design of Multi-layer Exascale Storage Architecture (CODES) simulation framework to simulate these network topologies at a flit-level detail using the Rensselaer Optimistic Simulation System (ROSS) for parallel discrete-event simulation. Our simulation framework meets all the requirements of a practical network simulation and can assist network designers in design space exploration. First, it uses validated and detailed flit-level network models to provide an accurate and high-fidelity network simulation. Second, instead of relying on serial time-stepped or traditional conservative discrete-event simulations that limit simulation scalability and efficiency, we use the optimistic event-scheduling capability of ROSS to achieve efficient and scalable HPC network simulations on today’s high-performance cluster systems. Third, our models give network designers a choice in simulating a broad range of network workloads, including HPC application workloads using detailed network traces, an ability that is rarely offered in parallel with high-fidelity network simulations« less

  17. Enabling parallel simulation of large-scale HPC network systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mubarak, Misbah; Carothers, Christopher D.; Ross, Robert B.

    Here, with the increasing complexity of today’s high-performance computing (HPC) architectures, simulation has become an indispensable tool for exploring the design space of HPC systems—in particular, networks. In order to make effective design decisions, simulations of these systems must possess the following properties: (1) have high accuracy and fidelity, (2) produce results in a timely manner, and (3) be able to analyze a broad range of network workloads. Most state-of-the-art HPC network simulation frameworks, however, are constrained in one or more of these areas. In this work, we present a simulation framework for modeling two important classes of networks usedmore » in today’s IBM and Cray supercomputers: torus and dragonfly networks. We use the Co-Design of Multi-layer Exascale Storage Architecture (CODES) simulation framework to simulate these network topologies at a flit-level detail using the Rensselaer Optimistic Simulation System (ROSS) for parallel discrete-event simulation. Our simulation framework meets all the requirements of a practical network simulation and can assist network designers in design space exploration. First, it uses validated and detailed flit-level network models to provide an accurate and high-fidelity network simulation. Second, instead of relying on serial time-stepped or traditional conservative discrete-event simulations that limit simulation scalability and efficiency, we use the optimistic event-scheduling capability of ROSS to achieve efficient and scalable HPC network simulations on today’s high-performance cluster systems. Third, our models give network designers a choice in simulating a broad range of network workloads, including HPC application workloads using detailed network traces, an ability that is rarely offered in parallel with high-fidelity network simulations« less

  18. A Flexible framework for forward and inverse modeling of stormwater control measures

    NASA Astrophysics Data System (ADS)

    Aflaki, S.; Massoudieh, A.

    2016-12-01

    Models that allow for design considerations of green infrastructure (GI) practices to control stormwater runoff and associated contaminants have received considerable attention in recent years. While popular, generally, the GI models are relatively simplistic. However, GI model predictions are being relied upon by many municipalities and State/Local agencies to make decisions about grey vs. green infrastructure improvement planning. Adding complexity to GI modeling frameworks may preclude their use in simpler urban planning situations. Therefore, the goal here was to develop a sophisticated, yet flexible tool that could be used by design engineers and researchers to capture and explore the effect of design factors and properties of the media used in the performance of GI systems at a relatively small scale. We deemed it essential to have a flexible GI modeling tool that is capable of simulating GI system components and specific biophysical processes affecting contaminants such as reactions, and particle-associated transport accurately while maintaining a high degree of flexibly to account for the myriad of GI alternatives. The mathematical framework for a stand-alone GI performance assessment tool has been developed and will be demonstrated. The process-based model framework developed here can be used to model a diverse range of GI practices such as green roof, retention pond, bioretention, infiltration trench, permeable pavement and other custom-designed combinatory systems. Four demonstration applications covering a diverse range of systems will be presented. The example applications include a evaluating hydraulic performance of a complex bioretention system, hydraulic analysis of porous pavement system, flow colloid-facilitated transport, reactive transport and groundwater recharge underneath an infiltration pond and finally reactive transport and bed-sediment interactions in a wetland system will be presented.

  19. The Development of a Framework for and a Model Teaching-Learning System in Electronics Technology for the Elementary School.

    ERIC Educational Resources Information Center

    Inaba, Lawrence Akio

    Developing a rationale and a structure of knowledge as the basis for an instructional system in electronics technology and designing and developing a packaged instructional system in electronics technology for the sixth grade is the two-fold purpose of this study. The study identifies electronics technology within the broad framework of industrial…

  20. Using ADDIE and Systems Thinking as the Framework for Developing a MOOC: A Case Study

    ERIC Educational Resources Information Center

    Croxton, Rebecca A.; Chow, Anthony S.

    2015-01-01

    This article presents a case study of how systems thinking and the instructional systems design ADDIE (analysis, design, development, implementation, and assessment) model were used to design and develop one of the first MOOCs at a mid-sized university in the southeastern United States. Contemporary issues surrounding MOOCs at both the macro…

  1. Study on Full Supply Chain Quality and Safetytraceability Systems For Cereal And Oilproducts

    NASA Astrophysics Data System (ADS)

    Liu, Shihong; Zheng, Huoguo; Meng, Hong; Hu, Haiyan; Wu, Jiangshou; Li, Chunhua

    Global food industry and Governments in many countries are putting increasing emphasis on establishment of food traceability systems. Food traceability has become an effective way in food safety management. Aimed at the major quality problems of cereal and oil products existing in the production, processing, warehousing, distribution and other links in the supply chain, this paper firstly proposes a new traceability framework combines the information flow with critical control points and quality indicators. Then it introduces traceability database design and data access mode to realize the framework. In practice, Code design for tracing goods is a challenge thing, so this paper put forward a code system based on UCC/EAN-128 standard.Middleware and Electronic terminal design are also briefly introduced to accomplish traceability system for cereal and oil products.

  2. An Optimization Framework for Dynamic Hybrid Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenbo Du; Humberto E Garcia; Christiaan J.J. Paredis

    A computational framework for the efficient analysis and optimization of dynamic hybrid energy systems (HES) is developed. A microgrid system with multiple inputs and multiple outputs (MIMO) is modeled using the Modelica language in the Dymola environment. The optimization loop is implemented in MATLAB, with the FMI Toolbox serving as the interface between the computational platforms. Two characteristic optimization problems are selected to demonstrate the methodology and gain insight into the system performance. The first is an unconstrained optimization problem that optimizes the dynamic properties of the battery, reactor and generator to minimize variability in the HES. The second problemmore » takes operating and capital costs into consideration by imposing linear and nonlinear constraints on the design variables. The preliminary optimization results obtained in this study provide an essential step towards the development of a comprehensive framework for designing HES.« less

  3. Disease eradication and health systems development.

    PubMed Central

    Melgaard, B.; Creese, A.; Aylward, B.; Olivé, J. M.; Maher, C.; Okwo-Bele, J. M.; Lee, J. W.

    1998-01-01

    This article provides a framework for the design of future eradication programmes so that the greatest benefit accrues to health systems development from the implementation of such programmes. The framework focuses on weak and fragile health systems and assumes that eradication leads to the cessation of the intervention required to eradicate the disease. Five major components of health systems are identified and key elements which are of particular relevance to eradication initiatives are defined. The dearth of documentation which can provide "lessons learned" in this area is illustrated with a brief review of the literature. Opportunities and threats, which can be addressed during the design of eradication programmes, are described and a number of recommendations are outlined. It is emphasized that this framework pertains to eradication programmes but may be useful in attempts to coordinate vertical and horizontal disease control activities for maximum mutual benefits. PMID:10063670

  4. An esthetics rehabilitation with computer-aided design/ computer-aided manufacturing technology.

    PubMed

    Mazaro, Josá Vitor Quinelli; de Mello, Caroline Cantieri; Zavanelli, Adriana Cristina; Santiago, Joel Ferreira; Amoroso, Andressa Paschoal; Pellizzer, Eduardo Piza

    2014-07-01

    This paper describes a case of a rehabilitation involving Computer Aided Design/Computer Aided Manufacturing (CAD-CAM) system in implant supported and dental supported prostheses using zirconia as framework. The CAD-CAM technology has developed considerably over last few years, becoming a reality in dental practice. Among the widely used systems are the systems based on zirconia which demonstrate important physical and mechanical properties of high strength, adequate fracture toughness, biocompatibility and esthetics, and are indicated for unitary prosthetic restorations and posterior and anterior framework. All the modeling was performed by using CAD-CAM system and prostheses were cemented using resin cement best suited for each situation. The rehabilitation of the maxillary arch using zirconia framework demonstrated satisfactory esthetic and functional results after a 12-month control and revealed no biological and technical complications. This article shows the important of use technology CAD/CAM in the manufacture of dental prosthesis and implant-supported.

  5. A Framework for Preliminary Design of Aircraft Structures Based on Process Information. Part 1

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masoud

    1998-01-01

    This report discusses the general framework and development of a computational tool for preliminary design of aircraft structures based on process information. The described methodology is suitable for multidisciplinary design optimization (MDO) activities associated with integrated product and process development (IPPD). The framework consists of three parts: (1) product and process definitions; (2) engineering synthesis, and (3) optimization. The product and process definitions are part of input information provided by the design team. The backbone of the system is its ability to analyze a given structural design for performance as well as manufacturability and cost assessment. The system uses a database on material systems and manufacturing processes. Based on the identified set of design variables and an objective function, the system is capable of performing optimization subject to manufacturability, cost, and performance constraints. The accuracy of the manufacturability measures and cost models discussed here depend largely on the available data on specific methods of manufacture and assembly and associated labor requirements. As such, our focus in this research has been on the methodology itself and not so much on its accurate implementation in an industrial setting. A three-tier approach is presented for an IPPD-MDO based design of aircraft structures. The variable-complexity cost estimation methodology and an approach for integrating manufacturing cost assessment into design process are also discussed. This report is presented in two parts. In the first part, the design methodology is presented, and the computational design tool is described. In the second part, a prototype model of the preliminary design Tool for Aircraft Structures based on Process Information (TASPI) is described. Part two also contains an example problem that applies the methodology described here for evaluation of six different design concepts for a wing spar.

  6. Lanthanide co-ordination frameworks: Opportunities and diversity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Robert J.; Long, De-Liang; Hubberstey, Peter

    2005-08-15

    Significant successes have been made over recent years in preparing co-ordination framework polymers that show macroscopic material properties, but in the vast majority of cases this has been achieved with d-block metal-based systems. Lanthanide co-ordination frameworks also offer attractive properties in terms of their potential applications as luminescent, non-linear optical and porous materials. However, lanthanide-based systems have been far less studied to date than their d-block counterparts. One possible reason for this is that the co-ordination spheres of lanthanide cations are more difficult to control and, in the absence of design strategies for lanthanide co-ordination frameworks, it is significantly moremore » difficult to target materials with specific properties. However, this article highlights some of the exciting possibilities that have emerged from the earliest investigations in this field with new topological families of compounds being discovered from relatively simple framework components, including unusual eight, seven and five-connected framework systems. Our own research, as well as others, is leading to a much greater appreciation of the factors that control framework formation and the resultant observed topologies of these polymers. As this understanding develops targeting particular framework types will become more straightforward and the development of designed polyfunctional materials more accessible. Thus, it can be seen that lanthanide co-ordination frameworks have the potential to open up previously unexplored directions for materials chemistry. This article focuses on the underlying concepts for the construction of these enticing and potentially highly important materials.« less

  7. A Customizable Language Learning Support System Using Ontology-Driven Engine

    ERIC Educational Resources Information Center

    Wang, Jingyun; Mendori, Takahiko; Xiong, Juan

    2013-01-01

    This paper proposes a framework for web-based language learning support systems designed to provide customizable pedagogical procedures based on the analysis of characteristics of both learner and course. This framework employs a course-centered ontology and a teaching method ontology as the foundation for the student model, which includes learner…

  8. Reengineering Framework for Systems in Education

    ERIC Educational Resources Information Center

    Choquet, Christophe; Corbiere, Alain

    2006-01-01

    Specifications recently proposed as standards in the domain of Technology Enhanced Learning (TEL), question the designers of TEL systems on how to put them into practice. Recent studies in Model Driven Engineering have highlighted the need for a framework which could formalize the use of these specifications as well as enhance the quality of the…

  9. A Transparent Framework for Evaluating the Effects of DGPV on Distribution System Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, Kelsey A; Mather, Barry A; Ding, Fei

    Assessing the costs and benefits of distributed photovoltaic generators (DGPV) to the power system and electricity consumers is key to determining appropriate policies, tariff designs, and power system upgrades for the modern grid. We advance understanding of this topic by providing a transparent framework, terminology, and data set for evaluating distribution system upgrade costs, line losses, and interconnection costs as a function of DGPV penetration level.

  10. Analysis and design of gain scheduled control systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Shamma, Jeff S.

    1988-01-01

    Gain scheduling, as an idea, is to construct a global feedback control system for a time varying and/or nonlinear plant from a collection of local time invariant designs. However in the absence of a sound analysis, these designs come with no guarantees on the robustness, performance, or even nominal stability of the overall gain schedule design. Such an analysis is presented for three types of gain scheduling situations: (1) a linear parameter varying plant scheduling on its exogenous parameters, (2) a nonlinear plant scheduling on a prescribed reference trajectory, and (3) a nonlinear plant scheduling on the current plant output. Conditions are given which guarantee that the stability, robustness, and performance properties of the fixed operating point designs carry over to the global gain scheduled designs, such as the scheduling variable should vary slowly and capture the plants nonlinearities. Finally, an alternate design framework is proposed which removes the slowing varying restriction or gain scheduled systems. This framework addresses some fundamental feedback issues previously ignored in standard gain.

  11. Coupling between a multi-physics workflow engine and an optimization framework

    NASA Astrophysics Data System (ADS)

    Di Gallo, L.; Reux, C.; Imbeaux, F.; Artaud, J.-F.; Owsiak, M.; Saoutic, B.; Aiello, G.; Bernardi, P.; Ciraolo, G.; Bucalossi, J.; Duchateau, J.-L.; Fausser, C.; Galassi, D.; Hertout, P.; Jaboulay, J.-C.; Li-Puma, A.; Zani, L.

    2016-03-01

    A generic coupling method between a multi-physics workflow engine and an optimization framework is presented in this paper. The coupling architecture has been developed in order to preserve the integrity of the two frameworks. The objective is to provide the possibility to replace a framework, a workflow or an optimizer by another one without changing the whole coupling procedure or modifying the main content in each framework. The coupling is achieved by using a socket-based communication library for exchanging data between the two frameworks. Among a number of algorithms provided by optimization frameworks, Genetic Algorithms (GAs) have demonstrated their efficiency on single and multiple criteria optimization. Additionally to their robustness, GAs can handle non-valid data which may appear during the optimization. Consequently GAs work on most general cases. A parallelized framework has been developed to reduce the time spent for optimizations and evaluation of large samples. A test has shown a good scaling efficiency of this parallelized framework. This coupling method has been applied to the case of SYCOMORE (SYstem COde for MOdeling tokamak REactor) which is a system code developed in form of a modular workflow for designing magnetic fusion reactors. The coupling of SYCOMORE with the optimization platform URANIE enables design optimization along various figures of merit and constraints.

  12. Surgical model-view-controller simulation software framework for local and collaborative applications

    PubMed Central

    Sankaranarayanan, Ganesh; Halic, Tansel; Arikatla, Venkata Sreekanth; Lu, Zhonghua; De, Suvranu

    2010-01-01

    Purpose Surgical simulations require haptic interactions and collaboration in a shared virtual environment. A software framework for decoupled surgical simulation based on a multi-controller and multi-viewer model-view-controller (MVC) pattern was developed and tested. Methods A software framework for multimodal virtual environments was designed, supporting both visual interactions and haptic feedback while providing developers with an integration tool for heterogeneous architectures maintaining high performance, simplicity of implementation, and straightforward extension. The framework uses decoupled simulation with updates of over 1,000 Hz for haptics and accommodates networked simulation with delays of over 1,000 ms without performance penalty. Results The simulation software framework was implemented and was used to support the design of virtual reality-based surgery simulation systems. The framework supports the high level of complexity of such applications and the fast response required for interaction with haptics. The efficacy of the framework was tested by implementation of a minimally invasive surgery simulator. Conclusion A decoupled simulation approach can be implemented as a framework to handle simultaneous processes of the system at the various frame rates each process requires. The framework was successfully used to develop collaborative virtual environments (VEs) involving geographically distributed users connected through a network, with the results comparable to VEs for local users. PMID:20714933

  13. Surgical model-view-controller simulation software framework for local and collaborative applications.

    PubMed

    Maciel, Anderson; Sankaranarayanan, Ganesh; Halic, Tansel; Arikatla, Venkata Sreekanth; Lu, Zhonghua; De, Suvranu

    2011-07-01

    Surgical simulations require haptic interactions and collaboration in a shared virtual environment. A software framework for decoupled surgical simulation based on a multi-controller and multi-viewer model-view-controller (MVC) pattern was developed and tested. A software framework for multimodal virtual environments was designed, supporting both visual interactions and haptic feedback while providing developers with an integration tool for heterogeneous architectures maintaining high performance, simplicity of implementation, and straightforward extension. The framework uses decoupled simulation with updates of over 1,000 Hz for haptics and accommodates networked simulation with delays of over 1,000 ms without performance penalty. The simulation software framework was implemented and was used to support the design of virtual reality-based surgery simulation systems. The framework supports the high level of complexity of such applications and the fast response required for interaction with haptics. The efficacy of the framework was tested by implementation of a minimally invasive surgery simulator. A decoupled simulation approach can be implemented as a framework to handle simultaneous processes of the system at the various frame rates each process requires. The framework was successfully used to develop collaborative virtual environments (VEs) involving geographically distributed users connected through a network, with the results comparable to VEs for local users.

  14. A general framework for multicharacter segmentation and its application in recognizing multilingual Asian documents

    NASA Astrophysics Data System (ADS)

    Wen, Di; Ding, Xiaoqing

    2003-12-01

    In this paper we propose a general framework for character segmentation in complex multilingual documents, which is an endeavor to combine the traditionally separated segmentation and recognition processes into a cooperative system. The framework contains three basic steps: Dissection, Local Optimization and Global Optimization, which are designed to fuse various properties of the segmentation hypotheses hierarchically into a composite evaluation to decide the final recognition results. Experimental results show that this framework is general enough to be applied in variety of documents. A sample system based on this framework to recognize Chinese, Japanese and Korean documents and experimental performance is reported finally.

  15. Data-Adaptable Modeling and Optimization for Runtime Adaptable Systems

    DTIC Science & Technology

    2016-06-08

    execution scenarios e . Enables model -guided optimization algorithms that outperform state-of-the-art f. Understands the overhead of system...the Data-Adaptable System Model (DASM), that facilitates design by enabling the designer to: 1) specify both an application’s task flow as well as...systems. The MILAN [3] framework specializes in the design, simulation , and synthesis of System On Chip (SoC) applications using model -based techniques

  16. Characterizing the reliability of a bioMEMS-based cantilever sensor

    NASA Astrophysics Data System (ADS)

    Bhalerao, Kaustubh D.

    2004-12-01

    The cantilever-based BioMEMS sensor represents one instance from many competing ideas of biosensor technology based on Micro Electro Mechanical Systems. The advancement of BioMEMS from laboratory-scale experiments to applications in the field will require standardization of their components and manufacturing procedures as well as frameworks to evaluate their performance. Reliability, the likelihood with which a system performs its intended task, is a compact mathematical description of its performance. The mathematical and statistical foundation of systems-reliability has been applied to the cantilever-based BioMEMS sensor. The sensor is designed to detect one aspect of human ovarian cancer, namely the over-expression of the folate receptor surface protein (FR-alpha). Even as the application chosen is clinically motivated, the objective of this study was to demonstrate the underlying systems-based methodology used to design, develop and evaluate the sensor. The framework development can be readily extended to other BioMEMS-based devices for disease detection and will have an impact in the rapidly growing $30 bn industry. The Unified Modeling Language (UML) is a systems-based framework for design and development of object-oriented information systems which has potential application for use in systems designed to interact with biological environments. The UML has been used to abstract and describe the application of the biosensor, to identify key components of the biosensor, and the technology needed to link them together in a coherent manner. The use of the framework is also demonstrated in computation of system reliability from first principles as a function of the structure and materials of the biosensor. The outcomes of applying the systems-based framework to the study are the following: (1) Characterizing the cantilever-based MEMS device for disease (cell) detection. (2) Development of a novel chemical interface between the analyte and the sensor that provides a degree of selectivity towards the disease. (3) Demonstrating the performance and measuring the reliability of the biosensor prototype, and (4) Identification of opportunities in technological development in order to further refine the proposed biosensor. Application of the methodology to design develop and evaluate the reliability of BioMEMS devices will be beneficial in the streamlining the growth of the BioMEMS industry, while providing a decision-support tool in comparing and adopting suitable technologies from available competing options.

  17. Feature-based component model for design of embedded systems

    NASA Astrophysics Data System (ADS)

    Zha, Xuan Fang; Sriram, Ram D.

    2004-11-01

    An embedded system is a hybrid of hardware and software, which combines software's flexibility and hardware real-time performance. Embedded systems can be considered as assemblies of hardware and software components. An Open Embedded System Model (OESM) is currently being developed at NIST to provide a standard representation and exchange protocol for embedded systems and system-level design, simulation, and testing information. This paper proposes an approach to representing an embedded system feature-based model in OESM, i.e., Open Embedded System Feature Model (OESFM), addressing models of embedded system artifacts, embedded system components, embedded system features, and embedded system configuration/assembly. The approach provides an object-oriented UML (Unified Modeling Language) representation for the embedded system feature model and defines an extension to the NIST Core Product Model. The model provides a feature-based component framework allowing the designer to develop a virtual embedded system prototype through assembling virtual components. The framework not only provides a formal precise model of the embedded system prototype but also offers the possibility of designing variation of prototypes whose members are derived by changing certain virtual components with different features. A case study example is discussed to illustrate the embedded system model.

  18. The combination of an Environmental Management System and Life Cycle Assessment at the territorial level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzi, Anna; Toniolo, Sara; Catto, Stella

    A framework to include a Life Cycle Assessment in the significance evaluation of the environmental aspects of an Environmental Management System has been studied for some industrial sectors, but there is a literature gap at the territorial level, where the indirect impact assessment is crucial. To overcome this criticality, our research proposes the Life Cycle Assessment as a framework to assess environmental aspects of public administration within an Environmental Management System applied at the territorial level. This research is structured in two parts: the design of a new methodological framework and the pilot application for an Italian municipality. The methodologicalmore » framework designed supports Initial Environmental Analysis at the territorial level thanks to the results derived from the impact assessment phase. The pilot application in an Italian municipality EMAS registered demonstrates the applicability of the framework and its effectiveness in evaluating the environmental impact assessment for direct and indirect aspects. Through the discussion of the results, we underline the growing knowledge derived by this research in terms of the reproducibility and consistency of the criteria to define the significance of the direct and indirect environmental aspects for a local public administration. - Highlights: • The combination between Environmental Management System and LCA is studied. • A methodological framework is elaborated and tested at the territorial level. • Life Cycle Impact Assessment supports the evaluation of aspects significance. • The framework assures consistency of evaluation criteria on the studied territory.« less

  19. A Buyer Behaviour Framework for the Development and Design of Software Agents in E-Commerce.

    ERIC Educational Resources Information Center

    Sproule, Susan; Archer, Norm

    2000-01-01

    Software agents are computer programs that run in the background and perform tasks autonomously as delegated by the user. This paper blends models from marketing research and findings from the field of decision support systems to build a framework for the design of software agents to support in e-commerce buying applications. (Contains 35…

  20. Optimal protocols for slowly driven quantum systems.

    PubMed

    Zulkowski, Patrick R; DeWeese, Michael R

    2015-09-01

    The design of efficient quantum information processing will rely on optimal nonequilibrium transitions of driven quantum systems. Building on a recently developed geometric framework for computing optimal protocols for classical systems driven in finite time, we construct a general framework for optimizing the average information entropy for driven quantum systems. Geodesics on the parameter manifold endowed with a positive semidefinite metric correspond to protocols that minimize the average information entropy production in finite time. We use this framework to explicitly compute the optimal entropy production for a simple two-state quantum system coupled to a heat bath of bosonic oscillators, which has applications to quantum annealing.

  1. Identifying and Addressing Stakeholder Interests in Design Science Research: An Analysis Using Critical Systems Heuristics

    NASA Astrophysics Data System (ADS)

    Venable, John R.

    This paper utilises the Critical Systems Heuristics (CSH) framework developed by Werner Ulrich to critically consider the stakeholders and design goals that should be considered as relevant by researchers conducing Design Science Research (DSR). CSH provides a philosophically and theoretically grounded framework and means for critical consideration of the choices of stakeholders considered to be relevant to any system under design consideration. The paper recommends that legitimately undertaken DSR should include witnesses to represent the interests of the future consumers of the outcomes of DSR, i.e., the future clients, decision makers, professionals, and other non-included stakeholders in the future use of the solution technologies to be invented in DSR. The paper further discusses options for how witnesses might be included, who should be witnessed for and obstacles to implementing the recommendations.

  2. Equitable Access by Design. A Conceptual Framework for Integrated Student Supports within Linked Learning Pathways

    ERIC Educational Resources Information Center

    de Velasco, Jorge Ruiz; Newman, Elizabeth; Borsato, Graciela

    2016-01-01

    This report proposes a conceptual framework for defining and implementing a system of integrated student supports that provides equitable access to college and career readiness via Linked Learning pathways in high schools. The framework emphasizes the central commitment of the Linked Learning approach to challenge prevailing norms of…

  3. Sequential Schooling or Lifelong Learning? International Frameworks through the Lens of English Higher Professional and Vocational Education

    ERIC Educational Resources Information Center

    Lester, Stan

    2018-01-01

    Purpose: The purpose of this paper is to review three international frameworks, including the International Standard Classification of Education (ISCED), in relation to one country's higher professional and vocational education system. Design/methodology/approach: The frameworks were examined in the context of English higher work-related…

  4. Federated Process Framework in a Virtual Enterprise Using an Object-Oriented Database and Extensible Markup Language.

    ERIC Educational Resources Information Center

    Bae, Kyoung-Il; Kim, Jung-Hyun; Huh, Soon-Young

    2003-01-01

    Discusses process information sharing among participating organizations in a virtual enterprise and proposes a federated process framework and system architecture that provide a conceptual design for effective implementation of process information sharing supporting the autonomy and agility of the organizations. Develops the framework using an…

  5. Towards a Framework for Evolvable Network Design

    NASA Astrophysics Data System (ADS)

    Hassan, Hoda; Eltarras, Ramy; Eltoweissy, Mohamed

    The layered Internet architecture that had long guided network design and protocol engineering was an “interconnection architecture” defining a framework for interconnecting networks rather than a model for generic network structuring and engineering. We claim that the approach of abstracting the network in terms of an internetwork hinders the thorough understanding of the network salient characteristics and emergent behavior resulting in impeding design evolution required to address extreme scale, heterogeneity, and complexity. This paper reports on our work in progress that aims to: 1) Investigate the problem space in terms of the factors and decisions that influenced the design and development of computer networks; 2) Sketch the core principles for designing complex computer networks; and 3) Propose a model and related framework for building evolvable, adaptable and self organizing networks We will adopt a bottom up strategy primarily focusing on the building unit of the network model, which we call the “network cell”. The model is inspired by natural complex systems. A network cell is intrinsically capable of specialization, adaptation and evolution. Subsequently, we propose CellNet; a framework for evolvable network design. We outline scenarios for using the CellNet framework to enhance legacy Internet protocol stack.

  6. Health information systems: a survey of frameworks for developing countries.

    PubMed

    Marcelo, A B

    2010-01-01

    The objective of this paper is to perform a survey of excellent research on health information systems (HIS) analysis and design, and their underlying theoretical frameworks. It classifies these frameworks along major themes, and analyzes the different approaches to HIS development that are practical in resource-constrained environments. Literature review based on PubMed citations and conference proceedings, as well as Internet searches on information systems in general, and health information systems in particular. The field of health information systems development has been studied extensively. Despite this, failed implementations are still common. Theoretical frameworks for HIS development are available that can guide implementers. As awareness, acceptance, and demand for health information systems increase globally, the variety of approaches and strategies will also follow. For developing countries with scarce resources, a trial-and-error approach can be very costly. Lessons from the successes and failures of initial HIS implementations have been abstracted into theoretical frameworks. These frameworks organize complex HIS concepts into methodologies that standardize techniques in implementation. As globalization continues to impact healthcare in the developing world, demand for more responsive health systems will become urgent. More comprehensive frameworks and practical tools to guide HIS implementers will be imperative.

  7. A development framework for semantically interoperable health information systems.

    PubMed

    Lopez, Diego M; Blobel, Bernd G M E

    2009-02-01

    Semantic interoperability is a basic challenge to be met for new generations of distributed, communicating and co-operating health information systems (HIS) enabling shared care and e-Health. Analysis, design, implementation and maintenance of such systems and intrinsic architectures have to follow a unified development methodology. The Generic Component Model (GCM) is used as a framework for modeling any system to evaluate and harmonize state of the art architecture development approaches and standards for health information systems as well as to derive a coherent architecture development framework for sustainable, semantically interoperable HIS and their components. The proposed methodology is based on the Rational Unified Process (RUP), taking advantage of its flexibility to be configured for integrating other architectural approaches such as Service-Oriented Architecture (SOA), Model-Driven Architecture (MDA), ISO 10746, and HL7 Development Framework (HDF). Existing architectural approaches have been analyzed, compared and finally harmonized towards an architecture development framework for advanced health information systems. Starting with the requirements for semantic interoperability derived from paradigm changes for health information systems, and supported in formal software process engineering methods, an appropriate development framework for semantically interoperable HIS has been provided. The usability of the framework has been exemplified in a public health scenario.

  8. Feasibility Study of a Generalized Framework for Developing Computer-Aided Detection Systems-a New Paradigm.

    PubMed

    Nemoto, Mitsutaka; Hayashi, Naoto; Hanaoka, Shouhei; Nomura, Yukihiro; Miki, Soichiro; Yoshikawa, Takeharu

    2017-10-01

    We propose a generalized framework for developing computer-aided detection (CADe) systems whose characteristics depend only on those of the training dataset. The purpose of this study is to show the feasibility of the framework. Two different CADe systems were experimentally developed by a prototype of the framework, but with different training datasets. The CADe systems include four components; preprocessing, candidate area extraction, candidate detection, and candidate classification. Four pretrained algorithms with dedicated optimization/setting methods corresponding to the respective components were prepared in advance. The pretrained algorithms were sequentially trained in the order of processing of the components. In this study, two different datasets, brain MRA with cerebral aneurysms and chest CT with lung nodules, were collected to develop two different types of CADe systems in the framework. The performances of the developed CADe systems were evaluated by threefold cross-validation. The CADe systems for detecting cerebral aneurysms in brain MRAs and for detecting lung nodules in chest CTs were successfully developed using the respective datasets. The framework was shown to be feasible by the successful development of the two different types of CADe systems. The feasibility of this framework shows promise for a new paradigm in the development of CADe systems: development of CADe systems without any lesion specific algorithm designing.

  9. An Exploratory Study of Cost Engineering in Axiomatic Design: Creation of the Cost Model Based on an FR-DP Map

    NASA Technical Reports Server (NTRS)

    Lee, Taesik; Jeziorek, Peter

    2004-01-01

    Large complex projects cost large sums of money throughout their life cycle for a variety of reasons and causes. For such large programs, the credible estimation of the project cost, a quick assessment of the cost of making changes, and the management of the project budget with effective cost reduction determine the viability of the project. Cost engineering that deals with these issues requires a rigorous method and systematic processes. This paper introduces a logical framework to a&e effective cost engineering. The framework is built upon Axiomatic Design process. The structure in the Axiomatic Design process provides a good foundation to closely tie engineering design and cost information together. The cost framework presented in this paper is a systematic link between the functional domain (FRs), physical domain (DPs), cost domain (CUs), and a task/process-based model. The FR-DP map relates a system s functional requirements to design solutions across all levels and branches of the decomposition hierarchy. DPs are mapped into CUs, which provides a means to estimate the cost of design solutions - DPs - from the cost of the physical entities in the system - CUs. The task/process model describes the iterative process ot-developing each of the CUs, and is used to estimate the cost of CUs. By linking the four domains, this framework provides a superior traceability from requirements to cost information.

  10. A modular approach to addressing model design, scale, and parameter estimation issues in distributed hydrological modelling

    USGS Publications Warehouse

    Leavesley, G.H.; Markstrom, S.L.; Restrepo, Pedro J.; Viger, R.J.

    2002-01-01

    A modular approach to model design and construction provides a flexible framework in which to focus the multidisciplinary research and operational efforts needed to facilitate the development, selection, and application of the most robust distributed modelling methods. A variety of modular approaches have been developed, but with little consideration for compatibility among systems and concepts. Several systems are proprietary, limiting any user interaction. The US Geological Survey modular modelling system (MMS) is a modular modelling framework that uses an open source software approach to enable all members of the scientific community to address collaboratively the many complex issues associated with the design, development, and application of distributed hydrological and environmental models. Implementation of a common modular concept is not a trivial task. However, it brings the resources of a larger community to bear on the problems of distributed modelling, provides a framework in which to compare alternative modelling approaches objectively, and provides a means of sharing the latest modelling advances. The concepts and components of the MMS are described and an example application of the MMS, in a decision-support system context, is presented to demonstrate current system capabilities. Copyright ?? 2002 John Wiley and Sons, Ltd.

  11. Technical design and system implementation of region-line primitive association framework

    NASA Astrophysics Data System (ADS)

    Wang, Min; Xing, Jinjin; Wang, Jie; Lv, Guonian

    2017-08-01

    Apart from regions, image edge lines are an important information source, and they deserve more attention in object-based image analysis (OBIA) than they currently receive. In the region-line primitive association framework (RLPAF), we promote straight-edge lines as line primitives to achieve powerful OBIAs. Along with regions, straight lines become basic units for subsequent extraction and analysis of OBIA features. This study develops a new software system called remote-sensing knowledge finder (RSFinder) to implement RLPAF for engineering application purposes. This paper introduces the extended technical framework, a comprehensively designed feature set, key technology, and software implementation. To our knowledge, RSFinder is the world's first OBIA system based on two types of primitives, namely, regions and lines. It is fundamentally different from other well-known region-only-based OBIA systems, such as eCogntion and ENVI feature extraction module. This paper has important reference values for the development of similarly structured OBIA systems and line-involved extraction algorithms of remote sensing information.

  12. Communications and radar-supported transportation operations and planning : final report.

    DOT National Transportation Integrated Search

    2017-03-01

    This project designs a conceptual framework to harness and mature wireless technology to improve : transportation safety, with a focus on frontal collision warning/collision avoidance (CW/CA) systems. The : framework identifies components of the tech...

  13. Possibility of designing catalysts beyond the traditional volcano curve: a theoretical framework for multi-phase surfaces.

    PubMed

    Wang, Ziyun; Wang, Hai-Feng; Hu, P

    2015-10-01

    The current theory of catalyst activity in heterogeneous catalysis is mainly obtained from the study of catalysts with mono-phases, while most catalysts in real systems consist of multi-phases, the understanding of which is far short of chemists' expectation. Density functional theory (DFT) and micro-kinetics simulations are used to investigate the activities of six mono-phase and nine bi-phase catalysts, using CO hydrogenation that is arguably the most typical reaction in heterogeneous catalysis. Excellent activities that are beyond the activity peak of traditional mono-phase volcano curves are found on some bi-phase surfaces. By analyzing these results, a new framework to understand the unexpected activities of bi-phase surfaces is proposed. Based on the framework, several principles for the design of multi-phase catalysts are suggested. The theoretical framework extends the traditional catalysis theory to understand more complex systems.

  14. Design of Knowledge Management System for Diabetic Complication Diseases

    NASA Astrophysics Data System (ADS)

    Fiarni, Cut

    2017-01-01

    This paper examines how to develop a Model for Knowledge Management System (KMS) for diabetes complication diseases. People with diabetes have a higher risk of developing a series of serious health problems. Each patient has different condition that could lead to different disease and health problem. But, with the right information, patient could have early detection so the health risk could be minimized and avoided. Hence, the objective of this research is to propose a conceptual framework that integrates social network model, Knowledge Management activities, and content based reasoning (CBR) for designing such a diabetes health and complication disease KMS. The framework indicates that the critical knowledge management activities are in the process to find similar case and the index table for algorithm to fit the framework for the social media. With this framework, KMS developers can work with healthcare provider to easily identify the suitable IT associated with the CBR process when developing a diabetes KMS.

  15. Object-oriented philosophy in designing adaptive finite-element package for 3D elliptic deferential equations

    NASA Astrophysics Data System (ADS)

    Zhengyong, R.; Jingtian, T.; Changsheng, L.; Xiao, X.

    2007-12-01

    Although adaptive finite-element (AFE) analysis is becoming more and more focused in scientific and engineering fields, its efficient implementations are remain to be a discussed problem as its more complex procedures. In this paper, we propose a clear C++ framework implementation to show the powerful properties of Object-oriented philosophy (OOP) in designing such complex adaptive procedure. In terms of the modal functions of OOP language, the whole adaptive system is divided into several separate parts such as the mesh generation or refinement, a-posterior error estimator, adaptive strategy and the final post processing. After proper designs are locally performed on these separate modals, a connected framework of adaptive procedure is formed finally. Based on the general elliptic deferential equation, little efforts should be added in the adaptive framework to do practical simulations. To show the preferable properties of OOP adaptive designing, two numerical examples are tested. The first one is the 3D direct current resistivity problem in which the powerful framework is efficiently shown as only little divisions are added. And then, in the second induced polarization£¨IP£©exploration case, new adaptive procedure is easily added which adequately shows the strong extendibility and re-usage of OOP language. Finally we believe based on the modal framework adaptive implementation by OOP methodology, more advanced adaptive analysis system will be available in future.

  16. The ABLe change framework: a conceptual and methodological tool for promoting systems change.

    PubMed

    Foster-Fishman, Pennie G; Watson, Erin R

    2012-06-01

    This paper presents a new approach to the design and implementation of community change efforts like a System of Care. Called the ABLe Change Framework, the model provides simultaneous attention to the content and process of the work, ensuring effective implementation and the pursuit of systems change. Three key strategies are employed in this model to ensure the integration of content and process efforts and effective mobilization of broad scale systems change: Systemic Action Learning Teams, Simple Rules, and Small Wins. In this paper we describe the ABLe Change Framework and present a case study in which we successfully applied this approach to one system of care effort in Michigan.

  17. Beyond Effectiveness: A Pragmatic Evaluation Framework for Learning and Continuous Quality Improvement of e-Learning Interventions in Healthcare.

    PubMed

    Dafalla, Tarig Dafalla Mohamed; Kushniruk, Andre W; Borycki, Elizabeth M

    2015-01-01

    A pragmatic evaluation framework for evaluating the usability and usefulness of an e-learning intervention for a patient clinical information scheduling system is presented in this paper. The framework was conceptualized based on two different but related concepts (usability and usefulness) and selection of appropriate and valid methods of data collection and analysis that included: (1) Low-Cost Rapid Usability Engineering (LCRUE), (2) Cognitive Task Analysis (CTA), (3) Heuristic Evaluation (HE) criteria for web-based learning, and (4) Software Usability Measurement Inventory (SUMI). The results of the analysis showed some areas where usability that were related to General Interface Usability (GIU), instructional design and content was problematic; some of which might account for the poorly rated aspects of usability when subjectively measured. This paper shows that using a pragmatic framework can be a useful way, not only for measuring the usability and usefulness, but also for providing a practical objective evidences for learning and continuous quality improvement of e-learning systems. The findings should be of interest to educators, developers, designers, researchers, and usability practitioners involved in the development of e-learning systems in healthcare. This framework could be an appropriate method for assessing the usability, usefulness and safety of health information systems both in the laboratory and in the clinical context.

  18. Boom Minimization Framework for Supersonic Aircraft Using CFD Analysis

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Rallabhandi, Sriram K.

    2010-01-01

    A new framework is presented for shape optimization using analytical shape functions and high-fidelity computational fluid dynamics (CFD) via Cart3D. The focus of the paper is the system-level integration of several key enabling analysis tools and automation methods to perform shape optimization and reduce sonic boom footprint. A boom mitigation case study subject to performance, stability and geometrical requirements is presented to demonstrate a subset of the capabilities of the framework. Lastly, a design space exploration is carried out to assess the key parameters and constraints driving the design.

  19. Development of a Human Systems Integration Framework for Coast Guard Acquisition

    DTIC Science & Technology

    2014-06-01

    retrospective. Acta Astronautica, 65(9), 1216–1223. McCauley, M. (2013). Application of anthropometry to ergonomics and system design [PowerPoint...Systems and Humans, IEEE Transactions On, 30(3), 286–297. Pheasant, S., & Haslegrave, C. M. (2006). Bodyspace: Anthropometry, ergonomics and the design ...words) Human systems integration (HSI) applies knowledge of human capabilities and limitations to design more efficient, effective and safe military

  20. A generalized reconstruction framework for unconventional PET systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathews, Aswin John, E-mail: amathews@wustl.edu; Li, Ke; O’Sullivan, Joseph A.

    2015-08-15

    Purpose: Quantitative estimation of the radionuclide activity concentration in positron emission tomography (PET) requires precise modeling of PET physics. The authors are focused on designing unconventional PET geometries for specific applications. This work reports the creation of a generalized reconstruction framework, capable of reconstructing tomographic PET data for systems that use right cuboidal detector elements positioned at arbitrary geometry using a regular Cartesian grid of image voxels. Methods: The authors report on a variety of design choices and optimization for the creation of the generalized framework. The image reconstruction algorithm is maximum likelihood-expectation–maximization. System geometry can be specified using amore » simple script. Given the geometry, a symmetry seeking algorithm finds existing symmetry in the geometry with respect to the image grid to improve the memory usage/speed. Normalization is approached from a geometry independent perspective. The system matrix is computed using the Siddon’s algorithm and subcrystal approach. The program is parallelized through open multiprocessing and message passing interface libraries. A wide variety of systems can be modeled using the framework. This is made possible by modeling the underlying physics and data correction, while generalizing the geometry dependent features. Results: Application of the framework for three novel PET systems, each designed for a specific application, is presented to demonstrate the robustness of the framework in modeling PET systems of unconventional geometry. Three PET systems of unconventional geometry are studied. (1) Virtual-pinhole half-ring insert integrated into Biograph-40: although the insert device improves image quality over conventional whole-body scanner, the image quality varies depending on the position of the insert and the object. (2) Virtual-pinhole flat-panel insert integrated into Biograph-40: preliminary results from an investigation into a modular flat-panel insert are presented. (3) Plant PET system: a reconfigurable PET system for imaging plants, with resolution of greater than 3.3 mm, is shown. Using the automated symmetry seeking algorithm, the authors achieved a compression ratio of the storage and memory requirement by a factor of approximately 50 for the half-ring and flat-panel systems. For plant PET system, the compression ratio is approximately five. The ratio depends on the level of symmetry that exists in different geometries. Conclusions: This work brings the field closer to arbitrary geometry reconstruction. A generalized reconstruction framework can be used to validate multiple hypotheses and the effort required to investigate each system is reduced. Memory usage/speed can be improved with certain optimizations.« less

  1. A generalized reconstruction framework for unconventional PET systems.

    PubMed

    Mathews, Aswin John; Li, Ke; Komarov, Sergey; Wang, Qiang; Ravindranath, Bosky; O'Sullivan, Joseph A; Tai, Yuan-Chuan

    2015-08-01

    Quantitative estimation of the radionuclide activity concentration in positron emission tomography (PET) requires precise modeling of PET physics. The authors are focused on designing unconventional PET geometries for specific applications. This work reports the creation of a generalized reconstruction framework, capable of reconstructing tomographic PET data for systems that use right cuboidal detector elements positioned at arbitrary geometry using a regular Cartesian grid of image voxels. The authors report on a variety of design choices and optimization for the creation of the generalized framework. The image reconstruction algorithm is maximum likelihood-expectation-maximization. System geometry can be specified using a simple script. Given the geometry, a symmetry seeking algorithm finds existing symmetry in the geometry with respect to the image grid to improve the memory usage/speed. Normalization is approached from a geometry independent perspective. The system matrix is computed using the Siddon's algorithm and subcrystal approach. The program is parallelized through open multiprocessing and message passing interface libraries. A wide variety of systems can be modeled using the framework. This is made possible by modeling the underlying physics and data correction, while generalizing the geometry dependent features. Application of the framework for three novel PET systems, each designed for a specific application, is presented to demonstrate the robustness of the framework in modeling PET systems of unconventional geometry. Three PET systems of unconventional geometry are studied. (1) Virtual-pinhole half-ring insert integrated into Biograph-40: although the insert device improves image quality over conventional whole-body scanner, the image quality varies depending on the position of the insert and the object. (2) Virtual-pinhole flat-panel insert integrated into Biograph-40: preliminary results from an investigation into a modular flat-panel insert are presented. (3) Plant PET system: a reconfigurable PET system for imaging plants, with resolution of greater than 3.3 mm, is shown. Using the automated symmetry seeking algorithm, the authors achieved a compression ratio of the storage and memory requirement by a factor of approximately 50 for the half-ring and flat-panel systems. For plant PET system, the compression ratio is approximately five. The ratio depends on the level of symmetry that exists in different geometries. This work brings the field closer to arbitrary geometry reconstruction. A generalized reconstruction framework can be used to validate multiple hypotheses and the effort required to investigate each system is reduced. Memory usage/speed can be improved with certain optimizations.

  2. A generalized reconstruction framework for unconventional PET systems

    PubMed Central

    Mathews, Aswin John; Li, Ke; Komarov, Sergey; Wang, Qiang; Ravindranath, Bosky; O’Sullivan, Joseph A.; Tai, Yuan-Chuan

    2015-01-01

    Purpose: Quantitative estimation of the radionuclide activity concentration in positron emission tomography (PET) requires precise modeling of PET physics. The authors are focused on designing unconventional PET geometries for specific applications. This work reports the creation of a generalized reconstruction framework, capable of reconstructing tomographic PET data for systems that use right cuboidal detector elements positioned at arbitrary geometry using a regular Cartesian grid of image voxels. Methods: The authors report on a variety of design choices and optimization for the creation of the generalized framework. The image reconstruction algorithm is maximum likelihood-expectation–maximization. System geometry can be specified using a simple script. Given the geometry, a symmetry seeking algorithm finds existing symmetry in the geometry with respect to the image grid to improve the memory usage/speed. Normalization is approached from a geometry independent perspective. The system matrix is computed using the Siddon’s algorithm and subcrystal approach. The program is parallelized through open multiprocessing and message passing interface libraries. A wide variety of systems can be modeled using the framework. This is made possible by modeling the underlying physics and data correction, while generalizing the geometry dependent features. Results: Application of the framework for three novel PET systems, each designed for a specific application, is presented to demonstrate the robustness of the framework in modeling PET systems of unconventional geometry. Three PET systems of unconventional geometry are studied. (1) Virtual-pinhole half-ring insert integrated into Biograph-40: although the insert device improves image quality over conventional whole-body scanner, the image quality varies depending on the position of the insert and the object. (2) Virtual-pinhole flat-panel insert integrated into Biograph-40: preliminary results from an investigation into a modular flat-panel insert are presented. (3) Plant PET system: a reconfigurable PET system for imaging plants, with resolution of greater than 3.3 mm, is shown. Using the automated symmetry seeking algorithm, the authors achieved a compression ratio of the storage and memory requirement by a factor of approximately 50 for the half-ring and flat-panel systems. For plant PET system, the compression ratio is approximately five. The ratio depends on the level of symmetry that exists in different geometries. Conclusions: This work brings the field closer to arbitrary geometry reconstruction. A generalized reconstruction framework can be used to validate multiple hypotheses and the effort required to investigate each system is reduced. Memory usage/speed can be improved with certain optimizations. PMID:26233187

  3. A Flipped Classroom Approach to Teaching Systems Analysis, Design and Implementation

    ERIC Educational Resources Information Center

    Tanner, Maureen; Scott, Elsje

    2015-01-01

    This paper describes a flipped classroom approach followed to teach systems analysis, design and implementation at university level. The techniques employed are described. These techniques were underpinned by a theory of coherent practice: a pedagogy that provides a framework for the design of highly structured interventions to guide students in…

  4. Integrated communication and control systems. II - Design considerations

    NASA Technical Reports Server (NTRS)

    Ray, Asok; Halevi, Yoram

    1988-01-01

    The ICCS design issues for nonperiodic and stochastic delays are addressed and the framework for alternative design procedures is outlined. The impact of network-induced delays on system stability is investigated and their physical significance is demonstrated using a simulation. The negative effects of vacant sampling and message rejection at the controller are demonstrated.

  5. System analysis through bond graph modeling

    NASA Astrophysics Data System (ADS)

    McBride, Robert Thomas

    2005-07-01

    Modeling and simulation form an integral role in the engineering design process. An accurate mathematical description of a system provides the design engineer the flexibility to perform trade studies quickly and accurately to expedite the design process. Most often, the mathematical model of the system contains components of different engineering disciplines. A modeling methodology that can handle these types of systems might be used in an indirect fashion to extract added information from the model. This research examines the ability of a modeling methodology to provide added insight into system analysis and design. The modeling methodology used is bond graph modeling. An investigation into the creation of a bond graph model using the Lagrangian of the system is provided. Upon creation of the bond graph, system analysis is performed. To aid in the system analysis, an object-oriented approach to bond graph modeling is introduced. A framework is provided to simulate the bond graph directly. Through object-oriented simulation of a bond graph, the information contained within the bond graph can be exploited to create a measurement of system efficiency. A definition of system efficiency is given. This measurement of efficiency is used in the design of different controllers of varying architectures. Optimal control of a missile autopilot is discussed within the framework of the calculated system efficiency.

  6. Crisis crowdsourcing framework: designing strategic configurations of crowdsourcing for the emergency management domain

    USGS Publications Warehouse

    Liu, Sophia B.

    2014-01-01

    Crowdsourcing is not a new practice but it is a concept that has gained significant attention during recent disasters. Drawing from previous work in the crisis informatics, disaster sociology, and computer-supported cooperative work (CSCW) literature, the paper first explains recent conceptualizations of crowdsourcing and how crowdsourcing is a way of leveraging disaster convergence. The CSCW concept of “articulation work” is introduced as an interpretive frame for extracting the salient dimensions of “crisis crowdsourcing.” Then, a series of vignettes are presented to illustrate the evolution of crisis crowdsourcing that spontaneously emerged after the 2010 Haiti earthquake and evolved to more established forms of public engagement during crises. The best practices extracted from the vignettes clarified the efforts to formalize crisis crowdsourcing through the development of innovative interfaces designed to support the articulation work needed to facilitate spontaneous volunteer efforts. Extracting these best practices led to the development of a conceptual framework that unpacks the key dimensions of crisis crowdsourcing. The Crisis Crowdsourcing Framework is a systematic, problem-driven approach to determining the why, who, what, when, where, and how aspects of a crowdsourcing system. The framework also draws attention to the social, technological, organizational, and policy (STOP) interfaces that need to be designed to manage the articulation work involved with reducing the complexity of coordinating across these key dimensions. An example of how to apply the framework to design a crowdsourcing system is offered with with a discussion on the implications for applying this framework as well as the limitations of this framework. Innovation is occurring at the social, technological, organizational, and policy interfaces enabling crowdsourcing to be operationalized and integrated into official products and services.

  7. Knowledge acquisition in the fuzzy knowledge representation framework of a medical consultation system.

    PubMed

    Boegl, Karl; Adlassnig, Klaus-Peter; Hayashi, Yoichi; Rothenfluh, Thomas E; Leitich, Harald

    2004-01-01

    This paper describes the fuzzy knowledge representation framework of the medical computer consultation system MedFrame/CADIAG-IV as well as the specific knowledge acquisition techniques that have been developed to support the definition of knowledge concepts and inference rules. As in its predecessor system CADIAG-II, fuzzy medical knowledge bases are used to model the uncertainty and the vagueness of medical concepts and fuzzy logic reasoning mechanisms provide the basic inference processes. The elicitation and acquisition of medical knowledge from domain experts has often been described as the most difficult and time-consuming task in knowledge-based system development in medicine. It comes as no surprise that this is even more so when unfamiliar representations like fuzzy membership functions are to be acquired. From previous projects we have learned that a user-centered approach is mandatory in complex and ill-defined knowledge domains such as internal medicine. This paper describes the knowledge acquisition framework that has been developed in order to make easier and more accessible the three main tasks of: (a) defining medical concepts; (b) providing appropriate interpretations for patient data; and (c) constructing inferential knowledge in a fuzzy knowledge representation framework. Special emphasis is laid on the motivations for some system design and data modeling decisions. The theoretical framework has been implemented in a software package, the Knowledge Base Builder Toolkit. The conception and the design of this system reflect the need for a user-centered, intuitive, and easy-to-handle tool. First results gained from pilot studies have shown that our approach can be successfully implemented in the context of a complex fuzzy theoretical framework. As a result, this critical aspect of knowledge-based system development can be accomplished more easily.

  8. Cognitive dimensions of talim: evaluating weaving notation through cognitive dimensions (CDs) framework.

    PubMed

    Kaur, Gagan Deep

    2017-05-01

    The design process in Kashmiri carpet weaving is distributed over a number of actors and artifacts and is mediated by a weaving notation called talim. The script encodes entire design in practice-specific symbols. This encoded script is decoded and interpreted via design-specific conventions by weavers to weave the design embedded in it. The cognitive properties of this notational system are described in the paper employing cognitive dimensions (CDs) framework of Green (People and computers, Cambridge University Press, Cambridge, 1989) and Blackwell et al. (Cognitive technology: instruments of mind-CT 2001, LNAI 2117, Springer, Berlin, 2001). After introduction to the practice, the design process is described in 'The design process' section which includes coding and decoding of talim. In 'Cognitive dimensions of talim' section, after briefly discussing CDs framework, the specific cognitive dimensions possessed by talim are described in detail.

  9. Complex multidisciplinary system composition for aerospace vehicle conceptual design

    NASA Astrophysics Data System (ADS)

    Gonzalez, Lex

    Although, there exists a vast amount of work concerning the analysis, design, integration of aerospace vehicle systems, there is no standard for how this data and knowledge should be combined in order to create a synthesis system. Each institution creating a synthesis system has in house vehicle and hardware components they are attempting to model and proprietary methods with which to model them. This leads to the fact that synthesis systems begin as one-off creations meant to answer a specific problem. As the scope of the synthesis system grows to encompass more and more problems, so does its size and complexity; in order for a single synthesis system to answer multiple questions the number of methods and method interface must increase. As a means to curtail the requirement that the increase of an aircraft synthesis systems capability leads to an increase in its size and complexity, this research effort focuses on the idea that each problem in aerospace requires its own analysis framework. By focusing on the creation of a methodology which centers on the matching of an analysis framework towards the problem being solved, the complexity of the analysis framework is decoupled from the complexity of the system that creates it. The derived methodology allows for the composition of complex multi-disciplinary systems (CMDS) through the automatic creation and implementation of system and disciplinary method interfaces. The CMDS Composition process follows a four step methodology meant to take a problem definition and progress towards the creation of an analysis framework meant to answer said problem. The unique implementation of the CMDS Composition process take user selected disciplinary analysis methods and automatically integrates them, together in order to create a syntactically composable analysis framework. As a means of assessing the validity of the CMDS Composition process a prototype system (AVDDBMS) has been developed. AVD DBMS has been used to model the Generic Hypersonic Vehicle (GHV), an open source family of hypersonic vehicles originating from the Air Force Research Laboratory. AVDDBMS has been applied in three different ways in order to assess its validity: Verification using GHV disciplinary data, Validation using selected disciplinary analysis methods, and Application of the CMDS Composition Process to assess the design solution space for the GHV hardware. The research demonstrates the holistic effect that selection of individual disciplinary analysis methods has on the structure and integration of the analysis framework.

  10. The participatory design of a performance oriented monitoring and evaluation system in an international development environment.

    PubMed

    Guerra-López, Ingrid; Hicks, Karen

    2015-02-01

    This article illustrates the application of the impact monitoring and evaluation process for the design and development of a performance monitoring and evaluation framework in the context of human and institutional capacity development. This participative process facilitated stakeholder ownership in several areas including the design, development, and use of a new monitoring and evaluation system, as well their targeted results and accomplishments through the use of timely performance data gathered through ongoing monitoring and evaluation. The process produced a performance indicator map, a comprehensive monitoring and evaluation framework, and data collection templates to promote the development, implementation, and sustainability of the monitoring and evaluation system of a farmer's trade union in an African country. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Cold in-place recycling characterization framework for single or multiple component binder systems

    NASA Astrophysics Data System (ADS)

    Cox, Benjamin C.

    Cold in-place recycling (CIR) is a pavement rehabilitation technique which has gained momentum in recent years. This momentum is due partly to its economic and sustainability characteristics, which has led to CIR market expansion. When pavement network deterioration is considered alongside increasing material costs, it is not beyond reason to expect demands on CIR to continue to increase. Historically, single component binder (SCB) systems, those with one stabilization binder (or two if the secondary binder dosage is 1% or less), have dominated the CIR market and could be considered the general state of practice. Common stabilization binders are either bituminous or cementitious. Two example SCB systems would be: 1) 3% portland cement, or 2) 3% asphalt emulsion with 1% hydrated lime. While traditional SCB systems have demonstrated positive economic and sustainability impacts, this dissertation focuses on multiple component binder (MCB) systems (bituminous and cementitious combined) which exhibit the potential to provide better overall economics and performance. Use of MCBs has the potential to alleviate SCB issues to some extent (e.g. cracking with cementitious SCBs, rutting with bituminous SCBs). Furthermore, to fairly represent both binders in an MCB system a universal design method which can accommodate multiple binder types is needed. The main objectives of this dissertation are to develop a universal CIR design framework and, using this framework, characterize multiple SCB and MCB systems. Approximately 1500 CIR specimens were tested herein along with approximately 300 asphalt concrete specimens which serve as a reference data set for CIR characterization. A case study of a high-traffic Mississippi CIR project which included cement SCB and emulsion SCB sections is also presented to support laboratory efforts. Individual components needed to comprise a universal design framework, such as curing protocols, were developed. SCB and MCB characterization indicated that cement SCBs yielded low cracking resistance, high rutting resistance, and lower costs. Emulsion SCBs yielded the opposite. MCBs demonstrated the ability to balance rutting, cracking, and economics. Overall, the universal framework presented appears promising as it could offer agencies flexibility and, in some cases, improved overall performance beyond that of current SCB design methods.

  12. System design in an evolving system-of-systems architecture and concept of operations

    NASA Astrophysics Data System (ADS)

    Rovekamp, Roger N., Jr.

    Proposals for space exploration architectures have increased in complexity and scope. Constituent systems (e.g., rovers, habitats, in-situ resource utilization facilities, transfer vehicles, etc) must meet the needs of these architectures by performing in multiple operational environments and across multiple phases of the architecture's evolution. This thesis proposes an approach for using system-of-systems engineering principles in conjunction with system design methods (e.g., Multi-objective optimization, genetic algorithms, etc) to create system design options that perform effectively at both the system and system-of-systems levels, across multiple concepts of operations, and over multiple architectural phases. The framework is presented by way of an application problem that investigates the design of power systems within a power sharing architecture for use in a human Lunar Surface Exploration Campaign. A computer model has been developed that uses candidate power grid distribution solutions for a notional lunar base. The agent-based model utilizes virtual control agents to manage the interactions of various exploration and infrastructure agents. The philosophy behind the model is based both on lunar power supply strategies proposed in literature, as well as on the author's own approaches for power distribution strategies of future lunar bases. In addition to proposing a framework for system design, further implications of system-of-systems engineering principles are briefly explored, specifically as they relate to producing more robust cross-cultural system-of-systems architecture solutions.

  13. A Bayesian Framework for Analysis of Pseudo-Spatial Models of Comparable Engineered Systems with Application to Spacecraft Anomaly Prediction Based on Precedent Data

    NASA Astrophysics Data System (ADS)

    Ndu, Obibobi Kamtochukwu

    To ensure that estimates of risk and reliability inform design and resource allocation decisions in the development of complex engineering systems, early engagement in the design life cycle is necessary. An unfortunate constraint on the accuracy of such estimates at this stage of concept development is the limited amount of high fidelity design and failure information available on the actual system under development. Applying the human ability to learn from experience and augment our state of knowledge to evolve better solutions mitigates this limitation. However, the challenge lies in formalizing a methodology that takes this highly abstract, but fundamentally human cognitive, ability and extending it to the field of risk analysis while maintaining the tenets of generalization, Bayesian inference, and probabilistic risk analysis. We introduce an integrated framework for inferring the reliability, or other probabilistic measures of interest, of a new system or a conceptual variant of an existing system. Abstractly, our framework is based on learning from the performance of precedent designs and then applying the acquired knowledge, appropriately adjusted based on degree of relevance, to the inference process. This dissertation presents a method for inferring properties of the conceptual variant using a pseudo-spatial model that describes the spatial configuration of the family of systems to which the concept belongs. Through non-metric multidimensional scaling, we formulate the pseudo-spatial model based on rank-ordered subjective expert perception of design similarity between systems that elucidate the psychological space of the family. By a novel extension of Kriging methods for analysis of geospatial data to our "pseudo-space of comparable engineered systems", we develop a Bayesian inference model that allows prediction of the probabilistic measure of interest.

  14. Design and develop a video conferencing framework for real-time telemedicine applications using secure group-based communication architecture.

    PubMed

    Mat Kiah, M L; Al-Bakri, S H; Zaidan, A A; Zaidan, B B; Hussain, Muzammil

    2014-10-01

    One of the applications of modern technology in telemedicine is video conferencing. An alternative to traveling to attend a conference or meeting, video conferencing is becoming increasingly popular among hospitals. By using this technology, doctors can help patients who are unable to physically visit hospitals. Video conferencing particularly benefits patients from rural areas, where good doctors are not always available. Telemedicine has proven to be a blessing to patients who have no access to the best treatment. A telemedicine system consists of customized hardware and software at two locations, namely, at the patient's and the doctor's end. In such cases, the video streams of the conferencing parties may contain highly sensitive information. Thus, real-time data security is one of the most important requirements when designing video conferencing systems. This study proposes a secure framework for video conferencing systems and a complete management solution for secure video conferencing groups. Java Media Framework Application Programming Interface classes are used to design and test the proposed secure framework. Real-time Transport Protocol over User Datagram Protocol is used to transmit the encrypted audio and video streams, and RSA and AES algorithms are used to provide the required security services. Results show that the encryption algorithm insignificantly increases the video conferencing computation time.

  15. Framework for a space shuttle main engine health monitoring system

    NASA Technical Reports Server (NTRS)

    Hawman, Michael W.; Galinaitis, William S.; Tulpule, Sharayu; Mattedi, Anita K.; Kamenetz, Jeffrey

    1990-01-01

    A framework developed for a health management system (HMS) which is directed at improving the safety of operation of the Space Shuttle Main Engine (SSME) is summarized. An emphasis was placed on near term technology through requirements to use existing SSME instrumentation and to demonstrate the HMS during SSME ground tests within five years. The HMS framework was developed through an analysis of SSME failure modes, fault detection algorithms, sensor technologies, and hardware architectures. A key feature of the HMS framework design is that a clear path from the ground test system to a flight HMS was maintained. Fault detection techniques based on time series, nonlinear regression, and clustering algorithms were developed and demonstrated on data from SSME ground test failures. The fault detection algorithms exhibited 100 percent detection of faults, had an extremely low false alarm rate, and were robust to sensor loss. These algorithms were incorporated into a hierarchical decision making strategy for overall assessment of SSME health. A preliminary design for a hardware architecture capable of supporting real time operation of the HMS functions was developed. Utilizing modular, commercial off-the-shelf components produced a reliable low cost design with the flexibility to incorporate advances in algorithm and sensor technology as they become available.

  16. A Framework for Enterprise Operating Systems Based on Zachman Framework

    NASA Astrophysics Data System (ADS)

    Ostadzadeh, S. Shervin; Rahmani, Amir Masoud

    Nowadays, the Operating System (OS) isn't only the software that runs your computer. In the typical information-driven organization, the operating system is part of a much larger platform for applications and data that extends across the LAN, WAN and Internet. An OS cannot be an island unto itself; it must work with the rest of the enterprise. Enterprise wide applications require an Enterprise Operating System (EOS). Enterprise operating systems used in an enterprise have brought about an inevitable tendency to lunge towards organizing their information activities in a comprehensive way. In this respect, Enterprise Architecture (EA) has proven to be the leading option for development and maintenance of enterprise operating systems. EA clearly provides a thorough outline of the whole information system comprising an enterprise. To establish such an outline, a logical framework needs to be laid upon the entire information system. Zachman Framework (ZF) has been widely accepted as a standard scheme for identifying and organizing descriptive representations that have prominent roles in enterprise-wide system development. In this paper, we propose a framework based on ZF for enterprise operating systems. The presented framework helps developers to design and justify completely integrated business, IT systems, and operating systems which results in improved project success rate.

  17. A reusable rocket engine intelligen control

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Lorenzo, Carl F.

    1988-01-01

    An intelligent control system for reusable space propulsion systems for future launch vehicles is described. The system description includes a framework for the design. The framework consists of an execution level with high-speed control and diagnostics, and a coordination level which marries expert system concepts with traditional control. A comparison is made between air breathing and rocket engine control concepts to assess the relative levels of development and to determine the applicability of air breathing control concepts to future reusable rocket engine systems.

  18. A reusable rocket engine intelligent control

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Lorenzo, Carl F.

    1988-01-01

    An intelligent control system for reusable space propulsion systems for future launch vehicles is described. The system description includes a framework for the design. The framework consists of an execution level with high-speed control and diagnostics, and a coordination level which marries expert system concepts with traditional control. A comparison is made between air breathing and rocket engine control concepts to assess the relative levels of development and to determine the applicability of air breathing control concepts ot future reusable rocket engine systems.

  19. The BaBar Data Reconstruction Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceseracciu, A

    2005-04-20

    The BaBar experiment is characterized by extremely high luminosity and very large volume of data produced and stored, with increasing computing requirements each year. To fulfill these requirements a Control System has been designed and developed for the offline distributed data reconstruction system. The control system described in this paper provides the performance and flexibility needed to manage a large number of small computing farms, and takes full benefit of OO design. The infrastructure is well isolated from the processing layer, it is generic and flexible, based on a light framework providing message passing and cooperative multitasking. The system ismore » distributed in a hierarchical way: the top-level system is organized in farms, farms in services, and services in subservices or code modules. It provides a powerful Finite State Machine framework to describe custom processing models in a simple regular language. This paper describes the design and evolution of this control system, currently in use at SLAC and Padova on {approx}450 CPUs organized in 9 farms.« less

  20. The BaBar Data Reconstruction Control System

    NASA Astrophysics Data System (ADS)

    Ceseracciu, A.; Piemontese, M.; Tehrani, F. S.; Pulliam, T. M.; Galeazzi, F.

    2005-08-01

    The BaBar experiment is characterized by extremely high luminosity and very large volume of data produced and stored, with increasing computing requirements each year. To fulfill these requirements a control system has been designed and developed for the offline distributed data reconstruction system. The control system described in this paper provides the performance and flexibility needed to manage a large number of small computing farms, and takes full benefit of object oriented (OO) design. The infrastructure is well isolated from the processing layer, it is generic and flexible, based on a light framework providing message passing and cooperative multitasking. The system is distributed in a hierarchical way: the top-level system is organized in farms, farms in services, and services in subservices or code modules. It provides a powerful finite state machine framework to describe custom processing models in a simple regular language. This paper describes the design and evolution of this control system, currently in use at SLAC and Padova on /spl sim/450 CPUs organized in nine farms.

  1. A pluggable framework for parallel pairwise sequence search.

    PubMed

    Archuleta, Jeremy; Feng, Wu-chun; Tilevich, Eli

    2007-01-01

    The current and near future of the computing industry is one of multi-core and multi-processor technology. Most existing sequence-search tools have been designed with a focus on single-core, single-processor systems. This discrepancy between software design and hardware architecture substantially hinders sequence-search performance by not allowing full utilization of the hardware. This paper presents a novel framework that will aid the conversion of serial sequence-search tools into a parallel version that can take full advantage of the available hardware. The framework, which is based on a software architecture called mixin layers with refined roles, enables modules to be plugged into the framework with minimal effort. The inherent modular design improves maintenance and extensibility, thus opening up a plethora of opportunities for advanced algorithmic features to be developed and incorporated while routine maintenance of the codebase persists.

  2. Microgravity isolation system design: A modern control synthesis framework

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.

    1994-01-01

    Manned orbiters will require active vibration isolation for acceleration-sensitive microgravity science experiments. Since umbilicals are highly desirable or even indispensable for many experiments, and since their presence greatly affects the complexity of the isolation problem, they should be considered in control synthesis. In this paper a general framework is presented for applying extended H2 synthesis methods to the three-dimensional microgravity isolation problem. The methodology integrates control and state frequency weighting and input and output disturbance accommodation techniques into the basic H2 synthesis approach. The various system models needed for design and analysis are also presented. The paper concludes with a discussion of a general design philosophy for the microgravity vibration isolation problem.

  3. Microgravity isolation system design: A modern control synthesis framework

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.

    1994-01-01

    Manned orbiters will require active vibration isolation for acceleration-sensitive microgravity science experiments. Since umbilicals are highly desirable or even indispensable for many experiments, and since their presence greatly affects the complexity of the isolation problem, they should be considered in control synthesis. A general framework is presented for applying extended H2 synthesis methods to the three-dimensional microgravity isolation problem. The methodology integrates control and state frequency weighting and input and output disturbance accommodation techniques into the basic H2 synthesis approach. The various system models needed for design and analysis are also presented. The paper concludes with a discussion of a general design philosophy for the microgravity vibration isolation problem.

  4. How to assess driver's interaction with partially automated driving systems - A framework for early concept assessment.

    PubMed

    van den Beukel, Arie P; van der Voort, Mascha C

    2017-03-01

    The introduction of partially automated driving systems changes the driving task into supervising the automation with an occasional need to intervene. To develop interface solutions that adequately support drivers in this new role, this study proposes and evaluates an assessment framework that allows designers to evaluate driver-support within relevant real-world scenarios. Aspects identified as requiring assessment in terms of driver-support within the proposed framework are Accident Avoidance, gained Situation Awareness (SA) and Concept Acceptance. Measurement techniques selected to operationalise these aspects and the associated framework are pilot-tested with twenty-four participants in a driving simulator experiment. The objective of the test is to determine the reliability of the applied measurements for the assessment of the framework and whether the proposed framework is effective in predicting the level of support offered by the concepts. Based on the congruency between measurement scores produced in the test and scores with predefined differences in concept-support, this study demonstrates the framework's reliability. A remaining concern is the framework's weak sensitivity to small differences in offered support. The article concludes that applying the framework is especially advantageous for evaluating early design phases and can successfully contribute to the efficient development of driver's in-control and safe means of operating partially automated vehicles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A computational fluid dynamics simulation framework for ventricular catheter design optimization.

    PubMed

    Weisenberg, Sofy H; TerMaath, Stephanie C; Barbier, Charlotte N; Hill, Judith C; Killeffer, James A

    2017-11-10

    OBJECTIVE Cerebrospinal fluid (CSF) shunts are the primary treatment for patients suffering from hydrocephalus. While proven effective in symptom relief, these shunt systems are plagued by high failure rates and often require repeated revision surgeries to replace malfunctioning components. One of the leading causes of CSF shunt failure is obstruction of the ventricular catheter by aggregations of cells, proteins, blood clots, or fronds of choroid plexus that occlude the catheter's small inlet holes or even the full internal catheter lumen. Such obstructions can disrupt CSF diversion out of the ventricular system or impede it entirely. Previous studies have suggested that altering the catheter's fluid dynamics may help to reduce the likelihood of complete ventricular catheter failure caused by obstruction. However, systematic correlation between a ventricular catheter's design parameters and its performance, specifically its likelihood to become occluded, still remains unknown. Therefore, an automated, open-source computational fluid dynamics (CFD) simulation framework was developed for use in the medical community to determine optimized ventricular catheter designs and to rapidly explore parameter influence for a given flow objective. METHODS The computational framework was developed by coupling a 3D CFD solver and an iterative optimization algorithm and was implemented in a high-performance computing environment. The capabilities of the framework were demonstrated by computing an optimized ventricular catheter design that provides uniform flow rates through the catheter's inlet holes, a common design objective in the literature. The baseline computational model was validated using 3D nuclear imaging to provide flow velocities at the inlet holes and through the catheter. RESULTS The optimized catheter design achieved through use of the automated simulation framework improved significantly on previous attempts to reach a uniform inlet flow rate distribution using the standard catheter hole configuration as a baseline. While the standard ventricular catheter design featuring uniform inlet hole diameters and hole spacing has a standard deviation of 14.27% for the inlet flow rates, the optimized design has a standard deviation of 0.30%. CONCLUSIONS This customizable framework, paired with high-performance computing, provides a rapid method of design testing to solve complex flow problems. While a relatively simplified ventricular catheter model was used to demonstrate the framework, the computational approach is applicable to any baseline catheter model, and it is easily adapted to optimize catheters for the unique needs of different patients as well as for other fluid-based medical devices.

  6. An Adaptive Scaffolding E-Learning System for Middle School Students' Physics Learning

    ERIC Educational Resources Information Center

    Chen, Ching-Huei

    2014-01-01

    This study presents a framework that utilizes cognitive and motivational aspects of learning to design an adaptive scaffolding e-learning system. It addresses scaffolding processes and conditions for designing adaptive scaffolds. The features and effectiveness of this adaptive scaffolding e-learning system are discussed and evaluated. An…

  7. Designing a Measurement Framework for Response to Intervention in Early Childhood Programs

    ERIC Educational Resources Information Center

    McConnell, Scott R.; Wackerle-Hollman, Alisha K.; Roloff, Tracy A.; Rodriguez, Michael

    2014-01-01

    The overall architecture and major components of a measurement system designed and evaluated to support Response to Intervention (RTI) in the areas of language and literacy in early childhood programs are described. Efficient and reliable measurement is essential for implementing any viable RTI system, and implementing such a system in early…

  8. PC-based Multiple Information System Interface (PC/MISI) design plan

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Hall, Philip P.

    1985-01-01

    The general design plan for the implementation of a common user interface to multiple remote information systems within a microcomputer-based environment is presented. The intent is to provide a framework for the development of detailed specifications which will be used as guidelines for the actual development of the system.

  9. A flexible framework for process-based hydraulic and water ...

    EPA Pesticide Factsheets

    Background Models that allow for design considerations of green infrastructure (GI) practices to control stormwater runoff and associated contaminants have received considerable attention in recent years. While popular, generally, the GI models are relatively simplistic. However, GI model predictions are being relied upon by many municipalities and State/Local agencies to make decisions about grey vs. green infrastructure improvement planning. Adding complexity to GI modeling frameworks may preclude their use in simpler urban planning situations. Therefore, the goal here was to develop a sophisticated, yet flexible tool that could be used by design engineers and researchers to capture and explore the effect of design factors and properties of the media used in the performance of GI systems at a relatively small scale. We deemed it essential to have a flexible GI modeling tool that is capable of simulating GI system components and specific biophysical processes affecting contaminants such as reactions, and particle-associated transport accurately while maintaining a high degree of flexibly to account for the myriad of GI alternatives. The mathematical framework for a stand-alone GI performance assessment tool has been developed and will be demonstrated.Framework Features The process-based model framework developed here can be used to model a diverse range of GI practices such as green roof, retention pond, bioretention, infiltration trench, permeable pavement and

  10. A Generic Inner-Loop Control Law Structure for Six-Degree-of-Freedom Conceptual Aircraft Design

    NASA Technical Reports Server (NTRS)

    Cox, Timothy H.; Cotting, M. Christopher

    2005-01-01

    A generic control system framework for both real-time and batch six-degree-of-freedom simulations is presented. This framework uses a simplified dynamic inversion technique to allow for stabilization and control of any type of aircraft at the pilot interface level. The simulation, designed primarily for the real-time simulation environment, also can be run in a batch mode through a simple guidance interface. Direct vehicle-state acceleration feedback is required with the simplified dynamic inversion technique. The estimation of surface effectiveness within real-time simulation timing constraints also is required. The generic framework provides easily modifiable control variables, allowing flexibility in the variables that the pilot commands. A direct control allocation scheme is used to command aircraft effectors. Primary uses for this system include conceptual and preliminary design of aircraft, when vehicle models are rapidly changing and knowledge of vehicle six-degree-of-freedom performance is required. A simulated airbreathing hypersonic vehicle and simulated high-performance fighter aircraft are used to demonstrate the flexibility and utility of the control system.

  11. A Generic Inner-Loop Control Law Structure for Six-Degree-of-Freedom Conceptual Aircraft Design

    NASA Technical Reports Server (NTRS)

    Cox, Timothy H.; Cotting, Christopher

    2005-01-01

    A generic control system framework for both real-time and batch six-degree-of-freedom (6-DOF) simulations is presented. This framework uses a simplified dynamic inversion technique to allow for stabilization and control of any type of aircraft at the pilot interface level. The simulation, designed primarily for the real-time simulation environment, also can be run in a batch mode through a simple guidance interface. Direct vehicle-state acceleration feedback is required with the simplified dynamic inversion technique. The estimation of surface effectiveness within real-time simulation timing constraints also is required. The generic framework provides easily modifiable control variables, allowing flexibility in the variables that the pilot commands. A direct control allocation scheme is used to command aircraft effectors. Primary uses for this system include conceptual and preliminary design of aircraft, when vehicle models are rapidly changing and knowledge of vehicle 6-DOF performance is required. A simulated airbreathing hypersonic vehicle and simulated high-performance fighter aircraft are used to demonstrate the flexibility and utility of the control system.

  12. Flexible real-time magnetic resonance imaging framework.

    PubMed

    Santos, Juan M; Wright, Graham A; Pauly, John M

    2004-01-01

    The extension of MR imaging to new applications has demonstrated the limitations of the architecture of current real-time systems. Traditional real-time implementations provide continuous acquisition of data and modification of basic sequence parameters on the fly. We have extended the concept of real-time MRI by designing a system that drives the examinations from a real-time localizer and then gets reconfigured for different imaging modes. Upon operator request or automatic feedback the system can immediately generate a new pulse sequence or change fundamental aspects of the acquisition such as gradient waveforms excitation pulses and scan planes. This framework has been implemented by connecting a data processing and control workstation to a conventional clinical scanner. Key components on the design of this framework are the data communication and control mechanisms, reconstruction algorithms optimized for real-time and adaptability, flexible user interface and extensible user interaction. In this paper we describe the various components that comprise this system. Some of the applications implemented in this framework include real-time catheter tracking embedded in high frame rate real-time imaging and immediate switching between real-time localizer and high-resolution volume imaging for coronary angiography applications.

  13. A framework to assess management performance in district health systems: a qualitative and quantitative case study in Iran.

    PubMed

    Tabrizi, Jafar Sadegh; Gholipour, Kamal; Iezadi, Shabnam; Farahbakhsh, Mostafa; Ghiasi, Akbar

    2018-01-01

    The aim was to design a district health management performance framework for Iran's healthcare system. The mixed-method study was conducted between September 2015 and May 2016 in Tabriz, Iran. In this study, the indicators of district health management performance were obtained by analyzing the 45 semi-structured surveys of experts in the public health system. Content validity of performance indicators which were generated in qualitative part were reviewed and confirmed based on content validity index (CVI). Also content validity ratio (CVR) was calculated using data acquired from a survey of 21 experts in quantitative part. The result of this study indicated that, initially, 81 indicators were considered in framework of district health management performance and, at the end, 53 indicators were validated and confirmed. These indicators were classified in 11 categories which include: human resources and organizational creativity, management and leadership, rules and ethics, planning and evaluation, district managing, health resources management and economics, community participation, quality improvement, research in health system, health information management, epidemiology and situation analysis. The designed framework model can be used to assess the district health management and facilitates performance improvement at the district level.

  14. Towards high performing hospital enterprise systems: an empirical and literature based design framework

    NASA Astrophysics Data System (ADS)

    dos Santos Fradinho, Jorge Miguel

    2014-05-01

    Our understanding of enterprise systems (ES) is gradually evolving towards a sense of design which leverages multidisciplinary bodies of knowledge that may bolster hybrid research designs and together further the characterisation of ES operation and performance. This article aims to contribute towards ES design theory with its hospital enterprise systems design (HESD) framework, which reflects a rich multidisciplinary literature and two in-depth hospital empirical cases from the US and UK. In doing so it leverages systems thinking principles and traditionally disparate bodies of knowledge to bolster the theoretical evolution and foundation of ES. A total of seven core ES design elements are identified and characterised with 24 main categories and 53 subcategories. In addition, it builds on recent work which suggests that hospital enterprises are comprised of multiple internal ES configurations which may generate different levels of performance. Multiple sources of evidence were collected including electronic medical records, 54 recorded interviews, observation, and internal documents. Both in-depth cases compare and contrast higher and lower performing ES configurations. Following literal replication across in-depth cases, this article concludes that hospital performance can be improved through an enriched understanding of hospital ES design.

  15. A predictive control framework for torque-based steering assistance to improve safety in highway driving

    NASA Astrophysics Data System (ADS)

    Ercan, Ziya; Carvalho, Ashwin; Tseng, H. Eric; Gökaşan, Metin; Borrelli, Francesco

    2018-05-01

    Haptic shared control framework opens up new perspectives on the design and implementation of the driver steering assistance systems which provide torque feedback to the driver in order to improve safety. While designing such a system, it is important to account for the human-machine interactions since the driver feels the feedback torque through the hand wheel. The controller should consider the driver's impact on the steering dynamics to achieve a better performance in terms of driver's acceptance and comfort. In this paper we present a predictive control framework which uses a model of driver-in-the-loop steering dynamics to optimise the torque intervention with respect to the driver's neuromuscular response. We first validate the system in simulations to compare the performance of the controller in nominal and model mismatch cases. Then we implement the controller in a test vehicle and perform experiments with a human driver. The results show the effectiveness of the proposed system in avoiding hazardous situations under different driver behaviours.

  16. Online communication and support for cancer patients: a relationship-centric design framework.

    PubMed

    Weiss, Jacob B; Lorenzi, Nancy M

    2005-01-01

    Dealing with a cancer diagnosis and cancer treatment involves communication among clinicians, patients, families, friends and others affected by the illness. The hypothesis of this research is that an informatics system can effectively support the communication needs of cancer patients and their informal caregivers. Two design frameworks for online cancer communication are defined and compared. One is centered primarily on the users' interpersonal relationships, and the other is centered on the clinical data and cancer information. Five types of clinical and supportive relationships were identified and supported by in-depth interviews with cancer patients and their informal caregivers. Focusing the design of an online cancer communication system around the interpersonal relationships of patients and families may be an important step towards designing more effective paradigms for online cancer care and support.

  17. A Systems Engineering Approach to Architecture Development

    NASA Technical Reports Server (NTRS)

    Di Pietro, David A.

    2014-01-01

    Architecture development is conducted prior to system concept design when there is a need to determine the best-value mix of systems that works collectively in specific scenarios and time frames to accomplish a set of mission area objectives. While multiple architecture frameworks exist, they often require use of unique taxonomies and data structures. In contrast, this presentation characterizes architecture development using terminology widely understood within the systems engineering community. Using a notional civil space architecture example, it employs a multi-tier framework to describe the enterprise level architecture and illustrates how results of lower tier, mission area architectures integrate into the enterprise architecture. It also presents practices for conducting effective mission area architecture studies, including establishing the trade space, developing functions and metrics, evaluating the ability of potential design solutions to meet the required functions, and expediting study execution through the use of iterative design cycles.

  18. A Systems Engineering Approach to Architecture Development

    NASA Technical Reports Server (NTRS)

    Di Pietro, David A.

    2015-01-01

    Architecture development is often conducted prior to system concept design when there is a need to determine the best-value mix of systems that works collectively in specific scenarios and time frames to accomplish a set of mission area objectives. While multiple architecture frameworks exist, they often require use of unique taxonomies and data structures. In contrast, this paper characterizes architecture development using terminology widely understood within the systems engineering community. Using a notional civil space architecture example, it employs a multi-tier framework to describe the enterprise level architecture and illustrates how results of lower tier, mission area architectures integrate into the enterprise architecture. It also presents practices for conducting effective mission area architecture studies, including establishing the trade space, developing functions and metrics, evaluating the ability of potential design solutions to meet the required functions, and expediting study execution through the use of iterative design cycles.

  19. A Systems Engineering Approach to Architecture Development

    NASA Technical Reports Server (NTRS)

    Di Pietro, David A.

    2015-01-01

    Architecture development is often conducted prior to system concept design when there is a need to determine the best-value mix of systems that works collectively in specific scenarios and time frames to accomplish a set of mission area objectives. While multiple architecture frameworks exist, they often require use of unique taxonomies and data structures. In contrast, this paper characterizes architecture development using terminology widely understood within the systems engineering community. Using a notional civil space architecture example, it employs a multi-tier framework to describe the enterprise level architecture and illustrates how results of lower tier, mission area architectures integrate into the enterprise architecture. It also presents practices for conducting effective mission area architecture studies, including establishing the trade space, developing functions and metrics, evaluating the ability of potential design solutions to meet the required functions, and expediting study execution through the use of iterative design cycles

  20. A Simulation and Modeling Framework for Space Situational Awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S S

    This paper describes the development and initial demonstration of a new, integrated modeling and simulation framework, encompassing the space situational awareness enterprise, for quantitatively assessing the benefit of specific sensor systems, technologies and data analysis techniques. The framework is based on a flexible, scalable architecture to enable efficient, physics-based simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel computer systems available, for example, at Lawrence Livermore National Laboratory. The details of the modeling and simulation framework are described, including hydrodynamic models of satellitemore » intercept and debris generation, orbital propagation algorithms, radar cross section calculations, optical brightness calculations, generic radar system models, generic optical system models, specific Space Surveillance Network models, object detection algorithms, orbit determination algorithms, and visualization tools. The use of this integrated simulation and modeling framework on a specific scenario involving space debris is demonstrated.« less

  1. A framework for reporting on human factor/usability studies of health information technologies.

    PubMed

    Peute, Linda W; Driest, Keiko F; Marcilly, Romaric; Bras Da Costa, Sabrina; Beuscart-Zephir, Marie-Catherine; Jaspers, Monique W M

    2013-01-01

    Increasingly, studies are being published on the potential negative effect of introducing poor designed Health Information Technology (HIT) into clinical settings, relating to technology-induced errors and adverse events. Academic research on HIT design and evaluation is an extremely important source of information in providing new insights into factors contributing to successful system (re)design efforts, system user-friendliness and usability issues and safety critical aspects of HIT design. However, these studies have been inconsistent and incomprehensive in their reporting, complicating the appraisal of outcomes, generalizability of study findings, meta-analysis and harmonization of the available evidence. To improve identification of type of use errors and safety related issues regarding design and implementation of HIT, consensus on issues to be reported on in scientific publications is a necessary step forward. This study presents the first approach to a framework providing a set of principles to follow for comprehensive and unambiguous reporting of HIT design and usability evaluation studies with the objective to reduce variation, improve on the publication reporting quality and proper indexation of these studies. This framework may be helpful in expanding the knowledge base not only concerning the application of Human Factors (HF)/Usability studies of HIT but also improve the knowledge base of how to (re)design and implement effective, efficient and safe HIT.

  2. National Combustion Code, a Multidisciplinary Combustor Design System, Will Be Transferred to the Commercial Sector

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    1999-01-01

    The NASA Lewis Research Center and Flow Parametrics will enter into an agreement to commercialize the National Combustion Code (NCC). This multidisciplinary combustor design system utilizes computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. This integrated system can facilitate and enhance various phases of the design and analysis process.

  3. L.E.A.D.: A Framework for Evidence Gathering and Use for the Prevention of Obesity and Other Complex Public Health Problems

    ERIC Educational Resources Information Center

    Chatterji, Madhabi; Green, Lawrence W.; Kumanyika, Shiriki

    2014-01-01

    This article summarizes a comprehensive, systems-oriented framework designed to improve the use of a wide variety of evidence sources to address population-wide obesity problems. The L.E.A.D. framework (for "Locate" the evidence, "Evaluate" the evidence, "Assemble" the evidence, and inform "Decisions"),…

  4. Converting a Manned LCU into an Unmanned Surface Vehicle (USV): An Open Systems Architecture (OSA) Case Study

    DTIC Science & Technology

    2014-09-01

    pdf. Musk , Elon . 2014. Statement Of Elon Musk , Ceo & Chief Designer, Space Exploration Technologies Corp. (Spacex), Before The Committee On...every year moving forward ( Musk 2014)? These questions build the framework for executing OSA throughout an SE program. The OSA framework includes a...systems must be well maintained to the current legal environment. Maintaining this doctrine requires a continuous feedback loop from unmanned systems

  5. Development, Validation, and Application of OSSEs at NASA/GMAO

    NASA Technical Reports Server (NTRS)

    Errico, Ronald; Prive, Nikki

    2015-01-01

    During the past several years, NASA Goddard's Global Modeling and Assimilation Office (GMAO) has been developing a framework for conducting Observing System Simulation Experiments (OSSEs). The motivation and design of that framework will be described and a sample of validation results presented. Fundamentals issues will be highlighted, particularly the critical importance of appropriately simulating system errors. Some problems that have just arisen in the newest experimental system will also be mentioned.

  6. Framework Programmable Platform for the Advanced Software Development Workstation (FPP/ASDW). Demonstration framework document. Volume 2: Framework process description

    NASA Technical Reports Server (NTRS)

    Mayer, Richard J.; Blinn, Thomas M.; Dewitte, Paula S.; Crump, John W.; Ackley, Keith A.

    1992-01-01

    In the second volume of the Demonstration Framework Document, the graphical representation of the demonstration framework is given. This second document was created to facilitate the reading and comprehension of the demonstration framework. It is designed to be viewed in parallel with Section 4.2 of the first volume to help give a picture of the relationships between the UOB's (Unit of Behavior) of the model. The model is quite large and the design team felt that this form of presentation would make it easier for the reader to get a feel for the processes described in this document. The IDEF3 (Process Description Capture Method) diagrams of the processes of an Information System Development are presented. Volume 1 describes the processes and the agents involved with each process, while this volume graphically shows the precedence relationships among the processes.

  7. Building a framework for ergonomic research on laparoscopic instrument handles.

    PubMed

    Li, Zheng; Wang, Guohui; Tan, Juan; Sun, Xulong; Lin, Hao; Zhu, Shaihong

    2016-06-01

    Laparoscopic surgery carries the advantage of minimal invasiveness, but ergonomic design of the instruments used has progressed slowly. Previous studies have demonstrated that the handle of laparoscopic instruments is vital for both surgical performance and surgeon's health. This review provides an overview of the sub-discipline of handle ergonomics, including an evaluation framework, objective and subjective assessment systems, data collection and statistical analyses. Furthermore, a framework for ergonomic research on laparoscopic instrument handles is proposed to standardize work on instrument design. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  8. Theoretical Foundation of Copernicus: A Unified System for Trajectory Design and Optimization

    NASA Technical Reports Server (NTRS)

    Ocampo, Cesar; Senent, Juan S.; Williams, Jacob

    2010-01-01

    The fundamental methods are described for the general spacecraft trajectory design and optimization software system called Copernicus. The methods rely on a unified framework that is used to model, design, and optimize spacecraft trajectories that may operate in complex gravitational force fields, use multiple propulsion systems, and involve multiple spacecraft. The trajectory model, with its associated equations of motion and maneuver models, are discussed.

  9. LIFE CYCLE DESIGN OF AMORPHOUS SILICON PHOTOVOLTAIC MODULES

    EPA Science Inventory

    The life cycle design framework was applied to photovoltaic module design. The primary objective of this project was to develop and evaluate design metrics for assessing and guiding the Improvement of PV product systems. Two metrics were used to assess life cycle energy perform...

  10. CURMIS. Curriculum Management Information System (and) Prospectus of a Design to Assist a High School Staff in the Evaluation of Its Program.

    ERIC Educational Resources Information Center

    Sapone, Carmelo V.

    CURMIS (Curriculum Management Information System) is a conceptual system, the framework of which is designed to identify and reveal relationships among complex related interacting phenomena. This paper is a description of the system which will centralize and make conveniently available information needed for developing and monitoring instructional…

  11. Improving Conceptual Design for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1998-01-01

    This report summarizes activities performed during the second year of a three year cooperative agreement between NASA - Langley Research Center and Georgia Tech. Year 1 of the project resulted in the creation of a new Cost and Business Assessment Model (CABAM) for estimating the economic performance of advanced reusable launch vehicles including non-recurring costs, recurring costs, and revenue. The current year (second year) activities were focused on the evaluation of automated, collaborative design frameworks (computation architectures or computational frameworks) for automating the design process in advanced space vehicle design. Consistent with NASA's new thrust area in developing and understanding Intelligent Synthesis Environments (ISE), the goals of this year's research efforts were to develop and apply computer integration techniques and near-term computational frameworks for conducting advanced space vehicle design. NASA - Langley (VAB) has taken a lead role in developing a web-based computing architectures within which the designer can interact with disciplinary analysis tools through a flexible web interface. The advantages of this approach are, 1) flexible access to the designer interface through a simple web browser (e.g. Netscape Navigator), 2) ability to include existing 'legacy' codes, and 3) ability to include distributed analysis tools running on remote computers. To date, VAB's internal emphasis has been on developing this test system for the planetary entry mission under the joint Integrated Design System (IDS) program with NASA - Ames and JPL. Georgia Tech's complementary goals this year were to: 1) Examine an alternate 'custom' computational architecture for the three-discipline IDS planetary entry problem to assess the advantages and disadvantages relative to the web-based approach.and 2) Develop and examine a web-based interface and framework for a typical launch vehicle design problem.

  12. A Model Framework for Course Materials Construction (Second Edition).

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    Designed for use by Coast Guard course writers, curriculum developers, course coordinators, and instructors as a decision-support system, this publication presents a model that translates the Intraservices Procedures for Instructional Systems Development curriculum design model into materials usable by classroom teachers and students. Although…

  13. Multidisciplinary Optimization Branch Experience Using iSIGHT Software

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Korte, J. J.; Dunn, H. J.; Salas, A. O.

    1999-01-01

    The Multidisciplinary Optimization (MDO) Branch at NASA Langley Research Center is investigating frameworks for supporting multidisciplinary analysis and optimization research. An optimization framework call improve the design process while reducing time and costs. A framework provides software and system services to integrate computational tasks and allows the researcher to concentrate more on the application and less on the programming details. A framework also provides a common working environment and a full range of optimization tools, and so increases the productivity of multidisciplinary research teams. Finally, a framework enables staff members to develop applications for use by disciplinary experts in other organizations. Since the release of version 4.0, the MDO Branch has gained experience with the iSIGHT framework developed by Engineous Software, Inc. This paper describes experiences with four aerospace applications: (1) reusable launch vehicle sizing, (2) aerospike nozzle design, (3) low-noise rotorcraft trajectories, and (4) acoustic liner design. All applications have been successfully tested using the iSIGHT framework, except for the aerospike nozzle problem, which is in progress. Brief overviews of each problem are provided. The problem descriptions include the number and type of disciplinary codes, as well as all estimate of the multidisciplinary analysis execution time. In addition, the optimization methods, objective functions, design variables, and design constraints are described for each problem. Discussions on the experience gained and lessons learned are provided for each problem. These discussions include the advantages and disadvantages of using the iSIGHT framework for each case as well as the ease of use of various advanced features. Potential areas of improvement are identified.

  14. Mapping healthcare systems: a policy relevant analytic tool

    PubMed Central

    Sekhri Feachem, Neelam; Afshar, Ariana; Pruett, Cristina; Avanceña, Anton L.V.

    2017-01-01

    Abstract Background In the past decade, an international consensus on the value of well-functioning systems has driven considerable health systems research. This research falls into two broad categories. The first provides conceptual frameworks that take complex healthcare systems and create simplified constructs of interactions and functions. The second focuses on granular inputs and outputs. This paper presents a novel translational mapping tool – the University of California, San Francisco mapping tool (the Tool) - which bridges the gap between these two areas of research, creating a platform for multi-country comparative analysis. Methods Using the Murray-Frenk framework, we create a macro-level representation of a country's structure, focusing on how it finances and delivers healthcare. The map visually depicts the fundamental policy questions in healthcare system design: funding sources and amount spent through each source, purchasers, populations covered, provider categories; and the relationship between these entities. Results We use the Tool to provide a macro-level comparative analysis of the structure of India's and Thailand's healthcare systems. Conclusions As part of the systems strengthening arsenal, the Tool can stimulate debate about the merits and consequences of different healthcare systems structural designs, using a common framework that fosters multi-country comparative analyses. PMID:28541518

  15. A conceptual framework for the domain of evidence-based design.

    PubMed

    Ulrich, Roger S; Berry, Leonard L; Quan, Xiaobo; Parish, Janet Turner

    2010-01-01

    The physical facilities in which healthcare services are performed play an important role in the healing process. Evidence-based design in healthcare is a developing field of study that holds great promise for benefiting key stakeholders: patients, families, physicians, and nurses, as well as other healthcare staff and organizations. In this paper, the authors present and discuss a conceptual framework intended to capture the current domain of evidence-based design in healthcare. In this framework, the built environment is represented by nine design variable categories: audio environment, visual environment, safety enhancement, wayfinding system, sustainability, patient room, family support spaces, staff support spaces, and physician support spaces. Furthermore, a series of matrices is presented that indicates knowledge gaps concerning the relationship between specific healthcare facility design variable categories and participant and organizational outcomes. From this analysis, the authors identify fertile research opportunities from the perspectives of key stakeholders.

  16. FunBlocks. A modular framework for AmI system development.

    PubMed

    Baquero, Rafael; Rodríguez, José; Mendoza, Sonia; Decouchant, Dominique; Papis, Alfredo Piero Mateos

    2012-01-01

    The last decade has seen explosive growth in the technologies required to implement Ambient Intelligence (AmI) systems. Technologies such as facial and speech recognition, home networks, household cleaning robots, to name a few, have become commonplace. However, due to the multidisciplinary nature of AmI systems and the distinct requirements of different user groups, integrating these developments into full-scale systems is not an easy task. In this paper we propose FunBlocks, a minimalist modular framework for the development of AmI systems based on the function module abstraction used in the IEC 61499 standard for distributed control systems. FunBlocks provides a framework for the development of AmI systems through the integration of modules loosely joined by means of an event-driven middleware and a module and sensor/actuator catalog. The modular design of the FunBlocks framework allows the development of AmI systems which can be customized to a wide variety of usage scenarios.

  17. FunBlocks. A Modular Framework for AmI System Development

    PubMed Central

    Baquero, Rafael; Rodríguez, José; Mendoza, Sonia; Decouchant, Dominique; Papis, Alfredo Piero Mateos

    2012-01-01

    The last decade has seen explosive growth in the technologies required to implement Ambient Intelligence (AmI) systems. Technologies such as facial and speech recognition, home networks, household cleaning robots, to name a few, have become commonplace. However, due to the multidisciplinary nature of AmI systems and the distinct requirements of different user groups, integrating these developments into full-scale systems is not an easy task. In this paper we propose FunBlocks, a minimalist modular framework for the development of AmI systems based on the function module abstraction used in the IEC 61499 standard for distributed control systems. FunBlocks provides a framework for the development of AmI systems through the integration of modules loosely joined by means of an event-driven middleware and a module and sensor/actuator catalog. The modular design of the FunBlocks framework allows the development of AmI systems which can be customized to a wide variety of usage scenarios. PMID:23112599

  18. Meta-learning framework applied in bioinformatics inference system design.

    PubMed

    Arredondo, Tomás; Ormazábal, Wladimir

    2015-01-01

    This paper describes a meta-learner inference system development framework which is applied and tested in the implementation of bioinformatic inference systems. These inference systems are used for the systematic classification of the best candidates for inclusion in bacterial metabolic pathway maps. This meta-learner-based approach utilises a workflow where the user provides feedback with final classification decisions which are stored in conjunction with analysed genetic sequences for periodic inference system training. The inference systems were trained and tested with three different data sets related to the bacterial degradation of aromatic compounds. The analysis of the meta-learner-based framework involved contrasting several different optimisation methods with various different parameters. The obtained inference systems were also contrasted with other standard classification methods with accurate prediction capabilities observed.

  19. A Comprehensive Guide to C3 System Development

    DTIC Science & Technology

    1990-03-01

    This thesis provides guidelines to develop a C3 system, including both organizational and physical systems. It contains the concept, architecture ... design and engineering approaches, the integrated C3 framework, test and evaluation methodologies, system acquisition procedures, system development

  20. U.S. Army Human Capital Enterprise (HCE) ARFORGEN Data Management, Correlation, Integration and Synchronization Analysis

    DTIC Science & Technology

    2011-08-15

    system must, at a minimum, include  design and configuration  framework  supporting:  Part 1.   Net  Ready. The system must support  net ‐ centric operations...Analyze, evaluate and incorporate relevant DoD Architecture Framework . 5) Document standards for each task / condition combination. 6) Prepare final FAA...task  Analyze, evaluate and incorporate relevant Army Architecture Framework  Document standards for each task/condition combination forming

  1. Robustness Analysis and Optimally Robust Control Design via Sum-of-Squares

    NASA Technical Reports Server (NTRS)

    Dorobantu, Andrei; Crespo, Luis G.; Seiler, Peter J.

    2012-01-01

    A control analysis and design framework is proposed for systems subject to parametric uncertainty. The underlying strategies are based on sum-of-squares (SOS) polynomial analysis and nonlinear optimization to design an optimally robust controller. The approach determines a maximum uncertainty range for which the closed-loop system satisfies a set of stability and performance requirements. These requirements, de ned as inequality constraints on several metrics, are restricted to polynomial functions of the uncertainty. To quantify robustness, SOS analysis is used to prove that the closed-loop system complies with the requirements for a given uncertainty range. The maximum uncertainty range, calculated by assessing a sequence of increasingly larger ranges, serves as a robustness metric for the closed-loop system. To optimize the control design, nonlinear optimization is used to enlarge the maximum uncertainty range by tuning the controller gains. Hence, the resulting controller is optimally robust to parametric uncertainty. This approach balances the robustness margins corresponding to each requirement in order to maximize the aggregate system robustness. The proposed framework is applied to a simple linear short-period aircraft model with uncertain aerodynamic coefficients.

  2. An Object-Oriented Architecture for a Web-Based CAI System.

    ERIC Educational Resources Information Center

    Nakabayashi, Kiyoshi; Hoshide, Takahide; Seshimo, Hitoshi; Fukuhara, Yoshimi

    This paper describes the design and implementation of an object-oriented World Wide Web-based CAI (Computer-Assisted Instruction) system. The goal of the design is to provide a flexible CAI/ITS (Intelligent Tutoring System) framework with full extendibility and reusability, as well as to exploit Web-based software technologies such as JAVA, ASP (a…

  3. Hybrid Architectures and Their Impact on Intelligent Design

    NASA Technical Reports Server (NTRS)

    Kandel, Abe

    1996-01-01

    In this presentation we investigate a novel framework for the design of autonomous fuzzy intelligent systems. The system integrates the following modules into a single autonomous entity: (1) a fuzzy expert system; (2) artificial neural network; (3) genetic algorithm; and (4) case-base reasoning. We describe the integration of these units into one intelligent structure and discuss potential applications.

  4. Design and Application of an Ontology for Component-Based Modeling of Water Systems

    NASA Astrophysics Data System (ADS)

    Elag, M.; Goodall, J. L.

    2012-12-01

    Many Earth system modeling frameworks have adopted an approach of componentizing models so that a large model can be assembled by linking a set of smaller model components. These model components can then be more easily reused, extended, and maintained by a large group of model developers and end users. While there has been a notable increase in component-based model frameworks in the Earth sciences in recent years, there has been less work on creating framework-agnostic metadata and ontologies for model components. Well defined model component metadata is needed, however, to facilitate sharing, reuse, and interoperability both within and across Earth system modeling frameworks. To address this need, we have designed an ontology for the water resources community named the Water Resources Component (WRC) ontology in order to advance the application of component-based modeling frameworks across water related disciplines. Here we present the design of the WRC ontology and demonstrate its application for integration of model components used in watershed management. First we show how the watershed modeling system Soil and Water Assessment Tool (SWAT) can be decomposed into a set of hydrological and ecological components that adopt the Open Modeling Interface (OpenMI) standard. Then we show how the components can be used to estimate nitrogen losses from land to surface water for the Baltimore Ecosystem study area. Results of this work are (i) a demonstration of how the WRC ontology advances the conceptual integration between components of water related disciplines by handling the semantic and syntactic heterogeneity present when describing components from different disciplines and (ii) an investigation of a methodology by which large models can be decomposed into a set of model components that can be well described by populating metadata according to the WRC ontology.

  5. Computer-Simulation Surrogates for Optimization: Application to Trapezoidal Ducts and Axisymmetric Bodies

    NASA Technical Reports Server (NTRS)

    Otto, John C.; Paraschivoiu, Marius; Yesilyurt, Serhat; Patera, Anthony T.

    1995-01-01

    Engineering design and optimization efforts using computational systems rapidly become resource intensive. The goal of the surrogate-based approach is to perform a complete optimization with limited resources. In this paper we present a Bayesian-validated approach that informs the designer as to how well the surrogate performs; in particular, our surrogate framework provides precise (albeit probabilistic) bounds on the errors incurred in the surrogate-for-simulation substitution. The theory and algorithms of our computer{simulation surrogate framework are first described. The utility of the framework is then demonstrated through two illustrative examples: maximization of the flowrate of fully developed ow in trapezoidal ducts; and design of an axisymmetric body that achieves a target Stokes drag.

  6. GIS Application System Design Applied to Information Monitoring

    NASA Astrophysics Data System (ADS)

    Qun, Zhou; Yujin, Yuan; Yuena, Kang

    Natural environment information management system involves on-line instrument monitoring, data communications, database establishment, information management software development and so on. Its core lies in collecting effective and reliable environmental information, increasing utilization rate and sharing degree of environment information by advanced information technology, and maximizingly providing timely and scientific foundation for environmental monitoring and management. This thesis adopts C# plug-in application development and uses a set of complete embedded GIS component libraries and tools libraries provided by GIS Engine to finish the core of plug-in GIS application framework, namely, the design and implementation of framework host program and each functional plug-in, as well as the design and implementation of plug-in GIS application framework platform. This thesis adopts the advantages of development technique of dynamic plug-in loading configuration, quickly establishes GIS application by visualized component collaborative modeling and realizes GIS application integration. The developed platform is applicable to any application integration related to GIS application (ESRI platform) and can be as basis development platform of GIS application development.

  7. Consensus-Based Course Design and Implementation of Constructive Alignment Theory in a Power System Analysis Course

    ERIC Educational Resources Information Center

    Vanfretti, Luigi; Farrokhabadi, Mostafa

    2015-01-01

    This article presents the implementation of the constructive alignment theory (CAT) in a power system analysis course through a consensus-based course design process. The consensus-based design process involves both the instructor and graduate-level students and it aims to develop the CAT framework in a holistic manner with the goal of including…

  8. A software engineering perspective on environmental modeling framework design: The object modeling system

    USDA-ARS?s Scientific Manuscript database

    The environmental modeling community has historically been concerned with the proliferation of models and the effort associated with collective model development tasks (e.g., code generation, data provisioning and transformation, etc.). Environmental modeling frameworks (EMFs) have been developed to...

  9. A Framework to Determine New System Requirements Under Design Parameter and Demand Uncertainties

    DTIC Science & Technology

    2015-04-30

    relegates quantitative complexities of decision-making to the method and designates trade-space exploration to the practitioner. We demonstrate the...quantitative complexities of decision-making to the method and designates trade-space exploration to the practitioner. We demonstrate the approach...play a critical role in determining new system requirements. Scope and Method of Approach The early stages of the design process have substantial

  10. Designing a Decision-Support System for Enrollment Management. AIR 1985 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Glover, Robert H.

    University of Hartford's decision-support system for enrollment management, which uses fourth-generation software tools, is described, with attention to the conceptual framework, design and implementation plan, and progress to date. The university's planners, institutional researchers, and admissions and financial aid officers are cooperating in…

  11. ICCE/ICCAI 2000 Full & Short Papers (System Design and Development).

    ERIC Educational Resources Information Center

    2000

    This document contains the full and short papers on system design and development from ICCE/ICCAI 2000 (International Conference on Computers in Education/International Conference on Computer-Assisted Instruction) covering the following topics: a code restructuring tool to help scaffold novice programmers; a framework for Internet-based…

  12. L.E.A.D.: a framework for evidence gathering and use for the prevention of obesity and other complex public health problems.

    PubMed

    Chatterji, Madhabi; Green, Lawrence W; Kumanyika, Shiriki

    2014-02-01

    This article summarizes a comprehensive, systems-oriented framework designed to improve the use of a wide variety of evidence sources to address population-wide obesity problems. The L.E.A.D. framework (for Locate the evidence, Evaluate the evidence, Assemble the evidence, and inform Decisions), developed by an expert consensus committee convened by the Institute of Medicine, is broadly applicable to complex, community-wide health problems. The article explains how to use the framework, presenting an evidence typology that helps specify relevant research questions and includes examples of how particular research methodologies and sources of evidence relate to questions that stem from decision-maker needs. The utility of a range of quantitative, qualitative, and mixed method designs and data sources for assembling a broad and credible evidence base is discussed, with a call for ongoing "evidence generation" to fill information gaps using the recommended systems perspective.

  13. An Optimization Framework for Driver Feedback Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malikopoulos, Andreas; Aguilar, Juan P.

    2013-01-01

    Modern vehicles have sophisticated electronic control units that can control engine operation with discretion to balance fuel economy, emissions, and power. These control units are designed for specific driving conditions (e.g., different speed profiles for highway and city driving). However, individual driving styles are different and rarely match the specific driving conditions for which the units were designed. In the research reported here, we investigate driving-style factors that have a major impact on fuel economy and construct an optimization framework to optimize individual driving styles with respect to these driving factors. In this context, we construct a set of polynomialmore » metamodels to reflect the responses produced in fuel economy by changing the driving factors. Then, we compare the optimized driving styles to the original driving styles and evaluate the effectiveness of the optimization framework. Finally, we use this proposed framework to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving styles in response to actual driving conditions to improve fuel efficiency.« less

  14. Multi-Disciplinary Analysis and Optimization Frameworks

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia Gutierrez

    2009-01-01

    Since July 2008, the Multidisciplinary Analysis & Optimization Working Group (MDAO WG) of the Systems Analysis Design & Optimization (SAD&O) discipline in the Fundamental Aeronautics Program s Subsonic Fixed Wing (SFW) project completed one major milestone, Define Architecture & Interfaces for Next Generation Open Source MDAO Framework Milestone (9/30/08), and is completing the Generation 1 Framework validation milestone, which is due December 2008. Included in the presentation are: details of progress on developing the Open MDAO framework, modeling and testing the Generation 1 Framework, progress toward establishing partnerships with external parties, and discussion of additional potential collaborations

  15. Putting the system back into systems change: a framework for understanding and changing organizational and community systems.

    PubMed

    Foster-Fishman, Pennie G; Nowell, Branda; Yang, Huilan

    2007-06-01

    Systems change has emerged as a dominant frame through which local, state, and national funders and practitioners across a wide array of fields approach their work. In most of these efforts, change agents and scholars strive to shift human services and community systems to create better and more just outcomes and improve the status quo. Despite this, there is a dearth of frameworks that scholars, practitioners, and funders can draw upon to aid them in understanding, designing, and assessing this process from a systemic perspective. This paper provides one framework--grounded in systems thinking and change literatures--for understanding and identifying the fundamental system parts and interdependencies that can help to explain system functioning and leverage systems change. The proposed framework highlights the importance of attending to both the deep and apparent structures within a system as well as the interactions and interdependencies among these system parts. This includes attending to the dominant normative, resource, regulative, and operational characteristics that dictate the behavior and lived experiences of system members. The value of engaging critical stakeholders in problem definition, boundary construction, and systems analysis are also discussed. The implications of this framework for systems change researchers and practitioners are discussed.

  16. DoD Lead System Integrator (LSI) Transformation - Creating a Model Based Acquisition Framework (MBAF)

    DTIC Science & Technology

    2014-04-30

    cost to acquire systems as design maturity could be verified incrementally as the system was developed vice waiting for specific large “ big bang ...Framework (MBAF) be applied to simulate or optimize process variations on programs? LSI Roles and Responsibilities A review of the roles and...the model/process optimization process. It is the current intent that NAVAIR will use the model to run simulations on process changes in an attempt to

  17. Enhancing the Effectiveness of Consumer-Focused Health Information Technology Systems Through eHealth Literacy: A Framework for Understanding Users' Needs.

    PubMed

    Kayser, Lars; Kushniruk, Andre; Osborne, Richard H; Norgaard, Ole; Turner, Paul

    2015-05-20

    eHealth systems and applications are increasingly focused on supporting consumers to directly engage with and use health care services. Involving end users in the design of these systems is critical to ensure a generation of usable and effective eHealth products and systems. Often the end users engaged for these participatory design processes are not actual representatives of the general population, and developers may have limited understanding about how well they might represent the full range of intended users of the eHealth products. As a consequence, resulting information technology (IT) designs may not accommodate the needs, skills, cognitive capacities, and/or contexts of use of the intended broader population of health consumers. This may result in challenges for consumers who use the health IT systems, and could lead to limitations in adoption if the diversity of user attributes has not been adequately considered by health IT designers. The objective of this paper is to propose how users' needs and competences can be taken into account when designing new information and communications technology solutions in health care by expanding the user-task-context matrix model with the domains of a new concept of eHealth literacy. This approach expands an existing method for supporting health IT system development, which advocates use of a three-dimensional user-task-context matrix to comprehensively identify the users of health IT systems, and what their needs and requirements are under differing contexts of use. The extension of this model involved including knowledge about users' competences within the seven domains of eHealth literacy, which had been identified based on systematic engagement with computer scientists, academics, health professionals, and patients recruited from various patient organizations and primary care. A concept map was constructed based on a structured brainstorm procedure, card sorting, and computational analysis. The new eHealth literacy concept (based on 7 domains) was incorporated as a key factor in expanding the user-task-context matrix to describe and qualify user requirements and understanding related to eHealth literacy. This resulted in an expanded framework and a five-step process, which can support health IT designers in understanding and more accurately addressing end-users' needs, capabilities, and contexts to improve effectiveness and broader applicability of consumer-focused health IT systems. It is anticipated that the framework will also be useful for policy makers involved in the planning, procuring, and funding of eHealth infrastructure, applications, and services. Developing effective eHealth products requires complete understanding of the end-users' needs from multiple perspectives. In this paper, we have proposed and detailed a framework for modeling users' needs for designing eHealth systems that merges prior work in development of a user-task-context matrix with the emerging area of eHealth literacy. This framework is intended to be used to guide design of eHealth technologies and to make requirements explicitly related to eHealth literacy, enabling a generation of well-targeted, fit-for-purpose, equitable, and effective products and systems.

  18. Enhancing the Effectiveness of Consumer-Focused Health Information Technology Systems Through eHealth Literacy: A Framework for Understanding Users' Needs

    PubMed Central

    2015-01-01

    Background eHealth systems and applications are increasingly focused on supporting consumers to directly engage with and use health care services. Involving end users in the design of these systems is critical to ensure a generation of usable and effective eHealth products and systems. Often the end users engaged for these participatory design processes are not actual representatives of the general population, and developers may have limited understanding about how well they might represent the full range of intended users of the eHealth products. As a consequence, resulting information technology (IT) designs may not accommodate the needs, skills, cognitive capacities, and/or contexts of use of the intended broader population of health consumers. This may result in challenges for consumers who use the health IT systems, and could lead to limitations in adoption if the diversity of user attributes has not been adequately considered by health IT designers. Objective The objective of this paper is to propose how users’ needs and competences can be taken into account when designing new information and communications technology solutions in health care by expanding the user-task-context matrix model with the domains of a new concept of eHealth literacy. Methods This approach expands an existing method for supporting health IT system development, which advocates use of a three-dimensional user-task-context matrix to comprehensively identify the users of health IT systems, and what their needs and requirements are under differing contexts of use. The extension of this model involved including knowledge about users’ competences within the seven domains of eHealth literacy, which had been identified based on systematic engagement with computer scientists, academics, health professionals, and patients recruited from various patient organizations and primary care. A concept map was constructed based on a structured brainstorm procedure, card sorting, and computational analysis. Results The new eHealth literacy concept (based on 7 domains) was incorporated as a key factor in expanding the user-task-context matrix to describe and qualify user requirements and understanding related to eHealth literacy. This resulted in an expanded framework and a five-step process, which can support health IT designers in understanding and more accurately addressing end-users’ needs, capabilities, and contexts to improve effectiveness and broader applicability of consumer-focused health IT systems. It is anticipated that the framework will also be useful for policy makers involved in the planning, procuring, and funding of eHealth infrastructure, applications, and services. Conclusions Developing effective eHealth products requires complete understanding of the end-users’ needs from multiple perspectives. In this paper, we have proposed and detailed a framework for modeling users’ needs for designing eHealth systems that merges prior work in development of a user-task-context matrix with the emerging area of eHealth literacy. This framework is intended to be used to guide design of eHealth technologies and to make requirements explicitly related to eHealth literacy, enabling a generation of well-targeted, fit-for-purpose, equitable, and effective products and systems. PMID:27025228

  19. Discovering Tradeoffs, Vulnerabilities, and Dependencies within Water Resources Systems

    NASA Astrophysics Data System (ADS)

    Reed, P. M.

    2015-12-01

    There is a growing recognition and interest in using emerging computational tools for discovering the tradeoffs that emerge across complex combinations infrastructure options, adaptive operations, and sign posts. As a field concerned with "deep uncertainties", it is logically consistent to include a more direct acknowledgement that our choices for dealing with computationally demanding simulations, advanced search algorithms, and sensitivity analysis tools are themselves subject to failures that could adversely bias our understanding of how systems' vulnerabilities change with proposed actions. Balancing simplicity versus complexity in our computational frameworks is nontrivial given that we are often exploring high impact irreversible decisions. It is not always clear that accepted models even encompass important failure modes. Moreover as they become more complex and computationally demanding the benefits and consequences of simplifications are often untested. This presentation discusses our efforts to address these challenges through our "many-objective robust decision making" (MORDM) framework for the design and management water resources systems. The MORDM framework has four core components: (1) elicited problem conception and formulation, (2) parallel many-objective search, (3) interactive visual analytics, and (4) negotiated selection of robust alternatives. Problem conception and formulation is the process of abstracting a practical design problem into a mathematical representation. We build on the emerging work in visual analytics to exploit interactive visualization of both the design space and the objective space in multiple heterogeneous linked views that permit exploration and discovery. Many-objective search produces tradeoff solutions from potentially competing problem formulations that can each consider up to ten conflicting objectives based on current computational search capabilities. Negotiated design selection uses interactive visualization, reformulation, and optimization to discover desirable designs for implementation. Multi-city urban water supply portfolio planning will be used to illustrate the MORDM framework.

  20. Aid effectiveness and programmatic effectiveness: a proposed framework for comparative evaluation of different aid interventions in a particular health system.

    PubMed

    Haque, Hasibul; Hill, Philip C; Gauld, Robin

    2017-01-01

    Against a backdrop of changing concepts of aid effectiveness, development effectiveness, health systems strengthening, and increasing emphasis on impact evaluation, this article proposes a theory-driven impact evaluation framework to gauge the effect of aid effectiveness principles on programmatic outcomes of different aid funded programs in the health sector of a particular country. The foundation and step-by-step process of implementing the framework are described. With empirical evidence from the field, the steps involve analysis of context, program designs, implementation mechanisms, outcomes, synthesis, and interpretation of findings through the programs' underlying program theories and interactions with the state context and health system. The framework can be useful for comparatively evaluating different aid interventions both in fragile and non-fragile state contexts.

  1. Towards a cyber-physical era: soft computing framework based multi-sensor array for water quality monitoring

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Gupta, Rajiv

    2018-02-01

    New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS) approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor nodes and soft computing framework for computational modelling. Soft computing framework utilizes the applications of Python for user interface and fuzzy sciences for decision making. Introduction of multiple sensors in a water distribution network generates a huge number of data matrices, which are sometimes highly complex, difficult to understand and convoluted for effective decision making. Therefore, the proposed system framework also intends to simplify the complexity of obtained sensor data matrices and to support decision making for water engineers through a soft computing framework. The target of this proposed research is to provide a simple and efficient method to identify and detect presence of contamination in a water distribution network using applications of CPS.

  2. Automatic design of magazine covers

    NASA Astrophysics Data System (ADS)

    Jahanian, Ali; Liu, Jerry; Tretter, Daniel R.; Lin, Qian; Damera-Venkata, Niranjan; O'Brien-Strain, Eamonn; Lee, Seungyon; Fan, Jian; Allebach, Jan P.

    2012-03-01

    In this paper, we propose a system for automatic design of magazine covers that quantifies a number of concepts from art and aesthetics. Our solution to automatic design of this type of media has been shaped by input from professional designers, magazine art directors and editorial boards, and journalists. Consequently, a number of principles in design and rules in designing magazine covers are delineated. Several techniques are derived and employed in order to quantify and implement these principles and rules in the format of a software framework. At this stage, our framework divides the task of design into three main modules: layout of magazine cover elements, choice of color for masthead and cover lines, and typography of cover lines. Feedback from professional designers on our designs suggests that our results are congruent with their intuition.

  3. An Integrated Framework for Modeling Air Carrier Behavior, Policy, and Impacts in the U.S. Air Transportation System

    NASA Technical Reports Server (NTRS)

    Horio, Brant M.; Kumar, Vivek; DeCicco, Anthony H.; Hasan, Shahab; Stouffer, Virginia L.; Smith, Jeremy C.; Guerreiro, Nelson M.

    2015-01-01

    The implementation of the Next Generation Air Transportation System (NextGen) in the United States is an ongoing challenge for policymakers due to the complexity of the air transportation system (ATS) with its broad array of stakeholders and dynamic interdependencies between them. The successful implementation of NextGen has a hard dependency on the active participation of U.S. commercial airlines. To assist policymakers in identifying potential policy designs that facilitate the implementation of NextGen, the National Aeronautics and Space Administration (NASA) and LMI developed a research framework called the Air Transportation System Evolutionary Simulation (ATS-EVOS). This framework integrates large empirical data sets with multiple specialized models to simulate the evolution of the airline response to potential future policies and explore consequential impacts on ATS performance and market dynamics. In the ATS-EVOS configuration presented here, we leverage the Transportation Systems Analysis Model (TSAM), the Airline Evolutionary Simulation (AIRLINE-EVOS), the Airspace Concept Evaluation System (ACES), and the Aviation Environmental Design Tool (AEDT), all of which enable this research to comprehensively represent the complex facets of the ATS and its participants. We validated this baseline configuration of ATS-EVOS against Airline Origin and Destination Survey (DB1B) data and subject matter expert opinion, and we verified the ATS-EVOS framework and agent behavior logic through scenario-based experiments that explored potential implementations of a carbon tax, congestion pricing policy, and the dynamics for equipage of new technology by airlines. These experiments demonstrated ATS-EVOS's capabilities in responding to a wide range of potential NextGen-related policies and utility for decision makers to gain insights for effective policy design.

  4. Laboratory Evaluation of Dynamic Traffic Assignment Systems: Requirements, Framework, and System Design

    DOT National Transportation Integrated Search

    1997-01-01

    The success of Advanced Traveler Information Systems (ATIS) and Advanced Traffic Management Systems (ATMS) depends on the availability and dissemination of timely and accurate estimates of current and emerging traffic network conditions. Real-time Dy...

  5. Multi-flexible-body analysis for application to wind turbine control design

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon

    The objective of the present research is to build a theoretical and computational framework for the aeroelastic analysis of flexible rotating systems, more specifically with special application to a wind turbine control design. The methodology is based on the integration of Kane's approach for the analysis of the multi-rigid-body subsystem and a mixed finite element method for the analysis of the flexible-body subsystem. The combined analysis is then strongly coupled with an aerodynamic model based on Blade Element Momentum theory for inflow model. The unified framework from the analysis of subsystems is represented as, in a symbolic manner, a set of nonlinear ordinary differential equations with time-variant, periodic coefficients, which describe the aeroelastic behavior of whole system. The framework can be directly applied to control design due to its symbolic characteristics. The solution procedures for the equations are presented for the study of nonlinear simulation, periodic steady-state solution, and Floquet stability of the linearized system about the steady-state solution. Finally the linear periodic system equation can be obtained with both system and control matrices as explicit functions of time, which can be directly applicable to control design. The structural model is validated by comparison of its results with those from software, some of which is commercial. The stability of the linearized system about periodic steady-state solution is different from that obtained about a constant steady-state solution, which have been conventional in the field of wind turbine dynamics. Parametric studies are performed on a wind turbine model with various pitch angles, precone angles, and rotor speeds. Combined with composite material, their effects on wind turbine aeroelastic stability are investigated. Finally it is suggested that the aeroelastic stability analysis and control design for the whole system is crucial for the design of wind turbines, and the present research breaks new ground in the ability to treat the issue.

  6. Aeronautical Situational Awareness - Airport Surface

    NASA Technical Reports Server (NTRS)

    Linetsky, Vladimir M.; Ivancic, William D.; Vaden, Karl R.

    2017-01-01

    This paper advocates for a specific design approach, based on simple principals, yet addresses challenges faced by the system engineers when designing complex data and information infrastructure. The document provides guidance for breaking out various work elements in the overall network architecture design, so that communication systems are conceived and effectively realized regardless of their location, size and local specifics. Although targeted at the Global Airspace System (GAS) and National Airspace System (NAS), this framework can be applied to any network-centric architecture.

  7. Multidisciplinary eHealth Survey Evaluation Methods

    ERIC Educational Resources Information Center

    Karras, Bryant T.; Tufano, James T.

    2006-01-01

    This paper describes the development process of an evaluation framework for describing and comparing web survey tools. We believe that this approach will help shape the design, development, deployment, and evaluation of population-based health interventions. A conceptual framework for describing and evaluating web survey systems will enable the…

  8. Software synthesis using generic architectures

    NASA Technical Reports Server (NTRS)

    Bhansali, Sanjay

    1993-01-01

    A framework for synthesizing software systems based on abstracting software system designs and the design process is described. The result of such an abstraction process is a generic architecture and the process knowledge for customizing the architecture. The customization process knowledge is used to assist a designer in customizing the architecture as opposed to completely automating the design of systems. Our approach using an implemented example of a generic tracking architecture which was customized in two different domains is illustrated. How the designs produced using KASE compare to the original designs of the two systems, and current work and plans for extending KASE to other application areas are described.

  9. The engineering of cybernetic systems

    NASA Astrophysics Data System (ADS)

    Fry, Robert L.

    2002-05-01

    This tutorial develops a logical basis for the engineering of systems that operate cybernetically. The term cybernetic system has a clear quantitative definition. It is a system that dynamically matches acquired information to selected actions relative to a computational issue that defines the essential purpose of the system or machine. This notion requires that information and control be further quantified. The logic of questions and assertions as developed by Cox provides one means of doing this. The design and operation of cybernetic systems can be understood by contrasting these kinds of systems with communication systems and information theory as developed by Shannon. The joint logic of questions and assertions can be seen to underlie and be common to both information theory as applied to the design of discrete communication systems and to a theory of discrete general systems. The joint logic captures a natural complementarity between systems that transmit and receive information and those that acquire and act on it. Specific comparisons and contrasts are made between the source rate and channel capacity of a communication system and the acquisition rate and control capacity of a general system. An overview is provided of the joint logic of questions and assertions and the ties that this logic has to both conventional information theory and to a general theory of systems. I-diagrams, the interrogative complement of Venn diagrams, are described as providing valuable reasoning tools. An initial framework is suggested for the design of cybernetic systems. Two examples are given to illustrate this framework as applied to discrete cybernetic systems. These examples include a predator-prey problem as illustrated through "The Dog Chrysippus Pursuing its Prey," and the derivation of a single-neuron system that operates cybernetically and is biologically plausible. Future areas of research are highlighted which require development for a mature engineering framework.

  10. NL(q) Theory: A Neural Control Framework with Global Asymptotic Stability Criteria.

    PubMed

    Vandewalle, Joos; De Moor, Bart L.R.; Suykens, Johan A.K.

    1997-06-01

    In this paper a framework for model-based neural control design is presented, consisting of nonlinear state space models and controllers, parametrized by multilayer feedforward neural networks. The models and closed-loop systems are transformed into so-called NL(q) system form. NL(q) systems represent a large class of nonlinear dynamical systems consisting of q layers with alternating linear and static nonlinear operators that satisfy a sector condition. For such NL(q)s sufficient conditions for global asymptotic stability, input/output stability (dissipativity with finite L(2)-gain) and robust stability and performance are presented. The stability criteria are expressed as linear matrix inequalities. In the analysis problem it is shown how stability of a given controller can be checked. In the synthesis problem two methods for neural control design are discussed. In the first method Narendra's dynamic backpropagation for tracking on a set of specific reference inputs is modified with an NL(q) stability constraint in order to ensure, e.g., closed-loop stability. In a second method control design is done without tracking on specific reference inputs, but based on the input/output stability criteria itself, within a standard plant framework as this is done, for example, in H( infinity ) control theory and &mgr; theory. Copyright 1997 Elsevier Science Ltd.

  11. Interdisciplinary and multilevel optimum design

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1986-01-01

    Interactions among engineering disciplines and subsystems in engineering system design are surveyed and specific instances of such interactions are described. Examination of the interactions that a traditional design process in which the numerical values of major design variables are decided consecutively is likely to lead to a suboptimal design. Supporting numerical examples are a glider and a space antenna. Under an alternative approach introduced, the design and its sensitivity data from the subsystems and disciplines are generated concurrently and then made available to the system designer enabling him to modify the system design so as to improve its performance. Examples of a framework structure and an airliner wing illustrate that approach.

  12. A Novel Framework for Identifying the Interactions between Biophysical and Social Components of an Agricultural System: A Guide for Improving Wheat Production in Haryana, NW India

    ERIC Educational Resources Information Center

    Coventry, D. R.; Poswal, R. S.; Yadav, Ashok; Zhou, Yi; Riar, Amritbir; Kumar, Anuj; Sharma, R. K.; Chhokar, R. S.; Gupta, R. K.; Mehta, A. K.; Chand, Ramesh; Denton, M. D.; Cummins, J. A.

    2018-01-01

    Purpose: The purpose of this study is to develop a conceptual framework with related analysis methodologies that identifies the influence of social environment on an established cropping system. Design/Methodology/Approach: A stratified survey including 103 villages and 823 farmers was conducted in all districts of Haryana (India). Firstly,…

  13. Arcade: A Web-Java Based Framework for Distributed Computing

    NASA Technical Reports Server (NTRS)

    Chen, Zhikai; Maly, Kurt; Mehrotra, Piyush; Zubair, Mohammad; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    Distributed heterogeneous environments are being increasingly used to execute a variety of large size simulations and computational problems. We are developing Arcade, a web-based environment to design, execute, monitor, and control distributed applications. These targeted applications consist of independent heterogeneous modules which can be executed on a distributed heterogeneous environment. In this paper we describe the overall design of the system and discuss the prototype implementation of the core functionalities required to support such a framework.

  14. Etomica: an object-oriented framework for molecular simulation.

    PubMed

    Schultz, Andrew J; Kofke, David A

    2015-03-30

    We describe the design of an object-oriented library of software components that are suitable for constructing simulations of systems of interacting particles. The emphasis of the discussion is on the general design of the components and how they interact, and less on details of the programming interface or its implementation. Example code is provided as an aid to understanding object-oriented programming structures and to demonstrate how the framework is applied. © 2015 Wiley Periodicals, Inc.

  15. Towards a Decision Support System for Space Flight Operations

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Hogle, Charles; Ruszkowski, James

    2013-01-01

    The Mission Operations Directorate (MOD) at the Johnson Space Center (JSC) has put in place a Model Based Systems Engineering (MBSE) technological framework for the development and execution of the Flight Production Process (FPP). This framework has provided much added value and return on investment to date. This paper describes a vision for a model based Decision Support System (DSS) for the development and execution of the FPP and its design and development process. The envisioned system extends the existing MBSE methodology and technological framework which is currently in use. The MBSE technological framework currently in place enables the systematic collection and integration of data required for building an FPP model for a diverse set of missions. This framework includes the technology, people and processes required for rapid development of architectural artifacts. It is used to build a feasible FPP model for the first flight of spacecraft and for recurrent flights throughout the life of the program. This model greatly enhances our ability to effectively engage with a new customer. It provides a preliminary work breakdown structure, data flow information and a master schedule based on its existing knowledge base. These artifacts are then refined and iterated upon with the customer for the development of a robust end-to-end, high-level integrated master schedule and its associated dependencies. The vision is to enhance this framework to enable its application for uncertainty management, decision support and optimization of the design and execution of the FPP by the program. Furthermore, this enhanced framework will enable the agile response and redesign of the FPP based on observed system behavior. The discrepancy of the anticipated system behavior and the observed behavior may be due to the processing of tasks internally, or due to external factors such as changes in program requirements or conditions associated with other organizations that are outside of MOD. The paper provides a roadmap for the three increments of this vision. These increments include (1) hardware and software system components and interfaces with the NASA ground system, (2) uncertainty management and (3) re-planning and automated execution. Each of these increments provide value independently; but some may also enable building of a subsequent increment.

  16. A cognitive information processing framework for distributed sensor networks

    NASA Astrophysics Data System (ADS)

    Wang, Feiyi; Qi, Hairong

    2004-09-01

    In this paper, we present a cognitive agent framework (CAF) based on swarm intelligence and self-organization principles, and demonstrate it through collaborative processing for target classification in sensor networks. The framework involves integrated designs to provide both cognitive behavior at the organization level to conquer complexity and reactive behavior at the individual agent level to retain simplicity. The design tackles various problems in the current information processing systems, including overly complex systems, maintenance difficulties, increasing vulnerability to attack, lack of capability to tolerate faults, and inability to identify and cope with low-frequency patterns. An important and distinguishing point of the presented work from classical AI research is that the acquired intelligence does not pertain to distinct individuals but to groups. It also deviates from multi-agent systems (MAS) due to sheer quantity of extremely simple agents we are able to accommodate, to the degree that some loss of coordination messages and behavior of faulty/compromised agents will not affect the collective decision made by the group.

  17. Runtime verification of embedded real-time systems.

    PubMed

    Reinbacher, Thomas; Függer, Matthias; Brauer, Jörg

    We present a runtime verification framework that allows on-line monitoring of past-time Metric Temporal Logic (ptMTL) specifications in a discrete time setting. We design observer algorithms for the time-bounded modalities of ptMTL, which take advantage of the highly parallel nature of hardware designs. The algorithms can be translated into efficient hardware blocks, which are designed for reconfigurability, thus, facilitate applications of the framework in both a prototyping and a post-deployment phase of embedded real-time systems. We provide formal correctness proofs for all presented observer algorithms and analyze their time and space complexity. For example, for the most general operator considered, the time-bounded Since operator, we obtain a time complexity that is doubly logarithmic both in the point in time the operator is executed and the operator's time bounds. This result is promising with respect to a self-contained, non-interfering monitoring approach that evaluates real-time specifications in parallel to the system-under-test. We implement our framework on a Field Programmable Gate Array platform and use extensive simulation and logic synthesis runs to assess the benefits of the approach in terms of resource usage and operating frequency.

  18. Implementation of the US EPA (United States Environmental Protection Agency) Regional Oxidant Modeling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novak, J.H.

    1984-05-01

    Model design, implementation and quality assurance procedures can have a significant impact on the effectiveness of long term utility of any modeling approach. The Regional Oxidant Modeling System (ROMS) is exceptionally complex because it treats all chemical and physical processes thought to affect ozone concentration on a regional scale. Thus, to effectively illustrate useful design and implementation techniques, this paper describes the general modeling framework which forms the basis of the ROMS. This framework is flexible enough to allow straightforward update or replacement of the chemical kinetics mechanism and/or any theoretical formulations of the physical processes. Use of the Jacksonmore » Structured Programming (JSP) method to implement this modeling framework has not only increased programmer productivity and quality of the resulting programs, but also has provided standardized program design, dynamic documentation, and easily maintainable and transportable code. A summary of the JSP method is presented to encourage modelers to pursue this technique in their own model development efforts. In addition, since data preparation is such an integral part of a successful modeling system, the ROMS processor network is described with emphasis on the internal quality control techniques.« less

  19. A Proposed Collaborative Framework for Prefabricated Housing Construction Using RFID Technology

    NASA Astrophysics Data System (ADS)

    Charnwasununth, Phatsaphan; Yabuki, Nobuyoshi; Tongthong, Tanit

    Despite the popularity of prefabricated housing construction in Thailand and many other countries, due to the lack of collaboration in current practice, undesired low productivity and a number of mistakes are identified. This research proposes a framework to raise the collaborative level for improving productivity and reducing mistake occurrences at sites. In this framework, RFID system bridges the gap between the real situation and the design, and the proposed system can cope with the unexpected construction conditions by generating proper alternatives. This system is composed of PDAs, RFID readers, laptop PCs, and a desktop PC. Six main modules and a database system are implemented in laptop PCs for recording actual site conditions, generating working alternatives, providing related information, and evaluating the work.

  20. A Framework for Aligning Instructional Design Strategies with Affordances of CAVE Immersive Virtual Reality Systems

    ERIC Educational Resources Information Center

    Ritz, Leah T.; Buss, Alan R.

    2016-01-01

    Increasing availability of immersive virtual reality (IVR) systems, such as the Cave Automatic Virtual Environment (CAVE) and head-mounted displays, for use in education contexts is providing new opportunities and challenges for instructional designers. By highlighting the affordances of IVR specific to the CAVE, the authors emphasize the…

  1. Careers in Academe: The Academic Labour Market as an Eco-System

    ERIC Educational Resources Information Center

    Baruch, Yehuda

    2013-01-01

    Purpose: This paper aims to explore the contrast between stable and dynamic labour markets in academe in light of career theories that were originally developed for business environments. Design/methodology/approach: A conceptual design, offering the eco-system as a framework. Findings: It evaluates their relevance and applicability to dynamic and…

  2. Competence Management System Design in International Multicultural Environment: Registration, Transfer, Recognition and Transparency

    ERIC Educational Resources Information Center

    Starcic, Andreja Istenic

    2012-01-01

    A competence management system (CMS) was devised to assist the registration of competencies in the textile and clothing sector, starting in the four EU countries of Portugal, Slovenia, the UK and Denmark, further leading to the European network. This paper presents the design and development framework assisting international multicultural…

  3. Design and implementation of a seamless and comprehensive integrated medical device interface system for outpatient electronic medical records in a general hospital.

    PubMed

    Choi, Jong Soo; Lee, Jean Hyoung; Park, Jong Hwan; Nam, Han Seung; Kwon, Hyuknam; Kim, Dongsoo; Park, Seung Woo

    2011-04-01

    Implementing an efficient Electronic Medical Record (EMR) system is regarded as one of the key strategies for improving the quality of healthcare services. However, the system's interoperability between medical devices and the EMR is a big barrier to deploying the EMR system in an outpatient clinical setting. The purpose of this study is to design a framework for a seamless and comprehensively integrated medical device interface system, and to develop and implement a system for accelerating the deployment of the EMR system. We designed and developed a framework that could transform data from medical devices into the relevant standards and then store them in the EMR. The framework is composed of 5 interfacing methods according to the types of medical devices utilized at an outpatient clinical setting, registered in Samsung Medical Center (SMC) database. The medical devices used for this study were devices that have microchips embedded or that came packaged with personal computers. The devices are completely integrated with the EMR based on SMC's long term IT strategies. First deployment of integrating 352 medical devices into the EMR took place in April, 2006, and it took about 48 months. By March, 2010, every medical device was interfaced with the EMR. About 66,000 medical examinations per month were performed taking up an average of 50GB of storage space. We surveyed users, mainly the technicians. Out of 73 that responded, 76% of the respondents replied that they were strongly satisfied or satisfied, 20% replied as being neutral and only 4% complained about the speed of the system, which was attributed to the slow speed of the old-fashioned medical devices and computers. The current implementation of the medical device interface system based on the SMC framework significantly streamlines the clinical workflow in a satisfactory manner. 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Multidisciplinary Optimization Branch Experience Using iSIGHT Software

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Korte, J. J.; Dunn, H. J.; Salas, A. O.

    1999-01-01

    The Multidisciplinary Optimization (MDO) Branch at NASA Langley is investigating frameworks for supporting multidisciplinary analysis and optimization research. A framework provides software and system services to integrate computational tasks and allows the researcher to concentrate more on the application and less on the programming details. A framework also provides a common working environment and a full range of optimization tools, and so increases the productivity of multidisciplinary research teams. Finally, a framework enables staff members to develop applications for use by disciplinary experts in other organizations. This year, the MDO Branch has gained experience with the iSIGHT framework. This paper describes experiences with four aerospace applications, including: (1) reusable launch vehicle sizing, (2) aerospike nozzle design, (3) low-noise rotorcraft trajectories, and (4) acoustic liner design. Brief overviews of each problem are provided, including the number and type of disciplinary codes and computation time estimates. In addition, the optimization methods, objective functions, design variables, and constraints are described for each problem. For each case, discussions on the advantages and disadvantages of using the iSIGHT framework are provided as well as notes on the ease of use of various advanced features and suggestions for areas of improvement.

  5. Low-cost space-varying FIR filter architecture for computational imaging systems

    NASA Astrophysics Data System (ADS)

    Feng, Guotong; Shoaib, Mohammed; Schwartz, Edward L.; Dirk Robinson, M.

    2010-01-01

    Recent research demonstrates the advantage of designing electro-optical imaging systems by jointly optimizing the optical and digital subsystems. The optical systems designed using this joint approach intentionally introduce large and often space-varying optical aberrations that produce blurry optical images. Digital sharpening restores reduced contrast due to these intentional optical aberrations. Computational imaging systems designed in this fashion have several advantages including extended depth-of-field, lower system costs, and improved low-light performance. Currently, most consumer imaging systems lack the necessary computational resources to compensate for these optical systems with large aberrations in the digital processor. Hence, the exploitation of the advantages of the jointly designed computational imaging system requires low-complexity algorithms enabling space-varying sharpening. In this paper, we describe a low-cost algorithmic framework and associated hardware enabling the space-varying finite impulse response (FIR) sharpening required to restore largely aberrated optical images. Our framework leverages the space-varying properties of optical images formed using rotationally-symmetric optical lens elements. First, we describe an approach to leverage the rotational symmetry of the point spread function (PSF) about the optical axis allowing computational savings. Second, we employ a specially designed bank of sharpening filters tuned to the specific radial variation common to optical aberrations. We evaluate the computational efficiency and image quality achieved by using this low-cost space-varying FIR filter architecture.

  6. Observing System Simulation Experiments for Fun and Profit

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.

    2015-01-01

    Observing System Simulation Experiments can be powerful tools for evaluating and exploring both the behavior of data assimilation systems and the potential impacts of future observing systems. With great power comes great responsibility - given a pure modeling framework, how can we be sure our results are meaningful? The challenges and pitfalls of OSSE calibration and validation will be addressed, as well as issues of incestuousness, selection of appropriate metrics, and experiment design. The use of idealized observational networks to investigate theoretical ideas in a fully complex modeling framework will also be discussed

  7. A Framework for Evidence-Based Licensure of Adaptive Autonomous Systems: Technical Areas

    DTIC Science & Technology

    2016-03-01

    subjective judgments by human experts . They are design dependent, but address questions of whether the system is performing as needed, as opposed...I N S T I T U T E F O R D E F E N S E A N A L Y S E S A Framework for Evidence-Based Licensure of Adaptive Autonomous Systems : Technical Areas...and Licensure of Autonomous Systems ,” for the Air Force Research Laboratory (AFRL). The views, opinions, and findings should not be construed as

  8. Software Architecture for Anti-Submarine Warfare Unmanned Surface Vehicles

    DTIC Science & Technology

    2016-09-01

    discussion about software systems that could be used to control these systems to make the jobs of the human operators easier. B. RESEARCH QUESTIONS... research study. To better understand the role of artificial intelligence in designing autonomous systems, S. Russell and P. Norvig jointly authored a...artificial intelligence, and autonomous systems. This serves as the framework for the real design challenge. 1. Protecting the Battle Group The United

  9. Facilitating the Specification Capture and Transformation Process in the Development of Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Filho, Aluzio Haendehen; Caminada, Numo; Haeusler, Edward Hermann; vonStaa, Arndt

    2004-01-01

    To support the development of flexible and reusable MAS, we have built a framework designated MAS-CF. MAS-CF is a component framework that implements a layered architecture based on contextual composition. Interaction rules, controlled by architecture mechanisms, ensure very low coupling, making possible the sharing of distributed services in a transparent, dynamic and independent way. These properties propitiate large-scale reuse, since organizational abstractions can be reused and propagated to all instances created from a framework. The objective is to reduce complexity and development time of multi-agent systems through the reuse of generic organizational abstractions.

  10. Visual Hybrid Development Learning System (VHDLS) framework for children with autism.

    PubMed

    Banire, Bilikis; Jomhari, Nazean; Ahmad, Rodina

    2015-10-01

    The effect of education on children with autism serves as a relative cure for their deficits. As a result of this, they require special techniques to gain their attention and interest in learning as compared to typical children. Several studies have shown that these children are visual learners. In this study, we proposed a Visual Hybrid Development Learning System (VHDLS) framework that is based on an instructional design model, multimedia cognitive learning theory, and learning style in order to guide software developers in developing learning systems for children with autism. The results from this study showed that the attention of children with autism increased more with the proposed VHDLS framework.

  11. Mapping healthcare systems: a policy relevant analytic tool.

    PubMed

    Sekhri Feachem, Neelam; Afshar, Ariana; Pruett, Cristina; Avanceña, Anton L V

    2017-07-01

    In the past decade, an international consensus on the value of well-functioning systems has driven considerable health systems research. This research falls into two broad categories. The first provides conceptual frameworks that take complex healthcare systems and create simplified constructs of interactions and functions. The second focuses on granular inputs and outputs. This paper presents a novel translational mapping tool - the University of California, San Francisco mapping tool (the Tool) - which bridges the gap between these two areas of research, creating a platform for multi-country comparative analysis. Using the Murray-Frenk framework, we create a macro-level representation of a country's structure, focusing on how it finances and delivers healthcare. The map visually depicts the fundamental policy questions in healthcare system design: funding sources and amount spent through each source, purchasers, populations covered, provider categories; and the relationship between these entities. We use the Tool to provide a macro-level comparative analysis of the structure of India's and Thailand's healthcare systems. As part of the systems strengthening arsenal, the Tool can stimulate debate about the merits and consequences of different healthcare systems structural designs, using a common framework that fosters multi-country comparative analyses. © The Author 2017. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  12. Resilience Design Patterns - A Structured Approach to Resilience at Extreme Scale (version 1.1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hukerikar, Saurabh; Engelmann, Christian

    Reliability is a serious concern for future extreme-scale high-performance computing (HPC) systems. Projections based on the current generation of HPC systems and technology roadmaps suggest the prevalence of very high fault rates in future systems. The errors resulting from these faults will propagate and generate various kinds of failures, which may result in outcomes ranging from result corruptions to catastrophic application crashes. Therefore the resilience challenge for extreme-scale HPC systems requires management of various hardware and software technologies that are capable of handling a broad set of fault models at accelerated fault rates. Also, due to practical limits on powermore » consumption in HPC systems future systems are likely to embrace innovative architectures, increasing the levels of hardware and software complexities. As a result the techniques that seek to improve resilience must navigate the complex trade-off space between resilience and the overheads to power consumption and performance. While the HPC community has developed various resilience solutions, application-level techniques as well as system-based solutions, the solution space of HPC resilience techniques remains fragmented. There are no formal methods and metrics to investigate and evaluate resilience holistically in HPC systems that consider impact scope, handling coverage, and performance & power efficiency across the system stack. Additionally, few of the current approaches are portable to newer architectures and software environments that will be deployed on future systems. In this document, we develop a structured approach to the management of HPC resilience using the concept of resilience-based design patterns. A design pattern is a general repeatable solution to a commonly occurring problem. We identify the commonly occurring problems and solutions used to deal with faults, errors and failures in HPC systems. Each established solution is described in the form of a pattern that addresses concrete problems in the design of resilient systems. The complete catalog of resilience design patterns provides designers with reusable design elements. We also define a framework that enhances a designer's understanding of the important constraints and opportunities for the design patterns to be implemented and deployed at various layers of the system stack. This design framework may be used to establish mechanisms and interfaces to coordinate flexible fault management across hardware and software components. The framework also supports optimization of the cost-benefit trade-offs among performance, resilience, and power consumption. The overall goal of this work is to enable a systematic methodology for the design and evaluation of resilience technologies in extreme-scale HPC systems that keep scientific applications running to a correct solution in a timely and cost-efficient manner in spite of frequent faults, errors, and failures of various types.« less

  13. Data management in an object-oriented distributed aircraft conceptual design environment

    NASA Astrophysics Data System (ADS)

    Lu, Zhijie

    In the competitive global market place, aerospace companies are forced to deliver the right products to the right market, with the right cost, and at the right time. However, the rapid development of technologies and new business opportunities, such as mergers, acquisitions, supply chain management, etc., have dramatically increased the complexity of designing an aircraft. Therefore, the pressure to reduce design cycle time and cost is enormous. One way to solve such a dilemma is to develop and apply advanced engineering environments (AEEs), which are distributed collaborative virtual design environments linking researchers, technologists, designers, etc., together by incorporating application tools and advanced computational, communications, and networking facilities. Aircraft conceptual design, as the first design stage, provides major opportunity to compress design cycle time and is the cheapest place for making design changes. However, traditional aircraft conceptual design programs, which are monolithic programs, cannot provide satisfactory functionality to meet new design requirements due to the lack of domain flexibility and analysis scalability. Therefore, we are in need of the next generation aircraft conceptual design environment (NextADE). To build the NextADE, the framework and the data management problem are two major problems that need to be addressed at the forefront. Solving these two problems, particularly the data management problem, is the focus of this research. In this dissertation, in light of AEEs, a distributed object-oriented framework is firstly formulated and tested for the NextADE. In order to improve interoperability and simplify the integration of heterogeneous application tools, data management is one of the major problems that need to be tackled. To solve this problem, taking into account the characteristics of aircraft conceptual design data, a robust, extensible object-oriented data model is then proposed according to the distributed object-oriented framework. By overcoming the shortcomings of the traditional approach of modeling aircraft conceptual design data, this data model makes it possible to capture specific detailed information of aircraft conceptual design without sacrificing generality, which is one of the most desired features of a data model for aircraft conceptual design. Based upon this data model, a prototype of the data management system, which is one of the fundamental building blocks of the NextADE, is implemented utilizing the state of the art information technologies. Using a general-purpose integration software package to demonstrate the efficacy of the proposed framework and the data management system, the NextADE is initially implemented by integrating the prototype of the data management system with other building blocks of the design environment, such as disciplinary analyses programs and mission analyses programs. As experiments, two case studies are conducted in the integrated design environments. One is based upon a simplified conceptual design of a notional conventional aircraft; the other is a simplified conceptual design of an unconventional aircraft. As a result of the experiments, the proposed framework and the data management approach are shown to be feasible solutions to the research problems.

  14. The behaviour change wheel: a new method for characterising and designing behaviour change interventions.

    PubMed

    Michie, Susan; van Stralen, Maartje M; West, Robert

    2011-04-23

    Improving the design and implementation of evidence-based practice depends on successful behaviour change interventions. This requires an appropriate method for characterising interventions and linking them to an analysis of the targeted behaviour. There exists a plethora of frameworks of behaviour change interventions, but it is not clear how well they serve this purpose. This paper evaluates these frameworks, and develops and evaluates a new framework aimed at overcoming their limitations. A systematic search of electronic databases and consultation with behaviour change experts were used to identify frameworks of behaviour change interventions. These were evaluated according to three criteria: comprehensiveness, coherence, and a clear link to an overarching model of behaviour. A new framework was developed to meet these criteria. The reliability with which it could be applied was examined in two domains of behaviour change: tobacco control and obesity. Nineteen frameworks were identified covering nine intervention functions and seven policy categories that could enable those interventions. None of the frameworks reviewed covered the full range of intervention functions or policies, and only a minority met the criteria of coherence or linkage to a model of behaviour. At the centre of a proposed new framework is a 'behaviour system' involving three essential conditions: capability, opportunity, and motivation (what we term the 'COM-B system'). This forms the hub of a 'behaviour change wheel' (BCW) around which are positioned the nine intervention functions aimed at addressing deficits in one or more of these conditions; around this are placed seven categories of policy that could enable those interventions to occur. The BCW was used reliably to characterise interventions within the English Department of Health's 2010 tobacco control strategy and the National Institute of Health and Clinical Excellence's guidance on reducing obesity. Interventions and policies to change behaviour can be usefully characterised by means of a BCW comprising: a 'behaviour system' at the hub, encircled by intervention functions and then by policy categories. Research is needed to establish how far the BCW can lead to more efficient design of effective interventions.

  15. The behaviour change wheel: A new method for characterising and designing behaviour change interventions

    PubMed Central

    2011-01-01

    Background Improving the design and implementation of evidence-based practice depends on successful behaviour change interventions. This requires an appropriate method for characterising interventions and linking them to an analysis of the targeted behaviour. There exists a plethora of frameworks of behaviour change interventions, but it is not clear how well they serve this purpose. This paper evaluates these frameworks, and develops and evaluates a new framework aimed at overcoming their limitations. Methods A systematic search of electronic databases and consultation with behaviour change experts were used to identify frameworks of behaviour change interventions. These were evaluated according to three criteria: comprehensiveness, coherence, and a clear link to an overarching model of behaviour. A new framework was developed to meet these criteria. The reliability with which it could be applied was examined in two domains of behaviour change: tobacco control and obesity. Results Nineteen frameworks were identified covering nine intervention functions and seven policy categories that could enable those interventions. None of the frameworks reviewed covered the full range of intervention functions or policies, and only a minority met the criteria of coherence or linkage to a model of behaviour. At the centre of a proposed new framework is a 'behaviour system' involving three essential conditions: capability, opportunity, and motivation (what we term the 'COM-B system'). This forms the hub of a 'behaviour change wheel' (BCW) around which are positioned the nine intervention functions aimed at addressing deficits in one or more of these conditions; around this are placed seven categories of policy that could enable those interventions to occur. The BCW was used reliably to characterise interventions within the English Department of Health's 2010 tobacco control strategy and the National Institute of Health and Clinical Excellence's guidance on reducing obesity. Conclusions Interventions and policies to change behaviour can be usefully characterised by means of a BCW comprising: a 'behaviour system' at the hub, encircled by intervention functions and then by policy categories. Research is needed to establish how far the BCW can lead to more efficient design of effective interventions. PMID:21513547

  16. Designing for Peta-Scale in the LSST Database

    NASA Astrophysics Data System (ADS)

    Kantor, J.; Axelrod, T.; Becla, J.; Cook, K.; Nikolaev, S.; Gray, J.; Plante, R.; Nieto-Santisteban, M.; Szalay, A.; Thakar, A.

    2007-10-01

    The Large Synoptic Survey Telescope (LSST), a proposed ground-based 8.4 m telescope with a 10 deg^2 field of view, will generate 15 TB of raw images every observing night. When calibration and processed data are added, the image archive, catalogs, and meta-data will grow 15 PB yr^{-1} on average. The LSST Data Management System (DMS) must capture, process, store, index, replicate, and provide open access to this data. Alerts must be triggered within 30 s of data acquisition. To do this in real-time at these data volumes will require advances in data management, database, and file system techniques. This paper describes the design of the LSST DMS and emphasizes features for peta-scale data. The LSST DMS will employ a combination of distributed database and file systems, with schema, partitioning, and indexing oriented for parallel operations. Image files are stored in a distributed file system with references to, and meta-data from, each file stored in the databases. The schema design supports pipeline processing, rapid ingest, and efficient query. Vertical partitioning reduces disk input/output requirements, horizontal partitioning allows parallel data access using arrays of servers and disks. Indexing is extensive, utilizing both conventional RAM-resident indexes and column-narrow, row-deep tag tables/covering indices that are extracted from tables that contain many more attributes. The DMS Data Access Framework is encapsulated in a middleware framework to provide a uniform service interface to all framework capabilities. This framework will provide the automated work-flow, replication, and data analysis capabilities necessary to make data processing and data quality analysis feasible at this scale.

  17. 5 CFR 250.201 - Coverage and purpose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... responsible for designing a set of systems, including standards and metrics, for assessing the management of human capital by Federal agencies. In this subpart, OPM establishes a framework of those systems, including system components, OPM's role, and agency responsibilities. ...

  18. 5 CFR 250.201 - Coverage and purpose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... responsible for designing a set of systems, including standards and metrics, for assessing the management of human capital by Federal agencies. In this subpart, OPM establishes a framework of those systems, including system components, OPM's role, and agency responsibilities. ...

  19. 5 CFR 250.201 - Coverage and purpose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... responsible for designing a set of systems, including standards and metrics, for assessing the management of human capital by Federal agencies. In this subpart, OPM establishes a framework of those systems, including system components, OPM's role, and agency responsibilities. ...

  20. NASA's Solar System Treks Image Mosaic Pipeline

    NASA Astrophysics Data System (ADS)

    Trautman, M. R.; Malhotra, S.; Nainan, C.; Kim, R. M.; Bui, B. X.; Sadaqathullah, S.; Sharma, P.; Gallegos, N.; Law, E. S.; Day, B. H.

    2018-06-01

    This study details the efforts of the NASA Solar System Treks project to design a framework for automated systems capable of producing quality mosaics from high resolution orbital imagery. The primary focus is on NAC, CTX, and HiRISE imagery.

  1. System Engineering Concept Demonstration, Effort Summary. Volume 1

    DTIC Science & Technology

    1992-12-01

    involve only the system software, user frameworks and user tools. U •User Tool....s , Catalyst oExternal 00 Computer Framwork P OSystems • •~ Sysytem...analysis, synthesis, optimization, conceptual design of Catalyst. The paper discusses the definition, design, test, and evaluation; operational concept...This approach will allow system engineering The conceptual requirements for the Process Model practitioners to recognize and tailor the model. This

  2. ControlShell - A real-time software framework

    NASA Technical Reports Server (NTRS)

    Schneider, Stanley A.; Ullman, Marc A.; Chen, Vincent W.

    1991-01-01

    ControlShell is designed to enable modular design and impplementation of real-time software. It is an object-oriented tool-set for real-time software system programming. It provides a series of execution and data interchange mechansims that form a framework for building real-time applications. These mechanisms allow a component-based approach to real-time software generation and mangement. By defining a set of interface specifications for intermodule interaction, ControlShell provides a common platform that is the basis for real-time code development and exchange.

  3. A Multiprocessor SoC Architecture with Efficient Communication Infrastructure and Advanced Compiler Support for Easy Application Development

    NASA Astrophysics Data System (ADS)

    Urfianto, Mohammad Zalfany; Isshiki, Tsuyoshi; Khan, Arif Ullah; Li, Dongju; Kunieda, Hiroaki

    This paper presentss a Multiprocessor System-on-Chips (MPSoC) architecture used as an execution platform for the new C-language based MPSoC design framework we are currently developing. The MPSoC architecture is based on an existing SoC platform with a commercial RISC core acting as the host CPU. We extend the existing SoC with a multiprocessor-array block that is used as the main engine to run parallel applications modeled in our design framework. Utilizing several optimizations provided by our compiler, an efficient inter-communication between processing elements with minimum overhead is implemented. A host-interface is designed to integrate the existing RISC core to the multiprocessor-array. The experimental results show that an efficacious integration is achieved, proving that the designed communication module can be used to efficiently incorporate off-the-shelf processors as a processing element for MPSoC architectures designed using our framework.

  4. GMDPtoolbox: A Matlab library for designing spatial management policies. Application to the long-term collective management of an airborne disease

    PubMed Central

    Aubertot, Jean-Noël; Peyrard, Nathalie; Sabbadin, Régis

    2017-01-01

    Designing management policies in ecology and agroecology is complex. Several components must be managed together while they strongly interact spatially. Decision choices must be made under uncertainty on the results of the actions and on the system dynamics. Furthermore, the objectives pursued when managing ecological systems or agroecosystems are usually long term objectives, such as biodiversity conservation or sustainable crop production. The framework of Graph-Based Markov Decision Processes (GMDP) is well adapted to the qualitative modeling of such problems of sequential decision under uncertainty. Spatial interactions are easily modeled and integrated control policies (combining several action levers) can be designed through optimization. The provided policies are adaptive, meaning that management actions are decided at each time step (for instance yearly) and the chosen actions depend on the current system state. This framework has already been successfully applied to forest management and invasive species management. However, up to now, no “easy-to-use” implementation of this framework was available. We present GMDPtoolbox, a Matlab toolbox which can be used both for the design of new management policies and for comparing policies by simulation. We provide an illustration of the use of the toolbox on a realistic crop disease management problem: the design of long term management policy of blackleg of canola using an optimal combination of three possible cultural levers. This example shows how GMDPtoolbox can be used as a tool to support expert thinking. PMID:28982151

  5. GMDPtoolbox: A Matlab library for designing spatial management policies. Application to the long-term collective management of an airborne disease.

    PubMed

    Cros, Marie-Josée; Aubertot, Jean-Noël; Peyrard, Nathalie; Sabbadin, Régis

    2017-01-01

    Designing management policies in ecology and agroecology is complex. Several components must be managed together while they strongly interact spatially. Decision choices must be made under uncertainty on the results of the actions and on the system dynamics. Furthermore, the objectives pursued when managing ecological systems or agroecosystems are usually long term objectives, such as biodiversity conservation or sustainable crop production. The framework of Graph-Based Markov Decision Processes (GMDP) is well adapted to the qualitative modeling of such problems of sequential decision under uncertainty. Spatial interactions are easily modeled and integrated control policies (combining several action levers) can be designed through optimization. The provided policies are adaptive, meaning that management actions are decided at each time step (for instance yearly) and the chosen actions depend on the current system state. This framework has already been successfully applied to forest management and invasive species management. However, up to now, no "easy-to-use" implementation of this framework was available. We present GMDPtoolbox, a Matlab toolbox which can be used both for the design of new management policies and for comparing policies by simulation. We provide an illustration of the use of the toolbox on a realistic crop disease management problem: the design of long term management policy of blackleg of canola using an optimal combination of three possible cultural levers. This example shows how GMDPtoolbox can be used as a tool to support expert thinking.

  6. Product and Production System Design. Grade 11-12. Course #8175 (Semester). Technology Education Course Guide. Industrial Arts/Technology Education.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education.

    This guide is intended for use in teaching a course in the sequential tasks that change a designer's idea into a completed product. Emphasis is placed on the design of a product and the manufacturing system needed to produce it. The first two sections discuss the guide's development within the framework of North Carolina's efforts to improve…

  7. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 8: Open-cycle MHD. [energy conversion efficiency and design analysis of electric power plants employing magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q.

    1976-01-01

    Electric power plant costs and efficiencies are presented for three basic open-cycle MHD systems: (1) direct coal fired system, (2) a system with a separately fired air heater, and (3) a system burning low-Btu gas from an integrated gasifier. Power plant designs were developed corresponding to the basic cases with variation of major parameters for which major system components were sized and costed. Flow diagrams describing each design are presented. A discussion of the limitations of each design is made within the framework of the assumptions made.

  8. State Event Models for the Formal Analysis of Human-Machine Interactions

    NASA Technical Reports Server (NTRS)

    Combefis, Sebastien; Giannakopoulou, Dimitra; Pecheur, Charles

    2014-01-01

    The work described in this paper was motivated by our experience with applying a framework for formal analysis of human-machine interactions (HMI) to a realistic model of an autopilot. The framework is built around a formally defined conformance relation called "fullcontrol" between an actual system and the mental model according to which the system is operated. Systems are well-designed if they can be described by relatively simple, full-control, mental models for their human operators. For this reason, our framework supports automated generation of minimal full-control mental models for HMI systems, where both the system and the mental models are described as labelled transition systems (LTS). The autopilot that we analysed has been developed in the NASA Ames HMI prototyping tool ADEPT. In this paper, we describe how we extended the models that our HMI analysis framework handles to allow adequate representation of ADEPT models. We then provide a property-preserving reduction from these extended models to LTSs, to enable application of our LTS-based formal analysis algorithms. Finally, we briefly discuss the analyses we were able to perform on the autopilot model with our extended framework.

  9. A wearable context aware system for ubiquitous healthcare.

    PubMed

    Kang, Dong-Oh; Lee, Hyung-Jik; Ko, Eun-Jung; Kang, Kyuchang; Lee, Jeunwoo

    2006-01-01

    Recent developments of information technologies are leading the advent of the era of ubiquitous healthcare, which means healthcare services at any time and at any places. The ubiquitous healthcare service needs a wearable system for more continual measurement of biological signals of a user, which gives information of the user from wearable sensors. In this paper, we propose a wearable context aware system for ubiquitous healthcare, and its systematic design process of a ubiquitous healthcare service. Some wearable sensor systems are introduced with Zigbee communication. We develop a context aware framework to send information from wearable sensors to healthcare service entities as a middleware to solve the interoperability problem between sensor makers and healthcare service providers. And, we propose a systematic process of design of ubiquitous healthcare services with the context aware framework. In order to show the feasibility of the proposed system, some application examples are given, which are applied to remote monitoring, and a self check service.

  10. A Framework for the Development of Context-Adaptable User Interfaces for Ubiquitous Computing Systems.

    PubMed

    Varela, Gervasio; Paz-Lopez, Alejandro; Becerra, Jose A; Duro, Richard

    2016-07-07

    This paper addresses the problem of developing user interfaces for Ubiquitous Computing (UC) and Ambient Intelligence (AmI) systems. These kind of systems are expected to provide a natural user experience, considering interaction modalities adapted to the user abilities and preferences and using whatever interaction devices are present in the environment. These interaction devices are not necessarily known at design time. The task is quite complicated due to the variety of devices and technologies, and the diversity of scenarios, and it usually burdens the developer with the need to create many different UIs in order to consider the foreseeable user-environment combinations. Here, we propose an UI abstraction framework for UC and AmI systems that effectively improves the portability of those systems between different environments and for different users. It allows developers to design and implement a single UI capable of being deployed with different devices and modalities regardless the physical location.

  11. Cost-effectiveness of integrated analysis/design systems /IPAD/ An executive summary. II. [for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Miller, R. E., Jr.; Hansen, S. D.; Redhed, D. D.; Southall, J. W.; Kawaguchi, A. S.

    1974-01-01

    Evaluation of the cost-effectiveness of integrated analysis/design systems with particular attention to Integrated Program for Aerospace-Vehicle Design (IPAD) project. An analysis of all the ingredients of IPAD indicates the feasibility of a significant cost and flowtime reduction in the product design process involved. It is also concluded that an IPAD-supported design process will provide a framework for configuration control, whereby the engineering costs for design, analysis and testing can be controlled during the air vehicle development cycle.

  12. Frameworks and Tools for High-Confidence Design of Adaptive, Distributed Embedded Control Systems. Multi-University Research Initiative on High-Confidence Design for Distributed Embedded Systems

    DTIC Science & Technology

    2009-01-01

    controllers (currently using the Robostix+Gumstix pair ). The interface between the plant simulator and the controller is ‘hard real-time’, and the xPC box... simulation ) on aerobatic maneuver design for the STARMAC quadrotor helicopter testbed. In related work, we have developed a new optimization scheme...for scheduling hybrid systems, and have demonstrated the results on an autonomous car simulation testbed. We are focusing efforts this summer for

  13. A Framework for Measuring Student Learning Gains and Engagement in an Introductory Computing Course: A Preliminary Report of Findings

    ERIC Educational Resources Information Center

    Lim, Billy; Hosack, Bryan; Vogt, Paul

    2012-01-01

    This paper describes a framework for measuring student learning gains and engagement in a Computer Science 1 (CS 1) / Information Systems 1 (IS 1) course. The framework is designed for a CS1/IS1 course as it has been traditionally taught over the years as well as when it is taught using a new pedagogical approach with Web services. It enables the…

  14. Design and development of a medical big data processing system based on Hadoop.

    PubMed

    Yao, Qin; Tian, Yu; Li, Peng-Fei; Tian, Li-Li; Qian, Yang-Ming; Li, Jing-Song

    2015-03-01

    Secondary use of medical big data is increasingly popular in healthcare services and clinical research. Understanding the logic behind medical big data demonstrates tendencies in hospital information technology and shows great significance for hospital information systems that are designing and expanding services. Big data has four characteristics--Volume, Variety, Velocity and Value (the 4 Vs)--that make traditional systems incapable of processing these data using standalones. Apache Hadoop MapReduce is a promising software framework for developing applications that process vast amounts of data in parallel with large clusters of commodity hardware in a reliable, fault-tolerant manner. With the Hadoop framework and MapReduce application program interface (API), we can more easily develop our own MapReduce applications to run on a Hadoop framework that can scale up from a single node to thousands of machines. This paper investigates a practical case of a Hadoop-based medical big data processing system. We developed this system to intelligently process medical big data and uncover some features of hospital information system user behaviors. This paper studies user behaviors regarding various data produced by different hospital information systems for daily work. In this paper, we also built a five-node Hadoop cluster to execute distributed MapReduce algorithms. Our distributed algorithms show promise in facilitating efficient data processing with medical big data in healthcare services and clinical research compared with single nodes. Additionally, with medical big data analytics, we can design our hospital information systems to be much more intelligent and easier to use by making personalized recommendations.

  15. Dynamic programming methods for concurrent design and dynamic allocation of vehicles embedded in a system-of-systems

    NASA Astrophysics Data System (ADS)

    Nusawardhana

    2007-12-01

    Recent developments indicate a changing perspective on how systems or vehicles should be designed. Such transition comes from the way decision makers in defense related agencies address complex problems. Complex problems are now often posed in terms of the capabilities desired, rather than in terms of requirements for a single systems. As a result, the way to provide a set of capabilities is through a collection of several individual, independent systems. This collection of individual independent systems is often referred to as a "System of Systems'' (SoS). Because of the independent nature of the constituent systems in an SoS, approaches to design an SoS, and more specifically, approaches to design a new system as a member of an SoS, will likely be different than the traditional design approaches for complex, monolithic (meaning the constituent parts have no ability for independent operation) systems. Because a system of system evolves over time, this simultaneous system design and resource allocation problem should be investigated in a dynamic context. Such dynamic optimization problems are similar to conventional control problems. However, this research considers problems which not only seek optimizing policies but also seek the proper system or vehicle to operate under these policies. This thesis presents a framework and a set of analytical tools to solve a class of SoS problems that involves the simultaneous design of a new system and allocation of the new system along with existing systems. Such a class of problems belongs to the problems of concurrent design and control of a new systems with solutions consisting of both optimal system design and optimal control strategy. Rigorous mathematical arguments show that the proposed framework solves the concurrent design and control problems. Many results exist for dynamic optimization problems of linear systems. In contrary, results on optimal nonlinear dynamic optimization problems are rare. The proposed framework is equipped with the set of analytical tools to solve several cases of nonlinear optimal control problems: continuous- and discrete-time nonlinear problems with applications on both optimal regulation and tracking. These tools are useful when mathematical descriptions of dynamic systems are available. In the absence of such a mathematical model, it is often necessary to derive a solution based on computer simulation. For this case, a set of parameterized decision may constitute a solution. This thesis presents a method to adjust these parameters based on the principle of stochastic approximation simultaneous perturbation using continuous measurements. The set of tools developed here mostly employs the methods of exact dynamic programming. However, due to the complexity of SoS problems, this research also develops suboptimal solution approaches, collectively recognized as approximate dynamic programming solutions, for large scale problems. The thesis presents, explores, and solves problems from an airline industry, in which a new aircraft is to be designed and allocated along with an existing fleet of aircraft. Because the life cycle of an aircraft is on the order of 10 to 20 years, this problem is to be addressed dynamically so that the new aircraft design is the best design for the fleet over a given time horizon.

  16. A New Pedagogical Design for Geo-Informatics Courses Using an E-Training Support System

    ERIC Educational Resources Information Center

    Eldin, Ahmed Sharaf; ElNahry, Alaa H.; Elsayed, Adel; Ibrahim, Rania Elsayed

    2014-01-01

    The current study seeks to introduce a new pedagogical design for geo-informatics courses using an e-training support system. Laurillard's conversational approach based on conceptual representation for both instructor and learner was used to form the framework. As the current study specifically interested in training as a special form for…

  17. A Generic, Agent-Based Framework for Design and Development of UAV/UCAV Control Systems

    DTIC Science & Technology

    2004-02-27

    37 EID Principles .................................................................................................. 38 Experimental Support for EID...Year 2 Interface design and implementation; creation of the simulation environment; Year 3 Demonstration of the concept and experimental evaluation...UAV/UCAV control in which operators can experience high cognitive workloads. There are several ways in which systems can construct user models by

  18. Developing Teachers' Competences for Designing Inclusive Learning Experiences

    ERIC Educational Resources Information Center

    Navarro, Silvia Baldiris; Zervas, Panagiotis; Gesa, Ramon Fabregat; Sampson, Demetrios G.

    2016-01-01

    Inclusive education, namely the process of providing all learners with equal educational opportunities, is a major challenge for many educational systems worldwide. In order to address this issue, a widely used framework has been developed, namely the Universal Design for Learning (UDL), which aims to provide specific educational design guidelines…

  19. Daily Migraine Prevention and Its Influence on Resource Utilization in the Military Health System

    DTIC Science & Technology

    2006-08-01

    Database and employed a one group pretest - posttest design of patients exposed to prevention. Each patient was followed over 18 months (6 months prior to...Framework ..............................................37 Chapter IV: Research Design and Methodology.............................38 Overview of Design...39 Data Collection ................................................................................41 Research Hypotheses

  20. Resilience Design Patterns - A Structured Approach to Resilience at Extreme Scale (version 1.0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hukerikar, Saurabh; Engelmann, Christian

    Reliability is a serious concern for future extreme-scale high-performance computing (HPC) systems. Projections based on the current generation of HPC systems and technology roadmaps suggest that very high fault rates in future systems. The errors resulting from these faults will propagate and generate various kinds of failures, which may result in outcomes ranging from result corruptions to catastrophic application crashes. Practical limits on power consumption in HPC systems will require future systems to embrace innovative architectures, increasing the levels of hardware and software complexities. The resilience challenge for extreme-scale HPC systems requires management of various hardware and software technologies thatmore » are capable of handling a broad set of fault models at accelerated fault rates. These techniques must seek to improve resilience at reasonable overheads to power consumption and performance. While the HPC community has developed various solutions, application-level as well as system-based solutions, the solution space of HPC resilience techniques remains fragmented. There are no formal methods and metrics to investigate and evaluate resilience holistically in HPC systems that consider impact scope, handling coverage, and performance & power eciency across the system stack. Additionally, few of the current approaches are portable to newer architectures and software ecosystems, which are expected to be deployed on future systems. In this document, we develop a structured approach to the management of HPC resilience based on the concept of resilience-based design patterns. A design pattern is a general repeatable solution to a commonly occurring problem. We identify the commonly occurring problems and solutions used to deal with faults, errors and failures in HPC systems. The catalog of resilience design patterns provides designers with reusable design elements. We define a design framework that enhances our understanding of the important constraints and opportunities for solutions deployed at various layers of the system stack. The framework may be used to establish mechanisms and interfaces to coordinate flexible fault management across hardware and software components. The framework also enables optimization of the cost-benefit trade-os among performance, resilience, and power consumption. The overall goal of this work is to enable a systematic methodology for the design and evaluation of resilience technologies in extreme-scale HPC systems that keep scientific applications running to a correct solution in a timely and cost-ecient manner in spite of frequent faults, errors, and failures of various types.« less

  1. Texas M-E flexible pavement design system: literature review and proposed framework.

    DOT National Transportation Integrated Search

    2012-04-01

    Recent developments over last several decades have offered an opportunity for more rational and rigorous pavement design procedures. Substantial work has already been completed in Texas, nationally, and internationally, in all aspects of modeling, ma...

  2. Interdisciplinary and multilevel optimum design. [in aerospace structural engineering

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1987-01-01

    Interactions among engineering disciplines and subsystems in engineering system design are surveyed and specific instances of such interactions are described. Examination of the interactions that a traditional design process in which the numerical values of major design variables are decided consecutively is likely to lead to a suboptimal design. Supporting numerical examples are a glider and a space antenna. Under an alternative approach introduced, the design and its sensitivity data from the subsystems and disciplines are generated concurrently and then made available to the system designer enabling him to modify the system design so as to improve its performance. Examples of a framework structure and an airliner wing illustrate that approach.

  3. Fostering Undergraduate Research Experiences in Management Information Systems through the "Research Group" Framework

    ERIC Educational Resources Information Center

    Bartkus, Ken; Mills, Robert; Olsen, David

    2010-01-01

    The purpose of this paper is to propose an innovative approach to engaged learning. Founded on the principles of a scholarly think-tank and administered along the lines of a consulting organization, the proposed "Research Group" framework is designed to facilitate effective and efficient undergraduate research experiences in Management…

  4. Instructional Uses of the Lexile Framework.

    ERIC Educational Resources Information Center

    Stenner, A. Jackson

    The Lexile Framework provides teachers with tools to help them link the results of reading assessment with subsequent instruction, focuses on appropriate-level curriculum for readers at all educational levels, and is designed to be flexible enough to use alongside any type of reading program. Suggested areas for application of this system include:…

  5. Implementing a National Qualifications Framework in Lithuania

    ERIC Educational Resources Information Center

    Tutlys, Vidmantas; Spudyte, Irma

    2011-01-01

    The design of the national qualifications framework (NQF) in Lithuania started in 2006. The NQF was officially approved by the government decree in May 2010. This article explores the influence of the processes of institutional change on the reform of the national system of qualifications in Lithuania through the implementation of the NQF, looking…

  6. An Earth-Moon System Trajectory Design Reference Catalog

    NASA Technical Reports Server (NTRS)

    Folta, David; Bosanac, Natasha; Guzzetti, Davide; Howell, Kathleen C.

    2014-01-01

    As demonstrated by ongoing concept designs and the recent ARTEMIS mission, there is, currently, significant interest in exploiting three-body dynamics in the design of trajectories for both robotic and human missions within the Earth-Moon system. The concept of an interactive and 'dynamic' catalog of potential solutions in the Earth-Moon system is explored within this paper and analyzed as a framework to guide trajectory design. Characterizing and compiling periodic and quasi-periodic solutions that exist in the circular restricted three-body problem may offer faster and more efficient strategies for orbit design, while also delivering innovative mission design parameters for further examination.

  7. An ORCID based synchronization framework for a national CRIS ecosystem.

    PubMed

    Mendes Moreira, João; Cunha, Alcino; Macedo, Nuno

    2015-01-01

    PTCRIS (Portuguese Current Research Information System) is a program aiming at the creation and sustained development of a national integrated information ecosystem, to support research management according to the best international standards and practices. This paper reports on the experience of designing and prototyping a synchronization framework for PTCRIS based on ORCID (Open Researcher and Contributor ID). This framework embraces the "input once, re-use often" principle, and will enable a substantial reduction of the research output management burden by allowing automatic information exchange between the various national systems. The design of the framework followed best practices in rigorous software engineering, namely well-established principles in the research field of consistency management, and relied on formal analysis techniques and tools for its validation and verification. The notion of consistency between the services was formally specified and discussed with the stakeholders before the technical aspects on how to preserve said consistency were explored. Formal specification languages and automated verification tools were used to analyze the specifications and generate usage scenarios, useful for validation with the stakeholder and essential to certificate compliant services.

  8. ALFA: The new ALICE-FAIR software framework

    NASA Astrophysics Data System (ADS)

    Al-Turany, M.; Buncic, P.; Hristov, P.; Kollegger, T.; Kouzinopoulos, C.; Lebedev, A.; Lindenstruth, V.; Manafov, A.; Richter, M.; Rybalchenko, A.; Vande Vyvre, P.; Winckler, N.

    2015-12-01

    The commonalities between the ALICE and FAIR experiments and their computing requirements led to the development of large parts of a common software framework in an experiment independent way. The FairRoot project has already shown the feasibility of such an approach for the FAIR experiments and extending it beyond FAIR to experiments at other facilities[1, 2]. The ALFA framework is a joint development between ALICE Online- Offline (O2) and FairRoot teams. ALFA is designed as a flexible, elastic system, which balances reliability and ease of development with performance using multi-processing and multithreading. A message- based approach has been adopted; such an approach will support the use of the software on different hardware platforms, including heterogeneous systems. Each process in ALFA assumes limited communication and reliance on other processes. Such a design will add horizontal scaling (multiple processes) to vertical scaling provided by multiple threads to meet computing and throughput demands. ALFA does not dictate any application protocols. Potentially, any content-based processor or any source can change the application protocol. The framework supports different serialization standards for data exchange between different hardware and software languages.

  9. IT Requirements Integration in High-Rise Construction Design Projects

    NASA Astrophysics Data System (ADS)

    Levina, Anastasia; Ilin, Igor; Esedulaev, Rustam

    2018-03-01

    The paper discusses the growing role of IT support for the operation of modern high-rise buildings, due to the complexity of managing engineering systems of buildings and the requirements of consumers for the IT infrastructure. The existing regulatory framework for the development of design documentation for construction, including high-rise buildings, is analyzed, and the lack of coherence in the development of this documentation with the requirements for the creation of an automated management system and the corresponding IT infrastructure is stated. The lack of integration between these areas is the cause of delays and inefficiencies both at the design stage and at the stage of putting the building into operation. The paper proposes an approach to coordinate the requirements of the IT infrastructure of high-rise buildings and design documentation for construction. The solution to this problem is possible within the framework of the enterprise architecture concept by coordinating the requirements of the IT and technological layers at the design stage of the construction.

  10. Unified Simulation and Analysis Framework for Deep Space Navigation Design

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan; Chuang, Jason; Olsen, Carrie

    2013-01-01

    As the technology that enables advanced deep space autonomous navigation continues to develop and the requirements for such capability continues to grow, there is a clear need for a modular expandable simulation framework. This tool's purpose is to address multiple measurement and information sources in order to capture system capability. This is needed to analyze the capability of competing navigation systems as well as to develop system requirements, in order to determine its effect on the sizing of the integrated vehicle. The development for such a framework is built upon Model-Based Systems Engineering techniques to capture the architecture of the navigation system and possible state measurements and observations to feed into the simulation implementation structure. These models also allow a common environment for the capture of an increasingly complex operational architecture, involving multiple spacecraft, ground stations, and communication networks. In order to address these architectural developments, a framework of agent-based modules is implemented to capture the independent operations of individual spacecraft as well as the network interactions amongst spacecraft. This paper describes the development of this framework, and the modeling processes used to capture a deep space navigation system. Additionally, a sample implementation describing a concept of network-based navigation utilizing digitally transmitted data packets is described in detail. This developed package shows the capability of the modeling framework, including its modularity, analysis capabilities, and its unification back to the overall system requirements and definition.

  11. A Systems Approach to Designing Effective Clinical Trials Using Simulations

    PubMed Central

    Fusaro, Vincent A.; Patil, Prasad; Chi, Chih-Lin; Contant, Charles F.; Tonellato, Peter J.

    2013-01-01

    Background Pharmacogenetics in warfarin clinical trials have failed to show a significant benefit compared to standard clinical therapy. This study demonstrates a computational framework to systematically evaluate pre-clinical trial design of target population, pharmacogenetic algorithms, and dosing protocols to optimize primary outcomes. Methods and Results We programmatically created an end-to-end framework that systematically evaluates warfarin clinical trial designs. The framework includes options to create a patient population, multiple dosing strategies including genetic-based and non-genetic clinical-based, multiple dose adjustment protocols, pharmacokinetic/pharmacodynamics (PK/PD) modeling and international normalization ratio (INR) prediction, as well as various types of outcome measures. We validated the framework by conducting 1,000 simulations of the CoumaGen clinical trial primary endpoints. The simulation predicted a mean time in therapeutic range (TTR) of 70.6% and 72.2% (P = 0.47) in the standard and pharmacogenetic arms, respectively. Then, we evaluated another dosing protocol under the same original conditions and found a significant difference in TTR between the pharmacogenetic and standard arm (78.8% vs. 73.8%; P = 0.0065), respectively. Conclusions We demonstrate that this simulation framework is useful in the pre-clinical assessment phase to study and evaluate design options and provide evidence to optimize the clinical trial for patient efficacy and reduced risk. PMID:23261867

  12. Organic Rankine Cycle for Residual Heat to Power Conversion in Natural Gas Compressor Station. Part I: Modelling and Optimisation Framework

    NASA Astrophysics Data System (ADS)

    Chaczykowski, Maciej

    2016-06-01

    Basic organic Rankine cycle (ORC), and two variants of regenerative ORC have been considered for the recovery of exhaust heat from natural gas compressor station. The modelling framework for ORC systems has been presented and the optimisation of the systems was carried out with turbine power output as the variable to be maximized. The determination of ORC system design parameters was accomplished by means of the genetic algorithm. The study was aimed at estimating the thermodynamic potential of different ORC configurations with several working fluids employed. The first part of this paper describes the ORC equipment models which are employed to build a NLP formulation to tackle design problems representative for waste energy recovery on gas turbines driving natural gas pipeline compressors.

  13. A general U-block model-based design procedure for nonlinear polynomial control systems

    NASA Astrophysics Data System (ADS)

    Zhu, Q. M.; Zhao, D. Y.; Zhang, Jianhua

    2016-10-01

    The proposition of U-model concept (in terms of 'providing concise and applicable solutions for complex problems') and a corresponding basic U-control design algorithm was originated in the first author's PhD thesis. The term of U-model appeared (not rigorously defined) for the first time in the first author's other journal paper, which established a framework for using linear polynomial control system design approaches to design nonlinear polynomial control systems (in brief, linear polynomial approaches → nonlinear polynomial plants). This paper represents the next milestone work - using linear state-space approaches to design nonlinear polynomial control systems (in brief, linear state-space approaches → nonlinear polynomial plants). The overall aim of the study is to establish a framework, defined as the U-block model, which provides a generic prototype for using linear state-space-based approaches to design the control systems with smooth nonlinear plants/processes described by polynomial models. For analysing the feasibility and effectiveness, sliding mode control design approach is selected as an exemplary case study. Numerical simulation studies provide a user-friendly step-by-step procedure for the readers/users with interest in their ad hoc applications. In formality, this is the first paper to present the U-model-oriented control system design in a formal way and to study the associated properties and theorems. The previous publications, in the main, have been algorithm-based studies and simulation demonstrations. In some sense, this paper can be treated as a landmark for the U-model-based research from intuitive/heuristic stage to rigour/formal/comprehensive studies.

  14. Ontological Problem-Solving Framework for Assigning Sensor Systems and Algorithms to High-Level Missions

    PubMed Central

    Qualls, Joseph; Russomanno, David J.

    2011-01-01

    The lack of knowledge models to represent sensor systems, algorithms, and missions makes opportunistically discovering a synthesis of systems and algorithms that can satisfy high-level mission specifications impractical. A novel ontological problem-solving framework has been designed that leverages knowledge models describing sensors, algorithms, and high-level missions to facilitate automated inference of assigning systems to subtasks that may satisfy a given mission specification. To demonstrate the efficacy of the ontological problem-solving architecture, a family of persistence surveillance sensor systems and algorithms has been instantiated in a prototype environment to demonstrate the assignment of systems to subtasks of high-level missions. PMID:22164081

  15. Ultra-Structure database design methodology for managing systems biology data and analyses

    PubMed Central

    Maier, Christopher W; Long, Jeffrey G; Hemminger, Bradley M; Giddings, Morgan C

    2009-01-01

    Background Modern, high-throughput biological experiments generate copious, heterogeneous, interconnected data sets. Research is dynamic, with frequently changing protocols, techniques, instruments, and file formats. Because of these factors, systems designed to manage and integrate modern biological data sets often end up as large, unwieldy databases that become difficult to maintain or evolve. The novel rule-based approach of the Ultra-Structure design methodology presents a potential solution to this problem. By representing both data and processes as formal rules within a database, an Ultra-Structure system constitutes a flexible framework that enables users to explicitly store domain knowledge in both a machine- and human-readable form. End users themselves can change the system's capabilities without programmer intervention, simply by altering database contents; no computer code or schemas need be modified. This provides flexibility in adapting to change, and allows integration of disparate, heterogenous data sets within a small core set of database tables, facilitating joint analysis and visualization without becoming unwieldy. Here, we examine the application of Ultra-Structure to our ongoing research program for the integration of large proteomic and genomic data sets (proteogenomic mapping). Results We transitioned our proteogenomic mapping information system from a traditional entity-relationship design to one based on Ultra-Structure. Our system integrates tandem mass spectrum data, genomic annotation sets, and spectrum/peptide mappings, all within a small, general framework implemented within a standard relational database system. General software procedures driven by user-modifiable rules can perform tasks such as logical deduction and location-based computations. The system is not tied specifically to proteogenomic research, but is rather designed to accommodate virtually any kind of biological research. Conclusion We find Ultra-Structure offers substantial benefits for biological information systems, the largest being the integration of diverse information sources into a common framework. This facilitates systems biology research by integrating data from disparate high-throughput techniques. It also enables us to readily incorporate new data types, sources, and domain knowledge with no change to the database structure or associated computer code. Ultra-Structure may be a significant step towards solving the hard problem of data management and integration in the systems biology era. PMID:19691849

  16. Along the way to developing a theory of the program: a re-examination of the conceptual framework as an organizing strategy.

    PubMed

    Helitzer, Deborah L; Sussman, Andrew L; Hoffman, Richard M; Getrich, Christina M; Warner, Teddy D; Rhyne, Robert L

    2014-08-01

    Conceptual frameworks (CF) have historically been used to develop program theory. We re-examine the literature about the role of CF in this context, specifically how they can be used to create descriptive and prescriptive theories, as building blocks for a program theory. Using a case example of colorectal cancer screening intervention development, we describe the process of developing our initial CF, the methods used to explore the constructs in the framework and revise the framework for intervention development. We present seven steps that guided the development of our CF: (1) assemble the "right" research team, (2) incorporate existing literature into the emerging CF, (3) construct the conceptual framework, (4) diagram the framework, (5) operationalize the framework: develop the research design and measures, (6) conduct the research, and (7) revise the framework. A revised conceptual framework depicted more complicated inter-relationships of the different predisposing, enabling, reinforcing, and system-based factors. The updated framework led us to generate program theory and serves as the basis for designing future intervention studies and outcome evaluations. A CF can build a foundation for program theory. We provide a set of concrete steps and lessons learned to assist practitioners in developing a CF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Analysis of Complex Valve and Feed Systems

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter; Dash, Sanford

    2007-01-01

    A numerical framework for analysis of complex valve systems supports testing of propulsive systems by simulating key valve and control system components in the test loop. In particular, it is designed to enhance the analysis capability in terms of identifying system transients and quantifying the valve response to these transients. This system has analysis capability for simulating valve motion in complex systems operating in diverse flow regimes ranging from compressible gases to cryogenic liquids. A key feature is the hybrid, unstructured framework with sub-models for grid movement and phase change including cryogenic cavitations. The multi-element unstructured framework offers improved predictions of valve performance characteristics under steady conditions for structurally complex valves such as pressure regulator valve. Unsteady simulations of valve motion using this computational approach have been carried out for various valves in operation at Stennis Space Center such as the split-body valve and the 10-in. (approx.25.4-cm) LOX (liquid oxygen) valve and the 4-in. (approx.10 cm) Y-pattern valve (liquid nitrogen). Such simulations make use of variable grid topologies, thereby permitting solution accuracy and resolving important flow physics in the seat region of the moving valve. An advantage to this software includes possible reduction in testing costs incurred due to disruptions relating to unexpected flow transients or functioning of valve/flow control systems. Prediction of the flow anomalies leading to system vibrations, flow resonance, and valve stall can help in valve scheduling and significantly reduce the need for activation tests. This framework has been evaluated for its ability to predict performance metrics like flow coefficient for cavitating venturis and valve coefficient curves, and could be a valuable tool in predicting and understanding anomalous behavior of system components at rocket propulsion testing and design sites.

  18. Making a Case for a Blended Approach: The Need for The Design-Based Case Study

    ERIC Educational Resources Information Center

    Deaton, Cynthia C. M.; Malloy, Jacquelynn A.

    2017-01-01

    Design-based case studies address research questions that involve instructional innovations within a bounded system. This blend of case study and design-based research provides a systematic approach to examining instructional innovations that are bounded by perspective, context, and time. Design-based case studies provide a framework for engaging…

  19. A Framework to Guide the Assessment of Human-Machine Systems.

    PubMed

    Stowers, Kimberly; Oglesby, James; Sonesh, Shirley; Leyva, Kevin; Iwig, Chelsea; Salas, Eduardo

    2017-03-01

    We have developed a framework for guiding measurement in human-machine systems. The assessment of safety and performance in human-machine systems often relies on direct measurement, such as tracking reaction time and accidents. However, safety and performance emerge from the combination of several variables. The assessment of precursors to safety and performance are thus an important part of predicting and improving outcomes in human-machine systems. As part of an in-depth literature analysis involving peer-reviewed, empirical articles, we located and classified variables important to human-machine systems, giving a snapshot of the state of science on human-machine system safety and performance. Using this information, we created a framework of safety and performance in human-machine systems. This framework details several inputs and processes that collectively influence safety and performance. Inputs are divided according to human, machine, and environmental inputs. Processes are divided into attitudes, behaviors, and cognitive variables. Each class of inputs influences the processes and, subsequently, outcomes that emerge in human-machine systems. This framework offers a useful starting point for understanding the current state of the science and measuring many of the complex variables relating to safety and performance in human-machine systems. This framework can be applied to the design, development, and implementation of automated machines in spaceflight, military, and health care settings. We present a hypothetical example in our write-up of how it can be used to aid in project success.

  20. iSAW: Integrating Structure, Actors, and Water to study socio-hydro-ecological systems

    NASA Astrophysics Data System (ADS)

    Hale, Rebecca L.; Armstrong, Andrea; Baker, Michelle A.; Bedingfield, Sean; Betts, David; Buahin, Caleb; Buchert, Martin; Crowl, Todd; Dupont, R. Ryan; Ehleringer, James R.; Endter-Wada, Joanna; Flint, Courtney; Grant, Jacqualine; Hinners, Sarah; Horsburgh, Jeffery S.; Jackson-Smith, Douglas; Jones, Amber S.; Licon, Carlos; Null, Sarah E.; Odame, Augustina; Pataki, Diane E.; Rosenberg, David; Runburg, Madlyn; Stoker, Philip; Strong, Courtenay

    2015-03-01

    Urbanization, climate, and ecosystem change represent major challenges for managing water resources. Although water systems are complex, a need exists for a generalized representation of these systems to identify important components and linkages to guide scientific inquiry and aid water management. We developed an integrated Structure-Actor-Water framework (iSAW) to facilitate the understanding of and transitions to sustainable water systems. Our goal was to produce an interdisciplinary framework for water resources research that could address management challenges across scales (e.g., plot to region) and domains (e.g., water supply and quality, transitioning, and urban landscapes). The framework was designed to be generalizable across all human-environment systems, yet with sufficient detail and flexibility to be customized to specific cases. iSAW includes three major components: structure (natural, built, and social), actors (individual and organizational), and water (quality and quantity). Key linkages among these components include: (1) ecological/hydrologic processes, (2) ecosystem/geomorphic feedbacks, (3) planning, design, and policy, (4) perceptions, information, and experience, (5) resource access and risk, and (6) operational water use and management. We illustrate the flexibility and utility of the iSAW framework by applying it to two research and management problems: understanding urban water supply and demand in a changing climate and expanding use of green storm water infrastructure in a semi-arid environment. The applications demonstrate that a generalized conceptual model can identify important components and linkages in complex and diverse water systems and facilitate communication about those systems among researchers from diverse disciplines.

  1. ProFUSO: Business process and ontology-based framework to develop ubiquitous computing support systems for chronic patients' management.

    PubMed

    Jimenez-Molina, Angel; Gaete-Villegas, Jorge; Fuentes, Javier

    2018-06-01

    New advances in telemedicine, ubiquitous computing, and artificial intelligence have supported the emergence of more advanced applications and support systems for chronic patients. This trend addresses the important problem of chronic illnesses, highlighted by multiple international organizations as a core issue in future healthcare. Despite the myriad of exciting new developments, each application and system is designed and implemented for specific purposes and lacks the flexibility to support different healthcare concerns. Some of the known problems of such developments are the integration issues between applications and existing healthcare systems, the reusability of technical knowledge in the creation of new and more sophisticated systems and the usage of data gathered from multiple sources in the generation of new knowledge. This paper proposes a framework for the development of chronic disease support systems and applications as an answer to these shortcomings. Through this framework our pursuit is to create a common ground methodology upon which new developments can be created and easily integrated to provide better support to chronic patients, medical staff and other relevant participants. General requirements are inferred for any support system from the primary attention process of chronic patients by the Business Process Management Notation. Numerous technical approaches are proposed to design a general architecture that considers the medical organizational requirements in the treatment of a patient. A framework is presented for any application in support of chronic patients and evaluated by a case study to test the applicability and pertinence of the solution. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. A programming environment for distributed complex computing. An overview of the Framework for Interdisciplinary Design Optimization (FIDO) project. NASA Langley TOPS exhibit H120b

    NASA Technical Reports Server (NTRS)

    Townsend, James C.; Weston, Robert P.; Eidson, Thomas M.

    1993-01-01

    The Framework for Interdisciplinary Design Optimization (FIDO) is a general programming environment for automating the distribution of complex computing tasks over a networked system of heterogeneous computers. For example, instead of manually passing a complex design problem between its diverse specialty disciplines, the FIDO system provides for automatic interactions between the discipline tasks and facilitates their communications. The FIDO system networks all the computers involved into a distributed heterogeneous computing system, so they have access to centralized data and can work on their parts of the total computation simultaneously in parallel whenever possible. Thus, each computational task can be done by the most appropriate computer. Results can be viewed as they are produced and variables changed manually for steering the process. The software is modular in order to ease migration to new problems: different codes can be substituted for each of the current code modules with little or no effect on the others. The potential for commercial use of FIDO rests in the capability it provides for automatically coordinating diverse computations on a networked system of workstations and computers. For example, FIDO could provide the coordination required for the design of vehicles or electronics or for modeling complex systems.

  3. A Framework for Measurement Feedback to Improve Decision-Making in Mental Health

    PubMed Central

    Chorpita, Bruce F.; Reay, William E.; Stelk, Wayne; Garland, Ann F.; Kutash, Krista; Mullican, Charlotte; Ringeisen, Heather

    2009-01-01

    The authors present a multi-level framework for conceptualizing and designing measurement systems to improve decision-making in the treatment and prevention of child and adolescent mental health problems as well as the promotion of well-being. Also included is a description of the recommended drivers of the development and refinement of these measurement systems and the importance of the architecture upon which these measurement systems are built. The authors conclude with a set of recommendations for the next steps for the field. PMID:20041342

  4. Dynamically Reconfigurable Systolic Array Accelorators

    NASA Technical Reports Server (NTRS)

    Dasu, Aravind (Inventor); Barnes, Robert C. (Inventor)

    2014-01-01

    A polymorphic systolic array framework that works in conjunction with an embedded microprocessor on an FPGA, that allows for dynamic and complimentary scaling of acceleration levels of two algorithms active concurrently on the FPGA. Use is made of systolic arrays and hardware-software co-design to obtain an efficient multi-application acceleration system. The flexible and simple framework allows hosting of a broader range of algorithms and extendable to more complex applications in the area of aerospace embedded systems.

  5. A Framework for Enhancing Real-time Social Media Data to Improve Disaster Management Process

    NASA Astrophysics Data System (ADS)

    Attique Shah, Syed; Zafer Şeker, Dursun; Demirel, Hande

    2018-05-01

    Social Media datasets are playing a vital role to provide information that can support decision making in nearly all domains of technology. It is due to the fact that social media is a quick and economical approach for data collection from public through methods like crowdsourcing. It is already proved by existing research that in case of any disaster (natural or man-made) the information extracted from Social Media sites is very critical to Disaster Management Systems for response and reconstruction. This study comprises of two components, the first part proposes a framework that provides updated and filtered real time input data for the disaster management system through social media and the second part consists of a designed web user API for a structured and defined real time data input process. This study contributes to the discipline of design science for the information systems domain. The aim of this study is to propose a framework that can filter and organize data from the unstructured social media sources through recognized methods and to bring this retrieved data to the same level as that of taken through a structured and predefined mechanism of a web API. Both components are designed to a level such that they can potentially collaborate and produce updated information for a disaster management system to carry out accurate and effective.

  6. Ligand combination strategy for the preparation of novel low-dimensional and open-framework metal cluster materials

    NASA Astrophysics Data System (ADS)

    Anokhina, Ekaterina V.

    Low-dimensional and open-framework materials containing transition metals have a wide range of applications in redox catalysis, solid-state batteries, and electronic and magnetic devices. This dissertation reports on research carried out with the goal to develop a strategy for the preparation of low-dimensional and open-framework materials using octahedral metal clusters as building blocks. Our approach takes its roots from crystal engineering principles where the desired framework topologies are achieved through building block design. The key idea of this work is to induce directional bonding preferences in the cluster units using a combination of ligands with a large difference in charge density. This investigation led to the preparation and characterization of a new family of niobium oxychloride cluster compounds with original structure types exhibiting 1ow-dimensional or open-framework character. Most of these materials have framework topologies unprecedented in compounds containing octahedral clusters. Comparative analysis of their structural features indicates that the novel cluster connectivity patterns in these systems are the result of complex interplay between the effects of anisotropic ligand arrangement in the cluster unit and optimization of ligand-counterion electrostatic interactions. The important role played by these factors sets niobium oxychloride systems apart from cluster compounds with one ligand type or statistical ligand distribution where the main structure-determining factor is the total number of ligands. These results provide a blueprint for expanding the ligand combination strategy to other transition metal cluster systems and for the future rational design of cluster-based materials.

  7. [Expert investigation on food safety standard system framework construction in China].

    PubMed

    He, Xiang; Yan, Weixing; Fan, Yongxiang; Zeng, Biao; Peng, Zhen; Sun, Zhenqiu

    2013-09-01

    Through investigating food safety standard framework among food safety experts, to summarize the basic elements and principles of food safety standard system, and provide policy advices for food safety standards framework. A survey was carried out among 415 experts from government, professional institutions and the food industry/enterprises using the National Food Safety Standard System Construction Consultation Questionnaire designed in the name of the Secretariat of National Food Safety Standard Committee. Experts have different advices in each group about the principles of food product standards, food additive product standards, food related product standards, hygienic practice, test methods. According to the results, the best solution not only may reflect experts awareness of the work of food safety standards situation, but also provide advices for setting and revision of food safety standards for the next. Through experts investigation, the framework and guiding principles of food safety standard had been built.

  8. Multiply controlled verbal operants: an analysis and extension to the picture exchange communication system.

    PubMed

    Bondy, Andy; Tincani, Matt; Frost, Lori

    2004-01-01

    This paper presents Skinner's (1957) analysis of verbal behavior as a framework for understanding language acquisition in children with autism. We describe Skinner's analysis of pure and impure verbal operants and illustrate how this analysis may be applied to the design of communication training programs. The picture exchange communication system (PECS) is a training program influenced by Skinner's framework. We describe the training sequence associated with PECS and illustrate how this sequence may establish multiply controlled verbal behavior in children with autism. We conclude with an examination of how Skinner's framework may apply to other communication modalities and training strategies.

  9. Framework programmable platform for the advanced software development workstation. Integration mechanism design document

    NASA Technical Reports Server (NTRS)

    Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Reddy, Uday; Ackley, Keith; Futrell, Mike

    1991-01-01

    The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by this model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated.

  10. CLARA: CLAS12 Reconstruction and Analysis Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyurjyan, Vardan; Matta, Sebastian Mancilla; Oyarzun, Ricardo

    2016-11-01

    In this paper we present SOA based CLAS12 event Reconstruction and Analyses (CLARA) framework. CLARA design focus is on two main traits: real-time data stream processing, and service-oriented architecture (SOA) in a flow based programming (FBP) paradigm. Data driven and data centric architecture of CLARA presents an environment for developing agile, elastic, multilingual data processing applications. The CLARA framework presents solutions capable of processing large volumes of data interactively and substantially faster than batch systems.

  11. The SAM framework: modeling the effects of management factors on human behavior in risk analysis.

    PubMed

    Murphy, D M; Paté-Cornell, M E

    1996-08-01

    Complex engineered systems, such as nuclear reactors and chemical plants, have the potential for catastrophic failure with disastrous consequences. In recent years, human and management factors have been recognized as frequent root causes of major failures in such systems. However, classical probabilistic risk analysis (PRA) techniques do not account for the underlying causes of these errors because they focus on the physical system and do not explicitly address the link between components' performance and organizational factors. This paper describes a general approach for addressing the human and management causes of system failure, called the SAM (System-Action-Management) framework. Beginning with a quantitative risk model of the physical system, SAM expands the scope of analysis to incorporate first the decisions and actions of individuals that affect the physical system. SAM then links management factors (incentives, training, policies and procedures, selection criteria, etc.) to those decisions and actions. The focus of this paper is on four quantitative models of action that describe this last relationship. These models address the formation of intentions for action and their execution as a function of the organizational environment. Intention formation is described by three alternative models: a rational model, a bounded rationality model, and a rule-based model. The execution of intentions is then modeled separately. These four models are designed to assess the probabilities of individual actions from the perspective of management, thus reflecting the uncertainties inherent to human behavior. The SAM framework is illustrated for a hypothetical case of hazardous materials transportation. This framework can be used as a tool to increase the safety and reliability of complex technical systems by modifying the organization, rather than, or in addition to, re-designing the physical system.

  12. Co-governing decentralised water systems: an analytical framework.

    PubMed

    Yu, C; Brown, R; Morison, P

    2012-01-01

    Current discourses in urban water management emphasise a diversity of water sources and scales of infrastructure for resilience and adaptability. During the last 2 decades, in particular, various small-scale systems emerged and developed so that the debate has largely moved from centralised versus decentralised water systems toward governing integrated and networked systems of provision and consumption where small-scale technologies are embedded in large-scale centralised infrastructures. However, while centralised systems have established boundaries of ownership and management, decentralised water systems (such as stormwater harvesting technologies for the street, allotment/house scales) do not, therefore the viability for adoption and/or continued use of decentralised water systems is challenged. This paper brings together insights from the literature on public sector governance, co-production and social practices model to develop an analytical framework for co-governing such systems. The framework provides urban water practitioners with guidance when designing co-governance arrangements for decentralised water systems so that these systems continue to exist, and become widely adopted, within the established urban water regime.

  13. Tailoring Healthy Workplace Interventions to Local Healthcare Settings: A Complexity Theory-Informed Workplace of Well-Being Framework

    PubMed Central

    Brand, Sarah L.; Fleming, Lora E.; Wyatt, Katrina M.

    2015-01-01

    Many healthy workplace interventions have been developed for healthcare settings to address the consistently low scores of healthcare professionals on assessments of mental and physical well-being. Complex healthcare settings present challenges for the scale-up and spread of successful interventions from one setting to another. Despite general agreement regarding the importance of the local setting in affecting intervention success across different settings, there is no consensus on what it is about a local setting that needs to be taken into account to design healthy workplace interventions appropriate for different local settings. Complexity theory principles were used to understand a workplace as a complex adaptive system and to create a framework of eight domains (system characteristics) that affect the emergence of system-level behaviour. This Workplace of Well-being (WoW) framework is responsive and adaptive to local settings and allows a shared understanding of the enablers and barriers to behaviour change by capturing local information for each of the eight domains. We use the results of applying the WoW framework to one workplace, a UK National Health Service ward, to describe the utility of this approach in informing design of setting-appropriate healthy workplace interventions that create workplaces conducive to healthy behaviour change. PMID:26380358

  14. Tailoring Healthy Workplace Interventions to Local Healthcare Settings: A Complexity Theory-Informed Workplace of Well-Being Framework.

    PubMed

    Brand, Sarah L; Fleming, Lora E; Wyatt, Katrina M

    2015-01-01

    Many healthy workplace interventions have been developed for healthcare settings to address the consistently low scores of healthcare professionals on assessments of mental and physical well-being. Complex healthcare settings present challenges for the scale-up and spread of successful interventions from one setting to another. Despite general agreement regarding the importance of the local setting in affecting intervention success across different settings, there is no consensus on what it is about a local setting that needs to be taken into account to design healthy workplace interventions appropriate for different local settings. Complexity theory principles were used to understand a workplace as a complex adaptive system and to create a framework of eight domains (system characteristics) that affect the emergence of system-level behaviour. This Workplace of Well-being (WoW) framework is responsive and adaptive to local settings and allows a shared understanding of the enablers and barriers to behaviour change by capturing local information for each of the eight domains. We use the results of applying the WoW framework to one workplace, a UK National Health Service ward, to describe the utility of this approach in informing design of setting-appropriate healthy workplace interventions that create workplaces conducive to healthy behaviour change.

  15. A critique of the Uganda district league table using a normative health system performance assessment framework.

    PubMed

    KirungaTashobya, Christine; Ssengooba, Freddie; Nabyonga-Orem, Juliet; Bataringaya, Juliet; Macq, Jean; Marchal, Bruno; Musila, Timothy; Criel, Bart

    2018-05-10

    In 2003 the Uganda Ministry of Health (MoH) introduced the District League Table (DLT) to track district performance. This review of the DLT is intended to add to the evidence base on Health Systems Performance Assessment (HSPA) globally, with emphasis on Low and Middle Income Countries (LMICs), and provide recommendations for adjustments to the current Ugandan reality. A normative HSPA framework was used to inform the development of a Key Informant Interview (KII) tool. Thirty Key Informants were interviewed, purposively selected from the Ugandan health system on the basis of having developed or used the DLT. KII data and information from published and grey literature on the Uganda health system was analyzed using deductive analysis. Stakeholder involvement in the development of the DLT was limited, including MoH officials and development partners, and a few district technical managers. Uganda policy documents articulate a conceptually broad health system whereas the DLT focuses on a healthcare system. The complexity and dynamism of the Uganda health system was insufficiently acknowledged by the HSPA framework. Though DLT objectives and indicators were articulated, there was no conceptual reference model and lack of clarity on the constitutive dimensions. The DLT mechanisms for change were not explicit. The DLT compared markedly different districts and did not identify factors behind observed performance. Uganda lacks a designated institutional unit for the analysis and presentation of HSPA data, and there are challenges in data quality and range. The critique of the DLT using a normative model supported the development of recommendation for Uganda district HSPA and provides lessons for other LMICs. A similar approach can be used by researchers and policy makers elsewhere for the review and development of other frameworks. Adjustments in Uganda district HSPA should consider: wider stakeholder involvement with more district managers including political, administrative and technical; better anchoring within the national health system framework; integration of the notion of complexity in the design of the framework; and emphasis on facilitating district decision-making and learning. There is need to improve data quality and range and additional approaches for data analysis and presentation.

  16. Natural Language Query System Design for Interactive Information Storage and Retrieval Systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Liu, I-Hsiung

    1985-01-01

    The currently developed multi-level language interfaces of information systems are generally designed for experienced users. These interfaces commonly ignore the nature and needs of the largest user group, i.e., casual users. This research identifies the importance of natural language query system research within information storage and retrieval system development; addresses the topics of developing such a query system; and finally, proposes a framework for the development of natural language query systems in order to facilitate the communication between casual users and information storage and retrieval systems.

  17. Embedded systems engineering for products and services design.

    PubMed

    Ahram, Tareq Z; Karwowski, Waldemar; Soares, Marcelo M

    2012-01-01

    Systems engineering (SE) professionals strive to develop new techniques to enhance the value of contributions to multidisciplinary smart product design teams. Products and services designers challenge themselves to search beyond the traditional design concept of addressing the physical, social, and cognitive factors. This paper covers the application of embedded user-centered systems engineering design practices into work processes based on the ISO 13407 framework [20] to support smart systems and services design and development. As practitioners collaborate to investigate alternative smart product designs, they concentrate on creating valuable products which will enhance positive interaction. This paper capitalizes on the need to follow a user-centered SE approach to smart products design [4, 22]. Products and systems intelligence should embrace a positive approach to user-centered design while improving our understanding of usable value-adding, experience and extending our knowledge of what inspires others to design enjoyable services and products.

  18. Combined model of intrinsic and extrinsic variability for computational network design with application to synthetic biology.

    PubMed

    Toni, Tina; Tidor, Bruce

    2013-01-01

    Biological systems are inherently variable, with their dynamics influenced by intrinsic and extrinsic sources. These systems are often only partially characterized, with large uncertainties about specific sources of extrinsic variability and biochemical properties. Moreover, it is not yet well understood how different sources of variability combine and affect biological systems in concert. To successfully design biomedical therapies or synthetic circuits with robust performance, it is crucial to account for uncertainty and effects of variability. Here we introduce an efficient modeling and simulation framework to study systems that are simultaneously subject to multiple sources of variability, and apply it to make design decisions on small genetic networks that play a role of basic design elements of synthetic circuits. Specifically, the framework was used to explore the effect of transcriptional and post-transcriptional autoregulation on fluctuations in protein expression in simple genetic networks. We found that autoregulation could either suppress or increase the output variability, depending on specific noise sources and network parameters. We showed that transcriptional autoregulation was more successful than post-transcriptional in suppressing variability across a wide range of intrinsic and extrinsic magnitudes and sources. We derived the following design principles to guide the design of circuits that best suppress variability: (i) high protein cooperativity and low miRNA cooperativity, (ii) imperfect complementarity between miRNA and mRNA was preferred to perfect complementarity, and (iii) correlated expression of mRNA and miRNA--for example, on the same transcript--was best for suppression of protein variability. Results further showed that correlations in kinetic parameters between cells affected the ability to suppress variability, and that variability in transient states did not necessarily follow the same principles as variability in the steady state. Our model and findings provide a general framework to guide design principles in synthetic biology.

  19. Combined Model of Intrinsic and Extrinsic Variability for Computational Network Design with Application to Synthetic Biology

    PubMed Central

    Toni, Tina; Tidor, Bruce

    2013-01-01

    Biological systems are inherently variable, with their dynamics influenced by intrinsic and extrinsic sources. These systems are often only partially characterized, with large uncertainties about specific sources of extrinsic variability and biochemical properties. Moreover, it is not yet well understood how different sources of variability combine and affect biological systems in concert. To successfully design biomedical therapies or synthetic circuits with robust performance, it is crucial to account for uncertainty and effects of variability. Here we introduce an efficient modeling and simulation framework to study systems that are simultaneously subject to multiple sources of variability, and apply it to make design decisions on small genetic networks that play a role of basic design elements of synthetic circuits. Specifically, the framework was used to explore the effect of transcriptional and post-transcriptional autoregulation on fluctuations in protein expression in simple genetic networks. We found that autoregulation could either suppress or increase the output variability, depending on specific noise sources and network parameters. We showed that transcriptional autoregulation was more successful than post-transcriptional in suppressing variability across a wide range of intrinsic and extrinsic magnitudes and sources. We derived the following design principles to guide the design of circuits that best suppress variability: (i) high protein cooperativity and low miRNA cooperativity, (ii) imperfect complementarity between miRNA and mRNA was preferred to perfect complementarity, and (iii) correlated expression of mRNA and miRNA – for example, on the same transcript – was best for suppression of protein variability. Results further showed that correlations in kinetic parameters between cells affected the ability to suppress variability, and that variability in transient states did not necessarily follow the same principles as variability in the steady state. Our model and findings provide a general framework to guide design principles in synthetic biology. PMID:23555205

  20. Composable Framework Support for Software-FMEA Through Model Execution

    NASA Astrophysics Data System (ADS)

    Kocsis, Imre; Patricia, Andras; Brancati, Francesco; Rossi, Francesco

    2016-08-01

    Performing Failure Modes and Effect Analysis (FMEA) during software architecture design is becoming a basic requirement in an increasing number of domains; however, due to the lack of standardized early design phase model execution, classic SW-FMEA approaches carry significant risks and are human effort-intensive even in processes that use Model-Driven Engineering.Recently, modelling languages with standardized executable semantics have emerged. Building on earlier results, this paper describes framework support for generating executable error propagation models from such models during software architecture design. The approach carries the promise of increased precision, decreased risk and more automated execution for SW-FMEA during dependability- critical system development.

  1. Framework for the Parametric System Modeling of Space Exploration Architectures

    NASA Technical Reports Server (NTRS)

    Komar, David R.; Hoffman, Jim; Olds, Aaron D.; Seal, Mike D., II

    2008-01-01

    This paper presents a methodology for performing architecture definition and assessment prior to, or during, program formulation that utilizes a centralized, integrated architecture modeling framework operated by a small, core team of general space architects. This framework, known as the Exploration Architecture Model for IN-space and Earth-to-orbit (EXAMINE), enables: 1) a significantly larger fraction of an architecture trade space to be assessed in a given study timeframe; and 2) the complex element-to-element and element-to-system relationships to be quantitatively explored earlier in the design process. Discussion of the methodology advantages and disadvantages with respect to the distributed study team approach typically used within NASA to perform architecture studies is presented along with an overview of EXAMINE s functional components and tools. An example Mars transportation system architecture model is used to demonstrate EXAMINE s capabilities in this paper. However, the framework is generally applicable for exploration architecture modeling with destinations to any celestial body in the solar system.

  2. Re-Engineering Values into the Youth Education System: A Needs Analysis Study in Brunei Darussalam

    ERIC Educational Resources Information Center

    Zakaria, Gamal Abdul Nasir; Tajudeen, Ahmad Labeeb; Nawi, Aliff; Mahalle, Salwa

    2014-01-01

    This study aimed to present a practical framework for designing a values teaching program in the youth education system. The choice of content, the nature of the students with respect to learning and their perception about the selected content for teaching values were studied. The study follows a Needs analysis design which drew upon document…

  3. A modular approach to large-scale design optimization of aerospace systems

    NASA Astrophysics Data System (ADS)

    Hwang, John T.

    Gradient-based optimization and the adjoint method form a synergistic combination that enables the efficient solution of large-scale optimization problems. Though the gradient-based approach struggles with non-smooth or multi-modal problems, the capability to efficiently optimize up to tens of thousands of design variables provides a valuable design tool for exploring complex tradeoffs and finding unintuitive designs. However, the widespread adoption of gradient-based optimization is limited by the implementation challenges for computing derivatives efficiently and accurately, particularly in multidisciplinary and shape design problems. This thesis addresses these difficulties in two ways. First, to deal with the heterogeneity and integration challenges of multidisciplinary problems, this thesis presents a computational modeling framework that solves multidisciplinary systems and computes their derivatives in a semi-automated fashion. This framework is built upon a new mathematical formulation developed in this thesis that expresses any computational model as a system of algebraic equations and unifies all methods for computing derivatives using a single equation. The framework is applied to two engineering problems: the optimization of a nanosatellite with 7 disciplines and over 25,000 design variables; and simultaneous allocation and mission optimization for commercial aircraft involving 330 design variables, 12 of which are integer variables handled using the branch-and-bound method. In both cases, the framework makes large-scale optimization possible by reducing the implementation effort and code complexity. The second half of this thesis presents a differentiable parametrization of aircraft geometries and structures for high-fidelity shape optimization. Existing geometry parametrizations are not differentiable, or they are limited in the types of shape changes they allow. This is addressed by a novel parametrization that smoothly interpolates aircraft components, providing differentiability. An unstructured quadrilateral mesh generation algorithm is also developed to automate the creation of detailed meshes for aircraft structures, and a mesh convergence study is performed to verify that the quality of the mesh is maintained as it is refined. As a demonstration, high-fidelity aerostructural analysis is performed for two unconventional configurations with detailed structures included, and aerodynamic shape optimization is applied to the truss-braced wing, which finds and eliminates a shock in the region bounded by the struts and the wing.

  4. Distributed attitude synchronization of formation flying via consensus-based virtual structure

    NASA Astrophysics Data System (ADS)

    Cong, Bing-Long; Liu, Xiang-Dong; Chen, Zhen

    2011-06-01

    This paper presents a general framework for synchronized multiple spacecraft rotations via consensus-based virtual structure. In this framework, attitude control systems for formation spacecrafts and virtual structure are designed separately. Both parametric uncertainty and external disturbance are taken into account. A time-varying sliding mode control (TVSMC) algorithm is designed to improve the robustness of the actual attitude control system. As for the virtual attitude control system, a behavioral consensus algorithm is presented to accomplish the attitude maneuver of the entire formation and guarantee a consistent attitude among the local virtual structure counterparts during the attitude maneuver. A multiple virtual sub-structures (MVSSs) system is introduced to enhance current virtual structure scheme when large amounts of spacecrafts are involved in the formation. The attitude of spacecraft is represented by modified Rodrigues parameter (MRP) for its non-redundancy. Finally, a numerical simulation with three synchronization situations is employed to illustrate the effectiveness of the proposed strategy.

  5. Reprint of "Safe places for pedestrians: using cognitive work analysis to consider the relationships between the engineering and urban design of footpaths".

    PubMed

    Stevens, Nicholas; Salmon, Paul

    2015-01-01

    Footpaths provide an integral component of our urban environments and have the potential to act as safe places for people and the focus for community life. Despite this, the approach to designing footpaths that are safe while providing this sense of place often occurs in silos. There is often very little consideration given to how designing for sense of place impacts safety and vice versa. The aim of this study was to use a systems analysis and design framework to develop a design template for an 'ideal' footpath system that embodies both safety and sense of place. This was achieved through using the first phase of the Cognitive Work Analysis framework, Work Domain Analysis, to specify a model of footpaths as safe places for pedestrians. This model was subsequently used to assess two existing footpath environments to determine the extent to which they meet the design requirements specified. The findings show instances where the existing footpaths both meet and fail to meet the design requirements specified. Through utilising a systems approach for footpaths, this paper has provided a novel design template that can inform new footpath design efforts or be used to evaluate the extent to which existing footpaths achieve their safety and sense of place requirements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Safe places for pedestrians: using cognitive work analysis to consider the relationships between the engineering and urban design of footpaths.

    PubMed

    Stevens, Nicholas; Salmon, Paul

    2014-11-01

    Footpaths provide an integral component of our urban environments and have the potential to act as safe places for people and the focus for community life. Despite this, the approach to designing footpaths that are safe while providing this sense of place often occurs in silos. There is often very little consideration given to how designing for sense of place impacts safety and vice versa. The aim of this study was to use a systems analysis and design framework to develop a design template for an 'ideal' footpath system that embodies both safety and sense of place. This was achieved through using the first phase of the Cognitive Work Analysis framework, Work Domain Analysis, to specify a model of footpaths as safe places for pedestrians. This model was subsequently used to assess two existing footpath environments to determine the extent to which they meet the design requirements specified. The findings show instances where the existing footpaths both meet and fail to meet the design requirements specified. Through utilising a systems approach for footpaths, this paper has provided a novel design template that can inform new footpath design efforts or be used to evaluate the extent to which existing footpaths achieve their safety and sense of place requirements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Model Diagnostics for the Department of Energy's Accelerated Climate Modeling for Energy (ACME) Project

    NASA Astrophysics Data System (ADS)

    Smith, B.

    2015-12-01

    In 2014, eight Department of Energy (DOE) national laboratories, four academic institutions, one company, and the National Centre for Atmospheric Research combined forces in a project called Accelerated Climate Modeling for Energy (ACME) with the goal to speed Earth system model development for climate and energy. Over the planned 10-year span, the project will conduct simulations and modeling on DOE's most powerful high-performance computing systems at Oak Ridge, Argonne, and Lawrence Berkeley Leadership Compute Facilities. A key component of the ACME project is the development of an interactive test bed for the advanced Earth system model. Its execution infrastructure will accelerate model development and testing cycles. The ACME Workflow Group is leading the efforts to automate labor-intensive tasks, provide intelligent support for complex tasks and reduce duplication of effort through collaboration support. As part of this new workflow environment, we have created a diagnostic, metric, and intercomparison Python framework, called UVCMetrics, to aid in the testing-to-production execution of the ACME model. The framework exploits similarities among different diagnostics to compactly support diagnosis of new models. It presently focuses on atmosphere and land but is designed to support ocean and sea ice model components as well. This framework is built on top of the existing open-source software framework known as the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT). Because of its flexible framework design, scientists and modelers now can generate thousands of possible diagnostic outputs. These diagnostics can compare model runs, compare model vs. observation, or simply verify a model is physically realistic. Additional diagnostics are easily integrated into the framework, and our users have already added several. Diagnostics can be generated, viewed, and manipulated from the UV-CDAT graphical user interface, Python command line scripts and programs, and web browsers. The framework is designed to be scalable to large datasets, yet easy to use and familiar to scientists using previous tools. Integration in the ACME overall user interface facilitates data publication, further analysis, and quick feedback to model developers and scientists making component or coupled model runs.

  8. The MMI Semantic Framework: Rosetta Stones for Earth Sciences

    NASA Astrophysics Data System (ADS)

    Rueda, C.; Bermudez, L. E.; Graybeal, J.; Alexander, P.

    2009-12-01

    Semantic interoperability—the exchange of meaning among computer systems—is needed to successfully share data in Ocean Science and across all Earth sciences. The best approach toward semantic interoperability requires a designed framework, and operationally tested tools and infrastructure within that framework. Currently available technologies make a scientific semantic framework feasible, but its development requires sustainable architectural vision and development processes. This presentation outlines the MMI Semantic Framework, including recent progress on it and its client applications. The MMI Semantic Framework consists of tools, infrastructure, and operational and community procedures and best practices, to meet short-term and long-term semantic interoperability goals. The design and prioritization of the semantic framework capabilities are based on real-world scenarios in Earth observation systems. We describe some key uses cases, as well as the associated requirements for building the overall infrastructure, which is realized through the MMI Ontology Registry and Repository. This system includes support for community creation and sharing of semantic content, ontology registration, version management, and seamless integration of user-friendly tools and application programming interfaces. The presentation describes the architectural components for semantic mediation, registry and repository for vocabularies, ontology, and term mappings. We show how the technologies and approaches in the framework can address community needs for managing and exchanging semantic information. We will demonstrate how different types of users and client applications exploit the tools and services for data aggregation, visualization, archiving, and integration. Specific examples from OOSTethys (http://www.oostethys.org) and the Ocean Observatories Initiative Cyberinfrastructure (http://www.oceanobservatories.org) will be cited. Finally, we show how semantic augmentation of web services standards could be performed using framework tools.

  9. A Framework for Evidence-Based Licensure of Adaptive Autonomous Systems

    DTIC Science & Technology

    2016-03-01

    insights gleaned to DoD. The autonomy community has identified significant challenges associated with test, evaluation verification and validation of...licensure as a test, evaluation, verification , and validation (TEVV) framework that can address these challenges. IDA found that traditional...language requirements to testable (preferably machine testable) specifications • Design of architectures that treat development and verification of

  10. The role of institutional design and organizational practice for health financing performance and universal coverage.

    PubMed

    Mathauer, Inke; Carrin, Guy

    2011-03-01

    Many low- and middle income countries heavily rely on out-of-pocket health care expenditure. The challenge for these countries is how to modify their health financing system in order to achieve universal coverage. This paper proposes an analytical framework for undertaking a systematic review of a health financing system and its performance on the basis of which to identify adequate changes to enhance the move towards universal coverage. The distinctive characteristic of this framework is the focus on institutional design and organizational practice of health financing, on which health financing performance is contingent. Institutional design is understood as formal rules, namely legal and regulatory provisions relating to health financing; organizational practice refers to the way organizational actors implement and comply with these rules. Health financing performance is operationalized into nine generic health financing performance indicators. Inadequate performance can be caused by six types of bottlenecks in institutional design and organizational practice. Accordingly, six types of improvement measures are proposed to address these bottlenecks. The institutional design and organizational practice of a health financing system can be actively developed, modified or strengthened. By understanding the incentive environment within a health financing system, the potential impacts of the proposed changes can be anticipated. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. The impact of humanitarian emergencies on the prevalence of violence against children: an evidence-based ecological framework.

    PubMed

    Rubenstein, Beth L; Stark, Lindsay

    2017-03-01

    Little is known about the patterns and mechanisms by which humanitarian emergencies may exacerbate violence against children. In this article, we propose using the ecological framework to examine the impact of humanitarian emergencies on interpersonal violence against children. We consider the literature that supports this framework and suggest future directions for research to fill identified gaps in the framework. The relationship between humanitarian emergencies and violence against children depends on risk factors at multiple levels, including a breakdown of child protection systems, displacement, threats to livelihoods, changing gender roles, changing household composition, overcrowded living conditions, early marriage, exposure to conflict or other emergency events, and alcohol abuse. The empirical evidence supporting the proposed emergency/violence framework is limited by cross-sectional study designs and a propensity to predominantly examine individual-level determinants of violence, especially exposure to conflict or emergency events. Thus, there is a pressing need to contextualize the relationship between conflict or emergency events and violence against children within the wider ecological and household dynamics that occur during humanitarian emergencies. Ultimately, this will require longitudinal observations of children, families and communities from before the emergency through recovery and improvements to ongoing global surveillance systems. More complete data will enable the humanitarian community to design effective, appropriate and well-targeted interventions.

  12. Application of system thinking concepts in health system strengthening in low-income settings: a proposed conceptual framework for the evaluation of a complex health system intervention: the case of the BHOMA intervention in Zambia.

    PubMed

    Mutale, Wilbroad; Balabanova, Dina; Chintu, Namwinga; Mwanamwenge, Margaret Tembo; Ayles, Helen

    2016-02-01

    The current drive to strengthen health systems provides an opportunity to develop new strategies that will enable countries to achieve targets for millennium development goals. In this paper, we present a proposed framework for evaluating a new health system strengthening intervention in Zambia known as Better Health Outcomes through Mentoring and Assessment. We briefly describe the intervention design and focus on the proposed evaluation approach through the lens of systems thinking. In this paper, we present a proposed framework to evaluate a complex health system intervention applying systems thinking concepts. We hope that lessons learnt from this process will help to adapt the intervention and limit unintended negative consequences while promoting positive effects. Emphasis will be paid to interaction and interdependence between health system building blocks, context and the community. © 2014 The Authors. Journal of Evaluation in Clinical Practice published by John Wiley & Sons, Ltd.

  13. Living Design Memory: Framework, Implementation, Lessons Learned.

    ERIC Educational Resources Information Center

    Terveen, Loren G.; And Others

    1995-01-01

    Discusses large-scale software development and describes the development of the Designer Assistant to improve software development effectiveness. Highlights include the knowledge management problem; related work, including artificial intelligence and expert systems, software process modeling research, and other approaches to organizational memory;…

  14. LIFE CYCLE DESIGN FRAMEWORK AND DEMONSTRATION PROJECTS - PROFILES OF AT&T AND ALLIED SIGNAL

    EPA Science Inventory

    This document offers guidance and practical experience for integrating environmental considerations into product system development. Life cycle design seeks to minimize the environmental burden associated with a product's life cycle from raw materials acquisition through manufact...

  15. ER2OWL: Generating OWL Ontology from ER Diagram

    NASA Astrophysics Data System (ADS)

    Fahad, Muhammad

    Ontology is the fundamental part of Semantic Web. The goal of W3C is to bring the web into (its full potential) a semantic web with reusing previous systems and artifacts. Most legacy systems have been documented in structural analysis and structured design (SASD), especially in simple or Extended ER Diagram (ERD). Such systems need up-gradation to become the part of semantic web. In this paper, we present ERD to OWL-DL ontology transformation rules at concrete level. These rules facilitate an easy and understandable transformation from ERD to OWL. The set of rules for transformation is tested on a structured analysis and design example. The framework provides OWL ontology for semantic web fundamental. This framework helps software engineers in upgrading the structured analysis and design artifact ERD, to components of semantic web. Moreover our transformation tool, ER2OWL, reduces the cost and time for building OWL ontologies with the reuse of existing entity relationship models.

  16. Chained Aggregation and Control System Design:; A Geometric Approach.

    DTIC Science & Technology

    1982-10-01

    Furthermore, it explicitly identifies a reduced order modal used to meet the design goals. This results in an interactive design pro- cedure which allows...same framework. This leads directly to dynamic compen- sator design. The results are applied to decentralized control problems, non interactive ...goals. Furthermore, it explicitly identifies a reduced order model used to meet the design goals. This results in an interactive design procedure which

  17. System importance measures: A new approach to resilient systems-of-systems

    NASA Astrophysics Data System (ADS)

    Uday, Payuna

    Resilience is the ability to withstand and recover rapidly from disruptions. While this attribute has been the focus of research in several fields, in the case of system-of-systems (SoSs), addressing resilience is particularly interesting and challenging. As infrastructure SoSs, such as power, transportation, and communication networks, grow in complexity and interconnectivity, measuring and improving the resilience of these SoSs is vital in terms of safety and providing uninterrupted services. The characteristics of systems-of-systems make analysis and design of resilience challenging. However, these features also offer opportunities to make SoSs resilient using unconventional methods. In this research, we present a new approach to the process of resilience design. The core idea behind the proposed design process is a set of system importance measures (SIMs) that identify systems crucial to overall resilience. Using the results from the SIMs, we determine appropriate strategies from a list of design principles to improve SoS resilience. The main contribution of this research is the development of an aid to design that provides specific guidance on where and how resources need to be targeted. Based on the needs of an SoS, decision-makers can iterate through the design process to identify a set of practical and effective design improvements. We use two case studies to demonstrate how the SIM-based design process can inform decision-making in the context of SoS resilience. The first case study focuses on a naval warfare SoS and describes how the resilience framework can leverage existing simulation models to support end-to-end design. We proceed through stages of the design approach using an agent-based model (ABM) that enables us to demonstrate how simulation tools and analytical models help determine the necessary inputs for the design process and, subsequently, inform decision-making regarding SoS resilience. The second case study considers the urban transportation network in Boston. This case study focuses on interpreting the results of the resilience framework and on describing how they can be used to guide design choices in large infrastructure networks. We use different resilience maps to highlight the range of design-related information that can be obtained from the framework. Specific advantages of the SIM-based resilience design include: (1) incorporates SoS- specific features within existing risk-based design processes - the SIMs determine the relative importance of different systems based on their impacts on SoS-level performance, and suggestions for resilience improvement draw from design options that leverage SoS- specific characteristics, such as the ability to adapt quickly (such as add new systems or re-task existing ones) and to provide partial recovery of performance in the aftermath of a disruption; (2) allows rapid understanding of different areas of concern within the SoS - the visual nature of the resilience map (a key outcome of the SIM analysis) provides a useful way to summarize the current resilience of the SoS as well as point to key systems of concern; and (3) provides a platform for multiple analysts and decision- makers to study, modify, discuss and document options for SoS.

  18. Modular and Adaptive Control of Sound Processing

    NASA Astrophysics Data System (ADS)

    van Nort, Douglas

    This dissertation presents research into the creation of systems for the control of sound synthesis and processing. The focus differs from much of the work related to digital musical instrument design, which has rightly concentrated on the physicality of the instrument and interface: sensor design, choice of controller, feedback to performer and so on. Often times a particular choice of sound processing is made, and the resultant parameters from the physical interface are conditioned and mapped to the available sound parameters in an exploratory fashion. The main goal of the work presented here is to demonstrate the importance of the space that lies between physical interface design and the choice of sound manipulation algorithm, and to present a new framework for instrument design that strongly considers this essential part of the design process. In particular, this research takes the viewpoint that instrument designs should be considered in a musical control context, and that both control and sound dynamics must be considered in tandem. In order to achieve this holistic approach, the work presented in this dissertation assumes complementary points of view. Instrument design is first seen as a function of musical context, focusing on electroacoustic music and leading to a view on gesture that relates perceived musical intent to the dynamics of an instrumental system. The important design concept of mapping is then discussed from a theoretical and conceptual point of view, relating perceptual, systems and mathematically-oriented ways of examining the subject. This theoretical framework gives rise to a mapping design space, functional analysis of pertinent existing literature, implementations of mapping tools, instrumental control designs and several perceptual studies that explore the influence of mapping structure. Each of these reflect a high-level approach in which control structures are imposed on top of a high-dimensional space of control and sound synthesis parameters. In this view, desired gestural dynamics and sonic response are achieved through modular construction of mapping layers that are themselves subject to parametric control. Complementing this view of the design process, the work concludes with an approach in which the creation of gestural control/sound dynamics are considered in the low-level of the underlying sound model. The result is an adaptive system that is specialized to noise-based transformations that are particularly relevant in an electroacoustic music context. Taken together, these different approaches to design and evaluation result in a unified framework for creation of an instrumental system. The key point is that this framework addresses the influence that mapping structure and control dynamics have on the perceived feel of the instrument. Each of the results illustrate this using either top-down or bottom-up approaches that consider musical control context, thereby pointing to the greater potential for refined sonic articulation that can be had by combining them in the design process.

  19. Adapting Concepts from Systems Biology to Develop Systems Exposure Event Networks for Exposure Science Research

    EPA Science Inventory

    Systems exposure science has emerged from the traditional environmental exposure assessment framework and incorporates new concepts that link sources of human exposure to internal dose and metabolic processes. Because many human environmental studies are designed for retrospectiv...

  20. The New BaBar Data Reconstruction Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceseracciu, Antonio

    2003-06-02

    The BaBar experiment is characterized by extremely high luminosity, a complex detector, and a huge data volume, with increasing requirements each year. To fulfill these requirements a new control system has been designed and developed for the offline data reconstruction system. The new control system described in this paper provides the performance and flexibility needed to manage a large number of small computing farms, and takes full benefit of OO design. The infrastructure is well isolated from the processing layer, it is generic and flexible, based on a light framework providing message passing and cooperative multitasking. The system is activelymore » distributed, enforces the separation between different processing tiers by using different naming domains, and glues them together by dedicated brokers. It provides a powerful Finite State Machine framework to describe custom processing models in a simple regular language. This paper describes this new control system, currently in use at SLAC and Padova on {approx}450 CPUs organized in 12 farms.« less

  1. An operational information systems architecture for assessing sustainable transportation planning: principles and design.

    PubMed

    Borzacchiello, Maria Teresa; Torrieri, Vincenzo; Nijkamp, Peter

    2009-11-01

    This paper offers the description of an integrated information system framework for the assessment of transportation planning and management. After an introductory exposition, in the first part of the paper, a broad overview of international experiences regarding information systems on transportation is given, focusing in particular on the relationship between transportation system's performance monitoring and the decision-making process, and on the importance of this connection in the evaluation and planning process, in Italian and European cases. Next, the methodological design of an information system to support efficient and sustainable transportation planning and management aiming to integrate inputs from several different data sources is presented. The resulting framework deploys modular and integrated databases which include data stemming from different national or regional data banks and which integrate information belonging to different transportation fields. For this reason, it allows public administrations to account for many strategic elements that influence their decisions regarding transportation, both from a systemic and infrastructural point of view.

  2. AdaFF: Adaptive Failure-Handling Framework for Composite Web Services

    NASA Astrophysics Data System (ADS)

    Kim, Yuna; Lee, Wan Yeon; Kim, Kyong Hoon; Kim, Jong

    In this paper, we propose a novel Web service composition framework which dynamically accommodates various failure recovery requirements. In the proposed framework called Adaptive Failure-handling Framework (AdaFF), failure-handling submodules are prepared during the design of a composite service, and some of them are systematically selected and automatically combined with the composite Web service at service instantiation in accordance with the requirement of individual users. In contrast, existing frameworks cannot adapt the failure-handling behaviors to user's requirements. AdaFF rapidly delivers a composite service supporting the requirement-matched failure handling without manual development, and contributes to a flexible composite Web service design in that service architects never care about failure handling or variable requirements of users. For proof of concept, we implement a prototype system of the AdaFF, which automatically generates a composite service instance with Web Services Business Process Execution Language (WS-BPEL) according to the users' requirement specified in XML format and executes the generated instance on the ActiveBPEL engine.

  3. Software design and implementation concepts for an interoperable medical communication framework.

    PubMed

    Besting, Andreas; Bürger, Sebastian; Kasparick, Martin; Strathen, Benjamin; Portheine, Frank

    2018-02-23

    The new IEEE 11073 service-oriented device connectivity (SDC) standard proposals for networked point-of-care and surgical devices constitutes the basis for improved interoperability due to its independence of vendors. To accelerate the distribution of the standard a reference implementation is indispensable. However, the implementation of such a framework has to overcome several non-trivial challenges. First, the high level of complexity of the underlying standard must be reflected in the software design. An efficient implementation has to consider the limited resources of the underlying hardware. Moreover, the frameworks purpose of realizing a distributed system demands a high degree of reliability of the framework itself and its internal mechanisms. Additionally, a framework must provide an easy-to-use and fail-safe application programming interface (API). In this work, we address these challenges by discussing suitable software engineering principles and practical coding guidelines. A descriptive model is developed that identifies key strategies. General feasibility is shown by outlining environments in which our implementation has been utilized.

  4. Development of an Object-Oriented Turbomachinery Analysis Code within the NPSS Framework

    NASA Technical Reports Server (NTRS)

    Jones, Scott M.

    2014-01-01

    During the preliminary or conceptual design phase of an aircraft engine, the turbomachinery designer has a need to estimate the effects of a large number of design parameters such as flow size, stage count, blade count, radial position, etc. on the weight and efficiency of a turbomachine. Computer codes are invariably used to perform this task however, such codes are often very old, written in outdated languages with arcane input files, and rarely adaptable to new architectures or unconventional layouts. Given the need to perform these kinds of preliminary design trades, a modern 2-D turbomachinery design and analysis code has been written using the Numerical Propulsion System Simulation (NPSS) framework. This paper discusses the development of the governing equations and the structure of the primary objects used in OTAC.

  5. Manufacturing process and material selection in concurrent collaborative design of MEMS devices

    NASA Astrophysics Data System (ADS)

    Zha, Xuan F.; Du, H.

    2003-09-01

    In this paper we present knowledge of an intensive approach and system for selecting suitable manufacturing processes and materials for microelectromechanical systems (MEMS) devices in concurrent collaborative design environment. In the paper, fundamental issues on MEMS manufacturing process and material selection such as concurrent design framework, manufacturing process and material hierarchies, and selection strategy are first addressed. Then, a fuzzy decision support scheme for a multi-criteria decision-making problem is proposed for estimating, ranking and selecting possible manufacturing processes, materials and their combinations. A Web-based prototype advisory system for the MEMS manufacturing process and material selection, WebMEMS-MASS, is developed based on the client-knowledge server architecture and framework to help the designer find good processes and materials for MEMS devices. The system, as one of the important parts of an advanced simulation and modeling tool for MEMS design, is a concept level process and material selection tool, which can be used as a standalone application or a Java applet via the Web. The running sessions of the system are inter-linked with webpages of tutorials and reference pages to explain the facets, fabrication processes and material choices, and calculations and reasoning in selection are performed using process capability and material property data from a remote Web-based database and interactive knowledge base that can be maintained and updated via the Internet. The use of the developed system including operation scenario, use support, and integration with an MEMS collaborative design system is presented. Finally, an illustration example is provided.

  6. Research and design of logistical information system based on SOA

    NASA Astrophysics Data System (ADS)

    Zhang, Bo

    2013-03-01

    Through the study on the existing logistics information systems and SOA technology, based on the current situation of enterprise logistics management and business features, this paper puts forward a SOA-based logistics system design program. This program is made in the WCF framework, with the combination of SOA and the actual characteristics of logistics enterprises, is simple to realize, easy to operate, and has strong expansion characteristic, therefore has high practical value.

  7. Space Station communications system design and analysis

    NASA Technical Reports Server (NTRS)

    Ratliff, J. E.

    1986-01-01

    Attention is given to the methodologies currently being used as the framework within which the NASA Space Station's communications system is to be designed and analyzed. A key aspect of the CAD/analysis system being employed is its potential growth in size and capabilities, since Space Station design requirements will continue to be defined and modified. The Space Station is expected to furnish communications between itself and astronauts on EVA, Orbital Maneuvering Vehicles, Orbital Transfer Vehicles, Space Shuttle orbiters, free-flying spacecraft, coorbiting platforms, and the Space Shuttle's own Mobile Service Center.

  8. General Methodology for Designing Spacecraft Trajectories

    NASA Technical Reports Server (NTRS)

    Condon, Gerald; Ocampo, Cesar; Mathur, Ravishankar; Morcos, Fady; Senent, Juan; Williams, Jacob; Davis, Elizabeth C.

    2012-01-01

    A methodology for designing spacecraft trajectories in any gravitational environment within the solar system has been developed. The methodology facilitates modeling and optimization for problems ranging from that of a single spacecraft orbiting a single celestial body to that of a mission involving multiple spacecraft and multiple propulsion systems operating in gravitational fields of multiple celestial bodies. The methodology consolidates almost all spacecraft trajectory design and optimization problems into a single conceptual framework requiring solution of either a system of nonlinear equations or a parameter-optimization problem with equality and/or inequality constraints.

  9. Robust evaluation of time series classification algorithms for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Worden, Keith; Todd, Michael D.

    2014-03-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and mechanical infrastructure through analysis of structural response measurements. The supervised learning methodology for data-driven SHM involves computation of low-dimensional, damage-sensitive features from raw measurement data that are then used in conjunction with machine learning algorithms to detect, classify, and quantify damage states. However, these systems often suffer from performance degradation in real-world applications due to varying operational and environmental conditions. Probabilistic approaches to robust SHM system design suffer from incomplete knowledge of all conditions a system will experience over its lifetime. Info-gap decision theory enables nonprobabilistic evaluation of the robustness of competing models and systems in a variety of decision making applications. Previous work employed info-gap models to handle feature uncertainty when selecting various components of a supervised learning system, namely features from a pre-selected family and classifiers. In this work, the info-gap framework is extended to robust feature design and classifier selection for general time series classification through an efficient, interval arithmetic implementation of an info-gap data model. Experimental results are presented for a damage type classification problem on a ball bearing in a rotating machine. The info-gap framework in conjunction with an evolutionary feature design system allows for fully automated design of a time series classifier to meet performance requirements under maximum allowable uncertainty.

  10. Redundancy Maintenance and Garbage Collection Strategies in Peer-to-Peer Storage Systems

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Datta, Anwitaman

    Maintaining redundancy in P2P storage systems is essential for reliability guarantees. Numerous P2P storage system maintenance algorithms have been proposed in the last years, each supposedly improving upon the previous approaches. We perform a systematic comparative study of the various strategies taking also into account the influence of different garbage collection mechanisms, an issue not studied so far. Our experiments show that while some strategies generally perform better than some others, there is no universally best strategy, and their relative superiority depends on various other design choices as well as the specific evaluation criterion. Our results can be used by P2P storage systems designers to make prudent design decisions, and our exploration of the various evaluation metrics also provides a more comprehensive framework to compare algorithms for P2P storage systems. While there are numerous network simulators specifically developed even to simulate peer-to-peer networks, there existed no P2P storage simulators - a byproduct of this work is a generic modular P2P storage system simulator which we provide as open-source. Different redundancy, maintenance, placement, garbage-collection policies, churn scenarios can be easily integrated to the simulator to try out new schemes in future, and provides a common framework to compare (future) p2p storage systems designs - something which has not been possible so far.

  11. A distributed finite-element modeling and control approach for large flexible structures

    NASA Technical Reports Server (NTRS)

    Young, K. D.

    1989-01-01

    An unconventional framework is described for the design of decentralized controllers for large flexible structures. In contrast to conventional control system design practice which begins with a model of the open loop plant, the controlled plant is assembled from controlled components in which the modeling phase and the control design phase are integrated at the component level. The developed framework is called controlled component synthesis (CCS) to reflect that it is motivated by the well developed Component Mode Synthesis (CMS) methods which were demonstrated to be effective for solving large complex structural analysis problems for almost three decades. The design philosophy behind CCS is also closely related to that of the subsystem decomposition approach in decentralized control.

  12. Toward Engineering Synthetic Microbial Metabolism

    PubMed Central

    McArthur, George H.; Fong, Stephen S.

    2010-01-01

    The generation of well-characterized parts and the formulation of biological design principles in synthetic biology are laying the foundation for more complex and advanced microbial metabolic engineering. Improvements in de novo DNA synthesis and codon-optimization alone are already contributing to the manufacturing of pathway enzymes with improved or novel function. Further development of analytical and computer-aided design tools should accelerate the forward engineering of precisely regulated synthetic pathways by providing a standard framework for the predictable design of biological systems from well-characterized parts. In this review we discuss the current state of synthetic biology within a four-stage framework (design, modeling, synthesis, analysis) and highlight areas requiring further advancement to facilitate true engineering of synthetic microbial metabolism. PMID:20037734

  13. Human factors analysis and classification system-HFACS.

    DOT National Transportation Integrated Search

    2000-02-01

    Human error has been implicated in 70 to 80% of all civil and military aviation accidents. Yet, most accident : reporting systems are not designed around any theoretical framework of human error. As a result, most : accident databases are not conduci...

  14. System approach to distributed sensor management

    NASA Astrophysics Data System (ADS)

    Mayott, Gregory; Miller, Gordon; Harrell, John; Hepp, Jared; Self, Mid

    2010-04-01

    Since 2003, the US Army's RDECOM CERDEC Night Vision Electronic Sensor Directorate (NVESD) has been developing a distributed Sensor Management System (SMS) that utilizes a framework which demonstrates application layer, net-centric sensor management. The core principles of the design support distributed and dynamic discovery of sensing devices and processes through a multi-layered implementation. This results in a sensor management layer that acts as a System with defined interfaces for which the characteristics, parameters, and behaviors can be described. Within the framework, the definition of a protocol is required to establish the rules for how distributed sensors should operate. The protocol defines the behaviors, capabilities, and message structures needed to operate within the functional design boundaries. The protocol definition addresses the requirements for a device (sensors or processes) to dynamically join or leave a sensor network, dynamically describe device control and data capabilities, and allow dynamic addressing of publish and subscribe functionality. The message structure is a multi-tiered definition that identifies standard, extended, and payload representations that are specifically designed to accommodate the need for standard representations of common functions, while supporting the need for feature-based functions that are typically vendor specific. The dynamic qualities of the protocol enable a User GUI application the flexibility of mapping widget-level controls to each device based on reported capabilities in real-time. The SMS approach is designed to accommodate scalability and flexibility within a defined architecture. The distributed sensor management framework and its application to a tactical sensor network will be described in this paper.

  15. Variation tolerant SoC design

    NASA Astrophysics Data System (ADS)

    Kozhikkottu, Vivek J.

    The scaling of integrated circuits into the nanometer regime has led to variations emerging as a primary concern for designers of integrated circuits. Variations are an inevitable consequence of the semiconductor manufacturing process, and also arise due to the side-effects of operation of integrated circuits (voltage, temperature, and aging). Conventional design approaches, which are based on design corners or worst-case scenarios, leave designers with an undesirable choice between the considerable overheads associated with over-design and significantly reduced manufacturing yield. Techniques for variation-tolerant design at the logic, circuit and layout levels of the design process have been developed and are in commercial use. However, with the incessant increase in variations due to technology scaling and design trends such as near-threshold computing, these techniques are no longer sufficient to contain the effects of variations, and there is a need to address variations at all stages of design. This thesis addresses the problem of variation-tolerant design at the earliest stages of the design process, where the system-level design decisions that are made can have a very significant impact. There are two key aspects to making system-level design variation-aware. First, analysis techniques must be developed to project the impact of variations on system-level metrics such as application performance and energy. Second, variation-tolerant design techniques need to be developed to absorb the residual impact of variations (that cannot be contained through lower-level techniques). In this thesis, we address both these facets by developing robust and scalable variation-aware analysis and variation mitigation techniques at the system level. The first contribution of this thesis is a variation-aware system-level performance analysis framework. We address the key challenge of translating the per-component clock frequency distributions into a system-level application performance distribution. This task is particularly complex and challenging due to the inter-dependencies between components' execution, indirect effects of shared resources, and interactions between multiple system-level "execution paths". We argue that accurate variation-aware performance analysis requires Monte-Carlo based repeated system execution. Our proposed analysis framework leverages emulation to significantly speedup performance analysis without sacrificing the generality and accuracy achieved by Monte-Carlo based simulations. Our experiments show performance improvements of around 60x compared to state-of-the-art hardware-software co-simulation tools and also underscore the framework's potential to enable variation-aware design and exploration at the system level. Our second contribution addresses the problem of designing variation-tolerant SoCs using recovery based design, a popular circuit design paradigm that addresses variations by eliminating guard-bands and operating circuits at close to "zero margins" while detecting and recovering from timing errors. While previous efforts have demonstrated the potential benefits of recovery based design, we identify several challenges that need to be addressed in order to apply this technique to SoCs. We present a systematic design framework to apply recovery based design at the system level. We propose to partition SoCs into "recovery islands", wherein each recovery island consists of one or more SoC components that can recover independent of the rest of the SoC. We present a variation-aware design methodology that partitions a given SoC into recovery islands and computes the optimal operating points for each island, taking into account the various trade-offs involved. Our experiments demonstrate that the proposed design framework achieves an average of 32% energy savings over conventional worst-case designs, with negligible losses in performance. The third contribution of this thesis introduces disproportionate allocation of shared system resources as a means to combat the adverse impact of within-die variations on multi-core platforms. For multi-threaded programs executing on variation-impacted multi-cores platforms, we make the key observation that thread performance is not only a function of the frequency of the core on which it is executing on, but also depends upon the amount of shared system resources allocated to it. We utilize this insight to design a variation-aware runtime scheme which allocates the ways of a last-level shared L2 cache amongst the different cores/threads of a multi-core platform taking into account both application characteristics as well as chip specific variation profiles. Our experiments on 100 quad-core chips, each with a distinct variation profile, shows on an average 15% performance improvements for a suite of multi-threaded benchmarks. Our final contribution investigates the variation-tolerant design of domain-specific accelerators and demonstrates how the unique architectural properties of these accelerators can be leveraged to create highly effective variation tolerance mechanisms. We explore this concept through the variation-tolerant design of a vector processor that efficiently executes applications from the domains of recognition, mining and synthesis (RMS). We develop a novel design approach for variation tolerance, which leverages the unique nature of the vector reduction operations performed by this processor to effectively predict and preempt the occurrence of timing errors under variations and subsequently restore the correct output at the end of each vector reduction operation. We implement the above predict, preempt and restore operations by suitably enhancing the processor hardware and the application software and demonstrate considerable energy benefits (on an average 32%) across six applications from the domains of RMS. In conclusion, our work provides system designers with powerful tools and mechanisms in their efforts to combat variations, resulting in improved designer productivity and variation-tolerant systems.

  16. Adaptive multimodal interaction in mobile augmented reality: A conceptual framework

    NASA Astrophysics Data System (ADS)

    Abidin, Rimaniza Zainal; Arshad, Haslina; Shukri, Saidatul A'isyah Ahmad

    2017-10-01

    Recently, Augmented Reality (AR) is an emerging technology in many mobile applications. Mobile AR was defined as a medium for displaying information merged with the real world environment mapped with augmented reality surrounding in a single view. There are four main types of mobile augmented reality interfaces and one of them are multimodal interfaces. Multimodal interface processes two or more combined user input modes (such as speech, pen, touch, manual gesture, gaze, and head and body movements) in a coordinated manner with multimedia system output. In multimodal interface, many frameworks have been proposed to guide the designer to develop a multimodal applications including in augmented reality environment but there has been little work reviewing the framework of adaptive multimodal interface in mobile augmented reality. The main goal of this study is to propose a conceptual framework to illustrate the adaptive multimodal interface in mobile augmented reality. We reviewed several frameworks that have been proposed in the field of multimodal interfaces, adaptive interface and augmented reality. We analyzed the components in the previous frameworks and measure which can be applied in mobile devices. Our framework can be used as a guide for designers and developer to develop a mobile AR application with an adaptive multimodal interfaces.

  17. JACOB: an enterprise framework for computational chemistry.

    PubMed

    Waller, Mark P; Dresselhaus, Thomas; Yang, Jack

    2013-06-15

    Here, we present just a collection of beans (JACOB): an integrated batch-based framework designed for the rapid development of computational chemistry applications. The framework expedites developer productivity by handling the generic infrastructure tier, and can be easily extended by user-specific scientific code. Paradigms from enterprise software engineering were rigorously applied to create a scalable, testable, secure, and robust framework. A centralized web application is used to configure and control the operation of the framework. The application-programming interface provides a set of generic tools for processing large-scale noninteractive jobs (e.g., systematic studies), or for coordinating systems integration (e.g., complex workflows). The code for the JACOB framework is open sourced and is available at: www.wallerlab.org/jacob. Copyright © 2013 Wiley Periodicals, Inc.

  18. GeNeDA: An Open-Source Workflow for Design Automation of Gene Regulatory Networks Inspired from Microelectronics.

    PubMed

    Madec, Morgan; Pecheux, François; Gendrault, Yves; Rosati, Elise; Lallement, Christophe; Haiech, Jacques

    2016-10-01

    The topic of this article is the development of an open-source automated design framework for synthetic biology, specifically for the design of artificial gene regulatory networks based on a digital approach. In opposition to other tools, GeNeDA is an open-source online software based on existing tools used in microelectronics that have proven their efficiency over the last 30 years. The complete framework is composed of a computation core directly adapted from an Electronic Design Automation tool, input and output interfaces, a library of elementary parts that can be achieved with gene regulatory networks, and an interface with an electrical circuit simulator. Each of these modules is an extension of microelectronics tools and concepts: ODIN II, ABC, the Verilog language, SPICE simulator, and SystemC-AMS. GeNeDA is first validated on a benchmark of several combinatorial circuits. The results highlight the importance of the part library. Then, this framework is used for the design of a sequential circuit including a biological state machine.

  19. Non-local currents and the structure of eigenstates in planar discrete systems with local symmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Röntgen, M., E-mail: mroentge@physnet.uni-hamburg.de; Morfonios, C.V., E-mail: christian.morfonios@physnet.uni-hamburg.de; Diakonos, F.K., E-mail: fdiakono@phys.uoa.gr

    Local symmetries are spatial symmetries present in a subdomain of a complex system. By using and extending a framework of so-called non-local currents that has been established recently, we show that one can gain knowledge about the structure of eigenstates in locally symmetric setups through a Kirchhoff-type law for the non-local currents. The framework is applicable to all discrete planar Schrödinger setups, including those with non-uniform connectivity. Conditions for spatially constant non-local currents are derived and we explore two types of locally symmetric subsystems in detail, closed-loops and one-dimensional open ended chains. We find these systems to support locally similarmore » or even locally symmetric eigenstates. - Highlights: • We extend the framework of non-local currents to discrete planar systems. • Structural information about the eigenstates is gained. • Conditions for the constancy of non-local currents are derived. • We use the framework to design two types of example systems featuring locally symmetric eigenstates.« less

  20. Design and evaluation of an onboard computer-based information system for aircraft

    NASA Technical Reports Server (NTRS)

    Rouse, S. H.; Rouse, W. B.; Hammer, J. M.

    1982-01-01

    Information seeking by human operators of technical systems is considered. Types of information and forms of presentation are discussed and important issues reviewed. This broad discussion provides a framework within which flight management is considered. The design of an onboard computer-based information system for aircraft is discussed. The aiding possibilities of a computer-based system are emphasized. Results of an experimental evaluation of a prototype system are presented. It is concluded that a computer-based information system can substantially lessen the frequency of human errors.

  1. Health system frameworks and performance indicators in eight countries: A comparative international analysis

    PubMed Central

    Braithwaite, Jeffrey; Hibbert, Peter; Blakely, Brette; Plumb, Jennifer; Hannaford, Natalie; Long, Janet Cameron; Marks, Danielle

    2017-01-01

    Objectives: Performance indicators are a popular mechanism for measuring the quality of healthcare to facilitate both quality improvement and systems management. Few studies make comparative assessments of different countries’ performance indicator frameworks. This study identifies and compares frameworks and performance indicators used in selected Organisation for Economic Co-operation and Development health systems to measure and report on the performance of healthcare organisations and local health systems. Countries involved are Australia, Canada, Denmark, England, the Netherlands, New Zealand, Scotland and the United States. Methods: Identification of comparable international indicators and analyses of their characteristics and of their broader national frameworks and contexts were undertaken. Two dimensions of indicators – that they are nationally consistent (used across the country rather than just regionally) and locally relevant (measured and reported publicly at a local level, for example, a health service) – were deemed important. Results: The most commonly used domains in performance frameworks were safety, effectiveness and access. The search found 401 indicators that fulfilled the ‘nationally consistent and locally relevant’ criteria. Of these, 45 indicators are reported in more than one country. Cardiovascular, surgery and mental health were the most frequently reported disease groups. Conclusion: These comparative data inform researchers and policymakers internationally when designing health performance frameworks and indicator sets. PMID:28228948

  2. Synthetic biology: advancing the design of diverse genetic systems

    PubMed Central

    Wang, Yen-Hsiang; Wei, Kathy Y.; Smolke, Christina D.

    2013-01-01

    A main objective of synthetic biology is to make the process of designing genetically-encoded biological systems more systematic, predictable, robust, scalable, and efficient. The examples of genetic systems in the field vary widely in terms of operating hosts, compositional approaches, and network complexity, ranging from a simple genetic switch to search-and-destroy systems. While significant advances in synthesis capabilities support the potential for the implementation of pathway- and genome-scale programs, several design challenges currently restrict the scale of systems that can be reasonably designed and implemented. Synthetic biology offers much promise in developing systems to address challenges faced in manufacturing, the environment and sustainability, and health and medicine, but the realization of this potential is currently limited by the diversity of available parts and effective design frameworks. As researchers make progress in bridging this design gap, advances in the field hint at ever more diverse applications for biological systems. PMID:23413816

  3. A reusability and efficiency oriented software design method for mobile land inspection

    NASA Astrophysics Data System (ADS)

    Cai, Wenwen; He, Jun; Wang, Qing

    2008-10-01

    Aiming at the requirement from the real-time land inspection domain, a land inspection handset system was presented in this paper. In order to increase the reusability of the system, a design pattern based framework was presented. Encapsulation for command like actions by applying COMMAND pattern was proposed for the problem of complex UI interactions. Integrating several GPS-log parsing engines into a general parsing framework was archived by introducing STRATEGY pattern. A network transmission module based network middleware was constructed. For mitigating the high coupling of complex network communication programs, FACTORY pattern was applied to facilitate the decoupling. Moreover, in order to efficiently manipulate huge GIS datasets, a VISITOR pattern and Quad-tree based multi-scale representation method was presented. It had been proved practically that these design patterns reduced the coupling between the subsystems, and improved the expansibility.

  4. Empowering the Design and the Sharing of Learning Plans by Means of Net Technologies: The IAMEL System

    NASA Astrophysics Data System (ADS)

    Bottino, Rosa Maria; Ott, Michela; Tavella, Mauro

    This paper reports on the research work carried out by the authors in the framework of the IAMEL project, supported by the Italian Ministry of Education. The project was mainly aimed at enhancing the teaching/learning of mathematics by providing teachers with specific e-learning platforms endowed with a number of dedicated tools supporting the setting-up and the carrying-out of specific in-field experiments. One of the main results of the project was the development of a methodology to carry out the design of educational interventions; such a methodology was based on a conceptual goal-oriented framework and on different authoring tools among which the IAMEL system, an online tool fully described in the paper that allows both the production and the sharing of pedagogical plans and consents the design and the modeling of educational interventions with different levels of granularity and scope.

  5. [Design of warm-acupuncture technique training evaluation device].

    PubMed

    Gao, Ming; Xu, Gang; Yang, Huayuan; Liu, Tangyi; Tang, Wenchao

    2017-01-12

    To design a warm-acupuncture teaching instrument to train and evaluate its manipulation. We refer to the principle and technical operation characteristics of traditional warm-acupuncture, as well as the mechanical design and single-chip microcomputer technology. The device is consisted of device noumenon, universal acupoints simulator, vibration reset system and circuit control system, including frame, platform framework, the swing framework, universal acupoints simulator, vibration reset outfit, operation time circuit, acupuncture sensation display, and vibration control circuit, etc. It can be used to train needle inserting with different angles and moxa rubbing and loading. It displays whether a needle point meets the location required. We determine whether the moxa group on a needle handle is easy to fall off through vibration test, and operation time is showed. The device can objectively help warm-acupuncture training and evaluation so as to promote its clinical standardization manipulation.

  6. Topology Optimization using the Level Set and eXtended Finite Element Methods: Theory and Applications

    NASA Astrophysics Data System (ADS)

    Villanueva Perez, Carlos Hernan

    Computational design optimization provides designers with automated techniques to develop novel and non-intuitive optimal designs. Topology optimization is a design optimization technique that allows for the evolution of a broad variety of geometries in the optimization process. Traditional density-based topology optimization methods often lack a sufficient resolution of the geometry and physical response, which prevents direct use of the optimized design in manufacturing and the accurate modeling of the physical response of boundary conditions. The goal of this thesis is to introduce a unified topology optimization framework that uses the Level Set Method (LSM) to describe the design geometry and the eXtended Finite Element Method (XFEM) to solve the governing equations and measure the performance of the design. The methodology is presented as an alternative to density-based optimization approaches, and is able to accommodate a broad range of engineering design problems. The framework presents state-of-the-art methods for immersed boundary techniques to stabilize the systems of equations and enforce the boundary conditions, and is studied with applications in 2D and 3D linear elastic structures, incompressible flow, and energy and species transport problems to test the robustness and the characteristics of the method. A comparison of the framework against density-based topology optimization approaches is studied with regards to convergence, performance, and the capability to manufacture the designs. Furthermore, the ability to control the shape of the design to operate within manufacturing constraints is developed and studied. The analysis capability of the framework is validated quantitatively through comparison against previous benchmark studies, and qualitatively through its application to topology optimization problems. The design optimization problems converge to intuitive designs and resembled well the results from previous 2D or density-based studies.

  7. Creation of a diagnostic wait times measurement framework based on evidence and consensus.

    PubMed

    Gilbert, Julie E; Dobrow, Mark J; Kaan, Melissa; Dobranowski, Julian; Srigley, John R; Jusko Friedman, Audrey; Irish, Jonathan C

    2014-09-01

    Public reporting of wait times worldwide has to date focused largely on treatment wait times and is limited in its ability to capture earlier parts of the patient journey. The interval between suspicion and diagnosis or ruling out of cancer is a complex phase of the cancer journey. Diagnostic delays and inefficient use of diagnostic imaging procedures can result in poor patient outcomes, both physical and psychosocial. This study was designed to develop a framework that could be adopted for multiple disease sites across different jurisdictions to enable the measurement of diagnostic wait times and diagnostic delay. Diagnostic benchmarks and targets in cancer systems were explored through a targeted literature review and jurisdictional scan. Cancer system leaders and clinicians were interviewed to validate the information found in the jurisdictional scan. An expert panel was assembled to review and, through a modified Delphi consensus process, provide feedback on a diagnostic wait times framework. The consensus process resulted in agreement on a measurement framework that identified suspicion, referral, diagnosis, and treatment as the main time points for measuring this critical phase of the patient journey. This work will help guide initiatives designed to improve patient access to health services by developing an evidence-based approach to standardization of the various waypoints during the diagnostic pathway. The diagnostic wait times measurement framework provides a yardstick to measure the performance of programs that are designed to manage and expedite care processes between referral and diagnosis or ruling out of cancer. Copyright © 2014 by American Society of Clinical Oncology.

  8. Increasing the Translation of Evidence Into Practice, Policy, and Public Health Improvements: A Framework for Training Health Professionals in Implementation and Dissemination Science

    PubMed Central

    Gonzales, Ralph; Handley, Margaret A.; Ackerman, Sara; O’Sullivan, Patricia S.

    2012-01-01

    The authors describe a conceptual framework for implementation and dissemination science (IDS) and propose competencies for IDS training. Their framework is designed to facilitate the application of theories and methods from the distinct domains of clinical disciplines (e.g., medicine, public health), population sciences (e.g., biostatistics, epidemiology) and translational disciplines (e.g., social and behavioral sciences, business administration education). They explore three principles that guided the development of their conceptual framework: Behavior change among organizations and/or individuals (providers, patients) is inherent in the translation process; engagement of stakeholder organizations, health care delivery systems, and individuals is imperative to achieve effective translation and sustained improvements; and IDS research is iterative, benefiting from cycles and collaborative, bidirectional relationships. The authors propose seven domains for IDS training--team science, context identification, literature identification and assessment, community engagement, intervention design and research implementation, evaluation of effect of translational activity, behavioral change communication strategies--and define twelve IDS training competencies within these domains. As a model, they describe specific courses introduced at the University of California, San Francisco, which they designed to develop these competencies. The authors encourage other training programs and institutions to use (or adapt) the design principles, conceptual framework, And proposed competencies to evaluate their current IDS training needs and to support new program development. PMID:22373617

  9. Java Tool Framework for Automation of Hardware Commissioning and Maintenance Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, J C; Fisher, J M; Gordon, J B

    2007-10-02

    The National Ignition Facility (NIF) is a 192-beam laser system designed to study high energy density physics. Each beam line contains a variety of line replaceable units (LRUs) that contain optics, stepping motors, sensors and other devices to control and diagnose the laser. During commissioning and subsequent maintenance of the laser, LRUs undergo a qualification process using the Integrated Computer Control System (ICCS) to verify and calibrate the equipment. The commissioning processes are both repetitive and tedious when we use remote manual computer controls, making them ideal candidates for software automation. Maintenance and Commissioning Tool (MCT) software was developed tomore » improve the efficiency of the qualification process. The tools are implemented in Java, leveraging ICCS services and CORBA to communicate with the control devices. The framework provides easy-to-use mechanisms for handling configuration data, task execution, task progress reporting, and generation of commissioning test reports. The tool framework design and application examples will be discussed.« less

  10. Linking departmental priorities to knowledge management: the experiences of Santa Cruz County's Human Services Department.

    PubMed

    Lindberg, Arley

    2012-01-01

    Federal welfare reform, local service collaborations, and the evolution of statewide information systems inspired agency interest in evidence-informed practice and knowledge sharing systems. Four agency leaders, including the Director, Deputy Director, Director of Planning and Evaluation, and Staff Development Program Manager championed the development of a learning organization based on knowledge management throughout the agency. Internal department restructuring helped to strengthen the Planning and Evaluation, Staff Development, and Personnel units, which have become central to supporting knowledge sharing activities. The Four Pillars of Knowledge framework was designed to capture agency directions in relationship to future knowledge management goals. Featuring People, Practice, Technology and Budget, the framework links the agency's services, mission and goals to the process of becoming a learning organization. Built through an iterative process, the framework was created by observing existing activities in each department rather than being designed from the top down. Knowledge management can help the department to fulfill its mission despite reduced resources. Copyright © Taylor & Francis Group, LLC

  11. A survey of artificial immune system based intrusion detection.

    PubMed

    Yang, Hua; Li, Tao; Hu, Xinlei; Wang, Feng; Zou, Yang

    2014-01-01

    In the area of computer security, Intrusion Detection (ID) is a mechanism that attempts to discover abnormal access to computers by analyzing various interactions. There is a lot of literature about ID, but this study only surveys the approaches based on Artificial Immune System (AIS). The use of AIS in ID is an appealing concept in current techniques. This paper summarizes AIS based ID methods from a new view point; moreover, a framework is proposed for the design of AIS based ID Systems (IDSs). This framework is analyzed and discussed based on three core aspects: antibody/antigen encoding, generation algorithm, and evolution mode. Then we collate the commonly used algorithms, their implementation characteristics, and the development of IDSs into this framework. Finally, some of the future challenges in this area are also highlighted.

  12. FAST: a framework for simulation and analysis of large-scale protein-silicon biosensor circuits.

    PubMed

    Gu, Ming; Chakrabartty, Shantanu

    2013-08-01

    This paper presents a computer aided design (CAD) framework for verification and reliability analysis of protein-silicon hybrid circuits used in biosensors. It is envisioned that similar to integrated circuit (IC) CAD design tools, the proposed framework will be useful for system level optimization of biosensors and for discovery of new sensing modalities without resorting to laborious fabrication and experimental procedures. The framework referred to as FAST analyzes protein-based circuits by solving inverse problems involving stochastic functional elements that admit non-linear relationships between different circuit variables. In this regard, FAST uses a factor-graph netlist as a user interface and solving the inverse problem entails passing messages/signals between the internal nodes of the netlist. Stochastic analysis techniques like density evolution are used to understand the dynamics of the circuit and estimate the reliability of the solution. As an example, we present a complete design flow using FAST for synthesis, analysis and verification of our previously reported conductometric immunoassay that uses antibody-based circuits to implement forward error-correction (FEC).

  13. Creativity: Creativity in Complex Military Systems

    DTIC Science & Technology

    2017-05-25

    generation later in the problem-solving process. The design process is an alternative problem-solving framework individuals or groups use to orient...no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control ...the potential of their formations. 15. SUBJECT TERMS Creativity, Divergent Thinking, Design , Systems Thinking, Operational Art 16. SECURITY

  14. Promoting Higher Order Thinking Skills via IPTEACES e-Learning Framework in the Learning of Information Systems Units

    ERIC Educational Resources Information Center

    Isaias, Pedro; Issa, Tomayess; Pena, Nuno

    2014-01-01

    When developing and working with various types of devices from a supercomputer to an iPod Mini, it is essential to consider the issues of Human Computer Interaction (HCI) and Usability. Developers and designers must incorporate HCI, Usability and user satisfaction in their design plans to ensure that systems are easy to learn, effective,…

  15. T and D-Bench--Innovative Combined Support for Education and Research in Computer Architecture and Embedded Systems

    ERIC Educational Resources Information Center

    Soares, S. N.; Wagner, F. R.

    2011-01-01

    Teaching and Design Workbench (T&D-Bench) is a framework aimed at education and research in the areas of computer architecture and embedded systems. It includes a set of features not found in other educational environments. This set of features is the result of an original combination of design requirements for T&D-Bench: that the…

  16. Multidisciplinary Design Technology Development: A Comparative Investigation of Integrated Aerospace Vehicle Design Tools

    NASA Technical Reports Server (NTRS)

    Renaud, John E.; Batill, Stephen M.; Brockman, Jay B.

    1999-01-01

    This research effort is a joint program between the Departments of Aerospace and Mechanical Engineering and the Computer Science and Engineering Department at the University of Notre Dame. The purpose of the project was to develop a framework and systematic methodology to facilitate the application of Multidisciplinary Design Optimization (MDO) to a diverse class of system design problems. For all practical aerospace systems, the design of a systems is a complex sequence of events which integrates the activities of a variety of discipline "experts" and their associated "tools". The development, archiving and exchange of information between these individual experts is central to the design task and it is this information which provides the basis for these experts to make coordinated design decisions (i.e., compromises and trade-offs) - resulting in the final product design. Grant efforts focused on developing and evaluating frameworks for effective design coordination within a MDO environment. Central to these research efforts was the concept that the individual discipline "expert", using the most appropriate "tools" available and the most complete description of the system should be empowered to have the greatest impact on the design decisions and final design. This means that the overall process must be highly interactive and efficiently conducted if the resulting design is to be developed in a manner consistent with cost and time requirements. The methods developed as part of this research effort include; extensions to a sensitivity based Concurrent Subspace Optimization (CSSO) NMO algorithm; the development of a neural network response surface based CSSO-MDO algorithm; and the integration of distributed computing and process scheduling into the MDO environment. This report overviews research efforts in each of these focus. A complete bibliography of research produced with support of this grant is attached.

  17. Impacts of Performance Pay under the Teacher Incentive Fund: Study Design Report

    ERIC Educational Resources Information Center

    Glazerman, Steven; Chiang, Hanley; Wellington, Alison; Constantine, Jill; Player, Dan

    2011-01-01

    The body of research on the design, implementation, and effects of performance-based compensation systems has influenced the design and evaluation of the 2010 Teacher Incentive Fund (TIF) grants. In the sections presented here, the authors describe the key components of 2010 TIF grants and the conceptual framework for the evaluation. The remainder…

  18. Building Student and Family-Centered Care Coordination Through Ongoing Delivery System Design.

    PubMed

    Baker, Dian; Anderson, Lori; Johnson, Jody

    2017-01-01

    In 2016 the National Association of School Nurses released an updated framework for school nurse practice. One highlight of the new framework is 21st century care coordination. That is, moving beyond basic case management to a systems-level approach for delivery of school health services. The framework broadly applies the term care coordination to include direct care and communication across systems. School nurses are often engaged in efforts to create school health care homes that serve as an axis of coordination for students and families between primary care offices and the schools. Effective care coordination requires that the school nurses not only know the principles of traditional case management but also understand complex systems that drive effective care coordination. The outcome of a system-level approach is enhanced access to services in an integrated health care delivery system that includes the school nurse as an integral member of the school's health care team. This article presents a comprehensive, system-level model of care coordination for school nurse leadership and practice.

  19. A New Framework for Systematic Reviews: Application to Social Skills Interventions for Preschoolers with Autism

    ERIC Educational Resources Information Center

    Goldstein, Howard; Lackey, Kimberly C.; Schneider, Naomi J. B.

    2014-01-01

    This review presents a novel framework for evaluating evidence based on a set of parallel criteria that can be applied to both group and single-subject experimental design (SSED) studies. The authors illustrate use of this evaluation system in a systematic review of 67 articles investigating social skills interventions for preschoolers with autism…

  20. Master Curriculum Guide in Economics for the Nation's Schools. Part I, A Framework for Teaching Economics: Basic Concepts.

    ERIC Educational Resources Information Center

    Hansen, W. Lee; And Others

    A concise framework of basic concepts and generalizations for teaching economics for K-12 students is presented. The guide summarizes the basic structure and substance of economics and lists and describes economic concepts. Standard guidelines are provided to help school systems integrate economics into their on-going courses of study. Designed to…

  1. An Experimental Design of a Foundational Framework for the Application of Affective Computing to Soaring Flight Simulation and Training

    ERIC Educational Resources Information Center

    Moon, Shannon

    2017-01-01

    In the absence of tools for intelligent tutoring systems for soaring flight simulation training, this study evaluated a framework foundation to measure pilot performance, affect, and physiological response to training in real-time. Volunteers were asked to perform a series of flight tasks selected from Federal Aviation Administration Practical…

  2. Investigating Quantum Mechanical Tunneling at the Nanoscale via Analogy: Development and Assessment of a Teaching Tool for Upper-Division Chemistry

    ERIC Educational Resources Information Center

    Muniz, Marc N.; Oliver-Hoyo, Maria T.

    2014-01-01

    We report a novel educational activity designed to teach quantum mechanical tunneling to upper-division undergraduate students in the context of nanochemistry. The activity is based on a theoretical framework for analogy and is split into three parts that are linked pedagogically through the framework: classical ball-and-ramp system, tunneling…

  3. Design of a framework for modeling, integration and simulation of physiological models.

    PubMed

    Erson, E Zeynep; Cavuşoğlu, M Cenk

    2012-09-01

    Multiscale modeling and integration of physiological models carry challenges due to the complex nature of physiological processes. High coupling within and among scales present a significant challenge in constructing and integrating multiscale physiological models. In order to deal with such challenges in a systematic way, there is a significant need for an information technology framework together with related analytical and computational tools that will facilitate integration of models and simulations of complex biological systems. Physiological Model Simulation, Integration and Modeling Framework (Phy-SIM) is an information technology framework providing the tools to facilitate development, integration and simulation of integrated models of human physiology. Phy-SIM brings software level solutions to the challenges raised by the complex nature of physiological systems. The aim of Phy-SIM, and this paper is to lay some foundation with the new approaches such as information flow and modular representation of the physiological models. The ultimate goal is to enhance the development of both the models and the integration approaches of multiscale physiological processes and thus this paper focuses on the design approaches that would achieve such a goal. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. An application framework for computer-aided patient positioning in radiation therapy.

    PubMed

    Liebler, T; Hub, M; Sanner, C; Schlegel, W

    2003-09-01

    The importance of exact patient positioning in radiation therapy increases with the ongoing improvements in irradiation planning and treatment. Therefore, new ways to overcome precision limitations of current positioning methods in fractionated treatment have to be found. The Department of Medical Physics at the German Cancer Research Centre (DKFZ) follows different video-based approaches to increase repositioning precision. In this context, the modular software framework FIVE (Fast Integrated Video-based Environment) has been designed and implemented. It is both hardware- and platform-independent and supports merging position data by integrating various computer-aided patient positioning methods. A highly precise optical tracking system and several subtraction imaging techniques have been realized as modules to supply basic video-based repositioning techniques. This paper describes the common framework architecture, the main software modules and their interfaces. An object-oriented software engineering process has been applied using the UML, C + + and the Qt library. The significance of the current framework prototype for the application in patient positioning as well as the extension to further application areas will be discussed. Particularly in experimental research, where special system adjustments are often necessary, the open design of the software allows problem-oriented extensions and adaptations.

  5. A flexible tool for hydraulic and water quality performance analysis of green infrastructure

    NASA Astrophysics Data System (ADS)

    Massoudieh, A.; Alikhani, J.

    2017-12-01

    Models that allow for design considerations of green infrastructure (GI) practices to control stormwater runoff and associated contaminants have received considerable attention in recent years. To be used to evaluate the effect design configurations on the long-term performance of GIs, models should be able to consider processes within GIs with good fidelity. In this presentation, a sophisticated, yet flexible tool for hydraulic and water quality assessment of GIs will be introduced. The tool can be used by design engineers and researchers to capture and explore the effect of design factors and properties of the media employed in the performance of GI systems at a relatively small scale. We deemed it essential to have a flexible GI modeling tool that is capable of simulating GI system components and specific biogeochemical processes affecting contaminants such as evapotranspiration, plant uptake, reactions, and particle-associated transport accurately while maintaining a high degree of flexibility to account for the myriad of GI alternatives. The mathematical framework for a stand-alone GI performance assessment tool has been developed and will be demonstrated. The process-based model framework developed here can be used to model a diverse range of GI practices such as stormwater ponds, green roofs, retention ponds, bioretention systems, infiltration trench, permeable pavement and other custom-designed combinatory systems. An example of the application of the system to evaluate the performance of a rain-garden system will be demonstrated.

  6. A surety engineering framework to reduce cognitive systems risks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caudell, Thomas P.; Peercy, David Eugene; Caldera, Eva O.

    Cognitive science research investigates the advancement of human cognition and neuroscience capabilities. Addressing risks associated with these advancements can counter potential program failures, legal and ethical issues, constraints to scientific research, and product vulnerabilities. Survey results, focus group discussions, cognitive science experts, and surety researchers concur technical risks exist that could impact cognitive science research in areas such as medicine, privacy, human enhancement, law and policy, military applications, and national security (SAND2006-6895). This SAND report documents a surety engineering framework and a process for identifying cognitive system technical, ethical, legal and societal risks and applying appropriate surety methods to reducemore » such risks. The framework consists of several models: Specification, Design, Evaluation, Risk, and Maturity. Two detailed case studies are included to illustrate the use of the process and framework. Several Appendices provide detailed information on existing cognitive system architectures; ethical, legal, and societal risk research; surety methods and technologies; and educing information research with a case study vignette. The process and framework provide a model for how cognitive systems research and full-scale product development can apply surety engineering to reduce perceived and actual risks.« less

  7. A Framework for the Development of Context-Adaptable User Interfaces for Ubiquitous Computing Systems

    PubMed Central

    Varela, Gervasio; Paz-Lopez, Alejandro; Becerra, Jose A.; Duro, Richard

    2016-01-01

    This paper addresses the problem of developing user interfaces for Ubiquitous Computing (UC) and Ambient Intelligence (AmI) systems. These kind of systems are expected to provide a natural user experience, considering interaction modalities adapted to the user abilities and preferences and using whatever interaction devices are present in the environment. These interaction devices are not necessarily known at design time. The task is quite complicated due to the variety of devices and technologies, and the diversity of scenarios, and it usually burdens the developer with the need to create many different UIs in order to consider the foreseeable user-environment combinations. Here, we propose an UI abstraction framework for UC and AmI systems that effectively improves the portability of those systems between different environments and for different users. It allows developers to design and implement a single UI capable of being deployed with different devices and modalities regardless the physical location. PMID:27399711

  8. A multi-level simulation platform of natural gas internal reforming solid oxide fuel cell-gas turbine hybrid generation system - Part II. Balancing units model library and system simulation

    NASA Astrophysics Data System (ADS)

    Bao, Cheng; Cai, Ningsheng; Croiset, Eric

    2011-10-01

    Following our integrated hierarchical modeling framework of natural gas internal reforming solid oxide fuel cell (IRSOFC), this paper firstly introduces the model libraries of main balancing units, including some state-of-the-art achievements and our specific work. Based on gPROMS programming code, flexible configuration and modular design are fully realized by specifying graphically all unit models in each level. Via comparison with the steady-state experimental data of Siemens-Westinghouse demonstration system, the in-house multi-level SOFC-gas turbine (GT) simulation platform is validated to be more accurate than the advanced power system analysis tool (APSAT). Moreover, some units of the demonstration system are designed reversely for analysis of a typically part-load transient process. The framework of distributed and dynamic modeling in most of units is significant for the development of control strategies in the future.

  9. Modeling Demand-Responsive Feeder Systems in the UTPS Framework

    DOT National Transportation Integrated Search

    1978-07-01

    For the transit planner considering alternative future transit designs, there has been little in the way of analytical tools available to assess the impact of demand-responsive transportation (DRT) systems. The intent of this report is to provide the...

  10. Asynchronous Runtimes in Action: An Introspective Framework for a Next Gen Runtime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suetterlein, Joshua D.; Landwehr, Joshua B.; Marquez, Andres

    2016-05-23

    One of the most critical challenges that new high performance systems face is the lack of system software support for these large scale systems. Investment on system stack components is essential in the development, debugging and optimization of the new emerging programming models. These emerging models have the promise to better utilize the vast hardware resources available in current and future systems. To aid in the development of applications and new system stacks, runtimes, as instances of their respective execution models, need to produce facilities to introspect their inner workings and allow an indepth attribution of performance bottlenecks and computationalmore » patterns. In other words, the runtime systems need to reduce their opacity to observers so that users of a novel program execution model can adapt their designs to fit the intended model usage, regardless of the layer that they are working on. This design/development loop (akin to co-design) enables synergistic opportunities across the entire computational stack. This paper presents the design and implementation of a simple “gray” box performance attribution harness running inside a fine grain runtime system: the Open Community Runtime (OCR). We showcase what such a framework can indicate regarding the runtime behavior while running at scale. To this end, we have designed a set of synthetic scenarios aimed to test the runtime at their best and worst cases. We present an analysis of the most important runtime features, properties and idiosyncrasies that will affect the development of new runtime features, algorithmic selection, and application development.« less

  11. The Foundations Framework for Developing and Reporting New Models of Care for Multimorbidity

    PubMed Central

    Stokes, Jonathan; Man, Mei-See; Guthrie, Bruce; Mercer, Stewart W.; Salisbury, Chris; Bower, Peter

    2017-01-01

    PURPOSE Multimorbidity challenges health systems globally. New models of care are urgently needed to better manage patients with multimorbidity; however, there is no agreed framework for designing and reporting models of care for multimorbidity and their evaluation. METHODS Based on findings from a literature search to identify models of care for multimorbidity, we developed a framework to describe these models. We illustrate the application of the framework by identifying the focus and gaps in current models of care, and by describing the evolution of models over time. RESULTS Our framework describes each model in terms of its theoretical basis and target population (the foundations of the model) and of the elements of care implemented to deliver the model. We categorized elements of care into 3 types: (1) clinical focus, (2) organization of care, (3) support for model delivery. Application of the framework identified a limited use of theory in model design and a strong focus on some patient groups (elderly, high users) more than others (younger patients, deprived populations). We found changes in elements with time, with a decrease in models implementing home care and an increase in models offering extended appointments. CONCLUSIONS By encouragin greater clarity about the underpinning theory and target population, and by categorizing the wide range of potentially important elements of an intervention to improve care for patients with multimorbidity, the framework may be useful in designing and reporting models of care and help advance the currently limited evidence base. PMID:29133498

  12. A Novel Visual Interface to Foster Innovation in Mechanical Engineering and Protect from Patent Infringement

    NASA Astrophysics Data System (ADS)

    Sorce, Salvatore; Malizia, Alessio; Jiang, Pingfei; Atherton, Mark; Harrison, David

    2018-04-01

    One of the main time and money consuming tasks in the design of industrial devices and parts is the checking of possible patent infringements. Indeed, the great number of documents to be mined and the wide variety of technical language used to describe inventions are reasons why considerable amounts of time may be needed. On the other hand, the early detection of a possible patent conflict, in addition to reducing the risk of legal disputes, could stimulate a designers’ creativity to overcome similarities in overlapping patents. For this reason, there are a lot of existing patent analysis systems, each with its own features and access modes. We have designed a visual interface providing an intuitive access to such systems, freeing the designers from the specific knowledge of querying languages and providing them with visual clues. We tested the interface on a framework aimed at representing mechanical engineering patents; the framework is based on a semantic database and provides patent conflict analysis for early-stage designs. The interface supports a visual query composition to obtain a list of potentially overlapping designs.

  13. From expert-derived user needs to user-perceived ease of use and usefulness: a two-phase mixed-methods evaluation framework.

    PubMed

    Boland, Mary Regina; Rusanov, Alexander; So, Yat; Lopez-Jimenez, Carlos; Busacca, Linda; Steinman, Richard C; Bakken, Suzanne; Bigger, J Thomas; Weng, Chunhua

    2014-12-01

    Underspecified user needs and frequent lack of a gold standard reference are typical barriers to technology evaluation. To address this problem, this paper presents a two-phase evaluation framework involving usability experts (phase 1) and end-users (phase 2). In phase 1, a cross-system functionality alignment between expert-derived user needs and system functions was performed to inform the choice of "the best available" comparison system to enable a cognitive walkthrough in phase 1 and a comparative effectiveness evaluation in phase 2. During phase 2, five quantitative and qualitative evaluation methods are mixed to assess usability: time-motion analysis, software log, questionnaires - System Usability Scale and the Unified Theory of Acceptance of Use of Technology, think-aloud protocols, and unstructured interviews. Each method contributes data for a unique measure (e.g., time motion analysis contributes task-completion-time; software log contributes action transition frequency). The measures are triangulated to yield complementary insights regarding user-perceived ease-of-use, functionality integration, anxiety during use, and workflow impact. To illustrate its use, we applied this framework in a formative evaluation of a software called Integrated Model for Patient Care and Clinical Trials (IMPACT). We conclude that this mixed-methods evaluation framework enables an integrated assessment of user needs satisfaction and user-perceived usefulness and usability of a novel design. This evaluation framework effectively bridges the gap between co-evolving user needs and technology designs during iterative prototyping and is particularly useful when it is difficult for users to articulate their needs for technology support due to the lack of a baseline. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Timeline and the Timeline Exchange Infrastructure: a Framework for Exchanging Temporal Information

    NASA Technical Reports Server (NTRS)

    Donahue, Kenneth; Chung, Seung H,

    2013-01-01

    The concept of a timeline is used ubiquitously during space mission design and development to specify elements of flight and ground system designs. In this paper we introduce our Timeline Ontology. The Timeline Ontology is grounded in mathematical formalism, thus proving concrete semantics.

  15. A systematic approach to sound decision making starts with financial reporting.

    PubMed

    Taylor, R B

    1989-11-01

    Managers and supervisors need information to measure departmental performance. Designing a reporting system requires managers to obtain needed information without being flooded by extraneous data. A reporting framework designed to examine five control points is a necessary tool, and a good place to start.

  16. Intelligent Frameworks for Instructional Design.

    ERIC Educational Resources Information Center

    Spector, J. Michael; And Others

    Many researchers are attempting to develop automated instructional development systems to guide subject matter experts through the lengthy and difficult process of courseware development. Because the targeted users often lack instructional design expertise, a great deal of emphasis has been placed on the use of artificial intelligence (AI) to…

  17. Value-informed space systems design and acquisition

    NASA Astrophysics Data System (ADS)

    Brathwaite, Joy

    Investments in space systems are substantial, indivisible, and irreversible, characteristics that make them high-risk, especially when coupled with an uncertain demand environment. Traditional approaches to system design and acquisition, derived from a performance- or cost-centric mindset, incorporate little information about the spacecraft in relation to its environment and its value to its stakeholders. These traditional approaches, while appropriate in stable environments, are ill-suited for the current, distinctly uncertain, and rapidly changing technical and economic conditions; as such, they have to be revisited and adapted to the present context. This thesis proposes that in uncertain environments, decision-making with respect to space system design and acquisition should be value-based, or at a minimum value-informed. This research advances the value-centric paradigm by providing the theoretical basis, foundational frameworks, and supporting analytical tools for value assessment of priced and unpriced space systems. For priced systems, stochastic models of the market environment and financial models of stakeholder preferences are developed and integrated with a spacecraft-sizing tool to assess the system's net present value. The analytical framework is applied to a case study of a communications satellite, with market, financial, and technical data obtained from the satellite operator, Intelsat. The case study investigates the implications of the value-centric versus the cost-centric design and acquisition choices. Results identify the ways in which value-optimal spacecraft design choices are contingent on both technical and market conditions, and that larger spacecraft for example, which reap economies of scale benefits, as reflected by their decreasing cost-per-transponder, are not always the best (most valuable) choices. Market conditions and technical constraints for which convergence occurs between design choices under a cost-centric and a value-centric approach are identified and discussed. In addition, an innovative approach for characterizing value uncertainty through partial moments, a technique used in finance, is adapted to an engineering context and applied to priced space systems. Partial moments disaggregate uncertainty into upside potential and downside risk, and as such, they provide the decision-maker with additional insights for value-uncertainty management in design and acquisition. For unpriced space systems, this research first posits that their value derives from, and can be assessed through, the value of information they provide. To this effect, a Bayesian framework is created to assess system value in which the system is viewed as an information provider and the stakeholder an information recipient. Information has value to stakeholders as it changes their rational beliefs enabling them to yield higher expected pay-offs. Based on this marginal increase in expected pay-offs, a new metric, Value-of-Design (VoD), is introduced to quantify the unpriced system’s value. The Bayesian framework is applied to the case of an Earth Science satellite that provides hurricane information to oil rig operators using nested Monte Carlo modeling and simulation. Probability models of stakeholders’ beliefs, and economic models of pay-offs are developed and integrated with a spacecraft payload generation tool. The case study investigates the information value generated by each payload, with results pointing to clusters of payload instruments that yielded higher information value, and minimum information thresholds below which it is difficult to justify the acquisition of the system. In addition, an analytical decision tool, probabilistic Pareto fronts, is developed in the Cost-VoD trade space to provide the decision-maker with additional insights into the coupling of a system's probable value generation and its associated cost risk.

  18. A comparison of laser-welded titanium and conventional cast frameworks supported by implants in the partially edentulous jaw: a 3-year prospective multicenter study.

    PubMed

    Jemt, T; Henry, P; Lindén, B; Naert, I; Weber, H; Bergström, C

    2000-01-01

    The purpose of this prospective multicenter study was to evaluate and compare the clinical performance of laser-welded titanium fixed partial implant-supported prostheses with conventional cast frameworks. Forty-two partially edentulous patients were provided with Brånemark system implants and arranged into 2 groups. Group A was provided with a conventional cast framework with porcelain veneers in one side of the jaw and a laser-welded titanium framework with low-fusing porcelain on the other side. The patients in group B had an old implant prosthesis replaced by a titanium framework prosthesis. The patients were followed for 3 years after prosthesis placement. Clinical and radiographic data were collected and analyzed. Only one implant was lost, and all prostheses were still in function after 3 years. The 2 framework designs showed similar clinical performance with few clinical complications. Only one abutment screw (1%) and 9 porcelain tooth units (5%) fractured. Four prostheses experienced loose gold screws (6%). In group A, marginal bone loss was similar for both designs of prostheses, with a mean of 1.0 mm and 0.3 mm in the maxilla and mandible, respectively. No bone loss was observed on average in group B. No significant relationship (P > 0.05) was observed between marginal bone loss and placement of prosthesis margin or prosthesis design. The use of laser-welded titanium frameworks seems to present similar clinical performance to conventional cast frameworks in partial implant situations after 3 years.

  19. Framework for Designing Context-Aware Learning Systems

    ERIC Educational Resources Information Center

    Tortorella, Richard A. W.; Kinshuk; Chen, Nian-Shing

    2018-01-01

    Today people learn in many diverse locations and contexts, beyond the confines of classical brick and mortar classrooms. This trend is ever increasing, progressing hand-in-hand with the progress of technology. Context-aware learning systems are systems which adapt to the learner's context, providing tailored learning for a particular learning…

  20. Multiplatform E-Learning Systems and Technologies: Mobile Devices for Ubiquitous ICT-Based Education

    ERIC Educational Resources Information Center

    Goh, Tiong Thye, Ed.

    2010-01-01

    Multiplatform e-learning systems are emerging technologies that provide integrated learning content to various accessing devices. This book addresses technical challenges, design frameworks, and development experiences of the future that integrate multiple mobile devices into a single multiplatform e-learning system. With expert international…

  1. Management Expert Systems (M.E.S.): A Framework for Development and Implementation.

    ERIC Educational Resources Information Center

    Moser, Jorge; Christoph, Richard

    1987-01-01

    This description of the development of expert systems designed to solve management problems focuses on the issue of corporate divestment as an example. Software needs are discussed, and an example of a management expert system for divestment analysis at James Madison University is briefly described. (Author/LRW)

  2. Controlled Ecological Life Support System. Design, Development, and Use of a Ground-Based Plant Growth Module

    NASA Technical Reports Server (NTRS)

    Macelroy, Robert D.; Smernoff, David T.; Rummel, John D.

    1987-01-01

    Problems of food production by higher plants are addressed. Experimentation requirements and necessary equipment for designing an experimental Controlled Ecological Life Support System (CELSS) Plant Growth Module are defined. A framework is provided for the design of laboratory sized plant growth chambers. The rationale for the development of an informal collaborative effort between investigators from universities and industry and those at Ames is evaluated. Specific research problems appropriate for collaborative efforts are identified.

  3. Two controller design approaches for decentralized systems

    NASA Technical Reports Server (NTRS)

    Ozguner, U.; Khorrami, F.; Iftar, A.

    1988-01-01

    Two different philosophies for designing the controllers of decentralized systems are considered within a quadratic regulator framework which is generalized to admit decentralized frequency weighting. In the first approach, the total system model is examined, and the feedback strategy for each channel or subsystem is determined. In the second approach, separate, possibly overlapping, and uncoupled models are analyzed for each channel, and the results can be combined to study the original system. The two methods are applied to the example of a model of the NASA COFS Mast Flight System.

  4. Model Based Mission Assurance: Emerging Opportunities for Robotic Systems

    NASA Technical Reports Server (NTRS)

    Evans, John W.; DiVenti, Tony

    2016-01-01

    The emergence of Model Based Systems Engineering (MBSE) in a Model Based Engineering framework has created new opportunities to improve effectiveness and efficiencies across the assurance functions. The MBSE environment supports not only system architecture development, but provides for support of Systems Safety, Reliability and Risk Analysis concurrently in the same framework. Linking to detailed design will further improve assurance capabilities to support failures avoidance and mitigation in flight systems. This also is leading new assurance functions including model assurance and management of uncertainty in the modeling environment. Further, the assurance cases, a structured hierarchal argument or model, are emerging as a basis for supporting a comprehensive viewpoint in which to support Model Based Mission Assurance (MBMA).

  5. Pattern-oriented modeling of agent-based complex systems: Lessons from ecology

    USGS Publications Warehouse

    Grimm, Volker; Revilla, Eloy; Berger, Uta; Jeltsch, Florian; Mooij, Wolf M.; Railsback, Steven F.; Thulke, Hans-Hermann; Weiner, Jacob; Wiegand, Thorsten; DeAngelis, Donald L.

    2005-01-01

    Agent-based complex systems are dynamic networks of many interacting agents; examples include ecosystems, financial markets, and cities. The search for general principles underlying the internal organization of such systems often uses bottom-up simulation models such as cellular automata and agent-based models. No general framework for designing, testing, and analyzing bottom-up models has yet been established, but recent advances in ecological modeling have come together in a general strategy we call pattern-oriented modeling. This strategy provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity.

  6. Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology

    NASA Astrophysics Data System (ADS)

    Grimm, Volker; Revilla, Eloy; Berger, Uta; Jeltsch, Florian; Mooij, Wolf M.; Railsback, Steven F.; Thulke, Hans-Hermann; Weiner, Jacob; Wiegand, Thorsten; DeAngelis, Donald L.

    2005-11-01

    Agent-based complex systems are dynamic networks of many interacting agents; examples include ecosystems, financial markets, and cities. The search for general principles underlying the internal organization of such systems often uses bottom-up simulation models such as cellular automata and agent-based models. No general framework for designing, testing, and analyzing bottom-up models has yet been established, but recent advances in ecological modeling have come together in a general strategy we call pattern-oriented modeling. This strategy provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity.

  7. Application of Framework for Integrating Safety, Security and Safeguards (3Ss) into the Design Of Used Nuclear Fuel Storage Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badwan, Faris M.; Demuth, Scott F

    Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is amore » fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design of the UNFSF. The framework for integration of safeguards and security into the UNFSF will include 1) identification of applicable regulatory requirements, 2) selection of a common system that share dual safeguard and security functions, 3) development of functional design criteria and design requirements for the selected system, 4) identification and integration of the dual safeguards and security design requirements, and 5) assessment of the integration and potential benefit.« less

  8. A Software Tool for Integrated Optical Design Analysis

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Troy, Ed; DePlachett, Charles; Montgomery, Edward (Technical Monitor)

    2001-01-01

    Design of large precision optical systems requires multi-disciplinary analysis, modeling, and design. Thermal, structural and optical characteristics of the hardware must be accurately understood in order to design a system capable of accomplishing the performance requirements. The interactions between each of the disciplines become stronger as systems are designed lighter weight for space applications. This coupling dictates a concurrent engineering design approach. In the past, integrated modeling tools have been developed that attempt to integrate all of the complex analysis within the framework of a single model. This often results in modeling simplifications and it requires engineering specialist to learn new applications. The software described in this presentation addresses the concurrent engineering task using a different approach. The software tool, Integrated Optical Design Analysis (IODA), uses data fusion technology to enable a cross discipline team of engineering experts to concurrently design an optical system using their standard validated engineering design tools.

  9. Security Frameworks for Machine-to-Machine Devices and Networks

    NASA Astrophysics Data System (ADS)

    Demblewski, Michael

    Attacks against mobile systems have escalated over the past decade. There have been increases of fraud, platform attacks, and malware. The Internet of Things (IoT) offers a new attack vector for Cybercriminals. M2M contributes to the growing number of devices that use wireless systems for Internet connection. As new applications and platforms are created, old vulnerabilities are transferred to next-generation systems. There is a research gap that exists between the current approaches for security framework development and the understanding of how these new technologies are different and how they are similar. This gap exists because system designers, security architects, and users are not fully aware of security risks and how next-generation devices can jeopardize safety and personal privacy. Current techniques, for developing security requirements, do not adequately consider the use of new technologies, and this weakens countermeasure implementations. These techniques rely on security frameworks for requirements development. These frameworks lack a method for identifying next generation security concerns and processes for comparing, contrasting and evaluating non-human device security protections. This research presents a solution for this problem by offering a novel security framework that is focused on the study of the "functions and capabilities" of M2M devices and improves the systems development life cycle for the overall IoT ecosystem.

  10. Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter.

    PubMed

    Yang, Chun; Mohammadi, Arash; Chen, Qing-Wei

    2016-11-02

    Motivated by the key importance of multi-sensor information fusion algorithms in the state-of-the-art integrated navigation systems due to recent advancements in sensor technologies, telecommunication, and navigation systems, the paper proposes an improved and innovative fault-tolerant fusion framework. An integrated navigation system is considered consisting of four sensory sub-systems, i.e., Strap-down Inertial Navigation System (SINS), Global Navigation System (GPS), the Bei-Dou2 (BD2) and Celestial Navigation System (CNS) navigation sensors. In such multi-sensor applications, on the one hand, the design of an efficient fusion methodology is extremely constrained specially when no information regarding the system's error characteristics is available. On the other hand, the development of an accurate fault detection and integrity monitoring solution is both challenging and critical. The paper addresses the sensitivity issues of conventional fault detection solutions and the unavailability of a precisely known system model by jointly designing fault detection and information fusion algorithms. In particular, by using ideas from Interacting Multiple Model (IMM) filters, the uncertainty of the system will be adjusted adaptively by model probabilities and using the proposed fuzzy-based fusion framework. The paper also addresses the problem of using corrupted measurements for fault detection purposes by designing a two state propagator chi-square test jointly with the fusion algorithm. Two IMM predictors, running in parallel, are used and alternatively reactivated based on the received information form the fusion filter to increase the reliability and accuracy of the proposed detection solution. With the combination of the IMM and the proposed fusion method, we increase the failure sensitivity of the detection system and, thereby, significantly increase the overall reliability and accuracy of the integrated navigation system. Simulation results indicate that the proposed fault tolerant fusion framework provides superior performance over its traditional counterparts.

  11. openSE: a Systems Engineering Framework Particularly Suited to Particle Accelerator Studies and Development Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnal, P.; Féral, B.; Kershaw, K.

    Particle accelerator projects share many characteristics with industrial projects. However, experience has shown that best practice of industrial project management is not always well suited to particle accelerator projects. Major differences include the number and complexity of technologies involved, the importance of collaborative work, development phases that can last more than a decade, and the importance of telerobotics and remote handling to address future preventive and corrective maintenance requirements due to induced radioactivity, to cite just a few. The openSE framework it is a systems engineering and project management framework specifically designed for scientific facilities’ systems and equipment studies andmore » development projects. Best practices in project management, in systems and requirements engineering, in telerobotics and remote handling and in radiation safety management were used as sources of inspiration, together with analysis of current practices surveyed at CERN, GSI and ESS.« less

  12. Toward a theoretical framework for trustworthy cyber sensing

    NASA Astrophysics Data System (ADS)

    Xu, Shouhuai

    2010-04-01

    Cyberspace is an indispensable part of the economy and society, but has been "polluted" with many compromised computers that can be abused to launch further attacks against the others. Since it is likely that there always are compromised computers, it is important to be aware of the (dynamic) cyber security-related situation, which is however challenging because cyberspace is an extremely large-scale complex system. Our project aims to investigate a theoretical framework for trustworthy cyber sensing. With the perspective of treating cyberspace as a large-scale complex system, the core question we aim to address is: What would be a competent theoretical (mathematical and algorithmic) framework for designing, analyzing, deploying, managing, and adapting cyber sensor systems so as to provide trustworthy information or input to the higher layer of cyber situation-awareness management, even in the presence of sophisticated malicious attacks against the cyber sensor systems?

  13. Techno-ecological synergy: a framework for sustainable engineering.

    PubMed

    Bakshi, Bhavik R; Ziv, Guy; Lepech, Michael D

    2015-02-03

    Even though the importance of ecosystems in sustaining all human activities is well-known, methods for sustainable engineering fail to fully account for this role of nature. Most methods account for the demand for ecosystem services, but almost none account for the supply. Incomplete accounting of the very foundation of human well-being can result in perverse outcomes from decisions meant to enhance sustainability and lost opportunities for benefiting from the ability of nature to satisfy human needs in an economically and environmentally superior manner. This paper develops a framework for understanding and designing synergies between technological and ecological systems to encourage greater harmony between human activities and nature. This framework considers technological systems ranging from individual processes to supply chains and life cycles, along with corresponding ecological systems at multiple spatial scales ranging from local to global. The demand for specific ecosystem services is determined from information about emissions and resource use, while the supply is obtained from information about the capacity of relevant ecosystems. Metrics calculate the sustainability of individual ecosystem services at multiple spatial scales and help define necessary but not sufficient conditions for local and global sustainability. Efforts to reduce ecological overshoot encourage enhancement of life cycle efficiency, development of industrial symbiosis, innovative designs and policies, and ecological restoration, thus combining the best features of many existing methods. Opportunities for theoretical and applied research to make this framework practical are also discussed.

  14. Matching methods evaluation framework for stereoscopic breast x-ray images.

    PubMed

    Rousson, Johanna; Naudin, Mathieu; Marchessoux, Cédric

    2016-01-01

    Three-dimensional (3-D) imaging has been intensively studied in the past few decades. Depth information is an important added value of 3-D systems over two-dimensional systems. Special focuses were devoted to the development of stereo matching methods for the generation of disparity maps (i.e., depth information within a 3-D scene). Dedicated frameworks were designed to evaluate and rank the performance of different stereo matching methods but never considering x-ray medical images. Yet, 3-D x-ray acquisition systems and 3-D medical displays have already been introduced into the diagnostic market. To access the depth information within x-ray stereoscopic images, computing accurate disparity maps is essential. We aimed at developing a framework dedicated to x-ray stereoscopic breast images used to evaluate and rank several stereo matching methods. A multiresolution pyramid optimization approach was integrated to the framework to increase the accuracy and the efficiency of the stereo matching techniques. Finally, a metric was designed to score the results of the stereo matching compared with the ground truth. Eight methods were evaluated and four of them [locally scaled sum of absolute differences (LSAD), zero mean sum of absolute differences, zero mean sum of squared differences, and locally scaled mean sum of squared differences] appeared to perform equally good with an average error score of 0.04 (0 is the perfect matching). LSAD was selected for generating the disparity maps.

  15. TrustBuilder2: A Reconfigurable Framework for Trust Negotiation

    NASA Astrophysics Data System (ADS)

    Lee, Adam J.; Winslett, Marianne; Perano, Kenneth J.

    To date, research in trust negotiation has focused mainly on the theoretical aspects of the trust negotiation process, and the development of proof of concept implementations. These theoretical works and proofs of concept have been quite successful from a research perspective, and thus researchers must now begin to address the systems constraints that act as barriers to the deployment of these systems. To this end, we present TrustBuilder2, a fully-configurable and extensible framework for prototyping and evaluating trust negotiation systems. TrustBuilder2 leverages a plug-in based architecture, extensible data type hierarchy, and flexible communication protocol to provide a framework within which numerous trust negotiation protocols and system configurations can be quantitatively analyzed. In this paper, we discuss the design and implementation of TrustBuilder2, study its performance, examine the costs associated with flexible authorization systems, and leverage this knowledge to identify potential topics for future research, as well as a novel method for attacking trust negotiation systems.

  16. Design for validation: An approach to systems validation

    NASA Technical Reports Server (NTRS)

    Carter, William C.; Dunham, Janet R.; Laprie, Jean-Claude; Williams, Thomas; Howden, William; Smith, Brian; Lewis, Carl M. (Editor)

    1989-01-01

    Every complex system built is validated in some manner. Computer validation begins with review of the system design. As systems became too complicated for one person to review, validation began to rely on the application of adhoc methods by many individuals. As the cost of the changes mounted and the expense of failure increased, more organized procedures became essential. Attempts at devising and carrying out those procedures showed that validation is indeed a difficult technical problem. The successful transformation of the validation process into a systematic series of formally sound, integrated steps is necessary if the liability inherent in the future digita-system-based avionic and space systems is to be minimized. A suggested framework and timetable for the transformtion are presented. Basic working definitions of two pivotal ideas (validation and system life-cyle) are provided and show how the two concepts interact. Many examples are given of past and present validation activities by NASA and others. A conceptual framework is presented for the validation process. Finally, important areas are listed for ongoing development of the validation process at NASA Langley Research Center.

  17. Opportunities and challenges for implementing cost accounting systems in the Kenyan health system

    PubMed Central

    Kihuba, Elesban; Gheorghe, Adrian; Bozzani, Fiammetta; English, Mike; Griffiths, Ulla K.

    2016-01-01

    Background Low- and middle-income countries need to sustain efficiency and equity in health financing on their way to universal health care coverage. However, systems meant to generate quality economic information are often deficient in such settings. We assessed the feasibility of streamlining cost accounting systems within the Kenyan health sector to illustrate the pragmatic challenges and opportunities. Design We reviewed policy documents, and conducted field observations and semi-structured interviews with key informants in the health sector. We used an adapted Human, Organization and Technology fit (HOT-fit) framework to analyze the components and standards of a cost accounting system. Results Among the opportunities for a viable cost accounting system, we identified a supportive broad policy environment, political will, presence of a national data reporting architecture, good implementation experience with electronic medical records systems, and the availability of patient clinical and resource use data. However, several practical issues need to be considered in the design of the system, including the lack of a framework to guide the costing process, the lack of long-term investment, the lack of appropriate incentives for ground-level staff, and a risk of overburdening the current health management information system. Conclusion To facilitate the implementation of cost accounting into the health sector, the design of any proposed system needs to remain simple and attuned to the local context. PMID:27357072

  18. The Human Factors Analysis and Classification System : HFACS : final report.

    DOT National Transportation Integrated Search

    2000-02-01

    Human error has been implicated in 70 to 80% of all civil and military aviation accidents. Yet, most accident reporting systems are not designed around any theoretical framework of human error. As a result, most accident databases are not conducive t...

  19. A Handbook for School District Financial Management.

    ERIC Educational Resources Information Center

    Dembowski, Frederick L.

    Designed for school business officials, this handbook provides research information and guidelines on school district banking and cash management systems. Section 1 gives an overview of district financial management operations, discussing the administrative framework, cash budgeting, information and control systems, collection and disbursement…

  20. A Framework for a Decision Support System in a Hierarchical Extended Enterprise Decision Context

    NASA Astrophysics Data System (ADS)

    Boza, Andrés; Ortiz, Angel; Vicens, Eduardo; Poler, Raul

    Decision Support System (DSS) tools provide useful information to decision makers. In an Extended Enterprise, a new goal, changes in the current objectives or small changes in the extended enterprise configuration produce a necessary adjustment in its decision system. A DSS in this context must be flexible and agile to make suitable an easy and quickly adaptation to this new context. This paper proposes to extend the Hierarchical Production Planning (HPP) structure to an Extended Enterprise decision making context. In this way, a framework for DSS in Extended Enterprise context is defined using components of HPP. Interoperability details have been reviewed to identify the impact in this framework. The proposed framework allows overcoming some interoperability barriers, identifying and organizing components for a DSS in Extended Enterprise context, and working in the definition of an architecture to be used in the design process of a flexible DSS in Extended Enterprise context which can reuse components for futures Extended Enterprise configurations.

  1. Adaptive Fuzzy Output Constrained Control Design for Multi-Input Multioutput Stochastic Nonstrict-Feedback Nonlinear Systems.

    PubMed

    Li, Yongming; Tong, Shaocheng

    2017-12-01

    In this paper, an adaptive fuzzy output constrained control design approach is addressed for multi-input multioutput uncertain stochastic nonlinear systems in nonstrict-feedback form. The nonlinear systems addressed in this paper possess unstructured uncertainties, unknown gain functions and unknown stochastic disturbances. Fuzzy logic systems are utilized to tackle the problem of unknown nonlinear uncertainties. The barrier Lyapunov function technique is employed to solve the output constrained problem. In the framework of backstepping design, an adaptive fuzzy control design scheme is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.

  2. Teacher Evaluation To Enhance Professional Practice.

    ERIC Educational Resources Information Center

    Danielson, Charlotte; McGreal, Thomas L.

    This book shows how a school district's local teacher evaluation committee can design evaluation systems in which educators can achieve the dual purposes of accountability and professional development and even merge these purposes. A structural framework for designing the evaluation is proposed that locates teachers in one of three tracks: the…

  3. 75 FR 62820 - Screening Framework Guidance for Providers of Synthetic Double-Stranded DNA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ... I. Summary Synthetic biology, the developing interdisciplinary field that focuses on both the design and fabrication of novel biological components and systems as well as the re-design and fabrication of... develop, maintain, and document protocols to determine if a sequence ``hit'' qualifies as a true...

  4. Design of Optimally Robust Control Systems.

    DTIC Science & Technology

    1980-01-01

    approach is that the optimization framework is an artificial device. While some design constraints can easily be incorporated into a single cost function...indicating that that point was indeed the solution. Also, an intellegent initial guess for k was important in order to avoid being hung up at the double

  5. 75 FR 63462 - Smart Grid Interoperability Standards; Notice of Docket Designation for Smart Grid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM11-2-000] Smart Grid Interoperability Standards; Notice of Docket Designation for Smart Grid Interoperability Standards October 7, 2010... directs the development of a framework to achieve interoperability of smart grid devices and systems...

  6. Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter

    PubMed Central

    Yang, Chun; Mohammadi, Arash; Chen, Qing-Wei

    2016-01-01

    Motivated by the key importance of multi-sensor information fusion algorithms in the state-of-the-art integrated navigation systems due to recent advancements in sensor technologies, telecommunication, and navigation systems, the paper proposes an improved and innovative fault-tolerant fusion framework. An integrated navigation system is considered consisting of four sensory sub-systems, i.e., Strap-down Inertial Navigation System (SINS), Global Navigation System (GPS), the Bei-Dou2 (BD2) and Celestial Navigation System (CNS) navigation sensors. In such multi-sensor applications, on the one hand, the design of an efficient fusion methodology is extremely constrained specially when no information regarding the system’s error characteristics is available. On the other hand, the development of an accurate fault detection and integrity monitoring solution is both challenging and critical. The paper addresses the sensitivity issues of conventional fault detection solutions and the unavailability of a precisely known system model by jointly designing fault detection and information fusion algorithms. In particular, by using ideas from Interacting Multiple Model (IMM) filters, the uncertainty of the system will be adjusted adaptively by model probabilities and using the proposed fuzzy-based fusion framework. The paper also addresses the problem of using corrupted measurements for fault detection purposes by designing a two state propagator chi-square test jointly with the fusion algorithm. Two IMM predictors, running in parallel, are used and alternatively reactivated based on the received information form the fusion filter to increase the reliability and accuracy of the proposed detection solution. With the combination of the IMM and the proposed fusion method, we increase the failure sensitivity of the detection system and, thereby, significantly increase the overall reliability and accuracy of the integrated navigation system. Simulation results indicate that the proposed fault tolerant fusion framework provides superior performance over its traditional counterparts. PMID:27827832

  7. ClearTK 2.0: Design Patterns for Machine Learning in UIMA

    PubMed Central

    Bethard, Steven; Ogren, Philip; Becker, Lee

    2014-01-01

    ClearTK adds machine learning functionality to the UIMA framework, providing wrappers to popular machine learning libraries, a rich feature extraction library that works across different classifiers, and utilities for applying and evaluating machine learning models. Since its inception in 2008, ClearTK has evolved in response to feedback from developers and the community. This evolution has followed a number of important design principles including: conceptually simple annotator interfaces, readable pipeline descriptions, minimal collection readers, type system agnostic code, modules organized for ease of import, and assisting user comprehension of the complex UIMA framework. PMID:29104966

  8. ClearTK 2.0: Design Patterns for Machine Learning in UIMA.

    PubMed

    Bethard, Steven; Ogren, Philip; Becker, Lee

    2014-05-01

    ClearTK adds machine learning functionality to the UIMA framework, providing wrappers to popular machine learning libraries, a rich feature extraction library that works across different classifiers, and utilities for applying and evaluating machine learning models. Since its inception in 2008, ClearTK has evolved in response to feedback from developers and the community. This evolution has followed a number of important design principles including: conceptually simple annotator interfaces, readable pipeline descriptions, minimal collection readers, type system agnostic code, modules organized for ease of import, and assisting user comprehension of the complex UIMA framework.

  9. Use of software engineering techniques in the design of the ALEPH data acquisition system

    NASA Astrophysics Data System (ADS)

    Charity, T.; McClatchey, R.; Harvey, J.

    1987-08-01

    The SASD methodology is being used to provide a rigorous design framework for various components of the ALEPH data acquisition system. The Entity-Relationship data model is used to describe the layout and configuration of the control and acquisition systems and detector components. State Transition Diagrams are used to specify control applications such as run control and resource management and Data Flow Diagrams assist in decomposing software tasks and defining interfaces between processes. These techniques encourage rigorous software design leading to enhanced functionality and reliability. Improved documentation and communication ensures continuity over the system life-cycle and simplifies project management.

  10. NASA Data Acquisition System Software Development for Rocket Propulsion Test Facilities

    NASA Technical Reports Server (NTRS)

    Herbert, Phillip W., Sr.; Elliot, Alex C.; Graves, Andrew R.

    2015-01-01

    Current NASA propulsion test facilities include Stennis Space Center in Mississippi, Marshall Space Flight Center in Alabama, Plum Brook Station in Ohio, and White Sands Test Facility in New Mexico. Within and across these centers, a diverse set of data acquisition systems exist with different hardware and software platforms. The NASA Data Acquisition System (NDAS) is a software suite designed to operate and control many critical aspects of rocket engine testing. The software suite combines real-time data visualization, data recording to a variety formats, short-term and long-term acquisition system calibration capabilities, test stand configuration control, and a variety of data post-processing capabilities. Additionally, data stream conversion functions exist to translate test facility data streams to and from downstream systems, including engine customer systems. The primary design goals for NDAS are flexibility, extensibility, and modularity. Providing a common user interface for a variety of hardware platforms helps drive consistency and error reduction during testing. In addition, with an understanding that test facilities have different requirements and setups, the software is designed to be modular. One engine program may require real-time displays and data recording; others may require more complex data stream conversion, measurement filtering, or test stand configuration management. The NDAS suite allows test facilities to choose which components to use based on their specific needs. The NDAS code is primarily written in LabVIEW, a graphical, data-flow driven language. Although LabVIEW is a general-purpose programming language; large-scale software development in the language is relatively rare compared to more commonly used languages. The NDAS software suite also makes extensive use of a new, advanced development framework called the Actor Framework. The Actor Framework provides a level of code reuse and extensibility that has previously been difficult to achieve using LabVIEW. The

  11. A framework for in vitro systems toxicology assessment of e-liquids

    PubMed Central

    Iskandar, Anita R.; Gonzalez-Suarez, Ignacio; Majeed, Shoaib; Marescotti, Diego; Sewer, Alain; Xiang, Yang; Leroy, Patrice; Guedj, Emmanuel; Mathis, Carole; Schaller, Jean-Pierre; Vanscheeuwijck, Patrick; Frentzel, Stefan; Martin, Florian; Ivanov, Nikolai V.; Peitsch, Manuel C.; Hoeng, Julia

    2016-01-01

    Abstract Various electronic nicotine delivery systems (ENDS), of which electronic cigarettes (e-cigs) are the most recognized prototype, have been quickly gaining ground on conventional cigarettes because they are perceived as less harmful. Research assessing the potential effects of ENDS exposure in humans is currently limited and inconclusive. New products are emerging with numerous variations in designs and performance parameters within and across brands. Acknowledging these challenges, we present here a proposed framework for an in vitro systems toxicology assessment of e-liquids and their aerosols, intended to complement the battery of assays for standard toxicity assessments. The proposed framework utilizes high-throughput toxicity assessments of e-liquids and their aerosols, in which the device-to-device variability is minimized, and a systems-level investigation of the cellular mechanisms of toxicity is an integral part. An analytical chemistry investigation is also included as a part of the framework to provide accurate and reliable chemistry data solidifying the toxicological assessment. In its simplest form, the framework comprises of three main layers: (1) high-throughput toxicity screening of e-liquids using primary human cell culture systems; (2) toxicity-related mechanistic assessment of selected e-liquids, and (3) toxicity-related mechanistic assessment of their aerosols using organotypic air–liquid interface airway culture systems. A systems toxicology assessment approach is leveraged to enable in-depth analyses of the toxicity-related cellular mechanisms of e-liquids and their aerosols. We present example use cases to demonstrate the suitability of the framework for a robust in vitro assessment of e-liquids and their aerosols. PMID:27117495

  12. A framework for in vitro systems toxicology assessment of e-liquids.

    PubMed

    Iskandar, Anita R; Gonzalez-Suarez, Ignacio; Majeed, Shoaib; Marescotti, Diego; Sewer, Alain; Xiang, Yang; Leroy, Patrice; Guedj, Emmanuel; Mathis, Carole; Schaller, Jean-Pierre; Vanscheeuwijck, Patrick; Frentzel, Stefan; Martin, Florian; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2016-07-01

    Various electronic nicotine delivery systems (ENDS), of which electronic cigarettes (e-cigs) are the most recognized prototype, have been quickly gaining ground on conventional cigarettes because they are perceived as less harmful. Research assessing the potential effects of ENDS exposure in humans is currently limited and inconclusive. New products are emerging with numerous variations in designs and performance parameters within and across brands. Acknowledging these challenges, we present here a proposed framework for an in vitro systems toxicology assessment of e-liquids and their aerosols, intended to complement the battery of assays for standard toxicity assessments. The proposed framework utilizes high-throughput toxicity assessments of e-liquids and their aerosols, in which the device-to-device variability is minimized, and a systems-level investigation of the cellular mechanisms of toxicity is an integral part. An analytical chemistry investigation is also included as a part of the framework to provide accurate and reliable chemistry data solidifying the toxicological assessment. In its simplest form, the framework comprises of three main layers: (1) high-throughput toxicity screening of e-liquids using primary human cell culture systems; (2) toxicity-related mechanistic assessment of selected e-liquids, and (3) toxicity-related mechanistic assessment of their aerosols using organotypic air-liquid interface airway culture systems. A systems toxicology assessment approach is leveraged to enable in-depth analyses of the toxicity-related cellular mechanisms of e-liquids and their aerosols. We present example use cases to demonstrate the suitability of the framework for a robust in vitro assessment of e-liquids and their aerosols.

  13. Horizon: The Portable, Scalable, and Reusable Framework for Developing Automated Data Management and Product Generation Systems

    NASA Astrophysics Data System (ADS)

    Huang, T.; Alarcon, C.; Quach, N. T.

    2014-12-01

    Capture, curate, and analysis are the typical activities performed at any given Earth Science data center. Modern data management systems must be adaptable to heterogeneous science data formats, scalable to meet the mission's quality of service requirements, and able to manage the life-cycle of any given science data product. Designing a scalable data management doesn't happen overnight. It takes countless hours of refining, refactoring, retesting, and re-architecting. The Horizon data management and workflow framework, developed at the Jet Propulsion Laboratory, is a portable, scalable, and reusable framework for developing high-performance data management and product generation workflow systems to automate data capturing, data curation, and data analysis activities. The NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC)'s Data Management and Archive System (DMAS) is its core data infrastructure that handles capturing and distribution of hundreds of thousands of satellite observations each day around the clock. DMAS is an application of the Horizon framework. The NASA Global Imagery Browse Services (GIBS) is NASA's Earth Observing System Data and Information System (EOSDIS)'s solution for making high-resolution global imageries available to the science communities. The Imagery Exchange (TIE), an application of the Horizon framework, is a core subsystem for GIBS responsible for data capturing and imagery generation automation to support the EOSDIS' 12 distributed active archive centers and 17 Science Investigator-led Processing Systems (SIPS). This presentation discusses our ongoing effort in refining, refactoring, retesting, and re-architecting the Horizon framework to enable data-intensive science and its applications.

  14. Design development of a neural network-based telemetry monitor

    NASA Technical Reports Server (NTRS)

    Lembeck, Michael F.

    1992-01-01

    This paper identifies the requirements and describes an architectural framework for an artificial neural network-based system that is capable of fulfilling monitoring and control requirements of future aerospace missions. Incorporated into this framework are a newly developed training algorithm and the concept of cooperative network architectures. The feasibility of such an approach is demonstrated for its ability to identify faults in low frequency waveforms.

  15. Stochastic Radiative Transfer Model for Contaminated Rough Surfaces: A Framework for Detection System Design

    DTIC Science & Technology

    2013-11-01

    STOCHASTIC RADIATIVE TRANSFER MODEL FOR CONTAMINATED ROUGH SURFACES: A...of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid ...COVERED (From - To) Jan 2013 - Sep 2013 4. TITLE AND SUBTITLE Stochastic Radiative Transfer Model for Contaminated Rough Surfaces: A Framework for

  16. A New Mathematical Framework for Design Under Uncertainty

    DTIC Science & Technology

    2016-05-05

    blending multiple information sources via auto-regressive stochastic modeling. A computationally efficient machine learning framework is developed based on...sion and machine learning approaches; see Fig. 1. This will lead to a comprehensive description of system performance with less uncertainty than in the...Bayesian optimization of super-cavitating hy- drofoils The goal of this study is to demonstrate the capabilities of statistical learning and

  17. Design Framework for an Adaptive MOOC Enhanced by Blended Learning: Supplementary Training and Personalized Learning for Teacher Professional Development

    ERIC Educational Resources Information Center

    Gynther, Karsten

    2016-01-01

    The research project has developed a design framework for an adaptive MOOC that complements the MOOC format with blended learning. The design framework consists of a design model and a series of learning design principles which can be used to design in-service courses for teacher professional development. The framework has been evaluated by…

  18. Working Group 1: Software System Design and Implementation for Environmental Modeling

    EPA Science Inventory

    ISCMEM Working Group One Presentation, presentation with the purpose of fostering the exchange of information about environmental modeling tools, modeling frameworks, and environmental monitoring databases.

  19. Framework for quantitative evaluation of 3D vessel segmentation approaches using vascular phantoms in conjunction with 3D landmark localization and registration

    NASA Astrophysics Data System (ADS)

    Wörz, Stefan; Hoegen, Philipp; Liao, Wei; Müller-Eschner, Matthias; Kauczor, Hans-Ulrich; von Tengg-Kobligk, Hendrik; Rohr, Karl

    2016-03-01

    We introduce a framework for quantitative evaluation of 3D vessel segmentation approaches using vascular phantoms. Phantoms are designed using a CAD system and created with a 3D printer, and comprise realistic shapes including branches and pathologies such as abdominal aortic aneurysms (AAA). To transfer ground truth information to the 3D image coordinate system, we use a landmark-based registration scheme utilizing fiducial markers integrated in the phantom design. For accurate 3D localization of the markers we developed a novel 3D parametric intensity model that is directly fitted to the markers in the images. We also performed a quantitative evaluation of different vessel segmentation approaches for a phantom of an AAA.

  20. A Generic Software Architecture For Prognostics

    NASA Technical Reports Server (NTRS)

    Teubert, Christopher; Daigle, Matthew J.; Sankararaman, Shankar; Goebel, Kai; Watkins, Jason

    2017-01-01

    Prognostics is a systems engineering discipline focused on predicting end-of-life of components and systems. As a relatively new and emerging technology, there are few fielded implementations of prognostics, due in part to practitioners perceiving a large hurdle in developing the models, algorithms, architecture, and integration pieces. As a result, no open software frameworks for applying prognostics currently exist. This paper introduces the Generic Software Architecture for Prognostics (GSAP), an open-source, cross-platform, object-oriented software framework and support library for creating prognostics applications. GSAP was designed to make prognostics more accessible and enable faster adoption and implementation by industry, by reducing the effort and investment required to develop, test, and deploy prognostics. This paper describes the requirements, design, and testing of GSAP. Additionally, a detailed case study involving battery prognostics demonstrates its use.

Top