Science.gov

Sample records for system design materials

  1. Learning from systems biology: An ``Omics'' approach to materials design

    NASA Astrophysics Data System (ADS)

    Rajan, Krishna

    2008-03-01

    An understanding of systems biology provides an excellent paradigm for the materials scientist. Ultimately one would like to take an “atoms-applications” approach to materials design. This paper describes how the concepts of genomics, proteomics, and other biological behavior which form the foundations of modern biology can be applied to materials design through materials informatics.

  2. Material Design, Selection, and Manufacturing Methods for System Sustainment

    SciTech Connect

    David Sowder, Jim Lula, Curtis Marshall

    2010-02-18

    This paper describes a material selection and validation process proven to be successful for manufacturing high-reliability long-life product. The National Secure Manufacturing Center business unit of the Kansas City Plant (herein called KCP) designs and manufactures complex electrical and mechanical components used in extreme environments. The material manufacturing heritage is founded in the systems design to manufacturing practices that support the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA). Material Engineers at KCP work with the systems designers to recommend materials, develop test methods, perform analytical analysis of test data, define cradle to grave needs, present final selection and fielding. The KCP material engineers typically will maintain cost control by utilizing commercial products when possible, but have the resources and to develop and produce unique formulations as necessary. This approach is currently being used to mature technologies to manufacture materials with improved characteristics using nano-composite filler materials that will enhance system design and production. For some products the engineers plan and carry out science-based life-cycle material surveillance processes. Recent examples of the approach include refurbished manufacturing of the high voltage power supplies for cockpit displays in operational aircraft; dry film lubricant application to improve bearing life for guided munitions gyroscope gimbals, ceramic substrate design for electrical circuit manufacturing, and tailored polymeric materials for various systems. The following examples show evidence of KCP concurrent design-to-manufacturing techniques used to achieve system solutions that satisfy or exceed demanding requirements.

  3. Stochastic Analysis and Design of Heterogeneous Microstructural Materials System

    NASA Astrophysics Data System (ADS)

    Xu, Hongyi

    Advanced materials system refers to new materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to superior properties over the conventional materials. To accelerate the development of new advanced materials system, the objective of this dissertation is to develop a computational design framework and the associated techniques for design automation of microstructure materials systems, with an emphasis on addressing the uncertainties associated with the heterogeneity of microstructural materials. Five key research tasks are identified: design representation, design evaluation, design synthesis, material informatics and uncertainty quantification. Design representation of microstructure includes statistical characterization and stochastic reconstruction. This dissertation develops a new descriptor-based methodology, which characterizes 2D microstructures using descriptors of composition, dispersion and geometry. Statistics of 3D descriptors are predicted based on 2D information to enable 2D-to-3D reconstruction. An efficient sequential reconstruction algorithm is developed to reconstruct statistically equivalent random 3D digital microstructures. In design evaluation, a stochastic decomposition and reassembly strategy is developed to deal with the high computational costs and uncertainties induced by material heterogeneity. The properties of Representative Volume Elements (RVE) are predicted by stochastically reassembling SVE elements with stochastic properties into a coarse representation of the RVE. In design synthesis, a new descriptor-based design framework is developed, which integrates computational methods of microstructure characterization and reconstruction, sensitivity analysis, Design of Experiments (DOE), metamodeling and optimization the enable parametric optimization of the microstructure for achieving the desired material properties. Material informatics is studied to efficiently reduce the

  4. [The system of designation of surgical suture materials].

    PubMed

    Adamian, A A; Vinokurova, T I; Novikova, O A; Gavriliuk, N N; Sergeev, V P

    1990-12-01

    The authors suggest a unified system of designation of type--sizes of surgical suture materials of various nature and structure, which removes the existing discrepancy between the numbering of foreign and Soviet threads as well as of Soviet threads produced by different enterprises of the country. Introduction of the new system of metric sizes of the suture threads will allow surgeons to be properly orientated in the choice of the necessary suture material and make easier the work of services engaged in the development and realization of surgical suture materials. PMID:2079825

  5. System design for safe robotic handling of nuclear materials

    SciTech Connect

    Drotning, W.; Wapman, W.; Fahrenholtz, J.; Kimberly, H.; Kuhlmann, J.

    1996-03-01

    Robotic systems are being developed by the Intelligent Systems and Robotics Center at Sandia National Laboratories to perform automated handling tasks with radioactive nuclear materials. These systems will reduce the occupational radiation exposure to workers by automating operations which are currently performed manually. Because the robotic systems will handle material that is both hazardous and valuable, the safety of the operations is of utmost importance; assurance must be given that personnel will not be harmed and that the materials and environment will be protected. These safety requirements are met by designing safety features into the system using a layered approach. Several levels of mechanical, electrical and software safety prevent unsafe conditions from generating a hazard, and bring the system to a safe state should an unexpected situation arise. The system safety features include the use of industrial robot standards, commercial robot systems, commercial and custom tooling, mechanical safety interlocks, advanced sensor systems, control and configuration checks, and redundant control schemes. The effectiveness of the safety features in satisfying the safety requirements is verified using a Failure Modes and Effects Analysis. This technique can point out areas of weakness in the safety design as well as areas where unnecessary redundancy may reduce the system reliability.

  6. System design considerations for free-fall materials processing

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.

    1974-01-01

    The design constraints for orbiting materials processing systems are dominated by the limitations of the flight vehicle/crew and not by the processes themselves. Although weight, size and power consumption are all factors in the design of normal laboratory equipment, their importance is increased orders of magnitude when the equipment must be used in an orbital facility. As a result, equipment intended for space flight may have little resemblance to normal laboratory apparatus although the function to be performed may be identical. The same considerations influence the design of the experiment itself. The processing requirements must be carefully understood in terms of basic physical parameters rather than defined in terms of equipment operation. Preliminary experiments and analysis are much more vital to the design of a space experiment than they are on earth where iterative development is relatively easy. Examples of these various considerations are illustrated with examples from the M518 and MA-010 systems. While these are specific systems, the conclusions apply to the design of flight materials processing systems both present and future.

  7. Teaching-Material Design Center: An Ontology-Based System for Customizing Reusable e-Materials

    ERIC Educational Resources Information Center

    Wang, Hei-Chia; Hsu, Chien-Wei

    2006-01-01

    Use of electronic teaching materials (e-material) to support teaching is a trend. e-Material design is therefore an important issue. Currently, most e-material providers offer a package of solutions for different purposes. However, not all teachers and learners need everything from a single package. A preferable alternative is to find useful…

  8. Advanced algorithms for radiographic material discrimination and inspection system design

    NASA Astrophysics Data System (ADS)

    Gilbert, Andrew J.; McDonald, Benjamin S.; Deinert, Mark R.

    2016-10-01

    X-ray and neutron radiography are powerful tools for non-invasively inspecting the interior of objects. However, current methods are limited in their ability to differentiate materials when multiple materials are present, especially within large and complex objects. Past work has demonstrated that the spectral shift that X-ray beams undergo in traversing an object can be used to detect and quantify nuclear materials. The technique uses a spectrally sensitive detector and an inverse algorithm that varies the composition of the object until the X-ray spectrum predicted by X-ray transport matches the one measured. Here we show that this approach can be adapted to multi-mode radiography, with energy integrating detectors, and that the Cramér-Rao lower bound can be used to choose an optimal set of inspection modes a priori. We consider multi-endpoint X-ray radiography alone, or in combination with neutron radiography using deuterium-deuterium (DD) or deuterium-tritium (DT) sources. We show that for an optimal mode choice, the algorithm can improve discrimination between high-Z materials, specifically between tungsten and plutonium, and estimate plutonium mass within a simulated nuclear material storage system to within 1%.

  9. Recent progress in supercapacitors: from materials design to system construction.

    PubMed

    Wang, Yonggang; Xia, Yongyao

    2013-10-01

    Supercapacitors are currently attracting intensive attention because they can provide energy density by orders of magnitude higher than dielectric capacitors, greater power density, and longer cycling ability than batteries. The main challenge for supercapacitors is to develop them with high energy density that is close to that of a current rechargeable battery, while maintaining their inherent characteristics of high power and long cycling life. Consequently, much research has been devoted to enhance the performance of supercapacitors by either maximizing the specific capacitance and/or increasing the cell voltage. The latest advances in the exploration and development of new supercapacitor systems and related electrode materials are highlighted. Also, the prospects and challenges in practical application are analyzed, aiming to give deep insights into the material science and electrochemical fields.

  10. System Modeling and Material Characterization for the Design of Nonimaging Waveguide Illumination Systems.

    NASA Astrophysics Data System (ADS)

    van Derlofske, John Felix

    Many applications exist for optical systems which efficiently and uniformly transport luminous flux from one region of space to another without image formation. Display illumination systems employing thick waveguides are one widely employed example of a nonimaging optical system. The goal of our research is to investigate and quantify nonimaging optical waveguide illumination systems. In this dissertation, we develop analytical theory of flux transportation in thick waveguide systems. This includes the implementation of recently developed computer modeling techniques and the characterization of new waveguide materials. The findings of this research are brought together in a new highly efficient rapid prototyping waveguide system design procedure. We employ new computer modeling techniques to study waveguide illumination systems. This includes the examination of typical system sources and the development of analytical models. The accuracy of our computer modeling results are determined by comparison with measured data and by statistical noise evaluation. We have designed and constructed three computer automated photopic detection systems; the goniophotometer, the translational photometer, and the transrotational photometer. These systems are used to accurately measure the luminous intensity distributions, luminous exitance distributions, and angular distributions of waveguide system output. The measurements from these detection systems, along with the computer modeling, are used to develop analytical flux transport models and design optimized illumination systems. Active or dye-doped waveguides are new illumination system materials for which we examine the aspects of flux transport. These waveguides act as efficient wavelength converters to tailor the output color properties. Luminous brightness increase and geometrical gain are also possible with active waveguides. Starting with the basic theory of fluorescence and flux trapping we develop the flux transport theory

  11. Safety Standard for Oxygen and Oxygen Systems: Guidelines for Oxygen System Design, Materials Selection, Operations, Storage, and Transportation

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's standard for oxygen system design, materials selection, operation, and transportation is presented. Minimum guidelines applicable to NASA Headquarters and all NASA Field Installations are contained.

  12. Structural design methodologies for ceramic-based material systems

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Chulya, Abhisak; Gyekenyesi, John P.

    1991-01-01

    One of the primary pacing items for realizing the full potential of ceramic-based structural components is the development of new design methods and protocols. The focus here is on low temperature, fast-fracture analysis of monolithic, whisker-toughened, laminated, and woven ceramic composites. A number of design models and criteria are highlighted. Public domain computer algorithms, which aid engineers in predicting the fast-fracture reliability of structural components, are mentioned. Emphasis is not placed on evaluating the models, but instead is focused on the issues relevant to the current state of the art.

  13. Structural design methodologies for ceramic-based material systems

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Chulya, Abhisak; Gyekenyesi, John P.

    1992-01-01

    One of the primary pacing items for realizing the full potential of ceramic-based structural components is the development of new design methods and protocols. The focus here is on low temperature, fast-fracture analysis of monolithic, whisker-toughened, laminated, and woven ceramic composites. A number of design models and criteria are highlighted. Public domain computer algorithms, which aid engineers in predicting the fast-fracture reliability of structural components, are mentioned. Emphasis is not placed on evaluating the models, but instead is focused on the issues relevant to the current state of the art.

  14. Evolutionary Design of a Robotic Material Defect Detection System

    NASA Technical Reports Server (NTRS)

    Ballard, Gary; Howsman, Tom; Craft, Mike; ONeil, Daniel; Steincamp, Jim; Howell, Joe T. (Technical Monitor)

    2002-01-01

    During the post-flight inspection of SSME engines, several inaccessible regions must be disassembled to inspect for defects such as cracks, scratches, gouges, etc. An improvement to the inspection process would be the design and development of very small robots capable of penetrating these inaccessible regions and detecting the defects. The goal of this research was to utilize an evolutionary design approach for the robotic detection of these types of defects. A simulation and visualization tool was developed prior to receiving the hardware as a development test bed. A small, commercial off-the-shelf (COTS) robot was selected from several candidates as the proof of concept robot. The basic approach to detect the defects was to utilize Cadmium Sulfide (CdS) sensors to detect changes in contrast of an illuminated surface. A neural network, optimally designed utilizing a genetic algorithm, was employed to detect the presence of the defects (cracks). By utilization of the COTS robot and US sensors, the research successfully demonstrated that an evolutionarily designed neural network can detect the presence of surface defects.

  15. Robotic Materials Handling in Space: Mechanical Design of the Robot Operated Materials Processing System HitchHiker Experiment

    NASA Technical Reports Server (NTRS)

    Voellmer, George

    1997-01-01

    The Goddard Space Flight Center has developed the Robot Operated Materials Processing System (ROMPS) that flew aboard STS-64 in September, 1994. The ROMPS robot transported pallets containing wafers of different materials from their storage racks to a furnace for thermal processing. A system of tapered guides and compliant springs was designed to deal with the potential misalignments. The robot and all the sample pallets were locked down for launch and landing. The design of the passive lockdown system, and the interplay between it and the alignment system are presented.

  16. Learning to Design and Analyze Materials Handling Systems: Developing Multimedia Tools

    ERIC Educational Resources Information Center

    Heragu, Sunderesh; Jennings, Sybillyn

    2003-01-01

    In this paper, we describe aspects related to learning and learning assessment including pedagogy, cognition, pilot study and results from the study. This study is conducted for an educational module on "10 Principles of Materials Handling". This module along with another on "Analysis and Design of Integrated Materials Handling Systems" constitute…

  17. Materials, Processes and Manufacturing in Ares 1 Upper Stage: Integration with Systems Design and Development

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.

    2008-01-01

    Ares I Crew Launch Vehicle Upper Stage is designed and developed based on sound systems engineering principles. Systems Engineering starts with Concept of Operations and Mission requirements, which in turn determine the launch system architecture and its performance requirements. The Ares I-Upper Stage is designed and developed to meet these requirements. Designers depend on the support from materials, processes and manufacturing during the design, development and verification of subsystems and components. The requirements relative to reliability, safety, operability and availability are also dependent on materials availability, characterization, process maturation and vendor support. This paper discusses the roles and responsibilities of materials and manufacturing engineering during the various phases of Ares IUS development, including design and analysis, hardware development, test and verification. Emphasis is placed how materials, processes and manufacturing support is integrated over the Upper Stage Project, both horizontally and vertically. In addition, the paper describes the approach used to ensure compliance with materials, processes, and manufacturing requirements during the project cycle, with focus on hardware systems design and development.

  18. Plutonium Immobilization Material Characterization: Milestone 1 Report - Initiate Design of Prototype Material Characterization System

    SciTech Connect

    Bannochie, C.J.

    1999-06-01

    The objective of this task is to analyze impure oxide materials exiting from front-end processing prior to storage for feed blending. There are three goals to be accomplished with this task: reduce reblending (currently projected at 7% with an optimized ordering of the incoming material streams), determine if impure feed prep operations are performing adequately, and reduce plant operating costs by replacing wet prep elemental analyses whether conducted in the immobilization facility or in existing laboratories. An additional potential application is the analysis of blended oxide prior to first-stage UO{sub 2} and precursor addition.

  19. Mobile Pit verification system design based on passive special nuclear material verification in weapons storage facilities

    SciTech Connect

    Paul, J. N.; Chin, M. R.; Sjoden, G. E.

    2013-07-01

    A mobile 'drive by' passive radiation detection system to be applied in special nuclear materials (SNM) storage facilities for validation and compliance purposes has been designed through the use of computational modeling and new radiation detection methods. This project was the result of work over a 1 year period to create optimal design specifications to include creation of 3D models using both Monte Carlo and deterministic codes to characterize the gamma and neutron leakage out each surface of SNM-bearing canisters. Results were compared and agreement was demonstrated between both models. Container leakages were then used to determine the expected reaction rates using transport theory in the detectors when placed at varying distances from the can. A 'typical' background signature was incorporated to determine the minimum signatures versus the probability of detection to evaluate moving source protocols with collimation. This established the criteria for verification of source presence and time gating at a given vehicle speed. New methods for the passive detection of SNM were employed and shown to give reliable identification of age and material for highly enriched uranium (HEU) and weapons grade plutonium (WGPu). The finalized 'Mobile Pit Verification System' (MPVS) design demonstrated that a 'drive-by' detection system, collimated and operating at nominally 2 mph, is capable of rapidly verifying each and every weapon pit stored in regularly spaced, shelved storage containers, using completely passive gamma and neutron signatures for HEU and WGPu. This system is ready for real evaluation to demonstrate passive total material accountability in storage facilities. (authors)

  20. The design, construction and testing of a scour monitoring system using magnetostrictive materials

    NASA Astrophysics Data System (ADS)

    Day, Steven Richard

    A system for the continuous monitoring of scour has been designed, constructed and implemented. The system detects the level of scour by attaching flow to a buried post at known depths, and detecting when individual sensors become unearthed. Two bio-inspired flow sensors were designed and constructed for use on the post. The first, resembling a seal whisker, utilized the magnetostrictive materials Alfenol and Galfenol and was optimized for >0.15m/s flow. The second, resembling seaweed, used a conventional permanent magnet and was optimized for <0.15m/s flow. A small, low powered data acquisition system was designed and constructed to monitor and record the data from the sensors. A total of four scour posts were installed at two different sites; two vertically to monitor conventional scour and two horizontally to monitor lateral riverbed migration. Data from the posts was analyzed and presented and lessons learned were documented.

  1. Biological materials by design.

    PubMed

    Qin, Zhao; Dimas, Leon; Adler, David; Bratzel, Graham; Buehler, Markus J

    2014-02-19

    In this topical review we discuss recent advances in the use of physical insight into the way biological materials function, to design novel engineered materials 'from scratch', or from the level of fundamental building blocks upwards and by using computational multiscale methods that link chemistry to material function. We present studies that connect advances in multiscale hierarchical material structuring with material synthesis and testing, review case studies of wood and other biological materials, and illustrate how engineered fiber composites and bulk materials are designed, modeled, and then synthesized and tested experimentally. The integration of experiment and simulation in multiscale design opens new avenues to explore the physics of materials from a fundamental perspective, and using complementary strengths from models and empirical techniques. Recent developments in this field illustrate a new paradigm by which complex material functionality is achieved through hierarchical structuring in spite of simple material constituents. PMID:24451343

  2. Space shuttle seal material and design development for earth storable propellant systems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The results of a program to investigate and characterize seal materials suitable for space shuttle storable propellant systems are given. Two new elastomeric materials were identified as being potentially superior to existing state-of-the art materials for specific sealing applications. These materials were AF-E-124D and AF-E-411. AF-E-124D is a cured perfluorinated polymer suitable for use with dinitrogen tetroxide oxidizer, and hydrazine base fuels. AF-E-411 is an ethylene propylene terpolymer material for hydrazine base fuel service. Data are presented relative to low and high temperature characteristics as well as propellant exposure effects. Types of data included are: mechanical properties, stress strain curves, friction and wear characteristics, compression set and permeability. Sealing tests with a flat poppet-seal valve were conducted for verification of sealing capability. A bibliography includes over 200 references relating to seal design or materials and presents a concise tabulation of the more useful seal design data sources.

  3. Silicon-based elementary particle tracking system: Materials science and mechanical engineering design

    SciTech Connect

    Miller, W.O.; Gamble, M.T.; Thompson, T.C.; Hanlon, J.A.

    1993-01-01

    Research and development of the mechanical, cooling, and structural design aspects of a silicon detector-based elementary particle tracking system has been performed. Achieving stringent system precision, stability, and mass requirements necessitated the use of graphite fiber-reinforced cyanate-ester (C-E) resins. Mechanical test results of the effects of butane, ionizing radiation, and a combination of both on the mechanical properties of these materials are presented, as well as progress on developing compression molding of an ultralightweight graphite composite ring structure and TV holography-based noninvasive evaluation.

  4. Silicon-based elementary particle tracking system: Materials science and mechanical engineering design

    SciTech Connect

    Miller, W.O.; Gamble, M.T.; Thompson, T.C.; Hanlon, J.A.

    1993-05-01

    Research and development of the mechanical, cooling, and structural design aspects of a silicon detector-based elementary particle tracking system has been performed. Achieving stringent system precision, stability, and mass requirements necessitated the use of graphite fiber-reinforced cyanate-ester (C-E) resins. Mechanical test results of the effects of butane, ionizing radiation, and a combination of both on the mechanical properties of these materials are presented, as well as progress on developing compression molding of an ultralightweight graphite composite ring structure and TV holography-based noninvasive evaluation.

  5. Advancement of Systems Designs and Key Engineering Technologies for Materials Based Hydrogen Storage

    SciTech Connect

    van Hassel, Bart A.

    2015-09-18

    UTRC lead the development of the Simulink Framework model that enables a comparison of different hydrogen storage systems on a common basis. The Simulink Framework model was disseminated on the www.HSECoE.org website that is hosted by NREL. UTRC contributed to a better understanding of the safety aspects of the proposed hydrogen storage systems. UTRC also participated in the Failure Mode and Effect Analysis of both the chemical- and the adsorbent-based hydrogen storage system during Phase 2 of the Hydrogen Storage Engineering Center of Excellence. UTRC designed a hydrogen storage system with a reversible metal hydride material in a compacted form for light-duty vehicles with a 5.6 kg H2 storage capacity, giving it a 300 miles range. It contains a heat exchanger that enables efficient cooling of the metal hydride material during hydrogen absorption in order to meet the 3.3 minute refueling time target. It has been shown through computation that the kinetics of hydrogen absorption of Ti-catalyzed NaAlH4 was ultimately limiting the rate of hydrogen absorption to 85% of the material capacity in 3.3 minutes. An inverse analysis was performed in order to determine the material property requirements in order for a metal hydride based hydrogen storage system to meet the DOE targets. Work on metal hydride storage systems was halted after the Phase 1 to Phase 2 review due to the lack of metal hydride materials with the required material properties. UTRC contributed to the design of a chemical hydrogen storage system by developing an adsorbent for removing the impurity ammonia from the hydrogen gas, by developing a system to meter the transport of Ammonia Borane (AB) powder to a thermolysis reactor, and by developing a gas-liquid-separator (GLS) for the separation of hydrogen gas from AB slurry in silicone oil. Stripping impurities from hydrogen gas is essential for a long life of the fuel cell system on board of a vehicle. Work on solid transport of AB was halted after the

  6. 46 CFR 128.220 - Class II non-vital systems-materials and pressure design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... materials and pressure design of subchapter F of this chapter. (b) Piping for salt-water service must be of a corrosion-resistant material and, if ferrous, be hot-dip galvanized or be at least of...

  7. 46 CFR 128.220 - Class II non-vital systems-materials and pressure design.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... materials and pressure design of subchapter F of this chapter. (b) Piping for salt-water service must be of a corrosion-resistant material and, if ferrous, be hot-dip galvanized or be at least of...

  8. 46 CFR 128.220 - Class II non-vital systems-materials and pressure design.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... materials and pressure design of subchapter F of this chapter. (b) Piping for salt-water service must be of a corrosion-resistant material and, if ferrous, be hot-dip galvanized or be at least of...

  9. 46 CFR 128.220 - Class II non-vital systems-materials and pressure design.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... materials and pressure design of subchapter F of this chapter. (b) Piping for salt-water service must be of a corrosion-resistant material and, if ferrous, be hot-dip galvanized or be at least of...

  10. 46 CFR 128.220 - Class II non-vital systems-materials and pressure design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... materials and pressure design of subchapter F of this chapter. (b) Piping for salt-water service must be of a corrosion-resistant material and, if ferrous, be hot-dip galvanized or be at least of...

  11. Integrating Materials, Manufacturing, Design and Validation for Sustainability in Future Transport Systems

    NASA Astrophysics Data System (ADS)

    Price, M. A.; Murphy, A.; Butterfield, J.; McCool, R.; Fleck, R.

    2011-05-01

    The predictive methods currently used for material specification, component design and the development of manufacturing processes, need to evolve beyond the current `metal centric' state of the art, if advanced composites are to realise their potential in delivering sustainable transport solutions. There are however, significant technical challenges associated with this process. Deteriorating environmental, political, economic and social conditions across the globe have resulted in unprecedented pressures to improve the operational efficiency of the manufacturing sector generally and to change perceptions regarding the environmental credentials of transport systems in particular. There is a need to apply new technologies and develop new capabilities to ensure commercial sustainability in the face of twenty first century economic and climatic conditions as well as transport market demands. A major technology gap exists between design, analysis and manufacturing processes in both the OEMs, and the smaller companies that make up the SME based supply chain. As regulatory requirements align with environmental needs, manufacturers are increasingly responsible for the broader lifecycle aspects of vehicle performance. These include not only manufacture and supply but disposal and re-use or re-cycling. In order to make advances in the reduction of emissions coupled with improved economic efficiency through the provision of advanced lightweight vehicles, four key challenges are identified as follows: Material systems, Manufacturing systems, Integrated design methods using digital manufacturing tools and Validation systems. This paper presents a project which has been designed to address these four key issues, using at its core, a digital framework for the creation and management of key parameters related to the lifecycle performance of thermoplastic composite parts and structures. It aims to provide capability for the proposition, definition, evaluation and demonstration of

  12. Integrating Materials, Manufacturing, Design and Validation for Sustainability in Future Transport Systems

    SciTech Connect

    Price, M. A.; Murphy, A.; Butterfield, J.; McCool, R.; Fleck, R.

    2011-05-04

    The predictive methods currently used for material specification, component design and the development of manufacturing processes, need to evolve beyond the current 'metal centric' state of the art, if advanced composites are to realise their potential in delivering sustainable transport solutions. There are however, significant technical challenges associated with this process. Deteriorating environmental, political, economic and social conditions across the globe have resulted in unprecedented pressures to improve the operational efficiency of the manufacturing sector generally and to change perceptions regarding the environmental credentials of transport systems in particular. There is a need to apply new technologies and develop new capabilities to ensure commercial sustainability in the face of twenty first century economic and climatic conditions as well as transport market demands. A major technology gap exists between design, analysis and manufacturing processes in both the OEMs, and the smaller companies that make up the SME based supply chain. As regulatory requirements align with environmental needs, manufacturers are increasingly responsible for the broader lifecycle aspects of vehicle performance. These include not only manufacture and supply but disposal and re-use or re-cycling. In order to make advances in the reduction of emissions coupled with improved economic efficiency through the provision of advanced lightweight vehicles, four key challenges are identified as follows: Material systems, Manufacturing systems, Integrated design methods using digital manufacturing tools and Validation systems. This paper presents a project which has been designed to address these four key issues, using at its core, a digital framework for the creation and management of key parameters related to the lifecycle performance of thermoplastic composite parts and structures. It aims to provide capability for the proposition, definition, evaluation and demonstration of

  13. Design and Application of The Painting Material Supply System of The Painting Robot for Steel Products

    NASA Astrophysics Data System (ADS)

    Miyawaki, Kunio; Hisayasu, Azuma; Mori, Tsunehito; Miyazaki, Tatsuo; Nakashima, Yoshio

    With the increase of painting works and the decrease of skilled workers, the demand for robot painting of the large-scale steel product is rapidly increasing. But there are many technical problems in the development of the painting robot for this use. The collision between a robot and a work-piece is one of the most important problems, because the robot operates in a small space of a work-piece. Above all, the collision of the painting material supply hose with painted film on a work-piece is very serious. To avoid the hose collision, we propose an in-line type of paint supply mechanism using swivel joints. The key point in this system is the sealing performance and its durability, and we propose the piping system with compliance to strengthen the sealing performance. In this paper, the design method of this system is discussed on the basis of the analysis of the fluctuatinal elastic deformation of a O-ring in the swivel joint. We produced a prototype of the painting robot with the in-line system designed by this method. Application of this robot to the painting of ship-hull block is also discussed. Results from this application show the effectiveness of the in-line system.

  14. Designing a system for measuring the flow of material transported on belts using ultrasonic sensors

    NASA Astrophysics Data System (ADS)

    Mihuţ, N. M.

    2015-11-01

    Excavation tailings (scraping) and extracting the useful (lignite) in surface mine pits in Mining Basin Oltenia is achieved with technological lines of excavation - transport - dump of high productivity. A correlation of working capacity of the main components of technological lines (motor rotor, high capacity transport, car dumps) is necessary for economic reasons on electricity consumption. To achieve experience in the process was chosen excavator SRS 1400 from South Jilt career in the CET Turceni. The question of coal excavated volume has a great importance in the mine pits. At the excavation is desired a density estimate for each machine production tracking, cost estimation and tracking product unit profitability of each band on various sections zones. Permanent display size excavated volume snapshots in the excavator's cabin permits to track tape loading, eliminating unproductive times and information management to determine profitability. Another important requirement is closing the loop of the machine drive system of an excavator for a uniform deposition of carbon on the strip, thus achieving automatic control of the loading belt. Such equipment is important for the system dispatching in surface mine pits. Through a system of three ultrasound transducers to determine the smart instant of coal excavated section which, coupled with the tape speed, integrated over time will determine the amount of excavated coal. The basis of the system developed is a device for determining the volume and quantity of coal excavated acting on the march and optimize the system speed excavator working order. The device is designed primarily following the careers of lignite production: rotor excavators, rubber conveyor belts and dump facilities. Newly developed system aims to achieve the following determines: the optimum energy excavation depending on the nature of excavated material - lignite, shale, clay, etc., economic times to use the excavator bucket teeth rotor, energy

  15. Safety Standard for Hydrogen and Hydrogen Systems: Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage and Transportation. Revision

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Safety Standard, which establishes a uniform process for hydrogen system design, materials selection, operation, storage, and transportation, is presented. The guidelines include suggestions for safely storing, handling, and using hydrogen in gaseous (GH2), liquid (LH2), or slush (SLH2) form whether used as a propellant or non-propellant. The handbook contains 9 chapters detailing properties and hazards, facility design, design of components, materials compatibility, detection, and transportation. Chapter 10 serves as a reference and the appendices contained therein include: assessment examples; scaling laws, explosions, blast effects, and fragmentation; codes, standards, and NASA directives; and relief devices along with a list of tables and figures, abbreviations, a glossary and an index for ease of use. The intent of the handbook is to provide enough information that it can be used alone, but at the same time, reference data sources that can provide much more detail if required.

  16. Design and analysis of a novel latch system implementing fiber-reinforced composite materials

    NASA Astrophysics Data System (ADS)

    Guevara Arreola, Francisco Javier

    The use of fiber-reinforced composite materials have increased in the last four decades in high technology applications due to their exceptional mechanical properties and low weight. In the automotive industry carbon fiber have become popular exclusively in luxury cars because of its high cost. However, Carbon-glass hybrid composites offer an effective alternative to designers to implement fiber-reinforced composites into several conventional applications without a considerable price increase maintaining most of their mechanical properties. A door latch system is a complex mechanism that is under high loading conditions during car accidents such as side impacts and rollovers. Therefore, the Department of Transportation in The United States developed a series of tests that every door latch system comply in order to be installed in a vehicle. The implementation of fiber-reinforced composite materials in a door latch system was studied by analyzing the material behavior during the FMVSS No. 206 transverse test using computational efforts and experimental testing. Firstly, a computational model of the current forkbolt and detent structure was developed. Several efforts were conducted in order to create an effective and time efficient model. Two simplified models were implemented with two different contact interaction approaches. 9 composite materials were studied in forkbolt and 5 in detent including woven carbon fiber, unidirectional carbon fiber, woven carbon-glass fiber hybrid composites and unidirectional carbon-glass fiber hybrid composites. The computational model results showed that woven fiber-reinforced composite materials were stiffer than the unidirectional fiber-reinforced composite materials. For instance, a forkbolt made of woven carbon fibers was 20% stiffer than a forkbolt made of unidirectional fibers symmetrically stacked in 0° and 90° alternating directions. Furthermore, Hybrid composite materials behaved as expected in forkbolt noticing a decline

  17. Quantum cascade emission in the III-nitride material system designed with effective interface grading

    SciTech Connect

    Song, Alex Y. Huang, Tzu-Yung; Zah, Chung-En; Gmachl, Claire F.; Bhat, Rajaram; Wang, Jie; Allerman, Andrew A.

    2015-09-28

    We report the realization of quantum cascade (QC) light emission in the III-nitride material system, designed with effective interface grading (EIG). EIG induces a continuous transition between wells and barriers in the quantum confinement, which alters the eigenstate system and even delocalizes the states with higher energy. Fully transverse-magnetic spontaneous emission is observed from the fabricated III-nitride QC structure, with a center wavelength of ∼4.9 μm and a full width at half maximum of ∼110 meV, both in excellent agreement with theoretical predictions. A multi-peak photo-response spectrum is also measured from the QC structure, which again agrees well with theoretical calculations and verifies the effects of EIG.

  18. Design a Sculpting Material

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2011-01-01

    Artists have used a variety of materials over the years for sculpting. They have been quick to use unusual pieces of technology to make a vibrant and unique statement, just as painters have created and used a wide variety of colors and derived pigments for their canvases. In this article, the author discusses a design challenge that gives students…

  19. Design amphiphilic dipolar π-systems for stimuli-responsive luminescent materials using metastable states

    NASA Astrophysics Data System (ADS)

    Yagai, Shiki; Okamura, Satoru; Nakano, Yujiro; Yamauchi, Mitsuaki; Kishikawa, Keiki; Karatsu, Takashi; Kitamura, Akihide; Ueno, Akira; Kuzuhara, Daiki; Yamada, Hiroko; Seki, Tomohiro; Ito, Hajime

    2014-06-01

    π-Conjugated compounds that exhibit tunable luminescence in the solid state under external mechanical stimuli have potential applications in sensors and imaging devices. However, no rational designs have been proposed that impart these mechano-responsive luminescent properties to π-conjugated compounds. Here we demonstrate a strategy for mechano-responsive luminescent materials by imparting amphiphilic and dipolar characteristics to a luminescent π-conjugated system. The oligo(p-phenylenevinylene) luminophore with a didodecylamino group at one end and a tri(ethylene glycol) ester group at the other end yields segregated solid structures by separately aggregating its hydrophobic and hydrophilic moieties. The segregated structures force the molecules to align in the same direction, thereby generating a conflict between the side-chain aggregation and dipolar stabilization of the π-system. Consequently, these metastable solid structures can be transformed through mechanical stimulation to a more stable structure, from a π-π stacked aggregate to a liquid crystal and further to a crystalline phase with variable luminescence.

  20. The Spacecraft Materials Selector: An Artificial Intelligence System for Preliminary Design Trade Studies, Materials Assessments, and Estimates of Environments Present

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.; Woll, S. L. B.

    2000-01-01

    Institutions need ways to retain valuable information even as experienced individuals leave an organization. Modern electronic systems have enough capacity to retain large quantities of information that can mitigate the loss of experience. Performance information for long-term space applications is relatively scarce and specific information (typically held by a few individuals within a single project) is often rather narrowly distributed. Spacecraft operate under severe conditions and the consequences of hardware and/or system failures, in terms of cost, loss of information, and time required to replace the loss, are extreme. These risk factors place a premium on appropriate choice of materials and components for space applications. An expert system is a very cost-effective method for sharing valuable and scarce information about spacecraft performance. Boeing has an artificial intelligence software package, called the Boeing Expert System Tool (BEST), to construct and operate knowledge bases to selectively recall and distribute information about specific subjects. A specific knowledge base to evaluate the on-orbit performance of selected materials on spacecraft has been developed under contract to the NASA SEE program. The performance capabilities of the Spacecraft Materials Selector (SMS) knowledge base are described. The knowledge base is a backward-chaining, rule-based system. The user answers a sequence of questions, and the expert system provides estimates of optical and mechanical performance of selected materials under specific environmental conditions. The initial operating capability of the system will include data for Kapton, silverized Teflon, selected paints, silicone-based materials, and certain metals. For situations where a mission profile (launch date, orbital parameters, mission duration, spacecraft orientation) is not precisely defined, the knowledge base still attempts to provide qualitative observations about materials performance and likely

  1. In-Service Design & Performance Prediction of Advanced Fusion Material Systems by Computational Modeling and Simulation

    SciTech Connect

    G. R. Odette; G. E. Lucas

    2005-11-15

    This final report on "In-Service Design & Performance Prediction of Advanced Fusion Material Systems by Computational Modeling and Simulation" (DE-FG03-01ER54632) consists of a series of summaries of work that has been published, or presented at meetings, or both. It briefly describes results on the following topics: 1) A Transport and Fate Model for Helium and Helium Management; 2) Atomistic Studies of Point Defect Energetics, Dynamics and Interactions; 3) Multiscale Modeling of Fracture consisting of: 3a) A Micromechanical Model of the Master Curve (MC) Universal Fracture Toughness-Temperature Curve Relation, KJc(T - To), 3b) An Embrittlement DTo Prediction Model for the Irradiation Hardening Dominated Regime, 3c) Non-hardening Irradiation Assisted Thermal and Helium Embrittlement of 8Cr Tempered Martensitic Steels: Compilation and Analysis of Existing Data, 3d) A Model for the KJc(T) of a High Strength NFA MA957, 3e) Cracked Body Size and Geometry Effects of Measured and Effective Fracture Toughness-Model Based MC and To Evaluations of F82H and Eurofer 97, 3-f) Size and Geometry Effects on the Effective Toughness of Cracked Fusion Structures; 4) Modeling the Multiscale Mechanics of Flow Localization-Ductility Loss in Irradiation Damaged BCC Alloys; and 5) A Universal Relation Between Indentation Hardness and True Stress-Strain Constitutive Behavior. Further details can be found in the cited references or presentations that generally can be accessed on the internet, or provided upon request to the authors. Finally, it is noted that this effort was integrated with our base program in fusion materials, also funded by the DOE OFES.

  2. Design and analysis of the lithium target system for the International Fusion Materials Irradiation Facility (IFMIF)

    SciTech Connect

    Hua, T.; Smith, D.; Hassanein, A.; Gomes, I.

    1995-09-01

    Three lithium target design options are being evaluated for the IFMIF. The impact of various requirements on material selection, lifetime, operation and maintenance are discussed. Analysis for the free jet option is presented. Key aspects include jet stability, thermal and nuclear responses.

  3. STRUCTURAL DESIGN CRITERIA FOR TARGET/BLANKET SYSTEM COMPONENT MATERIALS FOR THE ACCELERATOR PRODUCTION OF TRITIUM PROJECT

    SciTech Connect

    W. JOHNSON; R. RYDER; P. RITTENHOUSE

    2001-01-01

    The design of target/blanket system components for the Accelerator Production of Tritium (APT) plant is dependent on the development of materials properties data specified by the designer. These data are needed to verify that component designs are adequate. The adequacy of the data will be related to safety, performance, and economic considerations, and to other requirements that may be deemed necessary by customers and regulatory bodies. The data required may already be in existence, as in the open technical literature, or may need to be generated, as is often the case for the design of new systems operating under relatively unique conditions. The designers' starting point for design data needs is generally some form of design criteria used in conjunction with a specified set of loading conditions and associated performance requirements. Most criteria are aimed at verifying the structural adequacy of the component, and often take the form of national or international standards such as the ASME Boiler and Pressure Vessel Code (ASME B and PV Code) or the French Nuclear Structural Requirements (RCC-MR). Whether or not there are specific design data needs associated with the use of these design criteria will largely depend on the uniqueness of the conditions of operation of the component. A component designed in accordance with the ASME B and PV Code, where no unusual environmental conditions exist, will utilize well-documented, statistically-evaluated developed in conjunction with the Code, and will not be likely to have any design data needs. On the other hand, a component to be designed to operate under unique APT conditions, is likely to have significant design data needs. Such a component is also likely to require special design criteria for verification of its structural adequacy, specifically accounting for changes in materials properties which may occur during exposure in the service environment. In such a situation it is common for the design criteria and

  4. Solar Energy: System Sizing, Design, and Retrofit: Student Material. First Edition.

    ERIC Educational Resources Information Center

    Younger, Charles; Orsak, Charles G., Jr.

    Designed for student use in "System Sizing, Design, and Retrofit," one of 11 courses in a 2-year associate degree program in solar technology, this manual provides readings, exercises, worksheets, bibliographies, and illustrations for 13 course modules. The manual, which corresponds to an instructor guide for the same course, covers the following…

  5. Advanced Aerospace Materials by Design

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Djomehri, Jahed; Wei, Chen-Yu

    2004-01-01

    The advances in the emerging field of nanophase thermal and structural composite materials; materials with embedded sensors and actuators for morphing structures; light-weight composite materials for energy and power storage; and large surface area materials for in-situ resource generation and waste recycling, are expected to :revolutionize the capabilities of virtually every system comprising of future robotic and :human moon and mars exploration missions. A high-performance multiscale simulation platform, including the computational capabilities and resources of Columbia - the new supercomputer, is being developed to discover, validate, and prototype next generation (of such advanced materials. This exhibit will describe the porting and scaling of multiscale 'physics based core computer simulation codes for discovering and designing carbon nanotube-polymer composite materials for light-weight load bearing structural and 'thermal protection applications.

  6. Design and implementation of a system for laser assisted milling of advanced materials

    NASA Astrophysics Data System (ADS)

    Wu, Xuefeng; Feng, Gaocheng; Liu, Xianli

    2016-04-01

    Laser assisted machining is an effective method to machine advanced materials with the added benefits of longer tool life and increased material removal rates. While extensive studies have investigated the machining properties for laser assisted milling(LAML), few attempts have been made to extend LAML to machining parts with complex geometric features. A methodology for continuous path machining for LAML is developed by integration of a rotary and movable table into an ordinary milling machine with a laser beam system. The machining strategy and processing path are investigated to determine alignment of the machining path with the laser spot. In order to keep the material removal temperatures above the softening temperature of silicon nitride, the transformation is coordinated and the temperature interpolated, establishing a transient thermal model. The temperatures of the laser center and cutting zone are also carefully controlled to achieve optimal machining results and avoid thermal damage. These experiments indicate that the system results in no surface damage as well as good surface roughness, validating the application of this machining strategy and thermal model in the development of a new LAML system for continuous path processing of silicon nitride. The proposed approach can be easily applied in LAML system to achieve continuous processing and improve efficiency in laser assisted machining.

  7. High-Throughput Computational Design of Advanced Functional Materials: Topological Insulators and Two-Dimensional Electron Gas Systems

    NASA Astrophysics Data System (ADS)

    Yang, Kesong

    As a rapidly growing area of materials science, high-throughput (HT) computational materials design is playing a crucial role in accelerating the discovery and development of novel functional materials. In this presentation, I will first introduce the strategy of HT computational materials design, and take the HT discovery of topological insulators (TIs) as a practical example to show the usage of such an approach. Topological insulators are one of the most studied classes of novel materials because of their great potential for applications ranging from spintronics to quantum computers. Here I will show that, by defining a reliable and accessible descriptor, which represents the topological robustness or feasibility of the candidate, and by searching the quantum materials repository aflowlib.org, we have automatically discovered 28 TIs (some of them already known) in five different symmetry families. Next, I will talk about our recent research work on the HT computational design of the perovskite-based two-dimensional electron gas (2DEG) systems. The 2DEG formed on the perovskite oxide heterostructure (HS) has potential applications in next-generation nanoelectronic devices. In order to achieve practical implementation of the 2DEG in the device design, desired physical properties such as high charge carrier density and mobility are necessary. Here I show that, using the same strategy with the HT discovery of TIs, by introducing a series of combinatorial descriptors, we have successfully identified a series of candidate 2DEG systems based on the perovskite oxides. This work provides another exemplar of applying HT computational design approach for the discovery of advanced functional materials.

  8. Looking for design in materials design.

    PubMed

    Eberhart, M E; Clougherty, D P

    2004-10-01

    Despite great advances in computation, materials design is still science fiction. The construction of structure-property relations on the quantum scale will turn computational empiricism into true design. PMID:15467684

  9. Looking for design in materials design

    NASA Astrophysics Data System (ADS)

    Eberhart, M. E.; Clougherty, D. P.

    2004-10-01

    Despite great advances in computation, materials design is still science fiction. The construction of structure-property relations on the quantum scale will turn computational empiricism into true design.

  10. Classification and designation systems for materials: A report on the present situation, an inventory of the systems in use, and comments on the future possibilities

    NASA Technical Reports Server (NTRS)

    Reynard, Keith W.

    1996-01-01

    The different systems that are in use for the major classes of engineering materials are summarized. The work was carried out within the scope of the Versailles project on advanced materials and standards (VAMAS). An inventory of national and international standards that give specifications for the materials and international standards are included. Comments on the increasing knowledge of, and the increasing demand for, data concerning the materials performance are included. Recommendations for future activities in the standardization of classification and designation systems are given.

  11. System design development for microwave and millimeter-wave materials processing

    NASA Astrophysics Data System (ADS)

    Feher, Lambert; Thumm, Manfred

    2002-06-01

    The most notable effect in processing dielectrics with micro- and millimeter-waves is volumetric heating of these materials, offering the opportunity of very high heating rates for the samples. In comparison to conventional heating where the heat transfer is diffusive and depends on the thermal conductivity of the material, the microwave field penetrates the sample and acts as an instantaneous heat source at each point of the sample. By this unique property, microwave heating at 2.45 GHz and 915 MHz ISM (Industrial, Medical, Scientific) frequencies is established as an important industrial technology since more than 50 years ago. Successful application of microwaves in industries has been reported e.g. by food processing systems, domestic ovens, rubber industry, vacuum drying etc. The present paper shows some outlines of microwave system development at Forschungszentrum Karlsruhe, IHM by transferring properties from the higher frequency regime (millimeter-waves) to lower frequency applications. Anyway, the need for using higher frequencies like 24 GHz (ISM frequency) for industrial applications has to be carefully verified with respect to special physical/engineering advantages or to limits the standard microwave technology meets for the specific problem.

  12. Battling the challenges of training nurses to use information systems through theory-based training material design.

    PubMed

    Galani, Malatsi; Yu, Ping; Paas, Fred; Chandler, Paul

    2014-01-01

    The attempts to train nurses to effectively use information systems have had mixed results. One problem is that training materials are not adequately designed to guide trainees to gradually learn to use a system without experiencing a heavy cognitive load. This is because training design often does not take into consideration a learner's cognitive ability to absorb new information in a short training period. Given the high cost and difficulty of organising training in healthcare organisations, there is an urgent need for information system trainers to be aware of how cognitive overload or information overload affect a trainee's capability to acquire new knowledge and skills, and what instructional techniques can be used to facilitate effective learning. This paper introduces the concept of cognitive load and how it affects nurses when learning to use a new health information system. This is followed by the relevant strategies for instructional design, underpinned by the principles of cognitive load theory, which may be helpful for the development of effective instructional materials and activities for training nurses to use information systems. PMID:25087524

  13. Battling the challenges of training nurses to use information systems through theory-based training material design.

    PubMed

    Galani, Malatsi; Yu, Ping; Paas, Fred; Chandler, Paul

    2014-01-01

    The attempts to train nurses to effectively use information systems have had mixed results. One problem is that training materials are not adequately designed to guide trainees to gradually learn to use a system without experiencing a heavy cognitive load. This is because training design often does not take into consideration a learner's cognitive ability to absorb new information in a short training period. Given the high cost and difficulty of organising training in healthcare organisations, there is an urgent need for information system trainers to be aware of how cognitive overload or information overload affect a trainee's capability to acquire new knowledge and skills, and what instructional techniques can be used to facilitate effective learning. This paper introduces the concept of cognitive load and how it affects nurses when learning to use a new health information system. This is followed by the relevant strategies for instructional design, underpinned by the principles of cognitive load theory, which may be helpful for the development of effective instructional materials and activities for training nurses to use information systems.

  14. Design and development of a space station hazardous material system for assessing chemical compatibility

    NASA Technical Reports Server (NTRS)

    Congo, Richard T.

    1990-01-01

    As the Space Station nears reality in funding support from Congress, NASA plans to perform over a hundred different missions in the coming decade. Incrementally deployed, the Space Station will evolve into modules linked to an integral structure. Each module will have characteristic functions, such as logistics, habitation, and materials processing. Because the Space Station is to be user friendly for experimenters, NASA is anticipating that a variety of different chemicals will be taken on-board. Accidental release of these potentially toxic chemicals and their chemical compatibility is the focus of this discourse. The Microgravity Manufacturing Processing Facility (MMPF) will contain the various facilities within the U.S. Laboratory (USL). Each facility will have a characteristic purpose, such as alloy solidification or vapor crystal growth. By examining the proposed experiments for each facility, identifying the chemical constituents, their physical state and/or changes, byproducts and effluents, those payloads can be identified which may contain toxic, explosive, or reactive compounds that require processing or containment in mission peculiar waste management systems. Synergistic reactions from mixed effluent streams is of major concern. Each experiment will have it own data file, complete with schematic, chemical listing, physical data, etc. Chemical compatibility information from various databases will provide assistance in the analysis of alternate disposal techniques (pretreatment, separate storage, etc.). Along with data from the Risk Analysis of the Proposed USL Waste Management System, accidental release of potentially toxic and catastrophic chemicals would be eliminated or reduced.

  15. Design and use of SNM transportation systems at the Los Alamos National Laboratory. [Special Nuclear Materials (SNM)

    SciTech Connect

    Tellier, L.L.

    1991-01-01

    The Plutonium Processing Facility at the Los Alamos National Laboratory is located in a building containing approximately 63,000 square feet of laboratory space with an additional 63,000 feet of basement area that is used for heating, ventilation, filtering, storage, and other house'' systems. The building's upper floor is set up in four separate wings with different types of processing occurring both within each wing and between the wings. Because of the diversity of these various processes, material must be moved within and across the various wings. Special Nuclear Material, hereafter referred to as SNM, must always be handled in an enclosed container in order to protect the environment and the workers who are using the material. In order to avoid making repeated transfers of material by an external means, LANL has designed a system whereby most of the wings and rooms in the Plutonium Facility are interconnected by a series of tunnels through which a transportation system or trolley'' operates. This tunnel serves a dual purpose in that it also supplies dry air to the gloveboxes. The tunnels extend the entire length of the building in each wing making a total of four tunnels with an additional tunnel installed such that it connects all four wing tunnels to each other. It can readily be seen that this also creates a problem in that a chimney'' now exists which can cause a fire to spread rapidly from one line or area to another. LANL has designed a series of air and mechanically operated fire doors that are located throughout the tunnel system to prevent this occurrence from happening. Double dropboxes are located at the end of each wing tunnel where the cross tunnel connects. Here, material can be off loaded from a wing trolley and on loaded to the cross trolley for further movement to any other area where it may be needed.

  16. Materials design for new superconductors

    NASA Astrophysics Data System (ADS)

    Norman, M. R.

    2016-07-01

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues.

  17. Miniature LIMS system designed for sensitive in situ measurements of organic deposits in materials on solar system objects

    NASA Astrophysics Data System (ADS)

    Riedo, Andreas; Moreno-García, Pavel; Grimaudo, Valentine; Brigitte Neuland, Maike; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2014-05-01

    In situ investigation of chemical composition is of considerable interest for application in planetary missions. The possibility of bio-relevant organic chemistry on the surfaces of comets and primitive asteroids is one of the most intriguing problems of the current astrobiology. Rock-water interface existed in early small solar body history, in addition to extensive mineralogical modifications of the surface could have initiated also a rich organic and bio-organic chemistry [1]. Current space instrumentation designed for molecular detection use thermal evaporation source combined with gas chromatography (GC) and mass spectrometry [2]. Hence, it is capable of collecting data of the volatile fraction of the investigated sample. Laser desorption mass spectrometry (LD-MS) is another method for molecule detection capable of vaporisation and ionisation of molecules present on a solid substrate surface, e.g. a rock. A miniature laser ablation ionisation reflectron-type time-of-flight mass analyser (LMS) developed by our group for in situ measurements of the elemental, isotopic composition can be used also for sensitive analyses of chemical compounds present on solid surfaces with high spatial resolution [3-6]. Comparing to laser ablation laser desorption analyses are conducted at laser irradiance reduced by approximately 103-104 times. In laser ablation mode, the LMS system offers high dynamic range of at least eight orders of magnitude and allows for the detection in the ppb range for metallic- and non-metallic elements. Instrument mass resolution m/Δm is about 800 at the 56Fe mass peak when the instrument is used in ablation mode. The mass resolution is increased to m/Δm >1000 when desorption studies are conducted (at ~600 m/q). We will demonstrate the instrument performance conducting molecular desorption studies of different species, e.g. organic, biotic and abiotic. Laser ablation/ionisation studies are conducted in parallel to complement the laser desorption

  18. Designing a HAZMAT (hazardous materials) incident management system for facilities with widely varying emergency organization structures

    SciTech Connect

    Carter, R.J.; Easterly, C.E.

    1988-01-01

    Oak Ridge National Laboratory is currently conducting a research program for the United States Air Force, the purpose of which is to assist them in their emergency planning for HAZMAT spills. This paper describes the first two tasks in the program. These tasks are oriented towards: determining the extent of the hazardous materials (HAZMAT) problem and establishing plans directed toward HAZMAT incident management.

  19. SYSTEM DESIGN FOR A CONTINUOUS PROGRESS SCHOOL--PART III, THE INSTRUCTIONAL MATERIALS CENTER.

    ERIC Educational Resources Information Center

    COGSWELL, JOHN F.; EGBERT, ROBERT L.

    THE INSTRUCTIONAL MATERIALS CENTER (IMC) OF THE CONTINUOUS PROGRESS SCHOOL WAS DESCRIBED. THE CONTINUOUS PROGRESS SCHOOL PLAN WAS DEVISED BY DR. EDWIN READ AND WAS BEING DEVELOPED AT THE LABORATORY SCHOOL OF BRIGHAM YOUNG UNIVERSITY. THIS REPORT DESCRIBED HOW AN IMC MIGHT OPERATE RATHER THAN HOW ONE IS OPERATING OR IS PLANNED TO OPERATE. AS…

  20. Design and Application of a Beam Testing System for Experiential Learning in Mechanics of Materials

    ERIC Educational Resources Information Center

    Sullivan, R. Warsi; Rais-Rohani, M.

    2009-01-01

    Research shows that students can significantly improve their understanding and retention of topics presented in an engineering course when discussions of theoretical and mathematical approaches are combined with active-learning exercises involving hands-on physical experiments. In this paper, the design and application of a beam testing system…

  1. General Rule of Negative Effective Ueff System & Materials Design of High-Tc Superconductors by ab initio Calculations

    NASA Astrophysics Data System (ADS)

    Katayama-Yoshida, Hiroshi; Nakanishi, Akitaka; Uede, Hiroki; Takawashi, Yuki; Fukushima, Tetsuya; Sato, Kazunori

    2014-03-01

    Based upon ab initio electronic structure calculation, I will discuss the general rule of negative effective U system by (1) exchange-correlation-induced negative effective U caused by the stability of the exchange-correlation energy in Hund's rule with high-spin ground states of d5 configuration, and (2) charge-excitation-induced negative effective U caused by the stability of chemical bond in the closed-shell of s2, p6, and d10 configurations. I will show the calculated results of negative effective U systems such as hole-doped CuAlO2 and CuFeS2. Based on the total energy calculations of antiferromagnetic and ferromagnetic states, I will discuss the magnetic phase diagram and superconductivity upon hole doping. I also discuss the computational materials design method of high-Tc superconductors by ab initio calculation to go beyond LDA and multi-scale simulations.

  2. Materials design for new superconductors.

    PubMed

    Norman, M R

    2016-07-01

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues. PMID:27214291

  3. Algorithms and theory for the design and programming of industrial control systems materialized with PLC's

    NASA Astrophysics Data System (ADS)

    Montoya Villena, Rafael

    According to its title, the general objective of the Thesis consists in developing a clear, simple and systematic methodology for programming type PLC devices. With this aim in mind, we will use the following elements: Codification of all variables types. This section is very important since it allows us working with little information. The necessary rules are given to codify all type of phrases produced in industrial processes. An algorithm that describes process evolution and that has been called process D.F. This is one of the most important contributions, since it will allow us, together with information codification, representing the process evolution in a graphic way and with any design theory used. Theory selection. Evidently, the use of some kind of design method is necessary to obtain logic equations. For this particular case, we will use binodal theory, an ideal theory for wired technologies, since it can obtain highly reduced schemas for relatively simple automatisms, which means a minimum number of components used. User program outline algorithm (D.F.P.). This is another necessary contribution and perhaps the most important one, since logic equations resulting from binodal theory are compatible with process evolution if wired technology is used, whether it is electric, electronic, pneumatic, etc. On the other hand, PLC devices performance characteristics force the program instructions order to validate or not the automatism, as we have proven in different articles and lectures at congresses both national and international. Therefore, we will codify any information concerning the automating process, graphically represent its temporal evolution and, applying binodal theory and D.F.P (previously adapted), succeed in making logic equations compatible with the process to be automated and the device in which they will be implemented (PLC in our case)

  4. Design guide for composite-material flywheels: rotor dyamic considerations. Part I. System whirling and stability. Final report

    SciTech Connect

    Bert, C.W.; Ramunujam, G.

    1981-09-01

    Information to designers of flywheels is provided which will enable them to predict many aspects of the dynamic behavior of their flywheel systems when spin-tested with a quill-shaft support and driven by an air turbine. Computer programs are presented for the following dynamic analysis to obtain the results indicated: free whirling for natural frequencies versus rotational speed and the associated mode shapes; rough-type stability analysis for determining the stability limits; and forced whirling analysis for estimating the response of major components of the system to flywheel mass eccentricity and initial tilt. For the first and third kinds of analyses, two different mathematical models of the generic system are investigated. One is a seven-degree-of-freedom lumped-parameter analysis, while the other is a combined distributed- and lumped-parameter analysis. When applied to an existing flywheel system, the two models yielded numerical values for the lowest first-order forward critical speed in very close agreement with each other and with experimental results obtained in spin tests. Therefore, for the second kind of analysis, only the lumped-parameter model is implemented. Qualitative discussions as to why forced retrograde whirling is not as severe as forward whirling are also presented. The analyses are applied to the multi-material ring type flywheel systems, a constant-thickness-diskring type, and a tapered-thickness-disk type. In addition, the effects of the following flywheel design parameters on system dynamics were investigated: flywheel mass; diametral and polar mass moments of inertia; location of mass center from the lower end of the quill shaft; quill shaft length; lower turbine-bearing support stiffness; equivalent viscous damping coefficient of the external damper; flywheel dead weight; and torque applied at the turbine.

  5. Ergonomic approaches to designing educational materials for immersive multi-projection system

    NASA Astrophysics Data System (ADS)

    Shibata, Takashi; Lee, JaeLin; Inoue, Tetsuri

    2014-02-01

    Rapid advances in computer and display technologies have made it possible to present high quality virtual reality (VR) environment. To use such virtual environments effectively, research should be performed into how users perceive and react to virtual environment in view of particular human factors. We created a VR simulation of sea fish for science education, and we conducted an experiment to examine how observers perceive the size and depth of an object within their reach and evaluated their visual fatigue. We chose a multi-projection system for presenting the educational VR simulation, because this system can provide actual-size objects and produce stereo images located close to the observer. The results of the experiment show that estimation of size and depth was relatively accurate when subjects used physical actions to assess them. Presenting images within the observer's reach is suggested to be useful for education in VR environment. Evaluation of visual fatigue shows that the level of symptoms from viewing stereo images with a large disparity in VR environment was low in a short time.

  6. Integrated design of structures, controls, and materials

    NASA Technical Reports Server (NTRS)

    Blankenship, G. L.

    1994-01-01

    In this talk we shall discuss algorithms and CAD tools for the design and analysis of structures for high performance applications using advanced composite materials. An extensive mathematical theory for optimal structural (e.g., shape) design was developed over the past thirty years. Aspects of this theory have been used in the design of components for hypersonic vehicles and thermal diffusion systems based on homogeneous materials. Enhancement of the design methods to include optimization of the microstructure of the component is a significant innovation which can lead to major enhancements in component performance. Our work is focused on the adaptation of existing theories of optimal structural design (e.g., optimal shape design) to treat the design of structures using advanced composite materials (e.g., fiber reinforced, resin matrix materials). In this talk we shall discuss models and algorithms for the design of simple structures from composite materials, focussing on a problem in thermal management. We shall also discuss methods for the integration of active structural controls into the design process.

  7. Method of designing layered sound absorbing materials

    NASA Astrophysics Data System (ADS)

    Atalla, Youssef; Panneton, Raymond

    2002-11-01

    A widely used model for describing sound propagation in porous materials is the Johnson-Champoux-Allard model. This rigid frame model is based on five geometrical properties of the porous medium: resistivity, porosity, tortuosity, and viscous and thermal characteristic lengths. Using this model and with the knowledge of such properties for different absorbing materials, the design of a multiple layered system can be optimized efficiently and rapidly. The overall impedance of the layered systems can be calculated by the repeated application of single layer impedance equation. The knowledge of the properties of the materials involved in the layered system and their physical meaning, allows to perform by computer a systematic evaluation of potential layer combinations rather than do it experimentally which is time consuming and always not efficient. The final design of layered materials can then be confirmed by suitable measurements. A method of designing the overall acoustic absorption of multiple layered porous materials is presented. Some aspects based on the material properties, for designing a flat layered absorbing system are considered. Good agreement between measured and computed sound absorption coefficients has been obtained for the studied configurations. [Work supported by N.S.E.R.C. Canada, F.C.A.R. Quebec, and Bombardier Aerospace.

  8. Principles of Inorganic Materials Design

    NASA Astrophysics Data System (ADS)

    Lalena, John N.; Cleary, David

    2005-04-01

    A unique interdisciplinary approach to inorganic materials design Textbooks intended for the training of chemists in the inorganic materials field often omit many relevant topics. With its interdisciplinary approach, this book fills that gap by presenting concepts from chemistry, physics, materials science, metallurgy, and ceramics in a unified treatment targeted towards the chemistry audience. Semiconductors, metal alloys and intermetallics, as well as ceramic substances are covered. Accordingly, the book should also be useful to students and working professionals in a variety of other disciplines. This book discusses a number of topics that are pertinent to the design of new inorganic materials but are typically not covered in standard solid-state chemistry books. The authors start with an introduction to structure at the mesoscopic level and progress to smaller-length scales. Next, detailed consideration is given to both phenomenological and atomistic-level descriptions of transport properties, the metal-nonmetal transition, magnetic and dielectric properties, optical properties, and mechanical properties. Finally, the authors present introductions to phase equilibria, synthesis, and nanomaterials. Other features include: Worked examples demonstrating concepts unfamiliar to the chemist Extensive references to related literature, leading readers to more in-depth coverage of particular topics Biographies introducing the reader to great contributors to the field of inorganic materials science in the twentieth century With their interdisciplinary approach, the authors have set the groundwork for communication and understanding among professionals in varied disciplines who are involved with inorganic materials engineering. Armed with this publication, students and researchers in inorganic and physical chemistry, physics, materials science, and engineering will be better equipped to face today's complex design challenges. This textbook is appropriate for senior

  9. Mimicry of natural material designs and processes

    SciTech Connect

    Bond, G.M.; Richman, R.H.; McNaughton, W.P.

    1995-06-01

    Biological structural materials, although composed of unremarkable substances synthesized at low temperatures, often exhibit superior mechanical properties. In particular, the quality in which nearly all biologically derived materials excel is toughness. The advantageous mechanical properties are attributable to the hierarchical, composite, structural arrangements common to biological systems. Materials scientists and engineers have increasingly recognized that biological designs or processing approaches applied to man-made materials (biomimesis) may offer improvements in performance over conventional designs and fabrication methods. In this survey, the structures and processing routes of marine shells, avian eggshells, wood, bone, and insect cuticle are briefly reviewed, and biomimesis research inspired by these materials is discussed. In addition, this paper describes and summarizes the applications of biomineralization, self-assembly, and templating with proteins to the fabrication of thin ceramic films and nanostructure devices.

  10. Theory and Computational Design of Protein Materials

    NASA Astrophysics Data System (ADS)

    Saven, Jeffery

    2015-03-01

    Protein design opens routes to arrive at novel molecules, materials and nanostructures. Recent theoretical methods can identify the properties of amino acid sequences consistent with desired structures and functions. Such methods leverage concepts from statistical mechanics and address the structural complexity of proteins and their many possible amino acid sequences. Computationally designed protein-based systems have been experimentally realized to encapsulate nonbiological cofactors and assemble into predetermined crystalline structures.

  11. Marine Education Materials System.

    ERIC Educational Resources Information Center

    Gammisch, Sue; Gray, Kevin

    1980-01-01

    Described is a marine education materials clearinghouse, the Marine Education Materials System (MEMS). MEMS classifies marine education documents and reproduces them on microfiche for distribution. There are 25 distribution centers, each of which has a collection of documents and provides assistance on a request basis to teachers. (Author/DS)

  12. Materials design for electrocatalytic carbon capture

    NASA Astrophysics Data System (ADS)

    Tan, Xin; Tahini, Hassan A.; Smith, Sean C.

    2016-05-01

    We discuss our philosophy for implementation of the Materials Genome Initiative through an integrated materials design strategy, exemplified here in the context of electrocatalytic capture and separation of CO2 gas. We identify for a group of 1:1 X-N graphene analogue materials that electro-responsive switchable CO2 binding behavior correlates with a change in the preferred binding site from N to the adjacent X atom as negative charge is introduced into the system. A reconsideration of conductive N-doped graphene yields the discovery that the N-dopant is able to induce electrocatalytic binding of multiple CO2 molecules at the adjacent carbon sites.

  13. 46 CFR 58.05-1 - Material, design and construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Material, design and construction. 58.05-1 Section 58.05... AUXILIARY MACHINERY AND RELATED SYSTEMS Main Propulsion Machinery § 58.05-1 Material, design and construction. (a) The material, design, construction, workmanship, and arrangement of main propulsion...

  14. 46 CFR 58.05-1 - Material, design and construction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Material, design and construction. 58.05-1 Section 58.05... AUXILIARY MACHINERY AND RELATED SYSTEMS Main Propulsion Machinery § 58.05-1 Material, design and construction. (a) The material, design, construction, workmanship, and arrangement of main propulsion...

  15. 46 CFR 58.05-1 - Material, design and construction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Material, design and construction. 58.05-1 Section 58.05... AUXILIARY MACHINERY AND RELATED SYSTEMS Main Propulsion Machinery § 58.05-1 Material, design and construction. (a) The material, design, construction, workmanship, and arrangement of main propulsion...

  16. 46 CFR 58.05-1 - Material, design and construction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Material, design and construction. 58.05-1 Section 58.05... AUXILIARY MACHINERY AND RELATED SYSTEMS Main Propulsion Machinery § 58.05-1 Material, design and construction. (a) The material, design, construction, workmanship, and arrangement of main propulsion...

  17. 46 CFR 58.05-1 - Material, design and construction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Material, design and construction. 58.05-1 Section 58.05... AUXILIARY MACHINERY AND RELATED SYSTEMS Main Propulsion Machinery § 58.05-1 Material, design and construction. (a) The material, design, construction, workmanship, and arrangement of main propulsion...

  18. Flexible Material Systems Testing

    NASA Technical Reports Server (NTRS)

    Lin, John K.; Shook, Lauren S.; Ware, Joanne S.; Welch, Joseph V.

    2010-01-01

    An experimental program has been undertaken to better characterize the stress-strain characteristics of flexible material systems to support a NASA ground test program for inflatable decelerator material technology. A goal of the current study is to investigate experimental methods for the characterization of coated woven material stiffness. This type of experimental mechanics data would eventually be used to define the material inputs of fluid-structure interaction simulation models. The test methodologies chosen for this stress-strain characterization are presented along with the experimental results.

  19. Laser material processing system

    DOEpatents

    Dantus, Marcos

    2015-04-28

    A laser material processing system and method are provided. A further aspect of the present invention employs a laser for micromachining. In another aspect of the present invention, the system uses a hollow waveguide. In another aspect of the present invention, a laser beam pulse is given broad bandwidth for workpiece modification.

  20. Designing Online Software for Teaching the Concept of Variable That Facilitates Mental Interaction with the Material: Systemic Approach

    ERIC Educational Resources Information Center

    Koehler, Natalya A.; Thompson, Ann D.; Correia, Ana-Paula; Hagedorn, Linda Serra

    2015-01-01

    Our case study is a response to the need for research and reporting on specific strategies employed by software designers to produce effective multimedia instructional solutions. A systemic approach for identifying appropriate software features and conducting a formative evaluation that evaluates both the overall effectiveness of the multimedia…

  1. OLED microdisplay design and materials

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Prache, Olivier; Ali, Tariq; Khayrullin, Ilyas; Ghosh, Amalkumar

    2010-04-01

    AMOLED microdisplays from eMagin Corporation are finding growing acceptance within the military display market as a result of their excellent power efficiency, wide operating temperature range, small size and weight, good system flexibility, and ease of use. The latest designs have also demonstrated improved optical performance including better uniformity, contrast, MTF, and color gamut. eMagin's largest format display is currently the SXGA design, which includes features such as a 30-bit wide RGB digital interface, automatic luminance regulation from -45 to +70°C, variable gamma control, and a dynamic range exceeding 50:000 to 1. This paper will highlight the benefits of eMagin's latest microdisplay designs and review the roadmap for next generation devices. The ongoing development of reduced size pixels and larger format displays (up to WUXGA) as well as new OLED device architecture (e.g. high-brightness yellow) will be discussed. Approaches being explored for improved performance in next generation designs such as lowpower serial interfaces, high frame rate operation, and new operational modes for reduction of motion artifacts will also be described. These developments should continue to enhance the appeal of AMOLED microdisplays for a broad spectrum of near-to-the-eye applications such as night vision, simulation and training, situational awareness, augmented reality, medical imaging, and mobile video entertainment and gaming.

  2. Computationally Designed Molecularly Imprinted Materials

    NASA Astrophysics Data System (ADS)

    Pavel, Dumitru; Lagowski, Jolanta; Faid, Karim

    2004-03-01

    Molecular dynamics simulations were carried out for different molecular systems in order to predict the binding affinities, binding energies, binding distances and the active site groups between the simulated molecular systems and different bio-ligands (theophylline and its derivatives), which have been designed and minimized using molecular simulation techniques. The first simulated molecular systems consisted of a ligand and functional monomer, such as methacrylic acid and its derivatives. For each pair of molecular systems, (10 monomers with a ligand and 10 monomers without a ligand) a total energy difference was calculated in order to estimate the binding energy between a ligand and the corresponding monomers. The analysis of the simulated functional monomers with ligands indicates that the functional group of monomers interacting with ligands tends to be either COOH or CH2=CH. The distances between the ligand and monomer, in the most stable cases as indicated above, are between 2.0-4.5 Å. The second simulated molecular systems consisted of a ligand and a polymer. The polymers were obtained from monomers that were simulated above. And similar to monomer study, for each pair of molecular systems, (polymer with a ligand and polymer without a ligand) a total energy difference was calculated in order to estimate the binding energy between ligand and the corresponding polymer. The binding distance between the active site of a polymer and a ligand will also be discussed.

  3. Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    NASA Technical Reports Server (NTRS)

    Rey, Charles A.

    1991-01-01

    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.

  4. Designer Nanocrystal Materials for Photovoltaics

    NASA Astrophysics Data System (ADS)

    Kagan, Cherie

    Advances in synthetic methods allow a wide range of semiconductor nanocrystals (NCs) to be tailored in size and shape and to be used as building blocks in the design of NC solids. However, the long, insulating ligands commonly employed in the synthesis of colloidal NCs inhibit strong interparticle coupling and charge transport once NCs are assembled into the solids state as NC arrays. We will describe the range of short, compact ligand chemistries we employ to exchange the long, insulating ligands used in synthesis and to increase interparticle coupling. These ligand exchange processes can have a dramatic influence on NC surface chemistry as well as NC organization in the solids, showing examples of short-range order. Synergistically, we use 1) thermal evaporation and diffusion and 2) wet-chemical methods to introduce extrinsic impurities and non-stoichiometry to passivate surface traps and dope NC solids. NC coupling and doping provide control over the density of states and the carrier type, concentration, mobility, and lifetime, which we characterize by a range of electronic and spectroscopic techniques. We will describe the importance of engineering device interfaces to design NC materials for solar photovoltaics.

  5. Materials informatics: a journey towards material design and synthesis.

    PubMed

    Takahashi, Keisuke; Tanaka, Yuzuru

    2016-06-28

    Materials informatics has been gaining popularity with the rapid development of computational materials science. However, collaborations between information science and materials science have not yet reached the success. There are several issues which need to be overcome in order to establish the field of materials informatics. Construction of material big data, implementation of machine learning, and platform design for materials discovery are discussed with potential solutions. PMID:27292550

  6. Materials informatics: a journey towards material design and synthesis.

    PubMed

    Takahashi, Keisuke; Tanaka, Yuzuru

    2016-06-28

    Materials informatics has been gaining popularity with the rapid development of computational materials science. However, collaborations between information science and materials science have not yet reached the success. There are several issues which need to be overcome in order to establish the field of materials informatics. Construction of material big data, implementation of machine learning, and platform design for materials discovery are discussed with potential solutions.

  7. ALTERNATE MATERIALS IN DESIGN OF RADIOACTIVE MATERIAL PACKAGES

    SciTech Connect

    Blanton, P.; Eberl, K.

    2010-07-09

    This paper presents a summary of design and testing of material and composites for use in radioactive material packages. These materials provide thermal protection and provide structural integrity and energy absorption to the package during normal and hypothetical accident condition events as required by Title 10 Part 71 of the Code of Federal Regulations. Testing of packages comprising these materials is summarized.

  8. Software Design Analyzer System

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1985-01-01

    CRISP80 software design analyzer system a set of programs that supports top-down, hierarchic, modular structured design, and programing methodologies. CRISP80 allows for expression of design as picture of program.

  9. Progress in material design for biomedical applications.

    PubMed

    Tibbitt, Mark W; Rodell, Christopher B; Burdick, Jason A; Anseth, Kristi S

    2015-11-24

    Biomaterials that interface with biological systems are used to deliver drugs safely and efficiently; to prevent, detect, and treat disease; to assist the body as it heals; and to engineer functional tissues outside of the body for organ replacement. The field has evolved beyond selecting materials that were originally designed for other applications with a primary focus on properties that enabled restoration of function and mitigation of acute pathology. Biomaterials are now designed rationally with controlled structure and dynamic functionality to integrate with biological complexity and perform tailored, high-level functions in the body. The transition has been from permissive to promoting biomaterials that are no longer bioinert but bioactive. This perspective surveys recent developments in the field of polymeric and soft biomaterials with a specific emphasis on advances in nano- to macroscale control, static to dynamic functionality, and biocomplex materials.

  10. Progress in material design for biomedical applications

    PubMed Central

    Tibbitt, Mark W.; Rodell, Christopher B.; Burdick, Jason A.; Anseth, Kristi S.

    2015-01-01

    Biomaterials that interface with biological systems are used to deliver drugs safely and efficiently; to prevent, detect, and treat disease; to assist the body as it heals; and to engineer functional tissues outside of the body for organ replacement. The field has evolved beyond selecting materials that were originally designed for other applications with a primary focus on properties that enabled restoration of function and mitigation of acute pathology. Biomaterials are now designed rationally with controlled structure and dynamic functionality to integrate with biological complexity and perform tailored, high-level functions in the body. The transition has been from permissive to promoting biomaterials that are no longer bioinert but bioactive. This perspective surveys recent developments in the field of polymeric and soft biomaterials with a specific emphasis on advances in nano- to macroscale control, static to dynamic functionality, and biocomplex materials. PMID:26598696

  11. Materials by Design: Merging Proteins and Music.

    PubMed

    Wong, Joyce Y; McDonald, John; Taylor-Pinney, Micki; Spivak, David I; Kaplan, David L; Buehler, Markus J

    2012-12-01

    Tailored materials with tunable properties are crucial for applications as biomaterials, for drug delivery, as functional coatings, or as lightweight composites. An emerging paradigm in designing such materials is the construction of hierarchical assemblies of simple building blocks into complex architectures with superior properties. We review this approach in a case study of silk, a genetically programmable and processable biomaterial, which, in its natural role serves as a versatile protein fiber with hierarchical organization to provide structural support, prey procurement or protection of eggs. Through an abstraction of knowledge from the physical system, silk, to a mathematical model using category theory, we describe how the mechanism of spinning fibers from proteins can be translated into music through a process that assigns a set of rules that governs the construction of the system. This technique allows one to express the structure, mechanisms and properties of the 'material' in a very different domain, 'music'. The integration of science and art through categorization of structure-property relationships presents a novel paradigm to create new bioinspired materials, through the translation of structures and mechanisms from distinct hierarchical systems and in the context of the limited number of building blocks that universally governs these systems. PMID:23997808

  12. Improved 4-chlorophenol dechlorination at biocathode in bioelectrochemical system using optimized modular cathode design with composite stainless steel and carbon-based materials.

    PubMed

    Kong, Fanying; Wang, Aijie; Ren, Hong-Yu

    2014-08-01

    This study developed and optimized a modular biocathode materials design in bioelectrochemical system (BES) using composite metal and carbon-based materials. The 4-chlorophenol (4-CP) dechlorination could be improved with such composite materials. Results showed that stainless steel basket (SSB) filled with graphite granules (GG) and carbon brush (CB) (SSB/GG/CB) was optimum for dechlorination, followed by SSB/CB and SSB/GG, with rate constant k of 0.0418 ± 0.0002, 0.0374 ± 0.0004, and 0.0239 ± 0.0002 h(-1), respectively. Electrochemical impedance spectroscopy (EIS) demonstrated that the composite materials with metal can benefit the electron transfer and decrease the charge transfer resistance to be 80.4 Ω in BES-SSB/GG/CB, much lower than that in BES-SSB (1674.3 Ω), BES-GG (387.3 Ω), and BES-CB (193.8 Ω). This modular cathode design would be scalable with successive modules for BES scale-up, and may offer useful information to guide the selection and design of BES materials towards dechlorination improvement in wastewater treatment. PMID:24926596

  13. Biologically inspired dynamic material systems.

    PubMed

    Studart, André R

    2015-03-01

    Numerous examples of material systems that dynamically interact with and adapt to the surrounding environment are found in nature, from hair-based mechanoreceptors in animals to self-shaping seed dispersal units in plants to remodeling bone in vertebrates. Inspired by such fascinating biological structures, a wide range of synthetic material systems have been created to replicate the design concepts of dynamic natural architectures. Examples of biological structures and their man-made counterparts are herein revisited to illustrate how dynamic and adaptive responses emerge from the intimate microscale combination of building blocks with intrinsic nanoscale properties. By using top-down photolithographic methods and bottom-up assembly approaches, biologically inspired dynamic material systems have been created 1) to sense liquid flow with hair-inspired microelectromechanical systems, 2) to autonomously change shape by utilizing plantlike heterogeneous architectures, 3) to homeostatically influence the surrounding environment through self-regulating adaptive surfaces, and 4) to spatially concentrate chemical species by using synthetic microcompartments. The ever-increasing complexity and remarkable functionalities of such synthetic systems offer an encouraging perspective to the rich set of dynamic and adaptive properties that can potentially be implemented in future man-made material systems.

  14. Control system design guide

    SciTech Connect

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  15. Bulk material handling system

    DOEpatents

    Kleysteuber, William K.; Mayercheck, William D.

    1979-01-01

    This disclosure relates to a bulk material handling system particularly adapted for underground mining and includes a monorail supported overhead and carrying a plurality of conveyors each having input and output end portions with the output end portion of a first of the conveyors positioned above an input end portion of a second of the conveyors, a device for imparting motion to the conveyors to move the material from the input end portions toward the output end portions thereof, a device for supporting at least one of the input and output end portions of the first and second conveyors from the monorail, and the supporting device including a plurality of trolleys rollingly supported by the monorail whereby the conveyors can be readily moved therealong.

  16. Design of a multifunctional nanohybrid system of the phytohormone gibberellic acid using an inorganic layered double-hydroxide material.

    PubMed

    Hafez, Inas H; Berber, Mohamed R; Minagawa, Keiji; Mori, Takeshi; Tanaka, Masami

    2010-09-22

    To offer a multifunctional and applicable system of the high-value biotechnological phytohormone gibberellic acid (GA), a nanohybrid system of GA using the inorganic Mg-Al layered double-hydroxide material (LDH) was formulated. The ion-exchange technique of LDH was applied to synthesize the GA-LDH hybrid. The hybrid structure of GA-LDH was confirmed by different spectroscopic techniques. The nanohybrid size was described by SEM to be ∼0.1 μm. The GA-LDH nanohybrid structure was the key parameter that controlled GA properties. The layered molecular structure of LDH limited the interaction of GA molecules in two-dimensional directions. Accordingly, GA molecules did not crystallize and were released in an amorphous form suitable for dissolution. At various simulated soil solutions, the nanohybrids showed a sustained release process following Higuchi kinetics. The biodegradation process of the intercalated GA showed an extended period of soil preservation as well as a slow rate of degradation. PMID:20722412

  17. Materials by Design: Merging Proteins and Music

    PubMed Central

    Wong, Joyce Y.; McDonald, John; Taylor-Pinney, Micki; Spivak, David I.; Kaplan, David L.; Buehler, Markus J.

    2013-01-01

    Tailored materials with tunable properties are crucial for applications as biomaterials, for drug delivery, as functional coatings, or as lightweight composites. An emerging paradigm in designing such materials is the construction of hierarchical assemblies of simple building blocks into complex architectures with superior properties. We review this approach in a case study of silk, a genetically programmable and processable biomaterial, which, in its natural role serves as a versatile protein fiber with hierarchical organization to provide structural support, prey procurement or protection of eggs. Through an abstraction of knowledge from the physical system, silk, to a mathematical model using category theory, we describe how the mechanism of spinning fibers from proteins can be translated into music through a process that assigns a set of rules that governs the construction of the system. This technique allows one to express the structure, mechanisms and properties of the ‘material’ in a very different domain, ‘music’. The integration of science and art through categorization of structure-property relationships presents a novel paradigm to create new bioinspired materials, through the translation of structures and mechanisms from distinct hierarchical systems and in the context of the limited number of building blocks that universally governs these systems. PMID:23997808

  18. Preconceptual design of a Long-Pulse Spallation Source (LPSS) at the LANSCE Facility: Target system, facility, and material handling considerations

    SciTech Connect

    Sommer, W.F.

    1995-12-01

    This report provides a summary of a preconceptual design study for the proposed Long-Pulse Spallation. Source (LPSS) at the Los Alamos Neutron Science Center (LANSCE). The LPSS will use a 0.8-MW proton beam to produce neutrons from a tungsten target. This study focuses on the design of the target station and changes to the existing building that would be made to accommodate the LPSS. The LPSS will provide fifteen flight paths to neutron scattering instruments. In addition, options for generating ultracold neutrons, pions, and muons will be available. Flight-energy, forward-scattered neutrons on the downstream side of the target will also be available for autoradiography studies. A Target Test Bed (TTB) is also proposed for full-beam tests of component materials and advanced spallation neutron sources. The design allows for separation of the experiment hall from the beam line, target, and flight paths. The target and moderator systems and the systems/components to be tested in the TTB will be emplaced and removed separately by remotely operated, shielded equipment. Irradiated materials will be transported to a hot cell adjacent to the target chamber for testing by remotely operated instruments. These tests will provide information about how materials properties are affected by proton and neutron beams.

  19. Novel stable hard transparent conductors in TiO2-TiC system: Design materials from scratch

    PubMed Central

    Meng, Xiangying; Liu, Dongyan; Dai, Xuefeng; Pan, Haijun; Wen, Xiaohong; Zuo, Liang; Qin, Gaowu

    2014-01-01

    Two new ternary compounds in the TiO2-TiC system, Ti5C2O6 and Ti3C2O2, are reported for the first time based on ab initio evolutionary algorithm. Ti5C2O6 has a tube-structure in which sp1 hybridized carbon chains run through the lattice along the b-axis; while in the Ti3C2O2 lattice, double TiO6 polyhedral are separated by the non-coplanar sp2 hybridized hexagon graphite layers along the c-axis, forming a sandwich-like structure. At ambient conditions, the two compounds are found to be mechanically and dynamically stable and intrinsic transparent conductors with high hardness (about twice harder than the conventional transparent conducting oxides). These mechanical, electronic, and optical properties make Ti5C2O6 and Ti3C2O2 ternary compounds be promising robust, hard, transparent, and conductive materials. PMID:25511583

  20. Managing Training Materials with Structured Text Design.

    ERIC Educational Resources Information Center

    Streit, Les D.; And Others

    1986-01-01

    Describes characteristics of structured text design; benefits of its use in training; benefits for developers of training materials and steps in preparing training materials. A case study illustrating how the structured text design process solved the sales training needs of the Mercedes-Benz Truck Company is presented. (MBR)

  1. Topology Optimization for Architected Materials Design

    NASA Astrophysics Data System (ADS)

    Osanov, Mikhail; Guest, James K.

    2016-07-01

    Advanced manufacturing processes provide a tremendous opportunity to fabricate materials with precisely defined architectures. To fully leverage these capabilities, however, materials architectures must be optimally designed according to the target application, base material used, and specifics of the fabrication process. Computational topology optimization offers a systematic, mathematically driven framework for navigating this new design challenge. The design problem is posed and solved formally as an optimization problem with unit cell and upscaling mechanics embedded within this formulation. This article briefly reviews the key requirements to apply topology optimization to materials architecture design and discusses several fundamental findings related to optimization of elastic, thermal, and fluidic properties in periodic materials. Emerging areas related to topology optimization for manufacturability and manufacturing variations, nonlinear mechanics, and multiscale design are also discussed.

  2. Design and Manufacture of Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2016-07-12

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  3. Design and Manufacture of Energy Absorbing Materials

    SciTech Connect

    Duoss, Eric

    2014-05-28

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  4. Computer-Aided Design Of Sheet-Material Parts

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Paternoster, Vincent Y.; Levitt, Maureen L.; Osterloh, Mark R.

    1991-01-01

    Computer-aided-design system partly automates tedious process of designing and guiding assembly of small pieces of flat sheet material into large surfaces that approximate smoothly curved surfaces having complicated three-dimensional shapes. Capability provides for flexibility enabling designer to assess quickly and easily effects of changes in design in making engineering compromises among various sizes and shapes. Saves time and money in both design and fabrication. Used in rocket-engine application and other applications requiring design of sheet-material parts.

  5. Nanoscale control designs for systems.

    PubMed

    Chen, Yung-Yue

    2014-02-01

    Nanoscale control is the science of the control of objects at dimensions with 100 nm or less and the manipulation of them at this level of precision. The desired attributes of systems under nanoscale control design are extreme high resolution, accuracy, stability, and fast response. An important perspective of investigation in nanoscale control design includes system modeling and precision control devices and materials at a nanoscale dimension, i.e., design of nanopositioners. Nanopositioners are mechatronic systems with an ultraprecise resolution down to a fraction of an atomic diameter and developed to move objects over a small range in nanoscale dimension. After reviewing a lot of existing literatures for nanoscale control designs, the way to successful nanoscale control is accurate position sensing and feedback control of the motion. An overview of nanoscale identification, linear, and nonlinear control technologies, and devices that are playing a key role in improving precision, accuracy, and response of operation of these systems are introduced in this research.

  6. Materials Selection in Gas Turbine Engine Design and the Role of Low Thermal Expansion Materials

    NASA Astrophysics Data System (ADS)

    Lagow, Benjamin W.

    2016-08-01

    Materials selection criteria in gas turbine engine design are reviewed, and several design challenges are introduced where selection of low coefficient of thermal expansion (CTE) materials can help improve engine performance and operability. This is followed by a review of the types of low CTE materials that are suitable for gas turbine engine applications, and discussion of their advantages and disadvantages. The primary limitation of low CTE materials is their maximum use temperature; if higher temperature materials could be developed, this could result in novel turbine system designs for gas turbine engines.

  7. Materials design and development of functional materials for industry.

    PubMed

    Asahi, Ryoji; Morikawa, Takeshi; Hazama, Hirofumi; Matsubara, Masato

    2008-02-13

    It is now well recognized that we are witnessing a golden age of innovation with novel materials, with discoveries that are important for both basic science and industry. With the development of theory along with computing power, quantum materials design-the synthesis of materials with the desired properties in a controlled way via materials engineering on the atomic scale-is becoming a major component of materials research. Computational prediction based on first-principles calculations has helped to find an efficient way to develop materials that are much needed for industry, as we have seen in the successful development of visible-light sensitized photocatalysts and thermoelectric materials. Close collaboration between theory and experiment is emphasized as an essential for success.

  8. Photovoltaic module encapsulation design and materials selection, volume 1

    NASA Astrophysics Data System (ADS)

    Cuddihy, E.; Carroll, W.; Coulbert, C.; Gupta, A.; Liang, R. H.

    1982-06-01

    Encapsulation material system requirements, material selection criteria, and the status and properties of encapsulation materials and processes available are presented. Technical and economic goals established for photovoltaic modules and encapsulation systems and their status are described. Available encapsulation technology and data are presented to facilitate design and material selection for silicon flat plate photovoltaic modules, using the best materials available and processes optimized for specific power applications and geographic sites. The operational and environmental loads that encapsulation system functional requirements and candidate design concepts and materials that are identified to have the best potential to meet the cost and performance goals for the flat plate solar array project are described. Available data on encapsulant material properties, fabrication processing, and module life and durability characteristics are presented.

  9. Photovoltaic module encapsulation design and materials selection, volume 1

    NASA Technical Reports Server (NTRS)

    Cuddihy, E.; Carroll, W.; Coulbert, C.; Gupta, A.; Liang, R. H.

    1982-01-01

    Encapsulation material system requirements, material selection criteria, and the status and properties of encapsulation materials and processes available are presented. Technical and economic goals established for photovoltaic modules and encapsulation systems and their status are described. Available encapsulation technology and data are presented to facilitate design and material selection for silicon flat plate photovoltaic modules, using the best materials available and processes optimized for specific power applications and geographic sites. The operational and environmental loads that encapsulation system functional requirements and candidate design concepts and materials that are identified to have the best potential to meet the cost and performance goals for the flat plate solar array project are described. Available data on encapsulant material properties, fabrication processing, and module life and durability characteristics are presented.

  10. Design and Development of a Sub-Zero Fluid System for Demonstration of Orion's Phase Change Material Heat Exchangers on ISS

    NASA Technical Reports Server (NTRS)

    Sheth, Rubik B.; Ahlstrom, Thomas D.; Le, Hung V.

    2016-01-01

    NASA's Orion Multipurpose Crew Vehicle's Exploration Mission 2 is expected to loiter in Lunar orbit for a relatively long period of time. In low Lunar orbit (LLO) the thermal environment is cyclic - extremely cold in the eclipse and relatively hot near the subsolar point. Phase change material heat exchangers (PCM HXs) are the best option for long term missions in these environments. A PCM HX allows a vehicle to store excess waste energy by thawing a phase change material such as n-pentadecane wax. During portions of the orbit that are extremely cold, the excess energy is rejected, resolidifying the wax. Due to the inherent risk of compromising the heat exchanger during multiple freeze and thaw cycles, a unique payload was designed for the International Space Station to test and demonstration the functions of a PCM HX. The payload incorporates the use of a pumped fluid system and a thermoelectric heat exchanger to promote the freezing and thawing of the PCM HX. This paper shall review the design and development undertaken to build such a system.

  11. Control system design method

    DOEpatents

    Wilson, David G.; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  12. Design principles for therapeutic angiogenic materials

    NASA Astrophysics Data System (ADS)

    Briquez, Priscilla S.; Clegg, Lindsay E.; Martino, Mikaël M.; Gabhann, Feilim Mac; Hubbell, Jeffrey A.

    2016-01-01

    Despite extensive research, pro-angiogenic drugs have failed to translate clinically, and therapeutic angiogenesis, which has potential in the treatment of various cardiovascular diseases, remains a major challenge. Physiologically, angiogenesis — the process of blood-vessel growth from existing vasculature — is regulated by a complex interplay of biophysical and biochemical cues from the extracellular matrix (ECM), angiogenic factors and multiple cell types. The ECM can be regarded as the natural 3D material that regulates angiogenesis. Here, we leverage knowledge of ECM properties to derive design rules for engineering pro-angiogenic materials. We propose that pro-angiogenic materials should be biomimetic, incorporate angiogenic factors and mimic cooperative interactions between growth factors and the ECM. We highlight examples of material designs that demonstrate these principles and considerations for designing better angiogenic materials.

  13. Adaptive Strategies for Materials Design using Uncertainties.

    PubMed

    Balachandran, Prasanna V; Xue, Dezhen; Theiler, James; Hogden, John; Lookman, Turab

    2016-01-21

    We compare several adaptive design strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young's (E) modulus] have been computed using density functional theory. The design strategies are decomposed into an iterative loop with two main steps: machine learning is used to train a regressor that predicts elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions and their uncertainties to choose the next material to investigate. The ultimate goal is to obtain a material with desired elastic properties in as few iterations as possible. We examine how the choice of data set size, regressor and selector impact the design. We find that selectors that use information about the prediction uncertainty outperform those that don't. Our work is a step in illustrating how adaptive design tools can guide the search for new materials with desired properties.

  14. Photovoltaic-module encapsulation design and materials selection: Volume 1

    SciTech Connect

    Cuddihy, E.; Carroll, W.; Coulbert, C.; Gupta, A.; Liang, R.

    1982-06-01

    Encapsulation-material system requirements, material-selection criteria, and the status and properties of encapsulation materials and processes available to the module manufacturer are presented in detail. Technical and economic goals established for photovoltaic modules and encapsulation systems and their status are described for material suppliers to assist them in assessing the suitability of materials in their product lines and the potential of new-material products. A comprehensive discussion of available encapsulation technology and data is presented to facilitate design and material selection for silicon flat-plate photovoltaic modules, using the best materials available and processes optimized for specific power applications and geographic sites. A basis is provided for specifying the operational and environmental loads that encapsulation material systems must resist. Potential deployment sites for which cost effectiveness may be achieved at a module price much greater than $0.70/W/sub p/, are also considered; data on higher-cost encapsulant materials and processes that may be in use and other material candidates that may be justified for special application are discussed. Described are encapsulation-system functional requirements and candidate design concepts and materials that have been identified and analyzed as having the best potential to meet the cost and performance goals for the Flat-Plate Solar Array Project. The available data on encapsulant material properties, fabrication processing, and module life and durability characteristics are presented.

  15. Design and Evaluation Issues on CAL Materials.

    ERIC Educational Resources Information Center

    England, Elaine

    1984-01-01

    Suggests that insights from other disciplines be considered when evaluating computer-assisted language instruction materials. Issues which need to be considered when evaluating these materials include: design issues, user-machine interfacing, support documentation, screen layout, color and animation, and restricted visual display capacity. (SED)

  16. Designing Menu Selection Systems.

    ERIC Educational Resources Information Center

    Schneiderman, Ben

    1986-01-01

    Focuses on the multiple design issues involved in creating successful menu selection systems: semantic organization, response time, display rates, shortcuts for frequent users, titles, phrasing of menu items, graphic layout, and selection mechanisms. Pop-up and embedded menus, experimental results, and design guidelines are also covered.…

  17. Instructional Design: System Strategies.

    ERIC Educational Resources Information Center

    Ledford, Bruce R.; Sleeman, Phillip J.

    This book is intended as a source for those who desire to apply a coherent system of instructional design, thereby insuring accountability. Chapter 1 covers the instructional design process, including: instructional technology; the role of evaluation; goal setting; the psychology of teaching and learning; task analysis; operational objectives;…

  18. Uncertainty management in intelligent design aiding systems

    NASA Technical Reports Server (NTRS)

    Brown, Donald E.; Gabbert, Paula S.

    1988-01-01

    A novel approach to uncertainty management which is particularly effective in intelligent design aiding systems for large-scale systems is presented. The use of this approach in the materials handling system design domain is discussed. It is noted that, during any point in the design process, a point value can be obtained for the evaluation of feasible designs; however, the techniques described provide unique solutions for these point values using only the current information about the design environment.

  19. Remote Systems Design & Deployment

    SciTech Connect

    Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

    2009-08-28

    The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.

  20. Functionally graded materials: Design, processing and applications

    SciTech Connect

    Miyamoto, Y.; Kaysser, W.A.; Rabin, B.H.; Kawasaki, A.; Ford, R.G.

    1999-09-01

    In a Functionally Graded Material (FGM), the composition and structure gradually change over volume, resulting in corresponding changes in the properties of the material. By applying the many possibilities inherent in the FGM concept, it is anticipated that materials will be improved and new functions for them created. A comprehensive description of design, modeling, processing, and evaluation of FGMs as well as their applications is covered in this book. The contents include: lessons from nature; graded microstructures; modeling and design; characterization of properties; processing and fabrication; applications; and summary and outlook.

  1. Designing future photovoltaic systems

    SciTech Connect

    Jones, G.J.

    1984-01-01

    The large scale use of photovoltaic systems to generate our electricity is a dream for the future; but if this dream is to be realized, we must understand these systems today. As a result, there has been extensive research into the design and economic tradeoffs of utility interconnected photovoltaic applications. The understanding gained in this process has shown that photovoltaic system design can be a very simple and straight-forward endeavor. This paper reviews those past studies and shows how we have reached the present state of system design evolution. The concept of the utility interactive PV system with energy value determined by the utility's avoided cost will be explored. This concept simplifies the screening of potential applications for economic viability, and we will present several rules-of-thumb for this purpose.

  2. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  3. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  4. Designing Radiation Resistance in Materials for Fusion Energy

    NASA Astrophysics Data System (ADS)

    Zinkle, S. J.; Snead, L. L.

    2014-07-01

    Proposed fusion and advanced (Generation IV) fission energy systems require high-performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (nonstructural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials in which vacancies are immobile at the design operating temperatures, or engineer materials with high sink densities for point defect recombination. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced-activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion-strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.

  5. Design guide for Type B radioactive material transportation packaging

    SciTech Connect

    Arbital, J.G.; Stumpfl, E.; Moses, S.D.

    1995-11-01

    In a joint effort between Martin Marietta Energy Systems, Inc. of Oak Ridge, Tennessee and the US Department of Energy (DOE) Albuquerque Operations (ALO), a guide to transportation package design for defense program materials has been developed (DOE, 1994). The Design Guide, as it is referred to, is a comprehensive document that uses a systems engineering approach to the design of Type B fissile packages for radioactive material handling and shipping. The specific design aspects addressed in the guide are geared toward special nuclear materials, however the guide can be used to design any transportation package for Type B unirradiated material (fissile or nonfissile). The Design Guide covers all elements of a successful design effort including structural integrity issues, thermal performance, containment systems, shielding requirements, criticality concerns, operational considerations, acceptance criteria, maintenance program, materials compatibility, and quality assurance. The Design Guide was issued in DRAFT form for comments by the DOE complex. Comments have since been incorporated. The Design Guide will be further updated as new technologies are developed, however it can be successfully applied at this time.

  6. Molecular understanding and design of zwitterionic materials.

    PubMed

    Shao, Qing; Jiang, Shaoyi

    2015-01-01

    Zwitterionic materials have moieties possessing cationic and anionic groups. This molecular structure leads to unique properties that can be the solutions of various application problems. A typical example is that zwitterionic carboxybetaine (CB) and sulfobetaine (SB) materials resist nonspecific protein adsorption in complex media. Considering the vast number of cationic and anionic groups in the current chemical inventory, there are many possible structural variations of zwitterionic materials. The diversified structures provide the possibility to achieve many desired properties and urge a better understanding of zwitterionic materials to provide design principles. Molecular simulations and modeling are a versatile tool to understand the structure-property relationships of materials at the molecular level. This progress report summarizes recent simulation and modeling studies addressing two fundamental questions regarding zwitterionic materials and their applications as biomaterials. First, what are the differences between zwitterionic and nonionic materials? Second, what are the differences among zwitterionic materials? This report also demonstrates a molecular design of new protein-resistant zwitterionic moieties beyond conventional CB and SB based on design principles developed from these simulation studies.

  7. Data System Design.

    ERIC Educational Resources Information Center

    Thomas, Charles R.

    Some of the major elements of administrative information systems design as applied to higher education are described. Differences between the application of computer technology in the commercial environment and the educational environment are discussed. The major steps in systems development from problem definition through implementation are…

  8. Digital systems design language

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1979-01-01

    Digital Systems Design Language (DDL) is implemented on the SEL-32 Computer Systems. The detaileds of the language, the translator, and the simulator, and the smulator programs are given. Several example descriptions and a tutorial on hardware description languages are provided, to guide the user.

  9. Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter

    NASA Astrophysics Data System (ADS)

    Khateeb, Siddique A.; Farid, Mohammed M.; Selman, J. Robert; Al-Hallaj, Said

    A lithium-ion battery employing a novel phase change material (PCM) thermal management system was designed for an electric scooter. Passive thermal management systems using PCM can control the temperature excursions and maintain temperature uniformity in Li-ion batteries without the use of active cooling components such as a fan, a blower or a pump found in air/liquid-cooling systems. Hence, the advantages of a compact, lightweight, and energy efficient system can be achieved with this novel form of thermal management system. Simulation results are shown for a Li-ion battery sub-module consisting of nine 18650 Li-ion cells surrounded by PCM with a melting point between 41 and 44 °C. The use of aluminum foam within the PCM and fins attached to the battery module were studied to overcome the low thermal conductivity of the PCM and the low natural convection heat transfer coefficient. The comparative results of the PCM performance in the presence of Al-foam and Al-fins are shown. The battery module is also simulated for summer and winter conditions. The effect of air-cooling on the Li-ion battery was also studied. These simulation results demonstrate the successful use of the PCM as a potential candidate for thermal management solution in electric scooter applications and therefore for other electric vehicle applications.

  10. Design of advanced fibrous based material systems to meet the critical challenges in water quality and carbon dioxide mitigation

    NASA Astrophysics Data System (ADS)

    Nangmenyi, Gordon

    Water purification and global warming mitigation represent two of the major challenges in the 21st century. The research presented in this dissertation will describe the development of advanced fibrous systems that exhibit excellent performance in addressing the issues of water disinfection, carbon dioxide capture, and natural organic matter (NOM) removal from water. Total eradication of E. coli was achieved with fiberglass impregnated with either silver (FG-Ag), iron oxide (Fe2O3 ) modified with Ag (FG-F2O3/Ag) or copper oxide (CuO) modified with Ag (FG-CuO/Ag). The Ag modified oligodynamic nanoparticle impregnated fiberglass displayed excellent kinetic inactivation performance with extended capacity at a much lower amount of nanoparticle loading. The results support their immediate applicability in the field from a utility and cost perspective. The polyethyleneimine coated glass fibers (PEFA) for CO2 removal displayed high capacity for CO2 adsorption, up to 440 mg-CO 2/g while providing a mechanically durable and recyclable system for CO2 capture. The system offers the potential for CO2 utilization from the adsorbed CO2 from a power plant or closed environment (submarine, space shuttles or control rooms). Aminated polyacrylonitrile activated carbon fibers (N-ACF) coated on a non-woven fiberglass mat, displayed the ability to remove NOM more efficiently than granulated activated carbon or ion exchange beads at concentrations below 50 mg/L. Electrostatic attraction was found to be the dominant mechanism of NOM adsorption for the N-ACF.

  11. The automated design of materials far from equilibrium

    NASA Astrophysics Data System (ADS)

    Miskin, Marc Z.

    Automated design is emerging as a powerful concept in materials science. By combining computer algorithms, simulations, and experimental data, new techniques are being developed that start with high level functional requirements and identify the ideal materials that achieve them. This represents a radically different picture of how materials become functional in which technological demand drives material discovery, rather than the other way around. At the frontiers of this field, materials systems previously considered too complicated can start to be controlled and understood. Particularly promising are materials far from equilibrium. Material robustness, high strength, self-healing and memory are properties displayed by several materials systems that are intrinsically out of equilibrium. These and other properties could be revolutionary, provided they can first be controlled. This thesis conceptualizes and implements a framework for designing materials that are far from equilibrium. We show how, even in the absence of a complete physical theory, design from the top down is possible and lends itself to producing physical insight. As a prototype system, we work with granular materials: collections of athermal, macroscopic identical objects, since these materials function both as an essential component of industrial processes as well as a model system for many non-equilibrium states of matter. We show that by placing granular materials in the context of design, benefits emerge simultaneously for fundamental and applied interests. As first steps, we use our framework to design granular aggregates with extreme properties like high stiffness, and softness. We demonstrate control over nonlinear effects by producing exotic aggregates that stiffen under compression. Expanding on our framework, we conceptualize new ways of thinking about material design when automatic discovery is possible. We show how to build rules that link particle shapes to arbitrary granular packing

  12. System design description PFP thermal stabilization

    SciTech Connect

    LARKIN, K.A.

    1999-02-23

    The purpose of this document is to provide a system design description and design basis for the Plutonium Finishing Plant (PFP) Thermal Stabilization project. The sources of material for this project are residues scraped from glovebox floors and materials already stored in vault storage that need further stabilizing. Stabilizing this material will promote long term storage and reduced worker exposure. This document addresses: functional design, equipment, and safety requirements for thermal stabilization of plutonium residues and oxides.

  13. Computational design of fused heterocyclic energetic materials

    NASA Astrophysics Data System (ADS)

    Tsyshevskiy, Roman; Pagoria, Philip; Batyrev, Iskander; Kuklja, Maija

    A continuous traditional search for effective energetic materials is often based on a trial and error approach. Understanding of fundamental correlations between the structure and sensitivity of the materials remains the main challenge for design of novel energetics due to the complexity of the behavior of energetic materials. State of the art methods of computational chemistry and solid state physics open new compelling opportunities in simulating and predicting a response of the energetic material to various external stimuli. Hence, theoretical and computational studies can be effectively used not only for an interpretation of sensitivity mechanisms of widely used explosives, but also for identifying criteria for material design prior to its synthesis and experimental characterization. We report here, how knowledge on thermal stability of recently synthesized materials of LLM series is used for design of novel fused heterocyclic energetic materials, including DNBTT (2,7-dinitro-4H,9H-bis([1, 2, 4"]triazolo)[1,5-b:1',5'-e][1, 2, 4, 5]tetrazine), compound with high thermal stability, which is on par or better than that of TATB. This research is supported by ONR (Grant N00014-12-1-0529), NSF XSEDE resources (Grant DMR-130077) and DOE NERSC resources (Contract DE-AC02-05CH11231).

  14. Biomimetic materials design for cardiac tissue regeneration.

    PubMed

    Dunn, David A; Hodge, Alexander J; Lipke, Elizabeth A

    2014-01-01

    Cardiovascular disease is the leading cause of death worldwide. In the absence of sufficient numbers of organs for heart transplant, alternate approaches for healing or replacing diseased heart tissue are under investigation. Designing biomimetic materials to support these approaches will be essential to their overall success. Strategies for cardiac tissue engineering include injection of cells, implantation of three-dimensional tissue constructs or patches, injection of acellular materials, and replacement of valves. To replicate physiological function and facilitate engraftment into native tissue, materials used in these approaches should have properties that mimic those of the natural cardiac environment. Multiple aspects of the cardiac microenvironment have been emulated using biomimetic materials including delivery of bioactive factors, presentation of cell-specific adhesion sites, design of surface topography to guide tissue alignment and dictate cell shape, modulation of mechanical stiffness and electrical conductivity, and fabrication of three-dimensional structures to guide tissue formation and function. Biomaterials can be engineered to assist in stem cell expansion and differentiation, to protect cells during injection and facilitate their retention and survival in vivo, and to provide mechanical support and guidance for engineered tissue formation. Numerous studies have investigated the use of biomimetic materials for cardiac regeneration. Biomimetic material design will continue to exploit advances in nanotechnology to better recreate the cellular environment and advance cardiac regeneration. Overall, biomimetic materials are moving the field of cardiac regenerative medicine forward and promise to deliver new therapies in combating heart disease.

  15. Comparison of the marginal fit of different coping materials and designs produced by computer aided manufacturing systems.

    PubMed

    Karataşli, Ozge; Kursoğlu, Pinar; Capa, Nuray; Kazazoğlu, Ender

    2011-01-01

    In this study, marginal adaptations of different copings fabricated with CAD/CAM or MAD/CAM were analysed. Celay and Zirkonzahn groups were fabricated by MAD/CAM, LAVA and DC-Zircon groups were fabricated by CAD/CAM. Casting metal copings were used as the control group. An implant abutment that was embedded in octagonal acrylic block was used to prepare the copings. Sixteen previously established points were marked and the measurements were performed with the stereomicroscope (at × 150). The marginal fit of the samples were evaluated by calculating the mean measurements of each 16 points. The statistical analysis was performed by Tukey multiple comparisons test at 95% confidence interval. The groups can be summarized as follows in terms of marginal gap, from the lowest to highest: LAVA (24.6 ± 14.0 µm)systems may not be the most important factor for marginal adaptation.

  16. Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating

    SciTech Connect

    Benli, Hueseyin; Durmus, Aydin

    2009-12-15

    The continuous increase in the level of greenhouse gas emissions and the rise in fuel prices are the main driving forces behind the efforts for more effectively utilize various sources of renewable energy. In many parts of the world, direct solar radiation is considered to be one of the most prospective sources of energy. In this study, the thermal performance of a phase change thermal storage unit is analyzed and discussed. The storage unit is a component of ten pieced solar air collectors heating system being developed for space heating of a greenhouse and charging of PCM. CaCl{sub 2}6H{sub 2}O was used as PCM in thermal energy storage with a melting temperature of 29 C. Hot air delivered by ten pieced solar air collector is passed through the PCM to charge the storage unit. The stored heat is utilized to heat ambient air before being admitted to a greenhouse. This study is based on experimental results of the PCM employed to analyze the transient thermal behavior of the storage unit during the charge and discharge periods. The proposed size of collectors integrated PCM provided about 18-23% of total daily thermal energy requirements of the greenhouse for 3-4 h, in comparison with the conventional heating device. (author)

  17. Technology update: Tethered aerostat structural design and material developments

    NASA Technical Reports Server (NTRS)

    Witherow, R. G.

    1975-01-01

    Requirements exist for an extremely stable, high performance, all-weather tethered aerostat system. This requirement has been satisfied by a 250,000 cubic foot captive buoyant vehicle as demonstrated by over a year of successful field operations. This achievement required significant advancements in several technology areas including composite materials design, aerostatics and aerodynamics, structural design, electro-mechanical design, vehicle fabrication and mooring operations. This paper specifically addresses the materials and structural design aspects of pressurized buoyant vehicles as related to the general class of Lighter Than Air vehicles.

  18. Designing Biomimetic Materials from Marine Organisms.

    PubMed

    Nichols, William T

    2015-01-01

    Two biomimetic design approaches that apply biological solutions to engineering problems are discussed. In the first case, motivation comes from an engineering problem and the key challenge is to find analogous biological functions and map them into engineering materials. We illustrate with an example of water pollution remediation through appropriate design of a biomimetic sponge. In the second case, a biological function is already known and the challenge is to identify the appropriate engineering problem. We demonstrate the biological approach with marine diatoms that control energy and materials at their surface providing inspiration for a number of engineering applications. In both cases, it is essential to select materials and structures at the nanoscale to control energy and materials flows at interfaces.

  19. Computer system design (supermicrocomputers)

    SciTech Connect

    Warren, C.

    1983-05-26

    The main architectural differences between conventional microcomputer systems and supermicrocomputers are the following features which the latter possess: specialised bus for interprocessor communication; two or more processors, ranging from 8-bit to 48-bit-slice designs; and fast bus designs which permit data transfers by the byte or by the word. The majority of supermicrocomputers are 16-bit or 32-bit multiuser, multitasking systems able to address large amounts of physical and virtual memory. Current developments in supermicrocomputers are discussed with reference to a variety of available machines.

  20. Distributed System Design Checklist

    NASA Technical Reports Server (NTRS)

    Hall, Brendan; Driscoll, Kevin

    2014-01-01

    This report describes a design checklist targeted to fault-tolerant distributed electronic systems. Many of the questions and discussions in this checklist may be generally applicable to the development of any safety-critical system. However, the primary focus of this report covers the issues relating to distributed electronic system design. The questions that comprise this design checklist were created with the intent to stimulate system designers' thought processes in a way that hopefully helps them to establish a broader perspective from which they can assess the system's dependability and fault-tolerance mechanisms. While best effort was expended to make this checklist as comprehensive as possible, it is not (and cannot be) complete. Instead, we expect that this list of questions and the associated rationale for the questions will continue to evolve as lessons are learned and further knowledge is established. In this regard, it is our intent to post the questions of this checklist on a suitable public web-forum, such as the NASA DASHLink AFCS repository. From there, we hope that it can be updated, extended, and maintained after our initial research has been completed.

  1. Survey of intraocular lens material and design.

    PubMed

    Doan, Kim T; Olson, Randall J; Mamalis, Nick

    2002-02-01

    Modern cataract surgery is constantly evolving and improving in terms of lens material and design. Researchers and physicians strive to obtain better refractive correction with smaller wound size and minimizing host cell response to limit the proliferation of lens epithelial cells leading to opacification of the lens capsule. Intraocular lens material varies in water content, refractive index, and tensile strength. Intraocular lens design has undergone revisions to prohibit lens epithelial cell migration and reflection of internal and external light. The evolution of intraocular lens and extracapsular cataract surgery has lead to faster postoperative recovery and better visual outcomes.

  2. Materials Selection for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Cebon, David; Ashby, Mike

    2012-01-01

    A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues.

  3. Library Sign Systems. Workshop Program Materials.

    ERIC Educational Resources Information Center

    Ridgeway, Patricia M.

    These program materials from the Library Sign Systems Workshop include a news story on the workshop; notes in outline form for a speech presented by Joe Sonderman, president of a graphic designs firm; and an annotated bibliography on signs and sign systems. The news release summarizes a presentation by Dorothy Pollet and Peter Haskell, editors of…

  4. Structural and Machine Design Using Piezoceramic Materials: A Guide for Structural Design Engineers

    NASA Technical Reports Server (NTRS)

    Inman, Daniel J.; Cudney, Harley H.

    2000-01-01

    Using piezoceramic materials is one way the design engineer can create structures which have an ability to both sense and respond to their environment. Piezoceramic materials can be used to create structural sensors and structural actuators. Because piezoceramic materials have transduction as a material property, their sensing or actuation functions are a result of what happens to the material. This is different than discrete devices we might attach to the structure. For example, attaching an accelerometer to a structure will yield an electrical signal proportional to the acceleration at the attachment point on the structure. Using a electromagnetic shaker as an actuator will create an applied force at the attachment point. Active material elements in a structural design are not easily modeled as providing transduction at a point, but rather they change the physics of the structure in the areas where they are used. Hence, a designer must not think of adding discrete devices to a structure to obtain an effect, but rather must design a structural system which accounts for the physical principles of all the elements in the structure. The purpose of this manual is to provide practicing engineers the information necessary to incorporate piezoelectric materials in structural design and machine design. First, we will review the solid-state physics of piezoelectric materials. Then we will discuss the physical characteristics of the electrical-active material-structural system. We will present the elements of this system which must be considered as part of the design task for a structural engineer. We will cover simple modeling techniques and review the features and capabilities of commercial design tools that are available. We will then cover practical how-to elements of working with piezoceramic materials. We will review sources of piezoceramic materials and built-up devices, and their characteristics. Finally, we will provide two design examples using piezoceramic

  5. FOREWORD: Computational methodologies for designing materials Computational methodologies for designing materials

    NASA Astrophysics Data System (ADS)

    Rahman, Talat S.

    2009-02-01

    It would be fair to say that in the past few decades, theory and computer modeling have played a major role in elucidating the microscopic factors that dictate the properties of functional novel materials. Together with advances in experimental techniques, theoretical methods are becoming increasingly capable of predicting properties of materials at different length scales, thereby bringing in sight the long-sought goal of designing material properties according to need. Advances in computer technology and their availability at a reasonable cost around the world have made tit all the more urgent to disseminate what is now known about these modern computational techniques. In this special issue on computational methodologies for materials by design we have tried to solicit articles from authors whose works collectively represent the microcosm of developments in the area. This turned out to be a difficult task for a variety of reasons, not the least of which is space limitation in this special issue. Nevertheless, we gathered twenty articles that represent some of the important directions in which theory and modeling are proceeding in the general effort to capture the ability to produce materials by design. The majority of papers presented here focus on technique developments that are expected to uncover further the fundamental processes responsible for material properties, and for their growth modes and morphological evolutions. As for material properties, some of the articles here address the challenges that continue to emerge from attempts at accurate descriptions of magnetic properties, of electronically excited states, and of sparse matter, all of which demand new looks at density functional theory (DFT). I should hasten to add that much of the success in accurate computational modeling of materials emanates from the remarkable predictive power of DFT, without which we would not be able to place the subject on firm theoretical grounds. As we know and will also

  6. Maglev system design considerations

    SciTech Connect

    Coffey, H.T.

    1991-01-01

    Although efforts are now being made to develop magnetic levitation technologies in the United States, they have been underway for two decades in Germany and Japan. The characteristics of maglev systems being considered for implementation in the United States are speculative. A conference was held at Argonne National Laboratory on November 28--29, 1990, to discuss these characteristics and their implications for the design requirements of operational systems. This paper reviews some of the factors considered during that conference.

  7. Laser Communication System Design

    NASA Astrophysics Data System (ADS)

    Casey, W. L.; Doughty, G. R.; Houston, , J. G.; Marston, R. K.; O'Pella, L. J.; Vo, L. V.

    1988-11-01

    The Air Force is interested in laser communication systems for a variety of air-to-air applications. Laser data transmission offers significant advantages over RF systems in certain areas including higher data rates with low transmitter power, narrower beam divergence leading to difficulty in interception, narrower field of view coupled with high off-axis energy rejection which makes jamming a very formidable task, and smaller antenna size which creates minimum installation impact on an aircraft. The applications with the greatest near-term potential involve the transfer of data between large aircraft operating in relatively benign dynamic environments normally present at altitudes of about 30,000 feet. Systems performing these strategic data exchange (SDE) functions must operate at ranges of 100 to 200 nautical miles at data rates of 2 to 3 megabits per second and the probability of bit error rates not exceeding 10-6. The paper presents the major communication channel elements of a design for a lasercom system performing SDE roles. The design is established by comparing the advantages of the different approaches. The final design selection is based on the transmitter characteristics required for each system. The characteristics include physical properties, development risk, cost, as well as the flexibility for meeting more stringent system performance specifications without requiring major redesign.

  8. Carbon nanotube materials characterization and devices design

    NASA Astrophysics Data System (ADS)

    Li, Weifeng

    The objective of this research is to characterize the electrical and mechanical properties of Carbon Nanotube (CNT) materials, and explore possible device applications for these materials. In order to achieve this goal, different forms of Carbon Nanotube materials---including Carbon Nanotubes, Carbon Nanotube Arrays, Carbon Nanotube Ribbon, Carbon Nanotube Thread, and sub-micrometer Carbon Nanotube Thread---were tested under a Scanning Electron Microscope (SEM) using a Micromanipulator (MM). Video and sound recording of the testing in the microscope provided new understanding how thread is formed and how nanotube materials fail. As-produced and thermally treated nanotubes were also tested. The main electrical parameters measured were electrical resistivity and maximum current density. The main mechanical property measured was strength. Together, these parameters are helping to determine the strongest and most conductive forms of CNT material. Putting nanotube materials into application is the ultimate goal of this continuing research. Several aggressive application ideas were investigated in a preliminary way in this work. In biomedical applications, a bundle of CNTs was formed for use as an electrode for accurate biosensing. A simple robot was designed using CNT electrical fiber. The robot was powered by two solenoids and could act as an in-body sensor and actuator to perform some impossible tasks from the viewpoint of current medical technology. In aerospace engineering, CNT materials could replace copper wire to reduce the weight of aircraft. Based on the excellent mechanical properties of CNT materials, a challenging idea is to use CNT material to build elevators to move payloads to outer space without using rockets. This dissertation makes contributions in the characterization of nanotube materials and in the design of miniature electromagnetic devices.

  9. Tools for Material Design and Selection

    NASA Astrophysics Data System (ADS)

    Wehage, Kristopher

    -dimensional microstructures are generated by Random Sequential Adsorption (RSA) of voxelized ellipses representing the coarse grain phase. A simulated annealing algorithm is used to geometrically optimize the placement of the ellipses in the model to achieve varying user-defined configurations of spatial arrangement of the coarse grains. During the simulated annealing process, the ellipses are allowed to overlap up to a specified threshold, allowing triple junctions to form in the model. Once the simulated annealing process is complete, the remaining space is populated by smaller ellipses representing the ultra-fine grain phase. Uniform random orientations are assigned to the grains. The program generates text files that can be imported in to Crystal Plasticity Finite Element Analysis Software for stress analysis. Finally, numerical methods and programming are applied to current issues in green engineering and hazard assessment. To understand hazards associated with materials and select safer alternatives, engineers and designers need access to up-to-date hazard information. However, hazard information comes from many disparate sources and aggregating, interpreting and taking action on the wealth of data is not trivial. In light of these challenges, a Framework for Automated Hazard Assessment based on the GreenScreen list translator is presented. The framework consists of a computer program that automatically extracts data from the GHS-Japan hazard database, loads the data into a machine-readable JSON format, transforms the JSON document in to a GreenScreen JSON document using the GreenScreen List Translator v1.2 and performs GreenScreen Benchmark scoring on the material. The GreenScreen JSON documents are then uploaded to a document storage system to allow human operators to search for, modify or add additional hazard information via a web interface.

  10. Adaptive Strategies for Materials Design using Uncertainties

    NASA Astrophysics Data System (ADS)

    Balachandran, Prasanna V.; Xue, Dezhen; Theiler, James; Hogden, John; Lookman, Turab

    2016-01-01

    We compare several adaptive design strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young’s (E) modulus] have been computed using density functional theory. The design strategies are decomposed into an iterative loop with two main steps: machine learning is used to train a regressor that predicts elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions and their uncertainties to choose the next material to investigate. The ultimate goal is to obtain a material with desired elastic properties in as few iterations as possible. We examine how the choice of data set size, regressor and selector impact the design. We find that selectors that use information about the prediction uncertainty outperform those that don’t. Our work is a step in illustrating how adaptive design tools can guide the search for new materials with desired properties.

  11. Adaptive Strategies for Materials Design using Uncertainties

    PubMed Central

    Balachandran, Prasanna V.; Xue, Dezhen; Theiler, James; Hogden, John; Lookman, Turab

    2016-01-01

    We compare several adaptive design strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young’s (E) modulus] have been computed using density functional theory. The design strategies are decomposed into an iterative loop with two main steps: machine learning is used to train a regressor that predicts elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions and their uncertainties to choose the next material to investigate. The ultimate goal is to obtain a material with desired elastic properties in as few iterations as possible. We examine how the choice of data set size, regressor and selector impact the design. We find that selectors that use information about the prediction uncertainty outperform those that don’t. Our work is a step in illustrating how adaptive design tools can guide the search for new materials with desired properties. PMID:26792532

  12. Adaptive strategies for materials design using uncertainties

    DOE PAGESBeta

    Balachandran, Prasanna V.; Xue, Dezhen; Theiler, James; Hogden, John; Lookman, Turab

    2016-01-21

    Here, we compare several adaptive design strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young’s (E) modulus] have been computed using density functional theory. The design strategies are decomposed into an iterative loop with two main steps: machine learning is used to train a regressor that predicts elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions and their uncertainties to choose the next material to investigate. The ultimate goal is to obtain a material withmore » desired elastic properties in as few iterations as possible. We examine how the choice of data set size, regressor and selector impact the design. We find that selectors that use information about the prediction uncertainty outperform those that don’t. Our work is a step in illustrating how adaptive design tools can guide the search for new materials with desired properties.« less

  13. Information and computer-aided system for structural materials

    NASA Astrophysics Data System (ADS)

    Nekrashevitch, Ju. G.; Nizametdinov, Sh. U.; Polkovnikov, A. V.; Rumjantzev, V. P.; Surina, O. N.; Kalinin, G. M.; Sidorenkov, A. V.; Strebkov, Ju. S.

    1992-09-01

    An information and computer-aided system for structural materials data has been developed to provide data for the fusion and fission reactor system design. It is designed for designers, industrial engineers, and material science specialists and provides a friendly interface in an interactive mode. The database for structural materials contains the master files: chemical composition, physical, mechanical, corrosion, technological properties, regulatory and technical documentation. The system is implemented on a PC/AT running the PS/2 operating system.

  14. [A medical consumable material management information system].

    PubMed

    Tang, Guoping; Hu, Liang

    2014-05-01

    Medical consumables material is essential supplies to carry out medical work, which has a wide range of varieties and a large amount of usage. How to manage it feasibly and efficiently that has been a topic of concern to everyone. This article discussed about how to design a medical consumable material management information system that has a set of standardized processes, bring together medical supplies administrator, suppliers and clinical departments. Advanced management mode, enterprise resource planning (ERP) applied to the whole system design process. PMID:25241525

  15. A Bridge for Accelerating Materials by Design

    SciTech Connect

    Sumpter, Bobby G.; Vasudevan, Rama K.; Potok, Thomas E.; Kalinin, Sergei V.

    2015-11-25

    Recent technical advances in the area of nanoscale imaging, spectroscopy, and scattering/diffraction have led to unprecedented capabilities for investigating materials structural, dynamical and functional characteristics. In addition, recent advances in computational algorithms and computer capacities that are orders of magnitude larger/faster have enabled large-scale simulations of materials properties starting with nothing but the identity of the atomic species and the basic principles of quantum- and statistical-mechanics and thermodynamics. Along with these advances, an explosion of high-resolution data has emerged. This confluence of capabilities and rise of big data offer grand opportunities for advancing materials sciences but also introduce several challenges. In this editorial we identify challenges impeding progress towards advancing materials by design (e.g., the design/discovery of materials with improved properties/performance), possible solutions, and provide examples of scientific issues that can be addressed by using a tightly integrated approach where theory and experiments are linked through big-deep data.

  16. A Bridge for Accelerating Materials by Design

    DOE PAGESBeta

    Sumpter, Bobby G.; Vasudevan, Rama K.; Potok, Thomas E.; Kalinin, Sergei V.

    2015-11-25

    Recent technical advances in the area of nanoscale imaging, spectroscopy, and scattering/diffraction have led to unprecedented capabilities for investigating materials structural, dynamical and functional characteristics. In addition, recent advances in computational algorithms and computer capacities that are orders of magnitude larger/faster have enabled large-scale simulations of materials properties starting with nothing but the identity of the atomic species and the basic principles of quantum- and statistical-mechanics and thermodynamics. Along with these advances, an explosion of high-resolution data has emerged. This confluence of capabilities and rise of big data offer grand opportunities for advancing materials sciences but also introduce several challenges.more » In this editorial we identify challenges impeding progress towards advancing materials by design (e.g., the design/discovery of materials with improved properties/performance), possible solutions, and provide examples of scientific issues that can be addressed by using a tightly integrated approach where theory and experiments are linked through big-deep data.« less

  17. Advanced materials for space nuclear power systems

    SciTech Connect

    Titran, R.H.; Grobstein, T.L. . Lewis Research Center); Ellis, D.L. )

    1991-01-01

    Research on monolithic refractory metal alloys and on metal matrix composites is being conducted at the NASA Lewis Research Center, Cleveland, Ohio, in support of advanced space power systems. The overall philosophy of the research is to develop and characterize new high-temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites (Gr/Cu) for heat rejection fins, and tungsten fiber reinforced niobium matrix composites (W/NB) for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  18. Modular solar-heating system - design package

    NASA Technical Reports Server (NTRS)

    Sinton, D. S.

    1979-01-01

    Compilation contains design, performance, and hardware specifications in sufficient detail to fabricate or procure materials and install, operate, and maintain complete modular solar heating and hot water system for single family size dwellings.

  19. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  20. Thermoplastics as engineering materials: The mechanics, materials, design, processing link

    SciTech Connect

    Stokes, V.K.

    1995-10-01

    While the use of plastics has been growing at a significant pace because of weight reduction, ease of fabrication of complex shapes, and cost reduction resulting from function integration, the engineering applications of plastics have only become important in the past fifteen years. An inadequate understanding of the mechanics issues underlying the close coupling among the design, the processing (fabrication), and the assembly with these materials is a barrier to their use in structural applications. Recent progress on some issues relating to the engineering uses of plastics is surveyed, highlighting the need for a better understanding of plastics and how processing affects the performance of plastic parts. Topics addressed include the large deformation behavior of ductile resins, fiber orientation in chopped-fiber filled materials, structural foams, random glass mat composites, modeling of thickness distributions in blow-molded and thermoformed parts, dimensional stability (shrinkage, warpage, and residual stresses) in injection-molded parts, and welding of thermoplastics.

  1. Materials challenges for nuclear systems

    DOE PAGESBeta

    Allen, Todd; Busby, Jeremy; Meyer, Mitch; Petti, David

    2010-11-26

    The safe and economical operation of any nuclear power system relies to a great extent, on the success of the fuel and the materials of construction. During the lifetime of a nuclear power system which currently can be as long as 60 years, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which provides the power for the reactor has a much shorter life but is subject to the same types of harsh environments. This article reviews the environments in which fuels and materials from current and proposed nuclearmore » systems operate and then describes how the creation of the Advanced Test Reactor National Scientific User Facility is allowing researchers from across the U.S. to test their ideas for improved fuels and materials.« less

  2. Materials challenges for nuclear systems

    SciTech Connect

    Allen, Todd; Busby, Jeremy; Meyer, Mitch; Petti, David

    2010-11-26

    The safe and economical operation of any nuclear power system relies to a great extent, on the success of the fuel and the materials of construction. During the lifetime of a nuclear power system which currently can be as long as 60 years, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which provides the power for the reactor has a much shorter life but is subject to the same types of harsh environments. This article reviews the environments in which fuels and materials from current and proposed nuclear systems operate and then describes how the creation of the Advanced Test Reactor National Scientific User Facility is allowing researchers from across the U.S. to test their ideas for improved fuels and materials.

  3. Saving Material with Systematic Process Designs

    NASA Astrophysics Data System (ADS)

    Kerausch, M.

    2011-08-01

    Global competition is forcing the stamping industry to further increase quality, to shorten time-to-market and to reduce total cost. Continuous balancing between these classical time-cost-quality targets throughout the product development cycle is required to ensure future economical success. In today's industrial practice, die layout standards are typically assumed to implicitly ensure the balancing of company specific time-cost-quality targets. Although die layout standards are a very successful approach, there are two methodical disadvantages. First, the capabilities for tool design have to be continuously adapted to technological innovations; e.g. to take advantage of the full forming capability of new materials. Secondly, the great variety of die design aspects have to be reduced to a generic rule or guideline; e.g. binder shape, draw-in conditions or the use of drawbeads. Therefore, it is important to not overlook cost or quality opportunities when applying die design standards. This paper describes a systematic workflow with focus on minimizing material consumption. The starting point of the investigation is a full process plan for a typical structural part. All requirements are definedaccording to a predefined set of die design standards with industrial relevance are fulfilled. In a first step binder and addendum geometry is systematically checked for material saving potentials. In a second step, blank shape and draw-in are adjusted to meet thinning, wrinkling and springback targets for a minimum blank solution. Finally the identified die layout is validated with respect to production robustness versus splits, wrinkles and springback. For all three steps the applied methodology is based on finite element simulation combined with a stochastical variation of input variables. With the proposed workflow a well-balanced (time-cost-quality) production process assuring minimal material consumption can be achieved.

  4. Designing magnetic systems for reliability

    SciTech Connect

    Heitzenroeder, P.J.

    1991-01-01

    Designing magnetic system is an iterative process in which the requirements are set, a design is developed, materials and manufacturing processes are defined, interrelationships with the various elements of the system are established, engineering analyses are performed, and fault modes and effects are studied. Reliability requires that all elements of the design process, from the seemingly most straightforward such as utilities connection design and implementation, to the most sophisticated such as advanced finite element analyses, receives a balanced and appropriate level of attention. D.B. Montgomery's study of magnet failures has shown that the predominance of magnet failures tend not to be in the most intensively engineered areas, but are associated with insulation, leads, ad unanticipated conditions. TFTR, JET, JT-60, and PBX are all major tokamaks which have suffered loss of reliability due to water leaks. Similarly the majority of causes of loss of magnet reliability at PPPL has not been in the sophisticated areas of the design but are due to difficulties associated with coolant connections, bus connections, and external structural connections. Looking towards the future, the major next-devices such as BPX and ITER are most costly and complex than any of their predecessors and are pressing the bounds of operating levels, materials, and fabrication. Emphasis on reliability is a must as the fusion program enters a phase where there are fewer, but very costly devices with the goal of reaching a reactor prototype stage in the next two or three decades. This paper reviews some of the magnet reliability issues which PPPL has faced over the years the lessons learned from them, and magnet design and fabrication practices which have been found to contribute to magnet reliability.

  5. Designer self-assembling peptide materials.

    PubMed

    Zhao, Xiaojun; Zhang, Shuguang

    2007-01-01

    Understanding of macromolecular materials at the molecular level is becoming increasingly important for a new generation of nanomaterials for nanobiotechnology and other disciplines, namely, the design, synthesis, and fabrication of nanodevices at the molecular scale from bottom up. Basic engineering principles for microfabrication can be learned through fully grasping the molecular self-assembly and programmed assembly phenomena. Self- and programmed-assembly phenomena are ubiquitous in nature. Two key elements in molecular macrobiological material productions are chemical complementarity and structural compatibility, both of which require weak and non-covalent interactions that bring building blocks together during self-assembly. Significant advances have been made during the 1990s at the interface of materials chemistry and biology. They include the design of helical ribbons, peptide nanofiber scaffolds for three-dimensional cell cultures and tissue engineering, peptide surfactants for solubilizing and stabilizing diverse types of membrane proteins and their complexes, and molecular ink peptides for arbitrary printing and coating surfaces as well as coiled-coil helical peptides for multi-length scale fractal structures. These designer self-assembling peptides have far reaching implications in a broad spectrum of applications in biology, medicine, nanobiotechnology, and nanobiomedical technology, some of which are beyond our current imaginations. [image: see text

  6. Computational Materials Program for Alloy Design

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo

    2005-01-01

    The research program sponsored by this grant, "Computational Materials Program for Alloy Design", covers a period of time of enormous change in the emerging field of computational materials science. The computational materials program started with the development of the BFS method for alloys, a quantum approximate method for atomistic analysis of alloys specifically tailored to effectively deal with the current challenges in the area of atomistic modeling and to support modern experimental programs. During the grant period, the program benefited from steady growth which, as detailed below, far exceeds its original set of goals and objectives. Not surprisingly, by the end of this grant, the methodology and the computational materials program became an established force in the materials communitiy, with substantial impact in several areas. Major achievements during the duration of the grant include the completion of a Level 1 Milestone for the HITEMP program at NASA Glenn, consisting of the planning, development and organization of an international conference held at the Ohio Aerospace Institute in August of 2002, finalizing a period of rapid insertion of the methodology in the research community worlwide. The conference, attended by citizens of 17 countries representing various fields of the research community, resulted in a special issue of the leading journal in the area of applied surface science. Another element of the Level 1 Milestone was the presentation of the first version of the Alloy Design Workbench software package, currently known as "adwTools". This software package constitutes the first PC-based piece of software for atomistic simulations for both solid alloys and surfaces in the market.Dissemination of results and insertion in the materials community worldwide was a primary focus during this period. As a result, the P.I. was responsible for presenting 37 contributed talks, 19 invited talks, and publishing 71 articles in peer-reviewed journals, as

  7. AGING SYSTEM DESIGN DEVELOPMENT STRATEGY

    SciTech Connect

    J. Beesley

    2005-02-07

    This plan provides an overview, work to date, and the path forward for the design development strategy of the Aging cask for aging commercial spent nuclear fuel (CSNF) at the Yucca Mountain Project (YMP) repository site. Waste for subsurface emplacement at the repository includes US Department of Energy (DOE) high-level radioactive waste (HLW), DOE SNF, commercial fuel in dual-purpose canisters (DPCs), uncanistered bare fuel, naval fuel, and other waste types. Table 1-1 lists the types of radioactive materials that may be aged at YMP, and those materials that will not be placed in an aging cask or module. This plan presents the strategy for design development of the Aging system. The Aging system will not handle naval fuel, DOE HLW, MCOs, or DOE SNF since those materials will be delivered to the repository in a state and sequence that allows them to be placed into waste packages for emplacement. Some CSNF from nuclear reactors, especially CSNF that is thermally too hot for emplacement underground, will need to be aged at the repository.

  8. The Cam Shell: An Innovative Design With Materials and Manufacturing

    NASA Technical Reports Server (NTRS)

    Chung, W. Richard; Larsen, Frank M.; Kornienko, Rob

    2003-01-01

    Most of the personal audio and video recording devices currently sold on the open market all require hands to operate. Little consideration was given to designing a hands-free unit. Such a system once designed and made available to the public could greatly benefit mobile police officers, bicyclists, adventurers, street and dirt motorcyclists, horseback riders and many others. With a few design changes water sports and skiing activities could be another large area of application. The cam shell is an innovative design in which an audio and video recording device (such as palm camcorder) is housed in a body-mounted protection system. This system is based on the concept of viewing and recording at the same time. A view cam is attached to a helmet wired to a recording unit encased in a transparent body-mounted protection system. The helmet can also be controlled by remote. The operator will have full control in recording everything. However, the recording unit will be operated completely hands-free. This project will address the design considerations and their effects on material selection and manufacturing. It will enhance the understanding of the structure of materials, and how the structure affects the behavior of the material, and the role that processing play in linking the relationship between structure and properties. A systematic approach to design feasibility study, cost analysis and problem solving will also be discussed.

  9. Systems metabolic engineering for chemicals and materials.

    PubMed

    Lee, Jeong Wook; Kim, Tae Yong; Jang, Yu-Sin; Choi, Sol; Lee, Sang Yup

    2011-08-01

    Metabolic engineering has contributed significantly to the enhanced production of various value-added and commodity chemicals and materials from renewable resources in the past two decades. Recently, metabolic engineering has been upgraded to the systems level (thus, systems metabolic engineering) by the integrated use of global technologies of systems biology, fine design capabilities of synthetic biology, and rational-random mutagenesis through evolutionary engineering. By systems metabolic engineering, production of natural and unnatural chemicals and materials can be better optimized in a multiplexed way on a genome scale, with reduced time and effort. Here, we review the recent trends in systems metabolic engineering for the production of chemicals and materials by presenting general strategies and showcasing representative examples.

  10. Imaging systems and materials characterization

    SciTech Connect

    Murr, L.E.

    2009-05-15

    This paper provides a broad background for the historical development and modern applications of light optical metallography, scanning and transmission electron microscopy, field-ion microscopy and several forms of scanning probe microscopes. Numerous case examples illustrating especially synergistic applications of these imaging systems are provided to demonstrate materials characterization especially in the context of structure-property-performance issues which define materials science and engineering.

  11. Multilayer filter design with high K materials

    NASA Astrophysics Data System (ADS)

    Curtis, Nathaniel, II

    A novel approach to filter design is presented. A high-K multilayer coupled line filter is designed for optimal performance within a dielectric resonator of rectangular cross section. The multilayer filter is shown to have a performance comparable to its planar counterpart as well as the Lange coupler while maintaining the design advantages that come with the multilayer approach to filter design such as increased flexibility in managing parameter constraints. The performance of the rectangular cross sectioned resonator in terms of modal response and resonant frequency has been evaluated through mathematical derivation and simulation. The reader will find the step by step process to designing the resonant structure as well as a MATLAB script that will graphically display the effect changing various parameters may have on resonator size to assist in the design analysis. The resonator has been designed to provide a finite package in terms of space and performance so that it may house the multilayer filter on a printed circuit board for ease of system implementation. The proposed design with analysis will prove useful for all multilayer coupled line filter types that may take advantage of the uniform environment provided by the finite packaging of the dielectric resonator. As with any microwave system, considerable effort must be put forth to maintain signal integrity throughout the delivery process from the signal input to reception at the output. As a result a large amount of effort and research has gone into answering the question of how to efficiently feed both a dielectric resonator filter of rectangular cross section as well as a coupled line filter that would be embedded within the resonators confines. Several methods for feeding have been explored and reported on. Of the feeding methods reported on the most feasible design includes a unique microstrip delivery to the embedded multilayer filter as pictured here.* *Please refer to dissertation for diagram.

  12. Application of New Materials in the Household Appliances Design

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Ren, Y.

    The widespread use of new materials in household appliances industry, not only help those products to get rid of the appearance shackles caused by original materials, but also gave the designers the freedom to open up the world of product design. This paper aims to analyze the impact of new materials for home appliances design through relevant research, to explore the application of new material in household appliances functional design, shape design, color design and emotional design, etc., so as to reveal the impact and promoting effects of new material in household appliances world, as well as the prospects of new material in future household appliances design.

  13. Process of system design and analysis

    SciTech Connect

    Gardner, B.

    1995-09-01

    The design of an effective physical protection system includes the determination of the physical protection system objectives, the initial design of a physical protection system, the evaluation of the design, and, probably, a redesign or refinement of the system. To develop the objectives, the designer must begin by gathering information about facility operations and conditions, such as a comprehensive description of the facility, operating states, and the physical protection requirements. The designer then needs to define the threat. This involves considering factors about potential adversaries: Class of adversary, adversary`s capabilities, and range of adversary`s tactics. Next, the designer should identify targets. Determination of whether or not nuclear materials are attractive targets is based mainly on the ease or difficulty of acquisition and desirability of the materiaL The designer now knows the objectives of the physical protection system, that is, ``What to protect against whom.`` The next step is to design the system by determining how best to combine such elements as fences, vaults, sensors, procedures, communication devices, and protective force personnel to meet the objectives of the system. Once a physical protection system is designed, it must be analyzed and evaluated to ensure it meets the physical protection objectives. Evaluation must allow for features working together to assure protection rather than regarding each feature separately. Due to the complexity of protection systems, an evaluation usually requires modeling techniques. If any vulnerabilities are found, the initial system must be redesigned to correct the vulnerabilities and a reevaluation conducted.

  14. System design description cone penetrometer system

    SciTech Connect

    Seda, R.Y., Westinghouse Hanford

    1996-08-12

    The system design description documents in detail the design of the cone penetrometer system. The systems includes the cone penetrometer physical package, raman spectroscopy package and moisture sensor package. Information pertinent to the system design, development, fabrication and testing is provided.

  15. Computational design of microvascular biomimetic materials

    NASA Astrophysics Data System (ADS)

    Aragon, Alejandro Marcos

    Biomimetic microvascular materials are increasingly considered for a variety of autonomic healing, cooling and sensing applications. The microvascular material of interest in this work consists of a network of hollow microchannels, with diameters as small as 10 mum, embedded in a polymeric matrix. Recent advances in the manufacturing of this new class of materials have allowed for the creation of very complex 2D and 3D structures. The computational design of such network structures, which is the focus of this work, involves a set of particular challenges, including a large number of design variables (e.g., topology of the network, number of diameters to consider and their sizes) that define the network, and a large number of multidisciplinary objective functions and constraints that drive the optimization process. The computational design tool to be developed must be capable of capturing the trade-off between the different objective and constraint functions, as, for example, networks designed for flow efficiency are likely to have a topology that is very different from those designed for structural integrity or thermal control. In this work, we propose to design these materials using Genetic Algorithms (GAs), the most common methodology within a broader category of Evolutionary Algorithms (EAs). GAs can be combined with a Pareto-selection mechanism to create Multi-Objective Genetic Algorithms (MOGAs), which enable the optimization of an arbitrary number of objective functions. As a result, a Pareto-optimal front is obtained, where all candidates are optimal solutions to the optimization problem. Adding a procedure to deal with constraints results in a powerful tool for multi-objective constrained optimization. The method allows the use of discrete variable problems and it does not require any a priori knowledge of the optimal solution. Furthermore, GAs search the entire decision space so the optimal solutions found are likely to be global. The

  16. Plutonium Immobilization Project System Design Description for Can Loading System

    SciTech Connect

    Kriikku, E.

    2001-02-15

    The purpose of this System Design Description (SDD) is to specify the system and component functions and requirements for the Can Loading System and provide a complete description of the system (design features, boundaries, and interfaces), principles of operation (including upsets and recovery), and the system maintenance approach. The Plutonium Immobilization Project (PIP) will immobilize up to 13 metric tons (MT) of U.S. surplus weapons usable plutonium materials.

  17. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science.

    PubMed

    Guerette, Paul A; Hoon, Shawn; Seow, Yiqi; Raida, Manfred; Masic, Admir; Wong, Fong T; Ho, Vincent H B; Kong, Kiat Whye; Demirel, Melik C; Pena-Francesch, Abdon; Amini, Shahrouz; Tay, Gavin Z; Ding, Dawei; Miserez, Ali

    2013-10-01

    Efforts to engineer new materials inspired by biological structures are hampered by the lack of genomic data from many model organisms studied in biomimetic research. Here we show that biomimetic engineering can be accelerated by integrating high-throughput RNA-seq with proteomics and advanced materials characterization. This approach can be applied to a broad range of systems, as we illustrate by investigating diverse high-performance biological materials involved in embryo protection, adhesion and predation. In one example, we rapidly engineer recombinant squid sucker ring teeth proteins into a range of structural and functional materials, including nanopatterned surfaces and photo-cross-linked films that exceed the mechanical properties of most natural and synthetic polymers. Integrating RNA-seq with proteomics and materials science facilitates the molecular characterization of natural materials and the effective translation of their molecular designs into a wide range of bio-inspired materials. PMID:24013196

  18. LUTE primary mirror materials and design study report

    NASA Technical Reports Server (NTRS)

    Ruthven, Greg

    1993-01-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  19. LUTE primary mirror materials and design study report

    NASA Astrophysics Data System (ADS)

    Ruthven, Greg

    1993-02-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  20. System design description PFP thermal stabilization

    SciTech Connect

    RISENMAY, H.R.

    1998-11-10

    The purpose of this document is to provide a system design description and design basis for the Plutonium Finishing P1ant (PFP) Thermal Stabilization project. The sources of material for this project are residues scraped from glovebox floors and materials already stored in vault storage that need further stabilizing to meet the 3013 storage requirements. Stabilizing this material will promote long term storage and reduced worker exposure. This document addresses: function design, equipment, and safety requirements for thermal stabilization of plutonium residues and oxides.

  1. Statistical design for microwave systems

    NASA Technical Reports Server (NTRS)

    Cooke, Roland; Purviance, John

    1991-01-01

    This paper presents an introduction to statistical system design. Basic ideas needed to understand statistical design and a method for implementing statistical design are presented. The nonlinear characteristics of the system amplifiers and mixers are accounted for in the given examples. The specification of group delay, signal-to-noise ratio and output power are considered in these statistical designs.

  2. Designer protein-based performance materials.

    PubMed

    Kumar, Manoj; Sanford, Karl J; Cuevas, William A; Cuevas, William P; Du, Mai; Collier, Katharine D; Chow, Nicole

    2006-09-01

    Repeat sequence protein polymer (RSPP) technology provides a platform to design and make protein-based performance polymers and represents the best nature has to offer. We report here that the RSPP platform is a novel approach to produce functional protein polymers that have both biomechanical and biofunctional blocks built into one molecule by design, using peptide motifs. We have shown that protein-based designer biopolymers can be made using recombinant DNA technology and fermentation and offer the ability to screen for desired properties utilizing the tremendous potential diversity of amino acid combinations. The technology also allows for large-scale manufacturing with a favorable fermentative cost-structure to deliver commercially viable performance polymers. Using three diverse examples with antimicrobial, textile targeting, and UV-protective agent, we have introduced functional attributes into structural protein polymers and shown, for example, that the functionalized RSPPs have possible applications in biodefense, industrial biotechnology, and personal care areas. This new class of biobased materials will simulate natural biomaterials that can be modified for desired function and have many advantages over conventional petroleum-based polymers.

  3. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties must be based on enough tests of material meeting approved specifications to establish design values on...

  4. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties must be based on enough tests of material meeting approved specifications to establish design values on...

  5. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties must be based on enough tests of material meeting approved specifications to establish design values on...

  6. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties must be based on enough tests of material meeting approved specifications to establish design values on...

  7. Optimum weight design of functionally graded material gears

    NASA Astrophysics Data System (ADS)

    Jing, Shikai; Zhang, He; Zhou, Jingtao; Song, Guohua

    2015-11-01

    Traditional gear weight optimization methods consider gear tooth number, module, face width or other dimension parameters of gear as design variables. However, due to the complicated form and geometric features peculiar to the gear, there will be large amounts of design parameters in gear design, and the influences of gear parameters changing on gear trains, transmission system and the whole equipment have to be taken into account, which increases the complexity of optimization problem. This paper puts forward to apply functionally graded materials (FGMs) to gears and then conduct the optimization. According to the force situation of gears, the material distribution form of FGM gears is determined. Then based on the performance parameters analysis of FGMs and the practical working demands for gears, a multi-objective optimization model is formed. Finally by using the goal driven optimization (GDO) method, the optimal material distribution is achieved, which makes gear weight and the maximum deformation be minimum and the maximum bending stress do not exceed the allowable stress. As an example, the applying of FGM to automotive transmission gear is conducted to illustrate the optimization design process and the result shows that under the condition of keeping the normal working performance of gear, the method achieves in greatly reducing the gear weight. This research proposes a FGM gears design method that is able to largely reduce the weight of gears by optimizing the microscopic material parameters instead of changing the macroscopic dimension parameters of gears, which reduces the complexity of gear weight optimization problem.

  8. Advanced aerospace composite material structural design using artificial intelligent technology

    SciTech Connect

    Sun, S.H.; Chen, J.L.; Hwang, W.C.

    1993-12-31

    Due to the complexity in the prediction of property and behavior, composite material has not substituted for metal widely yet, though it has high specific-strength and high specific-modulus that are more important in the aerospace industry. In this paper two artificial intelligent techniques, the expert systems and neural network technology, were introduced to the structural design of composite material. Expert System which has good ability in symbolic processing can helps us to solve problem by saving experience and knowledge. It is, therefore, a reasonable way to combine expert system technology to tile composite structural design. The development of a prototype expert system to help designer during the process of composite structural design is presented. Neural network is a network similar to people`s brain that can simulate the thinking way of people and has the ability of learning from the training data by adapting the weights of network. Because of the bottleneck in knowledge acquisition processes, the application of neural network and its learning ability to strength design of composite structures are presented. Some examples are in this paper to demonstrate the idea.

  9. 30 CFR 27.20 - Quality of material, workmanship, and design.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design... its opinion, is constructed of suitable materials, is of good workmanship, is based on...

  10. 30 CFR 27.20 - Quality of material, workmanship, and design.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design... its opinion, is constructed of suitable materials, is of good workmanship, is based on...

  11. Designing Instructional Systems

    ERIC Educational Resources Information Center

    Furtado, Lorraine T.

    1974-01-01

    The author presents an instructional design model for teachers that evolves around a teacher-manager concept which recognizes management functions of: planning, organizing, leading, and controlling. (EA)

  12. The artificial disc: theory, design and materials.

    PubMed

    Bao, Q B; McCullen, G M; Higham, P A; Dumbleton, J H; Yuan, H A

    1996-06-01

    Low back pain is one of the most common medical conditions in the Western world. Disc degeneration, an inevitable process of aging, of variable rate and degree, is one of the major causes of low back pain. Currently, there are two major surgical interventions for treating conditions related to the degenerative disc: discectomy and fusion. Although discectomy and fusion produce a relatively good short-term clinical result in relieving pain, both these surgical treatments alter the biomechanics of the spine, possibly leading to further degeneration of the surrounding tissues and the discs at adjacent levels. Over the past 35 years, a tremendous effort has been made to develop an artificial disc to replace the degenerated disc. The goal is the restoration of the natural biomechanics of the segment after disc excision, thus relieving pain and preventing further degeneration at adjacent segments. However, the artificial disc faces a complex biomechanical environment which makes replication of the biomechanics difficult and long-term survival challenging to designs and materials. The purpose of this article is to examine the factors of importance in designing a disc replacement. Topics covered include the structure and function of the natural disc, the changes that occur with disc degeneration and existing methods of treatment for the degenerative spine. The progress in achieving a functional, long-lasting disc replacement is outlined.

  13. Integration mockup and process material management system

    NASA Technical Reports Server (NTRS)

    Verble, Adas James, Jr.

    1992-01-01

    Work to define and develop a full scale Space Station Freedom (SSF) mockup with the flexibility to evolve into future designs, to validate techniques for maintenance and logistics and verify human task allocations and support trade studies is described. This work began in early 1985 and ended in August, 1991. The mockups are presently being used at MSFC in Building 4755 as a technology and design testbed, as well as for public display. Micro Craft also began work on the Process Material Management System (PMMS) under this contract. The PMMS simulator was a sealed enclosure for testing to identify liquids, gaseous, particulate samples, and specimen including, urine, waste water, condensate, hazardous gases, surrogate gasses, liquids, and solids. The SSF would require many trade studies to validate techniques for maintenance and logistics and verify system task allocations; it was necessary to develop a full scale mockup which would be representative of current SSF design with the ease of changing those designs as the SSF design evolved and changed. The tasks defined for Micro Craft were to provide the personnel, services, tools, and materials for the SSF mockup which would consist of four modules, nodes, interior components, and part task mockups of MSFC responsible engineering systems. This included the Engineering Control and Life Support Systems (ECLSS) testbed. For the initial study, the mockups were low fidelity, soft mockups of graphics art bottle, and other low cost materials, which evolved into higher fidelity mockups as the R&D design evolved, by modifying or rebuilding, an important cost saving factor in the design process. We designed, fabricated, and maintained the full size mockup shells and support stands. The shells consisted of cylinders, end cones, rings, longerons, docking ports, crew airlocks, and windows. The ECLSS required a heavier cylinder to support the ECLSS systems test program. Details of this activity will be covered. Support stands were

  14. Integration mockup and process material management system

    NASA Astrophysics Data System (ADS)

    Verble, Adas James, Jr.

    1992-02-01

    Work to define and develop a full scale Space Station Freedom (SSF) mockup with the flexibility to evolve into future designs, to validate techniques for maintenance and logistics and verify human task allocations and support trade studies is described. This work began in early 1985 and ended in August, 1991. The mockups are presently being used at MSFC in Building 4755 as a technology and design testbed, as well as for public display. Micro Craft also began work on the Process Material Management System (PMMS) under this contract. The PMMS simulator was a sealed enclosure for testing to identify liquids, gaseous, particulate samples, and specimen including, urine, waste water, condensate, hazardous gases, surrogate gasses, liquids, and solids. The SSF would require many trade studies to validate techniques for maintenance and logistics and verify system task allocations; it was necessary to develop a full scale mockup which would be representative of current SSF design with the ease of changing those designs as the SSF design evolved and changed. The tasks defined for Micro Craft were to provide the personnel, services, tools, and materials for the SSF mockup which would consist of four modules, nodes, interior components, and part task mockups of MSFC responsible engineering systems. This included the Engineering Control and Life Support Systems (ECLSS) testbed. For the initial study, the mockups were low fidelity, soft mockups of graphics art bottle, and other low cost materials, which evolved into higher fidelity mockups as the R&D design evolved, by modifying or rebuilding, an important cost saving factor in the design process. We designed, fabricated, and maintained the full size mockup shells and support stands. The shells consisted of cylinders, end cones, rings, longerons, docking ports, crew airlocks, and windows. The ECLSS required a heavier cylinder to support the ECLSS systems test program. Details of this activity will be covered. Support stands were

  15. FOREWORD: Computational methodologies for designing materials Computational methodologies for designing materials

    NASA Astrophysics Data System (ADS)

    Rahman, Talat S.

    2009-02-01

    084206 [7] Biswas P, Tafen D N, Inam F, Cai B and Drabold D A 2009 Materials modeling by design: applications to amorphous solids J. Phys.: Condens. Matter 21 084207 [8] Rossi G and Ferrando R 2009 Searching for low-energy structures of nanoparticles: a comparison of different methods and algorithms J. Phys.: Condens. Matter 21 084208 [9] Rogan J, Ramírez M, Muñoz V, Alejandro Valdivia J, García G, Ramírez R and Kiwi M 2009 Diversity driven unbiased search of minimum energy cluster configurations J. Phys.: Condens. Matter 21 084209 [10] Pedersen A, Pizzagalli L and Jónsson H 2009 Finding mechanism of transitions in complex systems: formation and migration of dislocation kinks in a silicon crystal J. Phys.: Condens. Matter 21 084210 [11] Trushin O, Jalkanen J, Granato E, Ying S C and Ala-Nissila T 2009 Atomistic studies of strain relaxation in heteroepitaxial systems J. Phys.: Condens. Matter 21 084211 [12] Fichthorn K A, Miron R A, Wang Y and Tiwary Y 2009 Accelerated molecular dynamics of thin-film growth with the bond-boost method J. Phys.: Condens. Matter 21 084212 [13] Kara A, Trushin O, Yildirim H and Rahman T S 2009 Off-lattice self-learning kinetic Monte Carlo: application to 2D cluster diffusion on the fcc(111) surface J. Phys.: Condens. Matter 21 084213 [14] Nandipati G, Shim Y, Amar J G, Karim A, Kara A, Rahman T S and Trushin O 2009 Parallel kinetic Monte Carlo simulations of Ag(111) island coarsening using a large database J. Phys.: Condens. Matter 21 084214 [15] Hamouda A, Stasevich T J, Pimpinelli A and Einstein T L 2009 Effects of impurities on surface morphology: some examples J. Phys.: Condens. Matter 21 084215 [16] Li M, Han Y, Thiel P A and Evans J W 2009 Formation of complex wedding-cake morphologies during homoepitaxial film growth of Ag on Ag(111): atomistic, step-dynamics, and continuum modeling J. Phys.: Condens. Matter 21 084216 [17] Uhlík F, Gatti R and Montalenti F 2009 A fast computational method for determining equilibrium concentration

  16. Physical protection system design and evaluation

    SciTech Connect

    Williams, J.D.

    1997-03-01

    The design of an effective physical protection system includes the determination of physical protection system objectives, initial design of a physical protection system, design evaluation, and probably a redesign or refinement. To develop the objectives, the designer must begin by gathering information about facility operation and conditions, such as a comprehensive description of the facility, operating conditions, and the physical protection requirements. The designer then needs to define the threat. This involves considering factors about potential adversaries: class of adversary, adversary`s capabilities, and range of adversary`s tactics. Next, the designer should identify targets. Determination of whether or not the materials being protected are attractive targets is based mainly on the ease or difficulty of acquisition and desirability of the material. The designer now knows the objectives of the physical protection system, that is, {open_quotes}what to protect against whom.{close_quotes} The next step is to design the system by determining how best to combine such elements as fences, vaults, sensors and assessment devices, entry control elements, procedures, communication devices, and protective forces personnel to meet the objectives of the system. Once a physical protection system is designed, it must be analyzed and evaluated to ensure it meets the physical protection objectives. Evaluation must allow for features working together to ensure protection rather than regarding each feature separately. Due to the complexity of the protection systems, an evaluation usually requires modeling techniques. If any vulnerabilities are found, the initial system must be redesigned to correct the vulnerabilities and a reevaluation conducted. This paper reviews the physical protection system design and methodology mentioned above. Examples of the steps required and a brief introduction to some of the technologies used in modem physical protections system are given.

  17. SU-E-J-210: Characterizing Tissue Equivalent Materials for the Development of a Dual MRI-CT Heterogeneous Anthropomorphic Phantom Designed Specifically for MRI Guided Radiotherapy Systems

    SciTech Connect

    Steinmann, A; Stafford, R; Yung, J; Followill, D

    2015-06-15

    Purpose: MRI guided radiotherapy (MRIgRT) is an emerging technology which will eventually require a proficient quality auditing system. Due to different principles in which MR and CT acquire images, there is a need for a multi-imaging-modality, end-to-end QA phantom for MRIgRT. The purpose of this study is to identify lung, soft tissue, and tumor equivalent substitutes that share similar human-like CT and MR properties (i.e. Hounsfield units and relaxation times). Methods: Materials of interested such as common CT QA phantom materials, and other proprietary gels/silicones from Polytek, SmoothOn, and CompositeOne were first scanned on a GE 1.5T Signa HDxT MR. Materials that could be seen on both T1-weighted and T2-weighted images were then scanned on a GE Lightspeed RT16 CT simulator and a GE Discovery 750HD CT scanner and their HU values were then measured. The materials with matching HU values of lung (−500 to −700HU), muscle (+40HU) and soft tissue (+100 to +300HU) were further scanned on GE 1.5T Signa HDx to measure their T1 and T2 relaxation times from varying parameters of TI and TE. Results: Materials that could be visualized on T1-weighted and T2-weighted images from a 1.5T MR unit and had an appropriate average CT number, −650, −685, 46,169, and 168 HUs were: compressed cork saturated with water, Polytek Platsil™ Gel-00 combined with mini styrofoam balls, radiotherapy bolus material, SmoothOn Dragon-Skin™ and SmoothOn Ecoflex™, respectively. Conclusion: Post processing analysis is currently being performed to accurately map T1 and T2 values for each material tested. From previous MR visualization and CT examinations it is expected that Dragon-Skin™, Ecoflex™ and bolus will have values consistent with tissue and tumor substitutes. We also expect compressed cork statured with water, and Polytek™-styrofoam combination to have approximate T1 and T2 values suitable for lung-equivalent materials.

  18. Design concepts for pressurized lunar shelters utilizing indigenous materials

    NASA Technical Reports Server (NTRS)

    Happel, John Amin; Willam, Kaspar; Shing, Benson

    1991-01-01

    The objective is to design a pressurized shelter build of indigenous lunar material. The topics are presented in viewgraph form and include the following: lunar conditions which impact design; secondary factors; review of previously proposed concepts; cross section of assembly facility; rationale for indigenous materials; indigenous material choices; cast basalt properties; design variables; design 1, cylindrical segments; construction sequence; design 2, arch-slabs with post-tensioned ring girders; and future research.

  19. DDL system: Design systhesis of digital systems

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1983-01-01

    Digital Systems Design Language was integrated into the CADAT system environment of NASA-MSFC. The major technical aspects of this integration are summarized. Automatic hardware synthesis is now possible starting with a high level description of the system to be synthesized. The DDL system provides a high level design verification capability, thereby minimizing design changes in the later stages of the design cycle. An overview of the DDL system covering the translation, simulation and synthesis capabilities is provided. Two companion documents (the user's and programmer's manuals) are to be consulted for detailed discussions.

  20. FNAL system patching design

    SciTech Connect

    Schmidt, Jack; Lilianstrom, Al; Romero, Andy; Dawson, Troy; Sieh, Connie; /Fermilab

    2004-01-01

    FNAL has over 5000 PCs running either Linux or Windows software. Protecting these systems efficiently against the latest vulnerabilities that arise has prompted FNAL to take a more central approach to patching systems. Due to different levels of existing support infrastructures, the patching solution for linux systems differs from that of windows systems. In either case, systems are checked for vulnerabilities by Computer Security using the Nessus tool.

  1. Mechatronic system design course for undergraduate programmes

    NASA Astrophysics Data System (ADS)

    Saleem, A.; Tutunji, T.; Al-Sharif, L.

    2011-08-01

    Technology advancement and human needs have led to integration among many engineering disciplines. Mechatronics engineering is an integrated discipline that focuses on the design and analysis of complete engineering systems. These systems include mechanical, electrical, computer and control subsystems. In this paper, the importance of teaching mechatronic system design to undergraduate engineering students is emphasised. The paper offers the collaborative experience in preparing and delivering the course material for two universities in Jordan. A detailed description of such a course is provided and a case study is presented. The case study used is a final year project, where students applied a six-stage design procedure that is described in the paper.

  2. 14 CFR 121.271 - Fire-extinguishing system materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fire-extinguishing system materials. 121....271 Fire-extinguishing system materials. (a) Except as provided in paragraph (b) of this section, each component of a fire-extinguishing system that is in a designated fire zone must be made of...

  3. Structural materials challenges for advanced reactor systems

    NASA Astrophysics Data System (ADS)

    Yvon, P.; Carré, F.

    2009-03-01

    Key technologies for advanced nuclear systems encompass high temperature structural materials, fast neutron resistant core materials, and specific reactor and power conversion technologies (intermediate heat exchanger, turbo-machinery, high temperature electrolytic or thermo-chemical water splitting processes, etc.). The main requirements for the materials to be used in these reactor systems are dimensional stability under irradiation, whether under stress (irradiation creep or relaxation) or without stress (swelling, growth), an acceptable evolution under ageing of the mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, resilience) and a good behavior in corrosive environments (reactor coolant or process fluid). Other criteria for the materials are their cost to fabricate and to assemble, and their composition could be optimized in order for instance to present low-activation (or rapid desactivation) features which facilitate maintenance and disposal. These requirements have to be met under normal operating conditions, as well as in incidental and accidental conditions. These challenging requirements imply that in most cases, the use of conventional nuclear materials is excluded, even after optimization and a new range of materials has to be developed and qualified for nuclear use. This paper gives a brief overview of various materials that are essential to establish advanced systems feasibility and performance for in pile and out of pile applications, such as ferritic/martensitic steels (9-12% Cr), nickel based alloys (Haynes 230, Inconel 617, etc.), oxide dispersion strengthened ferritic/martensitic steels, and ceramics (SiC, TiC, etc.). This article gives also an insight into the various natures of R&D needed on advanced materials, including fundamental research to investigate basic physical and chemical phenomena occurring in normal and accidental operating conditions, lab-scale tests to characterize candidate materials

  4. Computational materials design for energy applications

    NASA Astrophysics Data System (ADS)

    Ozolins, Vidvuds

    2013-03-01

    General adoption of sustainable energy technologies depends on the discovery and development of new high-performance materials. For instance, waste heat recovery and electricity generation via the solar thermal route require bulk thermoelectrics with a high figure of merit (ZT) and thermal stability at high-temperatures. Energy recovery applications (e.g., regenerative braking) call for the development of rapidly chargeable systems for electrical energy storage, such as electrochemical supercapacitors. Similarly, use of hydrogen as vehicular fuel depends on the ability to store hydrogen at high volumetric and gravimetric densities, as well as on the ability to extract it at ambient temperatures at sufficiently rapid rates. We will discuss how first-principles computational methods based on quantum mechanics and statistical physics can drive the understanding, improvement and prediction of new energy materials. We will cover prediction and experimental verification of new earth-abundant thermoelectrics, transition metal oxides for electrochemical supercapacitors, and kinetics of mass transport in complex metal hydrides. Research has been supported by the US Department of Energy under grant Nos. DE-SC0001342, DE-SC0001054, DE-FG02-07ER46433, and DE-FC36-08GO18136.

  5. Design of Responsive and Active (Soft) Materials Using Liquid Crystals.

    PubMed

    Bukusoglu, Emre; Bedolla Pantoja, Marco; Mushenheim, Peter C; Wang, Xiaoguang; Abbott, Nicholas L

    2016-06-01

    Liquid crystals (LCs) are widely known for their use in liquid crystal displays (LCDs). Indeed, LCDs represent one of the most successful technologies developed to date using a responsive soft material: An electric field is used to induce a change in ordering of the LC and thus a change in optical appearance. Over the past decade, however, research has revealed the fundamental underpinnings of potentially far broader and more pervasive uses of LCs for the design of responsive soft material systems. These systems involve a delicate interplay of the effects of surface-induced ordering, elastic strain of LCs, and formation of topological defects and are characterized by a chemical complexity and diversity of nano- and micrometer-scale geometry that goes well beyond that previously investigated. As a reflection of this evolution, the community investigating LC-based materials now relies heavily on concepts from colloid and interface science. In this context, this review describes recent advances in colloidal and interfacial phenomena involving LCs that are enabling the design of new classes of soft matter that respond to stimuli as broad as light, airborne pollutants, bacterial toxins in water, mechanical interactions with living cells, molecular chirality, and more. Ongoing efforts hint also that the collective properties of LCs (e.g., LC-dispersed colloids) will, over the coming decade, yield exciting new classes of driven or active soft material systems in which organization (and useful properties) emerges during the dissipation of energy. PMID:26979412

  6. Design of Responsive and Active (Soft) Materials Using Liquid Crystals.

    PubMed

    Bukusoglu, Emre; Bedolla Pantoja, Marco; Mushenheim, Peter C; Wang, Xiaoguang; Abbott, Nicholas L

    2016-06-01

    Liquid crystals (LCs) are widely known for their use in liquid crystal displays (LCDs). Indeed, LCDs represent one of the most successful technologies developed to date using a responsive soft material: An electric field is used to induce a change in ordering of the LC and thus a change in optical appearance. Over the past decade, however, research has revealed the fundamental underpinnings of potentially far broader and more pervasive uses of LCs for the design of responsive soft material systems. These systems involve a delicate interplay of the effects of surface-induced ordering, elastic strain of LCs, and formation of topological defects and are characterized by a chemical complexity and diversity of nano- and micrometer-scale geometry that goes well beyond that previously investigated. As a reflection of this evolution, the community investigating LC-based materials now relies heavily on concepts from colloid and interface science. In this context, this review describes recent advances in colloidal and interfacial phenomena involving LCs that are enabling the design of new classes of soft matter that respond to stimuli as broad as light, airborne pollutants, bacterial toxins in water, mechanical interactions with living cells, molecular chirality, and more. Ongoing efforts hint also that the collective properties of LCs (e.g., LC-dispersed colloids) will, over the coming decade, yield exciting new classes of driven or active soft material systems in which organization (and useful properties) emerges during the dissipation of energy.

  7. Mass of materials: the impact of designers on construction ergonomics.

    PubMed

    Smallwood, John

    2012-01-01

    Many construction injuries are musculoskeletal related in the form of sprains and strains arising from the handling of materials, which are specified by designers. The paper presents the results of a study conducted among delegates attending two 'designing for H&S' (DfH&S) seminars using a questionnaire. The salient findings include: the level of knowledge relative to the mass and density of materials is limited; designers generally do not consider the mass and density of materials when designing structures and elements and specifying materials; to a degree designers appreciate that the mass and density of materials impact on construction ergonomics; designers rate their knowledge of the mass and density of materials as limited, and designers appreciate the potential of the consideration of the mass and density of materials to contribute to an improvement in construction ergonomics. Conclusions include: designers lack the requisite knowledge relative to the mass and density of materials; designers are thus precluded from conducting optimum design hazard identification and risk assessments, and tertiary built environment designer education does not enlighten designers relative to construction ergonomics. Recommendations include: tertiary built environment designer education should construction ergonomics; professional associations should raise the level of awareness relative to construction ergonomics, and design practices should include a category 'mass and density of materials' in their practice libraries.

  8. Fissile Material Detection Using a Prompt Fission Neutron Chamber System

    SciTech Connect

    Raymond P. Keegan; Leo A. Van Ausdeln

    2007-11-01

    The calculations supporting the design of a chamber system to detect and verify fissile material in items such as mail packages or luggage are described. Stimulated neutrons from fission are separated from those produced by the system 14 MeV neutron generators by time delay. The proposed system design has a chamber volume of 60 × 60 × 90 cm. It is anticipated that at least 1g of fissile material could be detected in as little as 5s of interrogation.

  9. 46 CFR 153.280 - Piping system design.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.280 Piping system design. (a) Each cargo piping system must meet... 46 Shipping 5 2011-10-01 2011-10-01 false Piping system design. 153.280 Section 153.280...

  10. 46 CFR 153.280 - Piping system design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping system design. 153.280 Section 153.280 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.280 Piping system design. (a) Each cargo piping system must...

  11. The design and modeling of periodic materials with novel properties

    NASA Astrophysics Data System (ADS)

    Berger, Jonathan Bernard

    Cellular materials are ubiquitous in our world being found in natural and engineered systems as structural materials, sound and energy absorbers, heat insulators and more. Stochastic foams made of polymers, metals and even ceramics find wide use due to their novel properties when compared to monolithic materials. Properties of these so called hybrid materials, those that combine materials or materials and space, are derived from the localization of thermomechanical stresses and strains on the mesoscale as a function of cell topology. The effects of localization can only be generalized in stochastic materials arising from their inherent potential complexity, possessing variations in local chemistry, microstructural inhomogeneity and topological variations. Ordered cellular materials on the other hand, such as lattices and honeycombs, make for much easier study, often requiring analysis of only a single unit-cell. Theoretical bounds predict that hybrid materials have the potential to push design envelopes offering lighter stiffer and stronger materials. Hybrid materials can achieve very low and even negative coefficients of thermal expansion (CTE) while retaining a relatively high stiffness -- properties completely unmatched by monolithic materials. In the first chapter of this thesis a two-dimensional lattice is detailed that possess near maximum stiffness, relative to the tightest theoretical bound, and low, zero and even appreciably negative thermal expansion. Its CTE and stiffness are given in closed form as a function of geometric parameters and the material properties. This result is confirmed with finite elements (FE) and experiment. In the second chapter the compressive stiffness of three-dimensional ordered foams, both closed and open cell, are predicted with FE and the results placed in property space in terms of stiffness and density. A novel structure is identified that effectively achieves theoretical bounds for Young's, shear and bulk modulus

  12. Porous materials. Function-led design of new porous materials.

    PubMed

    Slater, Anna G; Cooper, Andrew I

    2015-05-29

    Porous solids are important as membranes, adsorbents, catalysts, and in other chemical applications. But for these materials to find greater use at an industrial scale, it is necessary to optimize multiple functions in addition to pore structure and surface area, such as stability, sorption kinetics, processability, mechanical properties, and thermal properties. Several different classes of porous solids exist, and there is no one-size-fits-all solution; it can therefore be challenging to choose the right type of porous material for a given job. Computational prediction of structure and properties has growing potential to complement experiment to identify the best porous materials for specific applications.

  13. Software-Design-Analyzer System

    NASA Technical Reports Server (NTRS)

    Tausworthe, Robert C.

    1991-01-01

    CRISP-90 software-design-analyzer system, update of CRISP-80, is set of computer programs constituting software tool for design and documentation of other software and supporting top-down, hierarchical, modular, structured methodologies for design and programming. Written in Microsoft QuickBasic.

  14. Mars oxygen production system design

    NASA Technical Reports Server (NTRS)

    Cotton, Charles E.; Pillow, Linda K.; Perkinson, Robert C.; Brownlie, R. P.; Chwalowski, P.; Carmona, M. F.; Coopersmith, J. P.; Goff, J. C.; Harvey, L. L.; Kovacs, L. A.

    1989-01-01

    The design and construction phase is summarized of the Mars oxygen demonstration project. The basic hardware required to produce oxygen from simulated Mars atmosphere was assembled and tested. Some design problems still remain with the sample collection and storage system. In addition, design and development of computer compatible data acquisition and control instrumentation is ongoing.

  15. Mars oxygen production system design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This report summarizes the design and construction of the Mars oxygen demonstration project. The basic hardware required to produce oxygen from simulated Mars atmosphere has been assembled and tested. Some design problems still remain with the sample collection and storage system. In addition, design and development of computer data acquisition and control instrumentation is continuing.

  16. Lunar materials processing system integration

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    1992-01-01

    The theme of this paper is that governmental resources will not permit the simultaneous development of all viable lunar materials processing (LMP) candidates. Choices will inevitably be made, based on the results of system integration trade studies comparing candidates to each other for high-leverage applications. It is in the best long-term interest of the LMP community to lead the selection process itself, quickly and practically. The paper is in five parts. The first part explains what systems integration means and why the specialized field of LMP needs this activity now. The second part defines the integration context for LMP -- by outlining potential lunar base functions, their interrelationships and constraints. The third part establishes perspective for prioritizing the development of LMP methods, by estimating realistic scope, scale, and timing of lunar operations. The fourth part describes the use of one type of analytical tool for gaining understanding of system interactions: the input/output model. A simple example solved with linear algebra is used to illustrate. The fifth and closing part identifies specific steps needed to refine the current ability to study lunar base system integration. Research specialists have a crucial role to play now in providing the data upon which this refinement process must be based.

  17. Design Tool for Cryogenic Thermal Insulation Systems

    SciTech Connect

    Demko, Jonathan A; Fesmire, J. E.; Augustynowicz, S. D.

    2008-01-01

    Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed. The approach is to apply thermal analysis to standard shapes (plane walls, cylinders, spheres) that are relatively simple to characterize with a one-dimensional analytical or numerical model. The user describes the system hot and cold boundary geometry and the operating environment. Basic outputs such as heat load and temperature profiles are determined. The user can select from a built-in insulation material database or input user defined materials. Existing information has been combined with the new experimental thermal conductivity data produced by the Cryogenics Test Laboratory for cryogenic and vacuum environments, including high vacuum, soft vacuum, and no vacuum. Materials in the design tool include multilayer insulation, aerogel blankets, aerogel bulk-fill, foams, powders, composites, and other insulation system constructions. A comparison of the design tool to a specific composite thermal insulation system is given.

  18. Design Tool for Cryogenic Thermal Insulation Systems

    NASA Astrophysics Data System (ADS)

    Demko, J. A.; Fesmire, J. E.; Augustynowicz, S. D.

    2008-03-01

    Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed. The approach is to apply thermal analysis to standard shapes (plane walls, cylinders, spheres) that are relatively simple to characterize with a one-dimensional analytical or numerical model. The user describes the system hot and cold boundary geometry and the operating environment. Basic outputs such as heat load and temperature profiles are determined. The user can select from a built-in insulation material database or input user defined materials. Existing information has been combined with the new experimental thermal conductivity data produced by the Cryogenics Test Laboratory for cryogenic and vacuum environments, including high vacuum, soft vacuum, and no vacuum. Materials in the design tool include multilayer insulation, aerogel blankets, aerogel bulk-fill, foams, powders, composites, and other insulation system constructions. A comparison of the design tool to a specific composite thermal insulation system is given.

  19. Material for Point Design (final summary of DIME material)

    SciTech Connect

    Bradley, Paul A.

    2014-02-25

    These slides summarize the motivation of the Defect Induced Mix Experiment (DIME) project, the “point design” of the Polar Direct Drive (PDD) version of the NIF separated reactant capsule, the experimental requirements, technical achievements, and some useful backup material. These slides are intended to provide much basic material in one convenient location and will hopefully be of some use for subsequent experimental projects.

  20. Designing Systems for Environmental Sustainability

    EPA Science Inventory

    Dr. Smith will describe his U.S. EPA research which involves elements of design, from systems as diverse as biofuel supply chains to recycling systems and chemical processes. Design uses models that rate performance as part of a synthesis approach, where steps of analysis and sy...

  1. Nanoscale material design for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Bao, Hua

    /nanowire array solar cells. Phonon-assisted electron decay in semiconductor quantum dots is also investigated in this work. In semiconductor solar cell, a large portion of energy loss is by the fast hot electron cooling, in which a high energy electron decays to the electronic band gap by creating a series of phonons. The excessive electrical energy is then converted to heat and wasted, so that the total photovoltaic energy conversion efficiency is limited. The electron decay rate reduces in semiconductor quantum dots, due to the discrete electron energy levels created by quantum confinement. To design quantum dots with the slowest decay rate, we use the non-adiabatic molecular dynamics to perform real-time simulations of the phonon-assisted electron decay process. This method is based on time-dependent density functional theory, and can directly predict the phonon-assisted electron decay time using the initial quantum dot structure as the only input. The numerical simulation shows that the phonon-induced electron decay can be slowed down in a small PbSe quantum dot. The temperature-dependent relaxation in this quantum dot is also studied, which helps us to propose a multi-channel relaxation mechanism. This mechanism provides new insights to the understanding of electron decay process in quantum dots. The results from this study have potentially important applications in solar energy harvesting and radiative thermal management. It offers a new perspective of nanoscale engineering of materials to achieve more efficient photovoltaic energy conversion.

  2. REC Tracking Systems Design Guide

    SciTech Connect

    Meredith Wingate

    2004-02-03

    OAK-B135 The Design Guide is presented in three parts. Section II describes the need for REC tracking, the two principal tracking methods available, and, in simple terms, the operation of certificate-based systems. Section III presents the major issues in the design of certificate-based tracking systems and discusses the advantages and disadvantages of alternative solutions. Finally, Section IV offers design principles or recommendations for most of these issues.

  3. Diamond detector - material science, design and application

    NASA Astrophysics Data System (ADS)

    Gaowei, Mengjia

    Modern synchrotrons, such as the NSLS-II, will enable unprecedented science by having extremely high brightness and flux with exceptional beam stability. These capabilities create a harsh and demanding environment for measuring the characteristics of the x-ray beam. In many cases, existing measurement techniques fail completely, requiring the development of new detectors which can meet the demands of the synchrotron. The combination of diamond properties ranked diamond an appealing candidate in the field of radiation detection in extreme conditions and it has been used as x-ray sensor material for decades. However, only until the development of chemical vapor deposition (CVD) process in the synthesis of diamond that has it been considered for wider applications in the state-of-art synchrotron light sources as part of beamline diagnostics, including the detection of x-ray beam flux and position. While defects and dislocations in CVD grown single crystal diamonds are inevitable, there are solutions in other aspects of a device fabrication to compensate this technological downside, including improving device performance in engineering diamond surface electrode materials and patterns and slicing and polishing diamond plates into thinner pieces. The content of this dissertation summarizes our effort in addressing several problems we encounter in the process of design and fabrication of single crystal CVD diamond based electronic devices. In order to study the generation of post-anneal photoconductive gain in our devices we have discussed in section 3 and 4 the two criteria for the observation of photoconductive current. In section 3 we reveal the correlation between structural defects in diamond and the post-anneal photoconductive regions. Section 4 introduces the measurements of hard x-ray photoelectron spectroscopy (HAXPES) we applied to investigate the diamond-metal Schottky barrier height for several metals and diamond surface terminations. The position of the

  4. An educational program on structural design with brittle /ceramic/ materials

    NASA Technical Reports Server (NTRS)

    Mueller, J. I.

    1978-01-01

    The organization of a proposed ceramic structural materials program is described, and a suggested course sequence for college-level and graduate-level courses is presented. The course work on ceramics and brittle fracture are intended to lead to a brittle material design project and a brittle material design problem. Criteria for the selection of appropriate projects/problems are considered.

  5. PEMFC MEA and System Design Considerations

    SciTech Connect

    Knights, Shanna; Bashyam, Rajesh; He, Ping; Lauritzen, Michael; Startek, Cara; Colbow, Vesna; Cheng, Tommy; Kolodziej, Joanna; Wessel, Silvia

    2011-07-01

    Proton exchange membrane fuel cells (PEMFCs) are being developed and sold commercially for multiple near term markets. Ballard Power Systems is focused on the near term markets of backup power, distributed generation, materials handling, and buses. Significant advances have been made in cost and durability of fuel cell products. Improved tolerance to a wide range of system operation and environmental noises will enable increased viability across a broad range of applications. In order to apply the most effective membrane electrode assembly (MEA) design for each market, the system requirements and associated MEA failures must be well understood. The failure modes associated with the electrodes and membrane degradation are discussed with respect to associated system operation and mitigating approaches. A few key system considerations that influence MEA design include expected fuel quality, balance-of-plant materials, time under idle or open circuit operation, and start-up and shut-down conditions.

  6. Space & Materials: A Second Year Design Curriculum.

    ERIC Educational Resources Information Center

    Ziff, Matthew

    Design students provide a constant source of energy that moves into the mainstream of society. Their energy needs to be directed toward improving the characteristics of the built environment at every physical and economic scale of activity. Teaching design involves a broad range of decisions on how to present relevant design education content to…

  7. Writing and designing readable patient education materials.

    PubMed

    Aldridge, Michael D

    2004-01-01

    Functional illiteracy is a problem often overlooked by nurses. Although the average adult in the United States cannot read above the eighth-grade level, most patient education materials are written on a high-school or college reading level. If patients cannot read educational materials, then there is little hope of them using or understanding the information. Strategies for improving the readability of education materials specific to the needs of nephrology patients are discussed in this article.

  8. Materials And Processes Technical Information System (MAPTIS) LDEF materials data base

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated from LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux) and author(s) or principal investigator(s). Tne LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which has been computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. The LDEF Materials Data Base is described and step-by-step example searches using the data base are included. Information on how to become an authorized user of the system is included.

  9. Solar Energy: Solar System Design Fundamentals.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system design fundamentals is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy…

  10. Waste tank ventilation system waste material accumulations

    SciTech Connect

    Van Vleet, R.J., Westinghouse Hanford

    1996-08-06

    This paper calculates the amount of material that accumulates in the ventilation systems of various Tank Waste Remediation System facilities and estimates the amount of material that could be released due to a rapid pressurization.

  11. The application of composite materials to spaceborne radiometer instrument design

    NASA Astrophysics Data System (ADS)

    Hookman, Robert A.; Zurmehly, George E.

    1990-10-01

    The stability and coregistration requirements for future radiometric instrument designs spawn the need for a totally integrated instrument structure and thermal control scheme. To meet the requirements of the future Geostationary meteorological missions an Ultra Stable Instrument Structure (USIS) will be needed. An instrument structure of lightweight construction is described that takes advantage of composite materials that combine high stiffness, low density along with low Coefficient of Thermal Expansion (CTE). In addition, this paper will outline the mission objectives, the operating environment and stability requirements needed for future spaceborne radiometer structures. A conceptual design of a composite instrument structure along with its thermal control system will be outlined, and various design trade-offs will be presented.

  12. Elastocaloric cooling materials and systems

    NASA Astrophysics Data System (ADS)

    Takeuchi, Ichiro

    2015-03-01

    We are actively pursuing applications of thermoelastic (elastocaloric) cooling using shape memory alloys. Latent heat associated with martensitic transformation of shape memory alloys can be used to run cooling cycles with stress-inducing mechanical drives. The coefficient of performance of thermoelastic cooling materials can be as high as 11 with the directly measured DT of around 17 °C. Depending on the stress application mode, the number of cycles to fatigue can be as large as of the order of 105. Efforts to design and develop thermoelastic alloys with long fatigue life will be discussed. The current project at the University of Maryland is focused on development of building air-conditioners, and at Maryland Energy and Sensor Technologies, smaller scale commercial applications are being pursued. This work is carried out in collaboration with Jun Cui, Yiming Wu, Suxin Qian, Yunho Hwang, Jan Muehlbauer, and Reinhard Radermacher, and it is funded by the ARPA-E BEETIT program and the State of Maryland.

  13. Design and simulation of material-integrated distributed sensor processing with a code-based agent platform and mobile multi-agent systems.

    PubMed

    Bosse, Stefan

    2015-02-16

    Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques.

  14. Design and Simulation of Material-Integrated Distributed Sensor Processing with a Code-Based Agent Platform and Mobile Multi-Agent Systems

    PubMed Central

    Bosse, Stefan

    2015-01-01

    Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques. PMID:25690550

  15. Design and simulation of material-integrated distributed sensor processing with a code-based agent platform and mobile multi-agent systems.

    PubMed

    Bosse, Stefan

    2015-01-01

    Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques. PMID:25690550

  16. A design methodology for unattended monitoring systems

    SciTech Connect

    SMITH,JAMES D.; DELAND,SHARON M.

    2000-03-01

    The authors presented a high-level methodology for the design of unattended monitoring systems, focusing on a system to detect diversion of nuclear materials from a storage facility. The methodology is composed of seven, interrelated analyses: Facility Analysis, Vulnerability Analysis, Threat Assessment, Scenario Assessment, Design Analysis, Conceptual Design, and Performance Assessment. The design of the monitoring system is iteratively improved until it meets a set of pre-established performance criteria. The methodology presented here is based on other, well-established system analysis methodologies and hence they believe it can be adapted to other verification or compliance applications. In order to make this approach more generic, however, there needs to be more work on techniques for establishing evaluation criteria and associated performance metrics. They found that defining general-purpose evaluation criteria for verifying compliance with international agreements was a significant undertaking in itself. They finally focused on diversion of nuclear material in order to simplify the problem so that they could work out an overall approach for the design methodology. However, general guidelines for the development of evaluation criteria are critical for a general-purpose methodology. A poor choice in evaluation criteria could result in a monitoring system design that solves the wrong problem.

  17. Launch vehicle systems design analysis

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Verderaime, V.

    1993-01-01

    Current launch vehicle design emphasis is on low life-cycle cost. This paper applies total quality management (TQM) principles to a conventional systems design analysis process to provide low-cost, high-reliability designs. Suggested TQM techniques include Steward's systems information flow matrix method, quality leverage principle, quality through robustness and function deployment, Pareto's principle, Pugh's selection and enhancement criteria, and other design process procedures. TQM quality performance at least-cost can be realized through competent concurrent engineering teams and brilliance of their technical leadership.

  18. Design of Functional Materials based on Liquid Crystalline Droplets

    PubMed Central

    Miller, Daniel S.; Wang, Xiaoguang; Abbott, Nicholas L.

    2014-01-01

    This brief perspective focuses on recent advances in the design of functional soft materials that are based on confinement of low molecular weight liquid crystals (LCs) within micrometer-sized droplets. While the ordering of LCs within micrometer-sized domains has been explored extensively in polymer-dispersed LC materials, recent studies performed with LC domains with precisely defined size and interfacial chemistry have unmasked observations of confinement-induced ordering of LCs that do not follow previously reported theoretical predictions. These new findings, which are enabled in part by advances in the preparation of LCs encapsulated in polymeric shells, are opening up new opportunities for the design of soft responsive materials based on surface-induced ordering transitions. These materials are also providing new insights into the self-assembly of biomolecular and colloidal species at defects formed by LCs confined to micrometer-sized domains. The studies presented in this perspective serve additionally to highlight gaps in knowledge regarding the ordering of LCs in confined systems. PMID:24882944

  19. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... individual item is tested before use to determine that the actual strength properties of that particular item... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties...

  20. Synthesis and design of silicide intermetallic materials

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.; Park, Y.; Hollis, K.J.; Kung, H.H.

    1998-11-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries.

  1. Expert Systems: Instructional Design Potential.

    ERIC Educational Resources Information Center

    Pollock, Joellyn; Grabinger, R. Scott

    1989-01-01

    Description of the components of expert systems highlights their potential uses in the field of instructional design. Uses of expert systems are described for determining the cost-effectiveness of instructional media; as instructional management aids; as job aids; in helping to diagnose student problems; and as student feedback/evaluation systems.…

  2. NASA System Engineering Design Process

    NASA Technical Reports Server (NTRS)

    Roman, Jose

    2011-01-01

    This slide presentation reviews NASA's use of systems engineering for the complete life cycle of a project. Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. Each phase of a NASA project is terminated with a Key decision point (KDP), which is supported by major reviews.

  3. Test model designs for advanced refractory ceramic materials

    NASA Technical Reports Server (NTRS)

    Tran, Huy Kim

    1993-01-01

    The next generation of space vehicles will be subjected to severe aerothermal loads and will require an improved thermal protection system (TPS) and other advanced vehicle components. In order to ensure the satisfactory performance system (TPS) and other advanced vehicle materials and components, testing is to be performed in environments similar to space flight. The design and fabrication of the test models should be fairly simple but still accomplish test objectives. In the Advanced Refractory Ceramic Materials test series, the models and model holders will need to withstand the required heat fluxes of 340 to 817 W/sq cm or surface temperatures in the range of 2700 K to 3000 K. The model holders should provide one dimensional (1-D) heat transfer to the samples and the appropriate flow field without compromising the primary test objectives. The optical properties such as the effective emissivity, catalytic efficiency coefficients, thermal properties, and mass loss measurements are also taken into consideration in the design process. Therefore, it is the intent of this paper to demonstrate the design schemes for different models and model holders that would accommodate these test requirements and ensure the safe operation in a typical arc jet facility.

  4. Mechanical properties of thermal protection system materials.

    SciTech Connect

    Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul; Hofer, John H.

    2005-06-01

    An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPS materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.

  5. Design for containment of hazardous materials

    SciTech Connect

    Murray, R.C. ); McDonald, J.R. )

    1991-03-01

    Department of Energy, (DOE), facilities across the United States, use wind and tornado design and evaluation criteria based on probabilistic performance goals. In addition, other programs such as Advanced Light Water Reactors, New Production Reactors, and Individual Plant Examinations for External Events for commercial nuclear power plants utilize design and evaluation criteria based on probabilistic performance goals. The use of probabilistic performance goals is a departure from design practice for commercial nuclear power plants which have traditionally been designed utilizing a conservative specification of wind and tornado loading combined with deterministic response evaluation methods and permissible behavior limits. Approaches which utilize probabilistic wind and tornado hazard curves for specification of loading and deterministic response evaluation methods and permissible behavior limits are discussed in this paper. Through the use of such design/evaluation approaches, it may be demonstrated that there is high likelihood that probabilistic performance goals can be achieved. 14 refs., 1 fig., 5 tabs.

  6. Materials Design On-the-Fly.

    PubMed

    Cerqueira, Tiago F T; Sarmiento-Pérez, Rafael; Amsler, Maximilian; Nogueira, F; Botti, Silvana; Marques, Miguel A L

    2015-08-11

    The dream of any solid-state theorist is to be able to predict new materials with tailored properties from scratch, i.e., without any input from experiment. Over the past decades, we have steadily approached this goal. Recent developments in the field of high-throughput calculations focused on finding the best material for specific applications. However, a key input for these techniques still had to be obtained experimentally, namely, the crystal structure of the materials. Here, we give a step further and show that one can indeed optimize material properties using as a single starting point the knowledge of the periodic table and the fundamental laws of quantum mechanics. This is done by combining state-of-the-art methods of global structure prediction that allow us to obtain the ground-state crystal structure of arbitrary materials, with an evolutionary algorithm that optimizes the chemical composition for the desired property. As a first showcase demonstration of our method, we perform an unbiased search for superhard materials and for transparent conductors. We stress that our method is completely general and can be used to optimize any property (or combination of properties) that can be calculated in a computer. PMID:26574474

  7. Synthesis and design of silicide intermetallic materials

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.

    1997-04-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries. The program presently has a number of developing industrial connections, including a CRADA with Schuller International Inc. targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. Current experimental emphasis is on the development and characterization of MoSi{sub 2}-Si{sub 3}N{sub 4} and MoSi{sub 2}-SiC composites, the plasma spraying of MoSi{sub 2}-based materials, and the joining of MoSi{sub 2} materials to metals.

  8. Materials Design On-the-Fly.

    PubMed

    Cerqueira, Tiago F T; Sarmiento-Pérez, Rafael; Amsler, Maximilian; Nogueira, F; Botti, Silvana; Marques, Miguel A L

    2015-08-11

    The dream of any solid-state theorist is to be able to predict new materials with tailored properties from scratch, i.e., without any input from experiment. Over the past decades, we have steadily approached this goal. Recent developments in the field of high-throughput calculations focused on finding the best material for specific applications. However, a key input for these techniques still had to be obtained experimentally, namely, the crystal structure of the materials. Here, we give a step further and show that one can indeed optimize material properties using as a single starting point the knowledge of the periodic table and the fundamental laws of quantum mechanics. This is done by combining state-of-the-art methods of global structure prediction that allow us to obtain the ground-state crystal structure of arbitrary materials, with an evolutionary algorithm that optimizes the chemical composition for the desired property. As a first showcase demonstration of our method, we perform an unbiased search for superhard materials and for transparent conductors. We stress that our method is completely general and can be used to optimize any property (or combination of properties) that can be calculated in a computer.

  9. Design of a Robotic Welding System

    SciTech Connect

    H. B. Smartt; E.D. Larsen; D. P. Pace; R. J. Bitsoi; C. R. Tolle

    2006-08-01

    Canisters for long term storage or disposal of waste materials are normally closed by welding one or more lids to the top of the canister. This paper describes the development of a conceptual design of a control architecture for a robotic system for welding lids on canisters in a remote welding cell. This work extended over several years and included development of control systems for three machines.

  10. Design of Knight LED system

    NASA Astrophysics Data System (ADS)

    Zheng, Wen; Lou, Yuna; Xiao, Zhihong

    2010-02-01

    This design introduces a used car on the design of LED decorative light strip. This LED named Knight LED. In This system we use ATMEGA8 as the Master MCU Chip. Through the microcontroller to implement the wireless remote control receiver and the LED lights of different modes of switching, different brightness control. Also we use ULN2803 as the LED driver.

  11. Designing modern furnace cooling systems

    NASA Astrophysics Data System (ADS)

    Merry, J.; Sarvinis, J.; Voermann, N.

    2000-02-01

    An integrated multidisciplinary approach to furnace design that considers the interdependence between furnace cooling elements and other furnace systems, such as binding, cooling water, and instrumentation, is necessary to achieve maximum furnace production and a long refractory life. The retrofit of the BHP Hartley electric furnace and the Kidd Creek copper converting furnace are successful examples of an integrated approach to furnace cooling design.

  12. Digital systems design language. Design synthesis of digital systems

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1979-01-01

    The Digital Systems Design Language (DDL) is implemented on the SEL-32 computer systems. The details of the language, translator and simulator programs are included. Several example descriptions and a tutorial on hardware description languages are provided, to guide the user.

  13. Thermal Characterization of Functionally Graded Materials: Design of Optimum Experiments

    NASA Technical Reports Server (NTRS)

    Cole, Kevin D.

    2003-01-01

    This paper is a study of optimal experiment design applied to the measure of thermal properties in functionally graded materials. As a first step, a material with linearly-varying thermal properties is analyzed, and several different tran- sient experimental designs are discussed. An optimality criterion, based on sen- sitivity coefficients, is used to identify the best experimental design. Simulated experimental results are analyzed to verify that the identified best experiment design has the smallest errors in the estimated parameters. This procedure is general and can be applied to design of experiments for a variety of materials.

  14. Designing thin film materials — Ternary borides from first principles

    PubMed Central

    Euchner, H.; Mayrhofer, P.H.

    2015-01-01

    Exploiting the mechanisms responsible for the exceptional properties of aluminum based nitride coatings, we apply ab initio calculations to develop a recipe for designing functional thin film materials based on ternary diborides. The combination of binary diborides, preferring different structure types, results in supersaturated metastable ternary systems with potential for phase transformation induced effects. For the exemplary cases of MxW1 − xB2 (with M = Al, Ti, V) we show by detailed ab initio calculations that the respective ternary solid solutions are likely to be experimentally accessible by modern depositions techniques. PMID:26082562

  15. Thermal Systems and Materials Testing

    NASA Technical Reports Server (NTRS)

    Aguirre, Nathan

    2010-01-01

    During my internship, I was involved in Boeing Thermal System/M&P, which handles maintenance and repairs of shuttle tiles, blankets, gap fillers, etc. One project I took part in was the revision of TPS-227, a repair process to tiles that entailed drilling out tile damage and using a cylindrical insert to fill the hole. The previous specification used minimal adhesive for application and when the adhesive cured, there would be several voids in the adhered material, causing an unsatisfactory bond. The testing compared several new methods and I analyzed the number of voids produced by each method to determine which one was most effective at eliminating void space. We revised the original process to apply a light adhesive coat to the top 25% of the borehole and a heavy coat to 100% of the insert. I was also responsible for maintaining the subnominal bond database, which records all unsatisfactory SIP (Strain Isolator Pad) bonds. I then archived each SIP physically for future referral data and statistics. In addition, I performed post-flight tile inspections for damages and wrote dispositions to have these tiles repaired. This also included writing a post-flight damage report for a section of Atlantis and creating summarized repair process guidelines for orbiter technicians.

  16. Micro-/nanostructured multicomponent molecular materials: design, assembly, and functionality.

    PubMed

    Yan, Dongpeng

    2015-03-23

    Molecule-based micro-/nanomaterials have attracted considerable attention because their properties can vary greatly from the corresponding macro-sized bulk systems. Recently, the construction of multicomponent molecular solids based on crystal engineering principles has emerged as a promising alternative way to develop micro-/nanomaterials. Unlike single-component materials, the resulting multicomponent systems offer the advantages of tunable composition, and adjustable molecular arrangement, and intermolecular interactions within their solid states. The study of these materials also supplies insight into how the crystal structure, molecular components, and micro-/nanoscale effects can influence the performance of molecular materials. In this review, we describe recent advances and current directions in the assembly and applications of crystalline multicomponent micro-/nanostructures. Firstly, the design strategies for multicomponent systems based on molecular recognition and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low-dimensional multicomponent micro-/nanostructures. Their new applications are also outlined. Finally, we briefly discuss perspectives for the further development of these molecular crystalline micro-/nanomaterials.

  17. Inline evenflow material distributor for pneumatic material feed systems

    DOEpatents

    Thiry, Michael J.

    2007-02-20

    An apparatus for reducing clogs in a pneumatic material feed line, such as employed in abrasive waterjet machining systems, by providing an evenflow feed of material therethrough. The apparatus preferably includes a hollow housing defining a housing volume and having an inlet capable of connecting to an upstream portion of the pneumatic material feed line, an outlet capable of connecting to a downstream portion of the pneumatic material feed line, and an air vent located between the inlet and outlet for venting excess air pressure out from the housing volume. A diverter, i.e. an impingement object, is located at the inlet and in a path of incoming material from the upstream portion of the pneumatic material feed line, to break up clumps of ambient moisture-ridden material impinging on the diverter. And one or more filter screens is also preferably located in the housing volume to further break up clumps and provide filtering.

  18. Optoelectronic inventory system for special nuclear material

    SciTech Connect

    Sieradzki, F.H.

    1994-01-01

    In support of the Department of Energy`s Dismantlement Program, the Optoelectronics Characterization and Sensor Development Department 2231 at Sandia National Laboratories/New Mexico has developed an in situ nonintrusive Optoelectronic Inventory System (OIS) that has the potential for application wherever periodic inventory of selected material is desired. Using a network of fiber-optic links, the OIS retrieves and stores inventory signatures from data storage devices (which are permanently attached to material storage containers) while inherently providing electromagnetic pulse immunity and electrical noise isolation. Photovoltaic cells (located within the storage facility) convert laser diode optic power from a laser driver to electrical energy. When powered and triggered, the data storage devices sequentially output their digital inventory signatures through light-emitting diode/photo diode data links for retrieval and storage in a mobile data acquisition system. An item`s exact location is determined through fiber-optic network and software design. The OIS provides an on-demand method for obtaining acceptable inventory reports while eliminating the need for human presence inside the material storage facility. By using modularization and prefabricated construction with mature technologies and components, an OIS installation with virtually unlimited capacity can be tailored to the customer`s requirements.

  19. Synthesis and Design of Silicide Intermetallic Materials

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Vaidya, R.U.; Park, Y.

    1999-05-14

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the US processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive US processing industries. The program presently has a number of industrial connections, including a CRADA with Johns Manville Corporation targeted at the area of MoSi{sub 2}-based high temperature materials for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. With the Exotherm Corporation, they are developing advanced silicide powders for the fabrication of silicide materials with tailored and improved properties for industrial applications. In October 1998, the authors initiated a new activity funded by DOE/OIT on ``Molybdenum Disilicide Composites for Glass Processing Sensors''. With Accutru International Corporation, they are developing silicide-based protective sheaths for self-verifying temperature sensors which may be used in glass furnaces and other industrial applications. With Combustion Technology Inc., they are developing silicide-based periscope sight tubes for the direct observation of glass melts.

  20. Multiscale modeling for materials design: Molecular square catalysts

    NASA Astrophysics Data System (ADS)

    Majumder, Debarshi

    In a wide variety of materials, including a number of heterogeneous catalysts, the properties manifested at the process scale are a consequence of phenomena that occur at different time and length scales. Recent experimental developments allow materials to be designed precisely at the nanometer scale. However, the optimum design of such materials requires capabilities to predict the properties at the process scale based on the phenomena occurring at the relevant scales. The thesis research reported here addresses this need to develop multiscale modeling strategies for the design of new materials. As a model system, a new system of materials called molecular squares was studied in this research. Both serial and parallel multiscale strategies and their components were developed as parts of this work. As a serial component, a parameter estimation tool was developed that uses a hierarchical protocol and consists of two different search elements: a global search method implemented using a genetic algorithm that is capable of exploring large parametric space, and a local search method using gradient search techniques that accurately finds the optimum in a localized space. As an essential component of parallel multiscale modeling, different standard as well as specialized computational fluid dynamics (CFD) techniques were explored and developed in order to identify a technique that is best suited to solve a membrane reactor model employing layered films of molecular squares as the heterogeneous catalyst. The coupled set of non-linear partial differential equations (PDEs) representing the continuum model was solved numerically using three different classes of methods: a split-step method using finite difference (FD); domain decomposition in two different forms, one involving three overlapping subdomains and the other involving a gap-tooth scheme; and the multiple-timestep method that was developed in this research. The parallel multiscale approach coupled continuum

  1. Reentry systems: Material technology needs

    NASA Technical Reports Server (NTRS)

    Ehret, Richard Michael

    1993-01-01

    The material technology needs are: (1) lightweight and durable rigid insulating and higher temperature flexible materials; and (2) inspection, repair, producibility, and maintainability of refractory composites. The direction of efforts are: (1) funding base is relatively small for future years; (2) to minimize returns, collaborative programs appear to be practical; and (3) SSD's approach is to implement NASA developed technology.

  2. Interfacial properties and design of functional energy materials.

    PubMed

    Sumpter, Bobby G; Liang, Liangbo; Nicolaï, Adrien; Meunier, Vincent

    2014-11-18

    CONSPECTUS: The vital importance of energy to society continues to demand a relentless pursuit of energy responsive materials that can bridge fundamental chemical structures at the molecular level and achieve improved functionality and performance. This demand can potentially be realized by harnessing the power of self-assembly, a spontaneous process where molecules or much larger entities form ordered aggregates as a consequence of predominately noncovalent (weak) interactions. Self-assembly is the key to bottom-up design of molecular devices, because the nearly atomic-level control is very difficult to realize in a top-down, for example, lithographic, approach. However, while function in simple systems such as single crystals can often be evaluated a priori, predicting the function of the great variety of self-assembled molecular architectures is complicated by the lack of understanding and control over nanoscale interactions, mesoscale architectures, and macroscale order. To establish a foundation toward delivering practical solutions, it is critical to develop an understanding of the chemical and physical mechanisms responsible for the self-assembly of molecular and hybrid materials on various support substrates. Typical molecular self-assembly involves noncovalent intermolecular and substrate-molecule interactions. These interactions remain poorly understood, due to the combination of many-body interactions compounded by local or collective influences from the substrate atomic lattice and electronic structure. Progress toward unraveling the underlying physicochemical processes that control the structure and macroscopic physical, chemical, mechanical, electrical, and transport properties of materials increasingly requires tight integration of theory, modeling, and simulation with precision synthesis, advanced experimental characterization, and device measurements. Theory, modeling, and simulation can accelerate the process of materials understanding and design

  3. Interfacial properties and design of functional energy materials.

    PubMed

    Sumpter, Bobby G; Liang, Liangbo; Nicolaï, Adrien; Meunier, Vincent

    2014-11-18

    CONSPECTUS: The vital importance of energy to society continues to demand a relentless pursuit of energy responsive materials that can bridge fundamental chemical structures at the molecular level and achieve improved functionality and performance. This demand can potentially be realized by harnessing the power of self-assembly, a spontaneous process where molecules or much larger entities form ordered aggregates as a consequence of predominately noncovalent (weak) interactions. Self-assembly is the key to bottom-up design of molecular devices, because the nearly atomic-level control is very difficult to realize in a top-down, for example, lithographic, approach. However, while function in simple systems such as single crystals can often be evaluated a priori, predicting the function of the great variety of self-assembled molecular architectures is complicated by the lack of understanding and control over nanoscale interactions, mesoscale architectures, and macroscale order. To establish a foundation toward delivering practical solutions, it is critical to develop an understanding of the chemical and physical mechanisms responsible for the self-assembly of molecular and hybrid materials on various support substrates. Typical molecular self-assembly involves noncovalent intermolecular and substrate-molecule interactions. These interactions remain poorly understood, due to the combination of many-body interactions compounded by local or collective influences from the substrate atomic lattice and electronic structure. Progress toward unraveling the underlying physicochemical processes that control the structure and macroscopic physical, chemical, mechanical, electrical, and transport properties of materials increasingly requires tight integration of theory, modeling, and simulation with precision synthesis, advanced experimental characterization, and device measurements. Theory, modeling, and simulation can accelerate the process of materials understanding and design

  4. 46 CFR 128.230 - Penetrations of hulls and watertight bulkheads-materials and pressure design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CONTINUED) OFFSHORE SUPPLY VESSELS MARINE ENGINEERING: EQUIPMENT AND SYSTEMS Materials and Pressure Design § 128.230 Penetrations of hulls and watertight bulkheads—materials and pressure design. (a) Each piping... 46 Shipping 4 2010-10-01 2010-10-01 false Penetrations of hulls and watertight...

  5. Material Development to Raise Awareness of Using Smart Boards: An Example Design and Development Research

    ERIC Educational Resources Information Center

    Günaydin, Serpil; Karamete, Aysen

    2016-01-01

    This study aims to develop training material that will help raise awareness in prospective teachers regarding the benefits of using smart boards in the classroom. In this study, a Type 2 design and development research method (DDR) was used. The material was developed by applying phases of ADDIE--an instructional systems design model. The…

  6. Evaluating Course Design Principles for Multimedia Learning Materials

    ERIC Educational Resources Information Center

    Scott, Bernard; Cong, Chunyu

    2010-01-01

    Purpose: This paper aims to report on evaluation studies of principles of course design for interactive multimedia learning materials. Design/methodology/approach: At the Defence Academy of the UK, Cranfield University has worked with military colleagues to produce multimedia learning materials for courses on "Military Knowledge". The courses are…

  7. Systems and methods for treating material

    DOEpatents

    Scheele, Randall D; McNamara, Bruce K

    2014-10-21

    Systems for treating material are provided that can include a vessel defining a volume, at least one conduit coupled to the vessel and in fluid communication with the vessel, material within the vessel, and NF.sub.3 material within the conduit. Methods for fluorinating material are provided that can include exposing the material to NF.sub.3 to fluorinate at least a portion of the material. Methods for separating components of material are also provided that can include exposing the material to NF.sub.3 to at least partially fluorinate a portion of the material, and separating at least one fluorinated component of the fluorinated portion from the material. The materials exposed to the NF.sub.3 material can include but are not limited to one or more of U, Ru, Rh, Mo, Tc, Np, Pu, Sb, Ag, Am, Sn, Zr, Cs, Th, and/or Rb.

  8. ATRP in the design of functional materials for biomedical applications

    PubMed Central

    Siegwart, Daniel J.; Oh, Jung Kwon; Matyjaszewski, Krzysztof

    2013-01-01

    Atom Transfer Radical Polymerization (ATRP) is an effective technique for the design and preparation of multifunctional, nanostructured materials for a variety of applications in biology and medicine. ATRP enables precise control over macromolecular structure, order, and functionality, which are important considerations for emerging biomedical designs. This article reviews recent advances in the preparation of polymer-based nanomaterials using ATRP, including polymer bioconjugates, block copolymer-based drug delivery systems, cross-linked microgels/nanogels, diagnostic and imaging platforms, tissue engineering hydrogels, and degradable polymers. It is envisioned that precise engineering at the molecular level will translate to tailored macroscopic physical properties, thus enabling control of the key elements for realized biomedical applications. PMID:23525884

  9. Designed porosity materials in nuclear reactor components

    DOEpatents

    Yacout, A. M.; Pellin, Michael J.; Stan, Marius

    2016-09-06

    A nuclear fuel pellet with a porous substrate, such as a carbon or tungsten aerogel, on which at least one layer of a fuel containing material is deposited via atomic layer deposition, and wherein the layer deposition is controlled to prevent agglomeration of defects. Further, a method of fabricating a nuclear fuel pellet, wherein the method features the steps of selecting a porous substrate, depositing at least one layer of a fuel containing material, and terminating the deposition when the desired porosity is achieved. Also provided is a nuclear reactor fuel cladding made of a porous substrate, such as silicon carbide aerogel or silicon carbide cloth, upon which layers of silicon carbide are deposited.

  10. Designing Training Materials for Developing Countries.

    ERIC Educational Resources Information Center

    Rosenweig, Fred

    1984-01-01

    Describes four training guides developed by the Water and Sanitation for Health Project for use in rural water supply and sanitation projects in developing countries, explains the development process, offers insights gained from the process, and presents five considerations for designing training in third world countries. (MBR)

  11. Designing and modeling doubly porous polymeric materials

    NASA Astrophysics Data System (ADS)

    Ly, H.-B.; Le Droumaguet, B.; Monchiet, V.; Grande, D.

    2015-07-01

    Doubly porous organic materials based on poly(2-hydroxyethyl methacrylate) are synthetized through the use of two distinct types of porogen templates, namely a macroporogen and a nanoporogen. Two complementary strategies are implemented by using either sodium chloride particles or fused poly(methyl methacrylate) beads as macroporogens, in conjunction with ethanol as a porogenic solvent. The porogen removal respectively allows for the generation of either non-interconnected or interconnected macropores with an average diameter of about 100-200 μm and nanopores with sizes lying within the 100 nm order of magnitude, as evidenced by mercury intrusion porosimetry and scanning electron microscopy. Nitrogen sorption measurements evidence the formation of materials with rather high specific surface areas, i.e. higher than 140 m2.g-1. This paper also addresses the development of numerical tools for computing the permeability of such doubly porous materials. Due to the coexistence of well separated scales between nanopores and macropores, a consecutive double homogenization approach is proposed. A nanoscopic scale and a mesoscopic scale are introduced, and the flow is evaluated by means of the Finite Element Method to determine the macroscopic permeability. At the nanoscopic scale, the flow is described by the Stokes equations with an adherence condition at the solid surface. At the mesoscopic scale, the flow obeys the Stokes equations in the macropores and the Darcy equation in the permeable polymer in order to account for the presence of the nanopores.

  12. Harvesting bioenergy with rationally designed complex functional materials

    NASA Astrophysics Data System (ADS)

    Kuang, Liangju

    A key challenge in renewable energy is to capture, convert and store solar power with earth-abundant materials and environmentally benign technologies. The goal of this thesis is to develop rationally designed complex functional materials for bio-renewable energy applications. On one hand, photoconversion membrane proteins (MPs) are nature's nanoengineering feats for renewable energy management. Harnessing their functions in synthetic systems could help understand, predict, and ultimately control matter and energy at the nanoscale. This is particularly enticing in the post-genome era as recombinant or cell-free expression of many MPs with high yields becomes possible. However, the labile nature of lipid bilayers renders them unsuitable for use in a broad range of engineered systems. A knowledge gap exists about how to design robust synthetic nanomembranes as lipid-bilayer-mimics to support MP functions and how to direct hierarchical MP reconstitution into those membranes to form 2-D or 3-D ordered proteomembrane arrays. Our studies on proteorhodopsin (PR) and bacterial reaction center (BRC), the two light-harvesting MPs, reveal that a charge-interaction-directed reconstitution (CIDR) mechanism induces spontaneous reconstitution of detergent-solubilized MPs into various amphiphilic block copolymer membranes, many of which have far superior stability than lipid bilayers. Our preliminary data also suggest MPs are not enslaved by the biological membranes they derive from; rather, the chemically nonspecific material properties of MP-supporting membranes may act as allosteric regulators. Versatile chemical designs are possible to modulate the conformational energetics of MPs, hence their transport performance in synthetic systems. On the other hand, microalgae are widely regarded as a sustainable feedstock for biofuel production. Microalgae-derived biofuels have not been commercialized yet because current technologies for microalgae dewatering add a huge cost to the

  13. Concurrent materials and process selection in conceptual design

    SciTech Connect

    Kleban, S.D.

    1998-07-01

    The sequential manner in which materials and processes for a manufactured product are selected is inherently less than optimal. Designers` tendency to choose processes and materials with which they are familiar exacerbate this problem. A method for concurrent selection of materials and a joining process based on product requirements using a knowledge-based, constraint satisfaction approach is presented.

  14. Design guide for high pressure oxygen systems

    NASA Technical Reports Server (NTRS)

    Bond, A. C.; Pohl, H. O.; Chaffee, N. H.; Guy, W. W.; Allton, C. S.; Johnston, R. L.; Castner, W. L.; Stradling, J. S.

    1983-01-01

    A repository for critical and important detailed design data and information, hitherto unpublished, along with significant data on oxygen reactivity phenomena with metallic and nonmetallic materials in moderate to very high pressure environments is documented. This data and information provide a ready and easy to use reference for the guidance of designers of propulsion, power, and life support systems for use in space flight. The document is also applicable to designs for industrial and civilian uses of high pressure oxygen systems. The information presented herein are derived from data and design practices involving oxygen usage at pressures ranging from about 20 psia to 8000 psia equal with thermal conditions ranging from room temperatures up to 500 F.

  15. Materials of construction for advanced coal conversion systems

    SciTech Connect

    Nangia, V.K.

    1982-01-01

    This book describes materials of construction, and materials problems for equipment used in advanced coal conversion systems. The need for cost effective industrial operation is always a prime concern, particularly in this age of energy consciousness. Industry is continually seeking improved materials for more efficient systems. The information presented here is intended to be of use in the design and planning of these systems. Coal conversion and utilization impose severe demands on construction materials because of high temperature, high pressure, corrosive/erosive, and other hostile environmental factors. Successful economic development of these processes can be achieved only to the extent that working materials can withstand increasingly more aggressive operating conditions. The book, which reviews present and past work on the behavior of materials in the environments of advanced coal conversion systems, is divided into three parts: atmospheric fluidized bed combustion, coal gasification and liquefaction, and advanced power systems.

  16. Testing and design life analysis of polyurea liner materials

    NASA Astrophysics Data System (ADS)

    Ghasemi Motlagh, Siavash

    Certainly, water pipes, as part of an underground infrastructure system, play a key role in maintaining quality of life, health, and wellbeing of human kind. As these potable water pipes reach the end of their useful life, they create high maintenance costs, loss of flow capacity, decreased water quality, and increased dissatisfaction. There are several different pipeline renewal techniques available for different applications, among which linings are most commonly used for the renewal of water pipes. Polyurea is a lining material applied to the interior surface of the deteriorated host pipe using spray-on technique. It is applied to structurally enhance the host pipe and provide a barrier coating against further corrosion or deterioration. The purpose of this study was to establish a relationship between stress, strain and time. The results obtained from these tests were used in predicting the strength of the polyurea material during its planned 50-year design life. In addition to this, based on the 10,000 hours experimental data, curve fitting and Findley power law models were employed to predict long-term behavior of the material. Experimental results indicated that the tested polyurea material offers a good balance of strength and stiffness and can be utilized in structural enhancement applications of potable water pipes.

  17. 7 CFR 1717.605 - Design standards, plans and specifications, construction standards, and RUS accepted materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., construction standards, and RUS accepted materials. 1717.605 Section 1717.605 Agriculture Regulations of the... standards, plans and specifications, construction standards, and RUS accepted materials. All borrowers... system design, construction standards, and the use of RUS accepted materials. Borrowers must comply...

  18. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    SciTech Connect

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  19. Tritium glovebox stripper system seismic design evaluation

    SciTech Connect

    Grinnell, J. J.; Klein, J. E.

    2015-09-01

    The use of glovebox confinement at US Department of Energy (DOE) tritium facilities has been discussed in numerous publications. Glovebox confinement protects the workers from radioactive material (especially tritium oxide), provides an inert atmosphere for prevention of flammable gas mixtures and deflagrations, and allows recovery of tritium released from the process into the glovebox when a glovebox stripper system (GBSS) is part of the design. Tritium recovery from the glovebox atmosphere reduces emissions from the facility and the radiological dose to the public. Location of US DOE defense programs facilities away from public boundaries also aids in reducing radiological doses to the public. This is a study based upon design concepts to identify issues and considerations for design of a Seismic GBSS. Safety requirements and analysis should be considered preliminary. Safety requirements for design of GBSS should be developed and finalized as a part of the final design process.

  20. System 80+{trademark} standard design: CESSAR design certification. Volume 13: Amendment I

    SciTech Connect

    Not Available

    1990-08-31

    This report, entitled Combustion Engineering Standard Safety Analysis Report--Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These documents describe the Combustion Engineering, Inc. System 80+{trademark} Standard Design. This report, Volume 13, documents increase and decrease of reactor cooling system inventory and radioactive material release from a subsystem or component.

  1. Armor systems including coated core materials

    DOEpatents

    Chu, Henry S.; Lillo, Thomas M.; McHugh, Kevin M.

    2012-07-31

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  2. Armor systems including coated core materials

    DOEpatents

    Chu, Henry S; Lillo, Thomas M; McHugh, Kevin M

    2013-10-08

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  3. Flight Design System-1 System Design Document. Volume 9: Executive logic flow, program design language

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The detailed logic flow for the Flight Design System Executive is presented. The system is designed to provide the hardware/software capability required for operational support of shuttle flight planning.

  4. New design strategy for realizing multiferroic materials

    NASA Astrophysics Data System (ADS)

    Puggioni, Danilo; Giovannetti, Gianluca; Capone, Massimo; Rondinelli, James

    Ferroelectricity is a property that only insulating materials can exhibit. For this reason, nearly all searches for new multiferroic compounds, those simultaneously exhibiting ferroelectric and magnetic order, have focused on insulating magnetic oxides. Here, we propose a different approach: Start from a conducting oxide with broken inversion symmetry and search for routes to induce long-range magnetic order. Using density-functional and dynamical mean-field theories, we investigate the electronic properties of the polar metallic oxide LiOsO3. We show that a multiferroic state can be engineered by enclosing LiOsO3 between an insulating material, LiNbO3. We predict that the 1/1 superlattice of LiOsO3 and LiNbO3 exhibits strong coupling between magnetic and ferroelectric degrees of freedom with a ferroelectric polarization of 41.2 μCcm-2, Curie temperature of 927 K, and Néel temperature of 379 K. Our results show that one can start with polar metallic oxides to make multiferroics.

  5. Material Compatibility with Space Storable Propellants. Design Guidebook

    NASA Technical Reports Server (NTRS)

    Uney, P. E.; Fester, D. A.

    1972-01-01

    An important consideration in the design of spacecraft for interplanetary missions is the compatibility of storage materials with the propellants. Serious problems can arise because many propellants are either extremely reactive or subject to catalytic decomposition, making the selection of proper materials of construction for propellant containment and control a critical requirement for the long-life applications. To aid in selecting materials and designing and evaluating various propulsion subsystems, available information on the compatibility of spacecraft materials with propellants of interest was compiled from literature searches and personal contacts. The compatibility of both metals and nonmetals with hydrazine, monomethyl hydrazine, nitrated hydrazine, and diborance fuels and nitrogen tetroxide, fluorine, oxygen difluoride, and Flox oxidizers was surveyed. These fuels and oxidizers encompass the wide variety of problems encountered in propellant storage. As such, they present worst case situations of the propellant affecting the material and the material affecting the propellant. This includes material attack, propellant decomposition, and the formation of clogging materials.

  6. Designing Educative Curriculum Materials: A Theoretically and Empirically Driven Process

    ERIC Educational Resources Information Center

    Davis, Elizabeth A.; Palincsar, Annemarie Sullivan; Arias, Anna Maria; Bismack, Amber Schultz; Marulis, Loren M.; Iwashyna, Stefanie K.

    2014-01-01

    In this article, the authors argue for a design process in the development of educative curriculum materials that is theoretically and empirically driven. Using a design-based research approach, they describe their design process for incorporating educative features intended to promote teacher learning into existing, high-quality curriculum…

  7. Cultivating Design Thinking in Students through Material Inquiry

    ERIC Educational Resources Information Center

    Renard, Helene

    2014-01-01

    Design thinking is a way of understanding and engaging with the world that has received much attention in academic and business circles in recent years. This article examines a hands-on learning model as a vehicle for developing design thinking capacity in students. An overview of design thinking grounds the discussion of the material-based…

  8. Computer-aided system design

    NASA Technical Reports Server (NTRS)

    Walker, Carrie K.

    1991-01-01

    A technique has been developed for combining features of a systems architecture design and assessment tool and a software development tool. This technique reduces simulation development time and expands simulation detail. The Architecture Design and Assessment System (ADAS), developed at the Research Triangle Institute, is a set of computer-assisted engineering tools for the design and analysis of computer systems. The ADAS system is based on directed graph concepts and supports the synthesis and analysis of software algorithms mapped to candidate hardware implementations. Greater simulation detail is provided by the ADAS functional simulator. With the functional simulator, programs written in either Ada or C can be used to provide a detailed description of graph nodes. A Computer-Aided Software Engineering tool developed at the Charles Stark Draper Laboratory (CSDL CASE) automatically generates Ada or C code from engineering block diagram specifications designed with an interactive graphical interface. A technique to use the tools together has been developed, which further automates the design process.

  9. Cross Cutting Structural Design for Exploration Systems

    NASA Technical Reports Server (NTRS)

    Semmes, Edmund B.

    2007-01-01

    The challenge of our new National Space Policy and NASA's Vision for Space Exploration (VSE) is keyed to the development of more effective space access and transportation systems. Optimizing in-space systems through innovative cross cutting structural designs that reduce mass, combine functional requirements and improve performance can significantly advance spacecraft designs to meet the ever growing demands of our new National Space Policy. Dependence on limited structural designs is no longer an option. We must create robust materials, forms, function and evolvable systems. We must advance national policy objectives in the design, development, test and operation of multi-billion dollar new generation crew capsules by enabling them to evolve in meeting the requirements of long duration missions to the moon and mars. This paper discusses several current issues and major design drivers for consideration in structural design of advanced spacecraft systems. Approaches to addressing these multifunctional requirements is presented as well as a discussion on utilizing Functional Analysis System Technique (FAST) in developing cross cutting structural designs for future spacecraft. It will be shown how easy it is to deploy such techniques in any conceptual architecture definition or ongoing preliminary design. As experts in merging mission, safety and life support requirements of the frail human existence into robust vehicle and habitat design, we will conquer the final frontier, harness new resources and develop life giving technologies for mankind through more innovative designs. The rocket equation tells us that a reduction in mass optimizes our propulsive results. Primary and secondary structural elements provide for the containment of gases, fluids and solids; translate and sustain loads/impacts; conduct/radiate thermal energy; shield from the harmful effects of radiation; provide for grounding/bonding of electrical power systems; compartmentalize operational

  10. Nondestructive evaluation of composite materials - A design philosophy

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.; Reifsnider, K. L.

    1984-01-01

    Efficient and reliable structural design utilizing fiber reinforced composite materials may only be accomplished if the materials used may be nondestructively evaluated. There are two major reasons for this requirement: (1) composite materials are formed at the time the structure is fabricated and (2) at practical strain levels damage, changes in the condition of the material, that influence the structure's mechanical performance is present. The fundamental basis of such a nondestructive evaluation capability is presented. A discussion of means of assessing nondestructively the material condition as well as a damage mechanics theory that interprets the material condition in terms of its influence on the mechanical response, stiffness, strength and life is provided.

  11. Characterization of elastomeric materials with application to design

    NASA Technical Reports Server (NTRS)

    Bower, Mark V.

    1986-01-01

    Redesign of the Space Shuttle Solid Booster has necessitated re-evaluation of the material used in the field joint O-ring seals. The viscoelastic characteristics of five candidate materials were determined. The five materials are: two fluorocarbon compounds, two nitrile compounds, and a silicon compound. The materials were tested in a uniaxial compression test to determine the characteristic relaxation functions. These tests were performed at five different temperatures. A master material curve was developed for each material from the experimental data. The results are compared to tensile relaxation tests. Application of these results to the design analysis is discussed in detail.

  12. Parachute system design, analysis, and simulation tool

    SciTech Connect

    Sundberg, W.D.; McBride, D.D.; Gwinn, K.W.; Waye, D.E.; Hailey, C.E.

    1992-01-01

    For over twenty years designers at Sandia National Laboratories have developed various parachute simulation codes to model deployment, inflation, loading, trajectories, aircraft downwash and line sail. In addition to these codes, material property data bases have been acquired. Recently we have initiated project to integrate these codes and data bases into a single software tool entitled SPARSYS (Sandia PARachute SYstem Simulation). We have constructed a graphical user interface as the driver and framework for SPARSYS. In this paper we present a status report on SPARSYS describing progress in developing and incorporating independent modules, in developing an integrated trajectory package, and in developing a materials data base including high-rate-of-strain data.

  13. Design with brittle materials - An interdisciplinary educational program

    NASA Technical Reports Server (NTRS)

    Mueller, J. I.; Bollard, R. J. H.; Hartz, B. J.; Kobayashi, A. S.; Love, W. J.; Scott, W. D.; Taggart, R.; Whittemore, O. J.

    1980-01-01

    A series of interdisciplinary design courses being offered to senior and graduate engineering students at the University of Washington is described. Attention is given to the concepts and some of the details on group design projects that have been undertaken during the past two years. It is noted that ceramic materials normally demonstrate a large scatter in strength properties. As a consequence, when designing with these materials, the conventional 'mil standards' design stresses with acceptable margins of safety cannot by employed and the designer is forced to accept a probable number of failures in structures of a given brittle material. It is this prediction of the probability of failure for structures of given, well-characterized materials that forms the basis for this series of courses.

  14. Blindness in designing intelligent systems

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1988-01-01

    New investigations of the foundations of artificial intelligence are challenging the hypothesis that problem solving is the cornerstone of intelligence. New distinctions among three domains of concern for humans--description, action, and commitment--have revealed that the design process for programmable machines, such as expert systems, is based on descriptions of actions and induces blindness to nonanalytic action and commitment. Design processes focusing in the domain of description are likely to yield programs like burearcracies: rigid, obtuse, impersonal, and unable to adapt to changing circumstances. Systems that learn from their past actions, and systems that organize information for interpretation by human experts, are more likely to be successful in areas where expert systems have failed.

  15. Center for Intelligent Fuel Cell Materials Design

    SciTech Connect

    Santurri, P.R.,; Hartmann-Thompson, C.; Keinath, S.E.

    2008-08-26

    The goal of this work was to develop a composite proton exchange membrane utilizing 1) readily available, low cost materials 2) readily modified and 3) easily processed to meet the chemical, mechanical and electrical requirements of high temperature PEM fuel cells. One of the primary goals was to produce a conducting polymer that met the criteria for strength, binding capability for additives, chemical stability, dimensional stability and good conductivity. In addition compatible, specialty nanoparticles were synthesized to provide water management and enhanced conductivity. The combination of these components in a multilayered, composite PEM has demonstrated improved conductivity at high temperatures and low humidity over commercially available polymers. The research reported in this final document has greatly increased the knowledge base related to post sulfonation of chemically and mechanically stable engineered polymers (Radel). Both electrical and strength factors for the degree of post sulfonation far exceed previous data, indicating the potential use of these materials in suitable proton exchange membrane architectures for the development of fuel cells. In addition compatible, hydrophilic, conductive nano-structures have been synthesized and incorporated into unique proton exchange membrane architectures. The use of post sulfonation for the engineered polymer and nano-particle provide cost effective techniques to produce the required components of a proton exchange membrane. The development of a multilayer proton exchange membrane as described in our work has produced a highly stable membrane at 170°C with conductivities exceeding commercially available proton exchange membranes at high temperatures and low humidity. The components and architecture of the proton exchange membrane discussed will provide low cost components for the portable market and potentially the transportation market. The development of unique components and membrane architecture

  16. Composite materials for rail transit systems

    NASA Technical Reports Server (NTRS)

    Griffin, O. Hayden, Jr.; Guerdal, Zafer; Herakovich, Carl T.

    1987-01-01

    The potential is explored for using composite materials in urban mass transit systems. The emphasis was to identify specific advantages of composite materials in order to determine their actual and potential usage for carbody and guideway structure applications. The literature was reviewed, contacts were made with major domestic system operators, designers, and builders, and an analysis was made of potential composite application to railcar construction. Composites were found to be in use throughout the transit industry, usually in secondary or auxiliary applications such as car interior and nonstructural exterior panels. More recently, considerable activity has been initiated in the area of using composites in the load bearing elements of civil engineering structures such as highway bridges. It is believed that new and improved manufacturing refinements in pultrusion and filament winding will permit the production of beam sections which can be used in guideway structures. The inherent corrosion resistance and low maintenance characteristics of composites should result in lowered maintenance costs over a prolonged life of the structure.

  17. Nano-architecture and material designs for water splitting photoelectrodes.

    PubMed

    Chen, Hao Ming; Chen, Chih Kai; Liu, Ru-Shi; Zhang, Lei; Zhang, Jiujun; Wilkinson, David P

    2012-09-01

    This review concerns the efficient conversion of sunlight into chemical fuels through the photoelectrochemical splitting of water, which has the potential to generate sustainable hydrogen fuel. In this review, we discuss various photoelectrode materials and relative design strategies with their associated fabrication for solar water splitting. Factors affecting photoelectrochemical performance of these materials and designs are also described. The most recent progress in the research and development of new materials as well as their corresponding photoelectrodes is also summarized in this review. Finally, the research strategies and future directions for water splitting are discussed with recommendations to facilitate the further exploration of new photoelectrode materials and their associated technologies.

  18. Materials technology assessment for a 1050 K Stirling Space Engine design

    SciTech Connect

    Scheuermann, C.M.; Dreshfield, R.L.; Gaydosh, D.J.; Kiser, J.D.; MacKay, R.A.; McDanels, D.L.; Petrasek, D.W.; Vannucci, R.D.; Bowles, K.J.; Watson, G.K.

    1988-10-01

    An assessment of materials technology and proposed materials selection was made for the 1050 K (superalloy) Stirling Space Engine design. The objectives of this assessment were to evaluate previously proposed materials selections, evaluate the current state-of-the-art materials, propose potential alternate materials selections and identify research and development efforts needed to provide materials that can meet the stringent system requirements. This assessment generally reaffirmed the choices made by the contractor; however, in many cases alternative choices were described and suggestions for needed materials and fabrication research and development were made.

  19. Materials technology assessment for a 1050 K Stirling space engine design

    NASA Technical Reports Server (NTRS)

    Scheuermann, Coulson M.; Dreshfield, Robert L.; Gaydosh, Darrell J.; Kiser, James D.; Mackay, Rebecca A.; Mcdaniels, David L.; Petrasek, Donald W.; Vannucci, Raymond D.; Bowles, Kenneth J.; Watson, Gordon K.

    1988-01-01

    An assessment of materials technology and proposed materials selection was made for the 1050 K (superalloy) Stirling Space Engine design. The objectives of this assessment were to evaluate previously proposed materials selections, evaluate the current state-of-the-art materials, propose potential alternate materials selections and identify research and development efforts needed to provide materials that can meet the stringent system requirements. This assessment generally reaffirmed the choices made by the contractor. However, in many cases alternative choices were described and suggestions for needed materials and fabrication research and development were made.

  20. Orbital Maneuvering system design evolution

    NASA Technical Reports Server (NTRS)

    Gibson, C.; Humphries, C.

    1985-01-01

    Preliminary design considerations and changes made in the baseline space shuttle orbital maneuvering system (OMS) to reduce cost and weight are detailed. The definition of initial subsystem requirements, trade studies, and design approaches are considered. Design features of the engine, its injector, combustion chamber, nozzle extension and bipropellant valve are illustrated and discussed. The current OMS consists of two identical pods that use nitrogen tetroxide (NTO) and monomethylhydrazine (MMH) propellants to provide 1000 ft/sec of delta velocity for a payload of 65,000 pounds. Major systems are pressurant gas storage and control, propellant storage supply and quantity measurement, and the rocket engine, which includes a bipropellant valve, an injector/thrust chamber, and a nozzle. The subsystem provides orbit insertion, circularization, and on orbit and deorbit capability for the shuttle orbiter.

  1. Cockpit control system conceptual design

    NASA Technical Reports Server (NTRS)

    Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo

    1993-01-01

    The purpose of this project was to provide a means for operating the ailerons, elevator, elevator trim, rudder, nosewheel steering, and brakes in the Triton primary flight trainer. The main design goals under consideration were to illustrate system and subsystem integration, control function ability, and producibility. Weight and maintenance goals were addressed.

  2. Computational Materials: Modeling and Simulation of Nanostructured Materials and Systems

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Hinkley, Jeffrey A.

    2003-01-01

    The paper provides details on the structure and implementation of the Computational Materials program at the NASA Langley Research Center. Examples are given that illustrate the suggested approaches to predicting the behavior and influencing the design of nanostructured materials such as high-performance polymers, composites, and nanotube-reinforced polymers. Primary simulation and measurement methods applicable to multi-scale modeling are outlined. Key challenges including verification and validation of models are highlighted and discussed within the context of NASA's broad mission objectives.

  3. Space Shuttle Orbiter thermal protection system design and flight experience

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.

    1993-01-01

    The Space Shuttle Orbiter Thermal Protection System materials, design approaches associated with each material, and the operational performance experienced during fifty-five successful flights are described. The flights to date indicate that the thermal and structural design requirements were met and that the overall performance was outstanding.

  4. Material Instabilities in Particulate Systems

    NASA Technical Reports Server (NTRS)

    Goddard, J. D.

    1999-01-01

    Following is a brief summary of a theoretical investigation of material (or constitutive) instability associated with shear induced particle migration in dense particulate suspensions or granular media. It is shown that one can obtain a fairly general linear-stability analysis, including the effects of shear-induced anisotropy in the base flow as well as Reynolds dilatancy. A criterion is presented here for simple shearing instability in the absence of inertia and dilatancy.

  5. Material permeance measurement system and method

    DOEpatents

    Hallman, Jr., Russell Louis; Renner, Michael John

    2012-05-08

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  6. Design of meta-materials with novel thermoelastic properties

    NASA Astrophysics Data System (ADS)

    Watts, Seth

    The development of new techniques in micro-manufacturing in recent years has enabled the fabrication of material microstructures with essentially arbitrary designs, including those with multiple constituent materials and void space in nearly any geometry. With an essentially open design space, the onus is now on the engineer to design composite materials which are optimal for their purpose. These new materials, called meta-materials or materials with architected microstructures, offer the potential to mix and match properties in a way that exceeds that of traditional composites. We concentrate on the thermal and elastic properties of isotropic meta-materials, and design microstructures with combinations of Young's modulus, Poisson's ratio, thermal conductivity, thermal expansion, and mass density which are not found among naturally-occurring or traditional composite materials. We also produce designs with thermal expansion far below other materials. We use homogenization theory to predict the material properties of a bulk meta-material comprised of a periodic lattice of unit cells, then use topology optimization to rearrange two constituent materials and void space within the unit cell in order to extremize an objective function which yields the combinations of properties we seek. This method is quite general and can be extended to consider additional properties of interest. We constrain the design space to satisfy material isotropy directly (2D), or to satisfy cubic symmetry (3D), from which point an isotropy constraint function is easily applied. We develop and use filtering, nonlinear interpolation, and thresholding methods to render the design problem well-posed, and as a result ensure our designs are manufacturable. We have written two computer implementations of this design methodology. The first is for creating two-dimensional designs, which can run on a serial computer in approximately half an hour. The second is a parallel implementation to allow

  7. Integrated Aeropropulsion Control System Design

    NASA Technical Reports Server (NTRS)

    Lin, C. -F.; Hurley, Francis X.; Huang, Jie; Hadaegh, F. Y.

    1996-01-01

    %T Integrated Aeropropulsion Control System Design%A C-F. Lin%A Francis X. Hurley%A Jie Huang%A F. Y. Hadaegh%J International Conference on Control and Information(psi)995%C Hong Kong%D June 1995%K aeropropulsion, control, system%U http://jpltrs.jpl.nasa.gov/1995/95-0658.pdfAn integrated intelligent control approach is proposed to design a high performance control system for aeropropulsion systems based on advanced sensor processing, nonlinear control and neural fuzzy control integration. Our approach features the following innovations:??e complexity and uncertainty issues are addressed via the distributed parallel processing, learning, and online reoptimization properties of neural networks.??e nonlinear dynamics and the severe coupling can be naturally incorporated into the design framework.??e knowledge base and decision making logic furnished by fuzzy systems leads to a human intelligence enhanced control scheme.In addition, fault tolerance, health monitoring and reconfigurable control strategies will be accommodated by this approach to ensure stability, graceful degradation and reoptimization in the case of failures, malfunctions and damage.!.

  8. A sensor-based automation system for handling nuclear materials

    SciTech Connect

    Drotning, W.; Kimberly, H.; Wapman, W.; Darras, D.

    1997-03-01

    An automated system is being developed for handling large payloads of radioactive nuclear materials in an analytical laboratory. The automation system performs unpacking and repacking of payloads from shipping and storage containers, and delivery of the payloads to the stations in the laboratory. The system uses machine vision and force/torque sensing to provide sensor-based control of the automation system in order to enhance system safety, flexibility, and robustness, and achieve easy remote operation. The automation system also controls the operation of the laboratory measurement systems and the coordination of them with the robotic system. Particular attention has been given to system design features and analytical methods that provide an enhanced level of operational safety. Independent mechanical gripper interlock and tool release mechanisms were designed to prevent payload mishandling. An extensive Failure Modes and Effects Analysis of the automation system was developed as a safety design analysis tool.

  9. Designing high-performance layered thermoelectric materials through orbital engineering

    PubMed Central

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.; Fischer, Karl F. F.; Zhang, Wenqing; Shi, Xun; Iversen, Bo B.

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials. PMID:26948043

  10. Designing high-performance layered thermoelectric materials through orbital engineering.

    PubMed

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K H; Fischer, Karl F F; Zhang, Wenqing; Shi, Xun; Iversen, Bo B

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials. PMID:26948043

  11. Designing high-performance layered thermoelectric materials through orbital engineering

    NASA Astrophysics Data System (ADS)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.; Fischer, Karl F. F.; Zhang, Wenqing; Shi, Xun; Iversen, Bo B.

    2016-03-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials.

  12. Designing high-performance layered thermoelectric materials through orbital engineering.

    PubMed

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K H; Fischer, Karl F F; Zhang, Wenqing; Shi, Xun; Iversen, Bo B

    2016-03-07

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials.

  13. Automating software design system DESTA

    NASA Technical Reports Server (NTRS)

    Lovitsky, Vladimir A.; Pearce, Patricia D.

    1992-01-01

    'DESTA' is the acronym for the Dialogue Evolutionary Synthesizer of Turnkey Algorithms by means of a natural language (Russian or English) functional specification of algorithms or software being developed. DESTA represents the computer-aided and/or automatic artificial intelligence 'forgiving' system which provides users with software tools support for algorithm and/or structured program development. The DESTA system is intended to provide support for the higher levels and earlier stages of engineering design of software in contrast to conventional Computer Aided Design (CAD) systems which provide low level tools for use at a stage when the major planning and structuring decisions have already been taken. DESTA is a knowledge-intensive system. The main features of the knowledge are procedures, functions, modules, operating system commands, batch files, their natural language specifications, and their interlinks. The specific domain for the DESTA system is a high level programming language like Turbo Pascal 6.0. The DESTA system is operational and runs on an IBM PC computer.

  14. Evaluation of materials and design modifications for aircraft brakes

    NASA Technical Reports Server (NTRS)

    Ho, T. L.; Kennedy, F. E.; Peterson, M. B.

    1975-01-01

    A test program is described which was carried out to evaluate several proposed design modifications and several high-temperature friction materials for use in aircraft disk brakes. The evaluation program was carried out on a specially built test apparatus utilizing a disk brake and wheel half from a small het aircraft. The apparatus enabled control of brake pressure, velocity, and braking time. Tests were run under both constant and variable velocity conditions and covered a kinetic energy range similar to that encountered in aircraft brake service. The results of the design evaluation program showed that some improvement in brake performance can be realized by making design changes in the components of the brake containing friction material. The materials evaluation showed that two friction materials show potential for use in aircraft disk brakes. One of the materials is a nickel-based sintered composite, while the other is a molybdenum-based material. Both materials show much lower wear rates than conventional copper-based materials and are better able to withstand the high temperatures encountered during braking. Additional materials improvement is necessary since both materials show a significant negative slope of the friction-velocity curve at low velocities.

  15. The influence of material and design on total knee replacement wear.

    PubMed

    Essner, Aaron; Herrera, Lizeth; Hughes, Phillip; Kester, Mark

    2011-03-01

    It is difficult for surgeons to make the decision on which design or material to use given the different options available. Marketing claims and direct-to-consumer advertising certainly complicate this further. One company may claim a higher percentage of wear reduction with their bearing surfaces compared with those of another manufacturer. If the percentage of wear reduction is lower, it is unclear as to whether this creates a more effective technology for reducing wear in the clinical situation. The relative contribution and relationship of design and materials to wear performance must be considered before making that important judgment. To examine the overall influence of implant design on wear reduction, a knee simulator study was undertaken. This simulator study compared the Oxinium Genesis II system with the Triathlon Conventional and Triathlon X3 knee systems under physiologic stair-climb loading and motion profiles. This allows a similar comparison of material effect within one design but also a global comparison across designs. Test results show the Triathlon Conventional and Triathlon X3 knee systems have superior wear resistance compared with that of the Genesis II Oxinium system under stair-climbing simulation. This finding indicates that implant design plays a more significant role in knee wear reduction than material. Although material technology may improve a given knee system's ability to wear, design geometry has a first-order effect and should be addressed before materials. This study represents an effort to differentiate design effect from two different approaches to material enhancement. The results of this study support the predominance of design in knee replacement wear performance. Ultimately, only clinical evidence such as published studies or outcomes reported in the available joint registries will establish whether any material or design can achieve a 30-year outcome. PMID:21618933

  16. Materials Design for Joinable, High Performance Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Glamm, Ryan James

    An aluminum alloy compatible with friction stir welding is designed for automotive and aerospace structural applications. Current weldable automotive aluminum alloys do not possess the necessary strength to meet safety standards and therefore are not able to replace steel in the automotive body. Significant weight savings could be achieved if steel components are replaced with aluminum. Current aerospace alloys are not weldable, requiring machining of large pieces that are then riveted together. If an aerospace alloy could be friction stir welded, smaller pieces could be welded, reducing material waste. Using a systems approach for materials design, property goals are set from performance objectives. From previous research and computational predictions, a structure is designed for a prototype alloy containing dynamic precipitates to readily dissolve and re-precipitate and high stability precipitates to resist dissolution and coarsening in the weld region. It is found that a Ag modified Al-3.9Mg-0.04Cu (at. %) alloy enhanced the rate and magnitude of hardening during ageing, both beneficial effects for dynamic precipitation. In the same alloy, ageing at 350°C results in hardening from Al 3(Sc,Zr) precipitates. Efforts to effectively precipitate both populations simultaneously are unsuccessful. The Al3(Sc,Zr) precipitation hardened prototype is friction stir processed and no weak zones are found in the weld hardness profile. An aerospace alloy design is proposed, utilizing the dual precipitate structure shown in the prototype. The automotive alloy is designed using a basic strength model with parameters determined from the initial prototype alloy analysis. After ageing to different conditions, the alloy is put through a simulated heat affected zone thermal cycle with a computer controlled induction heater. The aged samples lose hardness from the weld cycle but recover hardness from a post weld heat treatment. Atom probe tomography and transmission electron

  17. Interfacing materials science and biology for drug carrier design.

    PubMed

    Such, Georgina K; Yan, Yan; Johnston, Angus P R; Gunawan, Sylvia T; Caruso, Frank

    2015-04-01

    Over the last ten years, there has been considerable research interest in the development of polymeric carriers for biomedicine. Such delivery systems have the potential to significantly reduce side effects and increase the bioavailability of poorly soluble therapeutics. The design of carriers has relied on harnessing specific variations in biological conditions, such as pH or redox potential, and more recently, by incorporating specific peptide cleavage sites for enzymatic hydrolysis. Although much progress has been made in this field, the specificity of polymeric carriers is still limited when compared with their biological counterparts. To synthesize the next generation of carriers, it is important to consider the biological rationale for materials design. This requires a detailed understanding of the cellular microenvironments and how these can be harnessed for specific applications. In this review, several important physiological cues in the cellular microenvironments are outlined, with a focus on changes in pH, redox potential, and the types of enzymes present in specific regions. Furthermore, recent studies that use such biologically inspired triggers to design polymeric carriers are highlighted, focusing on applications in the field of therapeutic delivery.

  18. Telecommunications Systems Design Techniques Handbook

    NASA Technical Reports Server (NTRS)

    Edelson, R. E. (Editor)

    1972-01-01

    The Deep Space Network (DSN) increasingly supports deep space missions sponsored and managed by organizations without long experience in DSN design and operation. The document is intended as a textbook for those DSN users inexperienced in the design and specification of a DSN-compatible spacecraft telecommunications system. For experienced DSN users, the document provides a reference source of telecommunication information which summarizes knowledge previously available only in a multitude of sources. Extensive references are quoted for those who wish to explore specific areas more deeply.

  19. Engineering Design Information System (EDIS)

    SciTech Connect

    Smith, P.S.; Short, R.D.; Schwarz, R.K.

    1990-11-01

    This manual is a guide to the use of the Engineering Design Information System (EDIS) Phase I. The system runs on the Martin Marietta Energy Systems, Inc., IBM 3081 unclassified computer. This is the first phase in the implementation of EDIS, which is an index, storage, and retrieval system for engineering documents produced at various plants and laboratories operated by Energy Systems for the Department of Energy. This manual presents on overview of EDIS, describing the system's purpose; the functions it performs; hardware, software, and security requirements; and help and error functions. This manual describes how to access EDIS and how to operate system functions using Database 2 (DB2), Time Sharing Option (TSO), Interactive System Productivity Facility (ISPF), and Soft Master viewing features employed by this system. Appendix A contains a description of the Soft Master viewing capabilities provided through the EDIS View function. Appendix B provides examples of the system error screens and help screens for valid codes used for screen entry. Appendix C contains a dictionary of data elements and descriptions.

  20. A domain-specific design architecture for composite material design and aircraft part redesign

    NASA Technical Reports Server (NTRS)

    Punch, W. F., III; Keller, K. J.; Bond, W.; Sticklen, J.

    1992-01-01

    Advanced composites have been targeted as a 'leapfrog' technology that would provide a unique global competitive position for U.S. industry. Composites are unique in the requirements for an integrated approach to designing, manufacturing, and marketing of products developed utilizing the new materials of construction. Numerous studies extending across the entire economic spectrum of the United States from aerospace to military to durable goods have identified composites as a 'key' technology. In general there have been two approaches to composite construction: build models of a given composite materials, then determine characteristics of the material via numerical simulation and empirical testing; and experience-directed construction of fabrication plans for building composites with given properties. The first route sets a goal to capture basic understanding of a device (the composite) by use of a rigorous mathematical model; the second attempts to capture the expertise about the process of fabricating a composite (to date) at a surface level typically expressed in a rule based system. From an AI perspective, these two research lines are attacking distinctly different problems, and both tracks have current limitations. The mathematical modeling approach has yielded a wealth of data but a large number of simplifying assumptions are needed to make numerical simulation tractable. Likewise, although surface level expertise about how to build a particular composite may yield important results, recent trends in the KBS area are towards augmenting surface level problem solving with deeper level knowledge. Many of the relative advantages of composites, e.g., the strength:weight ratio, is most prominent when the entire component is designed as a unitary piece. The bottleneck in undertaking such unitary design lies in the difficulty of the re-design task. Designing the fabrication protocols for a complex-shaped, thick section composite are currently very difficult. It is in

  1. From molecular design and materials construction to organic nanophotonic devices.

    PubMed

    Zhang, Chuang; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian

    2014-12-16

    CONSPECTUS: Nanophotonics has recently received broad research interest, since it may provide an alternative opportunity to overcome the fundamental limitations in electronic circuits. Diverse optical materials down to the wavelength scale are required to develop nanophotonic devices, including functional components for light emission, transmission, and detection. During the past decade, the chemists have made their own contributions to this interdisciplinary field, especially from the controlled fabrication of nanophotonic molecules and materials. In this context, organic micro- or nanocrystals have been developed as a very promising kind of building block in the construction of novel units for integrated nanophotonics, mainly due to the great versatility in organic molecular structures and their flexibility for the subsequent processing. Following the pioneering works on organic nanolasers and optical waveguides, the organic nanophotonic materials and devices have attracted increasing interest and developed rapidly during the past few years. In this Account, we review our research on the photonic performance of molecular micro- or nanostructures and the latest breakthroughs toward organic nanophotonic devices. Overall, the versatile features of organic materials are highlighted, because they brings tunable optical properties based on molecular design, size-dependent light confinement in low-dimensional structures, and various device geometries for nanophotonic integration. The molecular diversity enables abundant optical transitions in conjugated π-electron systems, and thus brings specific photonic functions into molecular aggregates. The morphology of these micro- or nanostructures can be further controlled based on the weak intermolecular interactions during molecular assembly process, making the aggregates show photon confinement or light guiding properties as nanophotonic materials. By adoption of some active processes in the composite of two or more

  2. From molecular design and materials construction to organic nanophotonic devices.

    PubMed

    Zhang, Chuang; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian

    2014-12-16

    CONSPECTUS: Nanophotonics has recently received broad research interest, since it may provide an alternative opportunity to overcome the fundamental limitations in electronic circuits. Diverse optical materials down to the wavelength scale are required to develop nanophotonic devices, including functional components for light emission, transmission, and detection. During the past decade, the chemists have made their own contributions to this interdisciplinary field, especially from the controlled fabrication of nanophotonic molecules and materials. In this context, organic micro- or nanocrystals have been developed as a very promising kind of building block in the construction of novel units for integrated nanophotonics, mainly due to the great versatility in organic molecular structures and their flexibility for the subsequent processing. Following the pioneering works on organic nanolasers and optical waveguides, the organic nanophotonic materials and devices have attracted increasing interest and developed rapidly during the past few years. In this Account, we review our research on the photonic performance of molecular micro- or nanostructures and the latest breakthroughs toward organic nanophotonic devices. Overall, the versatile features of organic materials are highlighted, because they brings tunable optical properties based on molecular design, size-dependent light confinement in low-dimensional structures, and various device geometries for nanophotonic integration. The molecular diversity enables abundant optical transitions in conjugated π-electron systems, and thus brings specific photonic functions into molecular aggregates. The morphology of these micro- or nanostructures can be further controlled based on the weak intermolecular interactions during molecular assembly process, making the aggregates show photon confinement or light guiding properties as nanophotonic materials. By adoption of some active processes in the composite of two or more

  3. Intelligent Software for System Design and Documentation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In an effort to develop a real-time, on-line database system that tracks documentation changes in NASA's propulsion test facilities, engineers at Stennis Space Center teamed with ECT International of Brookfield, WI, through the NASA Dual-Use Development Program to create the External Data Program and Hyperlink Add-on Modules for the promis*e software. Promis*e is ECT's top-of-the-line intelligent software for control system design and documentation. With promis*e the user can make use of the automated design process to quickly generate control system schematics, panel layouts, bills of material, wire lists, terminal plans and more. NASA and its testing contractors currently use promis*e to create the drawings and schematics at the E2 Cell 2 test stand located at Stennis Space Center.

  4. Current Materials on Barrier-Free Design. Revised.

    ERIC Educational Resources Information Center

    National Easter Seal Society for Crippled Children and Adults, Chicago, IL.

    An eight-page annotated bibliography contains material available from the National Easter Seal Society and current material available from other sources. The annotations are grouped under design, guides, planning resources, standards/legislation, and general. Ordering information is provided. (MLF)

  5. Sculpture: Creative Designs with Modern Materials (Tentative Course Outline).

    ERIC Educational Resources Information Center

    Dubocq, Edward R.

    This document reports on a course in comprehension and application of various techniques of sculpture and collage, using a contemporary point of view. Students will work with contemporary materials such as wood, metals, plaster, plastics, styrofoam, and many other cardboard basic materials suitable for creative design products. This unit will…

  6. ARGOS laser system mechanical design

    NASA Astrophysics Data System (ADS)

    Deysenroth, M.; Honsberg, M.; Gemperlein, H.; Ziegleder, J.; Raab, W.; Rabien, S.; Barl, L.; Gässler, W.; Borelli, J. L.

    2014-07-01

    ARGOS, a multi-star adaptive optics system is designed for the wide-field imager and multi-object spectrograph LUCI on the LBT (Large Binocular Telescope). Based on Rayleigh scattering the laser constellation images 3 artificial stars (at 532 nm) per each of the 2 eyes of the LBT, focused at a height of 12 km (Ground Layer Adaptive Optics). The stars are nominally positioned on a circle 2' in radius, but each star can be moved by up to 0.5' in any direction. For all of these needs are following main subsystems necessary: 1. A laser system with its 3 Lasers (Nd:YAG ~18W each) for delivering strong collimated light as for LGS indispensable. 2. The Launch system to project 3 beams per main mirror as a 40 cm telescope to the sky. 3. The Wave Front Sensor with a dichroic mirror. 4. The dichroic mirror unit to grab and interpret the data. 5. A Calibration Unit to adjust the system independently also during day time. 6. Racks + platforms for the WFS units. 7. Platforms and ladders for a secure access. This paper should mainly demonstrate how the ARGOS Laser System is configured and designed to support all other systems.

  7. Nonlinear dynamics enabled systems design and control

    NASA Astrophysics Data System (ADS)

    Lacarbonara, Walter

    2012-08-01

    There is a growing interest towards design of high-performance structures and devices by seeking ways to exploit advantageously different nonlinearities at different scales rather than constraining operations to avoid nonlinear phenomena. Tools of robust nonlinear modeling and analysis are shown to be turned into design tools for achieving high levels of vibration control authority and synthesis of engineered systems and materials. A brief overview of methods and results on active resonance cancellation and passive nonlinear hysteretic vibration absorbers is illustrated. Recent results on the diffused hysteresis exhibited at the nano-microscale in nanocomposites due to the powerful nonlinear stick-slip mechanism exhibited by carbon nanotubes dispersed in a hosting matrix are discussed. The optimization of the main microstructural parameters is shown to lead to unprecedented levels of damping capacity in next-generation nanostructured materials tailored for wide-band vibrational energy dissipation.

  8. Modernizing computerized nuclear material accounting systems

    SciTech Connect

    Erkkila, B.H.; Claborn, J.

    1995-09-01

    DOE Orders and draft orders for nuclear material control and accountability address a complete material control and accountability (MC and A) program for all DOE contractors processing, using, or storing nuclear materials. A critical element of an MC and A program is the accounting system used to track and record all inventories of nuclear material and movements of materials in those inventories. Most DOE facilities use computerized accounting systems to facilitate the task of accounting for all their inventory of nuclear materials. Many facilities still use a mixture of a manual paper system with a computerized system. Also, facilities may use multiple systems to support information needed for MC and A. For real-time accounting it is desirable to implement a single integrated data base management system for a variety of users. In addition to accountability needs, waste management, material management, and production operations must be supported. Information in these systems can also support criticality safety and other safety issues. Modern networked microcomputers provide extensive processing and reporting capabilities that single mainframe computer systems struggle with. This paper describes an approach being developed at Los Alamos to address these problems.

  9. Materials Requirements for Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Cook, Mary Beth; Clinton, R. G., Jr.

    2005-01-01

    NASA's mission to "reach the Moon and Mars" will be obtained only if research begins now to develop materials with expanded capabilities to reduce mass, cost and risk to the program. Current materials cannot function satisfactorily in the deep space environments and do not meet the requirements of long term space propulsion concepts for manned missions. Directed research is needed to better understand materials behavior for optimizing their processing. This research, generating a deeper understanding of material behavior, can lead to enhanced implementation of materials for future exploration vehicles. materials providing new approaches for manufacture and new options for In response to this need for more robust materials, NASA's Exploration Systems Mission Directorate (ESMD) has established a strategic research initiative dedicated to materials development supporting NASA's space propulsion needs. The Advanced Materials for Exploration (AME) element directs basic and applied research to understand material behavior and develop improved materials allowing propulsion systems to operate beyond their current limitations. This paper will discuss the approach used to direct the path of strategic research for advanced materials to ensure that the research is indeed supportive of NASA's future missions to the moon, Mars, and beyond.

  10. CRISP90 - SOFTWARE DESIGN ANALYZER SYSTEM

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1994-01-01

    The CRISP90 Software Design Analyzer System, an update of CRISP-80, is a set of programs forming a software design and documentation tool which supports top-down, hierarchic, modular, structured design and programming methodologies. The quality of a computer program can often be significantly influenced by the design medium in which the program is developed. The medium must foster the expression of the programmer's ideas easily and quickly, and it must permit flexible and facile alterations, additions, and deletions to these ideas as the design evolves. The CRISP90 software design analyzer system was developed to provide the PDL (Programmer Design Language) programmer with such a design medium. A program design using CRISP90 consists of short, English-like textual descriptions of data, interfaces, and procedures that are imbedded in a simple, structured, modular syntax. The display is formatted into two-dimensional, flowchart-like segments for a graphic presentation of the design. Together with a good interactive full-screen editor or word processor, the CRISP90 design analyzer becomes a powerful tool for the programmer. In addition to being a text formatter, the CRISP90 system prepares material that would be tedious and error prone to extract manually, such as a table of contents, module directory, structure (tier) chart, cross-references, and a statistics report on the characteristics of the design. Referenced modules are marked by schematic logic symbols to show conditional, iterative, and/or concurrent invocation in the program. A keyword usage profile can be generated automatically and glossary definitions inserted into the output documentation. Another feature is the capability to detect changes that were made between versions. Thus, "change-bars" can be placed in the output document along with a list of changed pages and a version history report. Also, items may be marked as "to be determined" and each will appear on a special table until the item is

  11. SIRTF Science Operations System Design

    NASA Technical Reports Server (NTRS)

    Green, William

    1999-01-01

    SIRTF Science Operations System Design William B. Green Manager, SIRTF Science Center California Institute of Technology M/S 310-6 1200 E. California Blvd., Pasadena CA 91125 (626) 395 8572 Fax (626) 568 0673 bgreen@ipac.caltech.edu. The Space Infrared Telescope Facility (SIRTF) will be launched in December 2001, and perform an extended series of science observations at wavelengths ranging from 20 to 160 microns for five years or more. The California Institute of Technology has been selected as the home for the SIRTF Science Center (SSC). The SSC will be responsible for evaluating and selecting observation proposals, providing technical support to the science community, performing mission planning and science observation scheduling activities, instrument calibration during operations and instrument health monitoring, production of archival quality data products, and management of science research grants. The science payload consists of three instruments delivered by instrument Principal Investigators located at University of Arizona, Cornell, and Harvard Smithsonian Astrophysical Observatory. The SSC is responsible for design, development, and operation of the Science Operations System (SOS) which will support the functions assigned to the SSC by NASA. The SIRTF spacecraft, mission profile, and science instrument design have undergone almost ten years of refinement. SIRTF development and operations activities are highly cost constrained. The cost constraints have impacted the design of the SOS in several ways. The Science Operations System has been designed to incorporate a set of efficient, easy to use tools which will make it possible for scientists to propose observation sequences in a rapid and automated manner. The use of highly automated tools for requesting observations will simplify the long range observatory scheduling process, and the short term scheduling of science observations. Pipeline data processing will be highly automated and data

  12. 46 CFR 128.210 - Class II vital systems-materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENGINEERING: EQUIPMENT AND SYSTEMS Materials and Pressure Design § 128.210 Class II vital systems—materials... 46 Shipping 4 2010-10-01 2010-10-01 false Class II vital systems-materials. 128.210 Section 128... chapter, materials used in Class II vital piping-systems may be accepted by the cognizant OCMI or...

  13. Design Guidelines for Digital Learning Material for Food Chemistry Education.

    ERIC Educational Resources Information Center

    Diederen, Julia; Gruppen, Harry; Voragen, Alphons G. J.; Hartog, Rob; Mulder, Martin; Biemans, Harm

    This paper describes the first stage of a 4-year research project on the design, development and use of Web-based digital learning material for food chemistry education. The paper discusses design guidelines, based on principles that were selected from theories on learning and instruction, and illustrates in detail how these guidelines were used…

  14. Materials performance in advanced combustion systems

    SciTech Connect

    Natesan, K.

    1992-12-01

    A number of advanced technologies are being developed to convert coal into clean fuels for use as feedstock in chemical plants and for power generation. From the standpoint of component materials, the environments created by coal conversion and combustion in these technologies and their interactions with materials are of interest. The trend in the new or advanced systems is to improve thermal efficiency and reduce the environmental impact of the process effluents. This paper discusses several systems that are under development and identifies requirements for materials application in those systems. Available data on the performance of materials in several of the environments are used to examine the performance envelopes for materials for several of the systems and to identify needs for additional work in different areas.

  15. Computational materials design of negative effective U system in the hole-doped Delafossite of CuAlO2, AgAlO2 and AuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Fukushima, Tetsuya; Uede, Hiroki; Katayama-Yoshida, Hiroshi

    2015-03-01

    In order to realize the super-high-TC superconductors (TC>1,000K) based on the general design rules for the negative Ueff system, we have performed computational materials design for theUeff<0 system in the hole-doped two-dimensional (2D) Delafossite CuAlO2, AgAlO2 and AuAlO2 from the first principles. We find the interesting chemical trend of TC in 2D and 3D systems; where the TC increases exponentially in the weak coupling regime (|Ueff (-0.44eV)|< W(2eV), W is the band width) for hole-doped CuFeS2, then the TC goes through a maximum when |Ueff (-4.88eV, -4.14eV)| ~ W (2.8eV, 3.5eV) for hole-doped AgAlO2 and AuAlO2, and the TC decreases with increasing |Ueff|in strong coupling regime, where |Ueff (-4.53eV)|> W(1.7eV) for hole-doped CuAlO2

  16. Rational design of inorganic dielectric materials with expected permittivity

    NASA Astrophysics Data System (ADS)

    Xie, Congwei; Oganov, Artem R.; Dong, Dong; Liu, Ning; Li, Duan; Debela, Tekalign Terfa

    2015-11-01

    Techniques for rapid design of dielectric materials with appropriate permittivity for many important technological applications are urgently needed. It is found that functional structure blocks (FSBs) are helpful in rational design of inorganic dielectrics with expected permittivity. To achieve this, coordination polyhedra are parameterized as FSBs and a simple empirical model to evaluate permittivity based on these FSB parameters is proposed. Using this model, a wide range of examples including ferroelectric, high/low permittivity materials are discussed, resulting in several candidate materials for experimental follow-up.

  17. Rational design of inorganic dielectric materials with expected permittivity

    PubMed Central

    Xie, Congwei; Oganov, Artem R.; Dong, Dong; Liu, Ning; Li, Duan; Debela, Tekalign Terfa

    2015-01-01

    Techniques for rapid design of dielectric materials with appropriate permittivity for many important technological applications are urgently needed. It is found that functional structure blocks (FSBs) are helpful in rational design of inorganic dielectrics with expected permittivity. To achieve this, coordination polyhedra are parameterized as FSBs and a simple empirical model to evaluate permittivity based on these FSB parameters is proposed. Using this model, a wide range of examples including ferroelectric, high/low permittivity materials are discussed, resulting in several candidate materials for experimental follow-up. PMID:26617342

  18. Rational design of inorganic dielectric materials with expected permittivity.

    PubMed

    Xie, Congwei; Oganov, Artem R; Dong, Dong; Liu, Ning; Li, Duan; Debela, Tekalign Terfa

    2015-11-30

    Techniques for rapid design of dielectric materials with appropriate permittivity for many important technological applications are urgently needed. It is found that functional structure blocks (FSBs) are helpful in rational design of inorganic dielectrics with expected permittivity. To achieve this, coordination polyhedra are parameterized as FSBs and a simple empirical model to evaluate permittivity based on these FSB parameters is proposed. Using this model, a wide range of examples including ferroelectric, high/low permittivity materials are discussed, resulting in several candidate materials for experimental follow-up.

  19. Structure-Based Design of Functional Amyloid Materials

    DOE PAGESBeta

    Li, Dan; Jones, Eric M.; Sawaya, Michael R.; Furukawa, Hiroyasu; Luo, Fang; Ivanova, Magdalena; Sievers, Stuart A.; Wang, Wenyuan; Yaghi, Omar M.; Liu, Cong; et al

    2014-12-04

    We report that amyloid fibers, once exclusively associated with disease, are acquiring utility as a class of biological nanomaterials. We introduce a method that utilizes the atomic structures of amyloid peptides, to design materials with versatile applications. As a model application, we designed amyloid fibers capable of capturing carbon dioxide from flue gas, to address the global problem of excess anthropogenic carbon dioxide. By measuring dynamic separation of carbon dioxide from nitrogen, we show that fibers with designed amino acid sequences double the carbon dioxide binding capacity of the previously reported fiber formed by VQIVYK from Tau protein. In amore » second application, we designed fibers that facilitate retroviral gene transfer. Finally, by measuring lentiviral transduction, we show that designed fibers exceed the efficiency of polybrene, a commonly used enhancer of transduction. The same procedures can be adapted to the design of countless other amyloid materials with a variety of properties and uses.« less

  20. Structure-Based Design of Functional Amyloid Materials

    SciTech Connect

    Li, Dan; Jones, Eric M.; Sawaya, Michael R.; Furukawa, Hiroyasu; Luo, Fang; Ivanova, Magdalena; Sievers, Stuart A.; Wang, Wenyuan; Yaghi, Omar M.; Liu, Cong; Eisenberg, David S.

    2014-12-04

    We report that amyloid fibers, once exclusively associated with disease, are acquiring utility as a class of biological nanomaterials. We introduce a method that utilizes the atomic structures of amyloid peptides, to design materials with versatile applications. As a model application, we designed amyloid fibers capable of capturing carbon dioxide from flue gas, to address the global problem of excess anthropogenic carbon dioxide. By measuring dynamic separation of carbon dioxide from nitrogen, we show that fibers with designed amino acid sequences double the carbon dioxide binding capacity of the previously reported fiber formed by VQIVYK from Tau protein. In a second application, we designed fibers that facilitate retroviral gene transfer. Finally, by measuring lentiviral transduction, we show that designed fibers exceed the efficiency of polybrene, a commonly used enhancer of transduction. The same procedures can be adapted to the design of countless other amyloid materials with a variety of properties and uses.

  1. Design of a lunar transportation system

    NASA Technical Reports Server (NTRS)

    Sankaravelu, A.; Goddard, H.; Gold, R.; Greenwell, S.; Lander, J.; Nordell, B.; Stepp, K.; Styer, M.

    1989-01-01

    The development of a good transportation infrastructure is a major requirement for the establishment of a permanent lunar base. Transportation is characterized by the technology available in a specific time frame and the need to transport personnel and cargo between Earth and Moon, and between lunar bases. In our study, attention was first focused on developing a transportation system for the first generation lunar base. As a first step, a tracked-type multipurpose lunar transportation vehicle was considered as a possible mode of transportation and a detailed study was conducted on the various aspects of the vehicle. Since the vehicle is composed of many moving parts, exposing it to the environment of the Moon, where fine dust particles are prevalent, can cause problems associated with lubrication and friction. The vehicle also posed problems concerning weight and power. Hence, several modifications were made to the above design ideas conceptually, and a Lunar Articulated Remote Transportation System (Lunar ARTS) is proposed as a more effective alternative with the following objectives: (1) minimizing the transportation of construction material and fuel from Earth or maximizing the use of the lunar material; (2) use of novel materials and light-weight structures; (3) use of new manufacturing methods and technology such as magnetic levitation using superconducting materials; and (4) innovative concepts of effectively utilizing the exotic lunar conditions, i.e., high thermal gradients, lack of atmosphere, lower gravity, etc. To achieve the above objectives of designing transportation systems from concept to operation, the project was planned in three phases: (1) conceptual design; (2) detailed analysis and synthesis; and (3) construction, testing, evaluation, and operation. In this project, both phases 1 and 2 have been carried out and work on phase 3 is in progress. In this paper, the details of the Lunar ARTS are discussed and the future work on the vehicle are

  2. Design of a californium source-driven measurement system for accountability of material recovered from the Molten Salt Reactor Experiment charcoal bed

    SciTech Connect

    Bentzinger, D.L.; Perez, R.B.; Mattingly, J.K.; Valentine, T.E.; Mihalczo, J.T.

    1998-05-01

    The Molten Salt Reactor Experiment Facility (MSRE) operated from 1965 to 1969. The fuel was a molten salt that flowed through the reactor core which consisted of uranium tetrafluoride with molten lithium and beryllium salt used as the coolant. In 1968 the fuel was switched from {sup 235}U to {sup 233}U. The Molten Salt Reactor Experiment was canceled in 1969 at which time approximately 4800 kg of salt was transferred to the fuel drain tanks. There was about 36.3 kg of uranium, 675 grams of plutonium and various fission products present in the fuel salt. The salt was allowed to solidify in the fuel drain tanks. The salt was heated on a yearly basis to recombine the fluorine gas with the uranium salt mixture. In March 1994, a gas sample was taken from the off gas system that indicated {sup 233}U had migrated from the fuel drain tank system to the off gas system. It was found that approximately 2.6 kg of uranium had migrated to the Auxiliary Charcoal Bed (ACB). The ACB is located in the concrete-lined charcoal bed cell which is below ground level located outside the MSRE building. Therefore, there was a concern for the potential of a nuclear criticality accident, although water would have to leak into the chamber for a criticality accident to occur. Unstable carbon/fluorine compounds were also formed when the fluorine reacted with the charcoal in the charcoal bed. The purpose of the proposed measurement system was to perform an accountability measurement to determine the fissile mass of {sup 233}U in the primary vessel. The contents of the primary containment assembly will then be transferred to three smaller containers for long term storage. Calculations were performed using MCNP-DSP to determine the configuration of the measurement system. The information obtained from the time signatures can then be compared to the measurement data to determine the amount of {sup 233}U present in the primary containment assembly.

  3. "TPSX: Thermal Protection System Expert and Material Property Database"

    NASA Technical Reports Server (NTRS)

    Squire, Thomas H.; Milos, Frank S.; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    The Thermal Protection Branch at NASA Ames Research Center has developed a computer program for storing, organizing, and accessing information about thermal protection materials. The program, called Thermal Protection Systems Expert and Material Property Database, or TPSX, is available for the Microsoft Windows operating system. An "on-line" version is also accessible on the World Wide Web. TPSX is designed to be a high-quality source for TPS material properties presented in a convenient, easily accessible form for use by engineers and researchers in the field of high-speed vehicle design. Data can be displayed and printed in several formats. An information window displays a brief description of the material with properties at standard pressure and temperature. A spread sheet window displays complete, detailed property information. Properties which are a function of temperature and/or pressure can be displayed as graphs. In any display the data can be converted from English to SI units with the click of a button. Two material databases included with TPSX are: 1) materials used and/or developed by the Thermal Protection Branch at NASA Ames Research Center, and 2) a database compiled by NASA Johnson Space Center 9JSC). The Ames database contains over 60 advanced TPS materials including flexible blankets, rigid ceramic tiles, and ultra-high temperature ceramics. The JSC database contains over 130 insulative and structural materials. The Ames database is periodically updated and expanded as required to include newly developed materials and material property refinements.

  4. Advanced thermoplastic materials for district heating piping systems

    SciTech Connect

    Raske, D.T.; Karvelas, D.E.

    1988-04-01

    The work described in this report represents research conducted in the first year of a three-year program to assess, characterize, and design thermoplastic piping for use in elevated-temperature district heating (DH) systems. The present report describes the results of a program to assess the potential usefulness of advanced thermoplastics as piping materials for use in DH systems. This includes the review of design rules for thermoplastic materials used as pipes, a survey of candidate materials and available mechanical properties data, and mechanical properties testing to obtain baseline data on a candidate thermoplastic material extruded as pipe. The candidate material studied in this phase of the research was a polyetherimide resin, Ultem 1000, which has a UL continuous service temperature rating of 338/degree/F (170/degree/C). The results of experiments to determine the mechanical properties between 68 and 350/degree/F (20 and 177/degree/C) were used to establish preliminary design values for this material. Because these prototypic pipes were extruded under less than optimal conditions, the mechanical properties obtained are inferior to those expected from typical production pipes. Nevertheless, the present material in the form of 2-in. SDR 11 pipe (2.375-in. O. D. by 0.216-in. wall) would have a saturated water design pressure rating of /approximately/34 psig at 280/degree/F. 16 refs., 6 figs., 8 tabs.

  5. System design document for the plutonium stabilization and packaging system

    SciTech Connect

    1996-05-08

    The objective of this system is to stabilize and package plutonium metals and oxides of greater than 50% wt, as well as other selected isotopes, in accordance with the requirements for DOE standards for safe storage of these materials for 50 years. This document describes the highest level design information and user characteristics from an operational perspective. It provides guidance for developing procurement and installation specifications, interface requirements, and test plans.

  6. Evolution of heavy duty engine valves - materials and design

    SciTech Connect

    Schaefer, S.K.; Larson, J.M.; Jenkins, L.F.; Wang, Y.

    1997-12-31

    Engine poppet valves control gas flow in internal combustion engines. The combustion event and the flow of the gases formed past the valve during the intake or exhaust portion of the combustion cycle, expose heavy duty diesel valves to high temperatures, oxidizing or corroding atmospheres and high stresses from firing and seating. This paper is a review of heavy duty diesel engine valve material and design evolution over the last fifty years in North America. The primary driving forces behind the evolution have historically been the need for improved durability and more cost effective designs. However, in recent years engine emission regulatory requirements have become an equally important influence on valve material selection and design. The paper also endeavors to predict how heavy duty diesel engine valve materials and designs may change in response to these driving forces in the foreseeable future.

  7. Materials and design of the European DEMO blankets

    NASA Astrophysics Data System (ADS)

    Boccaccini, L. V.; Giancarli, L.; Janeschitz, G.; Hermsmeyer, S.; Poitevin, Y.; Cardella, A.; Diegele, E.

    2004-08-01

    The Helium Cooled Lithium Lead (HCLL) and the Helium Cooled Pebble Bed (HCPB) Blanket are the reference concepts in the European Breeding Blanket Programme for the DEMO design and for the related long term R&D. Recently, a similar design for both concepts has been developed, in particular both concepts use helium coolant and RAFM steel EUROFER as structural material. In this paper the interactions between the selected materials and the proposed DEMO designs are discussed. In particular the design features related to the tritium production, power extraction, material compatibility and fabrication processes are addressed. All these features contribute to the definition of DEMO concepts which are attractive for a future fusion power plant in terms of safety, availability and economics.

  8. Microstructural design of cellular materials I: Honeycomb beams and plates

    SciTech Connect

    Huang, J.S.; Gibson, L.J.

    1992-06-01

    Performance indices for materials describe the mechanical efficiency of a component under a given mode of loading: The higher the performance index, the lower the mass of the component for a given mechanical requirement. Material selection charts (Ashby, 1989) offer a graphical means of comparing performance indices for a wide range of materials. Performance indices are described. Micromechanical models for behaviour of cellular materials are used to suggest novel microstructural designs for cellular materials with improved performance. Three novel microstructural designs, described in companion papers, have been fabricated and tested. Results of the tests indicate that the new microstructures have higher values of some performance indices than those of the solids from which they are made.

  9. Design package for a solar-heating system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report contains sufficient information to assemble complete tested residential flat-plate solar heating system. Descriptive material provides design, performance, and hardware specifications for utilization by architectural engineers, and contractors in procurement, installation, operation, and maintenance of similar solar applications.

  10. FORTRAN IV Digital Filter Design Programs. Digital Systems Education Project.

    ERIC Educational Resources Information Center

    Reuss, E.; And Others

    The goals of the Digital Systems Education Project (DISE) include the development and distribution of educational/instructional materials in the digital systems area. Toward that end, this document contains three reports: (1) A FORTRAN IV Design Program for Low-Pass Butterworth and Chebychev Digital Filters; (2) A FORTRAN IV Design Program for…

  11. Automated Design of Complex Dynamic Systems

    PubMed Central

    Hermans, Michiel; Schrauwen, Benjamin; Bienstman, Peter; Dambre, Joni

    2014-01-01

    Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems. PMID:24497969

  12. Design of Functional Materials with Hydrogen-Bonded Host Frameworks

    NASA Astrophysics Data System (ADS)

    Soegiarto, Airon Cosanova

    motifs on the optical properties of the confined guests are manifested in the bathochromic shifts in the absorption and emission spectra relative to those in dilute solution. The shifts in the absorption bands were corroborated by ab initio computations (using TDDFT at the PBE0/6-311G(d,p) level) based on the structures of the host-guest aggregates observed in the crystalline state. Chapter 4 describes the inclusion of several coumarin-based laser dyes. GDS hosts with the bilayer architectures include the dye as monomers, whereas those with the brick architectures include the dye as dimers. The ability to tune the emission wavelength through choice of dye and adjustment of framework architectures enables the design of a new class of efficient laser dye crystals. Furthermore, the excited state lifetime of some of the confined dyes in the host matrix were extended by up to ten times longer than those in dilute solutions -- an important characteristic for producing efficient lasing crystals. Chapter 5 details the inclusion of a variety of TEMPO-based radicals, whose molecular arrangement can be controlled depending on the host framework architecture. GDS hosts with the simple brick architecture generate 1-D channels which organize the radical guests into a two-leg ladder, whereas GDS hosts with the zigzag brick architecture distribute the radical guests into a 2-D square-planar lattice. Although magnetic susceptibility measurements indicate long-range antiferromagnetic ordering in these materials, the ability to form 1-D or 2-D spin systems in these frameworks may allow the design of low-dimensional magnets. Collectively, this thesis demonstrates the ability of the GDS hosts to regulate the solid-state structure of functional guest molecules, which suggests a route to the design and synthesis of materials with future applications in areas as diverse as optoelectronics, magnetics, and confined reactions.

  13. Nuclear Materials Identification System Operational Manual

    SciTech Connect

    Chiang, L.G.

    2001-04-10

    This report describes the operation and setup of the Nuclear Materials Identification System (NMIS) with a {sup 252}Cf neutron source at the Oak Ridge Y-12 Plant. The components of the system are described with a description of the setup of the system along with an overview of the NMIS measurements for scanning, calibration, and confirmation of inventory items.

  14. Multimedia and Cognition: Examining the Effect of Applying Cognitive Principles to the Design of Instructional Materials

    ERIC Educational Resources Information Center

    Thompson, Nik; McGill, Tanya Jane

    2008-01-01

    The human cognitive system possesses a finite processing capacity, which is split into channels for various modalities, and learning can be inhibited if any of the cognitive channels is overloaded. However, although the amount of e-learning materials is increasing steadily, the design of instructional material has been largely based on intuition…

  15. Heat transport system, method and material

    DOEpatents

    Musinski, Donald L.

    1987-01-01

    A heat transport system, method and composite material in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure.

  16. Optimal shielding design for minimum materials cost or mass

    DOE PAGESBeta

    Woolley, Robert D.

    2015-12-02

    The mathematical underpinnings of cost optimal radiation shielding designs based on an extension of optimal control theory are presented, a heuristic algorithm to iteratively solve the resulting optimal design equations is suggested, and computational results for a simple test case are discussed. A typical radiation shielding design problem can have infinitely many solutions, all satisfying the problem's specified set of radiation attenuation requirements. Each such design has its own total materials cost. For a design to be optimal, no admissible change in its deployment of shielding materials can result in a lower cost. This applies in particular to very smallmore » changes, which can be restated using the calculus of variations as the Euler-Lagrange equations. Furthermore, the associated Hamiltonian function and application of Pontryagin's theorem lead to conditions for a shield to be optimal.« less

  17. Optimal shielding design for minimum materials cost or mass

    SciTech Connect

    Woolley, Robert D.

    2015-12-02

    The mathematical underpinnings of cost optimal radiation shielding designs based on an extension of optimal control theory are presented, a heuristic algorithm to iteratively solve the resulting optimal design equations is suggested, and computational results for a simple test case are discussed. A typical radiation shielding design problem can have infinitely many solutions, all satisfying the problem's specified set of radiation attenuation requirements. Each such design has its own total materials cost. For a design to be optimal, no admissible change in its deployment of shielding materials can result in a lower cost. This applies in particular to very small changes, which can be restated using the calculus of variations as the Euler-Lagrange equations. Furthermore, the associated Hamiltonian function and application of Pontryagin's theorem lead to conditions for a shield to be optimal.

  18. Photovoltaic stand-alone systems: Preliminary engineering design handbook

    NASA Astrophysics Data System (ADS)

    Macomber, H. L.; Ruzek, J. B.; Costello, F. A.

    1981-08-01

    Component design and engineering information, including estimation and reduction strategies, FV array characteristics, and material on batteries, power handling equipment, and back up systems are presented. The data needed to begin the design process and preliminary system design considerations are discussed. These considerations include analysis of insolation and siting, system sizing, feasibility assessment and reliability engineering approaches. Information on system design procedures and applicable codes and standards is presented. Information on system installation, operation, maintenance issues, personnel and facility safety requirements and various means of calculating insolation, including computer software and statistical computations are emphasized.

  19. Acoustic system for material transport

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Trinh, E. H.; Wang, T. G.; Elleman, D. D.; Jacobi, N. (Inventor)

    1983-01-01

    An object within a chamber is acoustically moved by applying wavelengths of different modes to the chamber to move the object between pressure wells formed by the modes. In one system, the object is placed in one end of the chamber while a resonant mode, applied along the length of the chamber, produces a pressure well at the location. The frequency is then switched to a second mode that produces a pressure well at the center of the chamber, to draw the object. When the object reaches the second pressure well and is still traveling towards the second end of the chamber, the acoustic frequency is again shifted to a third mode (which may equal the first model) that has a pressure well in the second end portion of the chamber, to draw the object. A heat source may be located near the second end of the chamber to heat the sample, and after the sample is heated it can be cooled by moving it in a corresponding manner back to the first end of the chamber. The transducers for levitating and moving the object may be all located at the cool first end of the chamber.

  20. Content of system design descriptions

    SciTech Connect

    1998-10-01

    A System Design Description (SDD) describes the requirements and features of a system. This standard provides guidance on the expected technical content of SDDs. The need for such a standard was recognized during efforts to develop SDDs for safety systems at DOE Hazard Category 2 nonreactor nuclear facilities. Existing guidance related to the corresponding documents in other industries is generally not suitable to meet the needs of DOE nuclear facilities. Across the DOE complex, different contractors have guidance documents, but they vary widely from site to site. While such guidance documents are valuable, no single guidance document has all the attributes that DOE considers important, including a reasonable degree of consistency or standardization. This standard is a consolidation of the best of the existing guidance. This standard has been developed with a technical content and level of detail intended to be most applicable to safety systems at DOE Hazard Category 2 nonreactor nuclear facilities. Notwithstanding that primary intent, this standard is recommended for other systems at such facilities, especially those that are important to achieving the programmatic mission of the facility. In addition, application of this standard should be considered for systems at other facilities, including non-nuclear facilities, on the basis that SDDs may be beneficial and cost-effective.

  1. Perspective: Role of structure prediction in materials discovery and design

    NASA Astrophysics Data System (ADS)

    Needs, Richard J.; Pickard, Chris J.

    2016-05-01

    Materials informatics owes much to bioinformatics and the Materials Genome Initiative has been inspired by the Human Genome Project. But there is more to bioinformatics than genomes, and the same is true for materials informatics. Here we describe the rapidly expanding role of searching for structures of materials using first-principles electronic-structure methods. Structure searching has played an important part in unraveling structures of dense hydrogen and in identifying the record-high-temperature superconducting component in hydrogen sulfide at high pressures. We suggest that first-principles structure searching has already demonstrated its ability to determine structures of a wide range of materials and that it will play a central and increasing part in materials discovery and design.

  2. Cellular Manufacturing System with Dynamic Lot Size Material Handling

    NASA Astrophysics Data System (ADS)

    Khannan, M. S. A.; Maruf, A.; Wangsaputra, R.; Sutrisno, S.; Wibawa, T.

    2016-02-01

    Material Handling take as important role in Cellular Manufacturing System (CMS) design. In several study at CMS design material handling was assumed per pieces or with constant lot size. In real industrial practice, lot size may change during rolling period to cope with demand changes. This study develops CMS Model with Dynamic Lot Size Material Handling. Integer Linear Programming is used to solve the problem. Objective function of this model is minimizing total expected cost consisting machinery depreciation cost, operating costs, inter-cell material handling cost, intra-cell material handling cost, machine relocation costs, setup costs, and production planning cost. This model determines optimum cell formation and optimum lot size. Numerical examples are elaborated in the paper to ilustrate the characterictic of the model.

  3. Computerized Adaptive Testing System Design: Preliminary Design Considerations.

    ERIC Educational Resources Information Center

    Croll, Paul R.

    A functional design model for a computerized adaptive testing (CAT) system was developed and presented through a series of hierarchy plus input-process-output (HIPO) diagrams. System functions were translated into system structure: specifically, into 34 software components. Implementation of the design in a physical system was addressed through…

  4. Manufacturing process and material selection in concurrent collaborative design of MEMS devices

    NASA Astrophysics Data System (ADS)

    Zha, Xuan F.; Du, H.

    2003-09-01

    In this paper we present knowledge of an intensive approach and system for selecting suitable manufacturing processes and materials for microelectromechanical systems (MEMS) devices in concurrent collaborative design environment. In the paper, fundamental issues on MEMS manufacturing process and material selection such as concurrent design framework, manufacturing process and material hierarchies, and selection strategy are first addressed. Then, a fuzzy decision support scheme for a multi-criteria decision-making problem is proposed for estimating, ranking and selecting possible manufacturing processes, materials and their combinations. A Web-based prototype advisory system for the MEMS manufacturing process and material selection, WebMEMS-MASS, is developed based on the client-knowledge server architecture and framework to help the designer find good processes and materials for MEMS devices. The system, as one of the important parts of an advanced simulation and modeling tool for MEMS design, is a concept level process and material selection tool, which can be used as a standalone application or a Java applet via the Web. The running sessions of the system are inter-linked with webpages of tutorials and reference pages to explain the facets, fabrication processes and material choices, and calculations and reasoning in selection are performed using process capability and material property data from a remote Web-based database and interactive knowledge base that can be maintained and updated via the Internet. The use of the developed system including operation scenario, use support, and integration with an MEMS collaborative design system is presented. Finally, an illustration example is provided.

  5. Prototype solar-heating system design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Design package for complete residential solar-heating system is given. Includes documents and drawings describing performance design, verification standards, and analysis of system with sufficient information to assemble working system.

  6. Review of accelerator conceptual design for the International Fusion Materials Irradiation Facility (IFMIF)

    SciTech Connect

    Berwald, D.H.; Rathke, J.W.; Bruhwiler, D.L.

    1996-12-31

    A Conceptual Design Activity (CDA) for the International Fusion Materials Irradiation Facility (IFMIF) will be completed in December 1996. The IFMIF accelerator system, comprising two 125 mA, 40 MeV deuterium accelerators is a key element of the IFMIF facility. This paper describes the status of the accelerator design as of June, 1996. 7 refs., 3 figs., 1 tab.

  7. Conceptual Design Report for the Irradiated Materials Characterization Laboratory (IMCL)

    SciTech Connect

    Stephanie Austad

    2010-06-01

    This document describes the design at a conceptual level for the Irradiated Materials Characterization Laboratory (IMCL) to be located at the Materials and Fuels Complex (MFC) at the Idaho National Laboratory (INL). The IMCL is an 11,000-ft2, Hazard Category-2 nuclear facility that is designed for use as a state of the-art nuclear facility for the purpose of hands-on and remote handling, characterization, and examination of irradiated and nonirradiated nuclear material samples. The IMCL will accommodate a series of future, modular, and reconfigurable instrument enclosures or caves. To provide a bounding design basis envelope for the facility-provided space and infrastructure, an instrument enclosure or cave configuration was developed and is described in some detail. However, the future instrument enclosures may be modular, integral with the instrument, or reconfigurable to enable various characterization environments to be configured as changes in demand occur. They are not provided as part of the facility.

  8. Optimal Experiment Design for Thermal Characterization of Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Cole, Kevin D.

    2003-01-01

    The purpose of the project was to investigate methods to accurately verify that designed , materials meet thermal specifications. The project involved heat transfer calculations and optimization studies, and no laboratory experiments were performed. One part of the research involved study of materials in which conduction heat transfer predominates. Results include techniques to choose among several experimental designs, and protocols for determining the optimum experimental conditions for determination of thermal properties. Metal foam materials were also studied in which both conduction and radiation heat transfer are present. Results of this work include procedures to optimize the design of experiments to accurately measure both conductive and radiative thermal properties. Detailed results in the form of three journal papers have been appended to this report.

  9. Segmented molecular design of self-healing proteinaceous materials

    PubMed Central

    Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C.

    2015-01-01

    Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure–property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials. PMID:26323335

  10. Soft computing in design and manufacturing of advanced materials

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  11. Segmented molecular design of self-healing proteinaceous materials

    NASA Astrophysics Data System (ADS)

    Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C.

    2015-09-01

    Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure-property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials.

  12. Segmented molecular design of self-healing proteinaceous materials.

    PubMed

    Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C

    2015-09-01

    Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure-property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials.

  13. High-throughput theoretical design of lithium battery materials

    NASA Astrophysics Data System (ADS)

    Shi-Gang, Ling; Jian, Gao; Rui-Juan, Xiao; Li-Quan, Chen

    2016-01-01

    The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is reviewed, including high-capacity cathodes, low-strain cathodes, anodes, solid state electrolytes, and electrolyte additives. With the development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new materials. With the help of automatic simulation flow, many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve performance, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11234013 and 51172274) and the National High Technology Research and Development Program of China (Grant No. 2015AA034201).

  14. System for detecting special nuclear materials

    SciTech Connect

    Jandel, Marian; Rusev, Gencho Yordanov; Taddeucci, Terry Nicholas

    2015-07-14

    The present disclosure includes a radiological material detector having a convertor material that emits one or more photons in response to a capture of a neutron emitted by a radiological material; a photon detector arranged around the convertor material and that produces an electrical signal in response to a receipt of a photon; and a processor connected to the photon detector, the processor configured to determine the presence of a radiological material in response to a predetermined signature of the electrical signal produced at the photon detector. One or more detectors described herein can be integrated into a detection system that is suited for use in port monitoring, treaty compliance, and radiological material management activities.

  15. Interfacial Properties and Design of Functional Energy Materials

    SciTech Connect

    Sumpter, Bobby G; Liang, Liangbo; Nicolai, Adrien; Meunier, V.

    2014-01-01

    The vital importance of energy to society continues to demand a relentless pursuit of energy responsive materials that can bridge fundamental chemical structures at the molecular level and achieve improved functionality, such as efficient energy conversion/storage/transmission, over multiple length scales. This demand can potentially be realized by harnessing the power of self-assembly a spontaneous process where molecules or much larger entities form ordered aggregates as a consequence of predominately non-covalent (weak) interactions. Self-assembly is the key to bottom-up design of molecular devices, because the nearly atomic-level control is very difficult to realize in a top-down, e.g., lithographic approach. However, while function (e.g., charge mobility) in simple systems such as single crystals can often be predicted, predicting the function of the great variety of self-assembled molecular architectures is complicated by the lack of understanding and control over nanoscale interactions, mesoscale architectures, and macroscale (long-range) order. To establish a foundation toward delivering practical solutions, it is critical to develop an understanding of the chemical and physical mechanisms responsible for the self-assembly of molecular and hybrid materials on various substrates. Typically molecular self-assembly involves poorly understood non-covalent intermolecular and substrate-molecule interactions compounded by local and/or collective influences from the substrate atomic lattice (symmetry and/or topological features) and electronic structure. Thus, progress towards unraveling the underlying physicochemical processes that control the structure and macroscopic physical, mechanical, electrical, and transport properties of materials increasingly requires tight integration of theory, modeling and simulation with precision synthesis, advanced experimental characterization, and device measurements. In this mode, theory and simulation can greatly accelerate the

  16. Concurrent materials and process selection in conceptual design

    SciTech Connect

    Kleban, Stephen D.; Knorovsky, Gerald A.

    2000-08-16

    A method for concurrent selection of materials and a joining process based on product requirements using a knowledge-based, constraint satisfaction approach facilitates the product design and manufacturing process. Using a Windows-based computer video display and a data base of materials and their properties, the designer can ascertain the preferred composition of two parts based on various operating/environmental constraints such as load, temperature, lifetime, etc. Optimum joinder of the two parts may simultaneously be determined using a joining process data base based upon the selected composition of the components as well as the operating/environmental constraints.

  17. Double Retort System for Materials Compatibility Testing

    SciTech Connect

    V. Munne; EV Carelli

    2006-02-23

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the Space Nuclear Power Plant (SNPP) for Project Prometheus (References a and b) there was a need to investigate compatibility between the various materials to be used throughout the SNPP. Of particular interest was the transport of interstitial impurities from the nickel-base superalloys, which were leading candidates for most of the piping and turbine components to the refractory metal alloys planned for use in the reactor core. This kind of contamination has the potential to affect the lifetime of the core materials. This letter provides technical information regarding the assembly and operation of a double retort materials compatibility testing system and initial experimental results. The use of a double retort system to test materials compatibility through the transfer of impurities from a source to a sink material is described here. The system has independent temperature control for both materials and is far less complex than closed loops. The system is described in detail and the results of three experiments are presented.

  18. Buried waste containment system materials. Final Report

    SciTech Connect

    Weidner, J.R.; Shaw, P.G.

    1997-10-01

    This report describes the results of a test program to validate the application of a latex-modified cement formulation for use with the Buried Waste Containment System (BWCS) process during a proof of principle (POP) demonstration. The test program included three objectives. One objective was to validate the barrier material mix formulation to be used with the BWCS equipment. A basic mix formula for initial trials was supplied by the cement and latex vendors. The suitability of the material for BWCS application was verified by laboratory testing at the Idaho National Engineering and Environmental Laboratory (INEEL). A second objective was to determine if the POP BWCS material emplacement process adversely affected the barrier material properties. This objective was met by measuring and comparing properties of material prepared in the INEEL Materials Testing Laboratory (MTL) with identical properties of material produced by the BWCS field tests. These measurements included hydraulic conductivity to determine if the material met the US Environmental Protection Agency (EPA) requirements for barriers used for hazardous waste sites, petrographic analysis to allow an assessment of barrier material separation and segregation during emplacement, and a set of mechanical property tests typical of concrete characterization. The third objective was to measure the hydraulic properties of barrier material containing a stop-start joint to determine if such a feature would meet the EPA requirements for hazardous waste site barriers.

  19. Designing Microporus Carbons for Hydrogen Storage Systems

    SciTech Connect

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  20. Turning statistical physics models into materials design engines.

    PubMed

    Miskin, Marc Z; Khaira, Gurdaman; de Pablo, Juan J; Jaeger, Heinrich M

    2016-01-01

    Despite the success statistical physics has enjoyed at predicting the properties of materials for given parameters, the inverse problem, identifying which material parameters produce given, desired properties, is only beginning to be addressed. Recently, several methods have emerged across disciplines that draw upon optimization and simulation to create computer programs that tailor material responses to specified behaviors. However, so far the methods developed either involve black-box techniques, in which the optimizer operates without explicit knowledge of the material's configuration space, or require carefully tuned algorithms with applicability limited to a narrow subclass of materials. Here we introduce a formalism that can generate optimizers automatically by extending statistical mechanics into the realm of design. The strength of this approach lies in its capability to transform statistical models that describe materials into optimizers to tailor them. By comparing against standard black-box optimization methods, we demonstrate how optimizers generated by this formalism can be faster and more effective, while remaining straightforward to implement. The scope of our approach includes possibilities for solving a variety of complex optimization and design problems concerning materials both in and out of equilibrium.

  1. Installation of a materials management system.

    PubMed

    Graves, J; Siewert, B

    1990-04-01

    Installation in five months using existing staff--that's what it took Waukesha Memorial Hospital (WMH) to go from the first installation planning meeting to a fully operational system. This article explains the process WMH followed to install the HBO Materials Management system in five months using in-house staff.

  2. Space shuttle visual simulation system design study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A recommendation and a specification for the visual simulation system design for the space shuttle mission simulator are presented. A recommended visual system is described which most nearly meets the visual design requirements. The cost analysis of the recommended system covering design, development, manufacturing, and installation is reported. Four alternate systems are analyzed.

  3. Computerized systems to provide materials selection advice

    SciTech Connect

    Krisher, A.S.

    1996-07-01

    The rapid advance of computer science has increased the ability to store and retrieve information. These new capabilities are beginning to be applied to the problem of providing sound advice to non-specialist engineers who make materials selection decisions. This paper presents an overview of the large scale systems which exist in finished or near finished form and are (or may soon be) available for use by the public. The paper focuses on systems which transfer knowledge taking into account the many qualifications which enter into the reasoning processes of materials/corrosion specialists. The paper discusses both the strengths and limitations of each system.

  4. Design and Data Management System

    NASA Technical Reports Server (NTRS)

    Messer, Elizabeth; Messer, Brad; Carter, Judy; Singletary, Todd; Albasini, Colby; Smith, Tammy

    2007-01-01

    The Design and Data Management System (DDMS) was developed to automate the NASA Engineering Order (EO) and Engineering Change Request (ECR) processes at the Propulsion Test Facilities at Stennis Space Center for efficient and effective Configuration Management (CM). Prior to the development of DDMS, the CM system was a manual, paper-based system that required an EO or ECR submitter to walk the changes through the acceptance process to obtain necessary approval signatures. This approval process could take up to two weeks, and was subject to a variety of human errors. The process also requires that the CM office make copies and distribute them to the Configuration Control Board members for review prior to meetings. At any point, there was a potential for an error or loss of the change records, meaning the configuration of record was not accurate. The new Web-based DDMS eliminates unnecessary copies, reduces the time needed to distribute the paperwork, reduces time to gain the necessary signatures, and prevents the variety of errors inherent in the previous manual system. After implementation of the DDMS, all EOs and ECRs can be automatically checked prior to submittal to ensure that the documentation is complete and accurate. Much of the configuration information can be documented in the DDMS through pull-down forms to ensure consistent entries by the engineers and technicians in the field. The software also can electronically route the documents through the signature process to obtain the necessary approvals needed for work authorization. The workflow of the system allows for backups and timestamps that determine the correct routing and completion of all required authorizations in a more timely manner, as well as assuring the quality and accuracy of the configuration documents.

  5. Space mail recovery system design concepts

    NASA Astrophysics Data System (ADS)

    Kostelezky, Michael; Doherr, Karl-Friedrich; Schoettle, Ulrich

    Future space utilization exhibit a significant demand for return of materials processed in space and quick access to the samples by users, which can best be accomplished by recoverable capsules. A conceptual study has been performed in pursuit of assessing the requirements of a landbased recovery of a small semi-ballistic reentry vehicle. Both a conventional recovery system and a steerable gliding chute concept have been evaluated and designed subject to given mission constraints. This paper discusses the design of the two recovery subsytems and describes the main technical features. Though of increased complexity, the second concept is the preferred choice because of its superior performance capabilities and its potential for future technology development.

  6. Nuclear Space Power Systems Materials Requirements

    SciTech Connect

    Buckman, R.W. Jr.

    2004-02-04

    High specific energy is required for space nuclear power systems. This generally means high operating temperatures and the only alloy class of materials available for construction of such systems are the refractory metals niobium, tantalum, molybdenum and tungsten. The refractory metals in the past have been the construction materials selected for nuclear space power systems. The objective of this paper will be to review the past history and requirements for space nuclear power systems from the early 1960's through the SP-100 program. Also presented will be the past and present status of refractory metal alloy technology and what will be needed to support the next advanced nuclear space power system. The next generation of advanced nuclear space power systems can benefit from the review of this past experience. Because of a decline in the refractory metal industry in the United States, ready availability of specific refractory metal alloys is limited.

  7. Design, synthesis, and evaluation of materials for microelectronics applications

    NASA Astrophysics Data System (ADS)

    Heath, William Hoy

    The advancement of the microelectronics industry is heavily dependent on the design, synthesis, and integration of new materials. Non-chemically amplified photoresists (NCAR) consist of a base resin and photoactive additive which inhibits the dissolution of the this resin. The robustness of NCARs has made them well suited to the unique material requirements of the photomask making industry for many years. However, smaller feature sizes now require mask makers to move to shorter wavelengths of light and thus a more transparent polymer and photoactive compound are needed for these applications. During the search for 157nm photoresists, it was found that polymers containing the hexafluoroisopropanol functionality are transparent well into the ultraviolet region and possess dissolution characteristics similar to the Novolak resins utilized in NCARs. A suitable photoactive compound (PAC) has been identified; the synthesis of the PAC and transparent polymers, as well as their formulation, dissolution properties, and lithographic evaluation will be presented. Additionally, the base catalyzed imidization of poly(amic acid ethyl ester) (PAETE) provides a good tool for developing a photosensitive polyimide insulator. However few base photogenerators (PBG) exist that absorb at the appropriate wavelength (>400nm) for use in these opaque films. Two sensitized systems were evaluated; their synthesis, photophysical evaluation, and attempted imaging in PAETE will be described. Additionally, the synthesis and photophysical evaluation of a red-shifted thiophene-based PBG will be described. Finally, step and flash imprint lithography exhibits a great promise as a cost effective alternative imaging solution to traditional optical lithography. A strippable resist is needed to preserve the templates used in this process should they become contaminated. The thermal reversibility of urethanes, specifically those derived from aromatic oximes, make them well suited for integration into a

  8. Systems and methods for predicting materials properties

    DOEpatents

    Ceder, Gerbrand; Fischer, Chris; Tibbetts, Kevin; Morgan, Dane; Curtarolo, Stefano

    2007-11-06

    Systems and methods for predicting features of materials of interest. Reference data are analyzed to deduce relationships between the input data sets and output data sets. Reference data includes measured values and/or computed values. The deduced relationships can be specified as equations, correspondences, and/or algorithmic processes that produce appropriate output data when suitable input data is used. In some instances, the output data set is a subset of the input data set, and computational results may be refined by optionally iterating the computational procedure. To deduce features of a new material of interest, a computed or measured input property of the material is provided to an equation, correspondence, or algorithmic procedure previously deduced, and an output is obtained. In some instances, the output is iteratively refined. In some instances, new features deduced for the material of interest are added to a database of input and output data for known materials.

  9. Material considerations in the STEREO solar array design

    NASA Astrophysics Data System (ADS)

    Tanzman, Jennifer R.

    2008-12-01

    Solar TErrestrial RElations Observatory (STEREO), the third mission in NASA's Solar Terrestrial Probes program, launched aboard a single Delta II 7925 launch vehicle on October 25, 2006 from Cape Canaveral. This two-year mission employs two nearly-identical, space-based observatories, one ahead of the Earth in its orbit, and the other trailing behind, to provide the first stereoscopic measurements of the sun and its coronal mass ejections, or CMEs. The STEREO observatories utilize four sets of solar arrays, each of which experienced a two-stage deployment on-orbit. This paper illustrates material considerations in the solar array subsystem design. It first focuses on the solar array substrate, considering material coefficient of thermal expansion (CTE) concerns when choosing a substrate laminate to which the solar cells will adhere. It then explores a similar issue when choosing a substrate insert material. Next, the focus shifts to material considerations in the solar array hinge design. This design was driven not just by function, but by a host of different material considerations, ranging from mass savings to fabrication time and cost.

  10. Structural Design Elements in Biological Materials: Application to Bioinspiration.

    PubMed

    Naleway, Steven E; Porter, Michael M; McKittrick, Joanna; Meyers, Marc A

    2015-10-01

    Eight structural elements in biological materials are identified as the most common amongst a variety of animal taxa. These are proposed as a new paradigm in the field of biological materials science as they can serve as a toolbox for rationalizing the complex mechanical behavior of structural biological materials and for systematizing the development of bioinspired designs for structural applications. They are employed to improve the mechanical properties, namely strength, wear resistance, stiffness, flexibility, fracture toughness, and energy absorption of different biological materials for a variety of functions (e.g., body support, joint movement, impact protection, weight reduction). The structural elements identified are: fibrous, helical, gradient, layered, tubular, cellular, suture, and overlapping. For each of the structural design elements, critical design parameters are presented along with constitutive equations with a focus on mechanical properties. Additionally, example organisms from varying biological classes are presented for each case to display the wide variety of environments where each of these elements is present. Examples of current bioinspired materials are also introduced for each element.

  11. Designing ICT Training Material for Chinese Language Arts Teachers.

    ERIC Educational Resources Information Center

    Lin, Janet Mei-Chuen; Wu, Cheng-Chih; Chen, Hsiu-Yen

    The purpose of this research is to tailor the design of information and communications technology (ICT) training material to the needs of Chinese language arts teachers such that the training they receive will be conducive to effective integration of ICT into instruction. Eighteen experienced teachers participated in a Delphi-like survey that…

  12. Perspective: NanoMine: A material genome approach for polymer nanocomposites analysis and design

    NASA Astrophysics Data System (ADS)

    Zhao, He; Li, Xiaolin; Zhang, Yichi; Schadler, Linda S.; Chen, Wei; Brinson, L. Catherine

    2016-05-01

    Polymer nanocomposites are a designer class of materials where nanoscale particles, functional chemistry, and polymer resin combine to provide materials with unprecedented combinations of physical properties. In this paper, we introduce NanoMine, a data-driven web-based platform for analysis and design of polymer nanocomposite systems under the material genome concept. This open data resource strives to curate experimental and computational data on nanocomposite processing, structure, and properties, as well as to provide analysis and modeling tools that leverage curated data for material property prediction and design. With a continuously expanding dataset and toolkit, NanoMine encourages community feedback and input to construct a sustainable infrastructure that benefits nanocomposite material research and development.

  13. Heat transport system, method and material

    DOEpatents

    Musinski, D.L.

    1987-04-28

    A heat transport system, method and composite material are disclosed in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure. 1 fig.

  14. System zur Analyse Naturwissenschftlicher Curricula (A Curriculum Material Analysis System for Science).

    ERIC Educational Resources Information Center

    Haussler, Peter; Pittman, June

    This volume presents a description of the Curriculum Materials Analysis System (CMAS), and discusses its use. The volume is in two parts, providing German and English versions of the same material. CMAS was designed for use in analyzing five major aspects of curriculum use: (1) content, (2) instructional methods, (3) adaptiveness, (4)…

  15. On the design of reversible QDCA systems.

    SciTech Connect

    DeBenedictis, Erik P.; Frank, Michael P. (Florida State University, Tallahassee, FL); Ottavi, Marco; Frost-Murphy, Sarah E.

    2006-10-01

    This work is the first to describe how to go about designing a reversible QDCA system. The design space is substantial, and there are many questions that a designer needs to answer before beginning to design. This document begins to explicate the tradeoffs and assumptions that need to be made and offers a range of approaches as starting points and examples. This design guide is an effective tool for aiding designers in creating the best quality QDCA implementation for a system.

  16. Designing ECM-mimetic Materials Using Protein Engineering

    PubMed Central

    Cai, Lei; Heilshorn, Sarah C.

    2014-01-01

    The natural extracellular matrix (ECM), with its multitude of evolved cell-instructive and cell-responsive properties, provides inspiration and guidelines for the design of engineered biomaterials. One strategy to create ECM-mimetic materials is the modular design of protein-based engineered ECM (eECM) scaffolds. This modular design strategy involves combining multiple protein domains with different functionalities into a single, modular polymer sequence, resulting in a multifunctional matrix with independent tunability of the individual domain functions. These eECMs often enable decoupled control over multiple material properties for fundamental studies of cell-matrix interactions. In addition, since the eECMs are frequently composed entirely of bioresorbable amino acids, these matrices have immense clinical potential for a variety of regenerative medicine applications. This brief review demonstrates how fundamental knowledge gained from structure-function studies of native proteins can be exploited in the design of novel protein-engineered biomaterials. While the field of protein-engineered biomaterials has existed for over 20 years, the community is only now beginning to fully explore the diversity of functional peptide modules that can be incorporated into these materials. We have chosen to highlight recent examples that either (1) demonstrate exemplary use as matrices with cell-instructive and cell-responsive properties or (2) demonstrate outstanding creativity in terms of novel molecular-level design and macro-level functionality. PMID:24365704

  17. Turning statistical physics models into materials design engines

    PubMed Central

    Miskin, Marc Z.; Khaira, Gurdaman; de Pablo, Juan J.; Jaeger, Heinrich M.

    2016-01-01

    Despite the success statistical physics has enjoyed at predicting the properties of materials for given parameters, the inverse problem, identifying which material parameters produce given, desired properties, is only beginning to be addressed. Recently, several methods have emerged across disciplines that draw upon optimization and simulation to create computer programs that tailor material responses to specified behaviors. However, so far the methods developed either involve black-box techniques, in which the optimizer operates without explicit knowledge of the material’s configuration space, or require carefully tuned algorithms with applicability limited to a narrow subclass of materials. Here we introduce a formalism that can generate optimizers automatically by extending statistical mechanics into the realm of design. The strength of this approach lies in its capability to transform statistical models that describe materials into optimizers to tailor them. By comparing against standard black-box optimization methods, we demonstrate how optimizers generated by this formalism can be faster and more effective, while remaining straightforward to implement. The scope of our approach includes possibilities for solving a variety of complex optimization and design problems concerning materials both in and out of equilibrium. PMID:26684770

  18. Neural-network-biased genetic algorithms for materials design

    NASA Astrophysics Data System (ADS)

    Patra, Tarak; Meenakshisundaram, Venkatesh; Simmons, David

    Machine learning tools have been progressively adopted by the materials science community to accelerate design of materials with targeted properties. However, in the search for new materials exhibiting properties and performance beyond that previously achieved, machine learning approaches are frequently limited by two major shortcomings. First, they are intrinsically interpolative. They are therefore better suited to the optimization of properties within the known range of accessible behavior than to the discovery of new materials with extremal behavior. Second, they require the availability of large datasets, which in some fields are not available and would be prohibitively expensive to produce. Here we describe a new strategy for combining genetic algorithms, neural networks and other machine learning tools, and molecular simulation to discover materials with extremal properties in the absence of pre-existing data. Predictions from progressively constructed machine learning tools are employed to bias the evolution of a genetic algorithm, with fitness evaluations performed via direct molecular dynamics simulation. We survey several initial materials design problems we have addressed with this framework and compare its performance to that of standard genetic algorithm approaches. We acknowledge the W. M. Keck Foundation for support of this work.

  19. CubeSat Material Limits For Design for Demise

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Jarkey, D. R.

    2014-01-01

    The CubeSat form factor of nano-satellite (a satellite with a mass between one and ten kilograms) has grown in popularity due to their ease of construction and low development and launch costs. In particular, their use as student led payload design projects has increased due to the growing number of launch opportunities. CubeSats are often deployed as secondary or tertiary payloads on most US launch vehicles or they may be deployed from the ISS. The focus of this study will be on CubeSats launched from the ISS. From a space safety standpoint, the development and deployment processes for CubeSats differ significantly from that of most satellites. For large satellites, extensive design reviews and documentation are completed, including assessing requirements associated with reentry survivability. Typical CubeSat missions selected for ISS deployment have a less rigorous review process that may not evaluate aspects beyond overall design feasibility. CubeSat design teams often do not have the resources to ensure their design is compliant with reentry risk requirements. A study was conducted to examine methods to easily identify the maximum amount of a given material that can be used in the construction of a CubeSats without posing harm to persons on the ground. The results demonstrate that there is not a general equation or relationship that can be used for all materials; instead a limiting value must be defined for each unique material. In addition, the specific limits found for a number of generic materials that have been previously used as benchmarking materials for reentry survivability analysis tool comparison will be discussed.

  20. CubeSat Material Limits for Design for Demise

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Jarkey, D. R.

    2014-01-01

    The CubeSat form factor of nano-satellite (a satellite with a mass between one and ten kilograms) has grown in popularity due to their ease of construction and low development and launch costs. In particular, their use as student led payload design projects has increased due to the growing number of launch opportunities. CubeSats are often deployed as secondary or tertiary payloads on most US launch vehicles or they may be deployed from the ISS. The focus of this study will be on CubeSats launched from the ISS. From a space safety standpoint, the development and deployment processes for CubeSats differ significantly from that of most satellites. For large satellites, extensive design reviews and documentation are completed, including assessing requirements associated with re-entry survivability. Typical CubeSat missions selected for ISS deployment have a less rigorous review process that may not evaluate aspects beyond overall design feasibility. CubeSat design teams often do not have the resources to ensure their design is compliant with re-entry risk requirements. A study was conducted to examine methods to easily identify the maximum amount of a given material that can be used in the construction of a CubeSats without posing harm to persons on the ground. The results demonstrate that there is not a general equation or relationship that can be used for all materials; instead a limiting value must be defined for each unique material. In addition, the specific limits found for a number of generic materials that have been previously used as benchmarking materials for re-entry survivability analysis tool comparison will be discussed.

  1. Impact Testing of Orbiter Thermal Protection System Materials

    NASA Technical Reports Server (NTRS)

    Kerr, Justin

    2006-01-01

    This viewgraph presentation reviews the impact testing of the materials used in designing the shuttle orbiter thermal protection system (TPS). Pursuant to the Columbia Accident Investigation Board recommendations a testing program of the TPS system was instituted. This involved using various types of impactors in different sizes shot from various sizes and strengths guns to impact the TPS tiles and the Leading Edge Structural Subsystem (LESS). The observed damage is shown, and the resultant lessons learned are reviewed.

  2. Fire and materials modeling for transportation systems

    SciTech Connect

    Skocypec, R.D.; Gritzo, L.A.; Moya, J.L.; Nicolette, V.F.; Tieszen, S.R.; Thomas, R.

    1994-10-01

    Fire is an important threat to the safety of transportation systems. Therefore, understanding the effects of fire (and its interaction with materials) on transportation systems is crucial to quantifying and mitigating the impact of fire on the safety of those systems. Research and development directed toward improving the fire safety of transportation systems must address a broad range of phenomena and technologies, including: crash dynamics, fuel dispersion, fire environment characterization, material characterization, and system/cargo thermal response modeling. In addition, if the goal of the work is an assessment and/or reduction of risk due to fires, probabilistic risk assessment technology is also required. The research currently underway at Sandia National Laboratories in each of these areas is summarized in this paper.

  3. Big-deep-smart data in imaging for guiding materials design.

    PubMed

    Kalinin, Sergei V; Sumpter, Bobby G; Archibald, Richard K

    2015-10-01

    Harnessing big data, deep data, and smart data from state-of-the-art imaging might accelerate the design and realization of advanced functional materials. Here we discuss new opportunities in materials design enabled by the availability of big data in imaging and data analytics approaches, including their limitations, in material systems of practical interest. We specifically focus on how these tools might help realize new discoveries in a timely manner. Such methodologies are particularly appropriate to explore in light of continued improvements in atomistic imaging, modelling and data analytics methods.

  4. Artwork Interactive Design System (AIDS) program description

    NASA Technical Reports Server (NTRS)

    Johnson, B. T.; Taylor, J. F.

    1976-01-01

    An artwork interactive design system is described which provides the microelectronic circuit designer/engineer a tool to perform circuit design, automatic layout modification, standard cell design, and artwork verification at a graphics computer terminal using a graphics tablet at the designer/computer interface.

  5. The radioactive materials packaging handbook: Design, operations, and maintenance

    SciTech Connect

    Shappert, L.B.; Bowman, S.M.; Arnold, E.D.

    1998-08-01

    As part of its required activities in 1994, the US Department of Energy (DOE) made over 500,000 shipments. Of these shipments, approximately 4% were hazardous, and of these, slightly over 1% (over 6,400 shipments) were radioactive. Because of DOE`s cleanup activities, the total quantities and percentages of radioactive material (RAM) that must be moved from one site to another is expected to increase in the coming years, and these materials are likely to be different than those shipped in the past. Irradiated fuel will certainly be part of the mix as will RAM samples and waste. However, in many cases these materials will be of different shape and size and require a transport packaging having different shielding, thermal, and criticality avoidance characteristics than are currently available. This Handbook provides guidance on the design, testing, certification, and operation of packages for these materials.

  6. Preliminary materials assessment for the Satellite Power System (SPS)

    SciTech Connect

    Teeter, R.R.; Jamieson, W.M.

    1980-01-01

    Presently, there are two SPS reference design concepts (one using silicon solar cells; the other using gallium arsenide solar cells). A materials assessment of both systems was performed based on the materials lists set forth in the DOE/NASA SPS Reference System Report: Concept Development and Evaluation Program. This listing identified 22 materials (plus miscellaneous and organics) used in the SPS. Tracing the production processes for these 22 materials, a total demand for over 20 different bulk materials (copper, silicon, sulfuric acid, etc.) and nealy 30 raw materials (copper ore, sand, sulfur ore, etc.) was revealed. Assessment of these SPS material requirements produced a number of potential material supply problems. The more serious problems are those associated with the solar cell materials (gallium, gallium arsenide, sapphire, and solar grade silicon), and the graphite fiber required for the satellite structure and space construction facilities. In general, the gallium arsenide SPS option exhibits more serious problems than the silicon option, possibly because gallium arsenide technology is not as well developed as that for silicon. Results are presented and discussed in detail. (WHK)

  7. Application and design of solar photovoltaic system

    NASA Astrophysics Data System (ADS)

    Tianze, Li; Hengwei, Lu; Chuan, Jiang; Luan, Hou; Xia, Zhang

    2011-02-01

    Solar modules, power electronic equipments which include the charge-discharge controller, the inverter, the test instrumentation and the computer monitoring, and the storage battery or the other energy storage and auxiliary generating plant make up of the photovoltaic system which is shown in the thesis. PV system design should follow to meet the load supply requirements, make system low cost, seriously consider the design of software and hardware, and make general software design prior to hardware design in the paper. To take the design of PV system for an example, the paper gives the analysis of the design of system software and system hardware, economic benefit, and basic ideas and steps of the installation and the connection of the system. It elaborates on the information acquisition, the software and hardware design of the system, the evaluation and optimization of the system. Finally, it shows the analysis and prospect of the application of photovoltaic technology in outer space, solar lamps, freeways and communications.

  8. Biodeterioration of materials in water reclamation systems

    NASA Technical Reports Server (NTRS)

    Ford, Tim; Maki, James S.; Mitchell, Ralph

    1992-01-01

    The chemicals produced by the microbial processes involved in the 'biofilms' which form on the surfaces of manned spacecraft water reclamation systems encompass both metals and organic poisons; both are potential hazards to astronaut health and the growth of the plants envisioned for closed-cycle life support systems. Image analysis is here shown to be a very useful technique for the study of biofilm formation on candidate water-processor materials for Space Station Freedom. The biodeterioration of materials exposed to biofilms can be swiftly evaluated by means of electrochemical impedance spectroscopy.

  9. Interservice Procedures for Instructional Systems Development. Phase II: Design.

    ERIC Educational Resources Information Center

    Branson, Robert K.; And Others

    The document is the second of a five-part series focusing in minute detail on the processes involved in the formulation of an instructional systems development (ISD) program for military interservice training that will adequately train individuals to do a particular job. Phase II, Design, is concerned with designing instructional materials based…

  10. Phase Change Material Systems for High Temperature Heat Storage.

    PubMed

    Perraudin, David Y S; Binder, Selmar R; Rezaei, Ehsan; Ortonaa, Alberto; Haussener, Sophia

    2015-01-01

    Efficient, cost effective, and stable high-temperature heat storage material systems are important in applications such as high-temperature industrial processes (metal processing, cement and glass manufacturing, etc.), or electricity storage using advanced adiabatic compressed air energy storage. Incorporating phase change media into heat storage systems provides an advantage of storing and releasing heat at nearly constant temperature, allowing steady and optimized operation of the downstream processes. The choice of, and compatibility of materials and encapsulation for the phase change section is crucial, as these must guarantee good and stable performance and long lifetime at low cost. Detailed knowledge of the material properties and stability, and the coupled heat transfer, phase change, and fluid flow are required to allow for performance and lifetime predictions. We present coupled experimental-numerical techniques allowing prediction of the long-term performance of a phase change material-based high-temperature heat storage system. The experimental investigations focus on determination of material properties (melting temperature, heat of fusion, etc.) and phase change material and encapsulation interaction (stability, interface reactions, etc.). The computational investigations focus on an understanding of the multi-mode heat transfer, fluid flow, and phase change processes in order to design the material system for enhanced performance. The importance of both the experimental and numerical approaches is highlighted and we give an example of how both approaches can be complementarily used for the investigation of long-term performance. PMID:26842330

  11. Design of electro-active polymer gels as actuator materials

    NASA Astrophysics Data System (ADS)

    Popovic, Suzana

    Smart materials, alternatively called active or adaptive, differ from passive materials in their sensing and activation capability. These materials can sense changes in environment such as: electric field, magnetic field, UV light, pH, temperature. They are capable of responding in numerous ways. Some change their stiffness properties (electro-rheological fluids), other deform (piezos, shape memory alloys, electrostrictive materials) or change optic properties (electrochromic polymers). Polymer gels are one of such materials which can change the shape, volume and even optical properties upon different applied stimuli. Due to their low stiffness property they are capable of having up to 100% of strain in a short time, order of seconds. Their motion resembles the one of biosystems, and they are often seen as possible artificial muscle materials. Despite their delicate nature, appropriate design can make them being used as actuator materials which can form controllable surfaces and mechanical switches. In this study several different groups of polymer gel material were investigated: (a) acrylamide based gels are sensitive to pH and electric field and respond in volume change, (b) polyacrylonitrile (PAN) gel is sensitive to pH and electric field and responds in axial strain and bending, (c) polyvinylalcohol (PVA) gel is sensitive to electric field and responds in axial strain and bending and (d) perfluorinated sulfonic acid membrane, Nafion RTM, is sensitive to electric field and responds in bending. Electro-mechanical and chemo-mechanical behavior of these materials is a function of a variety of phenomena: polymer structure, affinity of polymer to the solvent, charge distribution within material, type of solvent, elasticity of polymer matrix, etc. Modeling of this behavior is a task aimed to identify what is driving mechanism for activation and express it in a quantitative way in terms of deformation of material. In this work behavior of the most promising material as

  12. Material Systems for Blast-Energy Dissipation

    SciTech Connect

    James Schondel; Henry S. Chu

    2010-10-01

    Lightweight panels have been designed to protect buildings and vehicles from blast pressures by activating energy dissipation mechanisms under the influence of blast loading. Panels were fabricated which featured a variety of granular materials and hydraulic dissipative deformation mechanisms and the test articles were subjected to full-scale blast loading. The force time-histories transmitted by each technology were measured by a novel method that utilized inexpensive custom-designed force sensors. The array of tests revealed that granular materials can effectively dissipate blast energy if they are employed in a way that they easily crush and rearrange. Similarly, hydraulic dissipation can effectively dissipate energy if the panel features a high fraction of porosity and the panel encasement features low compressive stiffness.

  13. Design of a Compact Fatigue Tester for Testing Irradiated Materials

    SciTech Connect

    Hartsell, Brian; Campbell, Michael; Fitton, Michael; Hurh, Patrick; Ishida, Taku; Nakadaira, Takeshi

    2015-06-01

    A compact fatigue testing machine that can be easily inserted into a hot cell for characterization of irradiated materials is beneficial to help determine relative fatigue performance differences between new and irradiated material. Hot cell use has been carefully considered by limiting the size and weight of the machine, simplifying sample loading and test setup for operation via master-slave manipulator, and utilizing an efficient design to minimize maintenance. Funded from a US-Japan collaborative effort, the machine has been specifically designed to help characterize titanium material specimens. These specimens are flat cantilevered beams for initial studies, possibly utilizing samples irradiated at other sources of beam. The option to test spherically shaped samples cut from the T2K vacuum window is also available. The machine is able to test a sample to $10^7$ cycles in under a week, with options to count cycles and sense material failure. The design of this machine will be presented along with current status.

  14. Materials by Design-A Perspective From Atoms to Structures.

    PubMed

    Buehler, Markus J

    2013-02-01

    Biological materials are effectively synthesized, controlled, and used for a variety of purposes-in spite of limitations in energy, quality, and quantity of their building blocks. Whereas the chemical composition of materials in the living world plays a some role in achieving functional properties, the way components are connected at different length scales defines what material properties can be achieved, how they can be altered to meet functional requirements, and how they fail in disease states and other extreme conditions. Recent work has demonstrated this by using large-scale computer simulations to predict materials properties from fundamental molecular principles, combined with experimental work and new mathematical techniques to categorize complex structure-property relationships into a systematic framework. Enabled by such categorization, we discuss opportunities based on the exploitation of concepts from distinct hierarchical systems that share common principles in how function is created, linking music to materials science. PMID:24163499

  15. Materials by Design-A Perspective From Atoms to Structures.

    PubMed

    Buehler, Markus J

    2013-02-01

    Biological materials are effectively synthesized, controlled, and used for a variety of purposes-in spite of limitations in energy, quality, and quantity of their building blocks. Whereas the chemical composition of materials in the living world plays a some role in achieving functional properties, the way components are connected at different length scales defines what material properties can be achieved, how they can be altered to meet functional requirements, and how they fail in disease states and other extreme conditions. Recent work has demonstrated this by using large-scale computer simulations to predict materials properties from fundamental molecular principles, combined with experimental work and new mathematical techniques to categorize complex structure-property relationships into a systematic framework. Enabled by such categorization, we discuss opportunities based on the exploitation of concepts from distinct hierarchical systems that share common principles in how function is created, linking music to materials science.

  16. Mechanical design engineering. NASA/university advanced design program: Lunar Bulk Material Transport Vehicle

    NASA Astrophysics Data System (ADS)

    Daugherty, Paul; Griner, Stewart; Hendrix, Alan; Makarov, Chris; Martiny, Stephen; Meyhoefer, Douglas Ralph; Platt, Cody Claxton; Sivak, John; Wheeler, Elizabeth Fitch

    1988-06-01

    The design of a Lunar Bulk Material Transport Vehicle (LBMTV) is discussed. Goals set in the project include a payload of 50 cubic feet of lunar soil with a lunar of approximately 800 moon-pounds, a speed of 15 mph, and the ability to handle a grade of 20 percent. Thermal control, an articulated steering mechanism, a dump mechanism, a self-righting mechanism, viable power sources, and a probable control panel are analyzed. The thermal control system involves the use of small strip heaters to heat the housing of electronic equipment in the absence of sufficient solar radiation and multi-layer insulation during periods of intense solar radiation. The entire system uses only 10 W and weighs about 60 pounds, or 10 moon-pounds. The steering mechanism is an articulated steering joint at the center of the vehicle. It utilizes two actuators and yields a turning radius of 10.3 feet. The dump mechanism rotates the bulk material container through an angle of 100 degree using one actuator. The self-righting mechanism consists of two four bar linkages, each of which is powered by the same size actuator as the other linkages. The LBMTV is powered by rechargeable batteries. A running time of at least two hours is attained under a worst case analysis. The weight of the batteries is 100 pounds. A control panel consisting of feedback and control instruments is described. The panel includes all critical information necessary to control the vehicle remotely. The LBMTV is capable of handling many types of cargo. It is able to interface with many types of removable bulk material containers. These containers are made to interface with the three-legged walker, SKITTER. The overall vehicle is about 15 feet in length and has a weight of about 1000 pounds, or 170 lunar pounds.

  17. Mechanical design engineering. NASA/university advanced design program: Lunar Bulk Material Transport Vehicle

    NASA Technical Reports Server (NTRS)

    Daugherty, Paul; Griner, Stewart; Hendrix, Alan; Makarov, Chris; Martiny, Stephen; Meyhoefer, Douglas Ralph; Platt, Cody Claxton; Sivak, John; Wheeler, Elizabeth Fitch

    1988-01-01

    The design of a Lunar Bulk Material Transport Vehicle (LBMTV) is discussed. Goals set in the project include a payload of 50 cubic feet of lunar soil with a lunar of approximately 800 moon-pounds, a speed of 15 mph, and the ability to handle a grade of 20 percent. Thermal control, an articulated steering mechanism, a dump mechanism, a self-righting mechanism, viable power sources, and a probable control panel are analyzed. The thermal control system involves the use of small strip heaters to heat the housing of electronic equipment in the absence of sufficient solar radiation and multi-layer insulation during periods of intense solar radiation. The entire system uses only 10 W and weighs about 60 pounds, or 10 moon-pounds. The steering mechanism is an articulated steering joint at the center of the vehicle. It utilizes two actuators and yields a turning radius of 10.3 feet. The dump mechanism rotates the bulk material container through an angle of 100 degree using one actuator. The self-righting mechanism consists of two four bar linkages, each of which is powered by the same size actuator as the other linkages. The LBMTV is powered by rechargeable batteries. A running time of at least two hours is attained under a worst case analysis. The weight of the batteries is 100 pounds. A control panel consisting of feedback and control instruments is described. The panel includes all critical information necessary to control the vehicle remotely. The LBMTV is capable of handling many types of cargo. It is able to interface with many types of removable bulk material containers. These containers are made to interface with the three-legged walker, SKITTER. The overall vehicle is about 15 feet in length and has a weight of about 1000 pounds, or 170 lunar pounds.

  18. Multiobjective control design including performance robustness for gust alleviation of a wing with adaptive material actuators

    NASA Astrophysics Data System (ADS)

    Layton, Jeffrey B.

    1997-06-01

    The goal of this paper is to examine the use of covariance control to directly design reduced-order multi-objective controllers for gust alleviation using adaptive materials as the control effector. It will use piezoelectric actuators as control effectors in a finite element model of a full-size wing model. More precisely, the finite element model is of the F-16 Agile Falcon/Active Flexible Wing that is modified to use piezoelectric actuators as control effectors. The paper will also examine the interacting roles of important control design constraints and objectives for designing an aeroservoelastic system. The paper will also present some results of multiobjective control design for the model, illustrating the benefits and complexity of modern practical control design for aeroservoelastic systems that use adaptive materials for actuation.

  19. Materials issues in diagnostic systems for BPX and ITER

    SciTech Connect

    Clinard, F.W. Jr.; Farnum, E.H. ); Griscom, D.L. ); Mattas, R.F. ); Medley, S.S.; Young, K. M. . Plasma Physics Lab.); Wiffen, F.W. ); Wojtowicz, S.S. (General Atomics, San Diego, CA (Unit

    1991-01-01

    Diagnostic systems in advanced D-T-burning fusion devices will be subjected to intense fluxes and fluences of high-energy neutrons and gamma rays. Materials used in these systems may suffer significant degradation of structural, optical, and electrical properties, either promptly upon irradiation or after accumulation of structural damage. Of particular concern are windows, optical fibers, reflectors, and insulators. Many materials currently specified for these components are known to degrade under anticipated operating conditions. However, careful materials selection and modification based on an appropriate irradiation testing program, when combined with optimization of design-sensitive factors such as location, shielding, and ease of replacement, should help to alleviate these materials problems. 30 refs., 2 figs., 1 tab.

  20. Development and implementation of automated radioactive materials handling systems

    SciTech Connect

    Jacoboski, D.L.

    1992-12-01

    Material handling of radioactive and hazardous materials has forced the need to pursue remotely operated and robotic systems in light of operational safety concerns. Manual maneuvering, repackaging, overpacking and inspecting of containers which store radioactive and hazardous materials is the present mode of operation at the Department of Energy (DOE) Fernald Environmental Management Project (FEMP) in Fernald Ohio. The manual methods are unacceptable in the eyes of concerned site workers and influential community oversight committees. As an example to respond to the FEMP material handling needs, design efforts have been initiated to provide a remotely operated system to repackage thousands of degradated drums containing radioactive Thorium: Later, the repackaged Thorium will be shipped offsite to a predesignated repository again requiring remote operation.

  1. The Huygens Probe System Design

    NASA Astrophysics Data System (ADS)

    Clausen, K. C.; Hassan, H.; Verdant, M.; Couzin, P.; Huttin, G.; Brisson, M.; Sollazzo, C.; Lebreton, J.-P.

    2002-07-01

    The Huygens Probe is the ESA-provided element of the joint NASA/ESA Cassini/Huygens mission to Saturn and its largest moon Titan. Huygens is an entry probe designed to enter Titan's atmosphere and descend under parachute down to the surface. The Probe is carried to Titan on board the Cassini Saturn Orbiter. Huygens is dormant for 7.2 years, during the interplanetary journey and during the first 6 months around Saturn. It is activated about every 6 months for an in-flight checkout to verify and monitor its health and to perform a periodic maintenance and calibration of the payload instruments. The Probe will be targeted to Titan and released from the Orbiter about 3 weeks before the Titan encounter on the third Orbit around Saturn. During the 3-week coast phase the Probe is ‘OFF’, except a timer unit that has the task to awaken Huygens before it enters Titan's atmosphere. The Probe's aeroshell will decelerate it in less than 2 minutes from the entry speed of about 6 km s-1 to 400 m s-1 (Mach 1.5) at an altitude of 150 180 km. From that point onwards, a pre-programmed sequence will trigger the parachute deployment and the heat-shield ejection. The main part of the scientific mission will then start, lasting for a descent of 2 21/2 hours. The Orbiter will listen to the Probe for a total duration of at least 3 hours, which includes time to receive data from the surface, should the Probe continue to transmit data after touchdown. Huygens' transmissions are received and stored aboard the Orbiter for later retransmission to the Earth. This paper presents a technical description of the elements of the Huygens Probe System. The reader is invited to refer to the companion paper (Lebreton and Matson, 2002) for further background information about the Huygens mission, and the payload. The early in-flight performance of the Probe is briefly discussed. During in-flight testing in 2000, a technical anomaly was found with the Probe-to-Orbiter telecommunication system that

  2. Bioinspiration from fish for smart material design and function

    NASA Astrophysics Data System (ADS)

    Lauder, G. V.; Madden, P. G. A.; Tangorra, J. L.; Anderson, E.; Baker, T. V.

    2011-09-01

    Fish are a potentially rich source of inspiration for the design of smart materials. Fish exemplify the use of flexible materials to generate forces during locomotion, and a hallmark of fish functional design is the use of body and fin deformation to power propulsion and maneuvering. As a result of nearly 500 million years of evolutionary experimentation, fish design has a number of interesting features of note to materials engineers. In this paper we first provide a brief general overview of some key features of the mechanical design of fish, and then focus on two key properties of fish: the bilaminar mechanical design of bony fish fin rays that allows active muscular control of curvature, and the role of body flexibility in propulsion. After describing the anatomy of bony fish fin rays, we provide new data on their mechanical properties. Three-point bending tests and measurement of force inputs to and outputs from the fin rays show that these fin rays are effective displacement transducers. Fin rays in different regions of the fin differ considerably in their material properties, and in the curvature produced by displacement of one of the two fin ray halves. The mean modulus for the proximal (basal) region of the fin rays was 1.34 GPa, but this varied from 0.24 to 3.7 GPa for different fin rays. The distal fin region was less stiff, and moduli for the different fin rays measured varied from 0.11 to 0.67 GPa. These data are similar to those for human tendons (modulus around 0.5 GPa). Analysis of propulsion using flexible foils controlled using a robotic flapping device allows investigation of the effect of altering flexural stiffness on swimming speed. Flexible foils with the leading edge moved in a heave show a distinct peak in propulsive performance, while the addition of pitch input produces a broad plateau where the swimming speed is relatively unaffected by the flexural stiffness. Our understanding of the material design of fish and the control of tissue

  3. Designed amyloid fibers as materials for selective carbon dioxide capture.

    PubMed

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M; Eisenberg, David S

    2014-01-01

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture.

  4. Photovoltaic module encapsulation design and materials selection. Volume II

    SciTech Connect

    Cuddihy, E.

    1984-06-01

    This is Volume II of Photovoltaic Module Encapsulation Design and Materials Selection: a periodically updated handbook of encapsulation technology, developed with the support of the Flat-Plate Solar Array Project (FSA), managed for the Department of Energy (DOE) by the Jet Propulsion Laboratory. Volume II describes FSA encapsulation technology developed between June 1, 1982, and January 1, 1984. Emphasis during this period shifted from materials development to demonstration of reliability and durability in an outdoor environment; the updated information in this volume reflects the developing technology base related to both reliability and encapsulation process improvements.

  5. Interstellar material in the solar system

    NASA Technical Reports Server (NTRS)

    Wood, J. A.

    1986-01-01

    All the substance of the Earth and other terrestrial planets once existed in the form of interstellar grains and gas. A major aspect of solar system formation (and undoubtedly of star formation generally) is the complex series of processes that converted infalling interstellar grains into planets. A cryptic record of these processes is preserved in certain samples of planetary materials, such as chondritic meteorites, that were preserved in a relatively unchanged form since the beginning. It is to be expected that some of these primitive materials might contain or even consist of preserved presolar interstellar grains. The identification and study of such grains, the ancestors of our planetary system, is a matter of intense interest. Types of primitive material accessible or potentially accessible, and component of or relationship to presolar interstellar grains are discussed.

  6. New Perspectives in Thermoelectric Energy Recovery System Design Optimization

    NASA Astrophysics Data System (ADS)

    Hendricks, Terry J.; Karri, Naveen K.; Hogan, Tim P.; Cauchy, Charles J.

    2013-07-01

    It is highly desirable to develop technologies that recover the large amounts of waste heat generated worldwide in industrial processes, automotive transportation, diesel engine exhaust, military generators, and incinerators to increase fuel efficiency and reduce CO2 production and the environmental footprint of these applications. Recent work has investigated new thermoelectric (TE) materials and systems that can operate at higher performance levels and show a viable pathway to lightweight, small-form-factor, advanced thermoelectric generator (TEG) systems to recover waste heat in many of these applications. New TE materials include nanocomposite materials such as lead-antimony-silver-telluride (LAST) and lead-antimony-silver-tin-telluride (LASTT) compounds. These new materials have created opportunities for high-performance, segmented-element TE devices. New higher-performance TE devices segmenting LAST/LASTT materials with bismuth telluride have been designed and fabricated. Sectioned TEG systems using these new TE devices and materials have been designed. Integrated heat exchanger/TE device system analyses of sectioned TE system designs have been performed, creating unique efficiency-power maps that provide better understanding and comparisons of design tradeoffs and nominal and off-nominal system performance conditions. New design perspectives and mathematical foundations in optimization of sectioned TE design approaches are discussed that provide insight on how to optimize such sectioned TE systems. System performance analyses using ANSYS® TE modeling capabilities have integrated heat exchanger performance models with ANSYS® TE models to extend its analysis capabilities beyond simple constant hot-side and cold-side temperature conditions. Analysis results portray external resistance effects, matched load conditions, and maximum power versus maximum efficiency points simultaneously, and show that maximum TE power occurs at external resistances slightly

  7. Corrosion performance of materials for advanced combustion systems

    SciTech Connect

    Natesan, K.; Yanez-Herrero, M.; Fornasieri, C.

    1993-12-01

    Conceptual designs of advanced combustion systems that utilize coal as a feedstock require high-temperature furnaces and heat transfer surfaces capable of operating at more elevated temperatures than those prevalent in current coal-fired power plants. The combination of elevated temperatures and hostile combustion environments necessitates development/application of advanced ceramic materials in these designs. This report characterizes the chemistry of coal-fired combustion environments over the wide temperature range that is of interest in these systems and discusses preliminary experimental results on several materials (alumina, Hexoloy, SiC/SiC, SiC/Si{sub 3}N{sub 4}/Si{sub 3}N{sub 4}, ZIRCONIA, INCONEL 677 and 617) with potential for application in these systems.

  8. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    NASA Astrophysics Data System (ADS)

    Fudouzi, Hiroshi

    2011-12-01

    In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites.

  9. Composite material systems for hydrogen management

    NASA Technical Reports Server (NTRS)

    Pangborn, R. N.; Queeney, R. A.

    1991-01-01

    The task of managing hydrogen entry into elevated temperature structural materials employed in turbomachinery is a critical engineering area for propulsion systems employing hydrogen or decomposable hydrocarbons as fuel. Extant structural materials, such as the Inconel series, are embrittled by the ingress of hydrogen in service, leading to a loss of endurance and general deterioration of load-bearing dependability. Although the development of hydrogen-insensitive material systems is an obvious engineering option, to date insensitive systems cannot meet the time-temperature-loading service extremes encountered. A short-term approach that is both feasible and technologically sound is the development and employment of hydrogen barrier coatings. The present project is concerned with developing, analyzing, and physically testing laminate composite hydrogen barrier systems, employing Inconel 718 as the structural material to be protected. Barrier systems will include all metallic, metallic-to-ceramic, and, eventually, metallic/ceramic composites as the lamellae. Since space propulsion implies repetitive engine firings without earth-based inspection and repair, coating durability will be closely examined, and testing regimes will include repetitive thermal cycling to simulate damage accumulation. The target accomplishments include: generation of actual hydrogen permeation data for metallic, ceramic-metallic, and hybrid metallic/ceramic composition barrier systems, practically none of which is currently extant; definition of physical damage modes imported to barrier systems due to thermal cycling, both transient temperature profiles and steady-state thermal mismatch stress states being examined as sources of damage; and computational models that incorporate general laminate schemes as described above, including manufacturing realities such as porosity, and whatever defects are introduced through service and characterized during the experimental programs.

  10. Exascale Co-design for Modeling Materials in Extreme Environments

    SciTech Connect

    Germann, Timothy C.

    2014-07-08

    Computational materials science has provided great insight into the response of materials under extreme conditions that are difficult to probe experimentally. For example, shock-induced plasticity and phase transformation processes in single-crystal and nanocrystalline metals have been widely studied via large-scale molecular dynamics simulations, and many of these predictions are beginning to be tested at advanced 4th generation light sources such as the Advanced Photon Source (APS) and Linac Coherent Light Source (LCLS). I will describe our simulation predictions and their recent verification at LCLS, outstanding challenges in modeling the response of materials to extreme mechanical and radiation environments, and our efforts to tackle these as part of the multi-institutional, multi-disciplinary Exascale Co-design Center for Materials in Extreme Environments (ExMatEx). ExMatEx has initiated an early and deep collaboration between domain (computational materials) scientists, applied mathematicians, computer scientists, and hardware architects, in order to establish the relationships between algorithms, software stacks, and architectures needed to enable exascale-ready materials science application codes within the next decade. We anticipate that we will be able to exploit hierarchical, heterogeneous architectures to achieve more realistic large-scale simulations with adaptive physics refinement, and are using tractable application scale-bridging proxy application testbeds to assess new approaches and requirements. Such current scale-bridging strategies accumulate (or recompute) a distributed response database from fine-scale calculations, in a top-down rather than bottom-up multiscale approach.

  11. Rational Design of Pathogen-Mimicking Amphiphilic Materials as Nanoadjuvants

    NASA Astrophysics Data System (ADS)

    Ulery, Bret D.; Petersen, Latrisha K.; Phanse, Yashdeep; Kong, Chang Sun; Broderick, Scott R.; Kumar, Devender; Ramer-Tait, Amanda E.; Carrillo-Conde, Brenda; Rajan, Krishna; Wannemuehler, Michael J.; Bellaire, Bryan H.; Metzger, Dennis W.; Narasimhan, Balaji

    2011-12-01

    An opportunity exists today for cross-cutting research utilizing advances in materials science, immunology, microbial pathogenesis, and computational analysis to effectively design the next generation of adjuvants and vaccines. This study integrates these advances into a bottom-up approach for the molecular design of nanoadjuvants capable of mimicking the immune response induced by a natural infection but without the toxic side effects. Biodegradable amphiphilic polyanhydrides possess the unique ability to mimic pathogens and pathogen associated molecular patterns with respect to persisting within and activating immune cells, respectively. The molecular properties responsible for the pathogen-mimicking abilities of these materials have been identified. The value of using polyanhydride nanovaccines was demonstrated by the induction of long-lived protection against a lethal challenge of Yersinia pestis following a single administration ten months earlier. This approach has the tantalizing potential to catalyze the development of next generation vaccines against diseases caused by emerging and re-emerging pathogens.

  12. A model for designing functionally gradient material joints

    SciTech Connect

    Messler, R.W. Jr.; Jou, M.; Orling, T.T.

    1995-05-01

    An analytical, thin-plate layer model was developed to assist research and development engineers in the design of functionally gradient material (FGM) joints consisting of discrete steps between end elements of dissimilar materials. Such joints have long been produced by diffusion bonding using intermediates or multiple interlayers; welding, brazing or soldering using multiple transition pieces; and glass-to-glass or glass-to-metal bonding using multiple layers to produce matched seals. More recently, FGM joints produced by self-propagating high-temperature synthesis (SHS) are attracting the attention of researchers. The model calculates temperature distributions and associated thermally induced stresses, assuming elastic behavior, for any number of layers of any thickness or composition, accounting for critically important thermophysical properties in each layer as functions of temperature. It is useful for assuring that cured-in fabrication stresses from thermal expansion mismatches will not prevent quality joint production. The model`s utility is demonstrated with general design cases.

  13. Simulation, Design Abstraction, and SystemC

    ERIC Educational Resources Information Center

    Harcourt, Ed

    2007-01-01

    SystemC is a system-level design and simulation language based on C++. We've been using SystemC for computer organization and design projects for the past several years. Because SystemC is embedded in C++ it contains the powerful abstraction mechanisms of C++ not found in traditional hardware description languages, such as support for…

  14. Solid-fluid mixture microstructure design of composite materials with application to tissue engineering scaffold design

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Yu

    The ability to design the material microstructure brings the use of composite materials into the next generation. In this paper, we report pioneering research to implement the computational material microstructure design into the internal architecture design for a tissue engineering scaffold. A tissue engineering design postulate is that scaffolds should match specified healthy tissue stiffness, while concurrently providing sufficient porosity for cell migration and tissue regeneration. Employing the inverse homogenization method and the adaptive topology optimization method, a complex 3D microstructure can be designed to perform with the anisotropic elastic stiffness and porosities analogous to a native bone specimen. Besides the elastic stiffness from its solid part, fluid in the porous region also plays an important role in tissue engineering. The flow of fluid through the pores brings nutrients to cells in the tissue matrix and also removes their waste. Fluid permeability of cylinderical trabecular bone grafts was found to predict clinical success. Deriving from Darcy's Law, we developed software to calculate the homogenized fluid permeability of 3D cancellous voxel models, which were directly reconstructed from micro-CT images. Furthermore, an Evolutionary Structural Optimization (ESO) algorithm was utilized to maximize fluid permeability in the microstructure. The fluid optimization scheme was then collaborated with solid phase optimization through Multidisciplinary Design Optimization (MDO) to create an integrated solid-fluid mixture microstructure design. In addition, to ensure the fabrication feasibility, we also implemented a post-optimization process to enhance design results by improving the dynamic stiffness to eliminate weak connections and checkerboard pattern. The design scaffolds were then built by an indirect solid freeform fabrication (SFF) technique using various bio-compatible materials and ready for further investment. This computational

  15. Stress Transfer and Structural Failure of Bilayered Material Systems

    NASA Astrophysics Data System (ADS)

    Prieto-Munoz, Pablo Arthur

    Bilayered material systems are common in naturally formed or artificially engineered structures. Understanding how loads transfer within these structural systems is necessary to predict failure and develop effective designs. Existing methods for evaluating the stress transfer in bilayered materials are limited to overly simplified models or require experimental calibration. As a result, these methods have failed to accurately account for such structural failures as the creep induced roofing panel collapse of Boston's I-90 connector tunnel, which was supported by adhesive anchors. The one-dimensional stress analyses currently used for adhesive anchor design cannot account for viscoelastic creep failure, and consequently results in dangerously under-designed structural systems. In this dissertation, a method for determining the two-dimensional stress and displacement fields for a generalized bilayered material system is developed, and proposes a closed-form analytical solution. A general linear-elastic solution is first proposed by decoupling the elastic governing equations from one another through the so-called plane assumption. Based on this general solution, an axisymmetric problem and a plane strain problem are formulated. These are applied to common bilayered material systems such as: (1) concrete adhesive anchors, (2) material coatings, (3) asphalt pavements, and (4) layered sedimentary rocks. The stress and displacement fields determined by this analytical analysis are validated through the use of finite element models. Through the correspondence principle, the linear-elastic solution is extended to consider time-dependent viscoelastic material properties, thus facilitating the analysis of adhesive anchors and asphalt pavements while incorporating their viscoelastic material behavior. Furthermore, the elastic stress analysis can explain the fracturing phenomenon of material coatings, pavements, and layered rocks, successfully predicting their fracture

  16. New Perspectives in Thermoelectric Energy Recovery System Design Optimization

    SciTech Connect

    Hendricks, Terry J.; Karri, Naveen K.; Hogan, Tim; Cauchy, Charles J.

    2013-02-12

    Abstract: Large amounts of waste heat are generated worldwide in industrial processes, automotive transportation, diesel engine exhaust, military generators, and incinerators because 60-70% of the fuel energy is typically lost in these processes. There is a strong need to develop technologies that recover this waste heat to increase fuel efficiency and minimize fuel requirements in these industrial processes, automotive and heavy vehicle engines, diesel generators, and incinerators. There are additional requirements to reduce CO2 production and environmental footprints in many of these applications. Recent work with the Strategic Environmental Research and Development Program office has investigated new thermoelectric (TE) materials and systems that can operate at higher performance levels and show a viable pathway to lightweight, small form-factor, advanced thermoelectric generator (TEG) systems to recover waste heat in many of these applications. New TE materials include nano-composite materials such as lead-antimony-silver-telluride (LAST) and lead-antimony-silver-tin-telluride (LASTT) compounds. These new materials have created opportunities for high-performance, segmented-element TE devices. New higher-performance TE devices segmenting LAST/LASTT materials with bismuth telluride have been designed and fabricated. Sectioned TEG systems using these new TE devices and materials have been designed. Integrated heat exchanger/TE device system analyses of sectioned TE system designs have been performed creating unique efficiency-power maps that provide better understandings and comparisons of design tradeoffs and nominal and off-nominal system performance conditions. New design perspectives in optimization of sectioned TE design approaches are discussed that provide insight on how to optimize such sectioned TE systems. System performance analyses using ANSYS® TE modeling capabilities have integrated heat exchanger performance models with ANSYS® TE models to extend

  17. Thermo-magnetic materials for use in designing intelligent actuators

    SciTech Connect

    Ohtani, Yoshimutsu; Yoshimura, Fumikatsu; Hatakeyama, Iwao; Ishii, Yoshikazu

    1994-12-31

    The authors present the concept of an intelligent thermal actuator designed by using thermally sensitive magnetic materials. The use of the magnetic transition of FeRh alloy is very effective in increasing the actuator functions. These functions are freedom of direction, tuning temperature, and increasing both sensitivity and power. Two new types of actuator, a remote controlled optical driven thermo-magnetic motor and a temperature sensitive spring-less valve, are proposed and experimental results are shown.

  18. Passive sensor systems for nuclear material monitoring

    SciTech Connect

    Simpson, M.L.; Boatner, L.A.; Holcomb, D.E.; McElhaney, S.A.; Mihalczo, J.T.; Muhs, J.D.; Roberts, M.R.; Hill, N.W.

    1993-09-01

    Passive fiber optic sensor systems capable of confirming the presence of special nuclear materials in storage or process facilities are being developed at Oak Ridge National Laboratory (ORNL). These sensors provide completely passive, remote measurement capability. No power supplies, amplifiers, or other active components that could degrade system reliability are required at the sensor location. ORNL, through its research programs in scintillator materials, has developed a variety of materials for use in alpha-, beta-, gamma-, and neutron-sensitive scintillator detectors. In addition to sensors for measuring radiation flux, new sensor materials have been developed which are capable of measuring weight, temperature, and source location. An example of a passive sensor for temperature measurement is the combination of a thermophosphor (e.g., rare-earth activated Y{sub 2}O{sub 3}) with {sup 6}LiF (95% {sup 6}Li). This combination results in a new class of scintillators for thermal neutrons that absorb energy from the radiation particles and remit the energy as a light pulse, the decay rate of which, over a specified temperature range, is temperature dependent. Other passive sensors being developed include pressure-sensitive triboluminescent materials, weight-sensitive silicone rubber fibers, scintillating fibers, and other materials for gamma and neutron detection. The light from the scintillator materials of each sensor would be sent through optical fibers to a monitoring station, where the attribute quantity could be measured and compared with previously recorded emission levels. Confirmatory measurement applications of these technologies are being evaluated to reduce the effort, costs, and employee exposures associated with inventorying stockpiles of highly enriched uranium at the Oak Ridge Y-12 Plant.

  19. Module Design, Materials, and Packaging Research Team: Activities and Capabilities

    SciTech Connect

    McMahon, T. J.; del Cueto, J.; Glick, S.; Jorgensen, G.; Kempe, M.; Kennedy, C.; Pern, J.; Terwilliger, K

    2005-01-01

    Our team activities are directed at improving PV module reliability by incorporating new, more effective, and less expensive packaging materials and techniques. New and existing materials or designs are evaluated before and during accelerated environmental exposure for the following properties: (1) Adhesion and cohesion: peel strength and lap shear. (2) Electrical conductivity: surface, bulk, interface and transients. (3) Water vapor transmission: solubility and diffusivity. (4) Accelerated weathering: ultraviolet, temperature, and damp heat tests. (5) Module and cell failure diagnostics: infrared imaging, individual cell shunt characterization, coring. (6) Fabrication improvements: SiOxNy barrier coatings and enhanced wet adhesion. (7) Numerical modeling: Moisture ingress/egress, module and cell performance, and cell-to-frame leakage current. (8) Rheological properties of polymer encapsulant and sheeting materials. Specific examples will be described.

  20. Barium compatibility of insulator material systems

    NASA Astrophysics Data System (ADS)

    Merrill, John M.; Zee, Ralph; Schuller, Michael

    1997-01-01

    The compatibility of insulator material systems in a barium environment was investigated. This work is part of an ongoing program to identify weaknesses in insulator/braze/refractory metal materials systems which provide electrical insulation in alkali-metal enhanced thermionic devices and other alkali-metal thermal-to-electric converters. Test articles consisting of alumina or sapphire insulators brazed to molybdenum via a nominal Cu-30% Ni braze, were exposed to barium vapor to ascertain possible reactions and/or failure mechanisms. The test matrix consisted of eight samples; 5 with a sapphire insulator, 3 with an alumina insulator. Each sample was exposed to a different combination of insulator/braze region temperature (1000 K or 1100 K) and partial pressure of barium (10-3 or 10-2 torr) for approximately 750 hours. Initial analysis indicated that the ceramic portions were free from corrosion and that the braze material was the weak link in the material system. Evidence of formation of a Cu-Ba intermetallic at the braze region was visible. Further analysis indicated that in some cases Al2O3 was being reduced by the Barium. The results of this research imply that use of Al2O3 based ceramics in a barium environment may be suspect to failures in the long term and that Cu-Ni brazes are not suitable for the barium environment.

  1. Design And Formability Of A New Composite Material

    NASA Astrophysics Data System (ADS)

    Bolay, C.; Liewald, M.

    2011-05-01

    Composite materials with metallic cover sheets have been established based on their low weight potential in industrial applications. Further requirements such as high stiffness of component, vibration damping and formability today are only partially met by these composites. For that reason, in current research work, great efforts are being made to develop materials which can be adapted to their later use and load in terms of improving noise, vibration and harshness. Thus, greater stiffness of component structure with a simultaneous reduction of weight can be achieved. This article presents a new composite material which consists of a plane sheet, a thin intermediate damping-layer and a sheet with formed elements to increase stiffness of component such as beads. The plane side can be used as the visible part side. The shape elements increase strength due to work hardening and can be used as design or functional elements. Thus, this composite material results in several advantages within the single layers. Possible flexibility in component design enables new semi-finished or tailored components.

  2. Textile materials for the design of wearable antennas: a survey.

    PubMed

    Salvado, Rita; Loss, Caroline; Gonçalves, Ricardo; Pinho, Pedro

    2012-11-15

    In the broad context of Wireless Body Sensor Networks for healthcare and pervasive applications, the design of wearable antennas offers the possibility of ubiquitous monitoring, communication and energy harvesting and storage. Specific requirements for wearable antennas are a planar structure and flexible construction materials. Several properties of the materials influence the behaviour of the antenna. For instance, the bandwidth and the efficiency of a planar microstrip antenna are mainly determined by the permittivity and the thickness of the substrate. The use of textiles in wearable antennas requires the characterization of their properties. Specific electrical conductive textiles are available on the market and have been successfully used. Ordinary textile fabrics have been used as substrates. However, little information can be found on the electromagnetic properties of regular textiles. Therefore this paper is mainly focused on the analysis of the dielectric properties of normal fabrics. In general, textiles present a very low dielectric constant that reduces the surface wave losses and increases the impedance bandwidth of the antenna. However, textile materials are constantly exchanging water molecules with the surroundings, which affects their electromagnetic properties. In addition, textile fabrics are porous, anisotropic and compressible materials whose thickness and density might change with low pressures. Therefore it is important to know how these characteristics influence the behaviour of the antenna in order to minimize unwanted effects. This paper presents a survey of the key points for the design and development of textile antennas, from the choice of the textile materials to the framing of the antenna. An analysis of the textile materials that have been used is also presented.

  3. Design and preparation of materials for advanced electrochemical storage.

    PubMed

    Melot, Brent C; Tarascon, J-M

    2013-05-21

    To meet the growing global demand for energy while preserving the environment, it is necessary to drastically reduce the world's dependence on non-renewable energy sources. At the core of this effort will be the ability to efficiently convert, store, transport and access energy in a variety of ways. Batteries for use in small consumer devices have saturated society; however, if they are ever to be useful in large-scale applications such as automotive transportation or grid-storage, they will require new materials with dramatically improved performance. Efforts must also focus on using Earth-abundant and nontoxic compounds so that whatever developments are made will not create new environmental problems. In this Account, we describe a general strategy for the design and development of new insertion electrode materials for Li(Na)-ion batteries that meet these requirements. We begin by reviewing the current state of the art of insertion electrodes and highlighting the intrinsic material properties of electrodes that must be re-engineered for extension to larger-scale applications. We then present a detailed discussion of the relevant criteria for the conceptual design and appropriate selection of new electrode chemical compositions. We describe how the open-circuit voltage of Li-ion batteries can be manipulated and optimized through structural and compositional tuning by exploiting differences in the electronegativity among possible electrode materials. We then discuss which modern synthetic techniques are most sustainable, allowing the creation of new materials via environmentally responsible reactions that minimize the use of energy and toxic solvents. Finally, we present a case study showing how we successfully employed these approaches to develop a large number of new, useful electrode materials within the recently discovered family of transition metal fluorosulfates. This family has attracted interest as a possible source of improved Li-ion batteries in larger

  4. Textile materials for the design of wearable antennas: a survey.

    PubMed

    Salvado, Rita; Loss, Caroline; Gonçalves, Ricardo; Pinho, Pedro

    2012-01-01

    In the broad context of Wireless Body Sensor Networks for healthcare and pervasive applications, the design of wearable antennas offers the possibility of ubiquitous monitoring, communication and energy harvesting and storage. Specific requirements for wearable antennas are a planar structure and flexible construction materials. Several properties of the materials influence the behaviour of the antenna. For instance, the bandwidth and the efficiency of a planar microstrip antenna are mainly determined by the permittivity and the thickness of the substrate. The use of textiles in wearable antennas requires the characterization of their properties. Specific electrical conductive textiles are available on the market and have been successfully used. Ordinary textile fabrics have been used as substrates. However, little information can be found on the electromagnetic properties of regular textiles. Therefore this paper is mainly focused on the analysis of the dielectric properties of normal fabrics. In general, textiles present a very low dielectric constant that reduces the surface wave losses and increases the impedance bandwidth of the antenna. However, textile materials are constantly exchanging water molecules with the surroundings, which affects their electromagnetic properties. In addition, textile fabrics are porous, anisotropic and compressible materials whose thickness and density might change with low pressures. Therefore it is important to know how these characteristics influence the behaviour of the antenna in order to minimize unwanted effects. This paper presents a survey of the key points for the design and development of textile antennas, from the choice of the textile materials to the framing of the antenna. An analysis of the textile materials that have been used is also presented. PMID:23202235

  5. Critical materials: a reason for sustainable education of industrial designers and engineers

    NASA Astrophysics Data System (ADS)

    Köhler, Andreas R.; Bakker, Conny; Peck, David

    2013-08-01

    Developed economies have become highly dependent on a range of technology metals with names such as neodymium and terbium. Stakeholders have warned of the impending scarcity of these critical materials. Difficulties in materials supply can affect the high-tech industries as well as the success of sustainable innovation strategies that are based on sophisticated technology. Industrial designers and engineers should therefore increase their awareness of the limits in availability of critical materials. In this paper, it is argued that materials' criticality can give a fresh impetus to the higher education of industrial design engineers. It is important to train future professionals to apply a systems perspective to the process of technology innovation, enabling them to thrive under circumstances of constrained material choices. The conclusions outline ideas on how to weave the topic into existing educational programmes of future technology developers.

  6. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    SciTech Connect

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30

    studied the effect of x-rays and γ-rays, on thin film chalcogenide glasses and applied them in conjunction with film incorporating a silver source in a new type of radiation sensor for which we have an US patent application [3]. In this report, we give data about our studies regarding our designed radiation sensor along with the testing and performance at various radiation doses. These studies have been preceded by materials characterization research related to the compositional and structural characteristics of the active materials used in the radiation sensor design. During the work on the project, we collected a large volume of material since every experiment was repeated many times to verify the results. We conducted a comprehensive material research, analysis and discussion with the aim to understand the nature of the occurring effects, design different structures to harness these effects, generated models to aid in the understanding the effects, built different device structures and collected data to quantify device performance. These various aspects of our investigation have been detailed in previous quarterly reports. In this report, we present our main results and emphasize on the results pertaining to the core project goals materials development, sensor design and testing and with an emphasis on classifying the appropriate material and design for the optimal application. The report has three main parts: (i) Presentation of the main data; (ii) Bulleted summary of the most important results; (iii) List of the patent, journal publications, conference proceedings and conferences participation, occurring as a result of working on the project.

  7. Human Factors Considerations in System Design

    NASA Technical Reports Server (NTRS)

    Mitchell, C. M. (Editor); Vanbalen, P. M. (Editor); Moe, K. L. (Editor)

    1983-01-01

    Human factors considerations in systems design was examined. Human factors in automated command and control, in the efficiency of the human computer interface and system effectiveness are outlined. The following topics are discussed: human factors aspects of control room design; design of interactive systems; human computer dialogue, interaction tasks and techniques; guidelines on ergonomic aspects of control rooms and highly automated environments; system engineering for control by humans; conceptual models of information processing; information display and interaction in real time environments.

  8. Expert system to design communications circuits

    SciTech Connect

    Tolendino, L.F.; Vahle, M.O.

    1986-07-01

    An expert system has been created to aid the design of fiber optic based communications circuits. The design system is based on an Apollo workstation, LISP and CPSL, an in-house developed expert system language. The optical circuit is taken from design specification through hardware selection and circuit routing to the production of detailed schematics and routing guides. A database containing the entire fiber optic trunk system is also maintained.

  9. Information System Design of Undergraduate Education: Combining Lectures with Practice.

    ERIC Educational Resources Information Center

    Fujio, Yoshinori

    This paper describes the basic knowledge necessary to promote the students' ability to analyze, design, and construct information systems. The curricula and the practical teaching material are proposed with which students can experience information system development by applying the basic knowledge of lectures. The subjects of the basic knowledge…

  10. Turbine Aerodynamic Design System Improvements

    NASA Technical Reports Server (NTRS)

    Huber, Frank W.; Griffin, Lisa W.; Simpson, Steven P.

    2003-01-01

    Presentation outline includes the following: 1. Volute manifold design and analysis methodology. 2. Meanline modification for compatibility with engine analysis code. Objective is to develop a manifold design methodology for turbines and pumps, and to enable rapid screening of candidate flow paths.

  11. Designs and Materials for Better Coronagraph Occulting Masks

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatham

    2010-01-01

    New designs, and materials appropriate for such designs, are under investigation in an effort to develop coronagraph occulting masks having broad-band spectral characteristics superior to those currently employed. These designs and materials are applicable to all coronagraphs, both ground-based and spaceborne. This effort also offers potential benefits for the development of other optical masks and filters that are required (1) for precisely tailored spatial transmission profiles, (2) to be characterized by optical-density neutrality and phase neutrality (that is, to be characterized by constant optical density and constant phase over broad wavelength ranges), and/or (3) not to exhibit optical- density-dependent phase shifts. The need for this effort arises for the following reasons: Coronagraph occulting masks are required to impose, on beams of light transmitted through them, extremely precise control of amplitude and phase according to carefully designed transmission profiles. In the original application that gave rise to this effort, the concern has been to develop broad-band occulting masks for NASA s Terrestrial Planet Finder coronagraph. Until now, experimental samples of these masks have been made from high-energy-beam-sensitive (HEBS) glass, which becomes locally dark where irradiated with a high-energy electron beam, the amount of darkening depending on the electron-beam energy and dose. Precise mask profiles have been written on HEBS glass blanks by use of electron beams, and the masks have performed satisfactorily in monochromatic light. However, the optical-density and phase profiles of the HEBS masks vary significantly with wavelength; consequently, the HEBS masks perform unsatisfactorily in broad-band light. The key properties of materials to be used in coronagraph occulting masks are their extinction coefficients, their indices of refraction, and the variations of these parameters with wavelength. The effort thus far has included theoretical

  12. Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy.

    PubMed

    Xu, Lizhi; Gutbrod, Sarah R; Ma, Yinji; Petrossians, Artin; Liu, Yuhao; Webb, R Chad; Fan, Jonathan A; Yang, Zijian; Xu, Renxiao; Whalen, John J; Weiland, James D; Huang, Yonggang; Efimov, Igor R; Rogers, John A

    2015-03-11

    Advanced materials and fractal design concepts form the basis of a 3D conformal electronic platform with unique capabilities in cardiac electrotherapies. Fractal geometries, advanced electrode materials, and thin, elastomeric membranes yield a class of device capable of integration with the entire 3D surface of the heart, with unique operational capabilities in low power defibrillation. Co-integrated collections of sensors allow simultaneous monitoring of physiological responses. Animal experiments on Langendorff-perfused rabbit hearts demonstrate the key features of these systems.

  13. Conceptual baseline document for the nuclear materials safeguards system

    SciTech Connect

    Nelson, R.A.

    1995-08-01

    This document defines the baseline scope, schedule, and cost requirements of the Nuclear Materials Safeguards System (NMSS) replacement for the Plutonium Finishing Plant. The Nuclear Material Safeguards System (NMSS), operating in PFP, comprises data from several site safeguards systems that have been merged since 1987. NMSS was designed and implemented to the state of computer technology for the mid 1970`s. Since implementation, the hardware vendor has stopped producing computer systems and the availability of personnel trained and willing to work with the technology has diminished. Maintenance has become expensive and `reliability is a serious concern. -This effort provides a replacement in kind of the NMSS, using modern, scalable, upgradable hardware and software to the same standards used for the Hanford Local Area Network (HLAN) system. The NMSS Replacement is a Client/Server architecture designed on a Personal Computer based local area network (LAN) platform. The LAN is provided through an ethernet interface running the Transmission Control Protocol/Internet Protocol (TCP/IP). This architecture conforms to the HLAN standard, including the End System Operating Environment (ESOE). The Server runs the Microsoft Windows NT` Server operating system, Microsoft SQL Server2 database management system, and application tools. Clients run Microsoft Windows` and application software provided as part of the system. The interface between the clients and the database is through Microsoft ODBC4.

  14. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Material strength properties and design... Design and Construction § 23.613 Material strength properties and design values. (a) Material strength properties must be based on enough tests of material meeting specifications to establish design values on...

  15. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Material strength properties and design... Design and Construction § 23.613 Material strength properties and design values. (a) Material strength properties must be based on enough tests of material meeting specifications to establish design values on...

  16. New approach to design of ceramic/polymer material compounds

    NASA Astrophysics Data System (ADS)

    Todt, A.; Nestler, D.; Trautmann, M.; Wagner, G.

    2016-03-01

    The damage tolerance of carbon fibre-reinforced ceramic-matrix composite materials depends on their porosity and can be rather significant. Complex structures are difficult to produce. The integration of simple geometric structures of ceramic-matrix composite materials in complex polymer-based hybrid structures is a possible approach of realising those structures. These hybrid material compounds, produced in a cost-efficient way, combine the different advantages of the individual components in one hybrid material compound. In addition the individual parts can be designed to fit a specific application and the resulting forces. All these different advantages result in a significant reduction of not only the production costs and the production time, but also opens up new areas of application, such as the large-scale production of wear-resistant and chemically inert, energy dampening components for reactors or in areas of medicine. The low wettability of the ceramic component however is a disadvantage of this approach. During the course of this contribution, different C/C composite materials with a specific porosity were produced, while adjusting the resin/hardening agent-ratio, as well as the processing parameters. After the production, different penetration tests were conducted with a polymer component. The final part of the article is comprised of the microstructural analysis and the explanation of the mechanical relationships.

  17. Design of easily testable systems

    SciTech Connect

    Rawat, S.S.

    1988-01-01

    This thesis presents structured testability techniques that can be applied to systolic arrays. Systolic arrays for signal processing have produced processing rates far in excess of general-purpose architecture. Fast testing is considered as one of the design criteria. The main goal is to derive test vectors for one- and two-dimensional systolic arrays. The author seeks to keep the number of test vectors independent of the size of the array under a generic fault model. The testable design is based on pseudo-exhaustive testing. Conventional testing uses Level Sensitive Scan Detection (LSSD) techniques which are very time consuming for an array of systolic processors. By making the testability analysis early the logic designer will be able to make early (and repeated) design trade-offs that make design for testability a simple extension of the design process. The author shows how one-dimensional sequential systolic arrays can be designed so that the faults can be easily detected and isolated. He also considers unilateral two-dimensional sequential arrays and suggests modifications to make them easily testable. Finally, he shows how a modified carry look ahead adder of arbitrary size can be tested with just 136 test vectors. Comparisons are made against the standard LSSD technique.

  18. Design data brochure: Solar hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A design calculation is detailed for a single-family residence housing a family of four in a nonspecific geographical area. The solar water heater system is designed to provide 80 gallons of 140 F hot water per day.

  19. Polymer hybrid materials for planar optronic systems

    NASA Astrophysics Data System (ADS)

    Körner, Martin; Prucker, Oswald; Rühe, Jürgen

    2015-09-01

    Planar optronic systems made entirely from polymeric functional materials on polymeric foils are interesting architectures for monitoring and sensing applications. Key components in this regard are polymer hybrid materials with adjustable optical properties. These materials can then be processed into optical components such as waveguides for example by using embossing techniques. However, the resulting microstructures have often low mechanical or thermal stability which quickly leads to a degradation of the microstructures accompanied often by a complete loss of function. A simple and versatile way to increase the thermal and mechanical stability of polymers is to connect the individual chains to a polymer network by using thermally or photochemically reactive groups. Upon excitation, these groups form reactive intermediates such as radicals or nitrenes which then crosslink with adjacent C-H-groups through a C,H insertion reaction (CHic = C,H insertion based crosslinking). To generate waveguide structures a PDMS stamp is filled with the waveguide core material e.g. poly(methylmethacrylate) (PMMA), which is modified with a few mol% of the thermal crosslinker and hot embossed onto a foil substrate e.g. PMMA. In this one-step hot embossing process polymer ridge waveguides are formed and simultaneously the polymer becomes crosslinked. Due to the reaction across the boundary between waveguide and substrate it is also possible to combine initially incompatible polymers for the waveguide and the substrate foil. The thermomechanical properties of the obtained materials are studied.

  20. Conceptual spacecraft systems design and synthesis

    NASA Technical Reports Server (NTRS)

    Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.

    1984-01-01

    An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced Systems (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth designs is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze, and conduct parametric studies and modify earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.

  1. Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth.

    PubMed

    Manso, Sandra; De Muynck, Willem; Segura, Ignacio; Aguado, Antonio; Steppe, Kathy; Boon, Nico; De Belie, Nele

    2014-05-15

    Ordinary Portland cement (OPC), the most used binder in construction, presents some disadvantages in terms of pollution (CO2 emissions) and visual impact. For this reason, green roofs and façades have gain considerable attention in the last decade as a way to integrate nature in cities. These systems, however, suffer from high initial and maintenance costs. An alternative strategy to obtain green facades is the direct natural colonisation of the cementitious construction materials constituting the wall, a phenomenon governed by the bioreceptivity of such material. This work aims at assessing the suitability of magnesium phosphate cement (MPC) materials to allow a rapid natural colonisation taking carbonated OPC samples as a reference material. For that, the aggregate size, the w/c ratio and the amount of cement paste of mortars made of both binders were modified. The assessment of the different bioreceptivities was conducted by means of an accelerated algal fouling test. MPC samples exhibited a faster fouling compared to OPC samples, which could be mainly attributed to the lower pH of the MPC binder. In addition to the binder, the fouling rate was governed by the roughness and the porosity of the material. MPC mortar with moderate porosity and roughness appears to be the most feasible material to be used for the development of green concrete walls. PMID:24602907

  2. Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth.

    PubMed

    Manso, Sandra; De Muynck, Willem; Segura, Ignacio; Aguado, Antonio; Steppe, Kathy; Boon, Nico; De Belie, Nele

    2014-05-15

    Ordinary Portland cement (OPC), the most used binder in construction, presents some disadvantages in terms of pollution (CO2 emissions) and visual impact. For this reason, green roofs and façades have gain considerable attention in the last decade as a way to integrate nature in cities. These systems, however, suffer from high initial and maintenance costs. An alternative strategy to obtain green facades is the direct natural colonisation of the cementitious construction materials constituting the wall, a phenomenon governed by the bioreceptivity of such material. This work aims at assessing the suitability of magnesium phosphate cement (MPC) materials to allow a rapid natural colonisation taking carbonated OPC samples as a reference material. For that, the aggregate size, the w/c ratio and the amount of cement paste of mortars made of both binders were modified. The assessment of the different bioreceptivities was conducted by means of an accelerated algal fouling test. MPC samples exhibited a faster fouling compared to OPC samples, which could be mainly attributed to the lower pH of the MPC binder. In addition to the binder, the fouling rate was governed by the roughness and the porosity of the material. MPC mortar with moderate porosity and roughness appears to be the most feasible material to be used for the development of green concrete walls.

  3. Systems design of long-life systems

    NASA Technical Reports Server (NTRS)

    Miles, R. F., Jr.

    1974-01-01

    A long-life system is defined as a system which cannot be life-tested in its operational environment. Another restriction is that preventive maintenance and repair shall be either impossible or economically disadvantageous. Examples of such systems include planetary spacecraft, communication satellites, undersea telephone cables, and nuclear power plants. The questions discussed are related to the implementation of system functions, approaches to determine the required level of system reliability, and aspects of tradeoffs between requirements and reliability.

  4. Design Molecular Recognition Materials for Chiral Sensors, Separtations and Catalytic Materials

    SciTech Connect

    Jia, S.; Nenoff, T.M.; Provencio, P.; Qiu, Y.; Shelnutt, J.A.; Thoma, S.G.; Zhang, J.

    1998-11-01

    The goal is the development of materials that are highly sensitive and selective for chid chemicals and biochemical (such as insecticides, herbicides, proteins, and nerve agents) to be used as sensors, catalysts and separations membranes. Molecular modeling methods are being used to tailor chiral molecular recognition sites with high affinity and selectivity for specified agents. The work focuses on both silicate and non-silicate materials modified with chirally-pure fictional groups for the catalysis or separations of enantiomerically-pure molecules. Surfactant and quaternary amine templating is being used to synthesize porous frameworks, containing mesopores of 30 to 100 angstroms. Computer molecukw modeling methods are being used in the design of these materials, especially in the chid surface- modi~ing agents. Molecular modeling is also being used to predict the catalytic and separations selectivities of the modified mesoporous materials. The ability to design and synthesize tailored asymmetric molecular recognition sites for sensor coatings allows a broader range of chemicals to be sensed with the desired high sensitivity and selectivity. Initial experiments target the selective sensing of small molecule gases and non-toxic model neural compounds. Further efforts will address designing sensors that greatly extend the variety of resolvable chemical species and forming a predictive, model-based method for developing advanced sensors.

  5. Residential solar-heating system - design brochure

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Design brochure for commercially-available solar-heating system is valuable to architects, engineers, and designers. It contains information on system configuration, system sizing, and mechanical layout. Drawings and specifications of all components and typical installation details are included in appendix.

  6. Interface problems between material recycling systems and plants.

    PubMed

    Nitta, K; Oguchi, M; Otsubo, K

    1992-01-01

    A most important problem to creating a CELSS system to be used in space, for example, for a Lunar Base or Manned Mars mission, seems to be how to design and operate the various material recycling systems to be used on the missions. Recent studies of a Lunar Base habitat have identified examples of CELSS configurations to be used for the Plant Cultivation Module. Material recycling subsystems to be installed in the Plant Cultivation Modules are proposed to consist of various sub-systems, such as dehumidifiers, oxygen separation systems, catalytic wet oxidation systems, nitrogen adjusting systems, including tanks, and so on. The required performances of such various material recycling subsystems are determined based on precise metabolic data of derived from the various species of plants to be selected and investigated. The plant metabolic data, except that for wheat and potato, has not been fully collected at the present time. Therefore, much additional plant cultivation data is required to determine the performances of each material recycling subsystem introduced in Plant Cultivation Modules. PMID:11537056

  7. Taguchi statistical design and analysis of cleaning methods for spacecraft materials

    NASA Technical Reports Server (NTRS)

    Lin, Y.; Chung, S.; Kazarians, G. A.; Blosiu, J. O.; Beaudet, R. A.; Quigley, M. S.; Kern, R. G.

    2003-01-01

    In this study, we have extensively tested various cleaning protocols. The variant parameters included the type and concentration of solvent, type of wipe, pretreatment conditions, and various rinsing systems. Taguchi statistical method was used to design and evaluate various cleaning conditions on ten common spacecraft materials.

  8. 30 CFR 27.20 - Quality of material, workmanship, and design.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Quality of material, workmanship, and design. 27.20 Section 27.20 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and...

  9. 30 CFR 27.20 - Quality of material, workmanship, and design.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Quality of material, workmanship, and design. 27.20 Section 27.20 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and...

  10. Design, Implementation, and Evaluation of GIS-Based Learning Materials in an Introductory Geoscience Course.

    ERIC Educational Resources Information Center

    Hall-Wallace, Michelle K.; McAuliffe, Carla M.

    2002-01-01

    Investigates student learning that occurred with a Geographic Information Systems (GIS) based module on plate tectonics and geologic hazards. Examines factors in the design and implementation of the materials that impacted student learning. Reports positive correlations between student' spatial ability and performance. Includes 17 references.…

  11. Distilled Water Distribution Systems. Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Sell, J.C.

    Factors concerning water distribution systems, including an evaluation of materials and a recommendation of materials best suited for service in typical facilities are discussed. Several installations are discussed in an effort to bring out typical features in selected applications. The following system types are included--(1) industrial…

  12. Divertor and midplane materials evaluation system in DIII-D

    NASA Astrophysics Data System (ADS)

    Wong, C. P. C.; Rudakov, D. L.; Allain, J. P.; Bastasz, R. J.; Brooks, N. H.; Brooks, J. N.; Doerner, R. P.; Evans, T. E.; Hassanein, A.; Jacob, W.; Krieger, K.; Litnovsky, A.; McLean, A. G.; Philipps, V.; Pigarov, A. Yu.; Wampler, W. R.; Watkins, J. G.; West, W. P.; Whaley, J.; Wienhold, P.

    2007-06-01

    The Divertor Materials Evaluation System (DiMES) at General Atomics has successfully advanced the understanding of plasma surface interaction phenomena involving ITER-relevant materials and has been utilized for advanced diagnostic designs in the lower divertor of DIII-D. This paper describes a series of recent successful experiments. These include the study of carbon deposition in gaps and metallic mirrors as a function of temperature, study of dust migration from the divertor, study of methane injection in order to benchmark chemical sputtering diagnostics, and the measurement of charge exchange neutrals with a hydrogen sensor. In concert with the modification of the lower divertor of DIII-D, the DiMES sample vertical location was modified to match the raised divertor floor. The new Mid-plane Material Exposure Sample (MiMES) design will also be presented. MiMES will allow the study and measurement of erosion and redeposition of material at the outboard mid-plane of DIII-D, including effects from convective transport. We will continue to expose relevant materials and advanced diagnostics to different plasma configurations under various operational regimes, including material erosion and redeposition experiments, and gaps and mirror exposures at elevated temperature.

  13. Predictive modeling of infrared detectors and material systems

    NASA Astrophysics Data System (ADS)

    Pinkie, Benjamin

    Detectors sensitive to thermal and reflected infrared radiation are widely used for night-vision, communications, thermography, and object tracking among other military, industrial, and commercial applications. System requirements for the next generation of ultra-high-performance infrared detectors call for increased functionality such as large formats (> 4K HD) with wide field-of-view, multispectral sensitivity, and on-chip processing. Due to the low yield of infrared material processing, the development of these next-generation technologies has become prohibitively costly and time consuming. In this work, it will be shown that physics-based numerical models can be applied to predictively simulate infrared detector arrays of current technological interest. The models can be used to a priori estimate detector characteristics, intelligently design detector architectures, and assist in the analysis and interpretation of existing systems. This dissertation develops a multi-scale simulation model which evaluates the physics of infrared systems from the atomic (material properties and electronic structure) to systems level (modulation transfer function, dense array effects). The framework is used to determine the electronic structure of several infrared materials, optimize the design of a two-color back-to-back HgCdTe photodiode, investigate a predicted failure mechanism for next-generation arrays, and predict the systems-level measurables of a number of detector architectures.

  14. The design, synthesis, and characterization of novel electronic organic materials

    NASA Astrophysics Data System (ADS)

    Walker, Wesley Thomas

    pi-conjugated organic molecules have proven to be valuable tools for organic electronics and engineered materials. The ability to manipulate the structure and energy levels of these materials allows them to be tailored to meet the electronic and physical demands of a variety of devices. One particular interest in this field is low band gap organic polymers, specifically those with band gaps below 1.5 eV; these are typically designed by constructing polymers with alternating donor and acceptor moieties in the conjugated backbone of the molecule. An additional area of interest for pi-conjugated organic molecules has been the search for solution-processable small molecules for use in organic solar cells and organic light emitting diodes. Owing to poor film morphologies resulting from solution casting, small molecules are largely thermally deposited, thus limiting the scope to which they can be utilized in devices. This dissertation will outline the design, synthesis, and characterization of a series of low band gap organic polymers with a design motif of alternating thiophene-cyclopentadienone units, resulting in polymers that are shown to have absorptions throughout the visible spectrum and into the infrared, as well as the synthesis and characterization of two classes of small solution processable conjugated molecules: dinaphthocarbazoles and triphenylfluoranthenes.

  15. A model for designing functionally gradient material joints

    SciTech Connect

    Jou, M.; Messler, R.W.; Orling, T.T.

    1994-12-31

    Joining of dissimilar materials into hybrid structures to meet severe design and service requirements is becoming more necessary and common. Joints between heat-resisting or refractory metals and refractory or corrosion resistant ceramics and intermetallics are especially in demand. Before resorting to a more complicated but versatile finite element analysis (FEA) model, a simpler, more user-friendly analytical layer-model based on a thin plate assumption was developed and tested. The model has been successfully used to design simple FGM joints between Ni-base superalloys or Mo and SiC, Ni{sub 3}Al or Al{sub 2}O{sub 3} using self-propagating high-temperature or pressurized composition synthesis for joining. Cases are presented to demonstrate capability for: (1) varying processing temperature excursions or service gradients; (2) varying overall joint thickness for a fixed number of uniform composition steps; (3) varying the number of uniform steps for a particular overall joint thickness; (4) varying the thickness and/or composition of individual steps for a constant overall thickness; and (5) altering the constitutive law for mixed-material composition steps. The model provides a useful joint design tool for process R&D.

  16. Making intelligent systems team players: Overview for designers

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schreckenghost, Debra L.

    1992-01-01

    This report is a guide and companion to the NASA Technical Memorandum 104738, 'Making Intelligent Systems Team Players,' Volumes 1 and 2. The first two volumes of this Technical Memorandum provide comprehensive guidance to designers of intelligent systems for real-time fault management of space systems, with the objective of achieving more effective human interaction. This report provides an analysis of the material discussed in the Technical Memorandum. It clarifies what it means for an intelligent system to be a team player, and how such systems are designed. It identifies significant intelligent system design problems and their impacts on reliability and usability. Where common design practice is not effective in solving these problems, we make recommendations for these situations. In this report, we summarize the main points in the Technical Memorandum and identify where to look for further information.

  17. Engineering design aspects of the heat-pipe power system

    SciTech Connect

    Capell, B.M.; Houts, M.G.; Poston, D.I.; Berte, M.

    1997-10-01

    The Heat-pipe Power System (HPS) is a near-term, low-cost space power system designed at Los Alamos that can provide up to 1,000 kWt for many space nuclear applications. The design of the reactor is simple, modular, and adaptable. The basic design allows for the use of a variety of power conversion systems and reactor materials (including the fuel, clad, and heat pipes). This paper describes a project that was undertaken to develop a database supporting many engineering aspects of the HPS design. The specific tasks discussed in this paper are: the development of an HPS materials database, the creation of finite element models that will allow a wide variety of investigations, and the verification of past calculations.

  18. Engineering design aspects of the heat-pipe power system

    NASA Technical Reports Server (NTRS)

    Capell, B. M.; Houts, M. G.; Poston, D. I.; Berte, M.

    1997-01-01

    The Heat-pipe Power System (HPS) is a near-term, low-cost space power system designed at Los Alamos that can provide up to 1,000 kWt for many space nuclear applications. The design of the reactor is simple, modular, and adaptable. The basic design allows for the use of a variety of power conversion systems and reactor materials (including the fuel, clad, and heat pipes). This paper describes a project that was undertaken to develop a database supporting many engineering aspects of the HPS design. The specific tasks discussed in this paper are: the development of an HPS materials database, the creation of finite element models that will allow a wide variety of investigations, and the verification of past calculations.

  19. Developing Higher-Order Materials Knowledge Systems

    NASA Astrophysics Data System (ADS)

    Fast, Anthony Nathan

    2011-12-01

    Advances in computational materials science and novel characterization techniques have allowed scientists to probe deeply into a diverse range of materials phenomena. These activities are producing enormous amounts of information regarding the roles of various hierarchical material features in the overall performance characteristics displayed by the material. Connecting the hierarchical information over disparate domains is at the crux of multiscale modeling. The inherent challenge of performing multiscale simulations is developing scale bridging relationships to couple material information between well separated length scales. Much progress has been made in the development of homogenization relationships which replace heterogeneous material features with effective homogenous descriptions. These relationships facilitate the flow of information from lower length scales to higher length scales. Meanwhile, most localization relationships that link the information from a from a higher length scale to a lower length scale are plagued by computationally intensive techniques which are not readily integrated into multiscale simulations. The challenge of executing fully coupled multiscale simulations is augmented by the need to incorporate the evolution of the material structure that may occur under conditions such as material processing. To address these challenges with multiscale simulation, a novel framework called the Materials Knowledge System (MKS) has been developed. This methodology efficiently extracts, stores, and recalls microstructure-property-processing localization relationships. This approach is built on the statistical continuum theories developed by Kroner that express the localization of the response field at the microscale using a series of highly complex convolution integrals, which have historically been evaluated analytically. The MKS approach dramatically improves the accuracy of these expressions by calibrating the convolution kernels in these

  20. Design of a scientific probe for obtaining Mars surface material

    NASA Technical Reports Server (NTRS)

    Baker, Miles; Deyerl, Eric; Gibson, Tim; Langberg, Bob; Yee, Terrance (Editor)

    1990-01-01

    The objective is to return a 1 Kg Martian soil sample from the surface of Mars to a mothership in a 60 km Mars orbit. Given here is information on the mission profile, the structural design and component placement, thermal control and guidance, propulsion systems, orbital mechanics, and specialized structures.

  1. Acentric lattice electro-optic materials by rational design

    NASA Astrophysics Data System (ADS)

    Dalton, Larry; Robinson, Bruce; Jen, Alex; Ried, Philip; Eichinger, Bruce; Sullivan, Philip; Akelaitis, Andrew; Bale, Denise; Haller, Marnie; Luo, Jingdong; Liu, Sen; Liao, Yi; Firestone, Kimberly; Bhatambrekar, Nishant; Bhattacharjee, Sanchali; Sinness, Jessica; Hammond, Scott; Buker, Nicholas; Snoeberger, Robert; Lingwood, Mark; Rommel, Harry; Amend, Joe; Jang, Sei-Hum; Chen, Antao; Steier, William

    2005-08-01

    Quantum and statistical mechanical calculations have been used to guide the improvement of the macroscopic electro-optic activity of organic thin film materials to values greater than 300 pm/V at telecommunication wavelengths. Various quantum mechanical methods (Hartree-Fock, INDO, and density functional theory) have been benchmarked and shown to be reliable for estimating trends in molecular first hyperpolarizability, β, for simple variation of donor, bridge, and acceptor structures of charge-transfer (dipolar) chromophores. β values have been increased significantly over the past five years and quantum mechanical calculations suggest that they can be further significantly improved. Statistical mechanical calculations, including pseudo-atomistic Monte Carlo calculations, have guided the design of the super/supramolecular structures of chromophores so that they assemble, under the influence of electric field poling, into macroscopic lattices with high degrees of acentric order. Indeed, during the past year, chromophores doped into single- and multi-chromophore-containing dendrimer materials to form binary glasses have yielded thin films that exhibit electro-optic activities at telecommunication wavelengths of greater than 300 pm/V. Such materials may be viewed as intermediate between chromophore/polymer composites and crystalline organic chromophore materials. Theory suggests that further improvements of electro-optic activity are possible. Auxiliary properties of these materials, including optical loss, thermal and photochemical stability, and processability are discussed. Such organic electro-optic materials have been incorporated into silicon photonic circuitry for active wavelength division multiplexing, reconfigurable optical add/drop multiplexing, and high bandwidth optical rectification. A variety of all-organic devices, including stripline, cascaded prism, Fabry-Perot etalon, and ring microresonator devices, have been fabricated and evaluated.

  2. Assembly design system based on engineering connection

    NASA Astrophysics Data System (ADS)

    Yin, Wensheng

    2016-05-01

    An assembly design system is an important part of computer-aided design systems, which are important tools for realizing product concept design. The traditional assembly design system does not record the connection information of production on the engineering layer; consequently, the upstream design idea cannot be fully used in the downstream design. An assembly design model based on the relationship of engineering connection is presented. In this model, all nodes are divided into two categories: The component and the connection. Moreover, the product is constructed on the basis of the connection relationship of the components. The model is an And/Or graph and has the ability to record all assembly schemes. This model records only the connection information that has engineering application value in the product design. In addition, this model can significantly reduce the number of combinations, and is very favorable for the assembly sequence planning in the downstream. The system contains a connection knowledge system that can be mapped to the connection node, and the connection knowledge obtained in practice can be returned to the knowledge system. Finally, VC++ 6.0 is used to develop a prototype system called Connect-based Assembly Planning (CAP). The relationship between the CAP system and the commercial assembly design system is also established.

  3. Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials.

    PubMed

    Yao, Huifeng; Ye, Long; Zhang, Hao; Li, Sunsun; Zhang, Shaoqing; Hou, Jianhui

    2016-06-22

    Advances in the design and application of highly efficient conjugated polymers and small molecules over the past years have enabled the rapid progress in the development of organic photovoltaic (OPV) technology as a promising alternative to conventional solar cells. Among the numerous OPV materials, benzodithiophene (BDT)-based polymers and small molecules have come to the fore in achieving outstanding power conversion efficiency (PCE) and breaking 10% efficiency barrier in the single junction OPV devices. Remarkably, the OPV device featured by BDT-based polymer has recently demonstrated an impressive PCE of 11.21%, indicating the great potential of this class of materials in commercial photovoltaic applications. In this review, we offered an overview of the organic photovoltaic materials based on BDT from the aspects of backbones, functional groups, alkyl chains, and device performance, trying to provide a guideline about the structure-performance relationship. We believe more exciting BDT-based photovoltaic materials and devices will be developed in the near future. PMID:27251307

  4. Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials.

    PubMed

    Yao, Huifeng; Ye, Long; Zhang, Hao; Li, Sunsun; Zhang, Shaoqing; Hou, Jianhui

    2016-06-22

    Advances in the design and application of highly efficient conjugated polymers and small molecules over the past years have enabled the rapid progress in the development of organic photovoltaic (OPV) technology as a promising alternative to conventional solar cells. Among the numerous OPV materials, benzodithiophene (BDT)-based polymers and small molecules have come to the fore in achieving outstanding power conversion efficiency (PCE) and breaking 10% efficiency barrier in the single junction OPV devices. Remarkably, the OPV device featured by BDT-based polymer has recently demonstrated an impressive PCE of 11.21%, indicating the great potential of this class of materials in commercial photovoltaic applications. In this review, we offered an overview of the organic photovoltaic materials based on BDT from the aspects of backbones, functional groups, alkyl chains, and device performance, trying to provide a guideline about the structure-performance relationship. We believe more exciting BDT-based photovoltaic materials and devices will be developed in the near future.

  5. Raman system for radioactive waste materials in a hot cell

    SciTech Connect

    Reich, F.R.; Douglas, J.G.; Lopez, T.

    1994-12-31

    A remote, fiber-optic Raman system is being developed for the chemical characterization of Hanford Site high-level radioactive wastes. These wastes resulted from the chemical processing of nuclear weapons material during the years 1943 through 1987; the wastes are stored in underground storage tanks. Hanford Site cleanup and restoration are the major drivers for the development of the Raman work described in this paper. The Raman system uses a remote, fiber-optic probe with radiation resistant optical fibers. A {open_quotes}mash{close_quote} probe, with two optical fibers and a sensing tip finished in a chisel shape, was used to obtain Raman data from real tank material and simulants. Selection of the Raman system components and design of the fiber optic probe were based upon comparison data from various probe designs and the results of radiation-damage tests on optical fibers. The chemical and physical characteristics of Hanford Site tank wastes were also factors in designing the remote Raman system. Reference spectra have been obtained from a number of pure materials that are suspected to be in the tank wastes. Detection limits for ferrocyanide species in simulated tank waste will be presented. Additional spectra obtained from archived samples of actual tank waste will be presented; these spectra demonstrate the feasibility of using fiber-optic Raman spectroscopy to remotely characterize tank waste materials both in the hot cell and in the waste tank itself. The U.S. Department of Energy`s Office of Technology Development, Underground Storage Tank, Integrated Demonstration and Tank Waste Remediation Systems programs funded this work.

  6. Designed amyloid fibers as materials for selective carbon dioxide capture

    PubMed Central

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M.; Eisenberg, David S.

    2014-01-01

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture. PMID:24367077

  7. Systems design factors: The essential ingredients of system design, version 0.4

    NASA Astrophysics Data System (ADS)

    Nguyen, Cuong M.; Howell, Steven L.

    1994-03-01

    The key to designing a real-time, large, complex system is to optimize the design to meet the requirements and desired measure of effectiveness. In order to achieve this, the system engineer/analyst must have the capability to specify the design goals/criteria, to quantify various aspects of the design, and to perform trade-offs among different design goals. One of the mechanisms that provides these capabilities is the system design factors. Whether the system design emphasis is on real-time, largeness, complexity, parallelism, or any specific criteria, it requires a set of system design factors to describe the properties, attributes, and characteristics of the system. Each system design factor must have its own metric to gauge every detail of that system. The metric describes the weaknesses and strengths of a specific area in the design. In turn, the correlation of the system design factor characterizes the completeness and robustness of the system. Whether the system is designed top-down, bottom-up, or middle-out, the system design factors have major influence in design capture and analysis, design structuring decisions, allocation decisions, and trade-off decisions between various design structures and resource allocation candidates.

  8. Tethered Satellite System control system design

    NASA Technical Reports Server (NTRS)

    Tomlin, Donald D.; Mowery, David K.; Bodley, Carl S.

    1989-01-01

    This paper discusses the control aspects of the Tethered Satellite System mission. The deployer controls system uses length-error and tension-error feedback to control in-plane libration, length, and length rate. The satellite's reaction control system is used to augment tether tension, control rates and attitude about the tether axis, and to damp in-plane and out-of-plane libration. The orbiter's reaction control system is also used to control in-plane and out-of-plane libration. Results of simulations are presented for the flight portion of the Tethered Satellite System mission.

  9. Two examples of intelligent systems based on smart materials

    SciTech Connect

    Unsworth, J.

    1994-12-31

    Two intelligent systems are described which are based on smart materials. The operation of the systems also rely on conventional well known technologies such as electronics, signal conditioning, signal processing, microprocessors and engineering design. However without the smart materials the development and integration into the intelligent systems would not have been possible. System 1 is a partial discharge monitor for on-line continuous checking of the condition of electrical power transformers. The ultrasonic and radio frequency detectors in this system rely on special piezoelectric composite integrated with a compact annular metal ring. Partial discharges set up ultrasonic and radio frequency signals which are received by the integrated detectors. The signals are amplified, conditioned, signal processed, the time interval between the two signals measured and the level of partial discharge activity averaged and assessed for numerous pairs and alarms triggered on remote control panels if the level is dangerous. The system has the capability of initiating automatic shutdown of the transformer once it is linked into the control computers of the electrical power authority. System 2 is called a Security Cradle and is an intelligent 3D shield designed to use the properties of electro active polymers to prevent hardware hackers from stealing valuable of sensitive information from memory devices (e.g., EPROMS) housed in computer or microprocessor installations.

  10. The design of laser scanning galvanometer system

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoling; Zhou, Bin; Xie, Weihao; Zhang, Yuangeng

    2015-02-01

    In this paper, we designed the laser scanning galvanometer system according to our requirements. Based on scanning range of our laser scanning galvanometer system, the design parameters of this system were optimized. During this work, we focused on the design of the f-θ field lens. An optical system of patent lens in the optical manual book, which had three glasses structure, was used in our designs. Combining the aberration theory, the aberration corrections and image quality evaluations were finished using Code V optical design software. An optimum f-θ field lens was designed, which had focal length of 434 mm, pupil diameter of 30 mm, scanning range of 160 mm × 160 mm, and half field angle of 18°×18°. At the last, we studied the influences of temperature changes on our system.

  11. Design for a 1 MHz soft magnetic material hysteresisgraph (abstract)

    NASA Astrophysics Data System (ADS)

    Dennison, Eric

    1993-05-01

    Until recently, high frequency (1 MHz) testing of magnetically soft materials has been typically limited to measurement of core loss and peak or inductive ac permeability. A high frequency hysteresisgraph allows direct examination of the hysteresis loop and calculation of values for magnetic parameters such as coercivity (Hc), peak permeability (μp), remanence (Br), core loss (Pc,Pcv,Pcm), bias drive field strength (Hbias), maximum H drive (Hmax) and maximum or saturation induction (Bmax). This paper describes the methods used to construct and calibrate a commercial high frequency magnetic hysteresisgraph which is capable of recording the primary current and secondary voltage waveforms of magnetic cores driven at up to 1 MHz. A system accuracy of 2% (for B and H parameter values) and 5% (for core loss) was achieved through careful control and calibration of signal phase shifts within the circuitry. System calibration, magnetic field calculations, and use of FFT post-processing of the acquired waveforms are discussed. The ability to accurately record the hysteresis loop of a material at 1 MHz allows high frequency core materials to be characterized not only by core loss and permeability, but by their hysteresis loop shape, coercivity, and remanence, both under pure ac and dc biased ac drive conditions. Changes in material characteristics due to dc biasing, temperature variations, defects, or mechanical stresses can be readily observed and described in terms of changes to the hysteresis curve shape.

  12. Hybrid materials science: a promised land for the integrative design of multifunctional materials

    NASA Astrophysics Data System (ADS)

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-05-01

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of ``hybrid organic-inorganic'' nanocomposites exploded in the second half of the 20th century with the expansion of the so-called ``chimie douce'' which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.

  13. Hybrid materials science: a promised land for the integrative design of multifunctional materials.

    PubMed

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-06-21

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of "hybrid organic-inorganic" nanocomposites exploded in the second half of the 20th century with the expansion of the so-called "chimie douce" which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented. PMID:24866174

  14. Hybrid materials science: a promised land for the integrative design of multifunctional materials.

    PubMed

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-06-21

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of "hybrid organic-inorganic" nanocomposites exploded in the second half of the 20th century with the expansion of the so-called "chimie douce" which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.

  15. Taguchi method of experimental design in materials education

    NASA Technical Reports Server (NTRS)

    Weiser, Martin W.

    1993-01-01

    Some of the advantages and disadvantages of the Taguchi Method of experimental design as applied to Materials Science will be discussed. This is a fractional factorial method that employs the minimum number of experimental trials for the information obtained. The analysis is also very simple to use and teach, which is quite advantageous in the classroom. In addition, the Taguchi loss function can be easily incorporated to emphasize that improvements in reproducibility are often at least as important as optimization of the response. The disadvantages of the Taguchi Method include the fact that factor interactions are normally not accounted for, there are zero degrees of freedom if all of the possible factors are used, and randomization is normally not used to prevent environmental biasing. In spite of these disadvantages it is felt that the Taguchi Method is extremely useful for both teaching experimental design and as a research tool, as will be shown with a number of brief examples.

  16. Biochemically designed polymers as self-organized materials

    NASA Astrophysics Data System (ADS)

    Alva, Shridhara; Sarma, Rupmoni; Marx, Kenneth A.; Kumar, Jayant; Tripathy, Sukant K.; Akkara, Joseph A.; Kaplan, David L.

    1997-02-01

    Self assembled molecular systems are a focus of attention for material scientists as they provide an inherent molecular level organization responsible for enhanced material properties. We have developed polymeric molecular systems with interesting optical properties by biochemical engineering, which can be self assembled to thin films. Horseradish peroxidase catalyzed polymerizations of phenolic monomers: 9-hydroxyquinoline-5-sulfonic acid, acid red and decyl ester (d&l isomers) of tyrosine, have been achieved in the presence of hydrogen peroxide. The polymer of 8- hydroxyquinoline-5-sulfonic acid acts as a polymeric ligand that can be used for metal ion sensing. The polymer of acid red, with azo functional groups in the polymer backbone, shows interesting optical properties. Amphiphilic derivatives of tyrosine self assemble into tubules from micelles in aqueous solutions. These tubules have been enzymatically polymerized to polymeric tubules. The tubules are of 5 micrometers average diameter and > 200 micrometers length. The formation and properties of these tubules are discussed.

  17. Effects of Materials Parameters and Design Details on the Fatigue of Composite Materials for Wind Turbine Blades

    SciTech Connect

    Mandell, J.F.; Samborsky, D.D.; Sutherland, H.J.

    1999-03-04

    This paper presents an analysis of the results of nine years of fatigue testing represented in the USDOE/Montana State University (DOE/MSU) Composite Materials Fatigue Database. The focus of the program has been to explore a broad range of glass-fiber-based materials parameters encompassing over 4500 data points for 130 materials systems. Significant trends and transitions in fatigue resistance are shown as the fiber content and fabric architecture are varied. The effects of structural details including ply drops, bonded stiffeners, and other geometries that produce local variations in fiber packing and geometry are also described. Fatigue tests on composite beam structures are then discussed; these show generally good correlation with coupon fatigue data in the database. Goodman diagrams for fatigue design are presented, and their application to predicting the service lifetime of blades is described.

  18. Systems and methods for forming defects on graphitic materials and curing radiation-damaged graphitic materials

    DOEpatents

    Ryu, Sunmin; Brus, Louis E.; Steigerwald, Michael L.; Liu, Haitao

    2012-09-25

    Systems and methods are disclosed herein for forming defects on graphitic materials. The methods for forming defects include applying a radiation reactive material on a graphitic material, irradiating the applied radiation reactive material to produce a reactive species, and permitting the reactive species to react with the graphitic material to form defects. Additionally, disclosed are methods for removing defects on graphitic materials.

  19. Overview of control design methods for smart structural system

    NASA Astrophysics Data System (ADS)

    Rao, Vittal S.; Sana, Sridhar

    2001-08-01

    Smart structures are a result of effective integration of control system design and signal processing with the structural systems to maximally utilize the new advances in materials for structures, actuation and sensing to obtain the best performance for the application at hand. The research in smart structures is constantly driving towards attaining self adaptive and diagnostic capabilities that biological systems possess. This has been manifested in the number of successful applications in many areas of engineering such as aerospace, civil and automotive systems. Instrumental in the development of such systems are smart materials such as piezo-electric, shape memory alloys, electrostrictive, magnetostrictive and fiber-optic materials and various composite materials for use as actuators, sensors and structural members. The need for development of control systems that maximally utilize the smart actuators and sensing materials to design highly distributed and highly adaptable controllers has spurred research in the area of smart structural modeling, identification, actuator/sensor design and placement, control systems design such as adaptive and robust controllers with new tools such a neural networks, fuzzy logic, genetic algorithms, linear matrix inequalities and electronics for controller implementation such as analog electronics, micro controllers, digital signal processors (DSPs) and application specific integrated circuits (ASICs) such field programmable gate arrays (FPGAs) and Multichip modules (MCMs) etc. In this paper, we give a brief overview of the state of control in smart structures. Different aspects of the development of smart structures such as applications, technology and theoretical advances especially in the area of control systems design and implementation will be covered.

  20. Using the Computer in Systems Engineering Design

    ERIC Educational Resources Information Center

    Schmidt, W.

    1970-01-01

    With the aid of the programmed computer, the systems designer can analyze systems for which certain components have not yet been manufactured or even invented, and the power of solution-technique is greatly increased. (IR)