Science.gov

Sample records for system design studies

  1. Vehicle systems design optimization study

    SciTech Connect

    Gilmour, J. L.

    1980-04-01

    The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current production internal combustion engine vehicles. It is possible to achieve this goal and also provide passenger and cargo space comparable to a selected current production sub-compact car either in a unique new design or by utilizing the production vehicle as a base. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages - one at front under the hood and a second at the rear under the cargo area - in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passsenger and cargo space for a given size vehicle.

  2. Digital television system design study

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1976-01-01

    The use of digital techniques for transmission of pictorial data is discussed for multi-frame images (television). Video signals are processed in a manner which includes quantization and coding such that they are separable from the noise introduced into the channel. The performance of digital television systems is determined by the nature of the processing techniques (i.e., whether the video signal itself or, instead, something related to the video signal is quantized and coded) and to the quantization and coding schemes employed.

  3. Mobile Variable Depth Sampling System Design Study

    SciTech Connect

    BOGER, R.M.

    2000-08-25

    A design study is presented for a mobile, variable depth sampling system (MVDSS) that will support the treatment and immobilization of Hanford LAW and HLW. The sampler can be deployed in a 4-inch tank riser and has a design that is based on requirements identified in the Level 2 Specification (latest revision). The waste feed sequence for the MVDSS is based on Phase 1, Case 3S6 waste feed sequence. Technical information is also presented that supports the design study.

  4. Electrostatic camera system functional design study

    NASA Technical Reports Server (NTRS)

    Botticelli, R. A.; Cook, F. J.; Moore, R. F.

    1972-01-01

    A functional design study for an electrostatic camera system for application to planetary missions is presented. The electrostatic camera can produce and store a large number of pictures and provide for transmission of the stored information at arbitrary times after exposure. Preliminary configuration drawings and circuit diagrams for the system are illustrated. The camera system's size, weight, power consumption, and performance are characterized. Tradeoffs between system weight, power, and storage capacity are identified.

  5. Space shuttle visual simulation system design study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A recommendation and a specification for the visual simulation system design for the space shuttle mission simulator are presented. A recommended visual system is described which most nearly meets the visual design requirements. The cost analysis of the recommended system covering design, development, manufacturing, and installation is reported. Four alternate systems are analyzed.

  6. VXIbus data collection system -- A design study

    SciTech Connect

    Hacker, U.; Richter, B.; Weinert, A.; Arlt, R.; Lewis, W.; Swinhoe, M.

    1995-12-31

    The German support program has sponsored the work to investigate the VXIbus as integration platform for safeguards instrumentation. This paper will cover the analysis of the user requirements for a VXIbus based monitoring system for integrated safeguards -- primarily for reliable unattended in-field collection of large amounts of data. The goal is to develop a suitable system architecture. The design of the system makes use of the VXIbus standard as the selected hardware platform Based upon the requirement analysis and the overriding need for high reliability and robustness, a systematic investigation of different operating system options, as well as development and integration tools will be considered. For the software implementation cycle high and low level programming tools are required. The identification of the constraints for the programming platform and the tool selection will be presented. Both the strategic approach, the rules for analysis and design work as well as the executive components for the support of the implementation and production cycle are given. Here all the conditions for reliable, unattended and integrated safeguards monitoring systems will be addressed. The definition of the basic and advanced design principles are covered. The paper discusses the results of a study on a system produced to demonstrate a high data rate timer/counter application.

  7. Microgravity isolation system design: A case study

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.

    1994-01-01

    Many acceleration-sensitive, microgravity science experiments will require active vibration isolation from manned orbiters on which they will be mounted. The isolation problem, especially in the case of a tethered payload, is a complex three-dimensional one that is best suited to modern-control design methods. In this paper, extended H(sub 2) synthesis is used to design an active isolator (i.e., controller) for a realistic single-input-multiple-output (SIMO) microgravity vibration isolation problem. Complex mu-analysis methods are used to analyze the isolation system with respect to sensor, actuator, and umbilical uncertainties. The paper fully discusses the design process employed and the insights gained. This design case study provides a practical approach for isolation problems of greater complexity. Issues addressed include a physically intuitive state-space description of the system, disturbance and noise filters, filters for frequency weighting, and uncertainty models. The controlled system satisfies all the performance specifications and is robust with respect to model uncertainties.

  8. Preliminary systems design study assessment report

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1991-10-01

    The System Design Study (SDS), part of the Waste Technology Development Department of the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. The SDS results are published in eight volumes. Volume I contains an executive summary. The SDS summary and analysis of results are presented in Volume II. Volumes III through VII contain descriptions of twelve system and four subsystem concepts. Volume VIII contains the appendixes.

  9. Shuttle Global Positioning System (GPS) design study

    NASA Technical Reports Server (NTRS)

    Nilsen, P. W.

    1979-01-01

    The effects of oscillator noise on Shuttle Global Positioning System (GPS) receiver performance, GPS navigation system self-test, GPS ground transmitter design to augment shuttle navigation, the effect of ionospheric delay modelling on GPS receiver design, and GPS receiver tracking of Shuttle transient maneuvers were investigated.

  10. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1988-01-01

    The results are presented of a study to identify specific criteria regarding space station extravehicular activity system (EVAS) hardware requirements. Key EVA design issues include maintainability, technology readiness, LSS volume vs. EVA time available, suit pressure/cabin pressure relationship and productivity effects, crew autonomy, integration of EVA as a program resource, and standardization of task interfaces. A variety of DOD EVA systems issues were taken into consideration. Recommendations include: (1) crew limitations, not hardware limitations; (2) capability to perform all of 15 generic missions; (3) 90 days on-orbit maintainability with 50 percent duty cycle as minimum; and (4) use by payload sponsors of JSC document 10615A plus a Generic Tool Kit and Specialized Tool Kit description. EVA baseline design requirements and criteria, including requirements of various subsystems, are outlined. Space station/EVA system interface requirements and EVA accommodations are discussed in the areas of atmosphere composition and pressure, communications, data management, logistics, safe haven, SS exterior and interior requirements, and SS airlock.

  11. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the Space Station Advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related extravehicular activity (EVA) support equipment were defined and established. The EVA mission requirements, environments, and medical and physiological requirements, as well as opertional, procedures, and training issues were considered.

  12. Mars orbiter conceptual systems design study

    NASA Technical Reports Server (NTRS)

    Dixon, W.; Vogl, J.

    1982-01-01

    Spacecraft system and subsystem designs at the conceptual level to perform either of two Mars Orbiter missions, a Climatology Mission and an Aeronomy Mission were developed. The objectives of these missions are to obtain and return data.

  13. Reusable Reentry Satellite (RRS) system design study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Reusable Reentry Satellite (RRS) is intended to provide investigators in several biological disciplines with a relatively inexpensive method to access space for up to 60 days with eventual recovery on Earth. The RRS will permit totally intact, relatively soft, recovery of the vehicle, system refurbishment, and reflight with new and varied payloads. The RRS is to be capable of three reflights per year over a 10-year program lifetime. The RRS vehicle will have a large and readily accessible volume near the vehicle center of gravity for the Payload Module (PM) containing the experiment hardware. The vehicle is configured to permit the experimenter late access to the PM prior to launch and rapid access following recovery. The RRS will operate in one of two modes: (1) as a free-flying spacecraft in orbit, and will be allowed to drift in attitude to provide an acceleration environment of less than 10(exp -5) g. the acceleration environment during orbital trim maneuvers will be less than 10(exp -3) g; and (2) as an artificial gravity system which spins at controlled rates to provide an artificial gravity of up to 1.5 Earth g. The RRS system will be designed to be rugged, easily maintained, and economically refurbishable for the next flight. Some systems may be designed to be replaced rather than refurbished, if cost effective and capable of meeting the specified turnaround time. The minimum time between recovery and reflight will be approximately 60 days. The PMs will be designed to be relatively autonomous, with experiments that require few commands and limited telemetry. Mass data storage will be accommodated in the PM. The hardware development and implementation phase is currently expected to start in 1991 with a first launch in late 1993.

  14. Study and design of cryogenic propellant acquisition systems. Volume 1: Design studies

    NASA Technical Reports Server (NTRS)

    Burge, G. W.; Blackmon, J. B.

    1973-01-01

    An in-depth study and selection of practical propellant surface tension acquisition system designs for two specific future cryogenic space vehicles, an advanced cryogenic space shuttle auxiliary propulsion system and an advanced space propulsion module is reported. A supporting laboratory scale experimental program was also conducted to provide design information critical to concept finalization and selection. Designs using localized pressure isolated surface tension screen devices were selected for each application and preliminary designs were generated. Based on these designs, large scale acquisition prototype hardware was designed and fabricated to be compatible with available NASA-MSFC feed system hardware.

  15. Airborne optical tracking control system design study

    NASA Astrophysics Data System (ADS)

    1992-09-01

    The Kestrel LOS Tracking Program involves the development of a computer and algorithms for use in passive tracking of airborne targets from a high altitude balloon platform. The computer receivers track error signals from a video tracker connected to one of the imaging sensors. In addition, an on-board IRU (gyro), accelerometers, a magnetometer, and a two-axis inclinometer provide inputs which are used for initial acquisitions and course and fine tracking. Signals received by the control processor from the video tracker, IRU, accelerometers, magnetometer, and inclinometer are utilized by the control processor to generate drive signals for the payload azimuth drive, the Gimballed Mirror System (GMS), and the Fast Steering Mirror (FSM). The hardware which will be procured under the LOS tracking activity is the Controls Processor (CP), the IRU, and the FSM. The performance specifications for the GMS and the payload canister azimuth driver are established by the LOS tracking design team in an effort to achieve a tracking jitter of less than 3 micro-rad, 1 sigma for one axis.

  16. Shuttle Global Positioning System (GPS) system design study

    NASA Technical Reports Server (NTRS)

    Nilsen, P. W.

    1979-01-01

    The various integration problems in the Shuttle GPS system were investigated. The analysis of the Shuttle GPS link was studied. A preamplifier was designed since the Shuttle GPS antennas must be located remotely from the receiver. Several GPS receiver architecture trade-offs were discussed. The Shuttle RF harmonics and intermode that fall within the GPS receiver bandwidth were analyzed. The GPS PN code acquisition was examined. Since the receiver clock strongly affects both GPS carrier and code acquisition performance, a clock model was developed.

  17. Integrated source and channel encoded digital communication system design study

    NASA Technical Reports Server (NTRS)

    Huth, G. K.; Udalov, S.

    1974-01-01

    This study investigated the configuration and integration of a wideband communication system with a Ku-band rendezvous radar system. The goal of the study was to provide as much commonality between the two systems as possible. The antenna design was described with the only change being the requirement for dual polarization (linear for the radar system and circular for the communication system).

  18. Shuttle Global Positioning (GPS) System design study

    NASA Technical Reports Server (NTRS)

    Nilsen, P.; Huth, G. K.

    1980-01-01

    Investigations of certain aspects and problems of the shuttle global positioning system GPS, are presented. Included are: test philosophy and test outline; development of a phase slope specification for the shuttle GPS antenna; an investigation of the shuttle jamming vulnerability; and an expression for the GPS signal to noise density ratio for the thermal protection system.

  19. Space shuttle visual simulation system design study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The current and near-future state-of-the-art in visual simulation equipment technology is related to the requirements of the space shuttle visual system. Image source, image sensing, and displays are analyzed on a subsystem basis, and the principal conclusions are used in the formulation of a recommended baseline visual system. Perceptibility and visibility are also analyzed.

  20. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 4: IPAD system design

    NASA Technical Reports Server (NTRS)

    Goldfarb, W.; Carpenter, L. C.; Redhed, D. D.; Hansen, S. D.; Anderson, L. O.; Kawaguchi, A. S.

    1973-01-01

    The computing system design of IPAD is described and the requirements which form the basis for the system design are discussed. The system is presented in terms of a functional design description and technical design specifications. The functional design specifications give the detailed description of the system design using top-down structured programming methodology. Human behavioral characteristics, which specify the system design at the user interface, security considerations, and standards for system design, implementation, and maintenance are also part of the technical design specifications. Detailed specifications of the two most common computing system types in use by the major aerospace companies which could support the IPAD system design are presented. The report of a study to investigate migration of IPAD software between the two candidate 3rd generation host computing systems and from these systems to a 4th generation system is included.

  1. Impact of Design Trade Studies on System Human Resources.

    ERIC Educational Resources Information Center

    Whalen, Gary V.; Askren, William B.

    This study focused on two objectives. The first objective was to identify and classify the characteristics of conceptual design trade studies that have high potential impact on human resource requirements of Air Force weapon systems. The approach used was a case history review and analysis of 129 F-15 aircraft design trade studies. The analysis…

  2. Magnetic suspension and balance system advanced study, 1989 design

    NASA Technical Reports Server (NTRS)

    Boom, Roger W.; Eyssa, Y. M.; Abdelsalam, Moustafa K.; Mcintosh, Glen E.

    1991-01-01

    The objectives are to experimentally confirm several advanced design concepts on the Magnetic Suspension and Balance Systems (MSBS). The advanced design concepts were identified as potential improvements by Madison Magnetics, Inc. (MMI) during 1984 and 1985 studies of an MSBS utilizing 14 external superconductive coils and a superconductive solenoid in an airplane test model suspended in a wind tunnel. This study confirmed several advanced design concepts on magnetic suspension and balance systems. The 1989 MSBS redesign is based on the results of these experiments. Savings of up to 30 percent in supporting magnet ampere meters and 50 percent in energy stored over the 1985 design were achieved.

  3. Space shuttle food system study. Volume 1: System design report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Data were assembled which define the optimum food system to support the space shuttle program, and which provide sufficient engineering data to support necessary requests for proposals towards final development and installment of the system. The study approach used is outlined, along with technical data and sketches for each functional area. Logistic support analysis, system assurance, and recommendations and conclusions based on the study results are also presented.

  4. Conceptual design study for a teleoperator visual system, phase 1

    NASA Technical Reports Server (NTRS)

    Adams, D.; Grant, C.; Johnson, C.; Meirick, R.; Polhemus, C.; Ray, A.; Rittenhouse, D.; Skidmore, R.

    1972-01-01

    Results are reported for work performed during the first phase of the conceptual design study for a teleoperator visual system. This phase consists of four tasks: General requirements, concept development, subsystem requirements and analysis, and concept evaluation.

  5. Engineering study for the functional design of a multiprocessor system

    NASA Technical Reports Server (NTRS)

    Miller, J. S.; Vandever, W. H.; Stanten, S. F.; Avakian, A. E.; Kosmala, A. L.

    1972-01-01

    The results are presented of a study to generate a functional system design of a multiprocessing computer system capable of satisfying the computational requirements of a space station. These data management system requirements were specified to include: (1) real time control, (2) data processing and storage, (3) data retrieval, and (4) remote terminal servicing.

  6. Integrated source and channel encoded digital communication system design study

    NASA Technical Reports Server (NTRS)

    Alem, W. K.; Huth, G. K.; Simon, M. K.

    1978-01-01

    The particular Ku-band carrier, PN despreading, and symbol synchronization strategies, which were selected for implementation in the Ku-band transponder aboard the orbiter, were assessed and evaluated from a systems performance viewpoint, verifying that system specifications were met. A study was performed of the design and implementation of tracking techniques which are suitable for incorporation into the Orbiter Ku-band communication system. Emphasis was placed on maximizing tracking accuracy and communication system flexibility while minimizing cost, weight, and system complexity of Orbiter and ground systems hardware. The payload communication study assessed the design and performance of the forward link and return link bent-pipe relay modes for attached and detached payloads. As part of this study, a design for a forward link bent-pipe was proposed which employs a residual carrier but which is tracked by the existing Costas loop.

  7. Forest fire advanced system technology (FFAST) conceptual design study

    NASA Technical Reports Server (NTRS)

    Nichols, J. David; Warren, John R.

    1987-01-01

    The National Aeronautics and Space Administration's Jet Propulsion Laboratory (JPL) and the U.S. Department of Agriculture (USDA) Forest Service completed a conceptual design study that defined an integrated forest fire detection and mapping system that will be based upon technology available in the 1990s. Potential system configuration options in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include airborne mounted, thermal infrared (IR) linear array detectors, automatic onboard georeferencing and signal processing, geosynchronous satellite communications links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. The conceptual design study defined the preferred system configuration that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.

  8. How system designers think: a study of design thinking in human factors engineering.

    PubMed

    Papantonopoulos, Sotiris

    2004-11-01

    The paper presents a descriptive study of design thinking in human factors engineering. The objective of the study is to analyse the role of interpretation in design thinking and the role of design practice in guiding interpretation. The study involved 10 system designers undertaking the allocation of cognitive functions in three production planning and control task scenarios. Allocation decisions were recorded and verbal protocols of the design process were collected to elicit the subjects' thought processes. Verbal protocol analysis showed that subjects carried out the design of cognitive task allocation as a problem of applying a selected automation technology from their initial design deliberations. This design strategy stands in contrast to the predominant view of system design that stipulates that user requirements should be thoroughly analysed prior to making any decisions about technology. Theoretical frameworks from design research and ontological design showed that the system design process may be better understood by recognizing the role of design hypotheses in system design, as well as the diverse interactions between interpretation and practice, means and ends, and design practice and the designer's pre-understanding which shape the design process. Ways to balance the bias exerted on the design process were discussed.

  9. Data Systems Dynamic Simulation - A total system for data system design assessments and trade studies

    NASA Technical Reports Server (NTRS)

    Hooper, J. W.; Rowe, D. W.

    1978-01-01

    Data Systems Dynamic Simulation is a simulation system designed to reduce cost and time and increase the confidence and comprehensiveness of Data Systems Simulation. It is designed to simulate large data processing and communications systems from end-to-end or by subsystem. Those features relevant to system timing, control, sizing, personnel support activities, cost and external influences are modeled. Emphasis is placed on ease of use, comprehensive system performance measures, and extensive post simulation analysis capability. The system has been used to support trade studies of the NASA data system needs in the 1985 to 1990 time frame.

  10. Shuttle/tethered satellite system conceptual design study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A closed-loop control system was added to the tether reel which improves control over the tethered satellite. In addition to increasing the stability of the tethered satellite along local vertical, this control system is used for deployment and retrieval of tethered satellites. This conceptual design study describes a tether system for suspending a science payload at an altitude of 120 km from space shuttle orbiter flying at an altitude of 200 km. In addition to the hardware conceptual designs, various aspects concerning Orbiter accommodations are discussed.

  11. A reliability study of instrument air system design options

    SciTech Connect

    Guey, C.; Skelley, W. ); Gilbert, L.; Anoba, R.; Stutzke, M. )

    1992-01-01

    The existing instrument air system at Turkey Point station uses mobile diesel-driven air compressors. Although these diesel compressors have performed their function well, they represent a maintenance and financial burden requiring engineering review. An engineering evaluation is ongoing to develop several feasible conceptual design options to upgrade the instrument air systems. This phase-1 study was performed to assess the reliability of the various proposed design options. A phase-2 study will be conducted later to determine the core damage frequency for a selected option.

  12. Integrated source and channel encoded digital communication system design study

    NASA Technical Reports Server (NTRS)

    Huth, G. K.; Trumpis, B. D.; Udalov, S.

    1975-01-01

    Various aspects of space shuttle communication systems were studied. The following major areas were investigated: burst error correction for shuttle command channels; performance optimization and design considerations for Costas receivers with and without bandpass limiting; experimental techniques for measuring low level spectral components of microwave signals; and potential modulation and coding techniques for the Ku-band return link. Results are presented.

  13. Alpha low-level stored waste systems design study

    SciTech Connect

    Feizollahi, F.; Teheranian, B.; Quapp, W.J.

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex`s Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT&E) requirements for each of the three concepts.

  14. Alpha low-level stored waste systems design study

    SciTech Connect

    Feizollahi, F.; Teheranian, B. . Environmental Services Div.); Quapp, W.J. )

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex's Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT E) requirements for each of the three concepts.

  15. Design study on safety protection system of JSFR

    SciTech Connect

    Ishikawa, N.; Chikazawa, Y.; Fujita, K.; Yamada, Y.; Okazaki, H.; Suzuki, S.

    2012-07-01

    Development of Japan Sodium-cooled Fast Reactor (JSFR) has been progressed in Fast Reactor Cycle Technology Development (FaCT) project aiming at realizing high level of safety, reliability and economic competitiveness. For JSFR, design consideration on safety protection system has also been performed, which is essential for reactor shutdown in the case of design basis events (DBEs). In the design activity, consideration of safety protection system includes logic circuits configuration, selection of trip signals, and its setting values for reactor trip. In addition, it is necessary to evaluate the performance of the safety protection system by safety analysis taking into account the comprehensive parameter ranges. For this purpose, it has been evaluated whether adequate reactor trip signals can be ensured for satisfying safety standard regarding the fuel integrity (e.g., maximum fuel clad temperature) for DBEs. In this paper, results obtained from the design study on safety protection system of JSFR is presented focusing on the evaluation results of satisfaction of safety protection system for representative events of transient over power (TOP), loss of coolant flow (LOF) and loss of heat sink (LOHS). (authors)

  16. Controlled Ecological Life Support Systems (CELSS) conceptual design option study

    NASA Technical Reports Server (NTRS)

    Oleson, Melvin; Olson, Richard L.

    1986-01-01

    Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design.

  17. Preliminary Systems Design Study assessment report. Volume 8, Appendixes

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex`s Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. This volume of the Systems Design Study contain four Appendixes that were part of the study. Appendix A is an EG&G Idaho, Inc., report that represents a review and compilation of previous reports describing the wastes and quantities disposed in the Subsurface Disposal Area of the Idaho National Engineering Laboratory. Appendix B contains the process flowsheets considered in this study, but not selected for detailed analysis. Appendix C is a historical tabulation of radioactive waste incinerators. Appendix D lists Department of Energy facilities where cementation stabilization systems have been used.

  18. X-33 Base Region Thermal Protection System Design Study

    NASA Technical Reports Server (NTRS)

    Lycans, Randal W.

    1998-01-01

    The X-33 is an advanced technology demonstrator for validating critical technologies and systems required for an operational Single-Stage-to-Orbit (SSTO) Reusuable Launch Vehicle (RLV). Currently under development by a unique contractor/government team led by Lockheed- Martin Skunk Works (LMSW), and managed by Marshall Space Flight Center (MSFC), the X-33 will be the prototype of the first new launch system developed by the United States since the advent of the space shuttle. This paper documents a design trade study of the X-33 base region thermal protection system (TPS). Two candidate designs were evaluated for thermal performance and weight. The first candidate was a fully reusable metallic TPS using Inconel honeycomb panels insulated with high temperature fibrous insulation, while the second was an ablator/insulator sprayed on the metallic skin of the vehicle. The TPS configurations and insulation thickness requirements were determined for the predicted main engine plume heating environments and base region entry aerothermal environments. In addition to thermal analysis of the design concepts, sensitivity studies were performed to investigate the effect of variations in key parameters of the base TPS analysis.

  19. Preliminary design studies on a nuclear seawater desalination system

    SciTech Connect

    Wibisono, A. F.; Jung, Y. H.; Choi, J.; Kim, H. S.; Lee, J. I.; Jeong, Y. H.; No, H. C.

    2012-07-01

    Seawater desalination is one of the most promising technologies to provide fresh water especially in the arid region. The most used technology in seawater desalination are thermal desalination (MSF and MED) and membrane desalination (RO). Some developments have been done in the area of coupling the desalination plant with a nuclear reactor to reduce the cost of energy required in thermal desalination. The coupling a nuclear reactor to a desalination plant can be done either by using the co-generation or by using dedicated heat from a nuclear system. The comparison of the co-generation nuclear reactor with desalination plant, dedicated nuclear heat system, and fossil fueled system will be discussed in this paper using economical assessment with IAEA DEEP software. A newly designed nuclear system dedicated for the seawater desalination will also be suggested by KAIST (Korea Advanced Inst. of Science and Technology) research team and described in detail within this paper. The suggested reactor system is using gas cooled type reactor and in this preliminary study the scope of design will be limited to comparison of two cases in different operating temperature ranges. (authors)

  20. Space shuttle auxiliary propulsion system design study. Executive summary

    NASA Technical Reports Server (NTRS)

    Kelly, P. J.; Schweickert, T. F.

    1972-01-01

    The development and characteristics of an auxiliary propulsion system for space shuttle applications are presented. The system design data necessary for selection of preferred system concepts and the requirements for complementing component design and test programs are analyzed. The use of cryogenic oxygen and hydrogen as a propellant combination is explained on the basis of high vehicle impulse requirements, safety factors, reuse, and logistics considerations. The final configurations for the alternate propellant system, with primary emphasis on earth storable propellants is described.

  1. Preliminary systems design study assessment report. Volume 7, Subsystem concepts

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex`s Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each. This volume contains the descriptions and other relevant information of the four subsystems required for most of the ex situ processing systems. This volume covers the metal decontamination and sizing subsystem, soils processing subsystem, low-level waste subsystem, and retrieval subsystem.

  2. Design study for LANDSAT-D attitude control system

    NASA Technical Reports Server (NTRS)

    Iwens, R. P.; Bernier, G. E.; Hofstadter, R. F.; Mayo, R. A.; Nakano, H.

    1977-01-01

    The gimballed Ku-band antenna system for communication with TDRS was studied. By means of an error analysis it was demonstrated that the antenna cannot be open loop pointed to TDRS by an onboard programmer, but that an autotrack system was required. After some tradeoffs, a two-axis, azimuth-elevation type gimbal configuration was recommended for the antenna. It is shown that gimbal lock only occurs when LANDSAT-D is over water where a temporary loss of the communication link to TDRS is of no consequence. A preliminary gimbal control system design is also presented. A digital computer program was written that computes antenna gimbal angle profiles, assesses percent antenna beam interference with the solar array, and determines whether the spacecraft is over land or water, a lighted earth or a dark earth, and whether the spacecraft is in eclipse.

  3. Conceptual design study: Forest Fire Advanced System Technology (FFAST)

    NASA Technical Reports Server (NTRS)

    Nichols, J. D.; Warren, J. R.

    1986-01-01

    An integrated forest fire detection and mapping system that will be based upon technology available in the 1990s was defined. Uncertainties in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include thermal infrared, linear array detectors, automatic georeferencing and signal processing, geosynchronous satellite communication links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. A preferred system configuration was defined that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.

  4. Advanced vehicle concepts systems and design analysis studies

    NASA Technical Reports Server (NTRS)

    Waters, Mark H.; Huynh, Loc C.

    1994-01-01

    The work conducted by the ELORET Institute under this Cooperative Agreement includes the modeling of hypersonic propulsion systems and the evaluation of hypersonic vehicles in general and most recently hypersonic waverider vehicles. This work in hypersonics was applied to the design of a two-stage to orbit launch vehicle which was included in the NASA Access to Space Project. Additional research regarded the Oblique All-Wing (OAW) Project at NASA ARC and included detailed configuration studies of OAW transport aircraft. Finally, work on the modeling of subsonic and supersonic turbofan engines was conducted under this research program.

  5. Study and design of a cryogenic propellant acquisition system

    NASA Technical Reports Server (NTRS)

    Burge, G. W.; Blackmon, J. B.

    1973-01-01

    The development of an acquisition system for supplying subcooled liquid hydrogen and liquid oxygen under in-orbit conditions is discussed. The system will be applied to the integrated cryogenic feed requirements for space systems such as a space shuttle cryogenic auxiliary propulsion system (APS) and main propulsion for an advanced spacecraft propulsion module (ASPM). Concepts that use the favorable surface tension characteristics of fine mesh screens are emphasized. The specific objectives of the program are: (1) to evolve conceptual designs for candidate acquisition systems, (2) to formulate the analytical models needed to analyze the systems, and (3) to generate parametric data on overall candidate system performance, characteristics, and operational features in sufficient depth to establish critical design problems and criteria to support a sound system design and evaluation.

  6. Design study for a two-color beta measurement system

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Design analysis of the beam splitter combined two color beta system is presented. Conventional and dichroic beam splitters are discussed. Design analysis of the beta system employing two beams with focusing at separate points is presented. Alterations and basic parameters of the two beam system are discussed. Alterations in the focus of the initial laser and the returning beams are also discussed. Heterodyne efficiencies for the on axis and off axis reflected radiation are included.

  7. Design Study of an Incinerator Ash Conveyor Counting System - 13323

    SciTech Connect

    Jaederstroem, Henrik; Bronson, Frazier

    2013-07-01

    A design study has been performed for a system that should measure the Cs-137 activity in ash from an incinerator. Radioactive ash, expected to consist of both Cs-134 and Cs-137, will be transported on a conveyor belt at 0.1 m/s. The objective of the counting system is to determine the Cs-137 activity and direct the ash to the correct stream after a diverter. The decision levels are ranging from 8000 to 400000 Bq/kg and the decision error should be as low as possible. The decision error depends on the total measurement uncertainty which depends on the counting statistics and the uncertainty in the efficiency of the geometry. For the low activity decision it is necessary to know the efficiency to be able to determine if the signal from the Cs-137 is above the minimum detectable activity and that it generates enough counts to reach the desired precision. For the higher activity decision the uncertainty of the efficiency needs to be understood to minimize decision errors. The total efficiency of the detector is needed to be able to determine if the detector will be able operate at the count rate at the highest expected activity. The design study that is presented in this paper describes how the objectives of the monitoring systems were obtained, the choice of detector was made and how ISOCS (In Situ Object Counting System) mathematical modeling was used to calculate the efficiency. The ISOCS uncertainty estimator (IUE) was used to determine which parameters of the ash was important to know accurately in order to minimize the uncertainty of the efficiency. The examined parameters include the height of the ash on the conveyor belt, the matrix composition and density and relative efficiency of the detector. (authors)

  8. Conceptual designs study for a Personnel Launch System (PLS)

    NASA Technical Reports Server (NTRS)

    Wetzel, E. D.

    1990-01-01

    A series of conceptual designs for a manned, Earth to Low Earth Orbit transportation system was developed. Non-winged, low L/D vehicle shapes are discussed. System and subsystem trades emphasized safety, operability, and affordability using near-term technology. The resultant conceptual design includes lessons learned from commercial aviation that result in a safe, routine, operationally efficient system. The primary mission for this Personnel Launch System (PLS) would be crew rotation to the SSF; other missions, including satellite servicing, orbital sortie, and space rescue were also explored.

  9. Hybrid vehicle system studies and optimized hydrogen engine design

    NASA Astrophysics Data System (ADS)

    Smith, J. R.; Aceves, S.

    1995-04-01

    We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO(x) emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO(x) concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO(x). Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today's gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

  10. Design study for LANDSAT D attitude control system

    NASA Technical Reports Server (NTRS)

    Iwens, R. P.; Bernier, G. E.; Hofstadter, R. F.

    1976-01-01

    A design and performance evaluation is presented for the LANDSAT D attitude control system (ACS). Control and configuration of the gimballed Ku-band antenna system for communication with the tracking and data relay satellite (TDRS). Control of the solar array drive considered part of the ACS is also addressed.

  11. Preliminary design study of astronomical detector cooling system

    NASA Technical Reports Server (NTRS)

    Norman, R. H.

    1976-01-01

    The preliminary design of an astronomical detector cooling system for possible use in the NASA C-141 Airborne Infrared Observatory is presented. The system consists of the following elements: supercritical helium tank, Joule-Thomson supply gas conditioner, Joule-Thomson expander (JTX), optical cavity dewar, optical cavity temperature controller, adjustable J-T discharge gas pressure controller, and vacuum pump.

  12. Simulation Environment for Orion Launch Abort System Control Design Studies

    NASA Technical Reports Server (NTRS)

    McMinn, J. Dana; Jackson, E. Bruce; Christhilf, David M.

    2007-01-01

    The development and use of an interactive environment to perform control system design and analysis of the proposed Crew Exploration Vehicle Launch Abort System is described. The environment, built using a commercial dynamic systems design package, includes use of an open-source configuration control software tool and a collaborative wiki to coordinate between the simulation developers, control law developers and users. A method for switching between multiple candidate control laws and vehicle configurations is described. Aerodynamic models, especially in a development program, change rapidly, so a means for automating the implementation of new aerodynamic models is described.

  13. Technology Solutions Case Study: Hydronic Systems: Designing for Setback Operation

    SciTech Connect

    2014-05-01

    For years, conventional wisdom surrounding space heating has specified two points: size the mechanical systems to the heating loads, and setting the thermostat back at night will result in energy savings. The problem is these two recommendations oppose each other. A system that is properly sized to the heating load will not have the extra capacity necessary to recover from a thermostat setback, especially at design conditions. Properly designing a hydronic system for setback operation can be accomplished but depends on several factors. Determining the appropriateness of setback for a particular project is the first step. This is followed by proper sizing of the boiler and baseboard to ensure the needed capacity can be met. Finally, control settings must be chosen that result in the most efficient and responsive performance. This guide provides step-by-step instructions for heating contractors and hydronic designers for selecting the proper control settings to maximize system performance and improve response time when using a thermostat setback.

  14. Blade system design studies volume II : preliminary blade designs and recommended test matrix.

    SciTech Connect

    Griffin, Dayton A.

    2004-06-01

    As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts, LLC is performing a Blade System Design Study (BSDS) concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The BSDS Volume I project report addresses issues and constraints identified to scaling conventional blade designs to the megawatt size range, and evaluated candidate materials, manufacturing and design innovations for overcoming and improving large blade economics. The current report (Volume II), presents additional discussion of materials and manufacturing issues for large blades, including a summary of current trends in commercial blade manufacturing. Specifications are then developed to guide the preliminary design of MW-scale blades. Using preliminary design calculations for a 3.0 MW blade, parametric analyses are performed to quantify the potential benefits in stiffness and decreased gravity loading by replacement of a baseline fiberglass spar with carbon-fiberglass hybrid material. Complete preliminary designs are then presented for 3.0 MW and 5.0 MW blades that incorporate fiberglass-to-carbon transitions at mid-span. Based on analysis of these designs, technical issues are identified and discussed. Finally, recommendations are made for composites testing under Part I1 of the BSDS, and the initial planned test matrix for that program is presented.

  15. Design study for electronic system for Jupiter Orbit Probe (JOP)

    NASA Technical Reports Server (NTRS)

    Elero, B. P., Jr.; Carignan, G. R.

    1978-01-01

    The conceptual design of the Jupiter probe spectrometer is presented. Block and circuit diagrams are presented along with tabulated parts lists. Problem areas are considered to be (1) the schedule, (2) weight limitations for the electronic systems, and (3) radiation hardness of the electronic devices.

  16. Integrated Box Interrogation System (IBIS) Preliminary Design Study

    SciTech Connect

    DR. Stephen Croft; Mr. David Martancik; Dr. Brian Young; Dr. Patrick MJ Chard; Dr. Robert J Estop; Sheila Melton; Gaetano J. Arnone

    2003-01-13

    Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nuclide and isotopic compositions Assay of high density matrices (both high-Z and high moderator contents)Correction for radioactive material physical form - such as self shielding or multiplication effects due to large accumulations of radioactive materials.Calibration with a minimal set of reference standards and representative matrices.THis document summarizes the conceptual design parameters of the IBIS and indicates areas key to the success of the project where development is to be centered. The work presented here is a collaborative effort between scientific staff within Canberra and within the NIS-6 group at LANL.

  17. The study and design of a wireless ECG monitoring system.

    PubMed

    Yang, Hongli; Chai, Jihong

    2012-01-01

    This paper describes a research project on wireless electrocardiogram (ECG) monitoring systems. A detection and measurement processor designed by a MSP430 microcontroller accomplishes the analog-to-digital conversion, digital filtering, QRS wave detection, and heart rate calculation. The data of detection can be sent to the central controller and personal computer (PC) by wireless on-chip MG2455 through a ZigBee network. This design can be used widely in home healthcare, community healthcare, and sports training, as well as in healthcare facilities, due to its characteristics of low power consumption, small size, and reliability. PMID:23039742

  18. Design study LANDSAT follow-on mission unique communications system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Spacecraft subsystem design, performance evaluation, and system tradeoffs are presented for the LANDSAT follow-on mission (LF/O) spacecraft to TDRSS link for the transmission of thematic mapper (TM) and multispectral scanner (MSS) data and for the LF/O spacecraft to STDN and other direct users link for the transmission of TM data. Included are requirements definition, link analysis, subsystem and hardware tradeoffs, conceptual selection, hardware definition, and identification of required new technology. Cost estimates of the recommended communication system including both recurring and non recurring costs are discussed.

  19. Crew emergency return vehicle - Electrical power system design study

    NASA Technical Reports Server (NTRS)

    Darcy, E. C.; Barrera, T. P.

    1989-01-01

    A crew emergency return vehicle (CERV) is proposed to perform the lifeboat function for the manned Space Station Freedom. This escape module will be permanently docked to Freedom and, on demand, will be capable of safely returning the crew to earth. The unique requirements that the CERV imposes on its power source are presented, power source options are examined, and a baseline system is selected. It consists of an active Li-BCX DD-cell modular battery system and was chosen for the maturity of its man-rated design and its low development costs.

  20. Reliability studies of integrated modular engine system designs

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Rapp, Douglas C.

    1993-01-01

    A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.

  1. Reusable Reentry Satellite (RRS) system design study. Phase B, appendix E: Attitude control system study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A study which consisted of a series of design analyses for an Attitude Control System (ACS) to be incorporated into the Re-usable Re-entry Satellite (RRS) was performed. The main thrust of the study was associated with defining the control laws and estimating the mass and power requirements of the ACS needed to meet the specified performance goals. The analyses concentrated on the different on-orbit control modes which start immediately after the separation of the RRS from the launch vehicle. The three distinct on-orbit modes considered for these analyses are as follows: (1) Mode 1 - A Gravity Gradient (GG) three-axis stabilized spacecraft with active magnetic control; (2) Mode 2 - A GG stabilized mode with a controlled yaw rotation rate ('rotisserie') using three-axis magnetic control and also incorporating a 10 N-m-s momentum wheel along the (Z) yaw axis; and (3) Mode 3 - A spin stabilized mode of operation with the spin about the pitch (Y) axis, incorporating a 20 N-m-s momentum wheel along the pitch (Y) axis and attitude control via thrusters. To investigate the capabilities of the different controllers in these various operational modes, a series of computer simulations and trade-off analyses have been made to evaluate the achievable performance levels, and the necessary mass and power requirements.

  2. Blade System Design Study. Part II, final project report (GEC).

    SciTech Connect

    Griffin, Dayton A.

    2009-05-01

    As part of the U.S. Department of Energy's Low Wind Speed Turbine program, Global Energy Concepts LLC (GEC)1 has studied alternative composite materials for wind turbine blades in the multi-megawatt size range. This work in one of the Blade System Design Studies (BSDS) funded through Sandia National Laboratories. The BSDS program was conducted in two phases. In the Part I BSDS, GEC assessed candidate innovations in composite materials, manufacturing processes, and structural configurations. GEC also made recommendations for testing composite coupons, details, assemblies, and blade substructures to be carried out in the Part II study (BSDS-II). The BSDS-II contract period began in May 2003, and testing was initiated in June 2004. The current report summarizes the results from the BSDS-II test program. Composite materials evaluated include carbon fiber in both pre-impregnated and vacuum-assisted resin transfer molding (VARTM) forms. Initial thin-coupon static testing included a wide range of parameters, including variation in manufacturer, fiber tow size, fabric architecture, and resin type. A smaller set of these materials and process types was also evaluated in thin-coupon fatigue testing, and in ply-drop and ply-transition panels. The majority of materials used epoxy resin, with vinyl ester (VE) resin also used for selected cases. Late in the project, testing of unidirectional fiberglass was added to provide an updated baseline against which to evaluate the carbon material performance. Numerous unidirectional carbon fabrics were considered for evaluation with VARTM infusion. All but one fabric style considered suffered either from poor infusibility or waviness of fibers combined with poor compaction. The exception was a triaxial carbon-fiberglass fabric produced by SAERTEX. This fabric became the primary choice for infused articles throughout the test program. The generally positive results obtained in this program for the SAERTEX material have led to its being

  3. C-MOS array design techniques: SUMC multiprocessor system study

    NASA Technical Reports Server (NTRS)

    Clapp, W. A.; Helbig, W. A.; Merriam, A. S.

    1972-01-01

    The current capabilities of LSI techniques for speed and reliability, plus the possibilities of assembling large configurations of LSI logic and storage elements, have demanded the study of multiprocessors and multiprocessing techniques, problems, and potentialities. Evaluated are three previous systems studies for a space ultrareliable modular computer multiprocessing system, and a new multiprocessing system is proposed that is flexibly configured with up to four central processors, four 1/0 processors, and 16 main memory units, plus auxiliary memory and peripheral devices. This multiprocessor system features a multilevel interrupt, qualified S/360 compatibility for ground-based generation of programs, virtual memory management of a storage hierarchy through 1/0 processors, and multiport access to multiple and shared memory units.

  4. A Design Study of a Planning Information System for Kansas.

    ERIC Educational Resources Information Center

    Langston-Kitch and Associates, Inc., Wichita, KS.

    Efforts of this planning study are limited to the pressing needs of state agencies for planning which were identified earlier, plus an attempt to identify data elements common to many agencies that relate directly to the State Economic Development Planning Program. The major categories of data types essential to the planning system are land use,…

  5. HYLIFE-II power conversion system design and cost study

    SciTech Connect

    Hoffman, M.A. . Dept. of Mechanical, Aeronautical and Materials Engineering)

    1990-09-01

    The power conversion system for the HYLIFE-2 fusion power plant has been defined to include the IHX's (intermediate heat exchangers) and everything that support the exchange of energy from the reactor. It is referred to simply as the BOP (balance of plant) in the rest of this report. The above is a convenient division between the reactor equipment and the rest of the fusion power plant since the BOP design and cost then depend only on the specification of the thermal power to the IHX's and the temperature of the primary Flibe coolant into and out of the IHX's, and is almost independent of the details of the reactor design. The main efforts during the first year have been on the definition and thermal-hydraulics of the IHX's, the steam generators and the steam power plant, leading to the definition of a reference BOP with the molten salt, Flibe, as the primary coolant. A summary of the key results in each of these areas is given in this report.

  6. Integrated source and channel encoded digital communications system design study

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1974-01-01

    Studies on the digital communication system for the direct communication links from ground to space shuttle and the links involving the Tracking and Data Relay Satellite (TDRS). Three main tasks were performed:(1) Channel encoding/decoding parameter optimization for forward and reverse TDRS links,(2)integration of command encoding/decoding and channel encoding/decoding; and (3) modulation coding interface study. The general communication environment is presented to provide the necessary background for the tasks and to provide an understanding of the implications of the results of the studies.

  7. Studies to design and develop improved remote manipulator systems

    NASA Technical Reports Server (NTRS)

    Hill, J. W.; Sword, A. J.

    1973-01-01

    Remote manipulator control considered is based on several levels of automatic supervision which derives manipulator commands from an analysis of sensor states and task requirements. Principle sensors are manipulator joint position, tactile, and currents. The tactile sensor states can be displayed visually in perspective or replicated in the operator's control handle of perceived by the automatic supervisor. Studies are reported on control organization, operator performance and system performance measures. Unusual hardware and software details are described.

  8. Design/cost tradeoff studies. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of design/cost tradeoff studies conducted during the Earth Observatory Satellite system definition studies are presented. The studies are concerned with the definition of a basic modular spacecraft capable of supporting a variety of operational and/or research and development missions, with the deployment either by conventional launch vehicles or by means of the space shuttle. The three levels investigated during the study are: (1) subsystem tradeoffs, (2) spacecraft tradeoffs, and (3) system tradeoffs. The range of requirements which the modular concept must span is discussed. The mechanical, thermal, power, data and electromagnetic compatibility aspects of modularity are analyzed. Other data are provided for the observatory design concept, the payloads, integration and test, the ground support equipment, and ground data management systems.

  9. Design study of a cardiac-dedicated PET system

    NASA Astrophysics Data System (ADS)

    Peng, Hao

    2015-04-01

    The work studies the feasibility of developing a cardiac-dedicated PET system using Monte Carlo simulation tools. The proposed system comprises a dual-panel geometry and both panels utilize fine crystal elements (~2-3 mm) to help improve high spatial resolution. The system performances were studied with respect to photon detection sensitivity, count-rate performances, spatial resolution, depth-of-interaction (DOI) capability, and potential contrast recovery improvement due to time-of-flight (TOF). For a 2:3 dual panel configuration (front panel: 24.0×18.0 cm2 and back panel: 36.0×27.0 cm2), the system is able to achieve a peak photon sensitivity of ~13.0% at the location of the heart. For count-rate performances, the system is able to yield a continuous increase of noise equivalent count rate (NECR) as a function of the total activity of radiotracers between 10 mCi and 50 mCi. When crystal elements of 2×2×20 cm3 are deployed in the front panel and crystal elements of 3×3×20 cm3 are deployed in the back panel, the proposed system is not only able to revolve 2 mm diameter spheres in the image slices parallel to the panels but also demonstrates good resolution uniformity of less than 5%. On the other hand, significant resolution degradation occurs in the direction perpendicular to the panels due to the following two factors: limited angular coverage and finite DOI resolution. Such degradation was quantitatively analyzed for five different DOI resolutions (0 mm, 2.5 mm, 5 mm, 10 mm and 20 mm), as well as three different crystal configurations. Finally, the contrast study with a heart-like phantom (comprising lumen, aortic wall, myocardium and small lesions) indicates that TOF capability (time resolution: 250-500 ps) does not significantly improve image quality and lesion detectability, in terms of contrast-to-noise ratio (CNR).

  10. An assessment of separable fluid connector system parameters to perform a connector system design optimization study

    NASA Technical Reports Server (NTRS)

    Prasthofer, W. P.

    1974-01-01

    The key to optimization of design where there are a large number of variables, all of which may not be known precisely, lies in the mathematical tool of dynamic programming developed by Bellman. This methodology can lead to optimized solutions to the design of critical systems in a minimum amount of time, even when there are a great number of acceptable configurations to be considered. To demonstrate the usefulness of dynamic programming, an analytical method is developed for evaluating the relationship among existing numerous connector designs to find the optimum configuration. The data utilized in the study were generated from 900 flanges designed for six subsystems of the S-1B stage of the Saturn 1B space carrier vehicle.

  11. Shared Values as Anchors of a Learning Community: A Case Study in Information Systems Design

    ERIC Educational Resources Information Center

    Giordano, Daniela

    2004-01-01

    This paper examines the role in both individual and organizational learning of the system of values sustained by a community undertaking a design task. The discussion is based on the results of a longitudinal study of a community of novice information system designers supported by a Web-based shared design memory which allows reuse of design…

  12. Performance Study and Dynamic Optimization Design for Thread Pool Systems

    SciTech Connect

    Dongping Xu

    2004-12-19

    Thread pools have been widely used by many multithreaded applications. However, the determination of the pool size according to the application behavior still remains problematic. To automate this process, in this thesis we have developed a set of performance metrics for quantitatively analyzing thread pool performance. For our experiments, we built a thread pool system which provides a general framework for thread pool research. Based on this simulation environment, we studied the performance impact brought by the thread pool on different multithreaded applications. Additionally, the correlations between internal characterizations of thread pools and their throughput were also examined. We then proposed and evaluated a heuristic algorithm to dynamically determine the optimal thread pool size. The simulation results show that this approach is effective in improving overall application performance.

  13. Advanced EVA system design requirements study: EVAS/space station system interface requirements

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1985-01-01

    The definition of the Extravehicular Activity (EVA) systems interface requirements and accomodations for effective integration of a production EVA capability into the space station are contained. A description of the EVA systems for which the space station must provide the various interfaces and accomodations are provided. The discussion and analyses of the various space station areas in which the EVA interfaces are required and/or from which implications for EVA system design requirements are derived, are included. The rationale is provided for all EVAS mechanical, fluid, electrical, communications, and data system interfaces as well as exterior and interior requirements necessary to facilitate EVA operations. Results of the studies supporting these discussions are presented in the appendix.

  14. Study to design and develop remote manipulator systems

    NASA Technical Reports Server (NTRS)

    Hill, J. W.; Salisbury, J. K., Jr.

    1977-01-01

    A description is given of part of a continuing effort both to develop models for and to augment the performance of humans controlling remote manipulators. The project plan calls for the performance of several standard tasks with a number of different manipulators, controls, and viewing conditions, using an automated performance measuring system; in addition, the project plan calls for the development of a force-reflecting joystick and supervisory display system.

  15. Integrated command, control, communication and computation system design study. Summary of tasks performed

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A summary of tasks performed on an integrated command, control, communication, and computation system design study is given. The Tracking and Data Relay Satellite System command and control system study, an automated real-time operations study, and image processing work are discussed.

  16. Acquisition/expulsion system for earth orbital propulsion system study. Volume 5: Earth storable design

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A comprehensive analysis and parametric design effort was conducted under the earth-storable phase of the program. Passive Acquisition/expulsion system concepts were evaluated for a reusable Orbital Maneuvering System (OMS) application. The passive surface tension technique for providing gas free liquid on demand was superior to other propellant acquisition methods. Systems using fine mesh screens can provide the requisite stability and satisfy OMS mission requirements. Both fine mesh screen liner and trap systems were given detailed consideration in the parametric design, and trap systems were selected for this particular application. These systems are compatible with the 100- to 500-manned mission reuse requirements.

  17. A Parallel Trade Study Architecture for Design Optimization of Complex Systems

    NASA Technical Reports Server (NTRS)

    Kim, Hongman; Mullins, James; Ragon, Scott; Soremekun, Grant; Sobieszczanski-Sobieski, Jaroslaw

    2005-01-01

    Design of a successful product requires evaluating many design alternatives in a limited design cycle time. This can be achieved through leveraging design space exploration tools and available computing resources on the network. This paper presents a parallel trade study architecture to integrate trade study clients and computing resources on a network using Web services. The parallel trade study solution is demonstrated to accelerate design of experiments, genetic algorithm optimization, and a cost as an independent variable (CAIV) study for a space system application.

  18. Integrated source and channel encoded digital communication system design study

    NASA Technical Reports Server (NTRS)

    Udalov, S.; Huth, G. K.

    1977-01-01

    The analysis of the forward link signal structure for the shuttle orbiter Ku-band communication system was carried out, based on the assumptions of a 3.03 Mcps PN code. It is shown that acquisition requirements for the forward link can be met at the acquisition threshold C/N0 sub 0 value of about 60 dB-Hz, which corresponds to a bit error rate (BER) of about 0.001. It is also shown that the tracking threshold for the forward link is at about 57 dB-Hz. The analysis of the bent pipe concept for the orbiter was carried out, along with the comparative analysis of the empirical data. The complexity of the analytical approach warrants further investigation to reconcile the empirical and theoretical results. Techniques for incorporating a text and graphics capability into the forward link data stream are considered and a baseline configuration is described.

  19. Acquisition/expulsion system for earth orbital propulsion system study. Volume 2: Cryogenic design

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Detailed designs were made for three earth orbital propulsion systems; (1) the space shuttle (integrated) OMS/RCS, (2) the space shuttle (dedicated) OMS (LO2), and (3) the space tug. The preferred designs from the integrated OMS/RCS were used as the basis for the flight test article design. A plan was prepared that outlines the steps, cost, and schedule required to complete the development of the prototype DSL tank and feedline (LH2 and LO2) systems. Ground testing of a subscale model using LH2 verified the expulsion characteristics of the preferred DSL designs.

  20. System design and specifications. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A design summary of the Earth Observatory Satellite (EOS) is presented. The systems considered in the summary are: (1) the spacecraft structure, (2) electrical power modules, (3) communications and data handling module, (4) attitude determination module, (5) actuation module, and (6) solar array and drive module. The documents which provide the specifications for the systems and the equipment are identified.

  1. Issues in Designing a Hypermedia Document System: The Intermedia Case Study.

    ERIC Educational Resources Information Center

    Yankelovich, Nicole; And Others

    1986-01-01

    Intermedia, a hypermedia system developed at Brown University's Institute for Research (Rhode Island) in Information and Scholarship, is first described, and then used as a case study to explore a number of key issues that software designers must consider in the development of hypermedia document systems. A hypermedia document system is defined as…

  2. Parametric Optimization of Some Critical Operating System Functions--An Alternative Approach to the Study of Operating Systems Design

    ERIC Educational Resources Information Center

    Sobh, Tarek M.; Tibrewal, Abhilasha

    2006-01-01

    Operating systems theory primarily concentrates on the optimal use of computing resources. This paper presents an alternative approach to teaching and studying operating systems design and concepts by way of parametrically optimizing critical operating system functions. Detailed examples of two critical operating systems functions using the…

  3. Magnetic suspension and balance system (MSBS) advanced study.I - System design

    NASA Technical Reports Server (NTRS)

    Boom, Roger W.; Abdelsalam, Mostafa K.; Eyssa, Yehia M.; Mcintosh, Glen E.

    1987-01-01

    A magnetic suspension and balance system is designed to support models of aircraft or other objects in wind tunnels by means of magnetic forces. Major design improvements have been achieved, resulting in reductions of the system size, weight, and cost. These improvements are due to: (1) the use of holmium in the model core to increase its magnetic moment, (2) the use of a powerful new permanent magnet material in the model wings, (3) a new arrangement for the roll coils, and (4) the use of a nonmetallic structure to eliminate eddy current losses. The conceptual design of the holmium core superconductive solenoid and of the new permanent magnet wing assembly is described in detail. The discussion includes comparisons of the pole strengths for different model core magnets, the design of a superconducting solenoid and cryostat, and the analysis of model wing magnetic requirements.

  4. Earth Observatory Satellite system definition study. Report 3: Design cost trade-off studies and recommendations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis of the design and cost tradeoff aspects of the Earth Observatory Satellite (EOS) development is presented. The design/cost factors that affect a series of mission/system level concepts are discussed. The subjects considered are as follows: (1) spacecraft subsystem cost tradeoffs, (2) ground system cost tradeoffs, and (3) program cost summary. Tables of data are provided to summarize the results of the analyses. Illustrations of the various spacecraft configurations are included.

  5. Design study of a feedback control system for the Multicyclic Flap System rotor (MFS)

    NASA Technical Reports Server (NTRS)

    Weisbrich, R.; Perley, R.; Howes, H.

    1977-01-01

    The feasibility of automatically providing higher harmonic control to a deflectable control flap at the tip of a helicopter rotor blade through feedback of selected independent parameter was investigated. Control parameters were selected for input to the feedback system. A preliminary circuit was designed to condition the selected parameters, weigh limiting factors, and provide a proper output signal to the multi-cyclic control actuators. Results indicate that feedback control for the higher harmonic is feasible; however, design for a flight system requires an extension of the present analysis which was done for one flight condition - 120 kts, 11,500 lbs gross weight and level flight.

  6. Making intelligent systems team players: Case studies and design issues. Volume 1: Human-computer interaction design

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schreckenghost, Debra L.; Woods, David D.; Potter, Scott S.; Johannesen, Leila; Holloway, Matthew; Forbus, Kenneth D.

    1991-01-01

    Initial results are reported from a multi-year, interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. The objective is to achieve more effective human-computer interaction (HCI) for systems with real time fault management capabilities. Intelligent fault management systems within the NASA were evaluated for insight into the design of systems with complex HCI. Preliminary results include: (1) a description of real time fault management in aerospace domains; (2) recommendations and examples for improving intelligent systems design and user interface design; (3) identification of issues requiring further research; and (4) recommendations for a development methodology integrating HCI design into intelligent system design.

  7. Integrated design of electrical distribution systems: Phase balancing and phase prediction case studies

    NASA Astrophysics Data System (ADS)

    Dilek, Murat

    Distribution system analysis and design has experienced a gradual development over the past three decades. The once loosely assembled and largely ad hoc procedures have been progressing toward being well-organized. The increasing power of computers now allows for managing the large volumes of data and other obstacles inherent to distribution system studies. A variety of sophisticated optimization methods, which were impossible to conduct in the past, have been developed and successfully applied to distribution systems. Among the many procedures that deal with making decisions about the state and better operation of a distribution system, two decision support procedures will be addressed in this study: phase balancing and phase prediction. The former recommends re-phasing of single- and double-phase laterals in a radial distribution system in order to improve circuit loss while also maintaining/improving imbalances at various balance point locations. Phase balancing calculations are based on circuit loss information and current magnitudes that are calculated from a power flow solution. The phase balancing algorithm is designed to handle time-varying loads when evaluating phase moves that will result in improved circuit losses over all load points. Applied to radial distribution systems, the phase prediction algorithm attempts to predict the phases of single- and/or double phase laterals that have no phasing information previously recorded by the electric utility. In such an attempt, it uses available customer data and kW/kVar measurements taken at various locations in the system. It is shown that phase balancing is a special case of phase prediction. Building on the phase balancing and phase prediction design studies, this work introduces the concept of integrated design, an approach for coordinating the effects of various design calculations. Integrated design considers using results of multiple design applications rather than employing a single application for a

  8. MSFC Sortie Laboratory Environmental Control System (ECS) phase B design study results

    NASA Technical Reports Server (NTRS)

    Ignatonis, A. J.; Mitchell, K. L.

    1974-01-01

    Phase B effort of the Sortie Lab program has concluded. Results of that effort are presented which pertain to the definitions of the environmental control system (ECS). Numerous design studies were performed in Phase B to investigate system feasibility, complexity, weight, and cost. The results and methods employed for these design studies are included. An autonomous Sortie Lab ECS was developed which utilizes a deployed space radiator. Total system weight was projected to be 1814.4 kg including the radiator and fluids. ECS power requirements were estimated at 950 watts.

  9. Design and Implementation of Study Support System for Electronic Circuits with Observable V-I Characteristics

    NASA Astrophysics Data System (ADS)

    Ohchi, Masashi; Yoshitomi, Takashi; Akagi, Keita; Sasaki, Shinichi; Furukawa, Tatsuya

    We have designed and implemented the “Virtual Laboratory” on the computer systems. Some of the implemented systems are Web-based learning environments where server/client model and Java technologies are adopted. The subject of electronic circuits is the most essential one in the department of electrical and electronic engineering. However, it is a difficult subject for students to understand the basic therory, technical term and electronic circuits design. In this paper, we will describe the study support system for the electronic circuits with observable V-I characteristics using Java.

  10. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The key issues in the Earth Observatory Satellite (EOS) program which are subject to configuration study and tradeoff are identified. The issue of a combined operational and research and development program is considered. It is stated that cost and spacecraft weight are the key design variables and design options are proposed in terms of these parameters. A cost analysis of the EOS program is provided. Diagrams of the satellite configuration and subsystem components are included.

  11. Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 4: OEPSS design concepts

    NASA Technical Reports Server (NTRS)

    Wong, George S.; Ziese, James M.; Farhangi, Shahram

    1990-01-01

    This study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the OEPSS study have been organized into a series of OEPSS Data Books. This volume describes three propulsion concepts that will simplify the propulsion system design and significantly reduce operational requirements. The concepts include: (1) a fully integrated, booster propulsion module concept for the ALS that avoids the complex system created by using autonomous engines with numerous artificial interfaces; (2) an LOX tank aft concept which avoids potentially dangerous geysering in long LOX propellant lines; and (3) an air augmented, rocket engine nozzle afterburning propulsion concept that will significantly reduce LOX propellant requirements, reduce vehicle size and simplify ground operations and ground support equipment and facilities.

  12. Space station/base food system study. Volume 1: Systems design handbook

    NASA Technical Reports Server (NTRS)

    1970-01-01

    A description is given of the approach used in a study to identify and define engineering data for a spectrum of possible items and equipment comprising potential food systems. In addition, the material presented includes: (1) the study results containing the candidate concepts considered and technical data, performance characteristics, and sketches for each of the concepts by functional area; (2) human factors considerations for crew tasks; (3) shuttle supply interface requirements; (4) special food system study areas; and (5) recommendations and conclusions based on the study results.

  13. Second-generation mobile satellite system. A conceptual design and trade-off study

    NASA Technical Reports Server (NTRS)

    Sue, M. K.; Park, Y. H.

    1985-01-01

    In recent years, interest has grown in the mobile satellite (MSAT) system, a satellite-based communications system capable of providing integrated voice and data services to a large number of users. To explore the potential of a commercial mobile satellite system (MSS) beyond the horizon of the first generation, using technologies of the 1990's and to assist MSAT-X in directing its efforts, a conceptual design has been performed for a second-generation system to be launched around the mid-1990's. The design goal is to maximize the number of satellite channels and/or minimize the overall life-cycle cost, subject to the constraint of utilizing a commercial satellite bus with minimum modifications. To provide an optimal design, a series of trade-offs are performed, including antenna sizing, feed configurations, and interference analysis. Interference is a serious problem for MSAT and often an overlapping feed design is required to reduce interbeam interference. The trade-off studies will show that a simple non-overlapping feed is sufficient for the second-generation system, thus avoiding the need for the complicated beam-forming network that is associated with the overlapping feed designs. In addition, a system that operates at L-band, an alternative frequency band that is being considered by some for possible MSAT applications, is also presented.

  14. Designing future photovoltaic systems

    SciTech Connect

    Jones, G.J.

    1984-01-01

    The large scale use of photovoltaic systems to generate our electricity is a dream for the future; but if this dream is to be realized, we must understand these systems today. As a result, there has been extensive research into the design and economic tradeoffs of utility interconnected photovoltaic applications. The understanding gained in this process has shown that photovoltaic system design can be a very simple and straight-forward endeavor. This paper reviews those past studies and shows how we have reached the present state of system design evolution. The concept of the utility interactive PV system with energy value determined by the utility's avoided cost will be explored. This concept simplifies the screening of potential applications for economic viability, and we will present several rules-of-thumb for this purpose.

  15. Design concepts and cost studies for magnetic suspension and balance systems. [wind tunnel apparatus

    NASA Technical Reports Server (NTRS)

    Bloom, H. L.

    1982-01-01

    The application of superconducting magnets for suspension and balance of wind tunnel models was studied. Conceptual designs are presented for magnetic suspension and balance system (MSBS) configurations compatible with three high Reynolds number cases representing specified combinations of test conditions and model sizes. Concepts in general met initially specified performance requirements such as duty cycle, force and moment levels, model angular displacement and positioning accuracy with nominal design requirements for support subsystems. Other performance requirements, such as forced model sinusoidal oscillations, and control force magnitude and frequency, were modified so as to alleviate the magnitude of magnet, power, and cryogenic design requirements.

  16. Conceptual design study for an advanced cab and visual system, volume 1

    NASA Technical Reports Server (NTRS)

    Rue, R. J.; Cyrus, M. L.; Garnett, T. A.; Nachbor, J. W.; Seery, J. A.; Starr, R. L.

    1980-01-01

    A conceptual design study was conducted to define requirements for an advanced cab and visual system. The rotorcraft system integration simulator is for engineering studies in the area of mission associated vehicle handling qualities. Principally a technology survey and assessment of existing and proposed simulator visual display systems, image generation systems, modular cab designs, and simulator control station designs were performed and are discussed. State of the art survey data were used to synthesize a set of preliminary visual display system concepts of which five candidate display configurations were selected for further evaluation. Basic display concepts incorporated in these configurations included: real image projection, using either periscopes, fiber optic bundles, or scanned laser optics; and virtual imaging with helmet mounted displays. These display concepts were integrated in the study with a simulator cab concept employing a modular base for aircraft controls, crew seating, and instrumentation (or other) displays. A simple concept to induce vibration in the various modules was developed and is described. Results of evaluations and trade offs related to the candidate system concepts are given, along with a suggested weighting scheme for numerically comparing visual system performance characteristics.

  17. Reusable Reentry Satellite (RRS) system design study: System cost estimates document

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Reusable Reentry Satellite (RRS) program was initiated to provide life science investigators relatively inexpensive, frequent access to space for extended periods of time with eventual satellite recovery on earth. The RRS will provide an on-orbit laboratory for research on biological and material processes, be launched from a number of expendable launch vehicles, and operate in Low-Altitude Earth Orbit (LEO) as a free-flying unmanned laboratory. SAIC's design will provide independent atmospheric reentry and soft landing in the continental U.S., orbit for a maximum of 60 days, and will sustain three flights per year for 10 years. The Reusable Reentry Vehicle (RRV) will be 3-axis stabilized with artificial gravity up to 1.5g's, be rugged and easily maintainable, and have a modular design to accommodate a satellite bus and separate modular payloads (e.g., rodent module, general biological module, ESA microgravity botany facility, general botany module). The purpose of this System Cost Estimate Document is to provide a Life Cycle Cost Estimate (LCCE) for a NASA RRS Program using SAIC's RRS design. The estimate includes development, procurement, and 10 years of operations and support (O&S) costs for NASA's RRS program. The estimate does not include costs for other agencies which may track or interface with the RRS program (e.g., Air Force tracking agencies or individual RRS experimenters involved with special payload modules (PM's)). The life cycle cost estimate extends over the 10 year operation and support period FY99-2008.

  18. Game Coaching System Design and Development: A Retrospective Case Study of FPS Trainer

    ERIC Educational Resources Information Center

    Tan, Wee Hoe

    2013-01-01

    This paper is a retrospective case study of a game-based learning (GBL) researcher who cooperated with a professional gamer and a team of game developers to design and develop a coaching system for First-Person Shooter (FPS) players. The GBL researcher intended to verify the ecological validity of a model of cooperation; the developers wanted to…

  19. Quality Rating and Improvement System (QRIS) Validation Study Designs. CEELO FastFacts

    ERIC Educational Resources Information Center

    Schilder, D.

    2013-01-01

    In this "Fast Facts," a state has received Race to the Top Early Learning Challenge funds and is seeking information to inform the design of the Quality Rating and Improvement System (QRIS) validation study. The Center on Enhancing Early Learning Outcomes (CEELO) responds that according to Resnick (2012), validation of a QRIS is an…

  20. Marketing information system online design for craftsmen small medium enterprises (case study: craftsmen ac)

    NASA Astrophysics Data System (ADS)

    Fitriana, Rina; Kurniawan, Wawan; Barlianto, Anung; Adriansyah Putra, Rizki

    2016-02-01

    AC is small and medium enterprises which is engaged in the field of crafts. This SME (Small Medium Enterprise) didn't have an integrated information system for managing sales. This research aims to design a marketing Information system online as applications that built as web base. The integrated system is made to manage sales and expand its market share. This study uses a structured analysis and design in its approach to build systems and also implemented a marketing framework of STP (Segmentation, Targeting, Positioning) and 4P (Price, Product, Place, Promotion) to obtain market analysis. The main market target customer craftsmen AC is women aged 13 years to 35 years. The products produced by AC are shoes, brooch, that are typical of the archipelago. The prices is range from Rp. 2000 until Rp. 400.000. Marketing information system online can be used as a sales transaction document, promoting the goods, and for customer booking products.

  1. Designing for the home: a comparative study of support aids for central heating systems.

    PubMed

    Sauer, J; Wastell, D G; Schmeink, C

    2009-03-01

    The study examined the influence of different types of enhanced system support on user performance during the management of a central heating system. A computer-based simulation of a central heating system, called CHESS V2.0, was used to model different interface options, providing different support facilities to the user (e.g., historical, predictive, and instructional displays). Seventy-five participants took part in the study and completed a series of operational scenarios under different support conditions. The simulation environment allowed the collection of performance measures (e.g., energy consumption), information sampling, and system control behaviour. Subjective user evaluations of various aspects of the system were also measured. The results showed performance gains for predictive displays whereas no such benefits were observed for the other display types. The data also revealed that status and predictive displays were valued most highly by users. The implications of the findings for designers of central heating systems are discussed. PMID:18433730

  2. Designing for the home: a comparative study of support aids for central heating systems.

    PubMed

    Sauer, J; Wastell, D G; Schmeink, C

    2009-03-01

    The study examined the influence of different types of enhanced system support on user performance during the management of a central heating system. A computer-based simulation of a central heating system, called CHESS V2.0, was used to model different interface options, providing different support facilities to the user (e.g., historical, predictive, and instructional displays). Seventy-five participants took part in the study and completed a series of operational scenarios under different support conditions. The simulation environment allowed the collection of performance measures (e.g., energy consumption), information sampling, and system control behaviour. Subjective user evaluations of various aspects of the system were also measured. The results showed performance gains for predictive displays whereas no such benefits were observed for the other display types. The data also revealed that status and predictive displays were valued most highly by users. The implications of the findings for designers of central heating systems are discussed.

  3. Systems metabolic engineering design: Fatty acid production as an emerging case study

    PubMed Central

    Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V

    2014-01-01

    Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities. PMID:24481660

  4. Retrofit photovoltaic systems for intermediate sized applications - A design and market study

    NASA Astrophysics Data System (ADS)

    Noel, G. T.; Hagely, J. R.

    An assessment of the technical and economic feasibility of retrofitting a significant portion of the existing intermediate sector building/application inventory with photovoltaic systems is presented. The assessment includes the development of detailed engineering and architectural designs as well as cost estimates for 12 representative installations. Promising applications include retail stores, warehouses, office buildings, religious buildings, shopping centers, education buildings, hospitals, and industrial sites. A market study indicates that there is a national invetory of 1.5 to 2.0 million feasible intermediate sector applications, with the majority being in the 20 to 400 kW size range. The present cost of the major systems components and the cost of necessary building modifications are the primary current barriers to the realization of a large retrofit photovoltaic system market. The development of standardized modular system designs and installation techniques are feasible ways to minimize costs.

  5. Advanced technology cogeneration system conceptual design study: Closed cycle gas turbines

    NASA Technical Reports Server (NTRS)

    Mock, E. A. T.; Daudet, H. C.

    1983-01-01

    The results of a three task study performed for the Department of Energy under the direction of the NASA Lewis Research Center are documented. The thermal and electrical energy requirements of three specific industrial plants were surveyed and cost records for the energies consumed were compiled. Preliminary coal fired atmospheric fluidized bed heated closed cycle gas turbine and steam turbine cogeneration system designs were developed for each industrial plant. Preliminary cost and return-on-equity values were calculated and the results compared. The best of the three sites was selected for more detailed design and evaluation of both closed cycle gas turbine and steam turbine cogeneration systems during Task II. Task III involved characterizing the industrial sector electrical and thermal loads for the 48 contiguous states, applying a family of closed cycle gas turbine and steam turbine cogeneration systems to these loads, and conducting a market penetration analysis of the closed cycle gas turbine cogeneration system.

  6. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 1: Baseline system description

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A system baseline design oriented to the requirements of the next generation of Earth Observatory Satellite missions is presented. The first mission (EOS-A) is envisioned as a two-fold mission which (1) provides a continuum of data of the type being supplied by ERTS for the emerging operational applications and also (2) expands the research and development activities for future instrumentation and analysis techniques. The baseline system specifically satisfies the requirements of this first mission. However, EOS-A is expected to be the first of a series of earth observation missions. Thus the baseline design has been developed so as to accommodate these latter missions effectively as the transition is made from conventional, expendable launch vehicles and spacecraft to the Shuttle Space Transportation System era. Further, a subset of alternative missions requirements including Seasat, SEOS, SMM and MSS-5 have been analyzed to verify that the spacecraft design to serve a multi-mission role is economically sound. A key feature of the baseline system design is the concept of a modular observatory system whose elements are compatible with varying levels of launch vehicle capability. The design configuration can be used with either the Delta or Titan launch vehicles and will adapt readily to the space shuttle when that system becomes available in the early 1980's.

  7. Preliminary design study of a regenerative life support system information management and display system

    NASA Technical Reports Server (NTRS)

    Parker, C. D.; Tommerdahl, J. B.

    1972-01-01

    The instrumentation requirements for a regenerative life support systems were studied to provide the earliest possible indication of a malfunction that will permit degradation of the environment. Four categories of parameters were investigated: environmental parameters that directly and immediately influence the health and safety of the cabin crew; subsystems' inputs to the cabin that directly maintain the cabin environmental parameters; indications for maintenance or repair; and parameters useful as diagnostic indicators. A data averager concept is introduced which provides a moving average of parameter values that is not influenced by spurious changes, and is convenient for detecting parameter rates of change. A system is included to provide alarms at preselected parameter levels.

  8. Design study for a 16x zoom lens system for visible surveillance camera

    NASA Astrophysics Data System (ADS)

    Vella, Anthony; Li, Heng; Zhao, Yang; Trumper, Isaac; Gandara-Montano, Gustavo A.; Xu, Di; Nikolov, Daniel K.; Chen, Changchen; Brown, Nicolas S.; Guevara-Torres, Andres; Jung, Hae Won; Reimers, Jacob; Bentley, Julie

    2015-09-01

    *avella@ur.rochester.edu Design study for a 16x zoom lens system for visible surveillance camera Anthony Vella*, Heng Li, Yang Zhao, Isaac Trumper, Gustavo A. Gandara-Montano, Di Xu, Daniel K. Nikolov, Changchen Chen, Nicolas S. Brown, Andres Guevara-Torres, Hae Won Jung, Jacob Reimers, Julie Bentley The Institute of Optics, University of Rochester, Wilmot Building, 275 Hutchison Rd, Rochester, NY, USA 14627-0186 ABSTRACT High zoom ratio zoom lenses have extensive applications in broadcasting, cinema, and surveillance. Here, we present a design study on a 16x zoom lens with 4 groups (including two internal moving groups), designed for, but not limited to, a visible spectrum surveillance camera. Fifteen different solutions were discovered with nearly diffraction limited performance, using PNPX or PNNP design forms with the stop located in either the third or fourth group. Some interesting patterns and trends in the summarized results include the following: (a) in designs with such a large zoom ratio, the potential of locating the aperture stop in the front half of the system is limited, with ray height variations through zoom necessitating a very large lens diameter; (b) in many cases, the lens zoom motion has significant freedom to vary due to near zero total power in the middle two groups; and (c) we discuss the trade-offs between zoom configuration, stop location, packaging factors, and zoom group aberration sensitivity.

  9. Lunar surface transportation systems conceptual design lunar base systems study Task 5.2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Conceptual designs for three categories of lunar surface transportation were described. The level of understanding for the capabilities and design approach varies between the vehicles representing these categories. A summary of the vehicle categories and current state of conceptual design is provided. Finally, a brief evaluation and discussion is provided for a systematic comparison of transportation categories and effectiveness in supporting transportation objectives.

  10. Software Design Analyzer System

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1985-01-01

    CRISP80 software design analyzer system a set of programs that supports top-down, hierarchic, modular structured design, and programing methodologies. CRISP80 allows for expression of design as picture of program.

  11. Preliminary design study of an alternate heat source assembly for a Brayton isotope power system

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.

    1978-01-01

    Results are presented for a study of the preliminary design of an alternate heat source assembly (HSA) intended for use in the Brayton isotope power system (BIPS). The BIPS converts thermal energy emitted by a radioactive heat source into electrical energy by means of a closed Brayton cycle. A heat source heat exchanger configuration was selected and optimized. The design consists of a 10 turn helically wound Hastelloy X tube. Thermal analyses were performed for various operating conditions to ensure that post impact containment shell (PICS) temperatures remain within specified limits. These limits are essentially satisfied for all modes of operation except for the emergency cooling system for which the PICS temperatures are too high. Neon was found to be the best choice for a fill gas for auxiliary cooling system operation. Low cycle fatigue life, natural frequency, and dynamic loading requirements can be met with minor modifications to the existing HSA.

  12. Design study and comparative evaluation of JSFR failed fuel detection system

    SciTech Connect

    Aizawa, K.; Chikazawa, Y.; Ishikawa, N.; Kubo, S.; Okazaki, H.; Mito, M.; Tozawa, K.; Hayashi, M.

    2012-07-01

    A conceptual design study of an advanced sodium-cooled fast reactor JSFR has progressed in the 'Fast Reactor Cycle Technology Development (FaCT) 'project in Japan. JSFR has two failed fuel detection systems in the core. One is a failed fuel detection (FFD) system which continuously monitors a fission product from failed fuel subassembly. The other is a failed fuel detection and location (FFDL) system which locates when it receives signals from FFD. The FFD system consists of a FFD-DN which detects delayed neutron (DN) in sodium and a FFD-CG which detects fission products in the cover gas of the reactor vessel. In this study, requirements to the FFD-DN and the FFD-DN design to meet the requirements were investigated for the commercial and demonstration JSFR. In the commercial JSFR, a sampling type FFD which collects sodium from the reactor vessel by sampling lines for DN detectors was adopted. The performances have been investigated and confirmed by a fluid analysis in the reactor upper plenum. In the demonstration JSFR, the performance of DN detectors installed on the primary cold-leg piping has been confirmed. For the FFDL systems, experiences in the previous fast reactors and the R and D of FFDL system for JSFR were investigated. This study focuses on the Selector-Valve and the Tagging-Gas FFDL systems. Operation experiences of the Selector-valve FFDL system were accumulated in PFR and Phenix. Tagging-gas system experiences were accumulated in EBR-II and FFTF. The feasibility of both FFDL systems for JSFR was evaluated. (authors)

  13. Conceptual design study for an advanced cab and visual system, volume 2

    NASA Technical Reports Server (NTRS)

    Rue, R. J.; Cyrus, M. L.; Garnett, T. A.; Nachbor, J. W.; Seery, J. A.; Starr, R. L.

    1980-01-01

    The performance, design, construction and testing requirements are defined for developing an advanced cab and visual system. The rotorcraft system integration simulator is composed of the advanced cab and visual system and the rotorcraft system motion generator, and is part of an existing simulation facility. User's applications for the simulator include rotorcraft design development, product improvement, threat assessment, and accident investigation.

  14. Technology Transfer Challenges: A Case Study of User-Centered Design in NASA's Systems Engineering Culture

    NASA Technical Reports Server (NTRS)

    Quick, Jason

    2009-01-01

    The Upper Stage (US) section of the National Aeronautics and Space Administration's (NASA) Ares I rocket will require internal access platforms for maintenance tasks performed by humans inside the vehicle. Tasks will occur during expensive critical path operations at Kennedy Space Center (KSC) including vehicle stacking and launch preparation activities. Platforms must be translated through a small human access hatch, installed in an enclosed worksite environment, support the weight of ground operators and be removed before flight - and their design must minimize additional vehicle mass at attachment points. This paper describes the application of a user-centered conceptual design process and the unique challenges encountered within NASA's systems engineering culture focused on requirements and "heritage hardware". The NASA design team at Marshall Space Flight Center (MSFC) initiated the user-centered design process by studying heritage internal access kits and proposing new design concepts during brainstorming sessions. Simultaneously, they partnered with the Technology Transfer/Innovative Partnerships Program to research inflatable structures and dynamic scaffolding solutions that could enable ground operator access. While this creative, technology-oriented exploration was encouraged by upper management, some design stakeholders consistently opposed ideas utilizing novel, untested equipment. Subsequent collaboration with an engineering consulting firm improved the technical credibility of several options, however, there was continued resistance from team members focused on meeting system requirements with pre-certified hardware. After a six-month idea-generating phase, an intensive six-week effort produced viable design concepts that justified additional vehicle mass while optimizing the human factors of platform installation and use. Although these selected final concepts closely resemble heritage internal access platforms, challenges from the application of the

  15. Using object oriented analysis and design to study the SSCL SDC computing system

    SciTech Connect

    Kubena, G.T.; Liao, K.; Palounek, P.T.; Day, C.

    1992-02-01

    A joint study between the Computer Working Group of the SSC Solenoidal Detector Collaboration (SDC) and IBM`s Federal Sector Division is focusing on the use of Object Oriented Analysis and Design on the SDC Offline Computing System. One key challenge of the analysis is to discover an efficient way to store and subsequently retrieve raw and reconstructed event data, estimated to be 2 petabytes per year. The Object Oriented approach being used during the analysis and early design is intended to yield a smooth transition to detailed design, prototyping and implementation. The object oriented approach is used as a subprocess of a larger process used by IBM FSD, i.e., a systematic approach to architecting and integrating large complex systems. A description of the overall process and early results are described in a study report produced jointly by the SDC and IBM FSD. The overall process focuses on requirements analysis, operational concept development, problem domain decomposition, development and selection of candidate architectures, automated performance modeling and software architecture. This paper will focus primarily on software architecture. The high level software architecture is viewed as a layered stack consisting of: system services, common physics application framework and unique physics applications. Object oriented analysis is being used to investigate the data storage and management of the event data. An object hierarchy is being created and operational concept scenarios are being used to validate the design. Several database prototypes can then be developed, e.g. object oriented or relational, to prove the concept. The object oriented development is fundamentally different from traditional approaches to design, such as those based exclusively on data flow. Object oriented decomposition more closely models a person`s perception of reality, hence the developed system is more understandable, extensible, and maintainable.

  16. Using object oriented analysis and design to study the SSCL SDC computing system

    SciTech Connect

    Kubena, G.T.; Liao, K. ); Palounek, P.T. ); Day, C. )

    1992-01-01

    A joint study between the Computer Working Group of the SSC Solenoidal Detector Collaboration (SDC) and IBM's Federal Sector Division is focusing on the use of Object Oriented Analysis and Design on the SDC Offline Computing System. One key challenge of the analysis is to discover an efficient way to store and subsequently retrieve raw and reconstructed event data, estimated to be 2 petabytes per year. The Object Oriented approach being used during the analysis and early design is intended to yield a smooth transition to detailed design, prototyping and implementation. The object oriented approach is used as a subprocess of a larger process used by IBM FSD, i.e., a systematic approach to architecting and integrating large complex systems. A description of the overall process and early results are described in a study report produced jointly by the SDC and IBM FSD. The overall process focuses on requirements analysis, operational concept development, problem domain decomposition, development and selection of candidate architectures, automated performance modeling and software architecture. This paper will focus primarily on software architecture. The high level software architecture is viewed as a layered stack consisting of: system services, common physics application framework and unique physics applications. Object oriented analysis is being used to investigate the data storage and management of the event data. An object hierarchy is being created and operational concept scenarios are being used to validate the design. Several database prototypes can then be developed, e.g. object oriented or relational, to prove the concept. The object oriented development is fundamentally different from traditional approaches to design, such as those based exclusively on data flow. Object oriented decomposition more closely models a person's perception of reality, hence the developed system is more understandable, extensible, and maintainable.

  17. Lunar base Controlled Ecological Life Support System (LCELSS): Preliminary conceptual design study

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.

    1991-01-01

    The objective of this study was to develop a conceptual design for a self-sufficient LCELSS. The mission need is for a CELSS with a capacity to supply the life support needs for a nominal crew of 30, and a capability for accommodating a range of crew sizes from 4 to 100 people. The work performed in this study was nominally divided into two parts. In the first part, relevant literature was assembled and reviewed. This review identified LCELSS performance requirements and the constraints and advantages confronting the design. It also collected information on the environment of the lunar surface and identified candidate technologies for the life support subsystems and the systems with which the LCELSS interfaced. Information on the operation and performance of these technologies was collected, along with concepts of how they might be incorporated into the LCELSS conceptual design. The data collected on these technologies was stored for incorporation into the study database. Also during part one, the study database structure was formulated and implemented, and an overall systems engineering methodology was developed for carrying out the study.

  18. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 1: Observatory system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The performance, design, and quality assurance requirements for the Earth Observatory Satellite (EOS) Observatory and Ground System program elements required to perform the Land Resources Management (LRM) A-type mission are presented. The requirements for the Observatory element with the exception of the instruments specifications are contained in the first part.

  19. Preliminary Systems Design Study assessment report. Volume 5, Land disposal compliance and hydrogen generation restricted concepts

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1991-11-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex`s Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept.

  20. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 4: Conceptual design report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at Marshall Space Flight Center (MSFC). The PTC will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. In the first step of this task, a methodology was developed to ensure that all relevant design dimensions were addressed, and that all feasible designs could be considered. The development effort yielded the following method for generating and comparing designs in task 4: (1) Extract SCS system requirements (functions) from the system specification; (2) Develop design evaluation criteria; (3) Identify system architectural dimensions relevant to SCS system designs; (4) Develop conceptual designs based on the system requirements and architectural dimensions identified in step 1 and step 3 above; (5) Evaluate the designs with respect to the design evaluation criteria developed in step 2 above. The results of the method detailed in the above 5 steps are discussed. The results of the task 4 work provide the set of designs which two or three candidate designs are to be selected by MSFC as input to task 5-refine SCS conceptual designs. The designs selected for refinement will be developed to a lower level of detail, and further analyses will be done to begin to determine the size and speed of the components required to implement these designs.

  1. Control system design guide

    SciTech Connect

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  2. Case studies on design, simulation and visualization of control and measurement applications using REX control system

    NASA Astrophysics Data System (ADS)

    Ozana, Stepan; Pies, Martin; Docekal, Tomas

    2016-06-01

    REX Control System is a professional advanced tool for design and implementation of complex control systems that belongs to softPLC category. It covers the entire process starting from simulation of functionality of the application before deployment, through implementation on real-time target, towards analysis, diagnostics and visualization. Basically it consists of two parts: the development tools and the runtime system. It is also compatible with Simulink environment, and the way of implementation of control algorithm is very similar. The control scheme is finally compiled (using RexDraw utility) and uploaded into a chosen real-time target (using RexView utility). There is a wide variety of hardware platforms and real-time operating systems supported by REX Control System such as for example Windows Embedded, Linux, Linux/Xenomai deployed on SBC, IPC, PAC, Raspberry Pi and others with many I/O interfaces. It is modern system designed both for measurement and control applications, offering a lot of additional functions concerning data archiving, visualization based on HTML5, and communication standards. The paper will sum up possibilities of its use in educational process, focused on control of case studies of physical models with classical and advanced control algorithms.

  3. Fermilab Central Computing Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect

    Krstulovich, S.F.

    1986-11-12

    This report is developed as part of the Fermilab Central Computing Facility Project Title II Design Documentation Update under the provisions of DOE Document 6430.1, Chapter XIII-21, Section 14, paragraph a. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis and should be considered as a supplement to the Title I Design Report date March 1986 wherein energy related issues are discussed pertaining to building envelope and orientation as well as electrical systems design.

  4. Introducing Whole-Systems Design to First-Year Engineering Students with Case Studies

    ERIC Educational Resources Information Center

    Blizzard, Jackie; Klotz, Leidy; Pradhan, Alok; Dukes, Michael

    2012-01-01

    Purpose: A whole-systems approach, which seeks to optimize an entire system for multiple benefits, not isolated components for single benefits, is essential to engineering design for radically improved sustainability performance. Based on real-world applications of whole-systems design, the Rocky Mountain Institute (RMI) is developing educational…

  5. Fuzzy Controller Design Using Evolutionary Techniques for Twin Rotor MIMO System: A Comparative Study

    PubMed Central

    Hashim, H. A.; Abido, M. A.

    2015-01-01

    This paper presents a comparative study of fuzzy controller design for the twin rotor multi-input multioutput (MIMO) system (TRMS) considering most promising evolutionary techniques. These are gravitational search algorithm (GSA), particle swarm optimization (PSO), artificial bee colony (ABC), and differential evolution (DE). In this study, the gains of four fuzzy proportional derivative (PD) controllers for TRMS have been optimized using the considered techniques. The optimization techniques are developed to identify the optimal control parameters for system stability enhancement, to cancel high nonlinearities in the model, to reduce the coupling effect, and to drive TRMS pitch and yaw angles into the desired tracking trajectory efficiently and accurately. The most effective technique in terms of system response due to different disturbances has been investigated. In this work, it is observed that GSA is the most effective technique in terms of solution quality and convergence speed. PMID:25960738

  6. A Facility for Testing High-Power Electric Propulsion Systems in Space: A Design Study

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J.

    2005-01-01

    This paper will describe the results of the preliminary phase of a NASA design study for a facility to test high-power electric propulsion systems in space. The results of this design study are intended to provide a firm foundation for a subsequent detailed design and development activities leading to the deployment of a valuable space facility supporting the new vision of space exploration. The objectives for human and robotic exploration of space can be accomplished affordably, safely and effectively with high-power electric propulsion systems. But, as thruster power levels rise to the hundreds of kilowatts and up to megawatts, their testing will pose stringent and expensive demands on existing Earth-based vacuum facilities. These considerations and the access to near-Earth space provided by the International Space Station (ISS) have led to a renewed interest in space testing. The ISS could provide an excellent platform for a space-based test facility with the continuous vacuum conditions of the natural space environment and no chamber walls to modify the open boundary conditions of the propulsion system exhaust. The platform would be designed to accommodate the side-by-side testing of multiple types of electric thrusters currently under development and thus provide a strong basis for comparing their relative performance. The utility of testing on the station is further enhanced by the human presence, enabling close interaction with and modification of the test hardware in a true laboratory environment. These conditions facilitate rapid development and flight certification at potentially lower cost than with conventional Earth-bound facilities. As an added benefit, the propulsive effect of these tests could provide some drag compensation for the station, reducing the re-boost cost for the orbital facility. While it is expected that the ISS will not be capable of generating continuous levels of high power, the utilization of state-of-the-art energy storage media

  7. Lunar lander conceptual design: Lunar base systems study task 2.2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This study is a first look at the problem of building a lunar lander to support a small lunar surface base. One lander, which can land 25 metric tons, one way, or take a 6 metric ton crew capsule up and down is desired. A series of trade studies are used to narrow the choices and provide some general guidelines. Given a rough baseline, the systems are then reviewed. A conceptual design is then produced. The process was only carried through one iteration. Many more iterations are needed. Assumptions and groundrules are considered.

  8. Design study of advanced model support systems for the National Transonic Facility (NTF)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    It has long been recognized that the sting (or support system) is a very critical part of the model system. The designer is frequently faced with the tradeoff of minimizing sting size, thereby compromising facility and model safety, against a larger sting and the subsequent problems of sting interference effects. In the NASA Langley Research Center National Transonic Facility (NTF), this problem is accentuated by the severe environment of high pressure/low temperature, designed into the facility to provide the desired high Reynolds number. Compromises in the configuration geometry and/or limiting the test envelope are therefore contrary to the purposes and goals of the NTF and are unacceptable. The results of an investigation aimed at improvements of 25% in both strength and Young's modulus of elasticity as compared to high strength cryogenically acceptable steels currently being used are presented. Various materials or combinations of materials were studied along with different design approaches. Design concepts were developed which included conventional material stings, advanced composites, and hybrid configurations. Candidate configurations are recommended.

  9. Design study of arresting gear system for recovery of space shuttle orbiters

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A plan is reported for the design, manufacture, development, test, and production of an emergency arrestment system for the recovery of shuttle orbiters. Time and cost estimates are included. System testing and several optional test programs are discussed.

  10. Preliminary systems design study assessment report. Volume 4, Leach resistant/high integrity structure concepts

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1991-10-01

    The System Design Study (SDS), part of the Waste Technology Development Department of the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex`s Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. The SDS results are published in eight volumes. Volume I contains an executive summary. The SDS summary and analysis of results are presented in Volume II. Volumes III through VII contain descriptions of twelve system and four subsystem concepts. Volume VIII contains the appendixes.

  11. Audio Key Finding: Considerations in System Design and Case Studies on Chopin's 24 Preludes

    NASA Astrophysics Data System (ADS)

    Chuan, Ching-Hua; Chew, Elaine

    2006-12-01

    We systematically analyze audio key finding to determine factors important to system design, and the selection and evaluation of solutions. First, we present a basic system, fuzzy analysis spiral array center of effect generator algorithm, with three key determination policies: nearest-neighbor (NN), relative distance (RD), and average distance (AD). AD achieved a 79% accuracy rate in an evaluation on 410 classical pieces, more than 8% higher RD and NN. We show why audio key finding sometimes outperforms symbolic key finding. We next propose three extensions to the basic key finding system—the modified spiral array (mSA), fundamental frequency identification (F0), and post-weight balancing (PWB)—to improve performance, with evaluations using Chopin's Preludes (Romantic repertoire was the most challenging). F0 provided the greatest improvement in the first 8 seconds, while mSA gave the best performance after 8 seconds. Case studies examine when all systems were correct, or all incorrect.

  12. Heat Exchanger Design Options and Tritium Transport Study for the VHTR System

    SciTech Connect

    Chang H. Oh; Eung S. Kim

    2008-09-01

    This report presents the results of a study conducted to consider heat exchanger options and tritium transport in a very high temperature reactor (VHTR) system for the Next Generation Nuclear Plant Project. The heat exchanger options include types, arrangements, channel patterns in printed circuit heat exchangers (PCHE), coolant flow direction, and pipe configuration in shell-and-tube designs. Study considerations include: three types of heat exchanger designs (PCHE, shell-and-tube, and helical coil); single- and two-stage unit arrangements; counter-current and cross flow configurations; and straight pipes and U-tube designs in shell-and-tube type heat exchangers. Thermal designs and simple stress analyses were performed to estimate the heat exchanger options, and the Finite Element Method was applied for more detailed calculations, especially for PCHE designs. Results of the options study show that the PCHE design has the smallest volume and heat transfer area, resulting in the least tritium permeation and greatest cost savings. It is theoretically the most reliable mechanically, leading to a longer lifetime. The two-stage heat exchanger arrangement appears to be safer and more cost effective. The recommended separation temperature between first and second stages in a serial configuration is 800oC, at which the high temperature unit is about one-half the size of the total heat exchanger core volume. Based on simplified stress analyses, the high temperature unit will need to be replaced two or three times during the plant’s lifetime. Stress analysis results recommend the off-set channel pattern configuration for the PCHE because stress reduction was estimated at up to 50% in this configuration, resulting in a longer lifetime. The tritium transport study resulted in the development of a tritium behavior analysis code using the MATLAB Simulink code. In parallel, the THYTAN code, previously performed by Ohashi and Sherman (2007) on the Peach Bottom data, was revived

  13. Towards responsible system development in health services: a discourse analysis study of design conflict resolution tactics.

    PubMed

    Irestig, Magnus; Timpka, Toomas

    2010-02-01

    We set out to examine design conflict resolution tactics used in development of large information systems for health services and to outline the design consequences for these tactics. Discourse analysis methods were applied to data collected from meetings conducted during the development of a web-based system in a public health context. We found that low risk tactics were characterized by design issues being managed within the formal mandate and competences of the design group. In comparison, high risk tactics were associated with irresponsible compromises, i.e. decisions being passed on to others or to later phases of the design process. The consequence of this collective disregard of issues such as responsibility and legitimacy is that the system design will be impossible to implement in factual health service contexts. The results imply that downstream responsibility issues have to be continuously dealt with in system development in health services.

  14. Feasibility study of an Integrated Program for Aerospace-vehicle Design (IPAD) system. Volume 5: Design of the IPAD system. Part 2: System design. Part 3: General purpose utilities, phase 1, task 2

    NASA Technical Reports Server (NTRS)

    Garrocq, C. A.; Hurley, M. J.

    1973-01-01

    Viable designs are presented of various elements of the IPAD framework software, data base management system, and required new languages in relation to the capabilities of operating systems software. A thorough evaluation was made of the basic systems functions to be provide by each software element, its requirements defined in the conceptual design, the operating systems features affecting its design, and the engineering/design functions which it was intended to enhance.

  15. Lessons Learned During TBCC Design for the NASA-AFRL Joint System Study

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.; Espinosa, A. M.

    2013-01-01

    NASA and the Air Force Research Laboratory are involved in a Joint System Study (JSS) on Two-Stage-to-Orbit (TSTO) vehicles. The JSS will examine the performance, operability and analysis uncertainty of unmanned, fully reusable, TSTO launch vehicle concepts. NASA is providing a vehicle concept using turbine-based combined cycle (TBCC) propulsion on the booster stage and an all-rocket orbiter. The variation in vehicle and mission requirements for different potential customers, combined with analysis uncertainties, make it problematic to define optimum vehicle types or concepts, but the study is being used by NASA for tool assessment and development, and to identify technology gaps. Preliminary analyses were performed on the entire TBCC booster concept; then higher-fidelity analyses were performed for particular areas to verify results or reduce analysis uncertainties. Preliminary TBCC system analyses indicated that there would be sufficient thrust margin over its mission portion. The higher fidelity analyses, which included inlet and nozzle performance corrections for significant area mismatches between TBCC propulsion requirements versus the vehicle design, resulted in significant performance penalties from the preliminary results. TBCC system design and vehicle operation assumptions were reviewed to identify items to mitigate these performance penalties. The most promising items were then applied and analyses rerun to update performance predictions. A study overview is given to orient the reader, quickly focusing upon the NASA TBCC booster and low speed propulsion system. Details for the TBCC concept and the analyses performed are described. Finally, a summary of "Lessons Learned" are discussed with suggestions to improve future study efforts.

  16. Asymmetrical booster ascent guidance and control system design study. Volume 1: Summary. [space shuttle development

    NASA Technical Reports Server (NTRS)

    Williams, F. E.; Lemon, R. S.; Jaggers, R. F.; Wilson, J. L.

    1974-01-01

    Dynamics and control, stability, and guidance analyses are summarized for the asymmetrical booster ascent guidance and control system design studies, performed in conjunction with space shuttle planning. The mathematical models developed for use in rigid body and flexible body versions of the NASA JSC space shuttle functional simulator are briefly discussed, along with information on the following: (1) space shuttle stability analysis using equations of motion for both pitch and lateral axes; (2) the computer program used to obtain stability margin; and (3) the guidance equations developed for the space shuttle powered flight phases.

  17. A turbojet-boosted two-stage-to-orbit space transportation system design study

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Zeck, H.; Walker, W.; Scharf, W.

    1979-01-01

    The concept to use twin turbo-powered boosters for acceleration to supersonic staging speed followed by an all rocket powered orbiter stage was proposed. A follow-on design study was then made of the concept with the performance objective of placing a 29,483 Kg payload into a .2.6 X 195.3 km orbit. The study was performed in terms of analysis and trade studies, conceptual design, utility and economic analysis, and technology assessment. Design features of the final configuration included: strakes and area rule for improved take off and low transonic drag, variable area inlets, exits and turbine, and low profile fixed landing gear for turbojet booster stage. The payload required an estimated GLOW of 1,270,000 kg for injection in orbit. Each twin booster required afterburning turbojet engines each with a static sea level thrust rating of 444,800 N. Life cycle costs for this concept were comparable to a SSTO/SLED concept except for increased development cost due to the turbojet engine propulsion system.

  18. Icon and user interface design for emergency medical information systems: a case study.

    PubMed

    Salman, Y Batu; Cheng, Hong-In; Patterson, Patrick E

    2012-01-01

    A usable medical information system should allow for reliable and accurate interaction between users and the system in emergencies. A participatory design approach was used to develop a medical information system in two Turkish hospitals. The process consisted of task and user analysis, an icon design survey, initial icon design, final icon design and evaluation, and installation of the iconic medical information system with the icons. We observed work sites to note working processes and tasks related to the information system and interviewed medical personnel. Emergency personnel then participated in the design process to develop a usable graphical user interface, by drawing icon sketches for 23 selected tasks. Similar sketches were requested for specific tasks such as family medical history, contact information, translation, addiction, required inspections, requests and applications, and nurse observations. The sketches were analyzed and redesigned into computer icons by professional designers and the research team. A second group of physicians and nurses then tested the understandability of the icons. The user interface layout was examined and evaluated by system users, followed by the system's installation. Medical personnel reported the participatory design process was interesting and believed the resulting designs would be more familiar and friendlier.

  19. Study of space shuttle orbiter system management computer function. Volume 1: Analysis, baseline design

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A system analysis of the shuttle orbiter baseline system management (SM) computer function is performed. This analysis results in an alternative SM design which is also described. The alternative design exhibits several improvements over the baseline, some of which are increased crew usability, improved flexibility, and improved growth potential. The analysis consists of two parts: an application assessment and an implementation assessment. The former is concerned with the SM user needs and design functional aspects. The latter is concerned with design flexibility, reliability, growth potential, and technical risk. The system analysis is supported by several topical investigations. These include: treatment of false alarms, treatment of off-line items, significant interface parameters, and a design evaluation checklist. An in-depth formulation of techniques, concepts, and guidelines for design of automated performance verification is discussed.

  20. Study and design of the ion cyclotron resonance heating system for the stellarator Wendelstein 7-X

    SciTech Connect

    Ongena, J.; Messiaen, A.; Van Eester, D.; Schweer, B.; Dumortier, P.; Durodie, F.; Kazakov, Ye. O.; Louche, F.; Vervier, M.; Koch, R.; Krivska, A.; Lyssoivan, A.; Van Schoor, M.; Wauters, T.; Borsuk, V.; Neubauer, O.; Schmitz, O.; Altenburg, Y.; Baylard, C.; and others

    2014-06-15

    The current status of the mechanical and electromagnetic design for the ICRF antenna system for W7-X is presented. Two antenna plugins are discussed: one consisting of a pair of straps with pre-matching to cover the first frequency band, 25–38 MHz, and a second one consisting of two short strap triplets to cover a frequency band around 76 MHz. This paper focusses on the two strap antenna for the lower frequency band. Power coupling of the antenna to a reference plasma profile is studied with the help of the codes TOPICA and Microwave Studio that deliver the scattering matrix needed for the optimization of the geometric parameters of the straps and antenna box. Radiation power spectra for different phasings of the two straps are obtained using the code ANTITER II and different heating scenario are discussed. The potential for heating, fast particle generation, and current drive is discussed. The problem of RF coupling through the plasma edge and of edge power deposition is summarized. Important elements of the complete ion cyclotron resonance heating system are discussed: a resonator circuit with tap feed to limit the maximum voltage in the system, and a decoupler to counterbalance the large mutual coupling between the 2 straps. The mechanical design highlights the challenges encountered with this antenna: adaptation to a large variety of plasma configurations, the limited space within the port to accommodate the necessary matching components and the watercooling needed for long pulse operation.

  1. A Design Research Study of a Curriculum and Diagnostic Assessment System for a Learning Trajectory on Equipartitioning

    ERIC Educational Resources Information Center

    Confrey, Jere; Maloney, Alan

    2015-01-01

    Design research studies provide significant opportunities to study new innovations and approaches and how they affect the forms of learning in complex classroom ecologies. This paper reports on a two-week long design research study with twelve 2nd through 4th graders using curricular materials and a tablet-based diagnostic assessment system, both…

  2. Initial conceptual design study of self-critical nuclear pumped laser systems

    NASA Technical Reports Server (NTRS)

    Rodgers, R. J.

    1979-01-01

    An analytical study of self-critical nuclear pumped laser system concepts was performed. Primary emphasis was placed on reactor concepts employing gaseous uranium hexafluoride (UF6) as the fissionable material. Relationships were developed between the key reactor design parameters including reactor power level, critical mass, neutron flux level, reactor size, operating pressure, and UF6 optical properties. The results were used to select a reference conceptual laser system configuration. In the reference configuration, the 3.2 m cubed lasing volume is surrounded by a graphite internal moderator and a region of heavy water. Results of neutronics calculations yield a critical mass of 4.9 U(235) in the form (235)UF6. The configuration appears capable of operating in a continuous steady-state mode. The average gas temperature in the core is 600 K and the UF6 partial pressure within the lasing volume is 0.34 atm.

  3. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 4. Saudi Engineering Solar Energy Applications System Design Study

    SciTech Connect

    Not Available

    1985-01-01

    Literature summarizing a study on the Saudi Arabian solar controlled environment agriculture system is presented. Specifications and performance requirements for the system components are revealed. Detailed performance and cost analyses are used to determine the optimum design. A preliminary design of an engineering field test is included. Some weather data are provided for Riyadh, Saudi Arabia. (BCS)

  4. Information system design of inventory control spare parts maintenance (valuation class 5000) (case study: plant kw)

    NASA Astrophysics Data System (ADS)

    Fitriana, Rina; Moengin, Parwadi; Riana, Mega

    2016-02-01

    Plat KW hadn't using optimal inventory level planning yet and hadn't have an information system that well computerized. The research objective is to be able to design an information system related inventory control of spare parts maintenance. The study focused on five types of spare parts with the highest application rate during February 2013- March 2015 and included in the classification of fast on FSN analysis Grinding stones Cut 4". Cable Tie 15". Welding RB 26-32MM. Ring Plat ½" and Ring Plate 5/8 ". Inventory calculation used Economic Order Quantity (EOQ). Safety Stock (SS) and Reorder Point (ROP) methods. System analysis conducted using the framework PIECES with the proposed inventory control system. the performance of the plant KW relating to the supply of spare parts maintenance needs can be more efficient as well as problems at the company can be answered and can perform inventory cost savings amounting Rp.267.066. A computerized information system of inventory control spare parts maintenance provides a menu that can be accessed by each departments as the user needed.

  5. An Axenic Plant Culture System for Optimal Growth in Long-Term Studies: Design and Maintenance

    NASA Technical Reports Server (NTRS)

    Henry, Amelia; Doucette, William; Norton, Jeanette; Jones, Scott; Chard, Julie; Bugbee, Bruce

    2006-01-01

    The symbiotic co-evolution of plants and microbes leads to difficulties in understanding which of the two components is responsible for a given environmental response. Plant-microbe studies greatly benefit from the ability to grow plants in axenic (sterile) culture. Several studies have used axenic plant culture systems, but experimental procedures are often poorly documented, the plant growth environment is not optimal, and axenic conditions are not rigorously verified. We developed a unique axenic system using inert components that promotes plant health and can be kept sterile for at least 70 d. Crested wheatgrass (Agropyron cristatum cv. DII) plants were grown in sand within flow-through glass columns that were positively pressured with filtered air. Plant health was optimized by regulating temperature, light level, CO2 concentration, humidity, and nutrients. The design incorporates several novel aspects, such as pretreatment of the sand with Fe, graduated sand layers to optimize the air-water balance of the root zone, and modification of a laminar flow hood to serve as a plant growth chamber. Adaptations of several sterile techniques were necessary for maintenance of axenic conditions. Axenic conditions were verified by plating and staining leachates as well as rhizoplane stain. This system was designed to study nutrient and water stress effects on root exudates, but is useful for assessing a broad range of plant-microbe-environment interactions. Based on total organic C analysis, 74% of exudates was recovered in the leachate, 6% was recovered in the bulk sand, and 17% was recovered in the rhizosphere sand. Carbon in the leachate after 70 d reached 255 micro-g/d. Fumaric, malic, malonic, oxalic, and succinic acids were measured as components of the root exudates.

  6. Study on a Real-Time BEAM System for Diagnosis Assistance Based on a System on Chips Design

    PubMed Central

    Sung, Wen-Tsai; Chen, Jui-Ho; Chang, Kung-Wei

    2013-01-01

    As an innovative as well as an interdisciplinary research project, this study performed an analysis of brain signals so as to establish BrainIC as an auxiliary tool for physician diagnosis. Cognition behavior sciences, embedded technology, system on chips (SOC) design and physiological signal processing are integrated in this work. Moreover, a chip is built for real-time electroencephalography (EEG) processing purposes and a Brain Electrical Activity Mapping (BEAM) system, and a knowledge database is constructed to diagnose psychosis and body challenges in learning various behaviors and signals antithesis by a fuzzy inference engine. This work is completed with a medical support system developed for the mentally disabled or the elderly abled. PMID:23681095

  7. Preliminary system design study for a digital fly-by-wire flight control system for an F-8C aircraft

    NASA Technical Reports Server (NTRS)

    Seacord, C. L.; Vaughn, D. K.

    1976-01-01

    The design of a fly-by-wire control system having a mission failure probability of less than one millionth failures per flight hour is examined. Emphasis was placed on developing actuator configurations that would improve the system performance, and consideration of the practical aspects of sensor/computer and computer/actuator interface implementation. Five basic configurations were defined as appropriate candidates for the F-8C research aircraft. Options on the basic configurations were included to cover variations in flight sensors, redundancy levels, data transmission techniques, processor input/output methods, and servo actuator arrangements. The study results can be applied to fly by wire systems for transport aircraft in general and the space shuttle.

  8. System design of the Pioneer Venus spacecraft. Volume 6: Power subsystem studies

    NASA Technical Reports Server (NTRS)

    Prochaska, H. F.

    1973-01-01

    Selection of a baseline power subsystem for the probe bus, orbiter, and large and small probes has been performed as a part of the Pioneer Venus Mission Systems Design Study. In each case the selection process has involved trades and incorporated the results of previous related studies. Factors considered primary in the selection of each subsystem approach were cost, and the ability of each of the proposed subsystems to perform reliably under the rigors of the space environment, temperature extremes, and high g loads. A trade was made to consider the advantages of an unregulated primary bus versus a regulated bus. The decision to use an unregulated bus was based on cost, weight, and the increase in load isolation achievable through the use of individual load regulators.

  9. System design of the Pioneer Venus spacecraft. Volume 8: Command/data handling subsystems studies

    NASA Technical Reports Server (NTRS)

    Vesely, D. D.

    1973-01-01

    Study tasks for the command and data handling subsystems have been directed to: (1) determining ground data systems, (GDS) interfaces and deep space network (DSN) changes, if required, (2) defining subsystem requirements, (3) surveying existing hardware that could be used or modified to meet subsystem requirements, and (4) establishing a baseline design. Study of the existing GDS led to the conclusion that the Viking configuration GDS can be used with only minor changes required for the Pioneer Venus baseline. Those changes required are associated with providing a predetection recording capability used during probe entry and descent. Subsystem requirements were first formulated with sufficient latitude so that surveys of existing hardware could lead to low cost hardware which, in turn, could modify more narrowly defined subsystem requirements.

  10. Space station system analysis study. Part 3: Documentation. Volume 2: Technical report. [structural design and construction

    NASA Technical Reports Server (NTRS)

    1977-01-01

    An analysis of construction operation is presented as well as power system sizing requirements. Mission hardware requirements are reviewed in detail. Space construction base and design configurations are also examined.

  11. A numerical study for design of depth, pitch and roll control system of a towed vehicle

    SciTech Connect

    Koterayama, W.; Yamaguchi, S.; Nakamura, M.; Moriyama, A.; Akamatsu, T.

    1994-12-31

    A towed vehicle system, FLYING FISH, is under development for use in making chemical and physical measurements which enable the authors to obtain spacially continuous and real time data in an ocean mixed layer. The heave, pitch and roll of FLYING FISH are controlled by a main wing and horizontal tail wings which permit its stable attitudes and assure accurate measurements. The numerical simulation of motions was carried out to design the optimal control system of this towed vehicle system and the results gave the data for the design of the mechanical parts of the control system.

  12. Space shuttle auxiliary propulsion system design study. Phase C and E report: Storable propellants, RCS/OMS/APU integration study

    NASA Technical Reports Server (NTRS)

    Anglim, D. D.; Bruns, A. E.; Perryman, D. C.; Wieland, D. L.

    1972-01-01

    Auxiliary propulsion concepts for application to the space shuttle are compared. Both monopropellant and bipropellant earth storable reaction control systems were evaluated. The fundamental concepts evaluated were: (1) monopropellant and bipropellant systems installed integrally within the vehicle, (2) fuel systems installed modularly in nose and wing tip pods, and (3) fuel systems installed modularly in nose and fuselage pods. Numerous design variations within these three concepts were evaluated. The system design analysis and methods for implementing each of the concepts are reported.

  13. Satellite Power Systems (SPS) concept definition study. Volume 4: SPS point design definition

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1978-01-01

    The satellite power systems point design concept is described. The concept definition includes satellite, ground and space systems, and their relationships. Emphasis is placed on the definition of the GaAlAs photovoltaic satellite system. The major subsystems of the satellite system including power conversion, power distribution and control, microwave, attitude control and stationkeeping, thermal control, structures, and information management and control are discussed.

  14. An MDO augmented value-based systems engineering approach to holistic design decision-making: A satellite system case study

    NASA Astrophysics Data System (ADS)

    Kannan, Hanumanthrao

    The design of large scale complex engineered systems (LSCES) involves hundreds or thousands of designers making decisions at different levels of an organizational hierarchy. Traditionally, these LSCES are designed using systems engineering methods and processes, where the preferences of the stakeholder are flowed down the hierarchy using requirements that act as surrogates for preference. Current processes do not provide a system level guidance to subsystem designers. Value-Driven Design (VDD) offers a new perspective on complex system design, where the value preferences of the stakeholder are communicated directly through a decomposable value function, thereby providing a mechanism for improved system consistency. Requirements-based systems engineering approaches do not offer a mathematically rigorous way to capture the couplings present in the system. Multidisciplinary Design Optimization (MDO) was specifically developed to address couplings in both analysis and optimization thereby enabling physics-based consistency. MDO uses an objective function with constraints but does not provide a way to formulate the objective function. Current systems engineering processes do not provide a mathematically sound way to make design decisions when designers are faced with uncertainties. Designers tend to choose designs based on their preferences towards risky/uncertain designs, and past research has shown that there needs to be a consistency in risk preferences to enable design decisions that are consistent with stakeholder's desires. This research exploits the complimentary nature of VDD, MDO and Decision Analysis (DA) to enable consistency in communication of system preferences, consistency in physics and consistency in risk preferences. The role of VDD in this research is in formulating a value function for true preferences, whereas the role of MDO is to capture couplings and enable optimization using the value function, and the role of DA is to enable consistent design

  15. Mini-Brayton heat source assembly design study. Volume 1: Space shuttle mission. [feasibility of Brayton isotope power system design

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Conceptual design definitions of a heat source assembly for use in nominal 500 watt electrical (W(e)) 1200 W(e)and 2000 W(e) mini-Brayton isotope power systems are reported. The HSA is an independent package which maintains thermal and nuclear control of an isotope fueled heat source and transfers the thermal energy to a Brayton rotating unit turbine-alternator-compressor power conversion unit.

  16. Design study of a low cost civil aviation GPS receiver system

    NASA Technical Reports Server (NTRS)

    Cnossen, R.; Gilbert, G. A.

    1979-01-01

    A low cost Navstar receiver system for civil aviation applications was defined. User objectives and constraints were established. Alternative navigation processing design trades were evaluated. Receiver hardware was synthesized by comparing technology projections with various candidate system designs. A control display unit design was recommended as the result of field test experience with Phase I GPS sets and a review of special human factors for general aviation users. Areas requiring technology development to ensure a low cost Navstar Set in the 1985 timeframe were identified.

  17. Study and design of cryogenic propellant acquisition systems. Volume 2: Supporting experimental program

    NASA Technical Reports Server (NTRS)

    Burge, G. W.; Blackmon, J. B.

    1973-01-01

    Areas of cryogenic fuel systems were identified where critical experimental information was needed either to define a design criteria or to establish the feasibility of a design concept or a critical aspect of a particular design. Such data requirements fell into three broad categories: (1) basic surface tension screen characteristics; (2) screen acquisition device fabrication problems; and (3) screen surface tension device operational failure modes. To explore these problems and to establish design criteria where possible, extensive laboratory or bench test scale experiments were conducted. In general, these proved to be quite successful and, in many instances, the test results were directly used in the system design analyses and development. In some cases, particularly those relating to operational-type problems, areas requiring future research were identified, especially screen heat transfer and vibrational effects.

  18. SOIL VAPOR EXTRACTION SYSTEM DESIGN: A CASE STUDY COMPARING VACUUM AND POREGAS VELOCITY CUTOFF CRITERIA

    SciTech Connect

    Dixon, K; Ralph Nichols, R

    2006-07-24

    Soil vapor extraction (SVE) systems are typically designed based on the results of a vadose zone pumping test (transient or steady state) using a pressure criteria to establish the zone of influence (ZOI). A common problem associated with pressure based SVE design is overestimating the ZOI of the extraction well. The vacuum criteria commonly used to establish the boundary of the ZOI results in large areas with very low pore velocities and thus long cleanup times. As a result, design strategies based upon critical pore gas velocity (CPGV) have increased in popularity. The CPGV is used in an effort to loosely incorporate the effects of mass transfer limitations into the design of SVE systems. Critical pore gas velocity designs use a minimum pore gas velocity rather than minimum vacuum to identify the extent of the treatment zone of an SVE system. The CPGV is typically much larger than the pore gas velocity at the perimeter of vacuum based (ZOI) designs resulting in shorter cleanup times. In this paper, we report the results of testing performed at the Savannah River Site (SRS) to determine the influence of a vapor extraction well based upon both a pressure and pore gas velocity design criteria. Results from this testing show that a SVE system designed based upon a CPGV is more robust and will have shorter cleanup times due to increased flow throughout the treatment zone. Pressure based SVE design may be appropriate in applications where soil gas containment is the primary objective; however, in cases where the capture and removal of contaminated soil gas is the primary objective, CPGV is a better design criteria.

  19. Control system design method

    DOEpatents

    Wilson, David G.; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  20. Reduction of liquid hydrogen boiloff: Optimal reliquefaction system design and cost study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A preliminary design and economic analysis of candidate hydrogen reliquefaction systems was performed. All candidate systems are of the same general type; differences and size, compressor arrangement, and amount of hydrogen venting. The potential application of the hydrogen reliquefaction will be to reduce the boil-off from the 850,000 gallon storage dewars at LC-39.

  1. Systems design study of the Pioneer Venus spacecraft. Volume 3. Specifications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Pioneer Venus spacecraft performance requirements are presented. The specifications include: (1) Design criteria and performance requirements for the Pioneer Venus spacecraft systems and subsystems for a 1978 multiprobe mission and a 1978 orbiter mission, spacecraft system interface, and scientific instrument integration.

  2. Design and experimental study of an integrated vapor chamber-thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Kota, Krishna M.

    Future defense, aerospace and automotive technologies involve electronic systems that release high pulsed waste heat like during high power microwave and laser diode applications in tactical and combat aircraft, and electrical and electronic systems in hybrid electric vehicles, which will require the development of an efficient thermal management system. A key design issue is the need for fast charging so as not to overheat the key components. The goal of this work is to study the fabrication and technology implementation feasibility of a novel high energy storage, high heat flux passive heat sink. Key focus is to verify by theory and experiments, the practicability of using phase change materials as a temporary storage of waste heat for heat sink applications. The reason for storing the high heat fluxes temporarily is to be able to reject the heat at the average level when the heat source is off. Accordingly, a concept of a dual latent heat sink intended for moderate to low thermal duty cycle electronic heat sink applications is presented. This heat sink design combines the features of a vapor chamber with rapid thermal energy storage employing graphite foam inside the heat storage facility along with phase change materials and is attractive owing to its passive operation unlike some of the current thermal management techniques for cooling of electronics employing forced air circulation or external heat exchangers. In addition to the concept, end-application dependent criteria to select an optimized design for this dual latent heat sink are presented. A thermal resistance concept based design tool/model has been developed to analyze and optimize the design for experiments. The model showed that it is possible to have a dual latent heat sink design capable of handling 7 MJ of thermal load at a heat flux of 500 W/cm2 (over an area of 100 cm 2) with a volume of 0.072 m3 and weighing about 57.5 kg. It was also found that with such high heat flux absorption capability

  3. Seal design alternatives study

    SciTech Connect

    Van Sambeek, L.L.

    1993-06-01

    This report presents the results from a study of various sealing alternatives for the WIPP sealing system. Overall, the sealing system has the purpose of reducing to the extent possible the potential for fluids (either gas or liquid) from entering or leaving the repository. The sealing system is divided into three subsystems: drift and panel seals within the repository horizon, shaft seals in each of the four shafts, and borehole seals. Alternatives to the baseline configuration for the WIPP seal system design included evaluating different geometries and schedules for seal component installations and the use of different materials for seal components. Order-of-magnitude costs for the various alternatives were prepared as part of the study. Firm recommendations are not presented, but the advantages and disadvantages of the alternatives are discussed. Technical information deficiencies are identified and studies are outlined which can provide required information.

  4. Overview and status of a mirror fusion propulsion system design study

    NASA Astrophysics Data System (ADS)

    Carpenter, Scott A.; Brennan, Kathleen M.

    1999-09-01

    The main goal of this paper is to describe and emphasize the important discoveries made since 1986 in the engineering design of space fusion propulsion plants. Among the important discoveries are four fundamental design principles (DPs) which should be used when adapting candidate Earth-based fusion-electric power plants to propulsion in space. DP1. Maximize direct access to space for waste radiation. DP2. Operate components as passive radiators whenever possible. DP3. Optimize the plasma characteristics for best specific jet power DP4. Optimize mission capability versus lifetime-mass-to-orbit (LMTO). Another discovery is a design philosophy called IDEAs (Integrated Design Environment Algorithms) which is a tool for discovering new fundamental design principles. These discoveries allowed us to adapt, and then to optimize, an earth-based fusion-electric magnetic-mirror-fusion reactor concept for propulsion in space. The resulting design is called the Mirror Fusion Propulsion System (MFPS); and its design status is reviewed. This work can be used as a general road map for others attempting to convert earth-based designs to propulsion in space. It also has applicability to matter-antimatter propulsion systems engineering.

  5. Designing Menu Selection Systems.

    ERIC Educational Resources Information Center

    Schneiderman, Ben

    1986-01-01

    Focuses on the multiple design issues involved in creating successful menu selection systems: semantic organization, response time, display rates, shortcuts for frequent users, titles, phrasing of menu items, graphic layout, and selection mechanisms. Pop-up and embedded menus, experimental results, and design guidelines are also covered.…

  6. Instructional Design: System Strategies.

    ERIC Educational Resources Information Center

    Ledford, Bruce R.; Sleeman, Phillip J.

    This book is intended as a source for those who desire to apply a coherent system of instructional design, thereby insuring accountability. Chapter 1 covers the instructional design process, including: instructional technology; the role of evaluation; goal setting; the psychology of teaching and learning; task analysis; operational objectives;…

  7. Design study of TDRS antenna gimbal system for LANDSAT-D

    NASA Technical Reports Server (NTRS)

    Wu, J.

    1977-01-01

    The conceptual design studies of a two axis antenna drive assembly for the TDRSS link communications subsystem for LANDSAT D are presented. The recommended antenna drive assembly is a simple and reliable design substantially similar to the antenna and solar array drives developed and space qualified for programs such as DSCS 2 and FltSatCom. The gimbal design tradeoff is presented, along with drive electronics.

  8. Ex-situ experimental studies on serpentine flow field design for redox flow battery systems

    NASA Astrophysics Data System (ADS)

    Jyothi Latha, T.; Jayanti, S.

    2014-02-01

    Electrolyte distribution using parallel flow field for redox flow battery (RFB) applications shows severe non-uniformity, while the conventional design of using the carbon felt itself as the flow distributor gives too high pressure drop. An optimized flow field design for uniform flow distribution at a minimal parasitic power loss is therefore needed for RFB systems. Since the materials and geometrical dimensions in RFBs are very different from those used in fuel cells, the hydrodynamics of the flow fields in RFBs is likely to be very different. In the present paper, we report on a fundamental study of the hydrodynamics of a serpentine flow field relevant to RFB applications. The permeability of the porous medium has been measured under different compression ratios and this is found to be in the range of 5-8 × 10-11 m2. The pressure drop in two serpentine flow fields of different geometric characteristics has been measured over a range of Reynolds numbers. Further analysis using computational fluid dynamics simulations brings out the importance of the compression of the porous medium as an additional parameter in determining the flow distribution and pressure drop in these flow fields.

  9. Remote Systems Design & Deployment

    SciTech Connect

    Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

    2009-08-28

    The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.

  10. The anticoincidence system of the PAMELA satellite experiment: Design of the data acquisition system and performance studies

    NASA Astrophysics Data System (ADS)

    Lunquist, Johan

    PAMELA is a satellite-borne cosmic ray experiment. Its primary scientific objective is to study the antiproton and positron components of the cosmic radiation. This will be done with unprecedented statistics over a wide energy range (~10MeV to ~100GeV). The PAMELA experiment consists of a permanent magnetic spectrometer, an electromagnetic calorimeter, a Time-of-Fight system, a neutron detector and a shower tail catcher. An anticoincidence (AC) system surrounds the spectrometer to detect particles which do not pass cleanly through the acceptance of the spectrometer. PAMELA will be mounted on a Russian Earth-observation satellite, and the launch is scheduled for 2006. The anticoincidence system for PAMELA has been developed by KTH, and consists of plastic scintillator detectors with photomultiplier tube read-out. Extensive testing has been performed during the development phase. Results are presented for environmental tests, tests with cosmic-rays and particle beams. The design of the digital part of the AC electronics has been realised on an FPGA (Field Programmable Gate Array) and a DSP (Digital Signal Processor). It records signals from the 16 AC photomultipliers and from various sensors for over-current and temperature. It also provides functionality for setting the photomultiplier discrimination thresholds, system testing, issuing alarms and communication with the PAMELA main data acquisition system. The design philosophy and functionality needs to be reliable and suitable for use in a space environment. To evaluate the performance of the AC detectors, a test utilizing cosmic-rays has been performed. The primary aim of the test was to calibrate the individual channels to gain knowledge of suitable discriminator levels for flight. A secondary aim was to estimate the AC detector efficiency. A lower limit of (99.89±0.04)% was obtained. An in-orbit simulation study was performed using protons to estimate trigger rates and investigate the AC system performance in a

  11. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 3: Refined conceptual design report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The results of the refined conceptual design phase (task 5) of the Simulation Computer System (SCS) study are reported. The SCS is the computational portion of the Payload Training Complex (PTC) providing simulation based training on payload operations of the Space Station Freedom (SSF). In task 4 of the SCS study, the range of architectures suitable for the SCS was explored. Identified system architectures, along with their relative advantages and disadvantages for SCS, were presented in the Conceptual Design Report. Six integrated designs-combining the most promising features from the architectural formulations-were additionally identified in the report. The six integrated designs were evaluated further to distinguish the more viable designs to be refined as conceptual designs. The three designs that were selected represent distinct approaches to achieving a capable and cost effective SCS configuration for the PTC. Here, the results of task 4 (input to this task) are briefly reviewed. Then, prior to describing individual conceptual designs, the PTC facility configuration and the SSF systems architecture that must be supported by the SCS are reviewed. Next, basic features of SCS implementation that have been incorporated into all selected SCS designs are considered. The details of the individual SCS designs are then presented before making a final comparison of the three designs.

  12. Preliminary design study of a higher harmonic blade feathering control system

    NASA Technical Reports Server (NTRS)

    Powers, R. W.

    1980-01-01

    The feasibility to incorporate an active higher harmonic control (HHC) system on an OH-6A rotorcraft was demonstrated. The introduction of continuously modulated low amplitude 4P feathering showed potential for reducing rotor transmitted oscillatory loads. The design implementation of this system on a baseline OH-6A required generation of a hydraulic power system, control actuator placement and design integration of an electronic subsystem comprised of an electronic control unit (ECU) and digital microcomputer. Various placements of the HHC actuators in the primary control system are evaluated. Assembly drawings of the actuator concepts and control rigging are presented. The advantages of generating both hydraulic power and 4F control motions in the nonrotating system is confirmed.

  13. Pointing and control system design study for the space infrared telescope facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Aubrun, J. N.; Sridhar, B.; Cochran, R. W.

    1984-01-01

    The design and performance of pointing and control systems for two space infrared telescope facility vehicles were examined. The need for active compensation of image jitter using the secondary mirror or other optical elements was determined. In addition, a control system to allow the telescope to perform small angle slews, and to accomplish large angle slews at the rate of 15 deg per minute was designed. Both the 98 deg and the 28 deg inclination orbits were examined, and spacecraft designs were developed for each. The results indicate that active optical compensation of line-of-sight errors is not necessary if the system is allowed to settle for roughly ten seconds after a slew maneuver. The results are contingent on the assumption of rigid body dynamics, and a single structural mode between spacecraft and telescope. Helium slosh for a half full 4000 liter tank was analyzed, and did not represent a major control problem.

  14. Design study of the Low Energy Beam Transport system at RISP

    NASA Astrophysics Data System (ADS)

    Bahng, Jungbae; Kim, Eunsan; Kim, Yonghwan; Hong, In-Seok

    2013-03-01

    We present the design status of LEBT for the RISP that consists of two 90 degree dipoles, a multi-harmonic buncher, pair solenoids, electrostatic quadrupoles and a high voltage platform. After ECR-IS with an energy of 10 keV/u, heavy-ion beams are selected by achromatic bending systems and then be bunched in the LEBT. A multi-harmonic buncher is used to achieve a small longitudinal emittance in the RFQ. We show the results on the optics design by using the TRANSPORT code and the beam tracking of two-charge beams by using the code IMPACT. We present the results and issues on beam dynamics simulaitons in the designed LEBT system. For heavy ion beams in the low energy system, we have to separate and select desire beam. we also transport beam from ECR to RFQ with high transmission.

  15. Integrated orbital servicing study follow-on. Volume 2: Technical analysis and system design

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In-orbit service functional and physical requirements to support both low and high Earth orbit servicing/maintenance operations were defined, an optimum servicing system configuration was developed and mockups and early prototype hardware were fabricated to demonstrate and validate the concepts selected. Significant issues addressed include criteria for concept selection; representative mission equipment and approaches to their design for serviceability; significant serviceable spacecraft design aspects; servicer mechanism operation in one-g; approaches for the demonstration/simulation; and service mechanism structure design approach.

  16. Design and experiment study of a semi-active energy-regenerative suspension system

    NASA Astrophysics Data System (ADS)

    Shi, Dehua; Chen, Long; Wang, Ruochen; Jiang, Haobin; Shen, Yujie

    2015-01-01

    A new kind of semi-active energy-regenerative suspension system is proposed to recover suspension vibration energy, as well as to reduce the suspension cost and demands for the motor-rated capacity. The system consists of an energy-regenerative damper and a DC-DC converter-based energy-regenerative circuit. The energy-regenerative damper is composed of an electromagnetic linear motor and an adjustable shock absorber with three regulating levels. The linear motor just works as the generator to harvest the suspension vibration energy. The circuit can be used to improve the system’s energy-regenerative performance and to continuously regulate the motor’s electromagnetic damping force. Therefore, although the motor works as a generator and damps the isolation without an external power source, the motor damping force is controllable. The damping characteristics of the system are studied based on a two degrees of freedom vehicle vibration model. By further analyzing the circuit operation characteristics under different working modes, the double-loop controller is designed to track the desired damping force. The external-loop is a fuzzy controller that offers the desired equivalent damping. The inner-loop controller, on one hand, is used to generate the pulse number and the frequency to control the angle and the rotational speed of the step motor; on the other hand, the inner-loop is used to offer the duty cycle of the energy-regenerative circuit. Simulations and experiments are conducted to validate such a new suspension system. The results show that the semi-active energy-regenerative suspension can improve vehicle ride comfort with the controllable damping characteristics of the linear motor. Meanwhile, it also ensures energy regeneration.

  17. Design and evaluation of a microfluidic system for inhibition studies of yeast cell signaling

    NASA Astrophysics Data System (ADS)

    Hamngren, Charlotte; Dinér, Peter; Grøtli, Morten; Goksör, Mattias; Adiels, Caroline B.

    2012-10-01

    In cell signaling, different perturbations lead to different responses and using traditional biological techniques that result in averaged data may obscure important cell-to-cell variations. The aim of this study was to develop and evaluate a four-inlet microfluidic system that enables single-cell analysis by investigating the effect on Hog1 localization post a selective Hog1 inhibitor treatment during osmotic stress. Optical tweezers was used to position yeast cells in an array of desired size and density inside the microfluidic system. By changing the flow rates through the inlet channels, controlled and rapid introduction of two different perturbations over the cell array was enabled. The placement of the cells was determined by diffusion rates flow simulations. The system was evaluated by monitoring the subcellular localization of a fluorescently tagged kinase of the yeast "High Osmolarity Glycerol" (HOG) pathway, Hog1-GFP. By sequential treatment of the yeast cells with a selective Hog1 kinase inhibitor and sorbitol, the subcellular localization of Hog1-GFP was analysed on a single-cell level. The results showed impaired Hog1-GFP nuclear localization, providing evidence of a congenial design. The setup made it possible to remove and add an agent within 2 seconds, which is valuable for investigating the dynamic signal transduction pathways and cannot be done using traditional methods. We are confident that the features of the four-inlet microfluidic system will be a valuable tool and hence contribute significantly to unravel the mechanisms of the HOG pathway and similar dynamic signal transduction pathways.

  18. Design of a collective scattering system for electron gyroscale turbulence study in KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, Woochang; Park, Hyeon; Lee, Dongjae; Leem, Juneeok; Nam, Yongun

    2015-11-01

    The design characteristics of a multi-channel collective (or coherent) scattering system for electron scale turbulence study in KSTAR, which is planned to be installed in 2016, are investigated. A few critical issues are discussed in depth such as effect of the Faraday rotation of the electric field polarization of probing and scattered, the probing wave frequency which is related to the optics for measurement of electron gyro scale turbulence, the wave polarization to minimize absorption of the probing power by electron cyclotron resonant layers, and the probing power. A proper and feasible optics with 300 GHz probing wave, which is based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wave numbers up to 21 cm-1. The upper limit corresponds to the normalized wave number k⊥ρe of 0.2 in KSTAR plasmas. To detect scattered wave power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed. Work supported by NRF Korea under grant numbers NRF-2015M1A7A1A02002627 and NRF-2014M1A7A1A03029865.

  19. Feasibility study of an Integrated Program for Aerospace-vehicle Design (IPAD) system. Volume 4: Design of the IPAD system. Part 1: IPAD system design requirements, phase 1, task 2

    NASA Technical Reports Server (NTRS)

    Garrocq, C. A.; Hurley, M. J.

    1973-01-01

    System requirements, software elements, and hardware equipment required for an IPAD system are defined. An IPAD conceptual design was evolved, a potential user survey was conducted, and work loads for various types of interactive terminals were projected. Various features of major host computing systems were compared, and target systems were selected in order to identify the various elements of software required.

  20. Data System Design.

    ERIC Educational Resources Information Center

    Thomas, Charles R.

    Some of the major elements of administrative information systems design as applied to higher education are described. Differences between the application of computer technology in the commercial environment and the educational environment are discussed. The major steps in systems development from problem definition through implementation are…

  1. Digital systems design language

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1979-01-01

    Digital Systems Design Language (DDL) is implemented on the SEL-32 Computer Systems. The detaileds of the language, the translator, and the simulator, and the smulator programs are given. Several example descriptions and a tutorial on hardware description languages are provided, to guide the user.

  2. Numerical studies of the thermal design sensitivity calculation for a reaction-diffusion system with discontinuous derivatives

    NASA Technical Reports Server (NTRS)

    Hou, Jean W.; Sheen, Jeen S.

    1987-01-01

    The aim of this study is to find a reliable numerical algorithm to calculate thermal design sensitivities of a transient problem with discontinuous derivatives. The thermal system of interest is a transient heat conduction problem related to the curing process of a composite laminate. A logical function which can smoothly approximate the discontinuity is introduced to modify the system equation. Two commonly used methods, the adjoint variable method and the direct differentiation method, are then applied to find the design derivatives of the modified system. The comparisons of numerical results obtained by these two methods demonstrate that the direct differentiation method is a better choice to be used in calculating thermal design sensitivity.

  3. Satellite Power Systems (SPS) concept definition study. Volume 5: Special emphasis studies. [rectenna and solar power satellite design studies

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1980-01-01

    Satellite configurations based on the Satellite Power System baseline requirements were analyzed and a preferred concept selected. A satellite construction base was defined, precursor operations incident to establishment of orbital support facilities identified, and the satellite construction sequence and procedures developed. Rectenna construction requirement were also addressed. Mass flow to orbit requirements were revised and traffic models established based on construction of 60 instead of 120 satellites. Analyses were conducted to determine satellite control, resources, manufacturing, and propellant requirements. The impact of the laser beam used for space-to-Earth power transmission upon the intervening atmosphere was examined as well as the inverse effect. The significant space environments and their effects on spacecraft components were investigated to define the design and operational limits imposed by the environments on an orbit transfer vehicle. The results show that LEO altitude 300 nmi and transfer orbit duration 6 months are preferrable.

  4. SRB/SLEEC (Solid Rocket Booster/Shingle Lap Extendible Exit Cone) feasibility study, volume 2. Appendix A: Design study for a SLEEC actuation system

    NASA Technical Reports Server (NTRS)

    Thompson, D. S.

    1986-01-01

    The results are presented of a design feasibility study of a self-contained (powered) actuation system for a Shingle Lap Extendible Exit Cone (SLEEC) for Transportation System (STS). The evolution of the SLEEC actuation system design is reviewed, the final design concept is summarized, and the results of the detailed study of the final concept of the actuation system are treated. A conservative design using proven mechanical components was established as a major program priority. The final mechanical design has a very low development risk since the components, which consist of ballscrews, gearing, flexible shaft drives, and aircraft cables, have extensive aerospace applications and a history of proven reliability. The mathematical model studies have shown that little or no power is required to deploy the SLEEC actuation system because acceleration forces and internal pressure from the rocket plume provide the required energies. A speed control brake is incorporated in the design in order to control the rate of deployment.

  5. Design and implementation of flexible laboratory system for beam propagation study through weak atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Rickenstorff, Carolina; Rodrigo, Jóse A.; Alieva, Tatiana

    2016-04-01

    Different applications such as astronomy, remote optical sensing and free space optical communications, among others, require both numerical and laboratory experimental simulations of beam propagation through turbulent atmosphere prior to an outdoor test. While rotating phase plates or hot chambers can be applied to such studies, they do not allow changing the atmospheric conditions and the propagation distance in situ. In contrast, the spatial light modulators (SLMs) are a flexible alternative for experimental turbulence simulation. In this work we consider an experimental setup comprising two SLMs for studying laser beam propagation in weak atmospheric turbulence. The changes of atmospheric conditions and propagation distances are properly achieved by the adjustment of the phase screens and the focal distances of digital lenses implemented in both SLMs. The proposed system can be completely automatized and all its elements are in fixed positions avoiding mechanical misalignment. Its design, propagation distance and atmospheric condition adjustment are provided. The setup performance is verified by numerical simulation of Gaussian beam propagation in the weak turbulence regime. The obtained parameters: scintillation index, beam wander and spreading are compared to their theoretical counterparts for different propagation distances and atmospheric conditions.

  6. Design and study of the elevation difference channel feed of the single aperture monopulse feed system

    NASA Astrophysics Data System (ADS)

    Shukla, S. R.

    1987-07-01

    The technique to generate the higher order modes TE(11) and TM(11) in the square waveguide, required for the E plane error single channel feed in the single aperture monopulse feed system, has been presented and the appropriate assembly for this purpose has been designed in the 8.5-9.0 GHz frequency band. The assembly can be incorporated as an E plane error signal channel feed in the design of a single aperture monopulse feed system. The features of the design are a suppressed cross-polarized component of the radiation field and a deep null in the E plane pattern at the boresight axis of the feed. A qualitative explanation for the behavior of the feed has been presented.

  7. Nicotinamide polymeric nanoemulsified systems: a quality-by-design case study for a sustained antimicrobial activity.

    PubMed

    Zidan, Ahmed S; Ahmed, Osama A A; Aljaeid, Bader M

    2016-01-01

    Nicotinamide, the amide form of vitamin B3, was demonstrated to combat some of the antibiotic-resistant infections that are increasingly common around the world. The objective of this study was to thoroughly understand the formulation and process variabilities affecting the preparation of nicotinamide-loaded polymeric nanoemulsified particles. The quality target product profile and critical quality attributes of the proposed product were presented. Plackett-Burman screening design was employed to screen eight variables for their influences on the formulation's critical characteristics. The formulations were prepared by an oil-in-water emulsification followed by solvent replacement. The prepared systems were characterized by entrapment capacity (EC), entrapment efficiency (EE), particle size, polydispersity index, zeta potential, transmission electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction, in vitro drug release, and their antibacterial activity against bacterial scrums. EC, EE, particle size, polydispersity index, zeta potential, and percentage release in 24 hours were found to be in the range of 33.5%-68.8%, 53.1%-67.1%, 43.3-243.3 nm, 0.08-0.28, 9.5-53.3 mV, and 5.8%-22.4%, respectively. One-way analysis of variance and Pareto charts revealed that the experimental loadings of 2-hydroxypropyl-β-cyclodextrin and Eudragit(®) S100 were the most significant for their effects on nicotinamide EC and EE. Moreover, the polymeric nanoemulsified particles demonstrated a sustained release profile for nicotinamide. The Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction demonstrated a significant interaction between the drug and 2-hydroxypropyl-β-cyclodextrin that might modulate the sustained release behavior. Furthermore, the formulations provided a sustained antibacterial activity that depended on nicotinamide-loading concentration, release rate, and

  8. Design and Preliminary Accuracy Studies of an MRI-Guided Transrectal Prostate Intervention System

    PubMed Central

    Krieger, Axel; Csoma, Csaba; Iordachita, Iulian I.; Guion, Peter; Singh, Anurag K.; Fichtinger, Gabor; Whitcomb, Louis L.

    2012-01-01

    This paper reports a novel system for magnetic resonance imaging (MRI) guided transrectal prostate interventions, such as needle biopsy, fiducial marker placement, and therapy delivery. The system utilizes a hybrid tracking method, comprised of passive fiducial tracking for initial registration and subsequent incremental motion measurement along the degrees of freedom using fiber-optical encoders and mechanical scales. Targeting accuracy of the system is evaluated in prostate phantom experiments. Achieved targeting accuracy and procedure times were found to compare favorably with existing systems using passive and active tracking methods. Moreover, the portable design of the system using only standard MRI image sequences and minimal custom scanner interfacing allows the system to be easily used on different MRI scanners. PMID:18044553

  9. Simulation studies related to the design of post-FGGE observing systems

    NASA Technical Reports Server (NTRS)

    Halem, M.; Atlas, R.; Susskind, J.

    1985-01-01

    The results of three detailed simulation studies are presented. The first study consists of a comparative assessment of the performance of an advanced moisture/temperature sounder (AMTS) being proposed by NASA as a follow-on replacement to the current HIRS-2 operational sounder aboard the NOAA weather satellites. The second study was concerned with assessing the relative accuracies of inferred atmospheric states for idealized lidar wind profiling systems, temperature profiling systems, temperature profiling systems, surface pressure systems, and composite systems. The third study incorporated the above systems into a highly realistic data analysis/forecast cycle from which a series of forecast impact studies were conducted. These studies, taken together, give us a picture of the potential that emerging technoloies can offer in the determination of the basic atmospheric variables required for long-range numerical weather and climate prediction.

  10. System design of the Pioneer Venus spacecraft. Volume 5: Probe vehicle studies

    NASA Technical Reports Server (NTRS)

    Nolte, L. J.; Stephenson, D. S.

    1973-01-01

    A summary of the key issues and studies conducted for the Pioneer Venus spacecraft and the resulting probe designs are presented. The key deceleration module issues are aerodynamic configuration and heat shield material selection. The design and development of the pressure vessel module are explained. Thermal control and science integration of the pressure vessel module are explained. The deceleration module heat shield, parachute and separation/despin are reported. The Thor/Delta and Atlas/Centaur baseline descriptions are provided.

  11. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix D: EOS configuration design data. Part 2: Data management system configuration

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Earth Observatory Satellite (EOS) data management system (DMS) is discussed. The DMS is composed of several subsystems or system elements which have basic purposes and are connected together so that the DMS can support the EOS program by providing the following: (1) payload data acquisition and recording, (2) data processing and product generation, (3) spacecraft and processing management and control, and (4) data user services. The configuration and purposes of the primary or high-data rate system and the secondary or local user system are explained. Diagrams of the systems are provided to support the systems analysis.

  12. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 2: EOS-A system specification

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The objectives of the Earth Observatory Satellite (EOS) program are defined. The system specifications for the satellite payload are examined. The broad objectives of the EOS-A program are as follows: (1) to develop space-borne sensors for the measurement of land resources, (2) to evolve spacecraft systems and subsystems which will permit earth observation with greater accuracy, coverage, spatial resolution, and continuity than existing systems, (3) to develop improved information processing, extraction, display, and distribution systems, and (4) to use space transportation systems for resupply and retrieval of the EOS.

  13. Computer system design (supermicrocomputers)

    SciTech Connect

    Warren, C.

    1983-05-26

    The main architectural differences between conventional microcomputer systems and supermicrocomputers are the following features which the latter possess: specialised bus for interprocessor communication; two or more processors, ranging from 8-bit to 48-bit-slice designs; and fast bus designs which permit data transfers by the byte or by the word. The majority of supermicrocomputers are 16-bit or 32-bit multiuser, multitasking systems able to address large amounts of physical and virtual memory. Current developments in supermicrocomputers are discussed with reference to a variety of available machines.

  14. Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 2: Design options

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The primary objective of Task 2 is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This includes: (1) the establishment of option categories that are most likely to influence Space Station Data System (SSDS) definition; (2) the identification of preferred options in each category; and (3) the characterization of these options with respect to performance attributes, constraints, cost and risk. This volume contains the options development for the design category. This category comprises alternative structures, configurations and techniques that can be used to develop designs that are responsive to the SSDS requirements. The specific areas discussed are software, including data base management and distributed operating systems; system architecture, including fault tolerance and system growth/automation/autonomy and system interfaces; time management; and system security/privacy. Also discussed are space communications and local area networking.

  15. Lessons from image perception studies for the design of medical imaging systems

    NASA Astrophysics Data System (ADS)

    Wilson, David L.; Jabri, Kadri N.; Manjeshwar, Ravindra M.; Srinivas, Yogesh; Salem, Kyle A.

    2000-06-01

    Our laboratory uses image perception studies to optimize the acquisition and processing of image sequences from x-ray fluoroscopy and interventional MRI (iMRI) both of which are used to guide complex minimally invasive treatments of cancer and vascular disease. Fluoroscopy consists of high frame rate, quantum-limited image sequences. Since it accounts for over half of the diagnostic population x-ray dose, we attempt to reduce dose by optimizing image acquisition and filtering. We quantify image quality using human detection experiments and modeling. Human spatio-temporal processing greatly affects results. For example, spatial noise reduction filtering is significantly more effective on image sequences than on single image frames where it gives relatively little improvement due to the deleterious effect of spatial noise correlation. At CWRU, we use iMRI to guide a radio-frequency probe used for the thermal ablation of cancer. Improving the speed and accuracy of insertion to the target will reduce patient risk and discomfort. We are investigating keyhole imaging whereby one updates only a portion of the Fourier domain at each time step, producing a fast, approximate image sequence. To optimize the very large number of techniques and parameters, we use a perceptual difference model that quantifies the degrading effects introduced by fast MR imaging, including the blurring of interventional devices. Preliminary studies show that a perpendicular frequency encoding direction provides superior image quality in the region of interest compared to other keyhole stripe orientations. Together these two applications illustrate that image perception studies can impact the design of medical imaging systems.

  16. Reliability-Based Design of a Safety-Critical Automation System: A Case Study

    NASA Technical Reports Server (NTRS)

    Carroll, Carol W.; Dunn, W.; Doty, L.; Frank, M. V.; Hulet, M.; Alvarez, Teresa (Technical Monitor)

    1994-01-01

    In 1986, NASA funded a project to modernize the NASA Ames Research Center Unitary Plan Wind Tunnels, including the replacement of obsolescent controls with a modern, automated distributed control system (DCS). The project effort on this system included an independent safety analysis (ISA) of the automation system. The purpose of the ISA was to evaluate the completeness of the hazard analyses which had already been performed on the Modernization Project. The ISA approach followed a tailoring of the risk assessment approach widely used on existing nuclear power plants. The tailoring of the nuclear industry oriented risk assessment approach to the automation system and its role in reliability-based design of the automation system is the subject of this paper.

  17. Distributed System Design Checklist

    NASA Technical Reports Server (NTRS)

    Hall, Brendan; Driscoll, Kevin

    2014-01-01

    This report describes a design checklist targeted to fault-tolerant distributed electronic systems. Many of the questions and discussions in this checklist may be generally applicable to the development of any safety-critical system. However, the primary focus of this report covers the issues relating to distributed electronic system design. The questions that comprise this design checklist were created with the intent to stimulate system designers' thought processes in a way that hopefully helps them to establish a broader perspective from which they can assess the system's dependability and fault-tolerance mechanisms. While best effort was expended to make this checklist as comprehensive as possible, it is not (and cannot be) complete. Instead, we expect that this list of questions and the associated rationale for the questions will continue to evolve as lessons are learned and further knowledge is established. In this regard, it is our intent to post the questions of this checklist on a suitable public web-forum, such as the NASA DASHLink AFCS repository. From there, we hope that it can be updated, extended, and maintained after our initial research has been completed.

  18. Maglev system design considerations

    SciTech Connect

    Coffey, H.T.

    1991-01-01

    Although efforts are now being made to develop magnetic levitation technologies in the United States, they have been underway for two decades in Germany and Japan. The characteristics of maglev systems being considered for implementation in the United States are speculative. A conference was held at Argonne National Laboratory on November 28--29, 1990, to discuss these characteristics and their implications for the design requirements of operational systems. This paper reviews some of the factors considered during that conference.

  19. Laser Communication System Design

    NASA Astrophysics Data System (ADS)

    Casey, W. L.; Doughty, G. R.; Houston, , J. G.; Marston, R. K.; O'Pella, L. J.; Vo, L. V.

    1988-11-01

    The Air Force is interested in laser communication systems for a variety of air-to-air applications. Laser data transmission offers significant advantages over RF systems in certain areas including higher data rates with low transmitter power, narrower beam divergence leading to difficulty in interception, narrower field of view coupled with high off-axis energy rejection which makes jamming a very formidable task, and smaller antenna size which creates minimum installation impact on an aircraft. The applications with the greatest near-term potential involve the transfer of data between large aircraft operating in relatively benign dynamic environments normally present at altitudes of about 30,000 feet. Systems performing these strategic data exchange (SDE) functions must operate at ranges of 100 to 200 nautical miles at data rates of 2 to 3 megabits per second and the probability of bit error rates not exceeding 10-6. The paper presents the major communication channel elements of a design for a lasercom system performing SDE roles. The design is established by comparing the advantages of the different approaches. The final design selection is based on the transmitter characteristics required for each system. The characteristics include physical properties, development risk, cost, as well as the flexibility for meeting more stringent system performance specifications without requiring major redesign.

  20. Design study of a 9 MeV compact cyclotron system for PET

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-No; Shin, Seung-Wook; Song, Hoseung; Kim, Hyun-Wook; Chai, Jong-Seo

    2013-06-01

    A cyclotron is an accelerator which can be applied to both cancer diagnosis and treatment. Among commercially sold cyclotrons, the major energy is used for positron emission tomography (PET) ranges from 10 to 20 MeV. In this research, 9 MeV compact cyclotron for PET was designed. The research was conducted on the response cross section and the yield for the energy distribution to decide the design features. Also, it was determined the specifications on the basis of the fluoro-deoxy-glucose (FDG) maximum dose. The machine, which has a 20 uA beam current, is designed to be installed in small-to-medium-sized hospitals in local cities because of its relatively light weight (6 tons). This compact cyclotron, which provides 9-MeV proton beams, is composed of a azimuthally varying field (AVF) electromagnet, 83-MHz RF systems with a 20 kW amplifier, a panning ion gauge (PIG) type ion-source for negative hydrogen, and a double-stage high-vacuum system. The basic model design was done by using 3-D CAD program, CATIA and all the field calculations were performed using commercial electromagnetic field analysis code, OPERA-3D TOSCA. From this research, we expect a time reduction for FDG production, a decrease of radioactive exposure for workers, and an equipment cost reduction.

  1. Studies on sustainability of simulated constructed wetland system for treatment of urban waste: Design and operation.

    PubMed

    Upadhyay, A K; Bankoti, N S; Rai, U N

    2016-03-15

    New system configurations and wide range of treatability make constructed wetland (CW) as an eco-sustainable on-site approach of waste management. Keeping this view into consideration, a novel configured three-stage simulated CW was designed to study its performance efficiency and relative importance of plants and substrate in purification processes. Two species of submerged plant i.e., Potamogeton crispus and Hydrilla verticillata were selected for this study. After 6 months of establishment, operation and maintenance of simulated wetland, enhanced reduction in physicochemical parameters was observed, which was maximum in the planted CW. The percentage removal (%) of the pollutants in three-stage mesocosms was; conductivity (60.42%), TDS (67.27%), TSS (86.10%), BOD (87.81%), NO3-N (81.28%) and PO4-P (83.54%) at 72 h of retention time. Submerged macrophyte used in simulated wetlands showed a significant time dependent accumulation of toxic metals (p ≤ 0.05). P. crispus accumulated the highest Mn (86.36 μg g(-1) dw) in its tissue followed by Cr (54.16 μg g(-1) dw), Pb (31.56 μg g(-1) dw), Zn (28.06 μg g(-1) dw) and Cu (25.76 μg g(-1) dw), respectively. In the case of H. verticillata, it was Zn (45.29), Mn (42.64), Pb (22.62), Cu (18.09) and Cr (16.31 μg g(-1) dw). Thus, results suggest that the application of simulated CW tackles the water pollution problem more efficiently and could be exploited in small community level as alternative and cost effective tools of phytoremediation.

  2. Studies on sustainability of simulated constructed wetland system for treatment of urban waste: Design and operation.

    PubMed

    Upadhyay, A K; Bankoti, N S; Rai, U N

    2016-03-15

    New system configurations and wide range of treatability make constructed wetland (CW) as an eco-sustainable on-site approach of waste management. Keeping this view into consideration, a novel configured three-stage simulated CW was designed to study its performance efficiency and relative importance of plants and substrate in purification processes. Two species of submerged plant i.e., Potamogeton crispus and Hydrilla verticillata were selected for this study. After 6 months of establishment, operation and maintenance of simulated wetland, enhanced reduction in physicochemical parameters was observed, which was maximum in the planted CW. The percentage removal (%) of the pollutants in three-stage mesocosms was; conductivity (60.42%), TDS (67.27%), TSS (86.10%), BOD (87.81%), NO3-N (81.28%) and PO4-P (83.54%) at 72 h of retention time. Submerged macrophyte used in simulated wetlands showed a significant time dependent accumulation of toxic metals (p ≤ 0.05). P. crispus accumulated the highest Mn (86.36 μg g(-1) dw) in its tissue followed by Cr (54.16 μg g(-1) dw), Pb (31.56 μg g(-1) dw), Zn (28.06 μg g(-1) dw) and Cu (25.76 μg g(-1) dw), respectively. In the case of H. verticillata, it was Zn (45.29), Mn (42.64), Pb (22.62), Cu (18.09) and Cr (16.31 μg g(-1) dw). Thus, results suggest that the application of simulated CW tackles the water pollution problem more efficiently and could be exploited in small community level as alternative and cost effective tools of phytoremediation. PMID:26773432

  3. Study for a Design of Magnet System for the SPD Detector NICA LHEP JINR

    NASA Astrophysics Data System (ADS)

    Yudin, Ivan P.

    2016-02-01

    The choice of magnet system for the Spin Physics Detector of the NICA Collider of LHEP JINR is given. The inverse problem of magnetostatics is solved for a magnetic field of 0.5 tesla in the aperture a) ɸ 3 m x 5 m and b) ɸ 3 m x 6 m. We also discuss the design of the magnet with a field of 0.3 T. The paper presents the results obtained for the "warm" and SC versions of the magnetic system: currents (ampere-turns), the geometry (size) of the coil and the iron yoke, weight (on the whole and the individual elements), the magnet transportation and assembly.

  4. SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELMINARY DESIGN HAZARD AND OPERABILITY STUDY

    SciTech Connect

    CARRO CA

    2011-07-15

    This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volume of 5.2 m{sup 3} of KW Basin floor and pit sludge, 18.4 m{sup 3} of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m{sup 3} of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is collected

  5. The scheme machine: A case study in progress in design derivation at system levels

    NASA Technical Reports Server (NTRS)

    Johnson, Steven D.

    1995-01-01

    The Scheme Machine is one of several design projects of the Digital Design Derivation group at Indiana University. It differs from the other projects in its focus on issues of system design and its connection to surrounding research in programming language semantics, compiler construction, and programming methodology underway at Indiana and elsewhere. The genesis of the project dates to the early 1980's, when digital design derivation research branched from the surrounding research effort in programming languages. Both branches have continued to develop in parallel, with this particular project serving as a bridge. However, by 1990 there remained little real interaction between the branches and recently we have undertaken to reintegrate them. On the software side, researchers have refined a mathematically rigorous (but not mechanized) treatment starting with the fully abstract semantic definition of Scheme and resulting in an efficient implementation consisting of a compiler and virtual machine model, the latter typically realized with a general purpose microprocessor. The derivation includes a number of sophisticated factorizations and representations and is also deep example of the underlying engineering methodology. The hardware research has created a mechanized algebra supporting the tedious and massive transformations often seen at lower levels of design. This work has progressed to the point that large scale devices, such as processors, can be derived from first-order finite state machine specifications. This is roughly where the language oriented research stops; thus, together, the two efforts establish a thread from the highest levels of abstract specification to detailed digital implementation. The Scheme Machine project challenges hardware derivation research in several ways, although the individual components of the system are of a similar scale to those we have worked with before. The machine has a custom dual-ported memory to support garbage collection

  6. Nicotinamide polymeric nanoemulsified systems: a quality-by-design case study for a sustained antimicrobial activity

    PubMed Central

    Zidan, Ahmed S; Ahmed, Osama AA; Aljaeid, Bader M

    2016-01-01

    Nicotinamide, the amide form of vitamin B3, was demonstrated to combat some of the antibiotic-resistant infections that are increasingly common around the world. The objective of this study was to thoroughly understand the formulation and process variabilities affecting the preparation of nicotinamide-loaded polymeric nanoemulsified particles. The quality target product profile and critical quality attributes of the proposed product were presented. Plackett–Burman screening design was employed to screen eight variables for their influences on the formulation’s critical characteristics. The formulations were prepared by an oil-in-water emulsification followed by solvent replacement. The prepared systems were characterized by entrapment capacity (EC), entrapment efficiency (EE), particle size, polydispersity index, zeta potential, transmission electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction, in vitro drug release, and their antibacterial activity against bacterial scrums. EC, EE, particle size, polydispersity index, zeta potential, and percentage release in 24 hours were found to be in the range of 33.5%–68.8%, 53.1%–67.1%, 43.3–243.3 nm, 0.08–0.28, 9.5–53.3 mV, and 5.8%–22.4%, respectively. One-way analysis of variance and Pareto charts revealed that the experimental loadings of 2-hydroxypropyl-β-cyclodextrin and Eudragit® S100 were the most significant for their effects on nicotinamide EC and EE. Moreover, the polymeric nanoemulsified particles demonstrated a sustained release profile for nicotinamide. The Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction demonstrated a significant interaction between the drug and 2-hydroxypropyl-β-cyclodextrin that might modulate the sustained release behavior. Furthermore, the formulations provided a sustained antibacterial activity that depended on nicotinamide-loading concentration

  7. The Application of an Engineering Design and Information Systems Case Study in a Senior Level Product Data Management Course

    ERIC Educational Resources Information Center

    Connolly, Patrick

    2011-01-01

    This study examines the use of an engineering design and information systems case study over a three week period in a senior level class covering the topics of product data management (PDM) and product lifecycle management (PLM). Students that have taken the course in the past have struggled with the sometimes nebulous and difficult to…

  8. Shuttle communications design study

    NASA Technical Reports Server (NTRS)

    Cartier, D. E.

    1975-01-01

    The design and development of a space shuttle communication system are discussed. The subjects considered include the following: (1) Ku-band satellite relay to shuttle, (2) phased arrays, (3) PN acquisition, (4) quadriplexing of direct link ranging and telemetry, (5) communications blackout on launch and reentry, (6) acquisition after blackout on reentry, (7) wideband communications interface with the Ku-Band rendezvous radar, (8) aeroflight capabilities of the space shuttle, (9) a triple multiplexing scheme equivalent to interplex, and (10) a study of staggered quadriphase for use on the space shuttle.

  9. The EISCAT Svalbard radar: A case study in modern incoherent scatter radar system design

    NASA Astrophysics Data System (ADS)

    Wannberg, G.; Wolf, I.; Vanhainen, L.-G.; Koskenniemi, K.; RöTtger, J.; Postila, M.; Markkanen, J.; Jacobsen, R.; Stenberg, A.; Larsen, R.; Eliassen, S.; Heck, S.; Huuskonen, A.

    1997-11-01

    The EISCAT (European incoherent scatter) Svalbard radar (ESR) was officially inaugurated on August 22, 1996. This event marked the successful completion on schedule of the first phase of the EISCAT Svalbard radar project. In contrast to previous incoherent scatter radars, the ESR system design was adapted to make use of commercial off-the-shelf TV transmitter hardware, thereby reducing design risk, lead times, and cost to a minimum. Commercial hardware is also used in the digital signal processing system. Control and monitoring are performed by distributed, networked VME systems. Thanks to modern reflector antenna design methods and extreme efforts to reduce the receiver noise contribution, the system noise temperature is only 70 K, thus making the ESR about 30% faster than the much more powerful EISCAT UHF radar in F region experiments! Once the transmitter power is increased to 1 MW, it will become about 2-3 times faster than the UHF radar. State-of-the-art exciter and receiver hardware has been developed in-house to accommodate the special requirements introduced by operating the radar at the exceptionally high duty cycle of 25%. The RF waveform is generated by a system based on four switchable direct digital synthesizers. Continuous monitoring of the transmitted RF waveform by the receiver system allows removal of klystron-induced spurious Doppler effects from the data. Intermediate-frequency sampling at 7.5 MHz is employed, followed by fully digital channel separation, signal detection, and postdetection filtering in six parallel receiver channels. Radar codes for both E and F layer observation have been designed and perfected. So far, more than 40 hours of good quality ionospheric data have been collected and analyzed in terms of plasma parameters. While the tragic loss of the Cluster mission suddenly changed the plans and dispositions of a majority of the ESR user community, the radar has still been in high demand since its inauguration. It is now being

  10. Integrated source and channel encoded digital communication system design study. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Huth, G. K.

    1976-01-01

    The results of several studies Space Shuttle communication system are summarized. These tasks can be divided into the following categories: (1) phase multiplexing for two- and three-channel data transmission, (2) effects of phase noise on the performance of coherent communication links, (3) analysis of command system performance, (4) error correcting code tradeoffs, (5) signal detection and angular search procedure for the shuttle Ku-band communication system, and (6) false lock performance of Costas loop receivers.

  11. Design studies for a technology assessment receiver for global positioning system

    NASA Technical Reports Server (NTRS)

    Painter, J. H.

    1981-01-01

    The operational conditions of a radio receiver - microprocessor for the global positioning system are studied. Navigation fundamentals and orbit characterization are reviewed. The global positioning system is described with emphasis upon signal structure and satellite positioning. Ranging and receiver processing techniques are discussed.

  12. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 2: Ground system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Ground System requirements for the Land Resources Management (LRM) type-A and type-B missions of the Earth Observatory Satellite (EOS) program are presented. Specifications for the Thematic Mapper data processing are provided (LRM A mission). The specifications also cover the R and D instruments (Thematic Mapper and High Resolution Pointable Imager) data processing for the LRM type-B mission.

  13. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 5: Specification for EROS operations control center

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The functional, performance, and design requirements for the Operations Control Center (OCC) of the Earth Observatory Satellite (EOS) system are presented. The OCC controls the operations of the EOS satellite to acquire mission data consisting of: (1) thematic mapper data, (2) multispectral scanner data on EOS-A, or High Resolution Pointable Imager data on EOS-B, and (3) data collection system (DCS) data. The various inputs to the OCC are identified. The functional requirements of the OCC are defined. The specific systems and subsystems of the OCC are described and block diagrams are provided.

  14. Study of shuttle imaging microwave system antenna. Volume 1: Conceptual design

    NASA Technical Reports Server (NTRS)

    Wesley, R. W.; Waineo, D. K.; Barton, C. R.; Love, A. W.

    1975-01-01

    A detailed preliminary design and complete performance evaluation are presented of an 11-channel large aperture scanning radiometer antenna for the shuttle imaging microwave system (SIMS) program. Provisions for interfacing the antenna with the space shuttle orbiter are presented and discussed. A program plan for hardware development and a rough order of magnitude (ROM) cost are also included. The conceptual design of the antenna is presented. It consists of a four-meter diameter parabolic torus main reflector, which is a graphite/epoxy shell supported by a graphite/epoxy truss. A rotating feed wheel assembly supports six Gregorian subreflectors covering the upper eight frequency channels from 6.6 GHz through 118.7 GHz, and two three-channel prime forms feed assemblies for 0.6, 1.4, and 2.7 GHz. The feed wheel assembly also holds the radiometers and power supplies, and a drive system using a 400 Hz synchronous motor is described. The RF analysis of the antenna is performed using physical optics procedures for both the dual reflector Gregorian concept and the single reflector prime focus concept. A unique aberration correcting feed for 2.7 GHz is analyzed. A structural analysis is also included. The analyses indicate that the antenna will meet system requirements.

  15. A System Design for Studying Geriatric Patients with Dementia and Hypertension Based on Daily Living Information

    NASA Astrophysics Data System (ADS)

    Xu, Weifeng; Betz, Willian R.; Frezza, Stephen T.; Liu, Yunkai

    2011-08-01

    Geriatric patients with dementia and hypertension (DAH) suffer both physically and financially. The needs of these patients mainly include improving the quality of daily living and reducing the cost of long-term care. Traditional treatment approaches are strained to meet these needs. The goal of the paper is to design an innovative system to provide cost-effective quality treatments for geriatric patients with DAH by collecting and analyzing the multi-dimensional personal information, such as observations in daily living (ODL) from a non-clinical environment. The proposed ODLs in paper include activities, cleanliness, blood pressure, medication compliance and mood changes. To complete the system design, an incremental user-centered strategy is exploited to assemble needs of patients, caregivers, and clinicians. A service-oriented architecture (SOA) is employed to make full use of existing devices, software systems, and platforms. This health-related knowledge can be interpreted and utilized to help patients with DAH remain in their homes safely and improve their life quality while reducing medical expenditures.

  16. Air Force Reusable Booster System: A Quick-look, Design Focused Modeling and Cost Analysis Study

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2011-01-01

    This paper presents a method and an initial analysis of the costs of a reusable booster system (RBS) as envisioned by the US Department of Defense (DoD) and numerous initiatives that form the concept of Operationally Responsive Space (ORS). This paper leverages the knowledge gained from decades of experience with the semi-reusable NASA Space Shuttle to understand how the costs of a military next generation semi-reusable space transport might behave in the real world - and how it might be made as affordable as desired. The NASA Space Shuttle had a semi-expendable booster, that being the reusable Solid Rocket MotorslBoosters (SRMlSRB) and the expendable cryogenic External Tank (ET), with a reusable cargo and crew capable orbiter. This paper will explore DoD concepts that invert this architectural arrangement, using a reusable booster plane that flies back to base soon after launch, with the in-space elements of the launch system being the expendable portions. Cost estimating in the earliest stages of any potential, large scale program has limited usefulness. As a result, the emphasis here is on developing an approach, a structure, and the basic concepts that could continue to be matured as the program gains knowledge. Where cost estimates are provided, these results by necessity carry many caveats and assumptions, and this analysis becomes more about ways in which drivers of costs for diverse scenarios can be better understood. The paper is informed throughout with a design-for-cost philosophy whereby the design and technology features of the proposed RBS (who and what, the "architecture") are taken as linked at the hip to a desire to perform a certain mission (where and when), and together these inform the cost, responsiveness, performance and sustainability (how) of the system. Concepts for developing, acquiring, producing or operating the system will be shown for their inextricable relationship to the "architecture" of the system, and how these too relate to costs

  17. Design/cost tradeoff studies. Appendix A. Supporting analyses and tradeoffs, book 2. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Attitude reference systems for use with the Earth Observatory Satellite (EOS) are described. The systems considered are fixed and gimbaled star trackers, star mappers, and digital sun sensors. Covariance analyses were performed to determine performance for the most promising candidate in low altitude and synchronous orbits. The performance of attitude estimators that employ gyroscopes which are periodically updated by a star sensor is established by a single axis covariance analysis. The other systems considered are: (1) the propulsion system design, (2) electric power and electrical integration, (3) thermal control, (4) ground data processing, and (5) the test plan and cost reduction aspects of observatory integration and test.

  18. System design of the Pioneer Venus spacecraft. Volume 9: Attitude control/mechanisms subsystems studies

    NASA Technical Reports Server (NTRS)

    Neil, A. L.

    1973-01-01

    The Pioneer Venus mission study was conducted for a probe spacecraft and an orbiter spacecraft to be launched by either a Thor/Delta or an Atlas/Centaur launch vehicle. Both spacecraft are spin stabilized. The spin speed is controlled by ground commands to as low as 5 rpm for science instrument scanning on the orbiter and as high as 71 rpm for small probes released from the probe bus. A major objective in the design of the attitude control and mechanism subsystem (ACMS) was to provide, in the interest of costs, maximum commonality of the elements between the probe bus and orbiter spacecraft configurations. This design study was made considering the use of either launch vehicle. The basic functional requirements of the ACMS are derived from spin axis pointing and spin speed control requirements implicit in the acquisition, cruise, encounter and orbital phases of the Pioneer Venus missions.

  19. Case Studies in a Physiology Course on the Autonomic Nervous System: Design, Implementation, and Evaluation

    ERIC Educational Resources Information Center

    Zimmermann, Martina

    2010-01-01

    The introduction of case studies on the autonomic nervous system in a fourth-semester physiology course unit for Pharmacy students is described in this article. This article considers how these case studies were developed and presents their content. Moreover, it reflects on their implementation and, finally, the reception of such a transformation…

  20. The Study and Design of Adaptive Learning System Based on Fuzzy Set Theory

    NASA Astrophysics Data System (ADS)

    Jia, Bing; Zhong, Shaochun; Zheng, Tianyang; Liu, Zhiyong

    Adaptive learning is an effective way to improve the learning outcomes, that is, the selection of learning content and presentation should be adapted to each learner's learning context, learning levels and learning ability. Adaptive Learning System (ALS) can provide effective support for adaptive learning. This paper proposes a new ALS based on fuzzy set theory. It can effectively estimate the learner's knowledge level by test according to learner's target. Then take the factors of learner's cognitive ability and preference into consideration to achieve self-organization and push plan of knowledge. This paper focuses on the design and implementation of domain model and user model in ALS. Experiments confirmed that the system providing adaptive content can effectively help learners to memory the content and improve their comprehension.

  1. Design study of the cooling scheme for SMES system in ASPCS by using liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Makida, Yasuhiro; Shintomi, Takakazu; Asami, Takuya; Suzuki, Goro; Takao, Tomoaki; Hamajima, Takataro; Tsuda, Makoto; Miyagi, Daisuke; Munakata, Kouhei; Kajiwara, Masataka

    2013-11-01

    From the point of view of environment and energy problems, the renewable energies have been attracting attention. However, fluctuating power generation by the renewable energies affects the stability of the power network. Thus, we propose a new electric power storage and stabilization system, Advanced Superconducting Power Conditioning System (ASPCS), in which a Superconducting Magnetic Energy Storage (SMES) and a hydrogen-energy-storage converge on a liquid hydrogen station for fuel cell vehicles. The ASPCS proposes that the SMES coils wound with MgB2 conductor are indirectly cooled by thermo-siphon circulation of liquid hydrogen to use its cooling capability. The conceptual design of cooling scheme of the ASPCS is presented.

  2. The Development of the CONDUIT Advanced Control System Design and Evaluation Interface with a Case Study Application to an Advanced Fly by Wire Helicopter Design

    NASA Technical Reports Server (NTRS)

    Colbourne, Jason

    1999-01-01

    This report details the development and use of CONDUIT (Control Designer's Unified Interface). CONDUIT is a design tool created at Ames Research Center for the purpose of evaluating and optimizing aircraft control systems against handling qualities. Three detailed design problems addressing the RASCAL UH-60A Black Hawk are included in this report to show the application of CONDUIT to helicopter control system design.

  3. CETF Space Station payload pointing system design and analysis feasibility study. [Critical Evaluation Task Force

    NASA Technical Reports Server (NTRS)

    Smagala, Tom; Mcglew, Dave

    1988-01-01

    The expected pointing performance of an attached payload coupled to the Critical Evaluation Task Force Space Station via a payload pointing system (PPS) is determined. The PPS is a 3-axis gimbal which provides the capability for maintaining inertial pointing of a payload in the presence of disturbances associated with the Space Station environment. A system where the axes of rotation were offset from the payload center of mass (CM) by 10 in. in the Z axis was studied as well as a system having the payload CM offset by only 1 inch. There is a significant improvement in pointing performance when going from the 10 in. to the 1 in. gimbal offset.

  4. A Microperfusion and In-Bore Oxygenator System Designed for Magnetic Resonance Microscopy Studies on Living Tissue Explants.

    PubMed

    Flint, Jeremy J; Menon, Kannan; Hansen, Brian; Forder, John; Blackband, Stephen J

    2015-12-15

    Spectrometers now offer the field strengths necessary to visualize mammalian cells but were not designed to accommodate imaging of live tissues. As such, spectrometers pose significant challenges--the most evident of which are spatial limitations--to conducting experiments in living tissue. This limitation becomes problematic upon trying to employ commercial perfusion equipment which is bulky and--being designed almost exclusively for light microscopy or electrophysiology studies--seldom includes MR-compatibility as a design criterion. To overcome problems exclusive to ultra-high magnetic field environments with limited spatial access, we have designed microperfusion and in-bore oxygenation systems capable of interfacing with Bruker's series of micro surface-coils. These devices are designed for supporting cellular resolution imaging in MR studies of excised, living tissue. The combined system allows for precise control of both dissolved gas and pH levels in the perfusate thus demonstrating applicability for a wide range of tissue types. Its compactness, linear architecture, and MR-compatible material content are key design features intended to provide a versatile hardware interface compatible with any NMR spectrometer. Such attributes will ensure the microperfusion rig's continued utility as it may be used with a multitude of contemporary NMR systems in addition to those which are currently in development.

  5. PRACA Enhancement Pilot Study Report: Engineering for Complex Systems Program (formerly Design for Safety), DFS-IC-0006

    NASA Technical Reports Server (NTRS)

    Korsmeyer, David; Schreiner, John

    2002-01-01

    This technology evaluation report documents the findings and recommendations of the Engineering for Complex Systems Program (formerly Design for Safety) PRACA Enhancement Pilot Study of the Space Shuttle Program's (SSP's) Problem Reporting and Corrective Action (PRACA) System. A team at NASA Ames Research Center (ARC) performed this Study. This Study was initiated as a follow-on to the NASA chartered Shuttle Independent Assessment Team (SIAT) review (performed in the Fall of 1999) which identified deficiencies in the current PRACA implementation. The Pilot Study was launched with an initial qualitative assessment and technical review performed during January 2000 with the quantitative formal Study (the subject of this report) started in March 2000. The goal of the PRACA Enhancement Pilot Study is to evaluate and quantify the technical aspects of the SSP PRACA systems and recommend enhancements to address deficiencies and in preparation for future system upgrades.

  6. System design of the Pioneer Venus spacecraft. Volume 7: Communication subsystem studies

    NASA Technical Reports Server (NTRS)

    Newlands, D. M.

    1973-01-01

    Communications subsystem tradeoffs were undertaken to establish a low cost and low weight design consistent with the mission requirements. Because of the weight constraint of the Thor/Delta launched configuration, minimum weight was emphasized in determining the Thor/Delta design. In contrast, because of the greatly relaxed weight constraint of the Atlas/Centaur launched configuration, minimum cost and off the shelf hardware were emphasized and the attendant weight penalities accepted. Communication subsystem hardware elements identified for study included probe and bus antennas (CM-6, CM-17), power amplifiers (CM-10), and the large probe transponder and small probe stable oscillator required for doppler tracking (CM-11, CM-16). In addition, particular hardware problems associated with the probe high temperature and high-g environment were investigated (CM-7).

  7. Multimedia Learning System and Its Effect on Self-Efficacy in Database Modeling and Design: An Exploratory Study

    ERIC Educational Resources Information Center

    Cheung, Waiman; Li, Eldon Y.; Yee, Lester W.

    2003-01-01

    Metadatabase modeling and design integrate process modeling and data modeling methodologies. Both are core topics in the information technology (IT) curriculum. Learning these topics has been an important pedagogical issue to the core studies for management information systems (MIS) and computer science (CSc) students. Unfortunately, the learning…

  8. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix C: EOS program requirements document

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis of the requirements for the Earth Observatory Satellite (EOS) system specifications is presented. The analysis consists of requirements obtained from existing documentation and those derived from functional analysis. The requirements follow the hierarchy of program, mission, system, and subsystem. The code for designating specific requirements is explained. Among the subjects considered are the following: (1) the traffic model, (2) space shuttle related performance, (3) booster related performance, (4) the data collection system, (5) spacecraft structural tests, and (6) the ground support requirements.

  9. Study on Sensor Design Technique for Real-Time Robotic Welding Tracking System

    NASA Astrophysics Data System (ADS)

    Liu, C. J.; Li, Y. B.; Zhu, J. G.; Ye, S. H.

    2006-10-01

    Based on visual measurement techniques, the real-time robotic welding tracking system achieves real-time adjustment for robotic welding according to the position and shape changes of a workpiece. In system design, the sensor design technique is so important that its performance directly affects the precision and stability of the tracking system. Through initiative visual measurement technology, a camera unit for real-time sampling is built with multiple-strip structured light and a high-performance CMOS image sensor including 1.3 million pixels; to realize real-time data process and transmission, an image process unit is built with FPGA and DSP. Experiments show that the precision of this sensor reaches 0.3mm, and band rate comes up to 10Mbps, which effectively improves robot welding quality.With the development of advanced manufacturing technology, it becomes an inexorable trend to realize the automatic, flexible and intelligent welding product manufacture. With the advantage of interchangeability and reliability, robotic welding can boost productivity, improve work condition, stabilize and guarantee weld quality, and realize welding automation of the short run products [1]. At present, robotic welding has already become the application trend of automatic welding technology. Traditional welding robots are play-back ones, which cannot adapt environment and weld distortion. Especially in the more and more extensive arc-welding course, the deficiency and limitation of play-back welding technology becomes more prominent because of changeable welding condition. It becomes one of the key technology influencing the development of modern robotic welding technology to eliminate or decrease uncertain influence on quality of welding such as changing welding condition etc [2]. Based on visual measuring principle, this text adopts active visual measuring technology, cooperated with high-speed image process and transmission technology to structure a tracking sensor, to realize

  10. Feed system design and experimental results in the uhf model study for the proposed Urbana phased array

    NASA Technical Reports Server (NTRS)

    Loane, J. T.; Bowhill, S. A.; Mayes, P. E.

    1982-01-01

    The effects of atmospheric turbulence and the basis for the coherent scatter radar techniques are discussed. The reasons are given for upgrading the Radar system to a larger steerable array. Phase array theory pertinent to the system design is reviewed, along with approximations for maximum directive gain and blind angles due to mutual coupling. The methods and construction techniques employed in the UHF model study are explained. The antenna range is described, with a block diagram for the mode of operation used.

  11. Configuration and design study of manipulator systems applicable to the free flying teleoperator. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Tewell, J. R.

    1974-01-01

    A preliminary design of a manipulator system, applicable to a free flying teleoperator spacecraft operating in conjunction with the shuttle or tug, is presented. A new control technique is proposed for application to the manipulator system. This technique, a range/azimuth/elevation rate-rate mode, was selected based upon the results of man-in-the-loop simulations. Several areas are identified in which additional emphasis must be placed prior to the development of the manipulator system. The study results in a manipulator system which will provide an effective method for servicing, maintaining, and repairing satellites to increase their useful life.

  12. Interdisciplinary design study of a high-rise integrated roof wind energy system

    NASA Astrophysics Data System (ADS)

    Dekker, R. W. A.; Ferraro, R. M.; Suma, A. B.; Moonen, S. P. G.

    2012-10-01

    Today's market in micro-wind turbines is in constant development introducing more efficient solutions for the future. Besides the private use of tower supported turbines, opportunities to integrate wind turbines in the built environment arise. The Integrated Roof Wind Energy System (IRWES) presented in this work is a modular roof structure integrated on top of existing or new buildings. IRWES is build up by an axial array of skewed shaped funnels used for both wind inlet and outlet. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a Vertical Axis Wind Turbine (VAWT) in the center-top of the roof unit for the generation of a relatively high amount of energy. The scope of this research aims to make an optimized structural design of IRWES to be placed on top of the Vertigo building in Eindhoven; analysis of the structural performance; and impact to the existing structure by means of Finite Element Modeling (FEM). Results show that the obvious impact of wind pressure to the structural design is easily supported in different configurations of fairly simple lightweight structures. In particular, the weight addition to existing buildings remains minimal.

  13. A Microperfusion and In-Bore Oxygenator System Designed for Magnetic Resonance Microscopy Studies on Living Tissue Explants

    PubMed Central

    Flint, Jeremy J.; Menon, Kannan; Hansen, Brian; Forder, John; Blackband, Stephen J.

    2015-01-01

    Spectrometers now offer the field strengths necessary to visualize mammalian cells but were not designed to accommodate imaging of live tissues. As such, spectrometers pose significant challenges—the most evident of which are spatial limitations—to conducting experiments in living tissue. This limitation becomes problematic upon trying to employ commercial perfusion equipment which is bulky and—being designed almost exclusively for light microscopy or electrophysiology studies—seldom includes MR-compatibility as a design criterion. To overcome problems exclusive to ultra-high magnetic field environments with limited spatial access, we have designed microperfusion and in-bore oxygenation systems capable of interfacing with Bruker’s series of micro surface-coils. These devices are designed for supporting cellular resolution imaging in MR studies of excised, living tissue. The combined system allows for precise control of both dissolved gas and pH levels in the perfusate thus demonstrating applicability for a wide range of tissue types. Its compactness, linear architecture, and MR-compatible material content are key design features intended to provide a versatile hardware interface compatible with any NMR spectrometer. Such attributes will ensure the microperfusion rig’s continued utility as it may be used with a multitude of contemporary NMR systems in addition to those which are currently in development. PMID:26666980

  14. A Microperfusion and In-Bore Oxygenator System Designed for Magnetic Resonance Microscopy Studies on Living Tissue Explants

    NASA Astrophysics Data System (ADS)

    Flint, Jeremy J.; Menon, Kannan; Hansen, Brian; Forder, John; Blackband, Stephen J.

    2015-12-01

    Spectrometers now offer the field strengths necessary to visualize mammalian cells but were not designed to accommodate imaging of live tissues. As such, spectrometers pose significant challenges—the most evident of which are spatial limitations—to conducting experiments in living tissue. This limitation becomes problematic upon trying to employ commercial perfusion equipment which is bulky and—being designed almost exclusively for light microscopy or electrophysiology studies—seldom includes MR-compatibility as a design criterion. To overcome problems exclusive to ultra-high magnetic field environments with limited spatial access, we have designed microperfusion and in-bore oxygenation systems capable of interfacing with Bruker’s series of micro surface-coils. These devices are designed for supporting cellular resolution imaging in MR studies of excised, living tissue. The combined system allows for precise control of both dissolved gas and pH levels in the perfusate thus demonstrating applicability for a wide range of tissue types. Its compactness, linear architecture, and MR-compatible material content are key design features intended to provide a versatile hardware interface compatible with any NMR spectrometer. Such attributes will ensure the microperfusion rig’s continued utility as it may be used with a multitude of contemporary NMR systems in addition to those which are currently in development.

  15. TBCC TSTO Design for the NASA-AFRL Joint System Study

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.; Robinson, Jeff; Ferlemann, Shelly

    2010-01-01

    NASA and the Air Force Research Laboratory are involved in a Joint System Study (JSS) on Two-Stage-to-Orbit (TSTO) vehicles. The JSS will examine the performance, operability and uncertainty of unmanned, fully reusable, airbreathing-based TSTO launch vehicle concepts. NASA is providing a concept using turbine-based combined cycle (TBCC) propulsion on the booster stage and an all-rocket orbiter. The Air Force supplied two vehicle concepts, both utilizing an all-rocket booster; one with an all-rocket orbiter, the other using a rocket-based combined cycle orbiter. For NASA, this study is being used for tool assessment and development, and to identify generic technology gaps, not to choose vehicle types or concepts. This presentation starts with an overview of the major JSS ground rules and assumptions. Second, the NASA TSTO concept, Reusable Airbreathing Launch Vehicle - iteration B (RALV-B) is introduced, including its mission profile and, the vehicle (booster and orbiter) layout and packaging. The high speed propulsion concept is then briefly discussed, including the work performed and lessons learned. The low speed TBCC propulsion system is covered next in some detail. An overview for the low speed system is given; then its development is discussed (starting with initial layout and leading to more detailed analyses performed and results). The low speed system portion is wrapped up with lessons learned and summary. Finally, an overall summary and lessons learned so far for the JSS are given as well as work planned to complete the study.

  16. Systems design study of the Pioneer Venus spacecraft. Volume 2. Preliminary program development plan

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The preliminary development plan for the Pioneer Venus program is presented. This preliminary plan treats only developmental aspects that would have a significant effect on program cost. These significant development areas were: master program schedule planning; test planning - both unit and system testing for probes/orbiter/ probe bus; ground support equipment; performance assurance; and science integration Various test planning options and test method techniques were evaluated in terms of achieving a low-cost program without degrading mission performance or system reliability. The approaches studied and the methodology of the selected approach are defined.

  17. Ocean thermal energy conversion gas desorption studies. Volume 1. Design of experiments. [Open-cycle power systems

    SciTech Connect

    Golshani, A.; Chen, F.C.

    1980-10-01

    Seawater deaeration is a process affecting almost all proposed Ocean Thermal Energy Conversion (OTEC) open-cycle power systems. If the noncondensable dissolved air is not removed from a power system, it will accumulate in thecondenser, reduce the effectiveness of condensation, and result in deterioration of system performance. A gas desorption study is being conducted at Oak Ridge National Laboratory (ORNL) with the goal of mitigating these effects; this study is designed to investigate the vacuum deaeration process for low-temperature OTEC conditions where conventional steam stripping deaeration may not be applicable. The first in a series describing the ORNL studies, this report (1) considers the design of experiments and discusses theories of gas desorption, (2) reviews previous relevant studies, (3) describes the design of a gas desorption test loop, and (4) presents the test plan for achieving program objectives. Results of the first series of verification tests and the uncertainties encountered are also discussed. A packed column was employed in these verification tests and test data generally behaved as in previous similar studies. Results expressed as the height of transfer unit (HTU) can be correlated with the liquid flow rate by HTU = 4.93L/sup 0/ /sup 25/. End effects were appreciable for the vacuum deaeration system, and a correlation of them to applied vacuum pressure was derived.

  18. Design study of a HEAO-C spread spectrum transponder telemetry system for use with the TDRSS subnet

    NASA Technical Reports Server (NTRS)

    Weathers, G.

    1975-01-01

    The results of a design study of a spread spectrum transponder for use on the HEAO-C satellite were given. The transponder performs the functions of code turn-around for ground range and range-rate determination, ground command receiver, and telemetry data transmitter. The spacecraft transponder and associated communication system components will allow the HEAO-C satellite to utilize the Tracking and Data Relay Satellite System (TDRSS) subnet of the post 1978 STDN. The following areas were discussed in the report: TDRSS Subnet Description, TDRSS-HEAO-C System Configuration, Gold Code Generator, Convolutional Encoder Design and Decoder Algorithm, High Speed Sequence Generators, Statistical Evaluation of Candidate Code Sequences using Amplitude and Phase Moments, Code and Carrier Phase Lock Loops, Total Spread Spectrum Transponder System, and Reference Literature Search.

  19. Study of pseudoelastic systems for the design of complex passive dampers: static analysis and modeling

    NASA Astrophysics Data System (ADS)

    Nespoli, Adelaide; Rigamonti, Daniela; Riva, Marco; Villa, Elena; Passaretti, Francesca

    2016-10-01

    This work presents an experimental and numerical analysis of several parallel systems of NiTi pseudoelastic wires. Standard tensile tests were accomplished to evaluate the global damping capacity, the energy dissipated per cycle and the maximum attenuated force in a static condition. Besides, a numerical model was implemented to predict the damping response of more complex pseudoelastic arrangements. It was found a damping capacity upper limit of 0.09 regardless the number and the length of the NiTi components. In addition, it was found that the energy dissipated per cycle is related to the strain and to the number of the NiTi components; furthermore, the system composed of NiTi wires with different length allows for an elastic region that is related to the numbers of wires and that presents a modulation of the stiffness. Finally, the proposed numerical model allows a precise design of complex pseudoelastic combinations as it is able to represent the rhombohedral characteristic.

  20. Performance of a Heating Block System Designed for Studying the Heat Resistance of Bacteria in Foods

    PubMed Central

    Kou, Xiao-xi; Li, Rui; Hou, Li-xia; Huang, Zhi; Ling, Bo; Wang, Shao-jin

    2016-01-01

    Knowledge of bacteria’s heat resistance is essential for developing effective thermal treatments. Choosing an appropriate test method is important to accurately determine bacteria’s heat resistances. Although being a major factor to influence the thermo-tolerance of bacteria, the heating rate in samples cannot be controlled in water or oil bath methods due to main dependence on sample’s thermal properties. A heating block system (HBS) was designed to regulate the heating rates in liquid, semi-solid and solid foods using a temperature controller. Distilled water, apple juice, mashed potato, almond powder and beef were selected to evaluate the HBS’s performance by experiment and computer simulation. The results showed that the heating rates of 1, 5 and 10 °C/min with final set-point temperatures and holding times could be easily and precisely achieved in five selected food materials. A good agreement in sample central temperature profiles was obtained under various heating rates between experiment and simulation. The experimental and simulated results showed that the HBS could provide a sufficiently uniform heating environment in food samples. The effect of heating rate on bacterial thermal resistance was evaluated with the HBS. The system may hold potential applications for rapid and accurate assessments of bacteria’s thermo-tolerances. PMID:27465120

  1. Performance of a Heating Block System Designed for Studying the Heat Resistance of Bacteria in Foods.

    PubMed

    Kou, Xiao-Xi; Li, Rui; Hou, Li-Xia; Huang, Zhi; Ling, Bo; Wang, Shao-Jin

    2016-01-01

    Knowledge of bacteria's heat resistance is essential for developing effective thermal treatments. Choosing an appropriate test method is important to accurately determine bacteria's heat resistances. Although being a major factor to influence the thermo-tolerance of bacteria, the heating rate in samples cannot be controlled in water or oil bath methods due to main dependence on sample's thermal properties. A heating block system (HBS) was designed to regulate the heating rates in liquid, semi-solid and solid foods using a temperature controller. Distilled water, apple juice, mashed potato, almond powder and beef were selected to evaluate the HBS's performance by experiment and computer simulation. The results showed that the heating rates of 1, 5 and 10 °C/min with final set-point temperatures and holding times could be easily and precisely achieved in five selected food materials. A good agreement in sample central temperature profiles was obtained under various heating rates between experiment and simulation. The experimental and simulated results showed that the HBS could provide a sufficiently uniform heating environment in food samples. The effect of heating rate on bacterial thermal resistance was evaluated with the HBS. The system may hold potential applications for rapid and accurate assessments of bacteria's thermo-tolerances. PMID:27465120

  2. Performance of a Heating Block System Designed for Studying the Heat Resistance of Bacteria in Foods

    NASA Astrophysics Data System (ADS)

    Kou, Xiao-Xi; Li, Rui; Hou, Li-Xia; Huang, Zhi; Ling, Bo; Wang, Shao-Jin

    2016-07-01

    Knowledge of bacteria’s heat resistance is essential for developing effective thermal treatments. Choosing an appropriate test method is important to accurately determine bacteria’s heat resistances. Although being a major factor to influence the thermo-tolerance of bacteria, the heating rate in samples cannot be controlled in water or oil bath methods due to main dependence on sample’s thermal properties. A heating block system (HBS) was designed to regulate the heating rates in liquid, semi-solid and solid foods using a temperature controller. Distilled water, apple juice, mashed potato, almond powder and beef were selected to evaluate the HBS’s performance by experiment and computer simulation. The results showed that the heating rates of 1, 5 and 10 °C/min with final set-point temperatures and holding times could be easily and precisely achieved in five selected food materials. A good agreement in sample central temperature profiles was obtained under various heating rates between experiment and simulation. The experimental and simulated results showed that the HBS could provide a sufficiently uniform heating environment in food samples. The effect of heating rate on bacterial thermal resistance was evaluated with the HBS. The system may hold potential applications for rapid and accurate assessments of bacteria’s thermo-tolerances.

  3. Performance of a Heating Block System Designed for Studying the Heat Resistance of Bacteria in Foods.

    PubMed

    Kou, Xiao-Xi; Li, Rui; Hou, Li-Xia; Huang, Zhi; Ling, Bo; Wang, Shao-Jin

    2016-07-28

    Knowledge of bacteria's heat resistance is essential for developing effective thermal treatments. Choosing an appropriate test method is important to accurately determine bacteria's heat resistances. Although being a major factor to influence the thermo-tolerance of bacteria, the heating rate in samples cannot be controlled in water or oil bath methods due to main dependence on sample's thermal properties. A heating block system (HBS) was designed to regulate the heating rates in liquid, semi-solid and solid foods using a temperature controller. Distilled water, apple juice, mashed potato, almond powder and beef were selected to evaluate the HBS's performance by experiment and computer simulation. The results showed that the heating rates of 1, 5 and 10 °C/min with final set-point temperatures and holding times could be easily and precisely achieved in five selected food materials. A good agreement in sample central temperature profiles was obtained under various heating rates between experiment and simulation. The experimental and simulated results showed that the HBS could provide a sufficiently uniform heating environment in food samples. The effect of heating rate on bacterial thermal resistance was evaluated with the HBS. The system may hold potential applications for rapid and accurate assessments of bacteria's thermo-tolerances.

  4. Design studies of IR-FEL system at IAE, Kyoto University

    NASA Astrophysics Data System (ADS)

    Ohgaki, H.; Tometaka, I.; Yamane, K.; Kii, T.; Masuda, K.; Yoshikawa, K.; Yamazaki, T.

    2003-07-01

    An infrared FEL facility for bio/chemical energy research is under construction at the Institute of Advanced Energy, Kyoto University. The electron beam of 25-40 MeV with macropulse duration up to 3 μs will be generated by an S-band linac with a thermionic RF gun. Numerical studies to estimate the electron beam parameters and expected FEL gain of the present system have been performed to settle the goal for the system commissioning and the first operational condition. The results show that the present system can provide lasing in the wavelength from 4 to 13 μm by using a 180° arc. However, the macropulse duration is too short to deliver stable FEL for a practical usage.

  5. ATW neutronics design studies.

    SciTech Connect

    Wade, D. C.; Yang, W. S.; Khalil, H.

    2000-11-10

    The Accelerator Transmutation of Waste (ATW) concept has been proposed as a transuranics (TRU) (and long-lived fission product) incinerator for processing the 87,000 metric tonnes of Light Water Reactor used fuel which will have been generated by the time the currently deployed fleet of commercial reactors in the US reach the end of their licensed lifetime. The ATW is proposed to separate the uranium from the transuranics and fission products in the LWR used fuel, to fission the transuranics, to send the LWR and ATW generated fission products to the geologic repository and to send the uranium to either a low level waste disposal site or to save it for future use. The heat liberated in fissioning the transuranics would be converted to electricity and sold to partially offset the cost of ATW construction and operations. Options for incineration of long-lived fission products are under evaluation. A six-year science-based program of ATW trade and system studies was initiated in the US FY 2000 to achieve two main purposes: (1) ''to evaluate ATW within the framework of nonproliferation, waste management, and economic considerations,'' and (2) ''to evaluate the efficacy of the numerous technical options for ATW system configuration.'' This paper summarizes the results from neutronics and thermal/hydraulics trade studies which were completed at Argonne National Laboratory during the first year of the program. Core designs were developed for Pb-Bi cooled and Na cooled 840 MW{sub th} fast spectrum transmuter designs employing recycle. Additionally, neutronics analyses were performed at Argonne for a He cooled 600 MW{sub th} hybrid thermal and fast core design proposed by General Atomics Co. which runs critical for 3/4 and subcritical for 1/4 of its four year once-thin burn cycle. The mass flows and the ultimate loss of transuranic isotopes to the waste stream per unit of heat generated during transmutation have been calculated on a consistent basis and are compared. (Long

  6. Design study to simulate the development of a commercial freight transportation system

    NASA Technical Reports Server (NTRS)

    Batill, Stephen M.; Costello, Kevin; Pinkelman, Jim

    1992-01-01

    The Notre Dame Aerospace Engineering senior class was divided into six design teams. A request for proposals (RFP) asking for the design of a remotely piloted vehicle (RPV) was given to the class, and each design team was responsible for designing, developing, producing, and presenting an RPV concept. The RFP called for the design of commercial freight transport RPV. The RFP provided a description of a fictitious world called 'Aeroworld'. Aeroworld's characteristics were scaled to provide the same types of challenges for RPV design that the real world market provides for the design of commercial aircraft. Fuel efficiency, range and payload capabilities, production and maintenance costs, and profitability are a few of the challenges that were addressed in this course. Each design team completed their project over the course of a semester by designing and flight testing a prototype, freight-carrying remotely piloted vehicle.

  7. [Experimental study of the root supply system with periodic water return designed for space greenhouses].

    PubMed

    Berkovich, Iu A; Smolianina, S O; Krivobok, N M

    2000-01-01

    To improve reliability of plant's moistening and aeration control in microgravity, an original root supply system with a periodic return water flow has been designed and tested in laboratory. For 30 days crops of Pekinese cabbage (Brassica pekinesis (Lour Rupr), Khibini sort) were raised in the test bench which allowed adjustment of water potential in the root zone within a preset range. A three-step water potential control algorithm included water injection with a pump-dispenser, a pause, and water sucking back to a desired value of water potential. The following parameters of the control cycle were selected in a series of two experiments: time of water injection (2.5 hr) and return (1.5 hr), and a pause of 8 and 20 hr, respectively. Magnitude of water potential about the root module axis was controlled in the range from -1.3 kPa to -3.0 kPa in both experiments and maintained at -1.3 kPa in the control. The root modules consisted of porous metaloceramic tubes wrapped in fibrous ion exchanging cloth and a light-proof film with planting slots on top. In the first experiment, plant characteristics were comparable to the control. The developed procedure and technology can be used to provide favourable moisture-air conditions in the root zone. By and large, the system of root nutrition with a periodic water return has demonstrated high capacity during the ground-based cultivation of plants. To use this system in space greenhouse, it is necessary to specify operational parameters for the microgravity environment. PMID:10826063

  8. A study of standard building blocks for the design of fault-tolerant distributed computer systems

    NASA Technical Reports Server (NTRS)

    Rennels, D. A.; Avizienis, A.; Ercegovac, M.

    1978-01-01

    This paper presents the results of a study that has established a standard set of four semiconductor VLSI building-block circuits. These circuits can be assembled with off-the-shelf microprocessors and semiconductor memory modules into fault-tolerant distributed computer configurations. The resulting multi-computer architecture uses self-checking computer modules backed up by a limited number of spares. A redundant bus system is employed for communication between computer modules.

  9. Methodology to design a municipal solid waste pre-collection system. A case study

    SciTech Connect

    Gallardo, A. Carlos, M. Peris, M. Colomer, F.J.

    2015-02-15

    Highlights: • MSW recovery starts at homes; therefore it is important to facilitate it to people. • Additionally, to optimize MSW collection a previous pre-collection must be planned. • A methodology to organize pre-collection considering several factors is presented. • The methodology has been verified applying it to a Spanish middle town. - Abstract: The municipal solid waste (MSW) management is an important task that local governments as well as private companies must take into account to protect human health, the environment and to preserve natural resources. To design an adequate MSW management plan the first step consists in defining the waste generation and composition patterns of the town. As these patterns depend on several socio-economic factors it is advisable to organize them previously. Moreover, the waste generation and composition patterns may vary around the town and over the time. Generally, the data are not homogeneous around the city as the number of inhabitants is not constant nor it is the economic activity. Therefore, if all the information is showed in thematic maps, the final waste management decisions can be made more efficiently. The main aim of this paper is to present a structured methodology that allows local authorities or private companies who deal with MSW to design its own MSW management plan depending on the available data. According to these data, this paper proposes two ways of action: a direct way when detailed data are available and an indirect way when there is a lack of data and it is necessary to take into account bibliographic data. In any case, the amount of information needed is considerable. This paper combines the planning methodology with the Geographic Information Systems to present the final results in thematic maps that make easier to interpret them. The proposed methodology is a previous useful tool to organize the MSW collection routes including the selective collection. To verify the methodology it has

  10. Advanced technology cogeneration system conceptual design study: closed cycle gas turbines

    SciTech Connect

    Mock, E.A.T.; Daudet, H.C.

    1984-10-01

    The importance of the study results to the industrial sector can best be illustrated by a review and contemplation of the Task III results. The objective of Task III was to apply what was learned about steam and closed-cycle gas turbine cogeneration systems during Tasks I and II, on a site specific basis, to the much broader industrial sector as a whole. The Task III data shows that the industrial sector can benefit, and can afford to benefit, from the use of coal-fired cogeneration systems provided: (a) The industrial site is located in a DOE region that is not predominately based on cheap hydroelectric or nuclear utility power. (b) The specific site is based on using gas and/or oil as the separate generation boiler fuel. (c) The local utility will at least tolerate, or work with, the industrial cogenerator. (d) The industrial site has a minimum heat-to-power ratio of about 1.0 or the local utility will pay a fair price for the power exported from the industrial site. If all or most of the above conditions are met or approached, the industrial site owners should consider cogeneration. The steam cogeneration systems can provide the industrial owner an attractive return-on-equity and return-on-investment. However, the emerging technology of the closed cycle gas turbine shows a return-on-equity significantly better than that for the equivalent steam cogeneration system as shown in Figure 3. The significance of the Task I and Task II effort to the industrial sector is that these parts of the study verified the results of Task III by conducting a detailed cost and thermodynamic analysis on a selected industrial site cogeneration system.

  11. System design description cone penetrometer system

    SciTech Connect

    Seda, R.Y., Westinghouse Hanford

    1996-08-12

    The system design description documents in detail the design of the cone penetrometer system. The systems includes the cone penetrometer physical package, raman spectroscopy package and moisture sensor package. Information pertinent to the system design, development, fabrication and testing is provided.

  12. Design of an experimental viscoelastic food model system for studying Zygosaccharomyces bailii spoilage in acidic sauces.

    PubMed

    Mertens, L; Geeraerd, A H; Dang, T D T; Vermeulen, A; Serneels, K; Van Derlinden, E; Cappuyns, A M; Moldenaers, P; Debevere, J; Devlieghere, F; Van Impe, J F

    2009-11-01

    Within the field of predictive microbiology, the number of studies that quantify the effect of food structure on microbial behavior is very limited. This is mainly due to impracticalities related to the use of a nonliquid growth medium. In this study, an experimental food model system for studying yeast spoilage in acid sauces was developed by selecting a suitable thickening/gelling agent. In a first step, a variety of thickening/gelling agents was screened, with respect to the main physicochemical (pH, water activity, and acetic acid and sugar concentrations) and rheological (weak gel viscoelastic behavior and presence of a yield stress) characteristics of acid sauces. Second, the rheological behavior of the selected thickening/gelling agent, Carbopol 980, was extensively studied within the following range of conditions: pH 4.0 to 5.0, acetic acid concentration of 0 to 1.0% (vol/vol), glycerol concentration of 0 to 15% (wt/vol), and Carbopol concentration of 1.0 to 1.5% (wt/vol). Finally, the applicability of the model system was illustrated by performing growth experiments in microtiter plates for Zygosaccharomyces bailii at 0, 0.5, 1.0, and 1.5% (wt/vol) Carbopol, 5% (wt/vol) glycerol, 0% (vol/vol) acetic acid, and pH 5.0. A shift from planktonic growth to growth in colonies was observed when the Carbopol concentration increased from 0.5 to 1.0%. The applicability of the model system was illustrated by estimating mu(max) at 0.5% Carbopol from absorbance detection times.

  13. Design study to simulate the development of a commercial transportation system

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Seven teams of senior-level Aerospace Engineering undergraduates were given a Request for Proposals (RFP) for a design concept of a remotely piloted vehicle (RPV). The RPV designs were intended to simulate commercial transport aircraft within the model of 'Aeroworld.' The Aeroworld model was developed so that the RPV designs would be subject to many of the engineering problems and tradeoffs that dominate real-world commercial air transport designs, such as profitability, fuel efficiency, range vs. payload capabilities, and ease of production and maintenance. As part of the proposal, each team was required to construct a prototype and validate its design with a flight demonstration.

  14. LOXT mirror design study

    NASA Technical Reports Server (NTRS)

    Vanspeybroeck, L.; Antrim, W.; Boyd, D.; Giacconi, R.; Sinnamon, G.; Stille, F.

    1972-01-01

    The final report for the large orbiting X-ray telescope (LOXT) high resolution mirror design study is presented. The following tasks were performed: (1) Generation of a reference and alternate preliminary design for the LOXT high resolution mirror assembly, which will meet the LOXT scientific requirements, and are within the present state of the art of materials and fabrication techniques. (2) Measurement, in X-rays, of the scattering properties of a variety of optical flats, embodying materials, coatings, and polishing techniques which might be applicable to the flight configuration LOXT high resolution mirror. (3) Preparation of a procurement specification for a paraboloid test mirror of the size of the innermost paraboloid of the high resolution mirror assembly, including the design requirements for the reference design evolved from this preliminary design study. The results of the engineering and scientific analysis and the conclusions drawn are presented. The procurement specification for the test mirror is included.

  15. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 1: Engineering studies

    NASA Technical Reports Server (NTRS)

    Alexander, H. R.; Smith, K. E.; Mcveigh, M. A.; Dixon, P. G.; Mcmanus, B. L.

    1979-01-01

    Composite structures technology is applied in a preliminary design study of advanced technology blades and hubs for the XV-15 tilt rotor research demonstrator aircraft. Significant improvements in XV-15 hover and cruise performance are available using blades designed for compatibility with the existing aircraft, i.e., blade installation would not require modification of the airframe, hub or upper controls. Provision of a low risk nonmechanical control system was also studied, and a development specification is given.

  16. Studies of Laser Interferometer Design and a Vibration Isolation System for Interferometric Gravitational Wave Detectors.

    NASA Astrophysics Data System (ADS)

    Giaime, Joseph Anthony

    1995-01-01

    Two techniques are developed that are needed in the design of an interferometric gravitational wave (GW) detector such as the LIGO, or Long-baseline Interferometric Gravitational-wave Observatory. The detector sensitivity of a long-baseline instrument is studied. A multi-layer mechanical isolation stack to filter seismic noise from test masses is designed, modeled and tested in vacuum. This is a four-stage elastomer (spring) and stainless steel (mass) stack, consisting of a table resting on three separate legs of three layers each. The visco-elastic properties of elastomer springs are exploited to damp the stack's normal modes while providing rapid roll-off of stack transmission above these modal frequencies. The stack's transmission of base motion to top motion is measured in vacuum and compared with 3-D finite-element models. In one tested configuration, at 100 Hz, horizontal transmission is 10^{-7}, vertical transmission is 3 times 10^{-6}, and the cross-coupling terms are between these values. A length detection scheme using RF phase modulated light and synchronous detection is developed for Fabry -Perot arm power-recycled Michelson interferometer GW detectors. This scheme uses an external Mach-Zehnder interferometer to measure the GW signal, and a frequency-shifted subcarrier to measure ancillary interferometer degrees of freedom. Use of the Mach-Zehnder allows rejection of laser source amplitude noise from the output, as well as the ability to exploit well-balanced Fabry-Perot arms to reject frequency noise from the output. A long baseline GW detector using these techniques should meet the LIGO initial goal sensitivity to GW strain of h_{rm RMS} = 10^ {-21} at 100 Hz. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-1307. Ph. 617 -253-5668; Fax 617-253-1690.).

  17. Statistical design for microwave systems

    NASA Technical Reports Server (NTRS)

    Cooke, Roland; Purviance, John

    1991-01-01

    This paper presents an introduction to statistical system design. Basic ideas needed to understand statistical design and a method for implementing statistical design are presented. The nonlinear characteristics of the system amplifiers and mixers are accounted for in the given examples. The specification of group delay, signal-to-noise ratio and output power are considered in these statistical designs.

  18. Thermionic Reactor Design Studies

    SciTech Connect

    Schock, Alfred

    1994-06-01

    During the 1960's and early 70's the author performed extensive design studies, analyses, and tests aimed at thermionic reactor concepts that differed significantly from those pursued by other investigators. Those studies, like most others under Atomic Energy Commission (AEC and DOE) and the National Aeronautics and Space Administration (NASA) sponsorship, were terminated in the early 1970's. Some of this work was previously published, but much of it was never made available in the open literature. U.S. interest in thermionic reactors resumed in the early 80's, and was greatly intensified by reports about Soviet ground and flight tests in the late 80's. This recent interest resulted in renewed U.S. thermionic reactor development programs, primarily under Department of Defense (DOD) and Department of Energy (DOE) sponsorship. Since most current investigators have not had an opportunity to study all of the author's previous work, a review of the highlights of that work may be of value to them. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling. Where the author's concepts differed from the later Topaz-2 design was in the relative location of the emitter and the collector. Placing the fueled emitter on the outside of the cylindrical diodes permits much higher axial conductances to reduce ohmic losses in the electrodes of full

  19. System design of the Pioneer Venus spacecraft. Volume 4: Probe bus and orbiter spacecraft vehicle studies

    NASA Technical Reports Server (NTRS)

    Bozajian, J. M.

    1973-01-01

    The requirements, trades, and design descriptions for the probe bus and orbiter spacecraft configurations, structure, thermal control, and harness are defined. Designs are developed for Thor/Delta and Atlas/Centaur launch vehicles with the latter selected as the final baseline. The major issues examined in achieving the baseline design are tabulated. The importance of spin axis orientation because of the effect on science experiments and earth communications is stressed.

  20. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix D: EOS configuration design data. Part 1: Spacecraft configuration

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of structural studies of the Earth Observatory Satellite (EOS) which define the member sizes to meet the vehicle design requirements are presented. The most significant requirements in sizing the members are the stiffness required to meet the launch vehicle design frequencies both in the late al and in the longitudinal directions. The selected configurations, both baseline and preferred, for the Delta and Titan launch vehicles were evaluated for stiffness requirements. The structural idealization used to estimate the stiffness of each structural arrangement, was based on an evaluation of primary loads paths, effectivity of structural members, and estimated sizes for the preferred configurations. The study included an evaluation of the following structural materials: (1) aluminum alloys, (2) titanium alloys, (3) beryllium, (4) beryllium/aluminum alloy, and (5) composite materials.

  1. Orbital Maneuvering system design evolution

    NASA Technical Reports Server (NTRS)

    Gibson, C.; Humphries, C.

    1985-01-01

    Preliminary design considerations and changes made in the baseline space shuttle orbital maneuvering system (OMS) to reduce cost and weight are detailed. The definition of initial subsystem requirements, trade studies, and design approaches are considered. Design features of the engine, its injector, combustion chamber, nozzle extension and bipropellant valve are illustrated and discussed. The current OMS consists of two identical pods that use nitrogen tetroxide (NTO) and monomethylhydrazine (MMH) propellants to provide 1000 ft/sec of delta velocity for a payload of 65,000 pounds. Major systems are pressurant gas storage and control, propellant storage supply and quantity measurement, and the rocket engine, which includes a bipropellant valve, an injector/thrust chamber, and a nozzle. The subsystem provides orbit insertion, circularization, and on orbit and deorbit capability for the shuttle orbiter.

  2. Design of a hybrid advective-diffusive microfluidic system with ellipsometric detection for studying adsorption.

    PubMed

    Wang, Lei; Zhao, Cunlu; Wijnperlé, Daniel; Duits, Michel H G; Mugele, Frieder

    2016-05-01

    Establishing and maintaining concentration gradients that are stable in space and time is critical for applications that require screening the adsorption behavior of organic or inorganic species onto solid surfaces for wide ranges of fluid compositions. In this work, we present a design of a simple and compact microfluidic device based on steady-state diffusion of the analyte, between two control channels where liquid is pumped through. The device generates a near-linear distribution of concentrations. We demonstrate this via experiments with dye solutions and comparison to finite-element numerical simulations. In a subsequent step, the device is combined with total internal reflection ellipsometry to study the adsorption of (cat)ions on silica surfaces from CsCl solutions at variable pH. Such a combined setup permits a fast determination of an adsorption isotherm. The measured optical thickness is compared to calculations from a triple layer model for the ion distribution, where surface complexation reactions of the silica are taken into account. Our results show a clear enhancement of the ion adsorption with increasing pH, which can be well described with reasonable values for the equilibrium constants of the surface reactions. PMID:27375818

  3. Feasibility study of an Integrated Program for Aerospace-vehicle Design (IPAD) system. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Garrocq, C. A.; Hurley, M. J.

    1973-01-01

    An overview is provided of the Ipad System, including its goals and objectives, organization, capabilities and future usefulness. The systems implementation is also presented with operational cost summaries.

  4. Designing and Implementing a System for Tracking Functional Status after Stroke: a Feasibility Study

    PubMed Central

    Sandel, M. Elizabeth; Jette, Alan M.; Appelman, Jed; Terdiman, Joseph; TeSelle, Marian; Delmonico, Richard L.; Wang, Hua; Camicia, Michelle; Rasch, Elizabeth K.; Brandt, Diane E.; Chan, Leighton

    2014-01-01

    Objective To determine the feasibility of tracking stroke patients’ functional outcomes in an integrated health system across a care continuum using the computer version of the Activity Measure of Post-Acute Care (AM-PAC). Setting A large integrated healthcare system in northern California. Participants 222 stroke patients (aged 18 or older) hospitalized after an acute cerebrovascular accident. Methods An AM-PAC assessment was made at discharge from sites of care, including acute hospital, inpatient rehabilitation hospital, skilled nursing facility, home during home care, and in outpatient settings. Assessments were also completed in the patient’s home at six months. Data from the AM-PAC program was integrated with the health care system’s databases. Main Outcome Measurements 1) AM-PAC administration time at the various sites of care; 2) assessment of a floor or a ceiling effect, 3) administrative burden of tracking participants Results AM-PAC assessment sessions averaged 7.9 minutes for data acquisition in 3 domains: Basic Mobility, Activities of Daily Living, and Applied Cognition. Participants answered, on average, 27 AM-PAC questions per session. A small ceiling effect was observed at 6 months and there was a larger ceiling effect when the instrument was administered in an institution, i.e., using the AM-PAC institutional item bank, rather than the community item bank. It was feasible to track patients and assess their function using the AM-PAC instrument from institutional to community settings. Implementation of the AM-PAC in clinical environments, and success of the project was influenced by instrumental, technological, operational, resource, and cultural factors. Conclusions This study demonstrates the feasibility of implementing a single functional outcome instrument in clinical and community settings to measure rehabilitation functional outcomes of stroke patients. Integrating the AM-PAC measurement system into clinical workflows and the electronic

  5. SHARE: system design and case studies for statistical health information release

    PubMed Central

    Gardner, James; Xiong, Li; Xiao, Yonghui; Gao, Jingjing; Post, Andrew R; Jiang, Xiaoqian; Ohno-Machado, Lucila

    2013-01-01

    Objectives We present SHARE, a new system for statistical health information release with differential privacy. We present two case studies that evaluate the software on real medical datasets and demonstrate the feasibility and utility of applying the differential privacy framework on biomedical data. Materials and Methods SHARE releases statistical information in electronic health records with differential privacy, a strong privacy framework for statistical data release. It includes a number of state-of-the-art methods for releasing multidimensional histograms and longitudinal patterns. We performed a variety of experiments on two real datasets, the surveillance, epidemiology and end results (SEER) breast cancer dataset and the Emory electronic medical record (EeMR) dataset, to demonstrate the feasibility and utility of SHARE. Results Experimental results indicate that SHARE can deal with heterogeneous data present in medical data, and that the released statistics are useful. The Kullback–Leibler divergence between the released multidimensional histograms and the original data distribution is below 0.5 and 0.01 for seven-dimensional and three-dimensional data cubes generated from the SEER dataset, respectively. The relative error for longitudinal pattern queries on the EeMR dataset varies between 0 and 0.3. While the results are promising, they also suggest that challenges remain in applying statistical data release using the differential privacy framework for higher dimensional data. Conclusions SHARE is one of the first systems to provide a mechanism for custodians to release differentially private aggregate statistics for a variety of use cases in the medical domain. This proof-of-concept system is intended to be applied to large-scale medical data warehouses. PMID:23059729

  6. Configuration evaluation and criteria plan. Volume 1: System trades study and design methodology plan (preliminary). Space Transportation Main Engine (STME) configuration study

    NASA Technical Reports Server (NTRS)

    Bair, E. K.

    1986-01-01

    The System Trades Study and Design Methodology Plan is used to conduct trade studies to define the combination of Space Shuttle Main Engine features that will optimize candidate engine configurations. This is accomplished by using vehicle sensitivities and engine parametric data to establish engine chamber pressure and area ratio design points for candidate engine configurations. Engineering analyses are to be conducted to refine and optimize the candidate configurations at their design points. The optimized engine data and characteristics are then evaluated and compared against other candidates being considered. The Evaluation Criteria Plan is then used to compare and rank the optimized engine configurations on the basis of cost.

  7. Conceptual design of a lunar oxygen pilot plant Lunar Base Systems Study (LBSS) task 4.2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The primary objective was to develop conceptual designs of two pilot plants to produce oxygen from lunar materials. A lunar pilot plant will be used to generate engineering data necessary to support an optimum design of a larger scale production plant. Lunar oxygen would be of primary value as spacecraft propellant oxidizer. In addition, lunar oxygen would be useful for servicing nonregenerative fuel cell power systems, providing requirements for life support, and to make up oxygen losses from leakage and airlock cycling. Thirteen different lunar oxygen production methods are described. Hydrogen reduction of ilmenite and extraction of solar-wind hydrogen from bulk lunar soil were selected for conceptual design studies. Trades and sensitivity analyses were performed with these models.

  8. Design requirements for SRB production control system. Volume 1: Study background and overview

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The solid rocket boosters assembly environment is described in terms of the contraints it places upon an automated production control system. The business system generated for the SRB assembly and the computer system which meets the business system requirements are described. The selection software process and modifications required to the recommended software are addressed as well as the hardware and configuration requirements necessary to support the system.

  9. Fermilab D-0 Experimental Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect

    Krstulovich, S.F.

    1987-10-31

    This report is developed as part of the Fermilab D-0 Experimental Facility Project Title II Design Documentation Update. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis.

  10. Design of a collective scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research

    NASA Astrophysics Data System (ADS)

    Lee, W.; Park, H. K.; Lee, D. J.; Nam, Y. U.; Leem, J.; Kim, T. K.

    2016-04-01

    The design characteristics of a multi-channel collective (or coherent) scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research (KSTAR), which is planned to be installed in 2017, are given in this paper. A few critical issues are discussed in depth such as the Faraday and Cotton-Mouton effects on the beam polarization, radial spatial resolution, probe beam frequency, polarization, and power. A proper and feasible optics with the 300 GHz probe beam, which was designed based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wavenumbers up to 24 cm-1. The upper limit corresponds to the normalized wavenumber kθρe of ˜0.15 in nominal KSTAR plasmas. To detect the scattered beam power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed.

  11. Design of a collective scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research.

    PubMed

    Lee, W; Park, H K; Lee, D J; Nam, Y U; Leem, J; Kim, T K

    2016-04-01

    The design characteristics of a multi-channel collective (or coherent) scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research (KSTAR), which is planned to be installed in 2017, are given in this paper. A few critical issues are discussed in depth such as the Faraday and Cotton-Mouton effects on the beam polarization, radial spatial resolution, probe beam frequency, polarization, and power. A proper and feasible optics with the 300 GHz probe beam, which was designed based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wavenumbers up to 24 cm(-1). The upper limit corresponds to the normalized wavenumber kθρe of ∼0.15 in nominal KSTAR plasmas. To detect the scattered beam power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed.

  12. Advanced supersonic propulsion study, phase 2. [propulsion system performance, design analysis and technology assessment

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.

    1975-01-01

    A continuation of the NASA/P and WA study to evaluate various types of propulsion systems for advanced commercial supersonic transports has resulted in the identification of two very promising engine concepts. They are the Variable Stream Control Engine which provides independent temperature and velocity control for two coannular exhaust streams, and a derivative of this engine, a Variable Cycle Engine that employs a rear flow-inverter valve to vary the bypass ratio of the cycle. Both concepts are based on advanced engine technology and have the potential for significant improvements in jet noise, exhaust emissions and economic characteristics relative to current technology supersonic engines. Extensive research and technology programs are required in several critical areas that are unique to these supersonic Variable Cycle Engines to realize these potential improvements. Parametric cycle and integration studies of conventional and Variable Cycle Engines are reviewed, features of the two most promising engine concepts are described, and critical technology requirements and required programs are summarized.

  13. DESIGN, SYNTHESIS AND STUDY OF MULTI-COMPONENT AND INTEGRATED SYSTEMS FOR LIGHT-DRIVEN HYDROGEN GENERATION

    SciTech Connect

    Professor Richard Eisenberg

    2012-07-18

    The research focussed on fundamental problems in the conversion of light to stored chemical energy. Specifically, work was completed on the design, synthesis and study of multi-component super- and supramolecular systems for photoinduced charge separation, one of the key steps in artificial photosynthesis, and on the use of these and related systems for the photochemical generation of H2 from water. At the center of these systems are chromophores comprised of square planar coordinated Pt(II) ions with arylacetylide and either diimine or terpyridyl ligands. Previous work had shown that the chromophores are photoluminescent in fluid solution with long-lived metal-to-ligand charge transfer (3MLCT) excited states that are necessarily directional. An advance which set the stage for a number of proposed studies was the light-driven production of hydrogen from water using a Pt(terpyridyl)(arylacetylide)+ chromophore and a sacrificial electron donor. The reaction is catalytic and appears to rival previously reported ruthenium bipyridyl systems in terms of H2 production. Variation of system components and mechanistic studies were conducted to understand better the individual steps in the overall process and how to improve its efficiency. Success with light driven H2 generation was employed as a key probe as new systems were constructed consisting of triads for photoinduced charge separation placed in close proximity to the H2 generating catalyst - a Pt colloid - through direct linkage or supramolecular interactions with the polymer used to stabilize the colloid. In order to prepare new donor-chromophore-acceptor (D-C-A) triads and associated D-C and C-A dyads, new ligands were synthesized having functional groups for different coupling reactions such as simple amide formation and Pd-catalyzed coupling. In these systems, the donor was attached to the arylacetylide ligands and the acceptor was linked to the diimine or terpyridyl chelate. Research under the contract proved

  14. Designing Instructional Systems

    ERIC Educational Resources Information Center

    Furtado, Lorraine T.

    1974-01-01

    The author presents an instructional design model for teachers that evolves around a teacher-manager concept which recognizes management functions of: planning, organizing, leading, and controlling. (EA)

  15. SP-100 planetary mission/system preliminary design study. Final report, technical information report

    SciTech Connect

    Jones, R.M.

    1986-02-01

    This report contains a discussion on many aspects of a nuclear electric propulsion planetary science mission and spacecraft using the proposed SP-100 nuclear power subsystem. A review of the science rationale for such missions is included. A summary of eleven nuclear electric propulsion planetary missions is presented. A conceptual science payload, mission design, and spacecraft design is included for the Saturn Ring Rendezvous mission. Spacecraft and mission costs have been estimated for two potential sequences of nuclear electric propulsion planetary missions. The integration issues and requirements on the proposed SP-100 power subsystems are identified.

  16. Optical design study of an infrared visible viewing system for Wendelstein 7-X divertor observation and control

    SciTech Connect

    Cantarini, J.; Hildebrandt, D.; Koenig, R.; Wolf, R.; Klinkhamer, F.; Moddemeijer, K.; Vliegenthart, W.

    2008-10-15

    For the Wendelstein 7-X stellarator, which will allow quasicontinuous operation ({tau}{<=}30 min) with 10 MW of electron cyclotron radiation heating power, a conceptual design study for an IR/visible viewing system (IVVS) has been elaborated. Ten such systems, as part of the machine protection system, will be required for real time monitoring of all ten discrete, water cooled divertor modules with high spatial (<10 mm) resolution, in order to prevent local overheating of the target tiles, which could easily lead to their destruction. On the physics side, the systems will be used for divertor symmetry investigations by studying the power load distribution on all targets modules and by observing the island divertor plasmas in the light of H{alpha}, C II, and C III using the visible imaging section of the systems. The optics of the system can be divided into three parts: a mirror based optical head, creating an intermediate image, a Cassegrain telescope system, and individual lens based imaging optics adapted to the various detectors for IR (3-5 {mu}m and 8-14 {mu}m) and visible observations, with their optical light paths being separated by in-vacuum dichroic beam splitters.

  17. Regulation study for the facility control system design at the Facility Operations Center at TA55

    SciTech Connect

    1994-03-16

    NMT-8 is proposing to upgrade the existing Facility Control System (FCS) located within the Facility Operations Center (FOC) at the TA-55 Plutonium Processing and Handling Facility (PPHF). The FCS modifications will upgrade the existing electronics to provide better reliability of system functions. Changes include replacement of the FCS computers and field multiplex units which are used for transmitting systems data. Data collected at the FCS include temperature, pressure, contact closures, etc., and are used for monitoring and/or control of key systems at TA-55. Monitoring is provided for the electrical power system status, PF-4 HVAC air balance status (Static Differential pressure), HVAC fan system status, site chill water return temperature, fire system information, and radioactive constant air monitors alarm information, site compressed air pressure and other key systems used at TA-55. Control output signals are provided for PF-4 HVAC systems, and selected alarms for criticality, fire, loss of pressure in confinement systems. A detailed description of the FCS modifications is provided in Section 2.

  18. Conceptual design of a coal-fired MHD retrofit plant. Topical report, Seed Regeneration System Study 2

    SciTech Connect

    Not Available

    1992-11-01

    Westinghouse Advanced Energy Systems (WAES), through Contract No. DE-AC22-87PC79668 funded by US DOE/PETC, is conducting a conceptual design study to evaluate a coal-fired magnetohydrodynamic (MHD) retrofit of a utility plant of sufficient size to demonstrate the technical and future economic viability of an MHD system operating within an electric utility environment. The objective of this topical report is to document continuing seed regeneration system application studies and the definition of will system integration requirements for the Scholz MHD retrofit plant design. MHD power plants require the addition of a seeding material in the form of potassium to enhance the ionization of the high temperature combustion gas in the MHD channel. This process has an added environmental advantage compared to other types of coal-fired power plants in that the potassium combines with the naturally occurring sulfur in the coal to form a potassium sulfate flyash (K{sub 2}SO{sub 4}) which can be removed from the process by appropriate particulate control equipment. Up to 100% of the Sulfur in the coal can be removed by this process thereby providing environmentally clean power plant operation that is better than required by present and anticipated future New Source Performance Standards (NSPS).

  19. Structural and functional design of WWTP operation decision support system with a case study.

    PubMed

    Xu, J; Shi, H C; Ke, X Y

    2006-01-01

    This paper developes the WWTP operation decision support system (ODSS) to simulate the dynamic behavior of the WWTP treatment process based on ASMs (activated sludge models) and WWTP experiential knowledge. The novel structure and functions of ODSS can offer more flexible and general instructions to the WWTP operations. The three independent sub-systems, namely expert system, simulation system and training system, can cooperate to achieve many more functions such as operation alert, fault diagnosis, process simulation and so forth. The expert system based on the dynamic simulation, an essential part of WWTP ODSS, has been proved to be feasible and effective by the implementation at Fang Zhuang WWTP. Our results indicated that the WWTP ODSS has significant potential for improving plant performance and reducing treatment costs by assisting the operators at the decision-making level.

  20. A Feasibility and Optimization Study to Design a Nondestructive ATR Fuel Permanent Scanning System to Determine Fuel Burnup

    NASA Astrophysics Data System (ADS)

    Navarro, J.; Ring, T. A.; Nigg, D. W.

    2014-04-01

    The goal of this project was to develop the best available non-destructive technique to determine burnup of the Advanced Test Reactor (ATR) fuels at Idaho National Laboratory, as well as to make a recommendation regarding the feasibility of implementing a permanent fuel scanning system at the ATR canal. The study determined that useful spectra for validation and fuel burnup predictions can be obtained in-situ at the ATR canal using three different detectors. In addition, the study established that calibration curves can be created to predict ATR fuel burnup onsite. The study also established that in order to design a rugged system that can stand the daily operations at the ATR canal a LaBr3 scintillator can be used effectively if deconvolution process is applied to increase the spectra resolution.

  1. Wide area detection system: Conceptual design study. [using television and microelectronic technology

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.; Carl, C.; Goss, W.; Hansen, G. R.; Olsasky, M. J.; Johnston, A. R.

    1978-01-01

    An integrated sensor for traffic surveillance on mainline sections of urban freeways is described. Applicable imaging and processor technology is surveyed and the functional requirements for the sensors and the conceptual design of the breadboard sensors are given. Parameters measured by the sensors include lane density, speed, and volume. The freeway image is also used for incident diagnosis.

  2. Space shuttle auxiliary propulsion system design study. Phase A report: Requirements definition

    NASA Technical Reports Server (NTRS)

    Orton, G. F.; Schweickert, T. F.

    1972-01-01

    The analyses and rationale used to develop requirements for the oxygen-hydrogen auxiliary propulsion systems to be used with the space shuttle are presented. The requirements apply to a fully reusable space shuttle vehicle system using internal, reusable main engine propellant tanks in both the orbiter and booster stages. Requirements of principal interest are engine thrust, number of engines, maximum system thrust, total impulse, and total impulse expenditure history.

  3. Preliminary Systems Design Study assessment report. Volume 6, Waste Isolation Pilot Plant and transportation package acceptable concepts

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques for the remediation of hazardous and transuranic waste stored at Radioactive Waste Management Complex`s Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. This volume contains introduction section containing a brief SDS background and lists the general assumptions and considerations used during the development of the system concepts. The introduction section is followed by sections describing two system concepts that produce a waste form in compliance with the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC) and transportation package (TRAMPAC) requirements. This system concept category is referred to as Waste Form 4, ``WIPP and TRAMPAC Acceptable.`` The following two system concepts are under this category: Sort, Treat, and Repackage System (4-BE-2); Volume Reduction and Packaging System (4-BE-4).

  4. Designing magnetic systems for reliability

    SciTech Connect

    Heitzenroeder, P.J.

    1991-01-01

    Designing magnetic system is an iterative process in which the requirements are set, a design is developed, materials and manufacturing processes are defined, interrelationships with the various elements of the system are established, engineering analyses are performed, and fault modes and effects are studied. Reliability requires that all elements of the design process, from the seemingly most straightforward such as utilities connection design and implementation, to the most sophisticated such as advanced finite element analyses, receives a balanced and appropriate level of attention. D.B. Montgomery's study of magnet failures has shown that the predominance of magnet failures tend not to be in the most intensively engineered areas, but are associated with insulation, leads, ad unanticipated conditions. TFTR, JET, JT-60, and PBX are all major tokamaks which have suffered loss of reliability due to water leaks. Similarly the majority of causes of loss of magnet reliability at PPPL has not been in the sophisticated areas of the design but are due to difficulties associated with coolant connections, bus connections, and external structural connections. Looking towards the future, the major next-devices such as BPX and ITER are most costly and complex than any of their predecessors and are pressing the bounds of operating levels, materials, and fabrication. Emphasis on reliability is a must as the fusion program enters a phase where there are fewer, but very costly devices with the goal of reaching a reactor prototype stage in the next two or three decades. This paper reviews some of the magnet reliability issues which PPPL has faced over the years the lessons learned from them, and magnet design and fabrication practices which have been found to contribute to magnet reliability.

  5. DDL system: Design systhesis of digital systems

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1983-01-01

    Digital Systems Design Language was integrated into the CADAT system environment of NASA-MSFC. The major technical aspects of this integration are summarized. Automatic hardware synthesis is now possible starting with a high level description of the system to be synthesized. The DDL system provides a high level design verification capability, thereby minimizing design changes in the later stages of the design cycle. An overview of the DDL system covering the translation, simulation and synthesis capabilities is provided. Two companion documents (the user's and programmer's manuals) are to be consulted for detailed discussions.

  6. A Conceptual Wing Flutter Analysis Tool for Systems Analysis and Parametric Design Study

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2003-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate flutt er instability boundaries of a typical wing, when detailed structural and aerodynamic data are not available. Effects of change in key flu tter parameters can also be estimated in order to guide the conceptual design. This userfriendly software was developed using MathCad and M atlab codes. The analysis method was based on non-dimensional paramet ric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on wing torsion stiffness, sweep, mass ratio, taper ratio, aspect ratio, center of gravit y location and pitch-inertia radius of gyration. These parametric plo ts were compiled in a Chance-Vought Corporation report from database of past experiments and wind tunnel test results. An example was prese nted for conceptual flutter analysis of outer-wing of a Blended-Wing- Body aircraft.

  7. FNAL system patching design

    SciTech Connect

    Schmidt, Jack; Lilianstrom, Al; Romero, Andy; Dawson, Troy; Sieh, Connie; /Fermilab

    2004-01-01

    FNAL has over 5000 PCs running either Linux or Windows software. Protecting these systems efficiently against the latest vulnerabilities that arise has prompted FNAL to take a more central approach to patching systems. Due to different levels of existing support infrastructures, the patching solution for linux systems differs from that of windows systems. In either case, systems are checked for vulnerabilities by Computer Security using the Nessus tool.

  8. Results of design studies and wind tunnel tests of an advanced high lift system for an Energy Efficient Transport

    NASA Technical Reports Server (NTRS)

    Oliver, W. R.

    1980-01-01

    The development of an advanced technology high lift system for an energy efficient transport incorporating a high aspect ratio supercritical wing is described. This development is based on the results of trade studies to select the high lift system, analysis techniques utilized to design the high lift system, and results of a wind tunnel test program. The program included the first experimental low speed, high Reynolds number wind tunnel test for this class of aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, aileron, spoilers, and Mach and Reynolds numbers. Results are discussed and compared with the experimental data and the various aerodynamic characteristics are estimated.

  9. Design study of a kinematic Stirling engine for dispered solar electric power systems

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The concept evaluation shows that the four cylinder double acting U type Stirling engine with annular regenerators is the most suitable engine type for the 15 kW solar application with respect to design, performance and cost. Results show that near term performance for a metallic Stirling engine is 42% efficiency. Further improved components show an impact on efficiency of the future metallic engine to 45%. Increase of heater temperature, through the introduction of ceramic components, contribute the greatest amount to achieve high efficiency goals. Future ceramic Stirling engines for solar applications show an efficiency of around 50%.

  10. Design of an RF System for Electron Bernstein Wave Studies in MST

    NASA Astrophysics Data System (ADS)

    Kauffold, J. X.; Seltzman, A. H.; Anderson, J. K.; Nonn, P. D.; Forest, C. B.

    2010-11-01

    Motivated by the possibility of current profile control a 5.5GHz RF system for EBW is being developed. The central component is a standard radar Klystron with 1.2MW peak power and 4μs typical pulse length. Meaningful experiments require RF pulse lengths similar to the characteristic electron confinement times in MST necessitating the creation of a power supply providing 80kV at 40A for 10ms. A low inductance IGBT network switches power at 20kHz from an electrolytic capacitor bank into the primary of a three-phase resonant transformer system that is then rectified and filtered. The system uses three magnetically separate transformers with microcrystalline iron cores to provide suitable volt-seconds and low hysteresis losses. Each phase has a secondary with a large leakage inductance and a parallel capacitor providing a boost ratio greater than 60:1 with a physical turns ratio of 13.5:1. A microprocessor feedback control system varies the drive frequency around resonance to regulate the boost ratio and provide a stable output as the storage bank discharges. The completed system will deliver RF to the plasma boundary where coupling to the Bernstein mode and subsequent heating and current drive can occur.

  11. Integrated Utility Systems Feasibility Study and Conceptual Design at the University of Florida. Executive Summary.

    ERIC Educational Resources Information Center

    Kirmse, Dale W.; Manyimo, Steve B.

    This executive summary presents a brief analysis of findings and recommendations. The concept of the Integrated Utility System (IUS) is to consider the interaction and mutual support of five utility subsystems needed by a campus complex of buildings. The subsystems are: (1) Electric power service; (2) Heating - ventilating - air conditioning and…

  12. Six kilowatt, residential photovoltaic power systems study; design, performance, economics, market potential

    NASA Astrophysics Data System (ADS)

    Partain, L. D.

    1980-08-01

    A cost and performance analysis is presented for a solar cell electric system that can provide 70% of the electric power to a home in a California-like climate. Both a battery storage and no-storage configuration with a six kilowatt, peak power, solar array were considered, including batteries, for a 15 kWh per day average energy use that equals that of an average household in Northern California. For the promising, no-storage home system the uncertainties in important parameter values are too large to allow definitive assessment until better characterizations have been made. The political and policy decisions that can have a strong influence were assessed and quantified. The effects of tax credits, utility buyback, and proper home construction were considered. Potential markets in the hundreds of millions of dollars per year range that involve on the order of one million peak kilowatts of solar cells per year were estimated.

  13. Project Cyclops: a Design Study of a System for Detecting Extraterrestrial Intelligent Life

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The requirements in hardware, manpower, time and funding to conduct a realistic effort aimed at detecting the existence of extraterrestrial intelligent life are examined. The methods used are limited to present or near term future state-of-the-art techniques. Subjects discussed include: (1) possible methods of contact, (2) communication by electromagnetic waves, (3) antenna array and system facilities, (4) antenna elements, (5) signal processing, (6) search strategy, and (7) radio and radar astronomy.

  14. Software-Design-Analyzer System

    NASA Technical Reports Server (NTRS)

    Tausworthe, Robert C.

    1991-01-01

    CRISP-90 software-design-analyzer system, update of CRISP-80, is set of computer programs constituting software tool for design and documentation of other software and supporting top-down, hierarchical, modular, structured methodologies for design and programming. Written in Microsoft QuickBasic.

  15. Mars oxygen production system design

    NASA Technical Reports Server (NTRS)

    Cotton, Charles E.; Pillow, Linda K.; Perkinson, Robert C.; Brownlie, R. P.; Chwalowski, P.; Carmona, M. F.; Coopersmith, J. P.; Goff, J. C.; Harvey, L. L.; Kovacs, L. A.

    1989-01-01

    The design and construction phase is summarized of the Mars oxygen demonstration project. The basic hardware required to produce oxygen from simulated Mars atmosphere was assembled and tested. Some design problems still remain with the sample collection and storage system. In addition, design and development of computer compatible data acquisition and control instrumentation is ongoing.

  16. Mars oxygen production system design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This report summarizes the design and construction of the Mars oxygen demonstration project. The basic hardware required to produce oxygen from simulated Mars atmosphere has been assembled and tested. Some design problems still remain with the sample collection and storage system. In addition, design and development of computer data acquisition and control instrumentation is continuing.

  17. Optical Telescope Design Study Results

    NASA Astrophysics Data System (ADS)

    Livas, J.; Sankar, S.

    2015-05-01

    We report on the results of a study conducted from Nov 2012-Apr 2013 to develop a telescope design for a space-based gravitational wave detector. The telescope is needed for efficient power delivery but since it is directly in the beam path, the design is driven by the requirements for the overall displacement sensitivity of the gravitational wave observatory. Two requirements in particular, optical pathlength stability and scattered light performance, are beyond the usual specifications for good image quality encountered in traditional telescopic systems. An important element of the study was to tap industrial expertise to develop an optimized design that can be reliably manufactured. Key engineering and design trade-offs and the sometimes surprising results will be presented.

  18. Performance study of a solid oxide fuel cell and gas turbine hybrid system designed for methane operating with non-designed fuels

    NASA Astrophysics Data System (ADS)

    Li, Yang; Weng, Yiwu

    This paper presents an analysis of the fuel flexibility of a methane-based solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system. The simulation models of the system are mathematically defined. Special attention is paid to the development of an SOFC thermodynamic model that allows for the calculation of radial temperature gradients. Based on the simulation model, the new design point of system for new fuels is defined first; the steady-state performance of the system fed by different fuels is then discussed. When the hybrid system operates with hydrogen, the net power output at the new design point will decrease to 70% of the methane, while the design net efficiency will decrease to 55%. Similar to hydrogen, the net output power of the ethanol-fueled system will decrease to 88% of the methane value due to the lower cooling effect of steam reforming. However, the net efficiency can remain at 61% at high level due to increased heat recuperation from exhaust gas. To increase the power output of the hybrid system operating with non-design fuels without changing the system configuration, three different measures are introduced and investigated in this paper. The introduced measures can increase the system net power output operating with hydrogen to 94% of the original value at the cost of a lower efficiency of 45%.

  19. Evaluability assessment of the TOXNET computer system. Evaluation design studies. Final report, Sep 89-Dec 90

    SciTech Connect

    DeWoskin, R.; Stewart, L.S.; Cook, T.J.; Braddy, B.A.

    1990-12-21

    The task assessed ATSDR's Literature Inventory and Dissemination Program activities, specifically the activities concerning the use of the National Library of Medicine's collection of electronic toxicology information databases known as the TOXNET computer system. The evaluability assessment was organized into three phases: Phase 1 - Summary of the intended program and identification of key issues; Phase 2 - Exploration of the actual use of the TOXNET system and an analysis of the extant data; and Phase 3 - Synthesis of the findings and development of options for program improvement. Representatives from State and local health departments, poison control centers, emergency physicians, occupational health clinics, public advocacy groups, libraries, and universities participated in focus groups, in-person discussions, or telephone discussions. Discussions were conducted in an informal, unstructured manner. The results suggest that the current program adequately addresses the Congressional mandate to maintain a health effects information inventory and that the inventory is readily accessible to a technically trained segment of the public, but that a larger segment of the public, who could benefit, currently do not have access due to costs, difficulty in use of the computerized access, or lack of awareness that the resource is available. Options for program improvement are presented and discussed.

  20. The Casualty Assistance Readiness Enhancement System: A Case Study in Rapid Prototyping and Design for Flexibility

    NASA Astrophysics Data System (ADS)

    Goerger, Simon R.; Wong, Ernest Y.; Henderson, Dale L.; Sperling, Brian K.; Bland, William

    Numerous government benefits are available to the surviving family of fallen U.S. military service members. Unfortunately, most of these entitlements require a considerable amount of paperwork to process correctly, necessitating a great deal of patience, attention to detail, and composure from families at a time when their grief is raw. Even though the U.S. Army appoints a Casualty Assistance Officer (CAO) to help surviving family members through this process, the soldiers serving as CAOs tend to be inexperienced and oftentimes find themselves challenged to provide accurate and thorough assistance. Consequently, some families do not receive all benefits in a timely manner, and some entitlements may be overlooked entirely. To help with the military's Casualty Program, we have developed the Casualty Assistance Readiness Enhancement System (CARES), an information system that improves how the Department of the Army cares for military families in arguably their greatest time of need. The tool and associated process reduced the time required to complete forms, reduced the potential for errors on repetitive information, assisted CAOs through the process, and provided electronic copies of completed forms.

  1. Towards mHealth Systems for Support of Psychotherapeutic Practice: A Qualitative Study of Researcher-Clinician Collaboration in System Design and Evaluation

    PubMed Central

    Halje, Karin; Timpka, Toomas; Ekberg, Joakim; Bång, Magnus; Fröberg, Anders; Eriksson, Henrik

    2016-01-01

    We examined clinicians' and researchers' experiences from participation in collaborative research on the introduction of Internet and mobile information systems (mHealth systems) in psychotherapeutic routines. The study used grounded theory methodology and was set in a collaboration that aimed to develop and evaluate mHealth support of psychotherapy provided to young people. Soundness of the central objects developed in the design phase (the collaboration contract, the trial protocol, and the system technology) was a necessary foundation for successful collaborative mHealth research; neglect of unanticipated organizational influences during the trial phase was a factor in collaboration failure. The experiences gained in this study can be used in settings where collaborative research on mHealth systems in mental health is planned. PMID:27034661

  2. Design study of multi-imaging plate system for BNCT irradiation field at Kyoto university reactor.

    PubMed

    Tanaka, Kenichi; Sakurai, Yoshinori; Kajimoto, Tsuyoshi; Tanaka, Hiroki; Takata, Takushi; Endo, Satoru

    2016-09-01

    The converter configuration for a multi-imaging plate system was investigated for the application of quality assurance in the irradiation field profile for boron neutron capture therapy. This was performed by the simulation calculation using the PHITS code in the fields at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. The converter constituents investigated were carbon for gamma rays, and polyethylene with and without LiF at varied (6)Li concentration for thermal, epithermal, and fast neutrons. Consequently, potential combinations of the converters were found for two components, gamma rays and thermal neutrons, for the standard thermal neutron mode and three components of gamma rays, epithermal neutrons, and thermal or fast neutrons, for the standard mixed or epithermal neutron modes, respectively. PMID:27423022

  3. Boulder Capture System Design Options for the Asteroid Robotic Redirect Mission Alternate Approach Trade Study

    NASA Technical Reports Server (NTRS)

    Belbin, Scott P.; Merrill, Raymond G.

    2014-01-01

    This paper presents a boulder acquisition and asteroid surface interaction electromechanical concept developed for the Asteroid Robotic Redirect Mission (ARRM) option to capture a free standing boulder on the surface of a 100 m or larger Near Earth Asteroid (NEA). It details the down select process and ranking of potential boulder capture methods, the evolution of a simple yet elegant articulating spaceframe, and ongoing risk reduction and concept refinement efforts. The capture system configuration leverages the spaceframe, heritage manipulators, and a new microspine technology to enable the ARRM boulder capture. While at the NEA it enables attenuation of terminal descent velocity, ascent to escape velocity, boulder collection and restraint. After departure from the NEA it enables, robotic inspection, sample caching, and crew Extra Vehicular Activities (EVA).

  4. Design study of multi-imaging plate system for BNCT irradiation field at Kyoto university reactor.

    PubMed

    Tanaka, Kenichi; Sakurai, Yoshinori; Kajimoto, Tsuyoshi; Tanaka, Hiroki; Takata, Takushi; Endo, Satoru

    2016-09-01

    The converter configuration for a multi-imaging plate system was investigated for the application of quality assurance in the irradiation field profile for boron neutron capture therapy. This was performed by the simulation calculation using the PHITS code in the fields at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. The converter constituents investigated were carbon for gamma rays, and polyethylene with and without LiF at varied (6)Li concentration for thermal, epithermal, and fast neutrons. Consequently, potential combinations of the converters were found for two components, gamma rays and thermal neutrons, for the standard thermal neutron mode and three components of gamma rays, epithermal neutrons, and thermal or fast neutrons, for the standard mixed or epithermal neutron modes, respectively.

  5. Designing Systems for Environmental Sustainability

    EPA Science Inventory

    Dr. Smith will describe his U.S. EPA research which involves elements of design, from systems as diverse as biofuel supply chains to recycling systems and chemical processes. Design uses models that rate performance as part of a synthesis approach, where steps of analysis and sy...

  6. History Places: A Case Study for Relational Database and Information Retrieval System Design

    ERIC Educational Resources Information Center

    Hendry, David G.

    2007-01-01

    This article presents a project-based case study that was developed for students with diverse backgrounds and varied inclinations for engaging technical topics. The project, called History Places, requires that student teams develop a vision for a kind of digital library, propose a conceptual model, and use the model to derive a logical model and…

  7. A Case Study of Design and Usability Evaluation of the Collaborative Problem Solving Instructional Platform System

    ERIC Educational Resources Information Center

    Chao, Jen-Yi; Chao, Shu-Jen; Yao, Lo-Yi; Liu, Chuan-His

    2016-01-01

    This study used Focus Group to analyze user requirements for user interface so as to understand what capabilities of the Collaborative Problem Solving (CPS) Instructional Platform were expected by users. After 12 focus group interviews, the following four functions had been identified as essential to the CPS Instructional Platform: CPS…

  8. REC Tracking Systems Design Guide

    SciTech Connect

    Meredith Wingate

    2004-02-03

    OAK-B135 The Design Guide is presented in three parts. Section II describes the need for REC tracking, the two principal tracking methods available, and, in simple terms, the operation of certificate-based systems. Section III presents the major issues in the design of certificate-based tracking systems and discusses the advantages and disadvantages of alternative solutions. Finally, Section IV offers design principles or recommendations for most of these issues.

  9. Design study for multi-channel tape recorder system, volume 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The means of storing multispectral, high resolution sensor data on an Earth observing satellite are studied. It is concluded that this is best done digitally on a multi-track, longitudinal, magnetic tape recorder. The machine proposed will store 8 X 10 to the 10th power bits of data on 1040 m of 51 mm-wide magnetic tape mounted on two co-planar reels.

  10. Preliminary Systems Design Study assessment report. [Evaluation of using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. This volume of the Systems Design Study contain four Appendixes that were part of the study. Appendix A is an EG G Idaho, Inc., report that represents a review and compilation of previous reports describing the wastes and quantities disposed in the Subsurface Disposal Area of the Idaho National Engineering Laboratory. Appendix B contains the process flowsheets considered in this study, but not selected for detailed analysis. Appendix C is a historical tabulation of radioactive waste incinerators. Appendix D lists Department of Energy facilities where cementation stabilization systems have been used.

  11. Conceptual spacecraft systems design and synthesis

    NASA Technical Reports Server (NTRS)

    Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.

    1984-01-01

    An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced Systems (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth designs is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze, and conduct parametric studies and modify earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.

  12. Mars Aerocapture Systems Study

    NASA Technical Reports Server (NTRS)

    Wright, Henry S.; Oh, David Y.; Westhelle, Carlos H.; Fisher, Jody L.; Dyke, R. Eric; Edquist, Karl T.; Brown, James L.; Justh, Hilary L.; Munk, Michelle M.

    2006-01-01

    Mars Aerocapture Systems Study (MASS) is a detailed study of the application of aerocapture to a large Mars robotic orbiter to assess and identify key technology gaps. This study addressed use of an Opposition class return segment for use in the Mars Sample Return architecture. Study addressed mission architecture issues as well as system design. Key trade studies focused on design of aerocapture aeroshell, spacecraft design and packaging, guidance, navigation and control with simulation, computational fluid dynamics, and thermal protection system sizing. Detailed master equipment lists are included as well as a cursory cost assessment.

  13. Preliminary Systems Design Study assessment report. [Evaluation of using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1991-11-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept.

  14. Slurry reactor design studies

    SciTech Connect

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. ); Akgerman, A. ); Smith, J.M. )

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  15. Tracking and data relay satellite system configuration and tradeoff study. Volume 4: Spacecraft and subsystem design, part 1

    NASA Technical Reports Server (NTRS)

    Hill, T. E.

    1972-01-01

    The design and development of the Tracking and Data Relay satellite are discussed. The subjects covered are: (1) spacecraft mechanical and structural design, (2) attitude stabilization and control subsystem, (3) propulsion system, (4) electrical power subsystem, (5) thermal control, and (6) reliability engineering.

  16. DESIGN INFORMATION ON FINE PORE AERATION SYSTEMS

    EPA Science Inventory

    Field studies were conducted over several years at municipal wastewater treatment plants employing line pore diffused aeration systems. These studies were designed to produce reliable information on the performance and operational requirements of fine pore devices under process ...

  17. Launch vehicle systems design analysis

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Verderaime, V.

    1993-01-01

    Current launch vehicle design emphasis is on low life-cycle cost. This paper applies total quality management (TQM) principles to a conventional systems design analysis process to provide low-cost, high-reliability designs. Suggested TQM techniques include Steward's systems information flow matrix method, quality leverage principle, quality through robustness and function deployment, Pareto's principle, Pugh's selection and enhancement criteria, and other design process procedures. TQM quality performance at least-cost can be realized through competent concurrent engineering teams and brilliance of their technical leadership.

  18. Advanced turboprop testbed systems study. Volume 1: Testbed program objectives and priorities, drive system and aircraft design studies, evaluation and recommendations and wind tunnel test plans

    NASA Technical Reports Server (NTRS)

    Bradley, E. S.; Little, B. H.; Warnock, W.; Jenness, C. M.; Wilson, J. M.; Powell, C. W.; Shoaf, L.

    1982-01-01

    The establishment of propfan technology readiness was determined and candidate drive systems for propfan application were identified. Candidate testbed aircraft were investigated for testbed aircraft suitability and four aircraft selected as possible propfan testbed vehicles. An evaluation of the four candidates was performed and the Boeing KC-135A and the Gulfstream American Gulfstream II recommended as the most suitable aircraft for test application. Conceptual designs of the two recommended aircraft were performed and cost and schedule data for the entire testbed program were generated. The program total cost was estimated and a wind tunnel program cost and schedule is generated in support of the testbed program.

  19. Expert Systems: Instructional Design Potential.

    ERIC Educational Resources Information Center

    Pollock, Joellyn; Grabinger, R. Scott

    1989-01-01

    Description of the components of expert systems highlights their potential uses in the field of instructional design. Uses of expert systems are described for determining the cost-effectiveness of instructional media; as instructional management aids; as job aids; in helping to diagnose student problems; and as student feedback/evaluation systems.…

  20. NASA System Engineering Design Process

    NASA Technical Reports Server (NTRS)

    Roman, Jose

    2011-01-01

    This slide presentation reviews NASA's use of systems engineering for the complete life cycle of a project. Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. Each phase of a NASA project is terminated with a Key decision point (KDP), which is supported by major reviews.

  1. NASA [National Aeronautics and Space Administration] low power DIPS [Dynamic Isotope Power System] conceptual design study; Final report

    SciTech Connect

    Otting, W.

    1990-12-01

    This report describes the conceptual design and integration of a low power (0.5 to 1.0 kWe) Dynamic Isotope Power System (DIPS) Low Power (LPD) with the Mariner Mark II (MMII) spacecraft for use on interplanetary and space exploration missions as an alternative to RTGs. A detailed MMII/LPD system description is provided that discusses, among other things, the design requirements, design point selection, system layout and spacecraft integration, mechanical design, electrical system design, interface assessments, reliability, and safety. Performance characteristics are given for the reference 500 We LPD using a peak cycle temperature of 1100 K. Parametrics are provided giving the LPD performance characteristics at power levels up to 1.0 kWe and peak cycle temperatures as high as 1300 K. A side-by-side comparison of the LPD performance with the RTG performance is provided. Finally, program plans, costs, and schedules are provided giving the overall plan for design, development, fabrication, qualification, and acceptance of the LPD system.

  2. The design of laser scanning galvanometer system

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoling; Zhou, Bin; Xie, Weihao; Zhang, Yuangeng

    2015-02-01

    In this paper, we designed the laser scanning galvanometer system according to our requirements. Based on scanning range of our laser scanning galvanometer system, the design parameters of this system were optimized. During this work, we focused on the design of the f-θ field lens. An optical system of patent lens in the optical manual book, which had three glasses structure, was used in our designs. Combining the aberration theory, the aberration corrections and image quality evaluations were finished using Code V optical design software. An optimum f-θ field lens was designed, which had focal length of 434 mm, pupil diameter of 30 mm, scanning range of 160 mm × 160 mm, and half field angle of 18°×18°. At the last, we studied the influences of temperature changes on our system.

  3. Thermal design study of an air-cooled plug-nozzle system for a supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Lieberman, A.

    1972-01-01

    A heat-transfer design analysis has been made of an air-cooled plug-nozzle system for a supersonic-cruise aircraft engine. The proposed 10deg half-angle conical plug is sting supported from the turbine frame. Plug cooling is accomplished by convection and film cooling. The flight profile studied includes maximum afterburning from takeoff to Mach 2.7 and supersonic cruise at Mach 2.7 with a low afterburner setting. The calculations indicate that, for maximum afterburning, about 2 percent of the engine primary flow, removed after the second stage of the nine-stage compressor, will adequately cool the plug and sting support. Ram air may be used for cooling during supersonic-cruise operations, however. Therefore, the cycle efficiency penalty paid for air cooling the plug and sting support should be low.

  4. Design study for a gound microwave power transmission system for use with a high-altitude powered platform

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1983-01-01

    The conceptual design of a ground-based microwave power transmission system is described. This system is intended to supply electrical power via an air link to a high-altitude (21 km) powered platform. The platform must be equipped with the required instrumentation (RECTENNA) to convert the RF energy to dc power.

  5. Preliminary Systems Design Study assessment report. [Evaluation of using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques for the remediation of hazardous and transuranic waste stored at Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept. This volume contains introduction section containing a brief SDS background and lists the general assumptions and considerations used during the development of the system concepts. The introduction section is followed by sections describing two system concepts that produce a waste form in compliance with the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC) and transportation package (TRAMPAC) requirements. This system concept category is referred to as Waste Form 4, WIPP and TRAMPAC Acceptable.'' The following two system concepts are under this category: Sort, Treat, and Repackage System (4-BE-2); Volume Reduction and Packaging System (4-BE-4).

  6. Feasibility study and preliminary design of load-assisting clothes for lumbar protection inspired by human musculoskeletal systems

    NASA Astrophysics Data System (ADS)

    Hashimoto, Riho; Masuda, Arata; Chen, Hao; Kobayashi, Sou

    2016-04-01

    The purpose of this paper is to develop load assisting clothes for caregivers. Low back pain is one of the most major reasons for caregivers to leave their jobs. In this study, load assisting clothes which reduce the risks of low back pain of caregivers are designed and manufactured, targeting at the use in small care-houses and family caregiving. The load assisting clothes should have two functions. One is to reduce the compressive load acting on the lumbar spine as well as the tensile load on the lumbar muscles by providing an appropriate assisting force. The other is not to interfere with wearers' motion. The proposed approach in this study is to put elastic compressive members and tensioner belts integrated in the garment to provide the assisting forces without hindering natural movement and comfortable feeling. We study human musculoskeletal systems in the lumbar part, and consider to construct a parallel reinforcement of it on the body surface by embedding passive support structures. The arrangement of those elements is determined based on the study of the principal strain directions and the non-extension directions of the body surface to manage the appropriate assisting force without spoiling the mobility. The effectiveness of the proposed support principle is verified through experimental studies.

  7. Nitrosative Stress in the Nervous System: Guidelines for Designing Experimental Strategies to Study Protein S-Nitrosylation.

    PubMed

    Nakamura, Tomohiro; Lipton, Stuart A

    2016-03-01

    Reactive nitrogen species, such as nitric oxide (NO), exert their biological activity in large part through post-translational modification of cysteine residues, forming S-nitrosothiols. This chemical reaction proceeds via a process that we and our colleagues have termed protein S-nitrosylation. Under conditions of normal NO production, S-nitrosylation regulates the activity of many normal proteins. However, in degenerative conditions characterized by nitrosative stress, increased levels of NO lead to aberrant S-nitrosylation that contributes to the pathology of the disease. Thus, S-nitrosylation has been implicated in a wide range of cellular mechanisms, including mitochondrial function, proteostasis, transcriptional regulation, synaptic activity, and cell survival. In recent years, the research area of protein S-nitrosylation has become prominent due to improvements in the detection systems as well as the demonstration that protein S-nitrosylation plays a critical role in the pathogenesis of neurodegenerative and other neurological disorders. To further promote our understanding of how protein S-nitrosylation affects cellular systems, guidelines for the design and conduct of research on S-nitrosylated (or SNO-)proteins would be highly desirable, especially for those newly entering the field. In this review article, we provide a strategic overview of designing experimental approaches to study protein S-nitrosylation. We specifically focus on methods that can provide critical data to demonstrate that an S-nitrosylated protein plays a (patho-)physiologically-relevant role in a biological process. Hence, the implementation of the approaches described herein will contribute to further advancement of the study of S-nitrosylated proteins, not only in neuroscience but also in other research fields.

  8. Conceptual design optimization study

    NASA Technical Reports Server (NTRS)

    Hollowell, S. J.; Beeman, E. R., II; Hiyama, R. M.

    1990-01-01

    The feasibility of applying multilevel functional decomposition and optimization techniques to conceptual design of advanced fighter aircraft was investigated. Applying the functional decomposition techniques to the conceptual design phase appears to be feasible. The initial implementation of the modified design process will optimize wing design variables. A hybrid approach, combining functional decomposition techniques for generation of aerodynamic and mass properties linear sensitivity derivatives with existing techniques for sizing mission performance and optimization, is proposed.

  9. Nanoscale control designs for systems.

    PubMed

    Chen, Yung-Yue

    2014-02-01

    Nanoscale control is the science of the control of objects at dimensions with 100 nm or less and the manipulation of them at this level of precision. The desired attributes of systems under nanoscale control design are extreme high resolution, accuracy, stability, and fast response. An important perspective of investigation in nanoscale control design includes system modeling and precision control devices and materials at a nanoscale dimension, i.e., design of nanopositioners. Nanopositioners are mechatronic systems with an ultraprecise resolution down to a fraction of an atomic diameter and developed to move objects over a small range in nanoscale dimension. After reviewing a lot of existing literatures for nanoscale control designs, the way to successful nanoscale control is accurate position sensing and feedback control of the motion. An overview of nanoscale identification, linear, and nonlinear control technologies, and devices that are playing a key role in improving precision, accuracy, and response of operation of these systems are introduced in this research.

  10. Design of Knight LED system

    NASA Astrophysics Data System (ADS)

    Zheng, Wen; Lou, Yuna; Xiao, Zhihong

    2010-02-01

    This design introduces a used car on the design of LED decorative light strip. This LED named Knight LED. In This system we use ATMEGA8 as the Master MCU Chip. Through the microcontroller to implement the wireless remote control receiver and the LED lights of different modes of switching, different brightness control. Also we use ULN2803 as the LED driver.

  11. Designing modern furnace cooling systems

    NASA Astrophysics Data System (ADS)

    Merry, J.; Sarvinis, J.; Voermann, N.

    2000-02-01

    An integrated multidisciplinary approach to furnace design that considers the interdependence between furnace cooling elements and other furnace systems, such as binding, cooling water, and instrumentation, is necessary to achieve maximum furnace production and a long refractory life. The retrofit of the BHP Hartley electric furnace and the Kidd Creek copper converting furnace are successful examples of an integrated approach to furnace cooling design.

  12. Digital systems design language. Design synthesis of digital systems

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1979-01-01

    The Digital Systems Design Language (DDL) is implemented on the SEL-32 computer systems. The details of the language, translator and simulator programs are included. Several example descriptions and a tutorial on hardware description languages are provided, to guide the user.

  13. Design of a digital beam attenuation system for computed tomography. Part II. Performance study and initial results

    SciTech Connect

    Szczykutowicz, Timothy P.; Mistretta, Charles A.

    2013-02-15

    Purpose: The purpose of this work is to present a performance study of the digital beam attenuator (DBA) for implementing fluence field modulated CT (FFMCT) using a simulation framework developed to model the incorporation of the DBA into an existing CT system. Additionally, initial results will be presented using a prototype DBA and the realization of the prototype will be described. To our knowledge, this study represents the first experimental use of a device capable of modulating x-ray fluence as a function of fan angle using a CT geometry. Methods: To realize FFMCT, the authors propose to use a wedge design in which one wedge is held stationary and another wedge is moved over the stationary wedge. Due to the wedge shape, the composite thickness of the two wedges changes as a function of the amount of overlap between the wedges. This design allows for the wedges to modulate the photon fluence incident onto a patient. Using a simulation environment, the effect of changing the number of wedges has on dose, scatter, detector dynamic range, and noise uniformity is explored. Experimental results are presented using a prototype DBA having ten Fe wedges and a c-arm CT system geometry. The experimental DBA results are compared to non-DBA scans using scatter and detector dynamic range as metrics. Both flat field and bowtie filtered CT acquisitions were simulated for comparison with the DBA. Results: Numerical results suggest that substantial gains in noise uniformity and scatter-to-primary ratio (SPR) can be obtained using only seven wedges. After seven wedges, the decrease in noise ununiformity and SPR falls off at a lower rate. Simulations comparing CT acquisitions between flat field, bowtie enabled, and DBA CT acquisitions suggest DBA-FFMCT can reduce dose relative to flat field CT by Almost-Equal-To 3 times. A bowtie filter under the same imaging conditions was shown to only allow a dose reduction of 1.65 times. Experimentally, a 10 wedge DBA prototype result showed

  14. BrachyView, A novel inbody imaging system for HDR prostate brachytherapy: Design and Monte Carlo feasibility study

    SciTech Connect

    Safavi-Naeini, M.; Han, Z.; Cutajar, D.; Guatelli, S.; Petasecca, M.; Lerch, M. L. F.; Franklin, D. R.; Jakubek, J.; Pospisil, S.; Bucci, J.; Zaider, M.; Rosenfeld, A. B.

    2013-07-15

    Purpose: High dose rate (HDR) brachytherapy is a form of radiation therapy for treating prostate cancer whereby a high activity radiation source is moved between predefined positions inside applicators inserted within the treatment volume. Accurate positioning of the source is essential in delivering the desired dose to the target area while avoiding radiation injury to the surrounding tissue. In this paper, HDR BrachyView, a novel inbody dosimetric imaging system for real time monitoring and verification of the radioactive seed position in HDR prostate brachytherapy treatment is introduced. The current prototype consists of a 15 Multiplication-Sign 60 mm{sup 2} silicon pixel detector with a multipinhole tungsten collimator placed 6.5 mm above the detector. Seven identical pinholes allow full imaging coverage of the entire treatment volume. The combined pinhole and pixel sensor arrangement is geometrically designed to be able to resolve the three-dimensional location of the source. The probe may be rotated to keep the whole prostate within the transverse plane. The purpose of this paper is to demonstrate the efficacy of the design through computer simulation, and to estimate the accuracy in resolving the source position (in detector plane and in 3D space) as part of the feasibility study for the BrachyView project.Methods: Monte Carlo simulations were performed using the GEANT4 radiation transport model, with a {sup 192}Ir source placed in different locations within a prostate phantom. A geometrically accurate model of the detector and collimator were constructed. Simulations were conducted with a single pinhole to evaluate the pinhole design and the signal to background ratio obtained. Second, a pair of adjacent pinholes were simulated to evaluate the error in calculated source location.Results: Simulation results show that accurate determination of the true source position is easily obtainable within the typical one second source dwell time. The maximum error in

  15. Optimal design of a gas transmission network: A case study of the Turkish natural gas pipeline network system

    NASA Astrophysics Data System (ADS)

    Gunes, Ersin Fatih

    Turkey is located between Europe, which has increasing demand for natural gas and the geographies of Middle East, Asia and Russia, which have rich and strong natural gas supply. Because of the geographical location, Turkey has strategic importance according to energy sources. To supply this demand, a pipeline network configuration with the optimal and efficient lengths, pressures, diameters and number of compressor stations is extremely needed. Because, Turkey has a currently working and constructed network topology, obtaining an optimal configuration of the pipelines, including an optimal number of compressor stations with optimal locations, is the focus of this study. Identifying a network design with lowest costs is important because of the high maintenance and set-up costs. The quantity of compressor stations, the pipeline segments' lengths, the diameter sizes and pressures at compressor stations, are considered to be decision variables in this study. Two existing optimization models were selected and applied to the case study of Turkey. Because of the fixed cost of investment, both models are formulated as mixed integer nonlinear programs, which require branch and bound combined with the nonlinear programming solution methods. The differences between these two models are related to some factors that can affect the network system of natural gas such as wall thickness, material balance compressor isentropic head and amount of gas to be delivered. The results obtained by these two techniques are compared with each other and with the current system. Major differences between results are costs, pressures and flow rates. These solution techniques are able to find a solution with minimum cost for each model both of which are less than the current cost of the system while satisfying all the constraints on diameter, length, flow rate and pressure. These results give the big picture of an ideal configuration for the future state network for the country of Turkey.

  16. Preliminary systems design study assessment report. [Evaluation of using specific technologies, system concepts for treating the buried waste and surrounding contaminated soil

    SciTech Connect

    Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

    1992-01-01

    The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each. This volume contains the descriptions and other relevant information of the four subsystems required for most of the ex situ processing systems. This volume covers the metal decontamination and sizing subsystem, soils processing subsystem, low-level waste subsystem, and retrieval subsystem.

  17. Conceptual Design Study of a Closed Brayton Cycle Turbogenerator for Space Power Thermal-To-Electric Conversion System

    NASA Technical Reports Server (NTRS)

    Hansen, Jeff L.

    2000-01-01

    A conceptual design study was completed for a 360 kW Helium-Xenon closed Brayton cycle turbogenerator. The selected configuration is comprised of a single-shaft gas turbine engine coupled directly to a high-speed generator. The engine turbomachinery includes a 2.5:1 pressure ratio compression system with an inlet corrected flow of 0.44 kg/sec. The single centrifugal stage impeller discharges into a scroll via a vaned diffuser. The scroll routes the air into the cold side sector of the recuperator. The hot gas exits a nuclear reactor radiator at 1300 K and enters the turbine via a single-vaned scroll. The hot gases are expanded through the turbine and then diffused before entering the hot side sector of the recuperator. The single shaft design is supported by air bearings. The high efficiency shaft mounted permanent magnet generator produces an output of 370 kW at a speed of 60,000 rpm. The total weight of the turbogenerator is estimated to be only 123 kg (less than 5% of the total power plant) and has a volume of approximately 0.11 cubic meters. This turbogenerator is a key element in achieving the 40 to 45% overall power plant thermal efficiency.

  18. Responsive Evaluation as a Guide to Design and Implementation: Case Study of an E-Health Learning System

    ERIC Educational Resources Information Center

    Schaffer, Scott P.; Kim, Hannah

    2012-01-01

    Evaluation of the design and implementation of a web-based e-health application offers an opportunity to apply extensive research findings and evidence-based practices from the learning and performance literature. In this study, we examined how interactions between stakeholders influenced the design, implementation, and outcomes of an e-health…

  19. A study of lead-acid battery efficiency near top-of-charge and the impact on PV system design

    SciTech Connect

    Stevens, J.W.; Corey, G.P.

    1996-07-01

    Knowledge of the charge efficiency of lead-acid batteries near top-of-charge is important to the design of small photovoltaic systems. In order to know how much energy is required from the photovoltaic array in order to accomplish the task of meeting load, including periodic full battery charge, a detailed knowledge of the battery charging efficiency as a function of state of charge is required, particularly in the high state-of-charge regime, as photovoltaic systems are typically designed to operate in the upper 20 to 30% of battery state-of-charge. This paper presents the results of a process for determining battery charging efficiency near top-of-charge and discusses the impact of these findings on the design of small PV systems.

  20. Systems Studies

    SciTech Connect

    Graham, R.L.

    1998-03-17

    The Systems Studies Activity had two objectives: (1) to investigate nontechnical barriers to the deployment of biomass production and supply systems and (2) to enhance and extend existing systems models of bioenergy supply and use. For the first objective, the Activity focused on existing bioenergy markets. Four projects were undertaken: a comparative analysis of bioenergy in Sweden and Austria; a one-day workshop on nontechnical barriers jointly supported by the Production Systems Activity; the development and testing of a framework for analyzing barriers and drivers to bioenergy markets; and surveys of wood pellet users in Sweden, Austria and the US. For the second objective, two projects were undertaken. First, the Activity worked with the Integrated BioEnergy Systems (TBS) Activity of TEA Bioenergy Task XIII to enhance the BioEnergy Assessment Model (BEAM). This model is documented in the final report of the IBS Activity. The Systems Studies Activity contributed to enhancing the feedstock portion of the model by developing a coherent set of willow, poplar, and switchgrass production modules relevant to both the US and the UK. The Activity also developed a pretreatment module for switchgrass. Second, the Activity sponsored a three-day workshop on modeling bioenergy systems with the objectives of providing an overview of the types of models used to evaluate bioenergy and promoting communication among bioenergy modelers. There were nine guest speakers addressing different types of models used to evaluate different aspects of bioenergy, ranging from technoeconomic models based on the ASPEN software to linear programming models to develop feedstock supply curves for the US. The papers from this workshop have been submitted to Biomass and Bioenergy and are under editorial review.

  1. Mechatronic system design course for undergraduate programmes

    NASA Astrophysics Data System (ADS)

    Saleem, A.; Tutunji, T.; Al-Sharif, L.

    2011-08-01

    Technology advancement and human needs have led to integration among many engineering disciplines. Mechatronics engineering is an integrated discipline that focuses on the design and analysis of complete engineering systems. These systems include mechanical, electrical, computer and control subsystems. In this paper, the importance of teaching mechatronic system design to undergraduate engineering students is emphasised. The paper offers the collaborative experience in preparing and delivering the course material for two universities in Jordan. A detailed description of such a course is provided and a case study is presented. The case study used is a final year project, where students applied a six-stage design procedure that is described in the paper.

  2. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary. [aircraft design of aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Baker, A. H.; Stone, J. E.

    1976-01-01

    A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.

  3. Designing and assessing a sustainable networked delivery (SND) system: hybrid business-to-consumer book delivery case study.

    PubMed

    Kim, Junbeum; Xu, Ming; Kahhat, Ramzy; Allenby, Braden; Williams, Eric

    2009-01-01

    We attempted to design and assess an example of a sustainable networked delivery (SND) system: a hybrid business-to-consumer book delivery system. This system is intended to reduce costs, achieve significant reductions in energy consumption, and reduce environmental emissions of critical local pollutants and greenhouse gases. The energy consumption and concomitant emissions of this delivery system compared with existing alternative delivery systems were estimated. We found that regarding energy consumption, an emerging hybrid delivery system which is a sustainable networked delivery system (SND) would consume 47 and 7 times less than the traditional networked delivery system (TND) and e-commerce networked delivery system (END). Regarding concomitant emissions, in the case of CO2, the SND system produced 32 and 7 times fewer emissions than the TND and END systems. Also the SND system offer meaningful economic benefit such as the costs of delivery and packaging, to the online retailer, grocery, and consumer. Our research results show that the SND system has a lot of possibilities to save local transportation energy consumption and delivery costs, and reduce environmental emissions in delivery system.

  4. Designing and assessing a sustainable networked delivery (SND) system: hybrid business-to-consumer book delivery case study.

    PubMed

    Kim, Junbeum; Xu, Ming; Kahhat, Ramzy; Allenby, Braden; Williams, Eric

    2009-01-01

    We attempted to design and assess an example of a sustainable networked delivery (SND) system: a hybrid business-to-consumer book delivery system. This system is intended to reduce costs, achieve significant reductions in energy consumption, and reduce environmental emissions of critical local pollutants and greenhouse gases. The energy consumption and concomitant emissions of this delivery system compared with existing alternative delivery systems were estimated. We found that regarding energy consumption, an emerging hybrid delivery system which is a sustainable networked delivery system (SND) would consume 47 and 7 times less than the traditional networked delivery system (TND) and e-commerce networked delivery system (END). Regarding concomitant emissions, in the case of CO2, the SND system produced 32 and 7 times fewer emissions than the TND and END systems. Also the SND system offer meaningful economic benefit such as the costs of delivery and packaging, to the online retailer, grocery, and consumer. Our research results show that the SND system has a lot of possibilities to save local transportation energy consumption and delivery costs, and reduce environmental emissions in delivery system. PMID:19209604

  5. Design/cost tradeoff studies. Appendix A. Supporting analyses and tradeoffs, book 1. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A listing of the Earth Observatory Satellite (EOS) candidate missions is presented for use as a baseline in describing the EOS payloads. The missions are identified in terms of first, second, and third generation payloads. The specific applications of the EOS satellites are defined. The subjects considered are: (1) orbit analysis, (2) space shuttle interfaces, (3) thematic mapping subsystem, (4) high resolution pointable imager subsystem, (5) the data collection system, (6) the synthetic aperture radar, (7) the passive multichannel microwave radiometer, and (8) the wideband communications and handling equipment. Illustrations of the satellite and launch vehicle configurations are provided. Block diagrams of the electronic circuits are included.

  6. Modular antenna design study

    NASA Technical Reports Server (NTRS)

    Ribble, J. W.

    1981-01-01

    The mechanical design of a modular antenna concept was developed sufficiently to allow manufacture of a working demonstration model of a module, to predict mass properties, and to make performance estimates for antenna reflectors composed of these modules. The primary features of this concept are: (1) each module is an autonomous structural element which can be attached to adjacent modules through a three point connection; (2) the upper surface is a folding hexagonal truss plate mechanism which serves as the supporting structure for a reflective surface; and (3) the entire truss and surface can be folded into a cylindrical envelope in which all truss elements are essentially parallel. The kinematic studies and engineering demonstration model fully verified the deployment kinematics, stowing philosophy, and deployment sequencing for large antenna modules. It was established that such modules can be stowed in packages as small as 25 cm in diameter, using 1.27 cm diameter structural tubes. The development activity indicates that this deployable modular approach towards building large structures in space will support erection of 450 m apertures for operation up to 3 GHz with a single space shuttle flight.

  7. MIUS community conceptual design study

    NASA Technical Reports Server (NTRS)

    Fulbright, B. E.

    1976-01-01

    The feasibility, practicality, and applicability of the modular integrated utility systems (MIUS) concept to a satellite new-community development with a population of approximately 100,000 were analyzed. Two MIUS design options, the 29-MIUS-unit (option 1) and the 8-MIUS-unit (option 2) facilities were considered. Each resulted in considerable resource savings when compared to a conventional utility system. Economic analyses indicated that the total cash outlay and operations and maintenance costs for these two options were considerably less than for a conventional system. Computer analyses performed in support of this study provided corroborative data for the study group. An environmental impact assessment was performed to determine whether the MIUS meets or will meet necessary environmental standards. The MIUS can provide improved efficiency in the conservation of natural resources while not adversely affecting the physical environment.

  8. Design and parametric study on energy harvesting from bridge vibration using tuned dual-mass damper systems

    NASA Astrophysics Data System (ADS)

    Takeya, Kouichi; Sasaki, Eiichi; Kobayashi, Yusuke

    2016-01-01

    A bridge vibration energy harvester has been proposed in this paper using a tuned dual-mass damper system, named hereafter Tuned Mass Generator (TMG). A linear electromagnetic transducer has been applied to harvest and make use of the unused reserve of energy the aforementioned damper system absorbs. The benefits of using dual-mass systems over single-mass systems for power generation have been clarified according to the theory of vibrations. TMG parameters have been determined considering multi-domain parameters, and TMG has been tuned using a newly proposed parameter design method. Theoretical analysis results have shown that for effective energy harvesting, it is essential that TMG has robustness against uncertainties in bridge vibrations and tuning errors, and the proposed parameter design method for TMG has demonstrated this feature.

  9. Designing an Adverse Drug Event Reporting System to Prevent Unintentional Reexposures to Harmful Drugs: Study Protocol for a Multiple Methods Design

    PubMed Central

    Small, Serena S; Badke, Katherin; Wickham, Maeve E; Bailey, Chantelle; Chruscicki, Adam; Ackerley, Christine; Balka, Ellen; Hohl, Corinne M

    2016-01-01

    Background Adverse drug events (ADEs) are unintended and harmful events related to medication use. Up to 30% of serious ADEs recur within six months because culprit drugs are unintentionally represcribed and redispensed. Improving the electronic communication of ADE information between care providers, and across care settings, has the potential to reduce recurrent ADEs. Objective We aim to describe the methods used to design Action ADE, a novel electronic ADE reporting system that can be leveraged to prevent unintentional reexposures to harmful drugs in British Columbia, Canada. Methods To develop the new system, our team will use action research and participatory design, approaches that employ social scientific research methods and practitioner participation to generate insights into work settings and problem resolution. We will develop a systematic search strategy to review existing ADE reporting systems identified in academic and grey literature, and analyze the content of these systems to identify core data fields used to communicate ADE information. We will observe care providers in the emergency departments and on the wards of two urban tertiary hospitals and one urban community hospital, in one rural ambulatory care center, and in three community pharmacies in British Columbia, Canada. We will also conduct participatory workshops with providers to understand their needs and priorities related to communicating ADEs and preventing erroneous represcribing or redispensing of culprit medications. These methods will inform the iterative development of a preliminary paper-based reporting form, which we will then pilot test with providers in a real-world setting. Results This is an ongoing project with results being published as analyses are completed. The systematic review has been completed; field observations, focus groups, and pilot testing of a preliminary paper-based design are ongoing. Results will inform the development of software that will enable

  10. Rapid Geometry Creation for Computer-Aided Engineering Parametric Analyses: A Case Study Using ComGeom2 for Launch Abort System Design

    NASA Technical Reports Server (NTRS)

    Hawke, Veronica; Gage, Peter; Manning, Ted

    2007-01-01

    ComGeom2, a tool developed to generate Common Geometry representation for multidisciplinary analysis, has been used to create a large set of geometries for use in a design study requiring analysis by two computational codes. This paper describes the process used to generate the large number of configurations and suggests ways to further automate the process and make it more efficient for future studies. The design geometry for this study is the launch abort system of the NASA Crew Launch Vehicle.

  11. The effect of design parameters of dynamic pedicle screw systems on kinematics and load bearing: an in vitro study.

    PubMed

    Schilling, C; Krüger, S; Grupp, T M; Duda, G N; Blömer, W; Rohlmann, A

    2011-02-01

    As an alternative treatment for chronic back pain due to disc degeneration motion preserving techniques such as posterior dynamic stabilization (PDS) has been clinically introduced, with the intention to alter the load transfer and the kinematics at the affected level to delay degeneration. However, up to the present, it remains unclear when a PDS is clinically indicated and how the ideal PDS mechanism should be designed to achieve this goal. Therefore, the objective of this study was to compare different PDS devices against rigid fixation to investigate the biomechanical impact of PDS design on stabilization and load transfer in the treated and adjacent cranial segment. Six human lumbar spine specimens (L3-L5) were tested in a spine loading apparatus. In vitro flexibility testing was performed by applying pure bending moments of 7.5 Nm without and with additional preload of 400 N in the three principal motion planes. Four PDS devices, "DYN" (Dynesys(®), Zimmer GmbH, Switzerland), "DSS™" (Paradigm Spine, Wurmlingen, Germany), and two prototypes of dynamic rods, "LSC" with a leaf spring, and "STC" with a spring tube (Aesculap AG, Tuttlingen, Germany), were tested in comparison to a rigid fixation device S(4) (Aesculap AG, Tuttlingen, Germany) "RIG", to the native situation "NAT" and to a defect situation "DEF" of the specimens. The instrumented level was L4-L5. The tested PDS devices comprising a stiffness range for axial stiffness of 10 N/mm to 230 N/mm and for bending stiffness of 3 N/mm to 15 N/mm. Range of motion (ROM), neutral zone (NZ), and intradiscal pressure (IDP) were analyzed for all instrumentation steps and load cases of the instrumented and non-instrumented level. In flexion, extension, and lateral bending, all systems, except STC, showed a significant reduction of ROM and NZ compared to the native situation (p < 0.05). Furthermore, we found no significant difference between DYN and RIG (p > 0.1). In axial rotation, only DSS and STC reduced the ROM

  12. Theoretical study of network design methodologies for the aerial relay system. [energy consumption and air traffic control

    NASA Technical Reports Server (NTRS)

    Rivera, J. M.; Simpson, R. W.

    1980-01-01

    The aerial relay system network design problem is discussed. A generalized branch and bound based algorithm is developed which can consider a variety of optimization criteria, such as minimum passenger travel time and minimum liner and feeder operating costs. The algorithm, although efficient, is basically useful for small size networks, due to its nature of exponentially increasing computation time with the number of variables.

  13. Scheduling language and algorithm development study. Volume 1, phase 2: Design considerations for a scheduling and resource allocation system

    NASA Technical Reports Server (NTRS)

    Morrell, R. A.; Odoherty, R. J.; Ramsey, H. R.; Reynolds, C. C.; Willoughby, J. K.; Working, R. D.

    1975-01-01

    Data and analyses related to a variety of algorithms for solving typical large-scale scheduling and resource allocation problems are presented. The capabilities and deficiencies of various alternative problem solving strategies are discussed from the viewpoint of computer system design.

  14. A study of alternative designs for a system to concentrate carbon dioxide in a hydrogen-depolarized cell

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Experimental results are presented on alternative designs for a hydrogen depolarized cell to concentrate CO2 in spacecraft atmospheric control systems. Data cover technical problems, methods for solving these problems, and the suitability of such a cell for CO2 removal and control of atmospheric humidity during the flight mode.

  15. Studies in Interior Design

    ERIC Educational Resources Information Center

    Environ Planning Design, 1970

    1970-01-01

    Floor plans and photographs illustrate a description of the Samuel C. Williams Library at Stevens Institute of Technology, Hoboken, N.J. The unusual interior design allows students to take full advantage of the library's resources. (JW)

  16. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 6: IPAD system development and operation

    NASA Technical Reports Server (NTRS)

    Redhed, D. D.; Tripp, L. L.; Kawaguchi, A. S.; Miller, R. E., Jr.

    1973-01-01

    The strategy of the IPAD implementation plan presented, proposes a three phase development of the IPAD system and technical modules, and the transfer of this capability from the development environment to the aerospace vehicle design environment. The system and technical module capabilities for each phase of development are described. The system and technical module programming languages are recommended as well as the initial host computer system hardware and operating system. The cost of developing the IPAD technology is estimated. A schedule displaying the flowtime required for each development task is given. A PERT chart gives the developmental relationships of each of the tasks and an estimate of the operational cost of the IPAD system is offered.

  17. Flight Design System-1 System Design Document. Volume 9: Executive logic flow, program design language

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The detailed logic flow for the Flight Design System Executive is presented. The system is designed to provide the hardware/software capability required for operational support of shuttle flight planning.

  18. Computer-aided system design

    NASA Technical Reports Server (NTRS)

    Walker, Carrie K.

    1991-01-01

    A technique has been developed for combining features of a systems architecture design and assessment tool and a software development tool. This technique reduces simulation development time and expands simulation detail. The Architecture Design and Assessment System (ADAS), developed at the Research Triangle Institute, is a set of computer-assisted engineering tools for the design and analysis of computer systems. The ADAS system is based on directed graph concepts and supports the synthesis and analysis of software algorithms mapped to candidate hardware implementations. Greater simulation detail is provided by the ADAS functional simulator. With the functional simulator, programs written in either Ada or C can be used to provide a detailed description of graph nodes. A Computer-Aided Software Engineering tool developed at the Charles Stark Draper Laboratory (CSDL CASE) automatically generates Ada or C code from engineering block diagram specifications designed with an interactive graphical interface. A technique to use the tools together has been developed, which further automates the design process.

  19. Conceptual design study of a superconducting spherical tokamak reactor with a self-consistent system analysis code

    NASA Astrophysics Data System (ADS)

    Hong, B. G.; Hwang, Y. S.; Kang, J. S.; Lee, D. W.; Joo, H. G.; Ono, M.

    2011-11-01

    In a spherical tokamak (ST) reactor, the radial build of toroidal field coil and the shield play a key role in determining the size of the reactor. For self-consistent determination of the reactor components and physics parameters, a system analysis code is coupled with a one-dimensional radiation transport code. A conceptual design study of a compact superconducting ST reactor with an aspect ratio of up to 2.0 is conducted and the optimum radial build is identified. It is shown that the use of an improved shielding material and high-temperature superconducting magnets with high critical current density opens up the possibility of a fusion power plant with compact size and small re-circulating power simultaneously at a low aspect ratio, and that by using an inboard neutron reflector instead of a breeding blanket, tritium self-sufficiency is possible with an outboard blanket only and thus a compact-sized all superconducting coil ST reactor is viable.

  20. Design study for a spatial heterodyne Doppler coherence imaging system for flow measurements on NSTX-U

    NASA Astrophysics Data System (ADS)

    Schwartz, Jacob; Jaworski, M. A.; Diallo, A.; Kaita, R.; Nichols, J. H.

    2015-11-01

    Measuring the flow of impurities in the SOL of NSTX-U can lead to understanding of main ion flow and heat transport. Spatial heterodyne Doppler coherence imaging is a technique that allows a single camera frame to record both the brightness and Doppler shift of an emitted spectral line over the entire field of view. With a tangential view on NSTX-U it is possible to tomographically reconstruct 2d (r-z) profiles of emissivity and flow velocity for an imaged impurity ion by assuming axisymmetry and field-aligned flow. One can derive the main ion parallel flow velocity by making four measurements and using additional assumptions. Imaging of two spectral lines each from two ion species allows solving for ne, Te, and the density of the two ion species by using ADAS emissivity tables. Since measurements of the velocity of two impurities are planned, it is possible to derive a main ion parallel velocity by using a reconstructed ni and Ti (from other diagnostics), a 1d conduction-limited SOL model, and a 1d model of forces on impurities. With fewer than four measurements, it is possible to derive the main ion velocity if the impurities are entrained in the flow. A design study for such a spatial heterodyne Doppler coherence imaging system on NSTX-U will be presented. Supported by U.S. DOE Contract No. DE-AC02-09CH11466.

  1. Conceptual design study of a 5 kilowatt solar dynamic Brayton power system using a dome Fresnel lens solar concentrator

    NASA Technical Reports Server (NTRS)

    Oneill, Mark J.; Mcdanal, A. J.; Spears, Don H.

    1989-01-01

    The primary project objective was to generate a conceptual design for a nominal 5 kW solar dynamic space power system, which uses a unique, patented, transmittance-optimized, dome-shaped, point-focus Fresnel lens as the optical concentrator. Compared to reflective concentrators, the dome lens allows 200 times larger slope errors for the same image displacement. Additionally, the dome lens allows the energy receiver, the power conversion unit (PCU), and the heat rejection radiator to be independently optimized in configuration and orientation, since none of these elements causes any aperture blockage. Based on optical and thermal trade studies, a 6.6 m diameter lens with a focal length of 7.2 m was selected. This lens should provide 87 percent net optical efficienty at 800X geometric concentration ratio. The large lens is comprised of 24 gores, which compactly stow together during launch, and automatically deploy on orbit. The total mass of the microglass lens panels, the graphite/epoxy support structure, and miscellaneous hardware is about 1.2 kg per square meter of aperture. The key problem for the dome lens approach relates to the selection of a space-durable lens material. For the first time, all-glass Fresnel lens samples were successfully made by a sol-gel casting process.

  2. Theory of reliable systems. [systems analysis and design

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1973-01-01

    The analysis and design of reliable systems are discussed. The attributes of system reliability studied are fault tolerance, diagnosability, and reconfigurability. Objectives of the study include: to determine properties of system structure that are conducive to a particular attribute; to determine methods for obtaining reliable realizations of a given system; and to determine how properties of system behavior relate to the complexity of fault tolerant realizations. A list of 34 references is included.

  3. Multi crop model climate risk country-level management design: case study on the Tanzanian maize production system

    NASA Astrophysics Data System (ADS)

    Chavez, E.

    2015-12-01

    Future climate projections indicate that a very serious consequence of post-industrial anthropogenic global warming is the likelihood of the greater frequency and intensity of extreme hydrometeorological events such as heat waves, droughts, storms, and floods. The design of national and international policies targeted at building more resilient and environmentally sustainable food systems needs to rely on access to robust and reliable data which is largely absent. In this context, the improvement of the modelling of current and future agricultural production losses using the unifying language of risk is paramount. In this study, we use a methodology that allows the integration of the current understanding of the various interacting systems of climate, agro-environment, crops, and the economy to determine short to long-term risk estimates of crop production loss, in different environmental, climate, and adaptation scenarios. This methodology is applied to Tanzania to assess optimum risk reduction and maize production increase paths in different climate scenarios. The simulations carried out use inputs from three different crop models (DSSAT, APSIM, WRSI) run in different technological scenarios and thus allowing to estimate crop model-driven risk exposure estimation bias. The results obtained also allow distinguishing different region-specific optimum climate risk reduction policies subject to historical as well as RCP2.5 and RCP8.5 climate scenarios. The region-specific risk profiles obtained provide a simple framework to determine cost-effective risk management policies for Tanzania and allow to optimally combine investments in risk reduction and risk transfer.

  4. Blindness in designing intelligent systems

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1988-01-01

    New investigations of the foundations of artificial intelligence are challenging the hypothesis that problem solving is the cornerstone of intelligence. New distinctions among three domains of concern for humans--description, action, and commitment--have revealed that the design process for programmable machines, such as expert systems, is based on descriptions of actions and induces blindness to nonanalytic action and commitment. Design processes focusing in the domain of description are likely to yield programs like burearcracies: rigid, obtuse, impersonal, and unable to adapt to changing circumstances. Systems that learn from their past actions, and systems that organize information for interpretation by human experts, are more likely to be successful in areas where expert systems have failed.

  5. Architecture as Design Study.

    ERIC Educational Resources Information Center

    Kauppinen, Heta

    1989-01-01

    Explores the use of analogies in architectural design, the importance of Gestalt theory and aesthetic cannons in understanding and being sensitive to architecture. Emphasizes the variation between public and professional appreciation of architecture. Notes that an understanding of architectural process enables students to improve the aesthetic…

  6. Tailoring Systems Engineering Processes in a Conceptual Design Environment: A Case Study at NASA Marshall Spaceflight Center's ACO

    NASA Technical Reports Server (NTRS)

    Mulqueen, John; Maples, C. Dauphne; Fabisinski, Leo, III

    2012-01-01

    This paper provides an overview of Systems Engineering as it is applied in a conceptual design space systems department at the National Aeronautics and Space Administration (NASA) Marshall Spaceflight Center (MSFC) Advanced Concepts Office (ACO). Engineering work performed in the NASA MFSC's ACO is targeted toward the Exploratory Research and Concepts Development life cycle stages, as defined in the International Council on Systems Engineering (INCOSE) System Engineering Handbook. This paper addresses three ACO Systems Engineering tools that correspond to three INCOSE Technical Processes: Stakeholder Requirements Definition, Requirements Analysis, and Integration, as well as one Project Process Risk Management. These processes are used to facilitate, streamline, and manage systems engineering processes tailored for the earliest two life cycle stages, which is the environment in which ACO engineers work. The role of systems engineers and systems engineering as performed in ACO is explored in this paper. The need for tailoring Systems Engineering processes, tools, and products in the ever-changing engineering services ACO provides to its customers is addressed.

  7. Cockpit control system conceptual design

    NASA Technical Reports Server (NTRS)

    Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo

    1993-01-01

    The purpose of this project was to provide a means for operating the ailerons, elevator, elevator trim, rudder, nosewheel steering, and brakes in the Triton primary flight trainer. The main design goals under consideration were to illustrate system and subsystem integration, control function ability, and producibility. Weight and maintenance goals were addressed.

  8. Thermionic Reactor Design Studies

    SciTech Connect

    Schock, Alfred

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

  9. Integrated Aeropropulsion Control System Design

    NASA Technical Reports Server (NTRS)

    Lin, C. -F.; Hurley, Francis X.; Huang, Jie; Hadaegh, F. Y.

    1996-01-01

    %T Integrated Aeropropulsion Control System Design%A C-F. Lin%A Francis X. Hurley%A Jie Huang%A F. Y. Hadaegh%J International Conference on Control and Information(psi)995%C Hong Kong%D June 1995%K aeropropulsion, control, system%U http://jpltrs.jpl.nasa.gov/1995/95-0658.pdfAn integrated intelligent control approach is proposed to design a high performance control system for aeropropulsion systems based on advanced sensor processing, nonlinear control and neural fuzzy control integration. Our approach features the following innovations:??e complexity and uncertainty issues are addressed via the distributed parallel processing, learning, and online reoptimization properties of neural networks.??e nonlinear dynamics and the severe coupling can be naturally incorporated into the design framework.??e knowledge base and decision making logic furnished by fuzzy systems leads to a human intelligence enhanced control scheme.In addition, fault tolerance, health monitoring and reconfigurable control strategies will be accommodated by this approach to ensure stability, graceful degradation and reoptimization in the case of failures, malfunctions and damage.!.

  10. Heliostat design for the daylighting system.

    PubMed

    Chang, Chih-Hung; Hsiso, Horng-Ching; Chang, Cheng-Ming; Wang, Chen-You; Lin, Tzung-Han; Chen, Yi-Yung; Lai, Yi-Lung; Yen, Cho-Jung; Chen, Kuan-Yu; Whang, Allen Jong-Woei

    2014-10-10

    The daylighting system is designed to guide sunlight into buildings for illumination. It has the best illumination performance when sunlight vertically impinges on the collector of the daylighting system, while it has low performance when sunlight impinges obliquely. To overcome the problem, this paper investigates the design of a heliostat that reflects sunlight vertically onto a daylighting system. This study proposes a 3×3 mirror matrix heliostat, which is different from the traditional heliostat with one single mirror. With the heliostat, the system efficiency increases as high as 3.32 times.

  11. A Case Study on the Application of a Structured Experimental Method for Optimal Parameter Design of a Complex Control System

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2015-01-01

    This report documents a case study on the application of Reliability Engineering techniques to achieve an optimal balance between performance and robustness by tuning the functional parameters of a complex non-linear control system. For complex systems with intricate and non-linear patterns of interaction between system components, analytical derivation of a mathematical model of system performance and robustness in terms of functional parameters may not be feasible or cost-effective. The demonstrated approach is simple, structured, effective, repeatable, and cost and time efficient. This general approach is suitable for a wide range of systems.

  12. Automating software design system DESTA

    NASA Technical Reports Server (NTRS)

    Lovitsky, Vladimir A.; Pearce, Patricia D.

    1992-01-01

    'DESTA' is the acronym for the Dialogue Evolutionary Synthesizer of Turnkey Algorithms by means of a natural language (Russian or English) functional specification of algorithms or software being developed. DESTA represents the computer-aided and/or automatic artificial intelligence 'forgiving' system which provides users with software tools support for algorithm and/or structured program development. The DESTA system is intended to provide support for the higher levels and earlier stages of engineering design of software in contrast to conventional Computer Aided Design (CAD) systems which provide low level tools for use at a stage when the major planning and structuring decisions have already been taken. DESTA is a knowledge-intensive system. The main features of the knowledge are procedures, functions, modules, operating system commands, batch files, their natural language specifications, and their interlinks. The specific domain for the DESTA system is a high level programming language like Turbo Pascal 6.0. The DESTA system is operational and runs on an IBM PC computer.

  13. DESIGN PACKAGE 1D SYSTEM SAFETY ANALYSIS

    SciTech Connect

    L.R. Eisler

    1995-02-02

    The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1D, Surface Facilities, (for a list of design items included in the package 1D system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1D structures/systems/components in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component (S/S/C) design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the Design Package 1D structures/systems/components (S/S/Cs) during normal operations excluding hazards occurring during maintenance and ''off normal'' operations.

  14. Advanced turbocharger design study program

    NASA Technical Reports Server (NTRS)

    Culy, D. G.; Heldenbrand, R. W.; Richardson, N. R.

    1984-01-01

    The advanced Turbocharger Design Study consisted of: (1) the evaluation of three advanced engine designs to determine their turbocharging requirements, and of technologies applicable to advanced turbocharger designs; (2) trade-off studies to define a turbocharger conceptual design and select the engine with the most representative requirements for turbocharging; (3) the preparation of a turbocharger conceptual design for the Curtiss Wright RC2-32 engine selected in the trade-off studies; and (4) the assessment of market impact and the preparation of a technology demonstration plan for the advanced turbocharger.

  15. Telecommunications Systems Design Techniques Handbook

    NASA Technical Reports Server (NTRS)

    Edelson, R. E. (Editor)

    1972-01-01

    The Deep Space Network (DSN) increasingly supports deep space missions sponsored and managed by organizations without long experience in DSN design and operation. The document is intended as a textbook for those DSN users inexperienced in the design and specification of a DSN-compatible spacecraft telecommunications system. For experienced DSN users, the document provides a reference source of telecommunication information which summarizes knowledge previously available only in a multitude of sources. Extensive references are quoted for those who wish to explore specific areas more deeply.

  16. Integrated technology wing design study

    NASA Technical Reports Server (NTRS)

    Hays, A. P.; Beck, W. E.; Morita, W. H.; Penrose, B. J.; Skarshaug, R. E.; Wainfan, B. S.

    1984-01-01

    The technology development costs and associated benefits in applying advanced technology associated with the design of a new wing for a new or derivative trijet with a capacity for 350 passengers and maximum range of 8519 km, entering service in 1990 were studied. The areas of technology are: (1) airfoil technology; (2) planform parameters; (3) high lift; (4) pitch active control system; (5) all electric systems; (6) E to 3rd power propulsion; (7) airframe/propulsion integration; (8) graphite/epoxy composites; (9) advanced aluminum alloys; (10) titanium alloys; and (11) silicon carbide/aluminum composites. These technologies were applied to the reference aircraft configuration. Payoffs were determined for block fuel reductions and net value of technology. These technologies are ranked for the ratio of net value of technology (NVT) to technology development costs.

  17. Engineering Design Information System (EDIS)

    SciTech Connect

    Smith, P.S.; Short, R.D.; Schwarz, R.K.

    1990-11-01

    This manual is a guide to the use of the Engineering Design Information System (EDIS) Phase I. The system runs on the Martin Marietta Energy Systems, Inc., IBM 3081 unclassified computer. This is the first phase in the implementation of EDIS, which is an index, storage, and retrieval system for engineering documents produced at various plants and laboratories operated by Energy Systems for the Department of Energy. This manual presents on overview of EDIS, describing the system's purpose; the functions it performs; hardware, software, and security requirements; and help and error functions. This manual describes how to access EDIS and how to operate system functions using Database 2 (DB2), Time Sharing Option (TSO), Interactive System Productivity Facility (ISPF), and Soft Master viewing features employed by this system. Appendix A contains a description of the Soft Master viewing capabilities provided through the EDIS View function. Appendix B provides examples of the system error screens and help screens for valid codes used for screen entry. Appendix C contains a dictionary of data elements and descriptions.

  18. ARGOS laser system mechanical design

    NASA Astrophysics Data System (ADS)

    Deysenroth, M.; Honsberg, M.; Gemperlein, H.; Ziegleder, J.; Raab, W.; Rabien, S.; Barl, L.; Gässler, W.; Borelli, J. L.

    2014-07-01

    ARGOS, a multi-star adaptive optics system is designed for the wide-field imager and multi-object spectrograph LUCI on the LBT (Large Binocular Telescope). Based on Rayleigh scattering the laser constellation images 3 artificial stars (at 532 nm) per each of the 2 eyes of the LBT, focused at a height of 12 km (Ground Layer Adaptive Optics). The stars are nominally positioned on a circle 2' in radius, but each star can be moved by up to 0.5' in any direction. For all of these needs are following main subsystems necessary: 1. A laser system with its 3 Lasers (Nd:YAG ~18W each) for delivering strong collimated light as for LGS indispensable. 2. The Launch system to project 3 beams per main mirror as a 40 cm telescope to the sky. 3. The Wave Front Sensor with a dichroic mirror. 4. The dichroic mirror unit to grab and interpret the data. 5. A Calibration Unit to adjust the system independently also during day time. 6. Racks + platforms for the WFS units. 7. Platforms and ladders for a secure access. This paper should mainly demonstrate how the ARGOS Laser System is configured and designed to support all other systems.

  19. Dual hologram design study

    NASA Technical Reports Server (NTRS)

    Liu, H. K.

    1978-01-01

    A phase modulated triple exposure technique was incorporated into a holographic nondestructive test (HNDT) system. The technique was able to achieve a goal of simultaneously identifying the zero-order fringe and determining the direction of motion (or displacement). Basically, the technique involves the addition of one more exposure, during the loading of the tested object, to the conventional double-exposure hologram. A phase shifter is added to either the object beam or the reference beam during the second and third exposure. Theoretical analysis with the assistance of computer simulation illustrated the feasibility of implementing the phase modulation and triple-exposure in the HNDT systems. Main advantages of the technique are the enhancement of accuracy in data interpretation and a better determination of the nature of the flaws in the tested object.

  20. Preliminary design and manufacturing feasibility study for a machined Zircaloy triangular pitch fuel rod support system (grids) (AWBA development program)

    SciTech Connect

    Horwood, W A

    1981-07-01

    General design features and manufacturing operations for a high precision machined Zircaloy fuel rod support grid intended for use in advanced light water prebreeder or breeder reactor designs are described. The grid system consists of a Zircaloy main body with fuel rod and guide tube cells machined using wire EDM, a separate AM-350 stainless steel insert spring which fits into a full length T-slot in each fuel rod cell, and a thin (0.025'' or 0.040'' thick) wire EDM machined Zircaloy coverplate laser welded to each side of the grid body to retain the insert springs. The fuel rods are placed in a triangular pitch array with a tight rod-to-rod spacing of 0.063 inch nominal. Two dimples are positioned at the mid-thickness of the grid (single level) with a 90/sup 0/ included angle. Data is provided on the effectiveness of the manufacturing operations chosen for grid machining and assembly.

  1. Tracking and data relay satellite system configuration and tradeoff study. Volume 5: TDRS spacecraft design, part 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A dual spin stabilized TDR spacecraft design is presented for low data rate (LDR) and medium data rate (MDR) user spacecraft telecommunication relay service. The relay satellite provides command and data return channels for unmanned users together with duplex voice and data communication channels for manned user spacecraft. TDRS/ground links are in the Ku band. Command links are provided at UHF for LDR users and S band for MDR users. Voice communication channels are provided at UHF/VHF for LDR users and at S band for MDR users. The spacecraft is designed for launch on the Delta 2914 with system deployment planned for 1978. This volume contains a description of the overall TDR spacecraft configuration, a detailed description of the spacecraft subsystems, a reliability analysis, and a product effectiveness plan.

  2. SIRTF Science Operations System Design

    NASA Technical Reports Server (NTRS)

    Green, William

    1999-01-01

    SIRTF Science Operations System Design William B. Green Manager, SIRTF Science Center California Institute of Technology M/S 310-6 1200 E. California Blvd., Pasadena CA 91125 (626) 395 8572 Fax (626) 568 0673 bgreen@ipac.caltech.edu. The Space Infrared Telescope Facility (SIRTF) will be launched in December 2001, and perform an extended series of science observations at wavelengths ranging from 20 to 160 microns for five years or more. The California Institute of Technology has been selected as the home for the SIRTF Science Center (SSC). The SSC will be responsible for evaluating and selecting observation proposals, providing technical support to the science community, performing mission planning and science observation scheduling activities, instrument calibration during operations and instrument health monitoring, production of archival quality data products, and management of science research grants. The science payload consists of three instruments delivered by instrument Principal Investigators located at University of Arizona, Cornell, and Harvard Smithsonian Astrophysical Observatory. The SSC is responsible for design, development, and operation of the Science Operations System (SOS) which will support the functions assigned to the SSC by NASA. The SIRTF spacecraft, mission profile, and science instrument design have undergone almost ten years of refinement. SIRTF development and operations activities are highly cost constrained. The cost constraints have impacted the design of the SOS in several ways. The Science Operations System has been designed to incorporate a set of efficient, easy to use tools which will make it possible for scientists to propose observation sequences in a rapid and automated manner. The use of highly automated tools for requesting observations will simplify the long range observatory scheduling process, and the short term scheduling of science observations. Pipeline data processing will be highly automated and data

  3. Northern Power Systems WindPACT Drive Train Alternative Design Study Report; Period of Performance: April 12, 2001 to January 31, 2005

    SciTech Connect

    Bywaters, G.; John, V.; Lynch, J.; Mattila, P.; Norton, G.; Stowell, J.; Salata, M.; Labath, O.; Chertok, A.; Hablanian, D.

    2004-10-01

    The National Renewable Energy Laboratory (NREL) Wind Partnerships for Advanced Component Technologies (WindPACT) project seeks to advance wind turbine technology by exploring innovative concepts in drivetrain design. A team led by Northern Power Systems (Northern) of Waitsfield, Vermont, was chosen to perform this work. Conducted under subcontract YCX-1-30209-02, project objectives are to identify, design, and test a megawatt (MW)-scale drivetrain with the lowest overall life cycle cost. The project entails three phases: preliminary study of alternative drivetrain designs (Phase I), detailed design development (Phase II), and proof of concept fabrication and test (Phase III). This report summarizes the results of the preliminary design study (Phase I).

  4. ACSYNT inner loop flight control design study

    NASA Technical Reports Server (NTRS)

    Bortins, Richard; Sorensen, John A.

    1993-01-01

    The NASA Ames Research Center developed the Aircraft Synthesis (ACSYNT) computer program to synthesize conceptual future aircraft designs and to evaluate critical performance metrics early in the design process before significant resources are committed and cost decisions made. ACSYNT uses steady-state performance metrics, such as aircraft range, payload, and fuel consumption, and static performance metrics, such as the control authority required for the takeoff rotation and for landing with an engine out, to evaluate conceptual aircraft designs. It can also optimize designs with respect to selected criteria and constraints. Many modern aircraft have stability provided by the flight control system rather than by the airframe. This may allow the aircraft designer to increase combat agility, or decrease trim drag, for increased range and payload. This strategy requires concurrent design of the airframe and the flight control system, making trade-offs of performance and dynamics during the earliest stages of design. ACSYNT presently lacks means to implement flight control system designs but research is being done to add methods for predicting rotational degrees of freedom and control effector performance. A software module to compute and analyze the dynamics of the aircraft and to compute feedback gains and analyze closed loop dynamics is required. The data gained from these analyses can then be fed back to the aircraft design process so that the effects of the flight control system and the airframe on aircraft performance can be included as design metrics. This report presents results of a feasibility study and the initial design work to add an inner loop flight control system (ILFCS) design capability to the stability and control module in ACSYNT. The overall objective is to provide a capability for concurrent design of the aircraft and its flight control system, and enable concept designers to improve performance by exploiting the interrelationships between

  5. Design and validation of a multi-electrode bioimpedance system for enhancing spatial resolution of cellular impedance studies.

    PubMed

    Alexander, Frank A; Celestin, Michael; Price, Dorielle T; Nanjundan, Meera; Bhansali, Shekhar

    2013-07-01

    This paper reports the design and evaluation of a multi-electrode design that improves upon the statistical significance and spatial resolution of cellular impedance data measured using commercial electric cell-substrate impedance sensing (ECIS) systems. By evaluating cellular impedance using eight independent sensing electrodes, position-dependent impedance measurements can be recorded across the device and compare commonly used equivalent circuit and mathematical models for extraction of cell parameters. Data from the 8-electrode device was compared to data taken from commercial electric cell-substrate impedance sensing (ECIS) system by deriving a relationship between equivalent circuit and mathematically modelled parameters. The impedance systems were evaluated and compared by investigating the effects of arsenic trioxide (As2O3), a well-established chemotherapeutic agent, on ovarian cancer cells. Impedance spectroscopy, a non-destructive, label-free technique, was used to continuously measure the frequency-dependent cellular properties, without adversely affecting the cells. The importance of multiple measurements within a cell culture was demonstrated; and the data illustrated that the non-uniform response of cells within a culture required redundant measurements in order to obtain statistically significant data, especially for drug discovery applications. Also, a correlation between equivalent circuit modelling and mathematically modelled parameters was derived, allowing data to be compared across different modelling techniques.

  6. Research study on stabilization and control: Modern sampled-data control theory. Design of the large space telescope system

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.; Singh, G.

    1975-01-01

    Conditions of self-sustained oscillations in a two-axis model of the nonlinear LST system are studied. The describing function of the CMG frictional nonlinearity of the LST system is used for the analysis, as well as continuous-data and discrete-data models of the simplified LST control system. A numerical-iterative method is described for the analysis of the two-axis system. Approximation methods and the direct plotting of the stability equation are implemented in the study. It is shown that although the dynamics of the two axes are identical, the amplitudes of self-sustained oscillations in the two axes may in principle be different. Analysis shows that the LST systems are of equal amplitudes but with 180-degree phase shift.

  7. Paired watershed study design

    SciTech Connect

    Clausen, J.C.; Spooner, J.

    1993-09-01

    The purpose of the fact sheet is to describe the paired watershed approach for conducting nonpoint source (NPS) water quality studies. The basic approach requires a minimum of two watersheds - control and treatment - and two periods of study - calibration and treatment. The basis of the paired watershed approach is that there is a quantifiable relationship between paired water quality data for the two watersheds, and that this relationship is valid until a major change is made in one of the watersheds.

  8. Optimal design of saltwater intrusion control systems by Global Interactive Response Surfaces: the Nauru island case study

    NASA Astrophysics Data System (ADS)

    Alberti, Luca; Oberto, Gabriele; Pianosi, Francesca; Castelletti, Andrea

    2013-04-01

    Infiltration galleries and scavenger wells are often constructed to prevent saltwater intrusion in coastal aquifers. The optimal design of these infrastructures can be framed as a multi-objective optimization problem balancing availability of fresh water supply and installation/operation costs. High fidelity simulation models of the flow and transport processes can be used to link design parameters (e.g. wells location, size and pumping rates) to objective functions. However, the incorporation of these simulation models within an optimization-based planning framework is not straightforward because of the computational requirements of the model itself and the computational limitations of the optimization algorithms. In this study we investigate the potential for the Global Interactive Response Surface (GIRS) methodology to overcome these technical limitations. The GIRS methodology is used to recursively build a non-dynamic emulator of the process-based simulation model that maps design options into objectives values and can be used in place of the original model to more quickly explore the design space. The approach is used to plan infrastructural interventions for controlling saltwater intrusion and ensuring sustainable groundwater supply for Nauru, a Pacific island republic in Micronesia. GIRS is used to emulate a SEAWAT density driven groundwater flow-and-transport simulation model. Results show the potential applicability of the proposed approach for optimal planning of coastal aquifers.

  9. Design Evolution Study - Aging Options

    SciTech Connect

    P. McDaniel

    2002-04-05

    The purpose of this study is to identify options and issues for aging commercial spent nuclear fuel received for disposal at the Yucca Mountain Mined Geologic Repository. Some early shipments of commercial spent nuclear fuel to the repository may be received with high-heat-output (younger) fuel assemblies that will need to be managed to meet thermal goals for emplacement. The capability to age as much as 40,000 metric tons of heavy metal of commercial spent nuclear he1 would provide more flexibility in the design to manage this younger fuel and to decouple waste receipt and waste emplacement. The following potential aging location options are evaluated: (1) Surface aging at four locations near the North Portal; (2) Subsurface aging in the permanent emplacement drifts; and (3) Subsurface aging in a new subsurface area. The following aging container options are evaluated: (1) Complete Waste Package; (2) Stainless Steel inner liner of the waste package; (3) Dual Purpose Canisters; (4) Multi-Purpose Canisters; and (5) New disposable canister for uncanistered commercial spent nuclear fuel. Each option is compared to a ''Base Case,'' which is the expected normal waste packaging process without aging. A Value Engineering approach is used to score each option against nine technical criteria and rank the options. Open issues with each of the options and suggested future actions are also presented. Costs for aging containers and aging locations are evaluated separately. Capital costs are developed for direct costs and distributable field costs. To the extent practical, unit costs are presented. Indirect costs, operating costs, and total system life cycle costs will be evaluated outside of this study. Three recommendations for aging commercial spent nuclear fuel--subsurface, surface, and combined surface and subsurface are presented for further review in the overall design re-evaluation effort. Options that were evaluated but not recommended are: subsurface aging in a new

  10. Characterization of complex systems using the design of experiments approach: transient protein expression in tobacco as a case study.

    PubMed

    Buyel, Johannes Felix; Fischer, Rainer

    2014-01-01

    Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems. PMID:24514765

  11. Space systems design at Utah State University - A total approach

    NASA Technical Reports Server (NTRS)

    Redd, Frank J.

    1992-01-01

    An account is given of an Advanced Design Program, developed under the auspices of NASA/USRA, which uses a six quarter-hour multidisciplinary systems-design course to teach spacecraft design. The course integrates engineering skills with system-design principles, while emphasizing written and oral communications. The setting for such student efforts is patterned after existing high-tech spacecraft-design organizations. The classes address design tradeoff decisions, parametric studies, and design reviews, as well as project-continuations.

  12. Design study of a 15 kW free-piston Stirling engine-linear alternator for dispersed solar electric power systems

    NASA Technical Reports Server (NTRS)

    Dochat, G. R.; Chen, H. S.; Bhate, S.; Marusak, T.

    1979-01-01

    A conceptual design of a free piston solar Stirling engine-linear alternator which can be designed and developed to meet the requirements of a near-term solar test bed engine with minimum risks was developed. The conceptual design was calculated to have an overall system efficiency of 38% and provide 15kW electric output. The free piston engine design incorporates features such as gas bearings, close clearance seals, and gas springs. This design is hermetically sealed to provide long life, reliability, and maintenance free operation. An implementation assessment study performed indicates that the free piston solar Stirling engine-linear alternator can be manufactured at a reasonable price cost (direct labor plus material) of $2,500 per engine in production quantities of 25,000 units per year. Opportunity for significant reduction of cost was also identified.

  13. DESIGN PACKAGE 1E SYSTEM SAFETY ANALYSIS

    SciTech Connect

    M. Salem

    1995-06-23

    The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1E, Surface Facilities, (for a list of design items included in the package 1E system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1E structures/systems/components(S/S/Cs) in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions.

  14. Content of system design descriptions

    SciTech Connect

    1998-10-01

    A System Design Description (SDD) describes the requirements and features of a system. This standard provides guidance on the expected technical content of SDDs. The need for such a standard was recognized during efforts to develop SDDs for safety systems at DOE Hazard Category 2 nonreactor nuclear facilities. Existing guidance related to the corresponding documents in other industries is generally not suitable to meet the needs of DOE nuclear facilities. Across the DOE complex, different contractors have guidance documents, but they vary widely from site to site. While such guidance documents are valuable, no single guidance document has all the attributes that DOE considers important, including a reasonable degree of consistency or standardization. This standard is a consolidation of the best of the existing guidance. This standard has been developed with a technical content and level of detail intended to be most applicable to safety systems at DOE Hazard Category 2 nonreactor nuclear facilities. Notwithstanding that primary intent, this standard is recommended for other systems at such facilities, especially those that are important to achieving the programmatic mission of the facility. In addition, application of this standard should be considered for systems at other facilities, including non-nuclear facilities, on the basis that SDDs may be beneficial and cost-effective.

  15. Design Studies of the Calorimeter Systems for the sPHENIX Experiment at RHIC and Future Upgrade Plans

    NASA Astrophysics Data System (ADS)

    Woody, C.; Kistenev, E.; PHENIX Collaboration

    2015-02-01

    The PHENIX Experiment at RHIC is planning a series of major upgrades that will enable a comprehensive measurement of jets in relativistic heavy ion collisions, provide enhanced physics capabilities for studying nucleon-nucleus and polarized proton collisions, and allow a detailed study of electron-nucleus collisions at the Electron Ion Collider at Brookhaven (eRHIC). The first of these upgrades, sPHENIX, will be based on the former BaBar magnet and will include a hadronic calorimeter and new electromagnetic calorimeter that will cover ±1.1 units in pseudorapidity and 2π in azimuth in the central region, resulting in a factor of 6 increase in acceptance over the present PHENIX detector. The electromagnetic calorimeter will be a tungsten scintillating fiber design with a radiation length ~ 7 mm and a Moliere radius ~ 2 cm. It will have a total depth of ~ 18 radiation lengths and an energy resolution ~ 15%/√E. The hadronic calorimeter will consist of steel plates with scintillating tiles in between that are read out with wavelength shifting fibers, It will have a total depth of ~ 5 interaction lengths and an energy resolution 100%/√E. Both calorimeters will use silicon photomultipliers as the readout sensor. Detailed design studies and Monte Carlo simulations for both calorimeters have been carried out and prototype detectors have been constructed and tested in a test beam at Fermilab in February 2014. This contribution describes these design studies for the sPHENIX experiment and its future upgrade plans at RHIC.

  16. Computerized Adaptive Testing System Design: Preliminary Design Considerations.

    ERIC Educational Resources Information Center

    Croll, Paul R.

    A functional design model for a computerized adaptive testing (CAT) system was developed and presented through a series of hierarchy plus input-process-output (HIPO) diagrams. System functions were translated into system structure: specifically, into 34 software components. Implementation of the design in a physical system was addressed through…

  17. Prototype solar-heating system design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Design package for complete residential solar-heating system is given. Includes documents and drawings describing performance design, verification standards, and analysis of system with sufficient information to assemble working system.

  18. Design and Simulation Studies of a One-tenth Scale Final Focus System for Heavy Ion Fussion

    NASA Astrophysics Data System (ADS)

    Wu, X.; York, R. C.; Bangerter, R.; Faltens, A.; Fawley, W.; Judd, D.; Lee, E.

    1997-05-01

    A scaled test of a final focus lattice for Heavy Ion Fusion (HIF) is planned at LBNL. The test parameters were set by scaling the length dimensions of the envelope equation by one tenth while maintaining the generalized perveance. The values to be scaled were taken in large part to be those of the HIBALL-II final focus system.(H. Wollnik, KfK-3840, Kernforschungszentrum Karlsruhe, 1985) The planned experimental system will focus a 120 keV Cs^+ beam to a scaled radial spot size of 0.25 mm. Tracking studies of the tenth-scale system have been performed at NSCL using a version of COSY INIFINITY(M. Berz, MSUCL-977, Michigan State University, 1995) modified to include a linear space charge force. A description of the planned experimental system, the beam parameters, and simulation results will be presented.

  19. Design Study of Propulsion and Drive Systems for the Large Civil TiltRotor (LCTR2) Rotorcraft

    NASA Technical Reports Server (NTRS)

    Robuck, Mark; Wilkerson, Joseph; Zhang, Yiyi; Snyder, Christopher A.; Vonderwell, Daniel

    2013-01-01

    Boeing, Rolls Royce, and NASA have worked together to complete a parametric sizing study for NASA's Large Civil Tilt Rotor (LCTR2) concept 2nd iteration. Vehicle gross weight and fuel usage were evaluated as propulsion and drive system characteristics were varied to maximize the benefit of reduced rotor tip speed during cruise conditions. The study examined different combinations of engine and gearbox variability to achieve rotor cruise tip speed reductions down to 54% of the hover tip speed. Previous NASA studies identified that a 54% rotor speed reduction in cruise minimizes vehicle gross weight and fuel burn. The LCTR2 was the study baseline for initial sizing. This study included rotor tip speed ratios (cruise to hover) of 100%, 77% and 54% at different combinations of engine RPM and gearbox speed reductions, which were analyzed to achieve the lightest overall vehicle gross weight (GW) at the chosen rotor tip speed ratio. Different engine and gearbox technology levels are applied ranging from commercial off-the-shelf (COTS) engines and gearbox technology to entry-in-service (EIS) dates of 2025 and 2035 to assess the benefits of advanced technology on vehicle gross weight and fuel burn. Interim results were previously reported1. This technical paper extends that work and summarizes the final study results including additional engine and drive system study accomplishments. New vehicle sizing data is presented for engine performance at a single operating speed with a multispeed drive system. Modeling details for LCTR2 vehicle sizing and subject engine and drive sub-systems are presented as well. This study was conducted in support of NASA's Fundamental Aeronautics Program, Subsonic Rotary Wing Project.

  20. What could they have been thinking? How sociotechnical system design influences cognition: a case study of the Stockwell shooting.

    PubMed

    Jenkins, Daniel P; Salmon, Paul M; Stanton, Neville A; Walker, Guy H; Rafferty, Laura

    2011-02-01

    Understanding why an individual acted in a certain way is of fundamental importance to the human factors community, especially when the choice of action results in an undesirable outcome. This challenge is typically tackled by applying retrospective interview techniques to generate models of what happened, recording deviations from a 'correct procedure'. While such approaches may have great utility in tightly constrained procedural environments, they are less applicable in complex sociotechnical systems that require individuals to modify procedures in real time to respond to a changing environment. For complex sociotechnical systems, a formative approach is required that maps the information available to the individual and considers its impact on performance and action. A context-specific, activity-independent, constraint-based model forms the basis of this approach. To illustrate, an example of the Stockwell shooting is used, where an innocent man, mistaken for a suicide bomber, was shot dead. Transferable findings are then presented. STATEMENT OF RELEVANCE: This paper presents a new approach that can be applied proactively to consider how sociotechnical system design, and the information available to an individual, can affect their performance. The approach is proposed to be complementary to the existing tools in the mental models phase of the cognitive work analysis framework. PMID:21294009

  1. Effects of Neoprene Wrist/Hand Splints on Handwriting for Students with Joint Hypermobility Syndrome: A Single System Design Study

    ERIC Educational Resources Information Center

    Frohlich, Lauren; Wesley, Alison; Wallen, Margaret; Bundy, Anita

    2012-01-01

    Purpose: Pain associated with hypermobility of wrist and hand joints can contribute to decreased handwriting output. This study examined the effectiveness of a neoprene wrist/hand splint in reducing pain and increasing handwriting speed and endurance for students with joint hypermobility syndrome. Methods: Multiple baseline, single system design…

  2. Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    NASA Technical Reports Server (NTRS)

    Harper, R. E.; Alger, L. S.; Babikyan, C. A.; Butler, B. P.; Friend, S. A.; Ganska, R. J.; Lala, J. H.; Masotto, T. K.; Meyer, A. J.; Morton, D. P.

    1992-01-01

    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions.

  3. Optimization methods for alternative energy system design

    NASA Astrophysics Data System (ADS)

    Reinhardt, Michael Henry

    An electric vehicle heating system and a solar thermal coffee dryer are presented as case studies in alternative energy system design optimization. Design optimization tools are compared using these case studies, including linear programming, integer programming, and fuzzy integer programming. Although most decision variables in the designs of alternative energy systems are generally discrete (e.g., numbers of photovoltaic modules, thermal panels, layers of glazing in windows), the literature shows that the optimization methods used historically for design utilize continuous decision variables. Integer programming, used to find the optimal investment in conservation measures as a function of life cycle cost of an electric vehicle heating system, is compared to linear programming, demonstrating the importance of accounting for the discrete nature of design variables. The electric vehicle study shows that conservation methods similar to those used in building design, that reduce the overall UA of a 22 ft. electric shuttle bus from 488 to 202 (Btu/hr-F), can eliminate the need for fossil fuel heating systems when operating in the northeast United States. Fuzzy integer programming is presented as a means of accounting for imprecise design constraints such as being environmentally friendly in the optimization process. The solar thermal coffee dryer study focuses on a deep-bed design using unglazed thermal collectors (UTC). Experimental data from parchment coffee drying are gathered, including drying constants and equilibrium moisture. In this case, fuzzy linear programming is presented as a means of optimizing experimental procedures to produce the most information under imprecise constraints. Graphical optimization is used to show that for every 1 m2 deep-bed dryer, of 0.4 m depth, a UTC array consisting of 5, 1.1 m 2 panels, and a photovoltaic array consisting of 1, 0.25 m 2 panels produces the most dry coffee per dollar invested in the system. In general this study

  4. Validation of an automated punctate mechanical stimuli delivery system designed for fMRI studies in rodents.

    PubMed

    Governo, Ricardo Jose Moylan; Prior, Malcolm John William; Morris, Peter Gordon; Marsden, Charles Alexander; Chapman, Victoria

    2007-06-15

    Functional magnetic resonance imaging (fMRI) is increasingly being used for animal studies studying the transmission of nociceptive information. Application of noxious mechanical stimuli is widely used for animal and human assessment of pain processing. Any accessory hardware used in animal imaging studies must, however, be sufficiently small to fit in the magnet bore diameter and be non-magnetic. We have developed a system that can apply mechanical stimuli simultaneously with fMRI. This system consists of a standardized instrument to deliver mechanical stimuli (VonFrey monofilament) and a gas-pressured mechanical transducer. These components were integrated with a computer console that controlled the period of stimuli to match acquisition scans. Preliminary experiments demonstrated that the force-stimulus transducer did not influence MRI signal to noise ratio. Mechanical stimulation of the hindpaw significantly increased blood oxygen level dependent (BOLD) signal intensity in several midbrain regions involved in the processing of nociceptive information in the rat (p<0.001, uncorrected for multiple comparisons). This system can be applied to both animal and human imaging studies and has a wide range of applications for studies of nociceptive processing. PMID:17368787

  5. AGING SYSTEM DESIGN DEVELOPMENT STRATEGY

    SciTech Connect

    J. Beesley

    2005-02-07

    This plan provides an overview, work to date, and the path forward for the design development strategy of the Aging cask for aging commercial spent nuclear fuel (CSNF) at the Yucca Mountain Project (YMP) repository site. Waste for subsurface emplacement at the repository includes US Department of Energy (DOE) high-level radioactive waste (HLW), DOE SNF, commercial fuel in dual-purpose canisters (DPCs), uncanistered bare fuel, naval fuel, and other waste types. Table 1-1 lists the types of radioactive materials that may be aged at YMP, and those materials that will not be placed in an aging cask or module. This plan presents the strategy for design development of the Aging system. The Aging system will not handle naval fuel, DOE HLW, MCOs, or DOE SNF since those materials will be delivered to the repository in a state and sequence that allows them to be placed into waste packages for emplacement. Some CSNF from nuclear reactors, especially CSNF that is thermally too hot for emplacement underground, will need to be aged at the repository.

  6. Comparison of Marginal Bone Changes with Internal Conus and External Hexagon Design Implant Systems: A Prospective, Randomized Study.

    PubMed

    Cooper, Lyndon F; Tarnow, Dennis; Froum, Stuart; Moriarty, John; De Kok, Ingeborg J

    2016-01-01

    A central dental implant success criterion is the marginal bone response as measured longitudinally. Factors that influence marginal bone changes include osseous and soft tissue architecture, occlusal loading factors, implant position, implant design, and inflammatory processes. The evolution of implant design is multifactorial and includes the implant-abutment interface geometries. The primary objective of this study was to compare the proximal marginal bone changes following placement and loading of internal conus design implants (ICI) and external hex design implants (EXI) used in the treatment of posterior partial edentulism. Among 45 enrolled participants, 39 were treated with 47 ICI or 46 EXI implants using a one-stage implant protocol. Prosthetic restoration was completed after 12 weeks using stock titanium abutments and all-ceramic crowns. Follow-up visits including clinical and radiographic examinations were performed 6 months after permanent restoration and then annually for 3 years. Marginal bone level changes, papilla index scores, condition of the peri-implant mucosa, presence of complications, and participant satisfaction were evaluated. The mean marginal bone level change from implant placement to 3 years was -0.25 ± 0.60 mm and -0.5 ± 0.93 mm for ICI and EXI implants, respectively. The change recorded from permanent restoration to 3 years was a gain of 0.31 ± 0.41 mm versus 0.04 ± 0.51 mm for ICI and EXI implants, respectively (P < .05). In the evaluation of interproximal soft tissue 3 years after permanent restoration, 80% of mandibular and 66% of maxillary interproximal ICI sites received papilla scores of 2 and 3, compared with 50% of mandibular and 60% of maxillary interproximal EXI sites. No significant differences in plaque or bleeding scores were recorded. Abutment/healing abutment complications were recorded for 11 EXI versus 1 ICI participant. The vast majority (> 90%) of participants stated they were satisfied or very satisfied with

  7. Architectural Design for European SST System

    NASA Astrophysics Data System (ADS)

    Utzmann, Jens; Wagner, Axel; Blanchet, Guillaume; Assemat, Francois; Vial, Sophie; Dehecq, Bernard; Fernandez Sanchez, Jaime; Garcia Espinosa, Jose Ramon; Agueda Mate, Alberto; Bartsch, Guido; Schildknecht, Thomas; Lindman, Niklas; Fletcher, Emmet; Martin, Luis; Moulin, Serge

    2013-08-01

    The paper presents the results of a detailed design, evaluation and trade-off of a potential European Space Surveillance and Tracking (SST) system architecture. The results have been produced in study phase 1 of the on-going "CO-II SSA Architectural Design" project performed by the Astrium consortium as part of ESA's Space Situational Awareness Programme and are the baseline for further detailing and consolidation in study phase 2. The sensor network is comprised of both ground- and space-based assets and aims at being fully compliant with the ESA SST System Requirements. The proposed ground sensors include a surveillance radar, an optical surveillance system and a tracking network (radar and optical). A space-based telescope system provides significant performance and robustness for the surveillance and tracking of beyond-LEO target objects.

  8. RAD hard PROM design study

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The results of a preliminary study on the design of a radiation hardened fusible link programmable read-only memory (PROM) are presented. Various fuse technologies and the effects of radiation on MOS integrated circuits are surveyed. A set of design rules allowing the fabrication of a radiation hardened PROM using a Si-gate CMOS process is defined. A preliminary cell layout was completed and the programming concept defined. A block diagram is used to describe the circuit components required for a 4 K design. A design goal data sheet giving target values for the AC, DC, and radiation parameters of the circuit is presented.

  9. Design of a modular digital computer system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A design tradeoff study is reported for a modular spaceborne computer system that is responsive to many mission types and phases. The computer uses redundancy to maximize reliability, and multiprocessing to maximize processing capacity. Fault detection and recovery features provide optimal reliability.

  10. ENABLER Nuclear Propulsion System Conceptual Design

    NASA Astrophysics Data System (ADS)

    Pauley, Keith A.; Woodham, Kurt; Ohi, Don; Haga, Heath; Henderson, Bo

    2004-02-01

    The Titan Corporation conducted a systems engineering study to develop an overall architecture that meets both the articulated and unarticulated requirements on the Prometheus Program with the least development effort. Key elements of the Titan-designed ENABLER system include a thermal fission reactor, thermionic power converters, sodium heat pipes, ion thruster engines, and a radiation shield and deployable truss to protect the payload. The overall design is scaleable over a wide range of power requirements from 10s of kilowatts to 10s of megawatts.

  11. Tritium glovebox stripper system seismic design evaluation

    SciTech Connect

    Grinnell, J. J.; Klein, J. E.

    2015-09-01

    The use of glovebox confinement at US Department of Energy (DOE) tritium facilities has been discussed in numerous publications. Glovebox confinement protects the workers from radioactive material (especially tritium oxide), provides an inert atmosphere for prevention of flammable gas mixtures and deflagrations, and allows recovery of tritium released from the process into the glovebox when a glovebox stripper system (GBSS) is part of the design. Tritium recovery from the glovebox atmosphere reduces emissions from the facility and the radiological dose to the public. Location of US DOE defense programs facilities away from public boundaries also aids in reducing radiological doses to the public. This is a study based upon design concepts to identify issues and considerations for design of a Seismic GBSS. Safety requirements and analysis should be considered preliminary. Safety requirements for design of GBSS should be developed and finalized as a part of the final design process.

  12. Designing case-control studies.

    PubMed Central

    Yanagawa, T

    1979-01-01

    Identification of confounding factors, evaluation of their influence on cause-effect associations, and the introduction of appropriate ways to account for these factors are important considerations in designing case-control studies. This paper presents designs useful for these purposes, after first providing a statistical definition of a confounding factor. Differences in the ability to identify and evaluate confounding factors and estimate disease risk between designs employing stratification (matching) and designs randomly sampling cases and controls are noted. Linear logistic models for the analysis of data from such designs are described and are shown to liberalize design requirements and to increase relative risk estimation efficiency. The methods are applied to data from a multiple factor investigation of lung cancer patients and controls. PMID:540588

  13. Propagation considerations for the Odyssey system design

    NASA Technical Reports Server (NTRS)

    Ho, Hau H.

    1994-01-01

    This paper presents an overview of the Odyssey system with special emphasis given to the link availability for both mobile link and feeder link. The Odyssey system design provides high link availability, typically 98 percent in the primary service areas, and better than 95 percent availability in other service areas. Strategies for overcoming Ka-band feeder link rain fades are presented. Mobile link propagation study results and summary link budgets are also presented.

  14. Design of photovoltaic systems for residential applications

    NASA Astrophysics Data System (ADS)

    Jones, G. J.

    1981-04-01

    Advantages and limitations of the potential residential photovoltaic system market and the impact of recent studies on future designs are reviewed. Typical system configurations are projected based on the existence of ideal rate structures and utility interactive operation. Sizing tradeoffs are analyzed in detail showing that systems from 3 kW/sub p/ to 10 kW/sub p/ are probable. Based on load considerations, development of 4 kW/sub p/ and 8 kW/sub p/ systems is suggested. The impact of this choice on array sizing as a function of site is discussed.

  15. Advanced turbine systems program conceptual design and product development task 5 -- market study of the gas fired ATS. Topical report

    SciTech Connect

    1995-05-01

    Solar Turbines Incorporated (Solar), in partnership with the Department of Energy, will develop a family of advanced gas turbine-based power systems (ATS) for widespread commercialization within the domestic and international industrial marketplace, and to the rapidly changing electric power generation industry. The objective of the jointly-funded Program is to introduce an ATS with high efficiency, and markedly reduced emissions levels, in high numbers as rapidly as possible following introduction. This Topical Report is submitted in response to the requirements outlined in Task 5 of the Department of Energy METC Contract on Advanced Combustion Systems, Contract No, DE AC21-93MC30246 (Contract), for a Market Study of the Gas Fired Advanced Turbine System. It presents a market study for the ATS proposed by Solar, and will examine both the economic and siting constraints of the ATS compared with competing systems in the various candidate markets. Also contained within this report is an examination and analysis of Solar`s ATS and its ability to compete in future utility and industrial markets, as well as factors affecting the marketability of the ATS.

  16. System analysis study of space platform and station accommodations for life sciences research facilities. Volume 2: Study results, attachment 2. Phase A: Conceptual design and programmatics

    NASA Technical Reports Server (NTRS)

    Wiley, Lowell F.

    1985-01-01

    The study results from the conceptual design and programmatics segment of the Space Platform and Station Accommodation for Life Sciences Research Facilities. The results and significant findings of the conceptual design and programmatics were generated by these tasks: (1) the review and update engineering and science requirements; (2) analysis of life sciences mission transition scenario; (3) the review and update of key trade issues; (4) the development of conceptual definition and designs; and (5) the development of the work breakdown schedule and its dictionary, program schedule, and estimated costs.

  17. Design and Data Management System

    NASA Technical Reports Server (NTRS)

    Messer, Elizabeth; Messer, Brad; Carter, Judy; Singletary, Todd; Albasini, Colby; Smith, Tammy

    2007-01-01

    The Design and Data Management System (DDMS) was developed to automate the NASA Engineering Order (EO) and Engineering Change Request (ECR) processes at the Propulsion Test Facilities at Stennis Space Center for efficient and effective Configuration Management (CM). Prior to the development of DDMS, the CM system was a manual, paper-based system that required an EO or ECR submitter to walk the changes through the acceptance process to obtain necessary approval signatures. This approval process could take up to two weeks, and was subject to a variety of human errors. The process also requires that the CM office make copies and distribute them to the Configuration Control Board members for review prior to meetings. At any point, there was a potential for an error or loss of the change records, meaning the configuration of record was not accurate. The new Web-based DDMS eliminates unnecessary copies, reduces the time needed to distribute the paperwork, reduces time to gain the necessary signatures, and prevents the variety of errors inherent in the previous manual system. After implementation of the DDMS, all EOs and ECRs can be automatically checked prior to submittal to ensure that the documentation is complete and accurate. Much of the configuration information can be documented in the DDMS through pull-down forms to ensure consistent entries by the engineers and technicians in the field. The software also can electronically route the documents through the signature process to obtain the necessary approvals needed for work authorization. The workflow of the system allows for backups and timestamps that determine the correct routing and completion of all required authorizations in a more timely manner, as well as assuring the quality and accuracy of the configuration documents.

  18. Designing Electronic Performance Support Systems.

    ERIC Educational Resources Information Center

    Barker, Philip; Banerji, Ashok

    1995-01-01

    Outlines the basic nature of performance support and describes a generic model that can be used to facilitate electronic performance support system (EPSS) development. Performance measures are discussed; performance support guidelines are summarized; and a case study of the use of an EPSS is presented. (LRW)

  19. On the design of reversible QDCA systems.

    SciTech Connect

    DeBenedictis, Erik P.; Frank, Michael P. (Florida State University, Tallahassee, FL); Ottavi, Marco; Frost-Murphy, Sarah E.

    2006-10-01

    This work is the first to describe how to go about designing a reversible QDCA system. The design space is substantial, and there are many questions that a designer needs to answer before beginning to design. This document begins to explicate the tradeoffs and assumptions that need to be made and offers a range of approaches as starting points and examples. This design guide is an effective tool for aiding designers in creating the best quality QDCA implementation for a system.

  20. Uncertainty management in intelligent design aiding systems

    NASA Technical Reports Server (NTRS)

    Brown, Donald E.; Gabbert, Paula S.

    1988-01-01

    A novel approach to uncertainty management which is particularly effective in intelligent design aiding systems for large-scale systems is presented. The use of this approach in the materials handling system design domain is discussed. It is noted that, during any point in the design process, a point value can be obtained for the evaluation of feasible designs; however, the techniques described provide unique solutions for these point values using only the current information about the design environment.

  1. Influence of noise requirements on STOL propulsion system designs

    NASA Technical Reports Server (NTRS)

    Rulis, R. J.

    1973-01-01

    The severity of proposed noise goals for STOL systems has resulted in a new design approach for aircraft propulsion systems. It has become necessary to consider the influence of the noise goal on the design of engine components, engine systems, and the integrated nacelle, separately and collectively, from the onset of the design effort. This integrated system design approach is required in order to effect an optimization of the propulsion and aircraft system. Results from extensive design studies and pertinent test programs are presented which show the effect of noise specifications on component and system design, and the trade offs possible of noise versus configuration and performance. The design optimization process of propulsion systems for powered lift systems is presented beginning with the component level and proceeding through to the final integrated propulsion system. Designs are presented which are capable of meeting future STOL noise regulations and the performance, installation and economic penalties are assessed as a function of noise level.

  2. Study to determine potential flight applications and human factors design guidelines for voice recognition and synthesis systems

    NASA Technical Reports Server (NTRS)

    White, R. W.; Parks, D. L.

    1985-01-01

    A study was conducted to determine potential commercial aircraft flight deck applications and implementation guidelines for voice recognition and synthesis. At first, a survey of voice recognition and synthesis technology was undertaken to develop a working knowledge base. Then, numerous potential aircraft and simulator flight deck voice applications were identified and each proposed application was rated on a number of criteria in order to achieve an overall payoff rating. The potential voice recognition applications fell into five general categories: programming, interrogation, data entry, switch and mode selection, and continuous/time-critical action control. The ratings of the first three categories showed the most promise of being beneficial to flight deck operations. Possible applications of voice synthesis systems were categorized as automatic or pilot selectable and many were rated as being potentially beneficial. In addition, voice system implementation guidelines and pertinent performance criteria are proposed. Finally, the findings of this study are compared with those made in a recent NASA study of a 1995 transport concept.

  3. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 2: The design process

    NASA Technical Reports Server (NTRS)

    Gillette, W. B.; Turner, M. J.; Southall, J. W.; Whitener, P. C.; Kowalik, J. S.

    1973-01-01

    The extent to which IPAD is to support the design process is identified. Case studies of representative aerospace products were developed as models to characterize the design process and to provide design requirements for the IPAD computing system.

  4. Design Tool for Cryogenic Thermal Insulation Systems

    SciTech Connect

    Demko, Jonathan A; Fesmire, J. E.; Augustynowicz, S. D.

    2008-01-01

    Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed. The approach is to apply thermal analysis to standard shapes (plane walls, cylinders, spheres) that are relatively simple to characterize with a one-dimensional analytical or numerical model. The user describes the system hot and cold boundary geometry and the operating environment. Basic outputs such as heat load and temperature profiles are determined. The user can select from a built-in insulation material database or input user defined materials. Existing information has been combined with the new experimental thermal conductivity data produced by the Cryogenics Test Laboratory for cryogenic and vacuum environments, including high vacuum, soft vacuum, and no vacuum. Materials in the design tool include multilayer insulation, aerogel blankets, aerogel bulk-fill, foams, powders, composites, and other insulation system constructions. A comparison of the design tool to a specific composite thermal insulation system is given.

  5. Design Tool for Cryogenic Thermal Insulation Systems

    NASA Astrophysics Data System (ADS)

    Demko, J. A.; Fesmire, J. E.; Augustynowicz, S. D.

    2008-03-01

    Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed. The approach is to apply thermal analysis to standard shapes (plane walls, cylinders, spheres) that are relatively simple to characterize with a one-dimensional analytical or numerical model. The user describes the system hot and cold boundary geometry and the operating environment. Basic outputs such as heat load and temperature profiles are determined. The user can select from a built-in insulation material database or input user defined materials. Existing information has been combined with the new experimental thermal conductivity data produced by the Cryogenics Test Laboratory for cryogenic and vacuum environments, including high vacuum, soft vacuum, and no vacuum. Materials in the design tool include multilayer insulation, aerogel blankets, aerogel bulk-fill, foams, powders, composites, and other insulation system constructions. A comparison of the design tool to a specific composite thermal insulation system is given.

  6. Designing Electronic Performance Support Systems: Models and Instructional Strategies Employed

    ERIC Educational Resources Information Center

    Nekvinda, Christopher D.

    2011-01-01

    The purpose of this qualitative study was to determine whether instructional designers and performance technologists utilize instructional design models when designing and developing electronic performance support systems (EPSS). The study also explored if these same designers were utilizing instructional strategies within their EPSS to support…

  7. Artwork Interactive Design System (AIDS) program description

    NASA Technical Reports Server (NTRS)

    Johnson, B. T.; Taylor, J. F.

    1976-01-01

    An artwork interactive design system is described which provides the microelectronic circuit designer/engineer a tool to perform circuit design, automatic layout modification, standard cell design, and artwork verification at a graphics computer terminal using a graphics tablet at the designer/computer interface.

  8. Application and design of solar photovoltaic system

    NASA Astrophysics Data System (ADS)

    Tianze, Li; Hengwei, Lu; Chuan, Jiang; Luan, Hou; Xia, Zhang

    2011-02-01

    Solar modules, power electronic equipments which include the charge-discharge controller, the inverter, the test instrumentation and the computer monitoring, and the storage battery or the other energy storage and auxiliary generating plant make up of the photovoltaic system which is shown in the thesis. PV system design should follow to meet the load supply requirements, make system low cost, seriously consider the design of software and hardware, and make general software design prior to hardware design in the paper. To take the design of PV system for an example, the paper gives the analysis of the design of system software and system hardware, economic benefit, and basic ideas and steps of the installation and the connection of the system. It elaborates on the information acquisition, the software and hardware design of the system, the evaluation and optimization of the system. Finally, it shows the analysis and prospect of the application of photovoltaic technology in outer space, solar lamps, freeways and communications.

  9. Microwave power transmission system studies. Volume 4: Sections 9 through 14 with appendices. [ground tests and antenna design

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.; Brown, W. C.; Edwards, A.; Haley, J. T.; Meltz, G.; Howell, J. M.; Nathan, A.

    1975-01-01

    The microwave rectifier technology, approaches to the receiving antenna, topology of rectenna circuits, assembly and construction, ROM cost estimates are discussed. Analyses and cost estimates for the equipment required to transmit the ground power to an external user. Noise and harmonic considerations are presented for both the amplitron and klystron and interference limits are identified and evaluated. The risk assessment discussion is discussed wherein technology risks are rated and ranked with regard to their importance in impacting the microwave power transmission system. The system analyses and evaluation are included of parametric studies of system relationships pertaining to geometry, materials, specific cost, specific weight, efficiency, converter packing, frequency selection, power distribution, power density, power output magnitude, power source, transportation and assembly. Capital costs per kW and energy costs as a function of rate of return, power source and transportation costs as well as build cycle time are presented. The critical technology and ground test program are discussed along with ROM costs and schedule. The orbital test program with associated critical technology and ground based program based on full implementation of the defined objectives is discussed.

  10. Optimal control model predictions of system performance and attention allocation and their experimental validation in a display design study

    NASA Technical Reports Server (NTRS)

    Johannsen, G.; Govindaraj, T.

    1980-01-01

    The influence of different types of predictor displays in a longitudinal vertical takeoff and landing (VTOL) hover task is analyzed in a theoretical study. Several cases with differing amounts of predictive and rate information are compared. The optimal control model of the human operator is used to estimate human and system performance in terms of root-mean-square (rms) values and to compute optimized attention allocation. The only part of the model which is varied to predict these data is the observation matrix. Typical cases are selected for a subsequent experimental validation. The rms values as well as eye-movement data are recorded. The results agree favorably with those of the theoretical study in terms of relative differences. Better matching is achieved by revised model input data.

  11. Techniques for designing rotorcraft control systems

    NASA Technical Reports Server (NTRS)

    Yudilevitch, Gil; Levine, William S.

    1994-01-01

    Over the last two and a half years we have been demonstrating a new methodology for the design of rotorcraft flight control systems (FCS) to meet handling qualities requirements. This method is based on multicriterion optimization as implemented in the optimization package CONSOL-OPTCAD (C-O). This package has been developed at the Institute for Systems Research (ISR) at the University of Maryland at College Park. This design methodology has been applied to the design of a FCS for the UH-60A helicopter in hover having the ADOCS control structure. The controller parameters have been optimized to meet the ADS-33C specifications. Furthermore, using this approach, an optimal (minimum control energy) controller has been obtained and trade-off studies have been performed.

  12. Design of a Side-View Particle Imaging Velocimetry Flow System for Cell-Substrate Adhesion Studies

    PubMed Central

    Leyton-Mange, Jordan; Yang, Sung; Hoskins, Meghan H.; Kunz, Robert F.; Zahn, Jeffrey D.; Dong, Cheng

    2009-01-01

    Experimental models that mimic the flow conditions in microcapillaries have suggested that the local shear stresses and shear rates can mediate tumor cell and leukocyte arrest on the endothelium and subsequent sustained adhesion. However, further investigation has been limited by the lack of experimental models that allow quantitative measurement of the hydrodynamic environment over adherent cells. The purpose of this study was to develop a system capable of acquiring quantitative flow profiles over adherent cells. By combining the techniques of side-view imaging and particle image velocimetry (PIV), an in vitro model was constructed that is capable of obtaining quantitative flow data over cells adhering to the endothelium. The velocity over an adherent leukocyte was measured and the shear rate was calculated under low and high upstream wall shear. The microcapillary channel was modeled using computational fluid dynamics (CFD) and the calculated velocity profiles over cells under the low and high shear rates were compared to experimental results. The drag force applied to each cell by the fluid was then computed. This system provides a means for future study of the forces underlying adhesion by permitting characterization of the local hydrodynamic conditions over adherent cells. PMID:16524340

  13. Equilibrium Studies of Designed Metalloproteins.

    PubMed

    Gibney, B R

    2016-01-01

    Complete thermodynamic descriptions of the interactions of cofactors with proteins via equilibrium studies are challenging, but are essential to the evaluation of designed metalloproteins. While decades of studies on protein-protein interaction thermodynamics provide a strong underpinning to the successful computational design of novel protein folds and de novo proteins with enzymatic activity, the corresponding paucity of data on metal-protein interaction thermodynamics limits the success of computational metalloprotein design efforts. By evaluating the thermodynamics of metal-protein interactions via equilibrium binding studies, protein unfolding free energy determinations, proton competition equilibria, and electrochemistry, a more robust basis for the computational design of metalloproteins may be provided. Our laboratory has shown that such studies provide detailed insight into the assembly and stability of designed metalloproteins, allow for parsing apart the free energy contributions of metal-ligand interactions from those of porphyrin-protein interactions in hemeproteins, and even reveal their mechanisms of proton-coupled electron transfer. Here, we highlight studies that reveal the complex interplay between the various equilibria that underlie metalloprotein assembly and stability and the utility of making these detailed measurements. PMID:27586343

  14. Systems design study of the Pioneer Venus spacecraft. Volume 1. Technical analyses and tradeoffs, section 7 (part 3 of 4). [aerodynamic design problems for small probe reentry

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The aerodynamic design problems for the Pioneer Venus mission are discussed for a small probe shape that enters the atmosphere, and exhibits good stability for the subsonic portion of the flight. The problems discussed include: heat shield, structures and mechanisms, thermal control, decelerator, probe communication, data handling and command, and electric power.

  15. Visual Design Principles: An Empirical Study of Design Lore

    ERIC Educational Resources Information Center

    Kimball, Miles A.

    2013-01-01

    Many books, designers, and design educators talk about visual design principles such as balance, contrast, and alignment, but with little consistency. This study uses empirical methods to explore the lore surrounding design principles. The study took the form of two stages: a quantitative literature review to determine what design principles are…

  16. The Huygens Probe System Design

    NASA Astrophysics Data System (ADS)

    Clausen, K. C.; Hassan, H.; Verdant, M.; Couzin, P.; Huttin, G.; Brisson, M.; Sollazzo, C.; Lebreton, J.-P.

    2002-07-01

    The Huygens Probe is the ESA-provided element of the joint NASA/ESA Cassini/Huygens mission to Saturn and its largest moon Titan. Huygens is an entry probe designed to enter Titan's atmosphere and descend under parachute down to the surface. The Probe is carried to Titan on board the Cassini Saturn Orbiter. Huygens is dormant for 7.2 years, during the interplanetary journey and during the first 6 months around Saturn. It is activated about every 6 months for an in-flight checkout to verify and monitor its health and to perform a periodic maintenance and calibration of the payload instruments. The Probe will be targeted to Titan and released from the Orbiter about 3 weeks before the Titan encounter on the third Orbit around Saturn. During the 3-week coast phase the Probe is ‘OFF’, except a timer unit that has the task to awaken Huygens before it enters Titan's atmosphere. The Probe's aeroshell will decelerate it in less than 2 minutes from the entry speed of about 6 km s-1 to 400 m s-1 (Mach 1.5) at an altitude of 150 180 km. From that point onwards, a pre-programmed sequence will trigger the parachute deployment and the heat-shield ejection. The main part of the scientific mission will then start, lasting for a descent of 2 21/2 hours. The Orbiter will listen to the Probe for a total duration of at least 3 hours, which includes time to receive data from the surface, should the Probe continue to transmit data after touchdown. Huygens' transmissions are received and stored aboard the Orbiter for later retransmission to the Earth. This paper presents a technical description of the elements of the Huygens Probe System. The reader is invited to refer to the companion paper (Lebreton and Matson, 2002) for further background information about the Huygens mission, and the payload. The early in-flight performance of the Probe is briefly discussed. During in-flight testing in 2000, a technical anomaly was found with the Probe-to-Orbiter telecommunication system that

  17. Automated Design of Complex Dynamic Systems

    PubMed Central

    Hermans, Michiel; Schrauwen, Benjamin; Bienstman, Peter; Dambre, Joni

    2014-01-01

    Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems. PMID:24497969

  18. Personalized Integrated Educational System (PIES) for the Learner-Centered Information-Age Paradigm of Education: A Study to Improve the Design of the Functions and Features of PIES

    ERIC Educational Resources Information Center

    Dutta, Pratima

    2013-01-01

    The Personalized Integrated Educational System (PIES) design theory is a design recommendation regarding the function and features of Learning Managements Systems (LMS) that can support the information-age learner-centered paradigm of education. The purpose of this study was to improve the proposed functions and features of the PIES design theory…

  19. Preliminary design of a terrain recognition system.

    PubMed

    Zhang, Fan; Fang, Zheng; Liu, Ming; Huang, He

    2011-01-01

    This paper aims to design a wearable terrain recognition system, which might assist the control of powered artificial prosthetic legs. A laser distance sensor and inertial measurement unit (TMU) sensors were mounted on human body. These sensors were used to identify the movement state of the user, reconstruct the geometry of the terrain in front of the user while walking, and recognize the type of terrain before the user stepped on it. Different sensor configurations were investigated and compared. The designed system was evaluated on one healthy human subject when walking on an obstacle course in the laboratory environment. The results showed that the reconstructed terrain height demonstrated clearer pattern difference among studied terrains when the laser was placed on the waist than that when the laser was mounted on the shank. The designed system with the laser on the waist accurately recognized 157 out of 160 tested terrain transitions, 300 ms-2870 ms before the user switched the negotiated terrains. These promising results demonstrated the potential application of the designed terrain recognition system to further improve the control of powered artificial legs.

  20. Linear tracking systems with applications to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Lee, W. H.; Athans, M.; Castanon, D.; Bacchioloni, F.

    1977-01-01

    A class of optimal linear time invariant tracking systems, both in continuous time and discrete time, of which the number of inputs (which are restricted to be step functions) is equal to the number of system outputs, is studied. Along with derivation of equations and design procedures, two discretization schemes are presented, constraining either the control or its time derivative, to be a constant over each sampling period. Descriptions are given for the linearized model of the F-8C aircraft longitudinal dynamics, and the C* handling qualities criterion, which then serve as an illustration of the applications of these linear tracking designs. A suboptimal reduced state design is also presented. Numerical results are given for both the continuous time and discrete time designs.

  1. [Newly designed skin temperature monitoring system for microvascular anastomosis--an experimental and clinical study (author's transl)].

    PubMed

    Okutsu, I

    1982-05-01

    temperatures had dropped below 32.0 degrees C, of which two had recovered by an auto-vein graft and the removal of haematoma respectively. We have concluded from these results, that the critical skin temperature in replantation and free flap cases was apparently above 32.0 degrees C in the normal ward environment. Based on our experiences, we have designed a continuous skin temperature monitoring device which consists of a resistance bridge and a thermister. The power source is a D.C. 12V. A high accuracy is maintained at the range of 32.1 +/- 0.3 degrees C when the system is set at 32.0 degrees C in the ward. The circuit is designed to flash a blue lamp when the temperature of the operated site is maintained above the pre-established temperature, while a red lamp and buzz signal give a warning when the temperature drops below the pre-established temperature. This equipment and skin thermometer have been simultaneously used following the various operations of microvascular anastomoses...

  2. Valuation of design adaptability in aerospace systems

    NASA Astrophysics Data System (ADS)

    Fernandez Martin, Ismael

    design is under production is referred to as adaptability. This thesis contains two relevant examples regarding the decision of introducing new technologies. First, the case study of Southwest Airlines, and the decision it took to retrofit blended winglets technology in its already delivered Boeing 737-700, is introduced as a validation exercise and for calibration purposes. Such case also demonstrates that the method is applicable to a real life example with simple technologies. The second example analyzes the decision of introducing new technologies into the design of the new jet engine to power the next generation of narrow body aircraft. The development of such aircraft, set to replace the Boeing 737 and Airbus 320 models, is currently at conceptual levels. In this case, the manufacturer evaluates whether technologies should be included in the design, left out, or offered as an option to retrofit in the future. This case demonstrates the benefits of each of these actions and the monetary value of offering retrofitting options as upgrades to the airlines when the value of the technology fluctuates considerably between profitable and not profitable. The purpose of this case is to demonstrate the applicability of the method to the preliminary design phases of complex systems while accounting for uncertainty of external factors over time.

  3. Operator Station Design System - A computer aided design approach to work station layout

    NASA Technical Reports Server (NTRS)

    Lewis, J. L.

    1979-01-01

    The Operator Station Design System is resident in NASA's Johnson Space Center Spacecraft Design Division Performance Laboratory. It includes stand-alone minicomputer hardware and Panel Layout Automated Interactive Design and Crew Station Assessment of Reach software. The data base consists of the Shuttle Transportation System Orbiter Crew Compartment (in part), the Orbiter payload bay and remote manipulator (in part), and various anthropometric populations. The system is utilized to provide panel layouts, assess reach and vision, determine interference and fit problems early in the design phase, study design applications as a function of anthropometric and mission requirements, and to accomplish conceptual design to support advanced study efforts.

  4. Simulation, Design Abstraction, and SystemC

    ERIC Educational Resources Information Center

    Harcourt, Ed

    2007-01-01

    SystemC is a system-level design and simulation language based on C++. We've been using SystemC for computer organization and design projects for the past several years. Because SystemC is embedded in C++ it contains the powerful abstraction mechanisms of C++ not found in traditional hardware description languages, such as support for…

  5. Design-Filter Selection for H2 Control of Microgravity Isolation Systems: A Single-Degree-of-Freedom Case Study

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Whorton, Mark S.

    2000-01-01

    Many microgravity space-science experiments require active vibration isolation, to attain suitably low levels of background acceleration for useful experimental results. The design of state-space controllers by optimal control methods requires judicious choices of frequency-weighting design filters. Kinematic coupling among states greatly clouds designer intuition in the choices of these filters, and the masking effects of the state observations cloud the process further. Recent research into the practical application of H2 synthesis methods to such problems, indicates that certain steps can lead to state frequency-weighting design-filter choices with substantially improved promise of usefulness, even in the face of these difficulties. In choosing these filters on the states, one considers their relationships to corresponding design filters on appropriate pseudo-sensitivity- and pseudo-complementary-sensitivity functions. This paper investigates the application of these considerations to a single-degree-of-freedom microgravity vibration-isolation test case. Significant observations that were noted during the design process are presented. along with explanations based on the existent theory for such problems.

  6. High energy electron radiography system design and simulation study of beam angle-position correlation and aperture effect on the images

    NASA Astrophysics Data System (ADS)

    Zhao, Quantang; Cao, S. C.; Liu, M.; Sheng, X. K.; Wang, Y. R.; Zong, Y.; Zhang, X. M.; Jing, Y.; Cheng, R.; Zhao, Y. T.; Zhang, Z. M.; Du, Y. C.; Gai, W.

    2016-10-01

    A beam line dedicated to high-energy electron radiography experimental research with linear achromat and imaging lens systems has been designed. The field of view requirement on the target and the beam angle-position correlation correction can be achieved by fine-tuning the fields of the quadrupoles used in the achromat in combination with already existing six quadrupoles before the achromat. The radiography system is designed by fully considering the space limitation of the laboratory and the beam diagnostics devices. Two kinds of imaging lens system, a quadruplet and an octuplet system are integrated into one beam line with the same object plane and image plane but with different magnification factor. The beam angle-position correlation on the target required by the imaging lens system and the aperture effect on the images are studied with particle tracking simulation. It is shown that the aperture position is also correlated to the beam angle-position on the target. With matched beam on the target, corresponding aperture position and suitable aperture radius, clear pictures can be imaged by both lens systems. The aperture is very important for the imaging. The details of the beam optical requirements, optimized parameters and the simulation results are presented.

  7. Multicriteria Gain Tuning for Rotorcraft Flight Controls (also entitled The Development of the Conduit Advanced Control System Design and Evaluation Interface with a Case Study Application Fly by Wire Helicopter Design)

    NASA Technical Reports Server (NTRS)

    Biezad, Daniel

    1997-01-01

    Handling qualities analysis and control law design would seem to be naturally complimenting components of aircraft flight control system design, however these two closely coupled disciplines are often not well integrated in practice. Handling qualities engineers and control system engineers may work in separate groups within an aircraft company. Flight control system engineers and handling quality specialists may come from different backgrounds and schooling and are often not aware of the other group's research. Thus while the handling qualities specifications represent desired aircraft response characteristics, these are rarely incorporated directly in the control system design process. Instead modem control system design techniques are based on servo-loop robustness specifications, and simple representations of the desired control response. Comprehensive handling qualities analysis is often left until the end of the design cycle and performed as a check of the completed design for satisfactory performance. This can lead to costly redesign or less than satisfactory aircraft handling qualities when the flight testing phase is reached. The desire to integrate the fields of handling qualities and flight,control systems led to the development of the CONDUIT system. This tool facilitates control system designs that achieve desired handling quality requirements and servo-loop specifications in a single design process. With CONDUIT, the control system engineer is now able to directly design and control systems to meet the complete handling specifications. CONDUIT allows the designer to retain a preferred control law structure, but then tunes the system parameters to meet the handling quality requirements.

  8. Remote metrology system (RMS) design concept

    SciTech Connect

    1995-10-19

    A 3D remote metrology system (RMS) is needed to map the interior plasma-facing components of the International Thermonuclear Experimental Reactor (ITER). The performance and survival of these components within the reactor vessel are strongly dependent on their precise alignment and positioning with respect to the plasma edge. Without proper positioning and alignment, plasma-facing surfaces will erode rapidly. A RMS design involving Coleman Research Corporation (CRC) fiber optic coherent laser radar (CLR) technology is examined in this study. The fiber optic CLR approach was selected because its high precision should be able to meet the ITER 0.1 mm accuracy requirement and because the CLR`s fiber optic implementation allows a 3D scanner to operate remotely from the RMS system`s vulnerable components. This design study has largely verified that a fiber optic CLR based RMS can survive the ITER environment and map the ITER interior at the required accuracy at a one measurement/cm{sup 2} density with a total measurement time of less than one hour from each of six or more vertically deployed measurement probes. The design approach employs a sealed and pressurized measurement probe which is attached with an umbilical spiral bellows conduit. This conduit bears fiber optic and electronic links plus a stream of air to lower the temperature in the interior of the probe. Lowering the probe temperature is desirable because probe electromechanical components which could survive the radiation environment often were not rated for the 200 C temperature. The tip of the probe whose outer shell has a flexible bellows joint can swivel in two degrees of freedom to allow mapping operations at each probe deployment level. This design study has concluded that the most successful scanner design will involve a hybrid AO beam deflector and mechanical scanner.

  9. Design of the ELIMAIA ion collection system

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Cirrone, G. A. P.; Cuttone, G.; Maggiore, M.; Andó, L.; Amato, A.; Costa, M.; Gallo, G.; Korn, G.; Larosa, G.; Leanza, R.; Manna, R.; Margarone, D.; Milluzzo, G.; Pulvirenti, S.; Romano, F.; Salamone, S.; Sedita, M.; Scuderi, V.; Tramontana, A.

    2015-12-01

    A system of permanent magnet quadrupoles (PMQs) is going to be realized by INFN-LNS to be used as a collection system for the injection of laser driven ion beams up to 60 MeV/u in an energy selector based on four resistive dipoles. This system is the first element of the ELIMED (ELI-Beamlines MEDical and Multidisciplinary applications) beam transport, dosimetry and irradiation line that will be developed by INFN-LNS (It) and installed at the ELI-Beamlines facility in Prague (Cz). ELIMED will be the first user's open transport beam-line where a controlled laser-driven ion beam will be used for multidisciplinary researches. The definition of well specified characteristics, both in terms of performances and field quality, of the magnetic lenses is crucial for the system realization, for the accurate study of the beam dynamics and for the proper matching with the magnetic selection system which will be designed in the next months. Here, we report the design of the collection system and the adopted solutions in order to realize a robust system form the magnetic point of view. Moreover, the first preliminary transport simulations are also described.

  10. Human Factors Considerations in System Design

    NASA Technical Reports Server (NTRS)

    Mitchell, C. M. (Editor); Vanbalen, P. M. (Editor); Moe, K. L. (Editor)

    1983-01-01

    Human factors considerations in systems design was examined. Human factors in automated command and control, in the efficiency of the human computer interface and system effectiveness are outlined. The following topics are discussed: human factors aspects of control room design; design of interactive systems; human computer dialogue, interaction tasks and techniques; guidelines on ergonomic aspects of control rooms and highly automated environments; system engineering for control by humans; conceptual models of information processing; information display and interaction in real time environments.

  11. Expert system to design communications circuits

    SciTech Connect

    Tolendino, L.F.; Vahle, M.O.

    1986-07-01

    An expert system has been created to aid the design of fiber optic based communications circuits. The design system is based on an Apollo workstation, LISP and CPSL, an in-house developed expert system language. The optical circuit is taken from design specification through hardware selection and circuit routing to the production of detailed schematics and routing guides. A database containing the entire fiber optic trunk system is also maintained.

  12. A Numerical Climate Observing Network Design Study

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef

    2003-01-01

    This project was concerned with three related questions of an optimal design of a climate observing system: 1. The spatial sampling characteristics required from an ARGO system. 2. The degree to which surface observations from ARGO can be used to calibrate and test satellite remote sensing observations of sea surface salinity (SSS) as it is anticipated now. 3. The more general design of an climate observing system as it is required in the near future for CLIVAR in the Atlantic. An important question in implementing an observing system is that of the sampling density required to observe climate-related variations in the ocean. For that purpose this project was concerned with the sampling requirements for the ARGO float system, but investigated also other elements of a climate observing system. As part of this project we studied the horizontal and vertical sampling characteristics of a global ARGO system which is required to make it fully complementary to altimeter data with the goal to capture climate related variations on large spatial scales (less thanAttachment: 1000 km). We addressed this question in the framework of a numerical model study in the North Atlantic with an 1/6 horizontal resolution. The advantage of a numerical design study is the knowledge of the full model state. Sampled by a synthetic float array, model results will therefore allow to test and improve existing deployment strategies with the goal to make the system as optimal and cost-efficient as possible. Attachment: "Optimal observations for variational data assimilation".

  13. Advanced Design Studies. Final report

    SciTech Connect

    Steiner, Don

    2012-12-01

    The ARIES-CS project was a multi-year multi-institutional project to assess the feasibility of a compact stellarator as a fusion power plant. The work herein describes efforts to help design one aspect of the device, the divertor, which is responsible for the removal of particle and heat flux from the system, acting as the first point of contact between the magnetically confined hot plasma and the outside world. Specifically, its location and topology are explored, extending previous work on the sub ject. An optimized design is determined for the thermal particle flux using a suite of 3D stellarator design codes which trace magnetic field lines from just inside the confined plasma edge to their strike points on divertor plates. These divertor plates are specified with a newly developed plate design code. It is found that a satisfactory thermal design exists which maintains the plate temperature and heat load distribution below tolerable engineering limits. The design is unique, including a toroidal taper on the outboard plates which was found to be important to our results. The maximum thermal heat flux for the final design was 3.61 M W/m2 and the maximum peaking factor was 10.3, below prescribed limits of 10 M W/m2 and 15.6, respectively. The median length of field lines reaching the plates is about 250 m and their average angle of inclination to the surface is 2 deg. Finally, an analysis of the fast alphas, resulting from fusion in the core, which escape the plasma was performed. A method is developed for obtaining the mapping from magnetic coordinates to real-space coordinates for the ARIES-CS. This allows the alpha exit locations to be identified in real space for the first time. These were then traced using the field line algorithm as well as a guiding center routine accounting for their mass, charge, and specific direction and energy. Results show that the current design is inadequate for accommodating the alpha heat flux, capturing at most 1/3 of lost alphas

  14. Power system commonality study

    NASA Astrophysics Data System (ADS)

    Littman, Franklin D.

    1992-07-01

    A limited top level study was completed to determine the commonality of power system/subsystem concepts within potential lunar and Mars surface power system architectures. A list of power system concepts with high commonality was developed which can be used to synthesize power system architectures which minimize development cost. Examples of potential high commonality power system architectures are given in this report along with a mass comparison. Other criteria such as life cycle cost (which includes transportation cost), reliability, safety, risk, and operability should be used in future, more detailed studies to select optimum power system architectures. Nineteen potential power system concepts were identified and evaluated for planetary surface applications including photovoltaic arrays with energy storage, isotope, and nuclear power systems. A top level environmental factors study was completed to assess environmental impacts on the identified power system concepts for both lunar and Mars applications. Potential power system design solutions for commonality between Mars and lunar applications were identified. Isotope, photovoltaic array (PVA), regenerative fuel cell (RFC), stainless steel liquid-metal cooled reactors (less than 1033 K maximum) with dynamic converters, and in-core thermionic reactor systems were found suitable for both lunar and Mars environments. The use of SP-100 thermoelectric (TE) and SP-100 dynamic power systems in a vacuum enclosure may also be possible for Mars applications although several issues need to be investigated further (potential single point failure of enclosure, mass penalty of enclosure and active pumping system, additional installation time and complexity). There are also technical issues involved with development of thermionic reactors (life, serviceability, and adaptability to other power conversion units). Additional studies are required to determine the optimum reactor concept for Mars applications. Various screening

  15. Final design proposal: Beta Systems-El Toro. A proposal in response to a commercial air transportation study

    NASA Technical Reports Server (NTRS)

    Muenzberg, Steve; Gillespie, Shane; Coogan, Jim; Monahan, Pat; Bruen, Liam; Wincer, Bob; Wilkey, Rob

    1991-01-01

    El Toro is a remotely piloted airplane designed to operate as a commercial aircraft in a fictional 'Aeroworld' where the passengers are ping-pong balls and the distances between cities are on the order of thousands of feet. The present design for El Toro will profitably meet the requirements for operation in Aeroworld with a ticket price comparable the ticket prices of current transportation. The extended range of El Toro allows for numerous flights to be flown before the battery pack needs to be changed. This drastically reduces the operating costs to the airlines, allowing them to charge less for a ticket or else to realize a higher profit margin.

  16. Turbine Aerodynamic Design System Improvements

    NASA Technical Reports Server (NTRS)

    Huber, Frank W.; Griffin, Lisa W.; Simpson, Steven P.

    2003-01-01

    Presentation outline includes the following: 1. Volute manifold design and analysis methodology. 2. Meanline modification for compatibility with engine analysis code. Objective is to develop a manifold design methodology for turbines and pumps, and to enable rapid screening of candidate flow paths.

  17. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 7: Specification for EOS low cost readout station

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The functional, performance, and design requirements for the Low Cost Readout Station (LCRS) which supports the Earth Observatory Satellite (EOS) data system are described. The basic LCRS consists of all hardware and software needed to acquire and track the EOS-A or EOS-B satellite and receive, record, process, and annotate the instrument data from the satellites. The LCRS also provides appropriate interfaces with the unique local user provided display and extractive processing equipment. The LCRS has the capability of acquiring image data from the EOS-A and the EOS-B satellites over a ground area defines by a 500 kilometer radius from the coordinates of the station. The LCRS is also capable of receiving and processing both, but not simultaneously, full five band Multispectral Scanner (MSS) image data and various modes of the Compacted Thematic (CTM) data.

  18. Design of Scale Intelligent Vehicle System

    NASA Astrophysics Data System (ADS)

    Wang, Junliang; Zhang, Zufeng; Jia, Peng; Luo, Shaohua; Zhang, Zufeng

    Nowadays, intelligent vehicle is widely studied all over the world. On considering cost and safety of test on real vehicle, it takes scale intelligent vehicle as a carrier platform, which uses visual sensors to capture the environmental information in a Wi-Fi wireless communication network environment, and creates a system including video surveillance system, monitoring command terminal, data server and three-dimensional simulating test traffic environment. The core algorithms, such as road recognition perception, image data processing, path planning and the implementation of motion control, have been completely designed and applying on the vehicle platform. The experimental results verified its good effects and the robustness and stability of the algorithm.

  19. Cost studies for commercial fuselage crown designs

    NASA Technical Reports Server (NTRS)

    Walker, T. H.; Smith, P. J.; Truslove, G.; Willden, K. S.; Metschan, S. L.; Pfahl, C. L.

    1991-01-01

    Studies were conducted to evaluate the cost and weight potential of advanced composite design concepts in the crown region of a commercial transport. Two designs from each of three design families were developed using an integrated design-build team. A range of design concepts and manufacturing processes were included to allow isolation and comparison of cost centers. Detailed manufacturing/assembly plans were developed as the basis for cost estimates. Each of the six designs was found to have advantages over the 1995 aluminum benchmark in cost and weight trade studies. Large quadrant panels and cobonded frames were found to save significant assembly labor costs. Comparisons of high- and intermediate-performance fiber systems were made for skin and stringer applications. Advanced tow placement was found to be an efficient process for skin lay up. Further analysis revealed attractive processes for stringers and frames. Optimized designs were informally developed for each design family, combining the most attractive concepts and processes within that family. A single optimized design was selected as the most promising, and the potential for further optimization was estimated. Technical issues and barriers were identified.

  20. Design of easily testable systems

    SciTech Connect

    Rawat, S.S.

    1988-01-01

    This thesis presents structured testability techniques that can be applied to systolic arrays. Systolic arrays for signal processing have produced processing rates far in excess of general-purpose architecture. Fast testing is considered as one of the design criteria. The main goal is to derive test vectors for one- and two-dimensional systolic arrays. The author seeks to keep the number of test vectors independent of the size of the array under a generic fault model. The testable design is based on pseudo-exhaustive testing. Conventional testing uses Level Sensitive Scan Detection (LSSD) techniques which are very time consuming for an array of systolic processors. By making the testability analysis early the logic designer will be able to make early (and repeated) design trade-offs that make design for testability a simple extension of the design process. The author shows how one-dimensional sequential systolic arrays can be designed so that the faults can be easily detected and isolated. He also considers unilateral two-dimensional sequential arrays and suggests modifications to make them easily testable. Finally, he shows how a modified carry look ahead adder of arbitrary size can be tested with just 136 test vectors. Comparisons are made against the standard LSSD technique.

  1. Design data brochure: Solar hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A design calculation is detailed for a single-family residence housing a family of four in a nonspecific geographical area. The solar water heater system is designed to provide 80 gallons of 140 F hot water per day.

  2. Controlled air incinerator conceptual design study

    SciTech Connect

    Not Available

    1982-01-01

    This report presents a conceptual design study for a controlled air incinerator facility for incineration of low level combustible waste at Three Mile Island Unit 2 (TMI-2). The facility design is based on the use of a Helix Process Systems controlled air incinerator. Cost estimates and associated engineering, procurement, and construction schedules are also provided. The cost estimates and schedules are presented for two incinerator facility designs, one with provisions for waste ash solidification, the other with provisions for packaging the waste ash for transport to an undefined location.

  3. Engineering study for ISSTRS design concept

    SciTech Connect

    Hertzel, J.S.

    1997-01-31

    Los Alamos Technical Associates, Inc., is pleased to transmit the attached Conceptual Design Package for the Initial Single Shell Tank Retrieval System (ISSTRS), 90% Conceptual Design Review. The package includes the following: (1) ISSTRS Trade Studies: (a) Retrieval Facility Cooling Requirements; (b) Equipment Re-usability between Project W-320 and Tanks 241-C-103 and 241-C-1 05; (c) Sluice Line Options; and (d) Options for the Location of Tanks AX-103 and A-1 02 HVAC Equipment; (2) Drawings; (3) Risk Management Plan; (4) 0850 Interface Control Document; (5) Requirements Traceability Report; and (6) Project Design Specification.

  4. Research study on stabilization and control modern sampled-data control theory. Design of the Large Space Telescope system

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.; Singh, G.

    1974-01-01

    The numerical technique is applied to the prediction of self-sustained oscillations in a two-axis model of the nonlinear system with sampled data. The sampled-data two-axis LST system model, and its stability equation are analyzed along with the exact solution of the stability equation by numerical-iterative techniques.

  5. MW-Class Electric Propulsion System Designs

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador

    2011-01-01

    Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary

  6. Synthetic approach to designing optical alignment systems.

    PubMed

    Whang, A J; Gallagher, N C

    1988-08-15

    The objective of this study is twofold: to design reticle patterns with desirable alignment properties; to build an automatic alignment system using these patterns. We design such reticle patterns via a synthetic approach; the resultant patterns, so-called pseudonoise arrays, are binary and their autocorrelation functions are bilevel. Both properties are desirable in optical alignment. Besides, these arrays have attractive signal-to-noise ratio performance when employed in alignment. We implement the pseudonoise array as a 2-D cross-grating structure of which the grating period is much less than the wavelength of impinging light used for alignment. The short grating period feature, together with the use of polarized light, enables us to perform essentially 2-D optical alignment in one dimension. This alignment separability allows us to build a system that performs alignment automatically according to a simple 1-D algorithm. PMID:20539412

  7. Systems design of long-life systems

    NASA Technical Reports Server (NTRS)

    Miles, R. F., Jr.

    1974-01-01

    A long-life system is defined as a system which cannot be life-tested in its operational environment. Another restriction is that preventive maintenance and repair shall be either impossible or economically disadvantageous. Examples of such systems include planetary spacecraft, communication satellites, undersea telephone cables, and nuclear power plants. The questions discussed are related to the implementation of system functions, approaches to determine the required level of system reliability, and aspects of tradeoffs between requirements and reliability.

  8. Residential solar-heating system - design brochure

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Design brochure for commercially-available solar-heating system is valuable to architects, engineers, and designers. It contains information on system configuration, system sizing, and mechanical layout. Drawings and specifications of all components and typical installation details are included in appendix.

  9. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix E: EOS program supporting system. Part 1: System trade studies no. 1 through 8

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design requirements and associated cost impacts for using the space shuttle to deliver the Earth Observatory Satellite (EOS) are identified. The additional impact of achieving full compatibility for resupply and retrieval is considered. Based on the results of the analysis, it is concluded that the EOS-Shuttle compatibility can be realized with reasonable spacecraft weight and cost penalties. Inherent space shuttle capabilities are adequate to meet the requirements of all missions except E and F. Mission E (Tiros 0) may be accommodated by either an EOS orbit transfer capability or a tug. The tug appears to be the only viable approach to satisfying the mission F (SEOS) requirements.

  10. Electrodynamic tether system study

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The purpose of this program is to define an Electrodynamic Tether System (ETS) that could be erected from the space station and/or platforms to function as an energy storage device. A schematic representation of the ETS concept mounted on the space station is presented. In addition to the hardware design and configuration efforts, studies are also documented involving simulations of the Earth's magnetic fields and the effects this has on overall system efficiency calculations. Also discussed are some preliminary computer simulations of orbit perturbations caused by the cyclic/night operations of the ETS. System cost estimates, an outline for future development testing for the ETS system, and conclusions and recommendations are also provided.

  11. Process of system design and analysis

    SciTech Connect

    Gardner, B.

    1995-09-01

    The design of an effective physical protection system includes the determination of the physical protection system objectives, the initial design of a physical protection system, the evaluation of the design, and, probably, a redesign or refinement of the system. To develop the objectives, the designer must begin by gathering information about facility operations and conditions, such as a comprehensive description of the facility, operating states, and the physical protection requirements. The designer then needs to define the threat. This involves considering factors about potential adversaries: Class of adversary, adversary`s capabilities, and range of adversary`s tactics. Next, the designer should identify targets. Determination of whether or not nuclear materials are attractive targets is based mainly on the ease or difficulty of acquisition and desirability of the materiaL The designer now knows the objectives of the physical protection system, that is, ``What to protect against whom.`` The next step is to design the system by determining how best to combine such elements as fences, vaults, sensors, procedures, communication devices, and protective force personnel to meet the objectives of the system. Once a physical protection system is designed, it must be analyzed and evaluated to ensure it meets the physical protection objectives. Evaluation must allow for features working together to assure protection rather than regarding each feature separately. Due to the complexity of protection systems, an evaluation usually requires modeling techniques. If any vulnerabilities are found, the initial system must be redesigned to correct the vulnerabilities and a reevaluation conducted.

  12. Understanding the design and economics of distributed tri-generation systems for home and neighborhood refueling-Part II: Neighborhood system case studies

    NASA Astrophysics Data System (ADS)

    Li, Xuping; Ogden, Joan M.

    2012-01-01

    The lack of a hydrogen infrastructure remains a major barrier for fuel cell vehicle (FCV) adoption. The high cost of an extensive hydrogen station network and the low utilization in the near term discourage private investment. Past experience of fuel infrastructure development for motor vehicles, indicates that innovative, distributed, small-volume hydrogen refueling methods may be required to refuel FCVs in the near term. Among small-volume refueling methods, home and neighborhood tri-generation systems stand out because the technology is available and has potential to alleviate consumer's fuel availability concerns. Additionally, it has features attractive to consumers such as convenience and security to refuel at home or in their neighborhood. In this paper, we study neighborhood tri-generation systems in multi-unit dwellings such as apartment complexes. We apply analytical tools including an interdisciplinary framework and an engineering/economic model to a representative multi-family residence in the Northern California area. The simulation results indicate that a neighborhood tri-generation system improves the economics of providing the three energy products for the households compared with the two alternatives studied. The small capacity of the systems and the valuable co-products help address the low utilization problem of hydrogen infrastructure.

  13. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix E: EOS program supporting system trade data. Part 2: System trade studies no. 9 - 19

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The relative merits of several international data acquisition (IDA) alternatives for the Earth Observatory Satellite (EOS) are established and rated on a cost effectiveness basis. The primary alternatives under consideration are: (1) direct transmission to foreign ground stations, (2) a wideband video tape recorder system for collection of foreign data and processing and distribution from the United States, and (3) a tracking and data relay satellite (TDRS) system for the relay of foreign data to the United States for processing and distribution. A requirements model is established for the analysis on the basis of the heaviest concentration of agricultural areas around the world. The model, the orbit path and the constraints of EOS and data volume summaries are presented. Alternative system descriptions and costs are given in addition to cost-performance summaries.

  14. CEBS—Chemical Effects in Biological Systems: a public data repository integrating study design and toxicity data with microarray and proteomics data

    PubMed Central

    Waters, Michael; Stasiewicz, Stanley; Alex Merrick, B.; Tomer, Kenneth; Bushel, Pierre; Paules, Richard; Stegman, Nancy; Nehls, Gerald; Yost, Kenneth J.; Johnson, C. Harris; Gustafson, Scott F.; Xirasagar, Sandhya; Xiao, Nianqing; Huang, Cheng-Cheng; Boyer, Paul; Chan, Denny D.; Pan, Qinyan; Gong, Hui; Taylor, John; Choi, Danielle; Rashid, Asif; Ahmed, Ayazaddin; Howle, Reese; Selkirk, James; Tennant, Raymond; Fostel, Jennifer

    2008-01-01

    Abstract CEBS (Chemical Effects in Biological Systems) is an integrated public repository for toxicogenomics data, including the study design and timeline, clinical chemistry and histopathology findings and microarray and proteomics data. CEBS contains data derived from studies of chemicals and of genetic alterations, and is compatible with clinical and environmental studies. CEBS is designed to permit the user to query the data using the study conditions, the subject responses and then, having identified an appropriate set of subjects, to move to the microarray module of CEBS to carry out gene signature and pathway analysis. Scope of CEBS: CEBS currently holds 22 studies of rats, four studies of mice and one study of Caenorhabditis elegans. CEBS can also accommodate data from studies of human subjects. Toxicogenomics studies currently in CEBS comprise over 4000 microarray hybridizations, and 75 2D gel images annotated with protein identification performed by MALDI and MS/MS. CEBS contains raw microarray data collected in accordance with MIAME guidelines and provides tools for data selection, pre-processing and analysis resulting in annotated lists of genes of interest. Additionally, clinical chemistry and histopathology findings from over 1500 animals are included in CEBS. CEBS/BID: The BID (Biomedical Investigation Database) is another component of the CEBS system. BID is a relational database used to load and curate study data prior to export to CEBS, in addition to capturing and displaying novel data types such as PCR data, or additional fields of interest, including those defined by the HESI Toxicogenomics Committee (in preparation). BID has been shared with Health Canada and the US Environmental Protection Agency. CEBS is available at http://cebs.niehs.nih.gov. BID can be accessed via the user interface from https://dir-apps.niehs.nih.gov/arc/. Requests for a copy of BID and for depositing data into CEBS or BID are available at http

  15. CEBS--Chemical Effects in Biological Systems: a public data repository integrating study design and toxicity data with microarray and proteomics data.

    PubMed

    Waters, Michael; Stasiewicz, Stanley; Merrick, B Alex; Tomer, Kenneth; Bushel, Pierre; Paules, Richard; Stegman, Nancy; Nehls, Gerald; Yost, Kenneth J; Johnson, C Harris; Gustafson, Scott F; Xirasagar, Sandhya; Xiao, Nianqing; Huang, Cheng-Cheng; Boyer, Paul; Chan, Denny D; Pan, Qinyan; Gong, Hui; Taylor, John; Choi, Danielle; Rashid, Asif; Ahmed, Ayazaddin; Howle, Reese; Selkirk, James; Tennant, Raymond; Fostel, Jennifer

    2008-01-01

    CEBS (Chemical Effects in Biological Systems) is an integrated public repository for toxicogenomics data, including the study design and timeline, clinical chemistry and histopathology findings and microarray and proteomics data. CEBS contains data derived from studies of chemicals and of genetic alterations, and is compatible with clinical and environmental studies. CEBS is designed to permit the user to query the data using the study conditions, the subject responses and then, having identified an appropriate set of subjects, to move to the microarray module of CEBS to carry out gene signature and pathway analysis. Scope of CEBS: CEBS currently holds 22 studies of rats, four studies of mice and one study of Caenorhabditis elegans. CEBS can also accommodate data from studies of human subjects. Toxicogenomics studies currently in CEBS comprise over 4000 microarray hybridizations, and 75 2D gel images annotated with protein identification performed by MALDI and MS/MS. CEBS contains raw microarray data collected in accordance with MIAME guidelines and provides tools for data selection, pre-processing and analysis resulting in annotated lists of genes of interest. Additionally, clinical chemistry and histopathology findings from over 1500 animals are included in CEBS. CEBS/BID: The BID (Biomedical Investigation Database) is another component of the CEBS system. BID is a relational database used to load and curate study data prior to export to CEBS, in addition to capturing and displaying novel data types such as PCR data, or additional fields of interest, including those defined by the HESI Toxicogenomics Committee (in preparation). BID has been shared with Health Canada and the US Environmental Protection Agency. CEBS is available at http://cebs.niehs.nih.gov. BID can be accessed via the user interface from https://dir-apps.niehs.nih.gov/arc/. Requests for a copy of BID and for depositing data into CEBS or BID are available at http://www.niehs.nih.gov/cebs-df/.

  16. Empirical studies of software design: Implications for SSEs

    NASA Technical Reports Server (NTRS)

    Krasner, Herb

    1988-01-01

    Implications for Software Engineering Environments (SEEs) are presented in viewgraph format for characteristics of projects studied; significant problems and crucial problem areas in software design for large systems; layered behavioral model of software processes; implications of field study results; software project as an ecological system; results of the LIFT study; information model of design exploration; software design strategies; results of the team design study; and a list of publications.

  17. Impact of the Patient-Reported Outcomes Management Information System (PROMIS) upon the Design and Operation of Multi-center Clinical Trials: a Qualitative Research Study

    PubMed Central

    Diener, Lawrence W.; Nahm, Meredith; Weinfurt, Kevin P.

    2013-01-01

    New technologies may be required to integrate the National Institutes of Health’s Patient Reported Outcome Management Information System (PROMIS) into multi-center clinical trials. To better understand this need, we identified likely PROMIS reporting formats, developed a multi-center clinical trial process model, and identified gaps between current capabilities and those necessary for PROMIS. These results were evaluated by key trial constituencies. Issues reported by principal investigators fell into two categories: acceptance by key regulators and the scientific community, and usability for researchers and clinicians. Issues reported by the coordinating center, participating sites, and study subjects were those faced when integrating new technologies into existing clinical trial systems. We then defined elements of a PROMIS Tool Kit required for integrating PROMIS into a multi-center clinical trial environment. The requirements identified in this study serve as a framework for future investigators in the design, development, implementation, and operation of PROMIS Tool Kit technologies. PMID:20703765

  18. Preliminary design report, Large Space Telescope OTA/SI Phase B study: High speed area photometer. [systems analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A photometer is examined which combines several features from separate instruments into a single package. The design presented has both point and area photometry capability with provision for inserting filters to provide spectral discrimination. The electronics provide for photon counting mode for the point detectors and both photon counting and analog modes for the area detector. The area detector also serves as a target locating device for the point detectors. Topics discussed include: (1) electronic equipment requirements, (2) optical properties, (3) structural housing for the instrument, (4) motors and other mechanical components, (5) ground support equipment, and (6) environment control for the instrument. Engineering drawings and block diagrams are shown.

  19. Assembly design system based on engineering connection

    NASA Astrophysics Data System (ADS)

    Yin, Wensheng

    2016-05-01

    An assembly design system is an important part of computer-aided design systems, which are important tools for realizing product concept design. The traditional assembly design system does not record the connection information of production on the engineering layer; consequently, the upstream design idea cannot be fully used in the downstream design. An assembly design model based on the relationship of engineering connection is presented. In this model, all nodes are divided into two categories: The component and the connection. Moreover, the product is constructed on the basis of the connection relationship of the components. The model is an And/Or graph and has the ability to record all assembly schemes. This model records only the connection information that has engineering application value in the product design. In addition, this model can significantly reduce the number of combinations, and is very favorable for the assembly sequence planning in the downstream. The system contains a connection knowledge system that can be mapped to the connection node, and the connection knowledge obtained in practice can be returned to the knowledge system. Finally, VC++ 6.0 is used to develop a prototype system called Connect-based Assembly Planning (CAP). The relationship between the CAP system and the commercial assembly design system is also established.

  20. Systems design factors: The essential ingredients of system design, version 0.4

    NASA Astrophysics Data System (ADS)

    Nguyen, Cuong M.; Howell, Steven L.

    1994-03-01

    The key to designing a real-time, large, complex system is to optimize the design to meet the requirements and desired measure of effectiveness. In order to achieve this, the system engineer/analyst must have the capability to specify the design goals/criteria, to quantify various aspects of the design, and to perform trade-offs among different design goals. One of the mechanisms that provides these capabilities is the system design factors. Whether the system design emphasis is on real-time, largeness, complexity, parallelism, or any specific criteria, it requires a set of system design factors to describe the properties, attributes, and characteristics of the system. Each system design factor must have its own metric to gauge every detail of that system. The metric describes the weaknesses and strengths of a specific area in the design. In turn, the correlation of the system design factor characterizes the completeness and robustness of the system. Whether the system is designed top-down, bottom-up, or middle-out, the system design factors have major influence in design capture and analysis, design structuring decisions, allocation decisions, and trade-off decisions between various design structures and resource allocation candidates.

  1. Tethered Satellite System control system design

    NASA Technical Reports Server (NTRS)

    Tomlin, Donald D.; Mowery, David K.; Bodley, Carl S.

    1989-01-01

    This paper discusses the control aspects of the Tethered Satellite System mission. The deployer controls system uses length-error and tension-error feedback to control in-plane libration, length, and length rate. The satellite's reaction control system is used to augment tether tension, control rates and attitude about the tether axis, and to damp in-plane and out-of-plane libration. The orbiter's reaction control system is also used to control in-plane and out-of-plane libration. Results of simulations are presented for the flight portion of the Tethered Satellite System mission.

  2. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Kreutz, T.

    1998-08-01

    In this progress report (covering the period May 1997--May 1998), the authors summarize results from ongoing technical and economic assessments of hydrogen energy systems. Generally, the goal of their research is to illuminate possible pathways leading from present hydrogen markets and technologies toward wide scale use of hydrogen as an energy carrier, highlighting important technologies for RD and D. Over the past year they worked on three projects. From May 1997--November 1997, the authors completed an assessment of hydrogen as a fuel for fuel cell vehicles, as compared to methanol and gasoline. Two other studies were begun in November 1997 and are scheduled for completion in September 1998. The authors are carrying out an assessment of potential supplies and demands for hydrogen energy in the New York City/New Jersey area. The goal of this study is to provide useful data and suggest possible implementation strategies for the New York City/ New Jersey area, as the Hydrogen Program plans demonstrations of hydrogen vehicles and refueling infrastructure. The authors are assessing the implications of CO{sub 2} sequestration for hydrogen energy systems. The goals of this work are (a) to understand the implications of CO{sub 2} sequestration for hydrogen energy system design; (b) to understand the conditions under which CO{sub 2} sequestration might become economically viable; and (c) to understand design issues for future low-CO{sub 2} emitting hydrogen energy systems based on fossil fuels.

  3. The Spacecraft Materials Selector: An Artificial Intelligence System for Preliminary Design Trade Studies, Materials Assessments, and Estimates of Environments Present

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.; Woll, S. L. B.

    2000-01-01

    Institutions need ways to retain valuable information even as experienced individuals leave an organization. Modern electronic systems have enough capacity to retain large quantities of information that can mitigate the loss of experience. Performance information for long-term space applications is relatively scarce and specific information (typically held by a few individuals within a single project) is often rather narrowly distributed. Spacecraft operate under severe conditions and the consequences of hardware and/or system failures, in terms of cost, loss of information, and time required to replace the loss, are extreme. These risk factors place a premium on appropriate choice of materials and components for space applications. An expert system is a very cost-effective method for sharing valuable and scarce information about spacecraft performance. Boeing has an artificial intelligence software package, called the Boeing Expert System Tool (BEST), to construct and operate knowledge bases to selectively recall and distribute information about specific subjects. A specific knowledge base to evaluate the on-orbit performance of selected materials on spacecraft has been developed under contract to the NASA SEE program. The performance capabilities of the Spacecraft Materials Selector (SMS) knowledge base are described. The knowledge base is a backward-chaining, rule-based system. The user answers a sequence of questions, and the expert system provides estimates of optical and mechanical performance of selected materials under specific environmental conditions. The initial operating capability of the system will include data for Kapton, silverized Teflon, selected paints, silicone-based materials, and certain metals. For situations where a mission profile (launch date, orbital parameters, mission duration, spacecraft orientation) is not precisely defined, the knowledge base still attempts to provide qualitative observations about materials performance and likely

  4. Designing with Only Four People in Mind? - A Case Study of Using Personas to Redesign a Work-Integrated Learning Support System

    NASA Astrophysics Data System (ADS)

    Dotan, Amir; Maiden, Neil; Lichtner, Valentina; Germanovich, Lola

    In this paper we describe and reflect on the use of personas to redesign the 3rd prototype of APOSDLE - a system to support informal learning and knowledge transfer in the workplace. Based on the results of a formative evaluation of the 2nd prototype we used personas to explore how users’ goals, behaviour and preferences could be communicated to project members during a two-day design workshop, in order to ensure useful and usable design solutions. We actively involved stakeholders representing the target market throughout the process as they helped to create, validate and interpret the four personas we used. By doing so we aimed to address methodological weaknesses and practical limitations of using personas, primarily those relating to the validity of the personas used and the way they are interpreted. We reflected on how effective the personas were by referring to data generated during the workshop and discussion transcripts. As reported by others, and as we have experienced ourselves, using personas can be quite challenging as rich narrative descriptions are expected to produce insight and design solutions. In light of this challenge, we contribute a case study illustrating how personas were implemented in a real world situation to engage project members with user information and drive the design process. We specifically discussed the strengths and weaknesses of actively involving stakeholders in creating and using personas.

  5. The Evolution of a Collaborative Authoring System for Non-Linear Hypertext: A Design-Based Research Study

    ERIC Educational Resources Information Center

    Strobel, Johannes; Jonassen, David H.; Ionas, Ioan Gelu

    2008-01-01

    Learning in complex and ill-structured knowledge domains requires accommodation of multiple perspectives embedded in authentic activities and the reconciliation of those perspectives with personal beliefs resulting in conceptual change. Cognitive flexibility hypertext systems support that process by enabling learners to explore authentic cases…

  6. Asymmetrical booster ascent guidance and control system design study. Volume 2: SSFS math models - Ascent. [space shuttle development

    NASA Technical Reports Server (NTRS)

    Williams, F. E.; Lemon, R. S.

    1974-01-01

    The engineering equations and mathematical models developed for use in the space shuttle functional simulator (SSFS) are presented, and include extensive revisions and additions to earlier documentation. Definitions of coordinate systems used by the SSFS models and coordinate tranformations are given, along with documentation of the flexible body mathematical models. The models were incorporated in the SSFS and are in the checkout stage.

  7. Design and Development of an Identity Management System: The Minnesota State College-Southeast Technical Case Study

    ERIC Educational Resources Information Center

    Elhindi, Mohamed A.

    2010-01-01

    Historically, managing access to information systems (ISs) required direct interaction with a limited number of users. Increasingly, managing access involves handling an increased numbers of internal and external students, faculty, and staff as well as partners such as workforce development centers, the U.S. Department of Education, and the…

  8. Space Station Freedom power management and distribution system design

    NASA Technical Reports Server (NTRS)

    Teren, Fred

    1989-01-01

    The design is described of the Space Station Freedom Power Management and Distribution (PMAD) System. In addition, the significant trade studies which were conducted are described, which led to the current PMAD system configuration.

  9. Bivalve, Mytilus edulis, as a test organism for bioconcentration studies. I. Designing a continuous-flow system and its application to some organochlorine compounds

    SciTech Connect

    Renberg, L.; Tarkpea, M.; Linden, E.

    1985-04-01

    Most bioconcentration studies have previously been carried out using fish as a test organism. Equally important is the use of bivalves for this purpose, from both an ecological and an economic point of view. A continuous-flow system has thus been designed for use also with extremely hydrophobic substances and evaluated using 2,4',5-trichlorobiphenyl, methoxychlor, pentachlorobenzene, and lindane. The variation of the uptake in the individuals after 3 weeks exposure was quite small (relative standard errors varied from 10.1 to 15.3% depending on the test substance), indicating a high degree of reproducibility. The bivalves, however, are known to close their valves under unfavorable conditions, which occasionally may bias the results. To overcome this disadvantage, it is suggested that an internal standard--i.e., a chemically defined compound--be added to the water simultaneously with the test substances. Although there is a principal risk for interactive effects, unexpected variations in the uptake can thus be compensated for by relating the concentration of the test substance to the concentration of the internal standard in the organisms. Comparisons between continuous-flow systems and static systems have also been made. It is concluded that continuous-flow systems are more suitable for studying hydrophobic compounds than static systems.

  10. National accounts manager: Design study. Final report

    SciTech Connect

    Waggoner, J.

    1998-09-01

    This document addresses a typical application -- that of a hypothetical nationwide chain of restaurants. The design study uses the Reference Model for Open Distributed Processing (RM-ODP) as a guideline for specifying standard systems. Far from limiting the study`s usefulness to a particular type of National Account, this guideline is highly portable, and will be useful, with slight modifications only, in similarly specifying systems for other types of customers. A brief list of other applications could include many ``campus`` environments -- government agencies and university systems as well as manufacturers, airports, railyards, ski resorts, apartment complexes, hotels, hospitals, telecommunication facilities, oil fields, irrigation systems, municipal water/sewer systems, and so on.

  11. Using the Computer in Systems Engineering Design

    ERIC Educational Resources Information Center

    Schmidt, W.

    1970-01-01

    With the aid of the programmed computer, the systems designer can analyze systems for which certain components have not yet been manufactured or even invented, and the power of solution-technique is greatly increased. (IR)

  12. Optmization design of zoom lens systems

    NASA Astrophysics Data System (ADS)

    Li, Xiaotong; Cen, Zhaofeng

    2002-09-01

    A zoom lens system is usually composed of several components. Some of the components can be moved to change the focal length or magnification. Zoom lens system design is more complicated than fixed-focus lens design due to the moving of some components. In this paper, an optimization method that is used to design zoom lens systems is presented. Using this method, the Gaussian parameters of zoom lens systems are optimized at first, and then the initial structure parameters in each component are generated and optimized. At last the aberration balance is made using multi-configuration. In this paper the flowchart of optimization design for such complex optical systems is showed and the algorithms are described. As a conclusion, the relationship between power distribution, initial structure and the aberrations is considered at the beginning, the evaluation criteria are reliable and efficiency for designing zoom lens systems.

  13. Proposed study to determine potential flight applications and human factors design guidelines of voice recognition/synthesis systems

    NASA Technical Reports Server (NTRS)

    Bergeron, H. P.

    1983-01-01

    An effort to evaluate the human factors aspects and potential of voice recognition/synthesis techniques and the application of present and near-future (5 years) voice recognition/synthesis systems as a pilot/aircraft cockpit interface capability in an operational environment is discussed. The analysis will emphasize applications for single pilot instrument flight rules operations but will also include applications for other categories of aircraft with various levels of complexity.

  14. Aviation System Analysis Capability Executive Assistant Design

    NASA Technical Reports Server (NTRS)

    Roberts, Eileen; Villani, James A.; Osman, Mohammed; Godso, David; King, Brent; Ricciardi, Michael

    1998-01-01

    In this technical document, we describe the design developed for the Aviation System Analysis Capability (ASAC) Executive Assistant (EA) Proof of Concept (POC). We describe the genesis and role of the ASAC system, discuss the objectives of the ASAC system and provide an overview of components and models within the ASAC system, and describe the design process and the results of the ASAC EA POC system design. We also describe the evaluation process and results for applicable COTS software. The document has six chapters, a bibliography, three appendices and one attachment.

  15. Study Design to Test the Hypothesis That Long-Term Space Travel Harms the Human and Animal Immune Systems

    NASA Technical Reports Server (NTRS)

    Shearer, William T.; Lugg, Desmond J.; Ochs, H. D.; Pierson, Duane L.; Reuben, James M.; Rosenblatt, Howard M.; Sams, Clarence; Smith, C. Wayne; Smith, E. Obrian; Smolen, James E.

    1999-01-01

    The potential threat of immunosuppression and abnormal inflammatory responses in long-term space travel, leading to unusual predilection for opportunistic infections, malignancy, and death, is of ma or concern to the National Aeronautics and Space Administration (NASA) Program. This application has been devised to seek answers to questions of altered immunity in space travel raised by previous investigations spanning 30-plus years. We propose to do this with the help of knowledge gained by the discovery of the molecular basis of many primary and secondary immunodeficiency diseases and by application of molecular and genetic technology not previously available. Two areas of immunity that previously received little attention in space travel research will be emphasized: specific antibody responses and non-specific inflammation and adhesion. Both of these areas of research will not only add to the growing body of information on the potential effects of space travel on the immune system, but be able to delineate any functional alterations in systems important for antigen presentation, specific immune memory, and cell:cell and cell:endothelium interactions. By more precisely defining molecular dysfunction of components of the immune system, it is hoped that targeted methods of prevention of immune damage in space could be devised.

  16. Robust holographic storage system design.

    PubMed

    Watanabe, Takahiro; Watanabe, Minoru

    2011-11-21

    Demand is increasing daily for large data storage systems that are useful for applications in spacecraft, space satellites, and space robots, which are all exposed to radiation-rich space environment. As candidates for use in space embedded systems, holographic storage systems are promising because they can easily provided the demanded large-storage capability. Particularly, holographic storage systems, which have no rotation mechanism, are demanded because they are virtually maintenance-free. Although a holographic memory itself is an extremely robust device even in a space radiation environment, its associated lasers and drive circuit devices are vulnerable. Such vulnerabilities sometimes engendered severe problems that prevent reading of all contents of the holographic memory, which is a turn-off failure mode of a laser array. This paper therefore presents a proposal for a recovery method for the turn-off failure mode of a laser array on a holographic storage system, and describes results of an experimental demonstration.

  17. Designing To Learn about Complex Systems.

    ERIC Educational Resources Information Center

    Hmelo, Cindy E.; Holton, Douglas L.; Kolodner, Janet L.

    2000-01-01

    Indicates the presence of complex structural, behavioral, and functional relations to understanding. Reports on a design experiment in which 6th grade children learned about the human respiratory system by designing artificial lungs and building partial working models. Makes suggestions for successful learning from design activities. (Contains 44…

  18. ESS Cryogenic System Process Design

    NASA Astrophysics Data System (ADS)

    Arnold, P.; Hees, W.; Jurns, J.; Su, X. T.; Wang, X. L.; Weisend, J. G., II

    2015-12-01

    The European Spallation Source (ESS) is a neutron-scattering facility funded and supported in collaboration with 17 European countries in Lund, Sweden. Cryogenic cooling at ESS is vital particularly for the linear accelerator, the hydrogen target moderators, a test stand for cryomodules, the neutron instruments and their sample environments. The paper will focus on specific process design criteria, design decisions and their motivations for the helium cryoplants and auxiliary equipment. Key issues for all plants and their process concepts are energy efficiency, reliability, smooth turn-down behaviour and flexibility. The accelerator cryoplant (ACCP) and the target moderator cryoplant (TMCP) in particular need to be prepared for a range of refrigeration capacities due to the intrinsic uncertainties regarding heat load definitions. Furthermore the paper addresses questions regarding process arrangement, 2 K cooling methodology, LN2 precooling, helium storage, helium purification and heat recovery.

  19. Position paper -- Tank ventilation system design air flow rates

    SciTech Connect

    Goolsby, G.K.

    1995-01-04

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

  20. Design scoping study of the 12T Yin-Yang magnet system for the Tandem Mirror Next Step (TMNS). Final report

    SciTech Connect

    Not Available

    1981-09-01

    The overall objective of this engineering study was to determine the feasibility of designing a Yin-Yang magnet capable of producing a peak field in the windings of 12T for the Tandem Mirror Next Step (TMNS) program. As part of this technical study, a rough order of magnitude (ROM) cost estimate of the winding for this magnet was undertaken. The preferred approach to the winding design of the TMNS plug coil utilizes innovative design concepts to meet the structural, electrical and thermodynamic requirements of the magnet system. Structurally, the coil is radially partitioned into four sections, preventing the accumulation of the radial loads and reacting them into the structural case. To safely dissipate the 13.34 GJ of energy stored in each Yin-Yang magnet, the winding has been electrically subdivided into parallel or nested coils, each having its own power supply and protection circuitry. This arrangement effectively divides the total stored energy of the coils into manageable subsystems. The windings are cooled with superfluid helium II, operated at 1.8K and 1.2 atmospheres. The superior cooling capabilities of helium II have enabled the overall winding envelope to be minimized, providing a current density of 2367 A/CM/sup 2/, excluding substructure.