2006 Pathogen and Toxin Concentration Systems for Water Monitoring
2012-07-24
design and construct a compact, portable automated device enabling the simultaneous concentration of protozoa , bacteria, bacterial spores, algae and...portable automated device enabling the simultaneous concentration of protozoa , bacteria, bacterial spores, algae and viruses from large volumes of various...construct a compact, portable automated device enabling the simultaneous concentration of protozoa , bacteria, bacterial spores, algae and viruses
Neuronix enables continuous, simultaneous neural recording and electrical microstimulation.
Zhi Yang; Jian Xu; Anh Tuan Nguyen; Tong Wu; Wenfeng Zhao; Wing-Kin Tam
2016-08-01
This paper reports a novel neurotechnology (Neuronix) and its validation through experiments. It is a miniature system-on-chip (SoC) that allows recording with simultaneous electrical microstimulation. This function has not been demonstrated before and enables precise, closed-loop neuromodulation. Neuronix represents recent advancement in brain technology and applies to both animal research and clinical applications.
Going Boldly Beyond: Progress on NASA's Space Launch System
NASA Technical Reports Server (NTRS)
Singer, Jody; Crumbly, Chris
2013-01-01
NASA's Space Launch System is implementing an evolvable configuration approach to system development in a resource-constrained era. Legacy systems enable non-traditional development funding and contribute to sustainability and affordability. Limited simultaneous developments reduce cost and schedule risk. Phased approach to advanced booster development enables innovation and competition, incrementally demonstrating affordability and performance enhancements. Advanced boosters will provide performance for the most capable heavy lift launcher in history, enabling unprecedented space exploration benefiting all of humanity.
Smith, Lauren H.; Kuiken, Todd A.; Hargrove, Levi J.
2015-01-01
Clinically available myoelectric control does not enable simultaneous proportional control of prosthetic degrees of freedom. Multiple studies have proposed systems that provide simultaneous control, though few have investigated whether subjects voluntarily use simultaneous control or how they implement it. Additionally, few studies have explicitly evaluated the effect of providing proportional velocity control. The objective of this study was to evaluate factors influencing when and how subjects use simultaneous myoelectric control, including the ability to proportionally control the velocity and the required task precision. Five able-bodied subjects used simultaneous myoelectric control systems with and without proportional velocity control in a virtual Fitts’ Law task. Though subjects used simultaneous control to a substantial degree when proportional velocity control was present, they used very little simultaneous control when using constant-velocity control. Furthermore, use of simultaneous control varied significantly with target distance and width, reflecting a strategy of using simultaneous control for gross cursor positioning and sequential control for fine corrective movements. These results provide insight into how users take advantage of simultaneous control and highlight the need for real-time evaluation of simultaneous control algorithms, as the potential benefit of providing simultaneous control may be affected by other characteristics of the myoelectric control system. PMID:25769167
Lee, Delice Weishan; Thampi, Swapna; Yap, Eric Peng Huat; Liu, Eugene Hern Choon
2016-06-01
Using three-dimensional printing, we produced adaptors to attach a smartphone with camera to the eyepiece of the Airtraq(®) laryngoscope. This low-cost system enabled a team to simultaneously view the laryngoscopy process on the smartphone screen, and also enabled image transmission. We compared the Airtraq(®) with the smartphone Airtraq(®) system in a crossover study of trainee anesthesiologists performing tracheal intubation in a manikin. We also evaluated the smartphone Airtraq(®) system for laryngoscopy and tracheal intubation in 30 patients, including image transmission to and communication with a remote instructor. In the manikin study, the smartphone Airtraq(®) system enabled instruction where both trainee and instructor could view the larynx simultaneously, and did not substantially increase the time required for intubation. In the patient study, we were able to view the larynx in all 30 patients, and the remote instructor was able to receive the images and to respond on correctness of laryngoscopy and tracheal tube placement. Tracheal intubation was successful within 90s in 19 (63 %) patients. In conclusion, use of a smartphone with the Airtraq(®) may facilitate instruction and communication of laryngoscopy with the Airtraq(®), overcoming some of its limitations.
Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems
NASA Technical Reports Server (NTRS)
Silva, Walter A.
2008-01-01
A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.
Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems
NASA Technical Reports Server (NTRS)
Silva, Walter A.
2007-01-01
A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.
Zhou, Haibo; Liu, Junlai; Zhou, Changyang; Gao, Ni; Rao, Zhiping; Li, He; Hu, Xinde; Li, Changlin; Yao, Xuan; Shen, Xiaowen; Sun, Yidi; Wei, Yu; Liu, Fei; Ying, Wenqin; Zhang, Junming; Tang, Cheng; Zhang, Xu; Xu, Huatai; Shi, Linyu; Cheng, Leping; Huang, Pengyu; Yang, Hui
2018-03-01
Despite rapid progresses in the genome-editing field, in vivo simultaneous overexpression of multiple genes remains challenging. We generated a transgenic mouse using an improved dCas9 system that enables simultaneous and precise in vivo transcriptional activation of multiple genes and long noncoding RNAs in the nervous system. As proof of concept, we were able to use targeted activation of endogenous neurogenic genes in these transgenic mice to directly and efficiently convert astrocytes into functional neurons in vivo. This system provides a flexible and rapid screening platform for studying complex gene networks and gain-of-function phenotypes in the mammalian brain.
Jensen, Sheila I.; Lennen, Rebecca M.; Herrgård, Markus J.; Nielsen, Alex T.
2015-01-01
Generation of multiple genomic alterations is currently a time consuming process. Here, a method was established that enables highly efficient and simultaneous deletion of multiple genes in Escherichia coli. A temperature sensitive plasmid containing arabinose inducible lambda Red recombineering genes and a rhamnose inducible flippase recombinase was constructed to facilitate fast marker-free deletions. To further speed up the procedure, we integrated the arabinose inducible lambda Red recombineering genes and the rhamnose inducible FLP into the genome of E. coli K-12 MG1655. This system enables growth at 37 °C, thereby facilitating removal of integrated antibiotic cassettes and deletion of additional genes in the same day. Phosphorothioated primers were demonstrated to enable simultaneous deletions during one round of electroporation. Utilizing these methods, we constructed strains in which four to seven genes were deleted in E. coli W and E. coli K-12. The growth rate of an E. coli K-12 quintuple deletion strain was significantly improved in the presence of high concentrations of acetate and NaCl. In conclusion, we have generated a method that enables efficient and simultaneous deletion of multiple genes in several E. coli variants. The method enables deletion of up to seven genes in as little as seven days. PMID:26643270
Beaudette, Kathy; Baac, Hyoung Won; Madore, Wendy-Julie; Villiger, Martin; Godbout, Nicolas; Bouma, Brett E; Boudoux, Caroline
2015-04-01
Double-clad fiber (DCF) is herein used in conjunction with a double-clad fiber coupler (DCFC) to enable simultaneous and co-registered optical coherence tomography (OCT) and laser tissue coagulation. The DCF allows a single channel fiber-optic probe to be shared: i.e. the core propagating the OCT signal while the inner cladding delivers the coagulation laser light. We herein present a novel DCFC designed and built to combine both signals within a DCF (>90% of single-mode transmission; >65% multimode coupling). Potential OCT imaging degradation mechanisms are also investigated and solutions to mitigate them are presented. The combined DCFC-based system was used to induce coagulation of an ex vivo swine esophagus allowing a real-time assessment of thermal dynamic processes. We therefore demonstrate a DCFC-based system combining OCT imaging with laser coagulation through a single fiber, thus enabling both modalities to be performed simultaneously and in a co-registered manner. Such a system enables endoscopic image-guided laser marking of superficial epithelial tissues or laser thermal therapy of epithelial lesions in pathologies such as Barrett's esophagus.
Beaudette, Kathy; Baac, Hyoung Won; Madore, Wendy-Julie; Villiger, Martin; Godbout, Nicolas; Bouma, Brett E.; Boudoux, Caroline
2015-01-01
Double-clad fiber (DCF) is herein used in conjunction with a double-clad fiber coupler (DCFC) to enable simultaneous and co-registered optical coherence tomography (OCT) and laser tissue coagulation. The DCF allows a single channel fiber-optic probe to be shared: i.e. the core propagating the OCT signal while the inner cladding delivers the coagulation laser light. We herein present a novel DCFC designed and built to combine both signals within a DCF (>90% of single-mode transmission; >65% multimode coupling). Potential OCT imaging degradation mechanisms are also investigated and solutions to mitigate them are presented. The combined DCFC-based system was used to induce coagulation of an ex vivo swine esophagus allowing a real-time assessment of thermal dynamic processes. We therefore demonstrate a DCFC-based system combining OCT imaging with laser coagulation through a single fiber, thus enabling both modalities to be performed simultaneously and in a co-registered manner. Such a system enables endoscopic image-guided laser marking of superficial epithelial tissues or laser thermal therapy of epithelial lesions in pathologies such as Barrett’s esophagus. PMID:25909013
NASA Technical Reports Server (NTRS)
Wolfe, Jean
2010-01-01
Program Goal: Conduct research at an integrated system-level on promising concepts and technologies and explore, assess, or demonstrate the benefits in a relevant environment.Criteria for selection of projects for Integrated Systems Research: a) Technology has attained enough maturity in the foundational research program that they merit more in-depth evaluation at an integrated system level in a relevant environment. b) Technologies which systems analysis indicates have the most potential for contributing to the simultaneous attainment of goals. c) Technologies identified through stakeholder input as having potential for simultaneous attainment of goals. d) Research not being done by other government agencies and appropriate for NASA to conduct. e) Budget augmentation. Environmentally Responsible Aviation (ERA) Project Explore and assess new vehicle concepts and enabling technologies through system-level experimentation to simultaneously reduce fuel burn, noise, and emissions Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project Contribute capabilities that reduce technical barriers related to the safety and operational challenges associated with enabling routine UAS access to the NAS Innovative Concepts for Green Aviation (ICGA) Project Spur innovation by offering research opportunities to the broader aeronautics community through peer-reviewed proposals, with a focus on making aviation more eco-friendly. Establish incentive prizes similar to the Centennial Challenges and sponsor innovation demonstrations of selected technologies that show promise of reducing aviation s impact on the environment
An inexpensive programmable illumination microscope with active feedback.
Tompkins, Nathan; Fraden, Seth
2016-02-01
We have developed a programmable illumination system capable of tracking and illuminating numerous objects simultaneously using only low-cost and reused optical components. The active feedback control software allows for a closed-loop system that tracks and perturbs objects of interest automatically. Our system uses a static stage where the objects of interest are tracked computationally as they move across the field of view allowing for a large number of simultaneous experiments. An algorithmically determined illumination pattern can be applied anywhere in the field of view with simultaneous imaging and perturbation using different colors of light to enable spatially and temporally structured illumination. Our system consists of a consumer projector, camera, 35-mm camera lens, and a small number of other optical and scaffolding components. The entire apparatus can be assembled for under $4,000.
Recent Enhancements to the Development of CFD-Based Aeroelastic Reduced-Order Models
NASA Technical Reports Server (NTRS)
Silva, Walter A.
2007-01-01
Recent enhancements to the development of CFD-based unsteady aerodynamic and aeroelastic reduced-order models (ROMs) are presented. These enhancements include the simultaneous application of structural modes as CFD input, static aeroelastic analysis using a ROM, and matched-point solutions using a ROM. The simultaneous application of structural modes as CFD input enables the computation of the unsteady aerodynamic state-space matrices with a single CFD execution, independent of the number of structural modes. The responses obtained from a simultaneous excitation of the CFD-based unsteady aerodynamic system are processed using system identification techniques in order to generate an unsteady aerodynamic state-space ROM. Once the unsteady aerodynamic state-space ROM is generated, a method for computing the static aeroelastic response using this unsteady aerodynamic ROM and a state-space model of the structure, is presented. Finally, a method is presented that enables the computation of matchedpoint solutions using a single ROM that is applicable over a range of dynamic pressures and velocities for a given Mach number. These enhancements represent a significant advancement of unsteady aerodynamic and aeroelastic ROM technology.
Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2011-04-01
In this study, we propose and evaluate a method for spectral characterization of acousto-optic tunable filter (AOTF) hyperspectral imaging systems in the near-infrared (NIR) spectral region from 900 nm to 1700 nm. The proposed spectral characterization method is based on the SRM-2035 standard reference material, exhibiting distinct spectral features, which enables robust non-rigid matching of the acquired and reference spectra. The matching is performed by simultaneously optimizing the parameters of the AOTF tuning curve, spectral resolution, baseline, and multiplicative effects. In this way, the tuning curve (frequency-wavelength characteristics) and the corresponding spectral resolution of the AOTF hyperspectral imaging system can be characterized simultaneously. Also, the method enables simple spectral characterization of the entire imaging plane of hyperspectral imaging systems. The results indicate that the method is accurate and efficient and can easily be integrated with systems operating in diffuse reflection or transmission modes. Therefore, the proposed method is suitable for characterization, calibration, or validation of AOTF hyperspectral imaging systems. © 2011 Society for Applied Spectroscopy
An inexpensive programmable illumination microscope with active feedback
Tompkins, Nathan; Fraden, Seth
2016-01-01
We have developed a programmable illumination system capable of tracking and illuminating numerous objects simultaneously using only low-cost and reused optical components. The active feedback control software allows for a closed-loop system that tracks and perturbs objects of interest automatically. Our system uses a static stage where the objects of interest are tracked computationally as they move across the field of view allowing for a large number of simultaneous experiments. An algorithmically determined illumination pattern can be applied anywhere in the field of view with simultaneous imaging and perturbation using different colors of light to enable spatially and temporally structured illumination. Our system consists of a consumer projector, camera, 35-mm camera lens, and a small number of other optical and scaffolding components. The entire apparatus can be assembled for under $4,000. PMID:27642182
Pang, Cheng; Bae, Hyungdae; Gupta, Ashwani; Bryden, Kenneth; Yu, Miao
2013-09-23
We present a micro-electro-mechanical systems (MEMS) based Fabry-Perot (FP) sensor along with an optical system-on-a-chip (SOC) interrogator for simultaneous pressure and temperature sensing. The sensor employs a simple structure with an air-backed silicon membrane cross-axially bonded to a 45° polished optical fiber. This structure renders two cascaded FP cavities, enabling simultaneous pressure and temperature sensing in close proximity along the optical axis. The optical SOC consists of a broadband source, a MEMS FP tunable filter, a photodetector, and the supporting circuitry, serving as a miniature spectrometer for retrieving the two FP cavity lengths. Within the measured pressure and temperature ranges, experimental results demonstrate that the sensor exhibits a good linear response to external pressure and temperature changes.
Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping
NASA Astrophysics Data System (ADS)
Bongiovanni, Marie N.; Godet, Julien; Horrocks, Mathew H.; Tosatto, Laura; Carr, Alexander R.; Wirthensohn, David C.; Ranasinghe, Rohan T.; Lee, Ji-Eun; Ponjavic, Aleks; Fritz, Joelle V.; Dobson, Christopher M.; Klenerman, David; Lee, Steven F.
2016-12-01
Super-resolution microscopy allows biological systems to be studied at the nanoscale, but has been restricted to providing only positional information. Here, we show that it is possible to perform multi-dimensional super-resolution imaging to determine both the position and the environmental properties of single-molecule fluorescent emitters. The method presented here exploits the solvatochromic and fluorogenic properties of nile red to extract both the emission spectrum and the position of each dye molecule simultaneously enabling mapping of the hydrophobicity of biological structures. We validated this by studying synthetic lipid vesicles of known composition. We then applied both to super-resolve the hydrophobicity of amyloid aggregates implicated in neurodegenerative diseases, and the hydrophobic changes in mammalian cell membranes. Our technique is easily implemented by inserting a transmission diffraction grating into the optical path of a localization-based super-resolution microscope, enabling all the information to be extracted simultaneously from a single image plane.
Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping
Bongiovanni, Marie N.; Godet, Julien; Horrocks, Mathew H.; Tosatto, Laura; Carr, Alexander R.; Wirthensohn, David C.; Ranasinghe, Rohan T.; Lee, Ji-Eun; Ponjavic, Aleks; Fritz, Joelle V.; Dobson, Christopher M.; Klenerman, David; Lee, Steven F.
2016-01-01
Super-resolution microscopy allows biological systems to be studied at the nanoscale, but has been restricted to providing only positional information. Here, we show that it is possible to perform multi-dimensional super-resolution imaging to determine both the position and the environmental properties of single-molecule fluorescent emitters. The method presented here exploits the solvatochromic and fluorogenic properties of nile red to extract both the emission spectrum and the position of each dye molecule simultaneously enabling mapping of the hydrophobicity of biological structures. We validated this by studying synthetic lipid vesicles of known composition. We then applied both to super-resolve the hydrophobicity of amyloid aggregates implicated in neurodegenerative diseases, and the hydrophobic changes in mammalian cell membranes. Our technique is easily implemented by inserting a transmission diffraction grating into the optical path of a localization-based super-resolution microscope, enabling all the information to be extracted simultaneously from a single image plane. PMID:27929085
Simultaneous Transmit and Receive Performance of an 8-channel Digital Phased Array
2017-01-16
Lincoln Laboratory Lexington, Massachusetts, USA Abstract—The Aperture- Level Simultaneous Transmit and Re- ceive (ALSTAR) architecture enables extremely...In [1], the Aperture- Level Simultaneous Transmit and Receive (ALSTAR) architecture was proposed for achieving STAR using a fully digital phased array...Aperture- Level Simultaneous Transmit and Receive (ALSTAR) architecture enables STAR functionality in a digital phased array without the use of specialized
Three-dimensional spatiotemporal focusing of holographic patterns
Hernandez, Oscar; Papagiakoumou, Eirini; Tanese, Dimitrii; Fidelin, Kevin; Wyart, Claire; Emiliani, Valentina
2016-01-01
Two-photon excitation with temporally focused pulses can be combined with phase-modulation approaches, such as computer-generated holography and generalized phase contrast, to efficiently distribute light into two-dimensional, axially confined, user-defined shapes. Adding lens-phase modulations to 2D-phase holograms enables remote axial pattern displacement as well as simultaneous pattern generation in multiple distinct planes. However, the axial confinement linearly degrades with lateral shape area in previous reports where axially shifted holographic shapes were not temporally focused. Here we report an optical system using two spatial light modulators to independently control transverse- and axial-target light distribution. This approach enables simultaneous axial translation of single or multiple spatiotemporally focused patterns across the sample volume while achieving the axial confinement of temporal focusing. We use the system's capability to photoconvert tens of Kaede-expressing neurons with single-cell resolution in live zebrafish larvae. PMID:27306044
The Case of Nuclear Propulsion
NASA Technical Reports Server (NTRS)
Koroteev, Anatoly S.; Ponomarev-Stepnoi, Nicolai N.; Smetannikov, Vladimir P.; Gafarov, Albert A.; Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Martin, James; Bragg-Sitton, Shannon; Dickens, Ricky
2003-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will simultaneously develop the infrastructure and experience necessary for developing even higher power and performance systems. To be successful, development programs must devise strategies for rapidly converting paper reactor concepts into actual flight hardware. One approach to accomplishing this is to design highly testable systems, and to structure the program to contain frequent, significant hardware milestones. This paper discusses ongoing efforts in Russia and the United States aimed at enabling near-term utilization of space fission systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiechtner, Gregory J; Singh, Anup K; Wiedenman, Boyd J
2008-03-18
The present embodiment describes a laminar-mixing embodiment that utilizes simple, three-dimensional injection. Also described is the use of the embodiment in combination with wide and shallow sections of channel to affect rapid mixing in microanalytical systems. The shallow channel sections are constructed using all planar micromachining techniques, including those based on isotropic etching. The planar construction enables design using minimum dispersion concepts that, in turn, enable simultaneous mixing and injection into subsequent chromatography channels.
Siegel, Gabriel; Regelman, Dan; Maronpot, Robert; Rosenstock, Moti; Nyska, Abraham
2017-12-01
Real-time telepathology for use in investigative and regulated preclinical toxicology studies is now feasible. Newly developed microscope-integrated telepathology systems enable geographically remote stakeholders to view the live histopathology slide as seen by the study pathologist within the microscope. Simultaneous online viewing and dialog between study pathologist and remote colleagues is an efficient and cost-effective means for consultation, pathology working groups, and peer review, facilitating good science and economic benefits by enabling more timely and informed clinical decisions.
Microfluidic array platform for simultaneous lipid bilayer membrane formation.
Zagnoni, M; Sandison, M E; Morgan, H
2009-01-01
In recent years, protein array technologies have found widespread applications in proteomics. However, new methods for high-throughput analysis of protein-protein and protein-compound interactions are still required. In this paper, an array of lipid bilayer membranes formed within a microfluidic system with integrated electrodes is presented. The system is comprised of three layers that are clamped together, thus rendering the device cleanable and reusable. The device microfluidics enable the simultaneous formation of an array of lipid bilayers using a previously developed air-exposure technique, thereby avoiding the need to manually form individual bilayers. The Ag/AgCl electrodes allow for ion channel measurements, each of the sites being independently addressable. Typically, a 50% yield in simultaneous lipid bilayer formation over 12 sites was obtained and ion channel recordings have been acquired over multiple sites. This system has great potential for the development of an automatable platform of suspended lipid bilayer arrays.
Motion-Capture-Enabled Software for Gestural Control of 3D Models
NASA Technical Reports Server (NTRS)
Norris, Jeffrey S.; Luo, Victor; Crockett, Thomas M.; Shams, Khawaja S.; Powell, Mark W.; Valderrama, Anthony
2012-01-01
Current state-of-the-art systems use general-purpose input devices such as a keyboard, mouse, or joystick that map to tasks in unintuitive ways. This software enables a person to control intuitively the position, size, and orientation of synthetic objects in a 3D virtual environment. It makes possible the simultaneous control of the 3D position, scale, and orientation of 3D objects using natural gestures. Enabling the control of 3D objects using a commercial motion-capture system allows for natural mapping of the many degrees of freedom of the human body to the manipulation of the 3D objects. It reduces training time for this kind of task, and eliminates the need to create an expensive, special-purpose controller.
Vision 20/20: Simultaneous CT-MRI — Next chapter of multimodality imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ge, E-mail: wangg6@rpi.edu; Xi, Yan; Gjesteby, Lars
Multimodality imaging systems such as positron emission tomography-computed tomography (PET-CT) and MRI-PET are widely available, but a simultaneous CT-MRI instrument has not been developed. Synergies between independent modalities, e.g., CT, MRI, and PET/SPECT can be realized with image registration, but such postprocessing suffers from registration errors that can be avoided with synchronized data acquisition. The clinical potential of simultaneous CT-MRI is significant, especially in cardiovascular and oncologic applications where studies of the vulnerable plaque, response to cancer therapy, and kinetic and dynamic mechanisms of targeted agents are limited by current imaging technologies. The rationale, feasibility, and realization of simultaneous CT-MRImore » are described in this perspective paper. The enabling technologies include interior tomography, unique gantry designs, open magnet and RF sequences, and source and detector adaptation. Based on the experience with PET-CT, PET-MRI, and MRI-LINAC instrumentation where hardware innovation and performance optimization were instrumental to construct commercial systems, the authors provide top-level concepts for simultaneous CT-MRI to meet clinical requirements and new challenges. Simultaneous CT-MRI fills a major gap of modality coupling and represents a key step toward the so-called “omnitomography” defined as the integration of all relevant imaging modalities for systems biology and precision medicine.« less
ATD-1 ATM Technology Demonstration-1 and Integrated Scheduling
NASA Technical Reports Server (NTRS)
Quon, Leighton
2014-01-01
Enabling efficient arrivals for the NextGen Air Traffic Management System and developing a set of integrated decision support tools to reduce the high cognitive workload so that controllers are able to simultaneously achieve safe, efficient, and expedient operations at high traffic demand levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.
2016-07-01
The application of quantum cascade lasers (QCLs) in atmospheric science for trace detection of gases has been demonstrated using sensors in point or remote sensing configurations. Many of these systems utilize single narrowly-tunable (~10 cm-1) distributed feedback (DFB-) QCLs that limit simultaneous detection to a restricted number of small chemical species like H2O or N2O. The narrow wavelength range of DFB-QCLs precludes accurate quantification of large chemical species with broad rotationally-unresolved vibrational spectra, such as volatile organic compounds, that play an important role in the chemistry of the atmosphere. External-cavity (EC-) QCL systems are available that offer tuning ranges >100more » cm-1, making them excellent IR sources for measuring multiple small and large chemical species in the atmosphere. While the broad wavelength coverage afforded by an EC system enables measurements of large chemical species, most commercial systems can only be swept over their entire wavelength range at less than 10 Hz. This prohibits broadband simultaneous measurements of multiple chemicals in plumes from natural or industrial sources where turbulence and/or chemical reactivity are resulting in rapid changes in chemical composition on sub-1s timescales. At Pacific Northwest National Laboratory we have developed rapidly-swept EC-QCL technology that acquires broadband absorption spectra (~100 cm-1) on ms timescales. The spectral resolution of this system has enabled simultaneous measurement of narrow rotationally-resolved atmospherically-broadened lines from small chemical species, while offering the broad tuning range needed to measure broadband spectral features from multiple large chemical species. In this talk the application of this technology for open-path atmospheric measurements will be discussed based on results from laboratory measurements with simulated plumes of chemicals. The performance offered by the system for simultaneous detection of multiple chemical species will be presented.« less
NASA Astrophysics Data System (ADS)
Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.; Suter, Jonathan D.
2016-06-01
The application of quantum cascade lasers (QCLs) in atmospheric science for trace detection of gases has been demonstrated using sensors in point or remote sensing configurations. Many of these systems utilize single narrowly-tunable (˜10 wn) distributed feedback (DFB-) QCLs that limit simultaneous detection to a restricted number of small chemical species like H2O or N2O. The narrow wavelength range of DFB-QCLs precludes accurate quantification of large chemical species with broad rotationally-unresolved vibrational spectra, such as volatile organic compounds, that play an important role in the chemistry of the atmosphere. External-cavity (EC-) QCL systems are available that offer tuning ranges greater than 100 wn, making them excellent IR sources for measuring multiple small and large chemical species in the atmosphere. While the broad wavelength coverage afforded by an EC system enables measurements of large chemical species, most commercial systems can only be swept over their entire wavelength range at less than 10 Hz. This prohibits broadband simultaneous measurements of multiple chemicals in plumes from natural or industrial sources where turbulence and/or chemical reactivity are resulting in rapid changes in chemical composition on sub-1s timescales. At Pacific Northwest National Laboratory we have developed rapidly-swept EC-QCL technology that acquires broadband absorption spectra (˜100 wn) on ms timescales. The spectral resolution of this system has enabled simultaneous measurement of narrow rotationally-resolved atmospherically-broadened lines from small chemical species, while offering the broad tuning range needed to measure broadband spectral features from multiple large chemical species. In this talk the application of this technology for open-path atmospheric measurements will be discussed based on results from laboratory measurements with simulated plumes of chemicals. The performance offered by the system for simultaneous detection of multiple chemical species will be presented. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy (DOE) by the Battelle Memorial Institute under Contract No. DE-AC05-76RL01830.
Isotachophoresis for fractionation and recovery of cytoplasmic RNA and nucleus from single cells.
Kuriyama, Kentaro; Shintaku, Hirofumi; Santiago, Juan G
2015-07-01
There is a substantial need for simultaneous analyses of RNA and DNA from individual single cells. Such analysis provides unique evidence of cell-to-cell differences and the correlation between gene expression and genomic mutation in highly heterogeneous cell populations. We present a novel microfluidic system that leverages isotachophoresis to fractionate and isolate cytoplasmic RNA and genomic DNA (gDNA) from single cells. The system uniquely enables independent, sequence-specific analyses of these critical markers. Our system uses a microfluidic chip with a simple geometry and four end-channel electrodes, and completes the entire process in <5 min, including lysis, purification, fractionation, and delivery to DNA and RNA output reservoirs, each containing high quality and purity aliquots with no measurable cross-contamination of cytoplasmic RNA versus gDNA. We demonstrate our system with simultaneous, sequence-specific quantitation using off-chip RT-qPCR and qPCR for simultaneous cytoplasmic RNA and gDNA analyses, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Noguchi, Takako; Ikeda, Masaaki; Ohmiya, Yoshihiro; Nakajima, Yoshihiro
2008-01-01
Background Luciferase assay systems enable the real-time monitoring of gene expression in living cells. We have developed a dual-color luciferase assay system in which the expression of multiple genes can be tracked simultaneously using green- and red-emitting beetle luciferases. We have applied the system to monitoring independent gene expressions in two types of cocultured fibroblasts in real time. Results Two Rat-1 cell lines were established that stably express either green- or red-emitting luciferases under the control of the mBmal1 promoter, a canonical clock gene. We cocultured these cell lines, and gene expression profiles in both were monitored simultaneously. The circadian rhythms of these cell lines are independent, oscillating following their intrinsic circadian phases, even when cocultured. Furthermore, the independent rhythms were synchronized by medium change as an external stimulus. Conclusion Using this system, we successfully monitored independent gene expression patterns in two lines of cocultured fibroblasts. PMID:18416852
2015-01-19
MS WINDOWS platform, which enables multitasking with simultaneous evaluation and operation 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13...measurement and analysis software for data acquisition, storage and evaluation with MS WINDOWS platform, which enables multitasking with simultaneous...Proteus measurement and analysis software for data acquisition, storage and evaluation with MS WINDOWS platform, which enables multitasking with
How to Set Up an Electronic Bulletin Board.
ERIC Educational Resources Information Center
Lukas, Terrence
1981-01-01
Describes a versatile, inexpensive information system using microcomputers and television sets which enables Indiana University Northwest to relay information for students to different sites simultaneously and to update information quickly and easily. Illustrates how to set up the hardware, discusses programing, and includes the actual program…
Gall-Borrut, P; Belier, B; Falgayrettes, P; Castagne, M; Bergaud, C; Temple-Boyer, P
2001-04-01
We developed silicon nitride cantilevers integrating a probe tip and a wave guide that is prolonged on the silicon holder with one or two guides. A micro-system is bonded to a photodetector. The resulting hybrid system enables us to obtain simultaneously topographic and optical near-field images. Examples of images obtained on a longitudinal cross-section of an optical fibre are shown.
Luo, Yuan; Gelsinger-Austin, Paul J; Watson, Jonathan M; Barbastathis, George; Barton, Jennifer K; Kostuk, Raymond K
2008-09-15
A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial-spectral information within an object. We demonstrate this imaging system's ability to obtain multiple depth-resolved fluorescence images simultaneously.
Hennessy, Rosanna C; Christiansen, Line; Olsson, Stefan; Stougaard, Peter
2018-01-01
Fluorescence-based reporter systems are valuable tools for studying gene expression dynamics in living cells. Here we describe a dual-fluorescence reporter system carrying the red fluorescent marker mCherry and the blue fluorescent protein EBFP2 enabling the simultaneous analysis of two promoters in broad-host range autofluorescent Gram-negative bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.
Davidowitz, Goggy; Roff, Derek; Nijhout, H Frederik
2016-11-01
Natural selection acts on multiple traits simultaneously. How mechanisms underlying such traits enable or constrain their response to simultaneous selection is poorly understood. We show how antagonism and synergism among three traits at the developmental level enable or constrain evolutionary change in response to simultaneous selection on two focal traits at the phenotypic level. After 10 generations of 25% simultaneous directional selection on all four combinations of body size and development time in Manduca sexta (Sphingidae), the changes in the three developmental traits predict 93% of the response of development time and 100% of the response of body size. When the two focal traits were under synergistic selection, the response to simultaneous selection was enabled by juvenile hormone and ecdysteroids and constrained by growth rate. When the two focal traits were under antagonistic selection, the response to selection was due primarily to change in growth rate and constrained by the two hormonal traits. The approach used here reduces the complexity of the developmental and endocrine mechanisms to three proxy traits. This generates explicit predictions for the evolutionary response to selection that are based on biologically informed mechanisms. This approach has broad applicability to a diverse range of taxa, including algae, plants, amphibians, mammals, and insects.
NASA Astrophysics Data System (ADS)
Jung, Jaehoon; Nakajima, Masahiro; Masaru, Takeuchi; Huang, Qiang; Fukuda, Toshio
2014-03-01
In this paper, we report on a microfluidic device with a multi-valve system to conduct several exposure tests on Caenorhabditis elegans (C. elegans) simultaneously. It has pneumatic valves and no-moving-parts (NMP) valves. An NMP valve is incorporated with a chamber and enables the unidirectional movement of C. elegans in the chamber; once worms are loaded into the chamber, they cannot exit, regardless of the flow direction. To demonstrate the ability of the NMP valve to handle worms, we made a microfluidic device with three chambers. Each chamber was used to expose worms to Cd and Cu solutions, and K-medium. A pair of electrodes was installed in the device and the capacitance in-between the electrode was measured. When a C. elegans passed through the electrodes, the capacitance was changed. The capacitance change was proportional to the body volume of the worm, thus the body volume change by the heavy metal exposure was measured in the device. Thirty worms were divided into three groups and exposed to each solution. We confirmed that the different solutions induced differences in the capacitance changes for each group. These results indicate that our device is a viable method for simultaneously analyzing the effect of multiple stimuli on C. elegans.
NASA Astrophysics Data System (ADS)
Regmi, Raju; Mohan, Kavya; Mondal, Partha Pratim
2014-09-01
Visualization of intracellular organelles is achieved using a newly developed high throughput imaging cytometry system. This system interrogates the microfluidic channel using a sheet of light rather than the existing point-based scanning techniques. The advantages of the developed system are many, including, single-shot scanning of specimens flowing through the microfluidic channel at flow rate ranging from micro- to nano- lit./min. Moreover, this opens-up in-vivo imaging of sub-cellular structures and simultaneous cell counting in an imaging cytometry system. We recorded a maximum count of 2400 cells/min at a flow-rate of 700 nl/min, and simultaneous visualization of fluorescently-labeled mitochondrial network in HeLa cells during flow. The developed imaging cytometry system may find immediate application in biotechnology, fluorescence microscopy and nano-medicine.
Hybrid Ion-Detector/Data-Acquisition System for a TOF-MS
NASA Technical Reports Server (NTRS)
Burton, William D., Jr.; Schultz, J. Albert; Vaughn, Valentine; McCully, Michael; Ulrich, Steven; Egan, Thomas F.
2006-01-01
A modified ion-detector/data-acquisition system has been devised to increase the dynamic range of a time-of-flight mass spectrometer (TOF-MS) that, previously, included a microchannel-plate detector and a data-acquisition system based on counting pulses and time-tagging them by use of a time-to-digital converter (TDC). The dynamic range of the TOF-MS was limited by saturation of the microchannel plate detector, which can handle no more than a few million counts per second. The modified system includes (1) a combined microchannel plate/discrete ion multiplier and (2) a hybrid data-acquisition system that simultaneously performs analog current or voltage measurements and multianode single-ion-pulse-counting time-of-flight measurements to extend the dynamic range of a TDC into the regime in which a mass peak comprises multiple ions arriving simultaneously at the detector. The multianode data are used to determine, in real time, whether the detector is saturated. When saturation is detected, the data-acquisition system selectively enables circuitry that simultaneously determines the ion-peak intensity by measuring the time profile of the analog current or voltage detector-output signal.
Hybrid label-free multiphoton and optoacoustic microscopy (MPOM)
NASA Astrophysics Data System (ADS)
Soliman, Dominik; Tserevelakis, George J.; Omar, Murad; Ntziachristos, Vasilis
2015-07-01
Many biological applications require a simultaneous observation of different anatomical features. However, unless potentially harmful staining of the specimens is employed, individual microscopy techniques do generally not provide multi-contrast capabilities. We present a hybrid microscope integrating optoacoustic microscopy and multiphoton microscopy, including second-harmonic generation, into a single device. This combined multiphoton and optoacoustic microscope (MPOM) offers visualization of a broad range of structures by employing different contrast mechanisms and at the same time enables pure label-free imaging of biological systems. We investigate the relative performance of the two microscopy modalities and demonstrate their multi-contrast abilities through the label-free imaging of a zebrafish larva ex vivo, simultaneously visualizing muscles and pigments. This hybrid microscopy application bears great potential for developmental biology studies, enabling more comprehensive information to be obtained from biological specimens without the necessity of staining.
Proteomics: Protein Identification Using Online Databases
ERIC Educational Resources Information Center
Eurich, Chris; Fields, Peter A.; Rice, Elizabeth
2012-01-01
Proteomics is an emerging area of systems biology that allows simultaneous study of thousands of proteins expressed in cells, tissues, or whole organisms. We have developed this activity to enable high school or college students to explore proteomic databases using mass spectrometry data files generated from yeast proteins in a college laboratory…
Venkatramani, C J; Al-Sayah, Mohammad; Li, Guannan; Goel, Meenakshi; Girotti, James; Zang, Lisa; Wigman, Larry; Yehl, Peter; Chetwyn, Nik
2016-02-01
A new interface was designed to enable the coupling of reversed phase liquid chromatography (RPLC) and supercritical fluid chromatography (SFC). This online two-dimensional chromatographic system utilizing RPLC in the first dimension and SFC in the second was developed to achieve simultaneous achiral and chiral analysis of pharmaceutical compounds. The interface consists of an eight-port, dual-position switching valve with small volume C-18 trapping columns. The peaks of interest eluting from the first RPLC dimension column were effectively focused as sharp concentration pulses on small volume C-18 trapping column/s and then injected onto the second dimension SFC column. The first dimension RPLC separation provides the achiral purity result, and the second dimension SFC separation provides the chiral purity result (enantiomeric excess). The results are quantitative enabling simultaneous achiral, chiral analysis of compounds. The interface design and proof of concept demonstration are presented. Additionally, comparative studies to conventional SFC and case studies of the applications of 2D LC-SFC in pharmaceutical analysis is presented. Copyright © 2015 Elsevier B.V. All rights reserved.
Reliability-Based Control Design for Uncertain Systems
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.
2005-01-01
This paper presents a robust control design methodology for systems with probabilistic parametric uncertainty. Control design is carried out by solving a reliability-based multi-objective optimization problem where the probability of violating design requirements is minimized. Simultaneously, failure domains are optimally enlarged to enable global improvements in the closed-loop performance. To enable an efficient numerical implementation, a hybrid approach for estimating reliability metrics is developed. This approach, which integrates deterministic sampling and asymptotic approximations, greatly reduces the numerical burden associated with complex probabilistic computations without compromising the accuracy of the results. Examples using output-feedback and full-state feedback with state estimation are used to demonstrate the ideas proposed.
Hokuto, Toshiki; Yasukawa, Tomoyuki; Kunikata, Ryota; Suda, Atsushi; Inoue, Kumi Y; Ino, Kosuke; Matsue, Tomokazu; Mizutani, Fumio
2016-06-01
Electrochemical imaging is an excellent technique to characterize an activity of biomaterials, such as enzymes and cells. Large scale integration-based amperometric sensor (Bio-LSI) has been developed for the simultaneous and continuous detection of the concentration distribution of redox species generated by reactions of biomolecules. In this study, the Bio-LSI system was demonstrated to be applicable for simultaneous detection of different anaytes in multiple specimens. The multiple specimens containing human immunoglobulin G (hIgG) and mouse IgG (mIgG) were introduced into each channel of the upper substrate across the antibody lines for hIgG and mIgG on the lower substrate. Hydrogen peroxide generated by the enzyme reaction of glucose oxidase captured at intersections was simultaneously detected by 400 microelectrodes of Bio-LSI chip. The oxidation current increased with increasing the concentrations of hIgG, which can be detected in the range of 0.01-1.0 µg mL(-1) . Simultaneous detection of hIgG and mIgG in multiple specimens was achieved by using line pattern of both antibodies. Therefore, the presence of different target molecules in the multiple samples would be quantitatively and simultaneously visualized as a current image by the Bio-LSI system. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mizukami, Masato; Yamaguchi, Joji; Nemoto, Naru; Kawajiri, Yuko; Hirata, Hirooki; Uchiyama, Shingo; Makihara, Mitsuhiro; Sakata, Tomomi; Shimoyama, Nobuhiro; Oda, Kazuhiro
2011-07-20
A 128×128 three-dimensional MEMS optical switch module and a switching-control algorithm for high-speed connection and optical power stabilization are described. A prototype switch module enables the simultaneous switching of all optical paths. The insertion loss is less than 4.6 dB and is 2.3 dB on average. The switching time is less than 38 ms and is 8 ms on average. We confirmed that the maximum optical power can be obtained and optical power stabilization control is possible. The results confirm that the module is suitable for practical use in optical cross-connect systems. © 2011 Optical Society of America
Wagenaar, Daniel A
2017-01-01
Studies of neuronal network emergence during sensory processing and motor control are greatly facilitated by technologies that allow us to simultaneously record the membrane potential dynamics of a large population of neurons in single cell resolution. To achieve whole-brain recording with the ability to detect both small synaptic potentials and action potentials, we developed a voltage-sensitive dye (VSD) imaging technique based on a double-sided microscope that can image two sides of a nervous system simultaneously. We applied this system to the segmental ganglia of the medicinal leech. Double-sided VSD imaging enabled simultaneous recording of membrane potential events from almost all of the identifiable neurons. Using data obtained from double-sided VSD imaging, we analyzed neuronal dynamics in both sensory processing and generation of behavior and constructed functional maps for identification of neurons contributing to these processes. PMID:28944754
Towards Biological Inspiration in the Development of Complex Systems
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Sterritt, Roy
2006-01-01
Greater understanding of biology in modem times has enabled significant breakthroughs in improving healthcare, quality of life, and eliminating many diseases and congenital illnesses. Simultaneously there is a move towards emulating nature and copying many of the wonders uncovered in biology, resulting in "biologically inspired" systems. Significant results have been reported in a wide range of areas, with systems inspired by nature enabling exploration, communication, and advances that were never dreamed possible just a few years ago. We warn, that as in many other fields of endeavor, we should be inspired by nature and biology, not engage in mimicry. We describe some results of biological inspiration that augur promise in terms of improving the safety and security of systems, and in developing self-managing systems, that we hope will ultimately lead to self-governing systems.
NASA Astrophysics Data System (ADS)
Kobayashi, Takuma; Tagawa, Ayato; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Hatanaka, Yumiko; Tamura, Hideki; Ishikawa, Yasuyuki; Shiosaka, Sadao; Ohta, Jun
2010-11-01
The combination of optical imaging with voltage-sensitive dyes is a powerful tool for studying the spatiotemporal patterns of neural activity and understanding the neural networks of the brain. To visualize the potential status of multiple neurons simultaneously using a compact instrument with high density and a wide range, we present a novel measurement system using an implantable biomedical photonic LSI device with a red absorptive light filter for voltage-sensitive dye imaging (BpLSI-red). The BpLSI-red was developed for sensing fluorescence by the on-chip LSI, which was designed by using complementary metal-oxide-semiconductor (CMOS) technology. A micro-electro-mechanical system (MEMS) microfabrication technique was used to postprocess the CMOS sensor chip; light-emitting diodes (LEDs) were integrated for illumination and to enable long-term cell culture. Using the device, we succeeded in visualizing the membrane potential of 2000-3000 cells and the process of depolarization of pheochromocytoma cells (PC12 cells) and mouse cerebral cortical neurons in a primary culture with cellular resolution. Therefore, our measurement application enables the detection of multiple neural activities simultaneously.
NASA Astrophysics Data System (ADS)
Wang, Xue-Wei; Gao, Wei; Fan, Huanhuan; Ding, Ding; Lai, Xiao-Fang; Zou, Yu-Xiu; Chen, Long; Chen, Zhuo; Tan, Weihong
2016-04-01
Controlling and monitoring the drug delivery process is critical to its intended therapeutic function. Many nanocarrier systems for drug delivery have been successfully developed. However, biocompatibility, stability, and simultaneously tracing drugs and nanocarriers present significant limitations. Herein, we have fabricated a multifunctional nanocomposite by coating the gold nanorod (AuNR) with a biocompatible, superstable and fluorescent carbon layer, obtaining the AuNR@carbon core-shell nanocapsule. In this system, the carbon shell, originally obtained in aqueous glucose solutions and, therefore, biocompatible in physiological environments, could be simply loaded with cell-specific aptamers and therapeutic molecules through π-π interactions, a useful tool for cancer-targeted cellular imaging and therapy. Moreover, such a stable and intrinsic fluorescence effect of the AuNR@carbon enabled simultaneous tracking of released therapeutic molecules and nanocarriers under thermo-chemotherapy. The AuNR@carbons had high surface areas and stable shells, as well as unique optical and photothermal properties, making them promising nanostructures for biomedical applications.Controlling and monitoring the drug delivery process is critical to its intended therapeutic function. Many nanocarrier systems for drug delivery have been successfully developed. However, biocompatibility, stability, and simultaneously tracing drugs and nanocarriers present significant limitations. Herein, we have fabricated a multifunctional nanocomposite by coating the gold nanorod (AuNR) with a biocompatible, superstable and fluorescent carbon layer, obtaining the AuNR@carbon core-shell nanocapsule. In this system, the carbon shell, originally obtained in aqueous glucose solutions and, therefore, biocompatible in physiological environments, could be simply loaded with cell-specific aptamers and therapeutic molecules through π-π interactions, a useful tool for cancer-targeted cellular imaging and therapy. Moreover, such a stable and intrinsic fluorescence effect of the AuNR@carbon enabled simultaneous tracking of released therapeutic molecules and nanocarriers under thermo-chemotherapy. The AuNR@carbons had high surface areas and stable shells, as well as unique optical and photothermal properties, making them promising nanostructures for biomedical applications. Electronic supplementary information (ESI) available: Experimental details and characterization data for all new compounds. See DOI: 10.1039/c6nr00369a
NASA Technical Reports Server (NTRS)
1994-01-01
An aerial color infrared (CIR) mapping system developed by Kennedy Space Center enables Florida's Charlotte County to accurately appraise its citrus groves while reducing appraisal costs. The technology was further advanced by development of a dual video system making it possible to simultaneously view images of the same area and detect changes. An image analysis system automatically surveys and photo interprets grove images as well as automatically counts trees and reports totals. The system, which saves both time and money, has potential beyond citrus grove valuation.
NASA Technical Reports Server (NTRS)
Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal
2017-01-01
This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.
NASA Technical Reports Server (NTRS)
Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal
2017-01-01
This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.
NASA Astrophysics Data System (ADS)
Fukue, Yasuhiro
The author describes the system outline, features and operations of "Nikkan Sports Realtime Basaball Database" which was developed and operated by Nikkan Sports Shimbun, K. K. The system enables to input numerical data of professional baseball games as they proceed simultaneously, and execute data updating at realtime, just-in-time. Other than serving as supporting tool for prepareing newspapers it is also available for broadcasting media, general users through NTT dial Q2 and others.
The role of CORBA in enabling telemedicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forslund, D.W.
1997-07-01
One of the most powerful tools available for telemedicine is a multimedia medical record accessible over a wide area and simultaneously editable by multiple physicians. The ability to do this through an intuitive interface linking multiple distributed data repositories while maintaining full data integrity is a fundamental enabling technology in healthcare. The author discusses the role of distributed object technology using CORBA in providing this capability including an example of such a system (TeleMed) which can be accessed through the World Wide Web. Issues of security, scalability, data integrity, and useability are emphasized.
Chassin, David P.; Behboodi, Sahand; Djilali, Ned
2018-01-28
This article proposes a system-wide optimal resource dispatch strategy that enables a shift from a primarily energy cost-based approach, to a strategy using simultaneous price signals for energy, power and ramping behavior. A formal method to compute the optimal sub-hourly power trajectory is derived for a system when the price of energy and ramping are both significant. Optimal control functions are obtained in both time and frequency domains, and a discrete-time solution suitable for periodic feedback control systems is presented. The method is applied to North America Western Interconnection for the planning year 2024, and it is shown that anmore » optimal dispatch strategy that simultaneously considers both the cost of energy and the cost of ramping leads to significant cost savings in systems with high levels of renewable generation: the savings exceed 25% of the total system operating cost for a 50% renewables scenario.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Behboodi, Sahand; Djilali, Ned
This article proposes a system-wide optimal resource dispatch strategy that enables a shift from a primarily energy cost-based approach, to a strategy using simultaneous price signals for energy, power and ramping behavior. A formal method to compute the optimal sub-hourly power trajectory is derived for a system when the price of energy and ramping are both significant. Optimal control functions are obtained in both time and frequency domains, and a discrete-time solution suitable for periodic feedback control systems is presented. The method is applied to North America Western Interconnection for the planning year 2024, and it is shown that anmore » optimal dispatch strategy that simultaneously considers both the cost of energy and the cost of ramping leads to significant cost savings in systems with high levels of renewable generation: the savings exceed 25% of the total system operating cost for a 50% renewables scenario.« less
Suzuki, Teruhiko; Kazuki, Yasuhiro; Oshimura, Mitsuo; Hara, Takahiko
2014-01-01
Human artificial chromosomes (HACs) are gene-delivery vectors suitable for introducing large DNA fragments into mammalian cells. Although a HAC theoretically incorporates multiple gene expression cassettes of unlimited DNA size, its application has been limited because the conventional gene-loading system accepts only one gene-loading vector (GLV) into a HAC. We report a novel method for the simultaneous or sequential integration of multiple GLVs into a HAC vector (designated as the SIM system) via combined usage of Cre, FLP, Bxb1, and φC31 recombinase/integrase. As a proof of principle, we first attempted simultaneous integration of three GLVs encoding EGFP, Venus, and TdTomato into a gene-loading site of a HAC in CHO cells. These cells successfully expressed all three fluorescent proteins. Furthermore, microcell-mediated transfer of HACs enabled the expression of those fluorescent proteins in recipient cells. We next demonstrated that GLVs could be introduced into a HAC one-by-one via reciprocal usage of recombinase/integrase. Lastly, we introduced a fourth GLV into a HAC after simultaneous integration of three GLVs by FLP-mediated DNA recombination. The SIM system expands the applicability of HAC vectors and is useful for various biomedical studies, including cell reprogramming. PMID:25303219
Suzuki, Teruhiko; Kazuki, Yasuhiro; Oshimura, Mitsuo; Hara, Takahiko
2014-01-01
Human artificial chromosomes (HACs) are gene-delivery vectors suitable for introducing large DNA fragments into mammalian cells. Although a HAC theoretically incorporates multiple gene expression cassettes of unlimited DNA size, its application has been limited because the conventional gene-loading system accepts only one gene-loading vector (GLV) into a HAC. We report a novel method for the simultaneous or sequential integration of multiple GLVs into a HAC vector (designated as the SIM system) via combined usage of Cre, FLP, Bxb1, and φC31 recombinase/integrase. As a proof of principle, we first attempted simultaneous integration of three GLVs encoding EGFP, Venus, and TdTomato into a gene-loading site of a HAC in CHO cells. These cells successfully expressed all three fluorescent proteins. Furthermore, microcell-mediated transfer of HACs enabled the expression of those fluorescent proteins in recipient cells. We next demonstrated that GLVs could be introduced into a HAC one-by-one via reciprocal usage of recombinase/integrase. Lastly, we introduced a fourth GLV into a HAC after simultaneous integration of three GLVs by FLP-mediated DNA recombination. The SIM system expands the applicability of HAC vectors and is useful for various biomedical studies, including cell reprogramming.
Two-photon holographic optogenetics of neural circuits (Conference Presentation)
NASA Astrophysics Data System (ADS)
Yang, Weijian; Carrillo-Reid, Luis; Peterka, Darcy S.; Yuste, Rafael
2016-03-01
Optical manipulation of in vivo neural circuits with cellular resolution could be important for understanding cortical function. Despite recent progress, simultaneous optogenetic activation with cellular precision has either been limited to 2D planes, or a very small numbers of neurons over a limited volume. Here we demonstrate a novel paradigm for simultaneous 3D activation using a low repetition rate pulse-amplified fiber laser system and a spatial light modulator (SLM) to project 3D holographic excitation patterns on the cortex of mice in vivo for targeted volumetric 3D photoactivation. This method is compatible with two-photon imaging, and enables the simultaneous activation of multiple cells in 3D, using red-shifted opsins, such as C1V1 or ReaChR, while simultaneously imaging GFP-based sensors such as GCaMP6. This all-optical imaging and 3D manipulation approach achieves simultaneous reading and writing of cortical activity, and should be a powerful tool for the study of neuronal circuits.
Lee, Stephen; Aranyosi, A J; Wong, Michelle D; Hong, Ji Hyung; Lowe, Jared; Chan, Carol; Garlock, David; Shaw, Scott; Beattie, Patrick D; Kratochvil, Zachary; Kubasti, Nick; Seagers, Kirsten; Ghaffari, Roozbeh; Swanson, Christina D
2016-04-15
In developing countries, the deployment of medical diagnostic technologies remains a challenge because of infrastructural limitations (e.g. refrigeration, electricity), and paucity of health professionals, distribution centers and transportation systems. Here we demonstrate the technical development and clinical testing of a novel electronics enabled microfluidic paper-based analytical device (EE-μPAD) for quantitative measurement of micronutrient concentrations in decentralized, resource-limited settings. The system performs immune-detection using paper-based microfluidics, instrumented with flexible electronics and optoelectronic sensors in a mechanically robust, ultrathin format comparable in size to a credit card. Autonomous self-calibration, plasma separation, flow monitoring, timing and data storage enable multiple devices to be run simultaneously. Measurements are wirelessly transferred to a mobile phone application that geo-tags the data and transmits it to a remote server for real time tracking of micronutrient deficiencies. Clinical tests of micronutrient levels from whole blood samples (n=95) show comparable sensitivity and specificity to ELISA-based tests. These results demonstrate instantaneous acquisition and global aggregation of diagnostics data using a fully integrated point of care system that will enable rapid and distributed surveillance of disease prevalence and geographical progression. Copyright © 2015 Elsevier B.V. All rights reserved.
PDEMOD: Software for control/structures optimization
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr.; Zimmerman, David
1991-01-01
Because of the possibility of adverse interaction between the control system and the structural dynamics of large, flexible spacecraft, great care must be taken to ensure stability and system performance. Because of the high cost of insertion of mass into low earth orbit, it is prudent to optimize the roles of structure and control systems simultaneously. Because of the difficulty and the computational burden in modeling and analyzing the control structure system dynamics, the total problem is often split and treated iteratively. It would aid design if the control structure system dynamics could be represented in a single system of equations. With the use of the software PDEMOD (Partial Differential Equation Model), it is now possible to optimize structure and control systems simultaneously. The distributed parameter modeling approach enables embedding the control system dynamics into the same equations for the structural dynamics model. By doing this, the current difficulties involved in model order reduction are avoided. The NASA Mini-MAST truss is used an an example for studying integrated control structure design.
Representation and presentation of requirements knowledge
NASA Technical Reports Server (NTRS)
Johnson, W. L.; Feather, Martin S.; Harris, David R.
1992-01-01
An approach to representation and presentation of knowledge used in the ARIES, an experimental requirements/specification environment, is described. The approach applies the notion of a representation architecture to the domain of software engineering and incorporates a strong coupling to a transformation system. It is characterized by a single highly expressive underlying representation, interfaced simultaneously to multiple presentations, each with notations of differing degrees of expressivity. This enables analysts to use multiple languages for describing systems and have these descriptions yield a single consistent model of the system.
USDA-ARS?s Scientific Manuscript database
Saccharomyces cerevisiae is a traditional industrial workhorse for ethanol production. However, conventional ethanologenic yeast is superior in fermentation of hexose sugars (C-6) such as glucose but unable to utilize pentose sugars (C-5) such as xylose richly embedded in lignocellulosic biomass. In...
NASA Astrophysics Data System (ADS)
Nguyen, T. K. T.; Navratilova, Z.; Cabral, H.; Wang, L.; Gielen, G.; Battaglia, F. P.; Bartic, C.
2014-08-01
Objective. Closed-loop operation of neuro-electronic systems is desirable for both scientific and clinical (neuroprosthesis) applications. Integrating optical stimulation with recording capability further enhances the selectivity of neural stimulation. We have developed a system enabling the local delivery of optical stimuli and the simultaneous electrical measuring of the neural activities in a closed-loop approach. Approach. The signal analysis is performed online through the implementation of a template matching algorithm. The system performance is demonstrated with the recorded data and in awake rats. Main results. Specifically, the neural activities are simultaneously recorded, detected, classified online (through spike sorting) from 32 channels, and used to trigger a light emitting diode light source using generated TTL signals. Significance. A total processing time of 8 ms is achieved, suitable for optogenetic studies of brain mechanisms online.
A Geosynchronous Lidar System for Atmospheric Winds and Moisture Measurements
NASA Technical Reports Server (NTRS)
Emmitt, G. D.
2001-01-01
An observing system comprised of two lidars in geosychronous orbit would enable the synoptic and meso-scale measurement of atmospheric winds and moisture both of which are key first-order variables of the Earth's weather equation. Simultaneous measurement of these parameters at fast revisit rates promises large advancements in our weather prediction skills. Such capabilities would be unprecedented and a) yield greatly improved and finer resolution initial conditions for models, b) make existing costly and cumbersome measurement approaches obsolete, and c) obviate the use of numerical techniques needed to correct data obtained using present observing systems. Additionally, simultaneous synoptic wind and moisture observations would lead to improvements in model parameterizations, and in our knowledge of small-scale weather processes. Technology and science data product assessments are ongoing. Results will be presented during the conference.
Quantum-enabled temporal and spectral mode conversion of microwave signals
Andrews, R. W.; Reed, A. P.; Cicak, K.; Teufel, J. D.; Lehnert, K. W.
2015-01-01
Electromagnetic waves are ideal candidates for transmitting information in a quantum network as they can be routed rapidly and efficiently between locations using optical fibres or microwave cables. Yet linking quantum-enabled devices with cables has proved difficult because most cavity or circuit quantum electrodynamics systems used in quantum information processing can only absorb and emit signals with a specific frequency and temporal envelope. Here we show that the temporal and spectral content of microwave-frequency electromagnetic signals can be arbitrarily manipulated with a flexible aluminium drumhead embedded in a microwave circuit. The aluminium drumhead simultaneously forms a mechanical oscillator and a tunable capacitor. This device offers a way to build quantum microwave networks using separate and otherwise mismatched components. Furthermore, it will enable the preparation of non-classical states of motion by capturing non-classical microwave signals prepared by the most coherent circuit quantum electrodynamics systems. PMID:26617386
Deller, Timothy W; Khalighi, Mohammad Mehdi; Jansen, Floris P; Glover, Gary H
2018-01-01
The recent introduction of simultaneous whole-body PET/MR scanners has enabled new research taking advantage of the complementary information obtainable with PET and MRI. One such application is kinetic modeling, which requires high levels of PET quantitative stability. To accomplish the required PET stability levels, the PET subsystem must be sufficiently isolated from the effects of MR activity. Performance measurements have previously been published, demonstrating sufficient PET stability in the presence of MR pulsing for typical clinical use; however, PET stability during radiofrequency (RF)-intensive and gradient-intensive sequences has not previously been evaluated for a clinical whole-body scanner. In this work, PET stability of the GE SIGNA PET/MR was examined during simultaneous scanning of aggressive MR pulse sequences. Methods: PET performance tests were acquired with MR idle and during simultaneous MR pulsing. Recent system improvements mitigating RF interference and gain variation were used. A fast recovery fast spin echo MR sequence was selected for high RF power, and an echo planar imaging sequence was selected for its high heat-inducing gradients. Measurements were performed to determine PET stability under varying MR conditions using the following metrics: sensitivity, scatter fraction, contrast recovery, uniformity, count rate performance, and image quantitation. A final PET quantitative stability assessment for simultaneous PET scanning during functional MRI studies was performed with a spiral in-and-out gradient echo sequence. Results: Quantitation stability of a 68 Ge flood phantom was demonstrated within 0.34%. Normalized sensitivity was stable during simultaneous scanning within 0.3%. Scatter fraction measured with a 68 Ge line source in the scatter phantom was stable within the range of 40.4%-40.6%. Contrast recovery and uniformity were comparable for PET images acquired simultaneously with multiple MR conditions. Peak noise equivalent count rate was 224 kcps at an effective activity concentration of 18.6 kBq/mL, and the count rate curves and scatter fraction curve were consistent for the alternating MR pulsing states. A final test demonstrated quantitative stability during a spiral functional MRI sequence. Conclusion: PET stability metrics demonstrated that PET quantitation was not affected during simultaneous aggressive MRI. This stability enables demanding applications such as kinetic modeling. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Scafaro, Andrew P; Negrini, A Clarissa A; O'Leary, Brendan; Rashid, F Azzahra Ahmad; Hayes, Lucy; Fan, Yuzhen; Zhang, You; Chochois, Vincent; Badger, Murray R; Millar, A Harvey; Atkin, Owen K
2017-01-01
Mitochondrial respiration in the dark ( R dark ) is a critical plant physiological process, and hence a reliable, efficient and high-throughput method of measuring variation in rates of R dark is essential for agronomic and ecological studies. However, currently methods used to measure R dark in plant tissues are typically low throughput. We assessed a high-throughput automated fluorophore system of detecting multiple O 2 consumption rates. The fluorophore technique was compared with O 2 -electrodes, infrared gas analysers (IRGA), and membrane inlet mass spectrometry, to determine accuracy and speed of detecting respiratory fluxes. The high-throughput fluorophore system provided stable measurements of R dark in detached leaf and root tissues over many hours. High-throughput potential was evident in that the fluorophore system was 10 to 26-fold faster per sample measurement than other conventional methods. The versatility of the technique was evident in its enabling: (1) rapid screening of R dark in 138 genotypes of wheat; and, (2) quantification of rarely-assessed whole-plant R dark through dissection and simultaneous measurements of above- and below-ground organs. Variation in absolute R dark was observed between techniques, likely due to variation in sample conditions (i.e. liquid vs. gas-phase, open vs. closed systems), indicating that comparisons between studies using different measuring apparatus may not be feasible. However, the high-throughput protocol we present provided similar values of R dark to the most commonly used IRGA instrument currently employed by plant scientists. Together with the greater than tenfold increase in sample processing speed, we conclude that the high-throughput protocol enables reliable, stable and reproducible measurements of R dark on multiple samples simultaneously, irrespective of plant or tissue type.
Platform Architecture for Decentralized Positioning Systems.
Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg
2017-04-26
A platform architecture for positioning systems is essential for the realization of a flexible localization system, which interacts with other systems and supports various positioning technologies and algorithms. The decentralized processing of a position enables pushing the application-level knowledge into a mobile station and avoids the communication with a central unit such as a server or a base station. In addition, the calculation of the position on low-cost and resource-constrained devices presents a challenge due to the limited computing, storage capacity, as well as power supply. Therefore, we propose a platform architecture that enables the design of a system with the reusability of the components, extensibility (e.g., with other positioning technologies) and interoperability. Furthermore, the position is computed on a low-cost device such as a microcontroller, which simultaneously performs additional tasks such as data collecting or preprocessing based on an operating system. The platform architecture is designed, implemented and evaluated on the basis of two positioning systems: a field strength system and a time of arrival-based positioning system.
Platform Architecture for Decentralized Positioning Systems
Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg
2017-01-01
A platform architecture for positioning systems is essential for the realization of a flexible localization system, which interacts with other systems and supports various positioning technologies and algorithms. The decentralized processing of a position enables pushing the application-level knowledge into a mobile station and avoids the communication with a central unit such as a server or a base station. In addition, the calculation of the position on low-cost and resource-constrained devices presents a challenge due to the limited computing, storage capacity, as well as power supply. Therefore, we propose a platform architecture that enables the design of a system with the reusability of the components, extensibility (e.g., with other positioning technologies) and interoperability. Furthermore, the position is computed on a low-cost device such as a microcontroller, which simultaneously performs additional tasks such as data collecting or preprocessing based on an operating system. The platform architecture is designed, implemented and evaluated on the basis of two positioning systems: a field strength system and a time of arrival-based positioning system. PMID:28445414
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele
2012-06-01
Using diffractive micro-lenses configured in an array and placed in close proximity to the focal plane array will enable a small compact simultaneous multispectral imaging camera. This approach can be applied to spectral regions from the ultraviolet (UV) to the long-wave infrared (LWIR). The number of simultaneously imaged spectral bands is determined by the number of individually configured diffractive optical micro-lenses (lenslet) in the array. Each lenslet images at a different wavelength determined by the blaze and set at the time of manufacturing based on application. In addition, modulation of the focal length of the lenslet array with piezoelectric or electro-static actuation will enable spectral band fill-in allowing hyperspectral imaging. Using the lenslet array with dual-band detectors will increase the number of simultaneous spectral images by a factor of two when utilizing multiple diffraction orders. Configurations and concept designs will be presented for detection application for biological/chemical agents, buried IED's and reconnaissance. The simultaneous detection of multiple spectral images in a single frame of data enhances the image processing capability by eliminating temporal differences between colors and enabling a handheld instrument that is insensitive to motion.
2017-01-01
Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications. PMID:29104259
Miah, Khalid; Potter, David K
2017-11-01
Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.
A statistical metadata model for clinical trials' data management.
Vardaki, Maria; Papageorgiou, Haralambos; Pentaris, Fragkiskos
2009-08-01
We introduce a statistical, process-oriented metadata model to describe the process of medical research data collection, management, results analysis and dissemination. Our approach explicitly provides a structure for pieces of information used in Clinical Study Data Management Systems, enabling a more active role for any associated metadata. Using the object-oriented paradigm, we describe the classes of our model that participate during the design of a clinical trial and the subsequent collection and management of the relevant data. The advantage of our approach is that we focus on presenting the structural inter-relation of these classes when used during datasets manipulation by proposing certain transformations that model the simultaneous processing of both data and metadata. Our solution reduces the possibility of human errors and allows for the tracking of all changes made during datasets lifecycle. The explicit modeling of processing steps improves data quality and assists in the problem of handling data collected in different clinical trials. The case study illustrates the applicability of the proposed framework demonstrating conceptually the simultaneous handling of datasets collected during two randomized clinical studies. Finally, we provide the main considerations for implementing the proposed framework into a modern Metadata-enabled Information System.
Simultaneous live imaging of the transcription and nuclear position of specific genes
Ochiai, Hiroshi; Sugawara, Takeshi; Yamamoto, Takashi
2015-01-01
The relationship between genome organization and gene expression has recently been established. However, the relationships between spatial organization, dynamics, and transcriptional regulation of the genome remain unknown. In this study, we developed a live-imaging method for simultaneous measurements of the transcriptional activity and nuclear position of endogenous genes, which we termed the ‘Real-time Observation of Localization and EXpression (ROLEX)’ system. We demonstrated that ROLEX is highly specific and does not affect the expression level of the target gene. ROLEX enabled detection of sub-genome-wide mobility changes that depended on the state of Nanog transactivation in embryonic stem cells. We believe that the ROLEX system will become a powerful tool for exploring the relationship between transcription and nuclear dynamics in living cells. PMID:26092696
Optical interconnection networks for high-performance computing systems
NASA Astrophysics Data System (ADS)
Biberman, Aleksandr; Bergman, Keren
2012-04-01
Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers.
HIGH-SPEED IMAGING AND WAVEFRONT SENSING WITH AN INFRARED AVALANCHE PHOTODIODE ARRAY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baranec, Christoph; Atkinson, Dani; Hall, Donald
2015-08-10
Infrared avalanche photodiode (APD) arrays represent a panacea for many branches of astronomy by enabling extremely low-noise, high-speed, and even photon-counting measurements at near-infrared wavelengths. We recently demonstrated the use of an early engineering-grade infrared APD array that achieves a correlated double sampling read noise of 0.73 e{sup −} in the lab, and a total noise of 2.52 e{sup −} on sky, and supports simultaneous high-speed imaging and tip-tilt wavefront sensing with the Robo-AO visible-light laser adaptive optics (AO) system at the Palomar Observatory 1.5 m telescope. Here we report on the improved image quality simultaneously achieved at visible andmore » infrared wavelengths by using the array as part of an image stabilization control loop with AO-sharpened guide stars. We also discuss a newly enabled survey of nearby late M-dwarf multiplicity, as well as future uses of this technology in other AO and high-contrast imaging applications.« less
Definitive screening design enables optimization of LC-ESI-MS/MS parameters in proteomics.
Aburaya, Shunsuke; Aoki, Wataru; Minakuchi, Hiroyoshi; Ueda, Mitsuyoshi
2017-12-01
In proteomics, more than 100,000 peptides are generated from the digestion of human cell lysates. Proteome samples have a broad dynamic range in protein abundance; therefore, it is critical to optimize various parameters of LC-ESI-MS/MS to comprehensively identify these peptides. However, there are many parameters for LC-ESI-MS/MS analysis. In this study, we applied definitive screening design to simultaneously optimize 14 parameters in the operation of monolithic capillary LC-ESI-MS/MS to increase the number of identified proteins and/or the average peak area of MS1. The simultaneous optimization enabled the determination of two-factor interactions between LC and MS. Finally, we found two parameter sets of monolithic capillary LC-ESI-MS/MS that increased the number of identified proteins by 8.1% or the average peak area of MS1 by 67%. The definitive screening design would be highly useful for high-throughput analysis of the best parameter set in LC-ESI-MS/MS systems.
Duobinary pulse shaping for frequency chirp enabled complex modulation.
Che, Di; Yuan, Feng; Khodakarami, Hamid; Shieh, William
2016-09-01
The frequency chirp of optical direct modulation (DM) used to be a performance barrier of optical transmission system, because it broadens the signal optical spectrum, which becomes more susceptible to chromatic dispersion induced inter-symbol interference (ISI). However, by considering the chirp as frequency modulation, the single DM simultaneously generates a 2-D signal containing the intensity and phase (namely, the time integral of frequency). This complex modulation concept significantly increases the optical signal to noise ratio (OSNR) sensitivity of DM systems. This Letter studies the duobinary pulse shaping (DB-PS) for chirp enabled DM and its impact on the optical bandwidth and system OSNR sensitivity. DB-PS relieves the bandwidth requirement, at the sacrifice of system OSNR sensitivity. As DB-PS induces a controlled ISI, the receiver requires one more tap for maximum likelihood sequence estimation (MLSE). We verify this modified MLSE with a 10-Gbaud duobinary PAM-4 transmission experiment.
A multiplexable TALE-based binary expression system for in vivo cellular interaction studies.
Toegel, Markus; Azzam, Ghows; Lee, Eunice Y; Knapp, David J H F; Tan, Ying; Fa, Ming; Fulga, Tudor A
2017-11-21
Binary expression systems have revolutionised genetic research by enabling delivery of loss-of-function and gain-of-function transgenes with precise spatial-temporal resolution in vivo. However, at present, each existing platform relies on a defined exogenous transcription activator capable of binding a unique recognition sequence. Consequently, none of these technologies alone can be used to simultaneously target different tissues or cell types in the same organism. Here, we report a modular system based on programmable transcription activator-like effector (TALE) proteins, which enables parallel expression of multiple transgenes in spatially distinct tissues in vivo. Using endogenous enhancers coupled to TALE drivers, we demonstrate multiplexed orthogonal activation of several transgenes carrying cognate variable activating sequences (VAS) in distinct neighbouring cell types of the Drosophila central nervous system. Since the number of combinatorial TALE-VAS pairs is virtually unlimited, this platform provides an experimental framework for highly complex genetic manipulation studies in vivo.
Nonproliferation Challenges in Space Defense Technology - PANEL
NASA Technical Reports Server (NTRS)
Houts, Michael G.
2016-01-01
The use of highly enriched uranium (HEU) almost always "helps" space fission systems. Nuclear Thermal Propulsion (NTP) and high power fission electric systems appear able to use < 20% enriched uranium with minimal / acceptable performance impacts. However, lower power, "entry level" systems may be needed for space fission technology to be developed and utilized. Low power (i.e. approx.1 kWe) fission systems may have an unacceptable performance penalty if LEU is used instead of HEU. Are there Ways to Support Non-Proliferation Objectives While Simultaneously Helping Enable the Development and Utilization of Modern Space Fission Power and Propulsion Systems?
NASA Astrophysics Data System (ADS)
Hoshino, Akiyoshi; Fujioka, Kouki; Yamamoto, Mayu; Manabe, Noriyoshi; Yasuhara, Masato; Suzuki, Kazuo; Yamamoto, Kenji
2005-11-01
Immunological diagnostic methods have been widely performed and showed high performance in molecular and cellular biology, molecular imaging, and medical diagnostics. We have developed novel methods for the fluorescent labeling of several antibodies coupled with fluorescent nanocrystals QDs. In this study we demonstrated that two bacterial toxins, diphtheria toxin and tetanus toxin, were detected simultaneously in the same view field of a cover slip by using directly QD-conjugated antibodies. We have succeeded in detecting bacterial toxins by counting luminescent spots on the evanescent field with using primary antibody conjugated to QDs. In addition, each bacterial toxin in the mixture can be separately detected by single excitation laser with emission band pass filters, and simultaneously in situ pathogen quantification was performed by calculating the luminescent density on the surface of the cover slip. Our results demonstrate that total internal reflection fluorescence microscopy (TIRFM) enables us to distinguish each antigen from mixed samples and can simultaneously quantitate multiple antigens by QD-conjugated antibodies. Bioconjugated QDs could have great potentialities for in practical biomedical applications to develop various high-sensitivity detection systems.
Fujita, Hideo; Uchimura, Yuji; Waki, Kayo; Omae, Koji; Takeuchi, Ichiro; Ohe, Kazuhiko
2013-01-01
To improve emergency services for accurate diagnosis of cardiac emergency, we developed a low-cost new mobile electrocardiography system "Cloud Cardiology®" based upon cloud computing for prehospital diagnosis. This comprises a compact 12-lead ECG unit equipped with Bluetooth and Android Smartphone with an application for transmission. Cloud server enables us to share ECG simultaneously inside and outside the hospital. We evaluated the clinical effectiveness by conducting a clinical trial with historical comparison to evaluate this system in a rapid response car in the real emergency service settings. We found that this system has an ability to shorten the onset to balloon time of patients with acute myocardial infarction, resulting in better clinical outcome. Here we propose that cloud-computing based simultaneous data sharing could be powerful solution for emergency service for cardiology, along with its significant clinical outcome.
Ti, Chaoyang; Ho-Thanh, Minh-Tri; Wen, Qi; Liu, Yuxiang
2017-10-13
Position detection with high accuracy is crucial for force calibration of optical trapping systems. Most existing position detection methods require high-numerical-aperture objective lenses, which are bulky, expensive, and difficult to miniaturize. Here, we report an affordable objective-lens-free, fiber-based position detection scheme with 2 nm spatial resolution and 150 MHz bandwidth. This fiber based detection mechanism enables simultaneous trapping and force measurements in a compact fiber optical tweezers system. In addition, we achieved more reliable signal acquisition with less distortion compared with objective based position detection methods, thanks to the light guiding in optical fibers and small distance between the fiber tips and trapped particle. As a demonstration of the fiber based detection, we used the fiber optical tweezers to apply a force on a cell membrane and simultaneously measure the cellular response.
Carp, Stefan A; Farzam, Parisa; Redes, Norin; Hueber, Dennis M; Franceschini, Maria Angela
2017-09-01
Frequency domain near infrared spectroscopy (FD-NIRS) and diffuse correlation spectroscopy (DCS) have emerged as synergistic techniques for the non-invasive assessment of tissue health. Combining FD-NIRS oximetry with DCS measures of blood flow, the tissue oxygen metabolic rate can be quantified, a parameter more closely linked to underlying physiology and pathology than either NIRS or DCS estimates alone. Here we describe the first commercially available integrated instrument, called the "MetaOx", designed to enable simultaneous FD-NIRS and DCS measurements at rates of 10 + Hz, and offering real-time data evaluation. We show simultaneously acquired characterization data demonstrating performance equivalent to individual devices and sample in vivo measurements of pulsation resolved blood flow, forearm occlusion hemodynamic changes and muscle oxygen metabolic rate monitoring during stationary bike exercise.
Carp, Stefan A.; Farzam, Parisa; Redes, Norin; Hueber, Dennis M.; Franceschini, Maria Angela
2017-01-01
Frequency domain near infrared spectroscopy (FD-NIRS) and diffuse correlation spectroscopy (DCS) have emerged as synergistic techniques for the non-invasive assessment of tissue health. Combining FD-NIRS oximetry with DCS measures of blood flow, the tissue oxygen metabolic rate can be quantified, a parameter more closely linked to underlying physiology and pathology than either NIRS or DCS estimates alone. Here we describe the first commercially available integrated instrument, called the “MetaOx”, designed to enable simultaneous FD-NIRS and DCS measurements at rates of 10 + Hz, and offering real-time data evaluation. We show simultaneously acquired characterization data demonstrating performance equivalent to individual devices and sample in vivo measurements of pulsation resolved blood flow, forearm occlusion hemodynamic changes and muscle oxygen metabolic rate monitoring during stationary bike exercise. PMID:29026684
Apparatus for simultaneously disreefing a centrally reefed clustered parachute system
Johnson, Donald W.
1988-01-01
A single multi-line cutter is connected to each of a cluster of parachutes by a separate short tether line that holds the parachutes, initially reefed by closed loop reefing lines, close to one another. The closed loop reefing lines and tether lines, one from each parachute, are disposed within the cutter to be simultaneously cut by its actuation when a central line attached between the payload and the cutter is stretched upon deployment of the cluster. A pyrotechnic or electronic time delay may be included in the cutter to delay the actual simultaneous cutting of all lines until the clustered parachutes attain a measure of stability prior to being disreefed. A second set of reefing lines and second tether lines may be provided for each parachute, to enable a two-stage, separately timed, step-by-step disreefing.
Apparatus for simultaneously disreefing a centrally reefed clustered parachute system
Johnson, D.W.
1988-06-21
A single multi-line cutter is connected to each of a cluster of parachutes by a separate short tether line that holds the parachutes, initially reefed by closed loop reefing lines, close to one another. The closed loop reefing lines and tether lines, one from each parachute, are disposed within the cutter to be simultaneously cut by its actuation when a central line attached between the payload and the cutter is stretched upon deployment of the cluster. A pyrotechnic or electronic time delay may be included in the cutter to delay the actual simultaneous cutting of all lines until the clustered parachutes attain a measure of stability prior to being disreefed. A second set of reefing lines and second tether lines may be provided for each parachute, to enable a two-stage, separately timed, step-by-step disreefing. 13 figs.
NASA Technical Reports Server (NTRS)
Pritchett, Amy R.; Hansman, R. John
1997-01-01
Efforts to increase airport capacity include studies of aircraft systems that would enable simultaneous approaches to closely spaced parallel runway in Instrument Meteorological Conditions (IMC). The time-critical nature of a parallel approach results in key design issues for current and future collision avoidance systems. Two part-task flight simulator studies have examined the procedural and display issues inherent in such a time-critical task, the interaction of the pilot with a collision avoidance system, and the alerting criteria and avoidance maneuvers preferred by subjects.
NASA Astrophysics Data System (ADS)
Lee, J.-W.; Jeong, J.-R.; Kim, D.-H.; Ahn, J. S.; Kim, J.; Shin, S.-C.
2000-10-01
We have constructed a three-configurational surface magneto-optical Kerr effect system, which provides the simultaneous measurements of the "polar," "longitudinal," and "transverse" Kerr hysteresis loops at the position where deposition is carried out in an ultrahigh vacuum growth chamber. The present system enables in situ three-dimensional vectorial studies of ultrathin film magnetism with a submonolayer sensitivity. We present three-configurational hysteresis loops measured during the growth of Co films on Pd(111), glass, and Pd/glass substrates.
Reflective electroabsorption modular for compact base station radio-over-fiber systems
NASA Astrophysics Data System (ADS)
Wu, Yang; Chang, Wei-Xi; Yu, Paul K. L.
2003-07-01
A Radio-over-Fiber system with simplified Base Station (BS) is proposed in which a single chip DBR Reflective Electro-absorption Modulator (REAM) serves both as an optical transceiver and as a mixer at the BS. It enables full duplex optical transmission for base band and RF band services simultaneously due to good isolation between uplink and downlink at the same chip. Grating structure is incorporated into the EA modulator for the sake of system design. It also improves yield and efficiency of high-speed devices.
Simultaneous mapping of pan and sentinel lymph nodes for real-time image-guided surgery.
Ashitate, Yoshitomo; Hyun, Hoon; Kim, Soon Hee; Lee, Jeong Heon; Henary, Maged; Frangioni, John V; Choi, Hak Soo
2014-01-01
The resection of regional lymph nodes in the basin of a primary tumor is of paramount importance in surgical oncology. Although sentinel lymph node mapping is now the standard of care in breast cancer and melanoma, over 20% of patients require a completion lymphadenectomy. Yet, there is currently no technology available that can image all lymph nodes in the body in real time, or assess both the sentinel node and all nodes simultaneously. In this study, we report an optical fluorescence technology that is capable of simultaneous mapping of pan lymph nodes (PLNs) and sentinel lymph nodes (SLNs) in the same subject. We developed near-infrared fluorophores, which have fluorescence emission maxima either at 700 nm or at 800 nm. One was injected intravenously for identification of all regional lymph nodes in a basin, and the other was injected locally for identification of the SLN. Using the dual-channel FLARE intraoperative imaging system, we could identify and resect all PLNs and SLNs simultaneously. The technology we describe enables simultaneous, real-time visualization of both PLNs and SLNs in the same subject.
Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J; Grant, Alexander M; Chang, Chen-Ming; Glover, Gary; Levin, Craig S
2015-05-07
The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.
NASA Astrophysics Data System (ADS)
Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J.; Grant, Alexander M.; Chang, Chen-Ming; Glover, Gary; Levin, Craig S.
2015-05-01
The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.
Design-Tradeoff Model For Space Station
NASA Technical Reports Server (NTRS)
Chamberlain, Robert G.; Smith, Jeffrey L.; Borden, Chester S.; Deshpande, Govind K.; Fox, George; Duquette, William H.; Dilullo, Larry A.; Seeley, Larry; Shishko, Robert
1990-01-01
System Design Tradeoff Model (SDTM) computer program produces information which helps to enforce consistency of design objectives throughout system. Mathematical model of set of possible designs for Space Station Freedom. Program finds particular design enabling station to provide specified amounts of resources to users at lowest total (or life-cycle) cost. Compares alternative design concepts by changing set of possible designs, while holding specified services to users constant, and then comparing costs. Finally, both costs and services varied simultaneously when comparing different designs. Written in Turbo C 2.0.
Botsivaly, M; Spyropoulos, B; Koutsourakis, K; Mertika, K
2006-01-01
The purpose of this study is the presentation of a system appropriate to be used upon the transition of a patient from hospital to homecare. The developed system is structured according to the ASTM E2369-05 Standard Specification for Continuity of Care Record and its function is based upon the creation of a structured subset of data, containing the patient's most relevant clinical information, enabling simultaneously the planning and the optimal documentation of the provided homecare.
Measurement of mismatch loss in CPV modul
NASA Astrophysics Data System (ADS)
Liu, Mingguo; Kinsey, Geoffrey S.; Bagienski, Will; Nayak, Adi; Garboushian, Vahan
2012-10-01
A setup capable of simultaneously measuring I-V curves of a full string and its individual cells has been developed. This setup enables us to measure mismatch loss from individual cells in concert with various string combinations under varying field conditions. Mismatch loss from cells to plates at different off-track angles and mismatch from plates to strings in Amonix system during normal operation have been investigated.
NASA Astrophysics Data System (ADS)
Ishihara, Miya; Sato, Masato; Kutsuna, Toshiharu; Ishihara, Masayuki; Mochida, Joji; Kikuchi, Makoto
2008-02-01
There is a demand in the field of regenerative medicine for measurement technology that enables determination of functions and components of engineered tissue. To meet this demand, we developed a method for extracellular matrix characterization using time-resolved autofluorescence spectroscopy, which enabled simultaneous measurements with mechanical properties using relaxation of laser-induced stress wave. In this study, in addition to time-resolved fluorescent spectroscopy, hyperspectral sensor, which enables to capture both spectral and spatial information, was used for evaluation of biochemical characterization of tissue-engineered cartilage. Hyperspectral imaging system provides spectral resolution of 1.2 nm and image rate of 100 images/sec. The imaging system consisted of the hyperspectral sensor, a scanner for x-y plane imaging, magnifying optics and Xenon lamp for transmmissive lighting. Cellular imaging using the hyperspectral image system has been achieved by improvement in spatial resolution up to 9 micrometer. The spectroscopic cellular imaging could be observed using cultured chondrocytes as sample. At early stage of culture, the hyperspectral imaging offered information about cellular function associated with endogeneous fluorescent biomolecules.
AN/ASQ-197 provides commonality to Recce systems and avionics upgrades
NASA Astrophysics Data System (ADS)
Regan, Brendan P.
1993-02-01
In an attempt to strike a balance between increases in multi-role tactical air reconnaissance mission tasking and simultaneous decreases in defense spending, many users are evaluating upgrades to existing sensors and reconnaissance systems. At the heart of any cost-effective reconnaissance system upgrade must be a flexible reconnaissance management system, capable of filling multiple rolls in today's film backed reconnaissance system, while enabling successful transition to the Electro-Optical (EO) system of tomorrow. As a case in point this paper describes enhanced effectiveness and growth potential that Fairchild's AN/ASQ-197 Sensor Control-Data Display Set (SC-DDS) can provide.
Thermodynamic and Information Entropy in Electroconvection
NASA Astrophysics Data System (ADS)
Cressman, John; Daum, Marcus; Patrick, David; Cerbus, Rory; Goldburg, Walter
Transitions in driven systems often produce wild fluctuations that can be both detrimental and beneficial. Our fundamental understanding of these transients is inadequate to permit optimal interactions with systems ranging from biology, to energy generation, to finance. Here we report on experiments performed in electroconvecting liquid crystals where we abruptly change the electrical forcing across the sample from a state below defect turbulence into a state of defect turbulence. We simultaneously measure the electrical power flow through the liquid crystal as well as image the structure in the sample. These measurements enable us to simultaneously track the evolution of the thermodynamic and information entropies. Our experiments demonstrate that there are strong correlations between the fluctuations in these two entropic measures however they are not exact. We will discuss these discrepancies as well as the relevance of large transient fluctuations in non-equilibrium transitions in general.
Soft Somatosensitive Actuators via Embedded 3D Printing.
Truby, Ryan L; Wehner, Michael; Grosskopf, Abigail K; Vogt, Daniel M; Uzel, Sebastien G M; Wood, Robert J; Lewis, Jennifer A
2018-04-01
Humans possess manual dexterity, motor skills, and other physical abilities that rely on feedback provided by the somatosensory system. Herein, a method is reported for creating soft somatosensitive actuators (SSAs) via embedded 3D printing, which are innervated with multiple conductive features that simultaneously enable haptic, proprioceptive, and thermoceptive sensing. This novel manufacturing approach enables the seamless integration of multiple ionically conductive and fluidic features within elastomeric matrices to produce SSAs with the desired bioinspired sensing and actuation capabilities. Each printed sensor is composed of an ionically conductive gel that exhibits both long-term stability and hysteresis-free performance. As an exemplar, multiple SSAs are combined into a soft robotic gripper that provides proprioceptive and haptic feedback via embedded curvature, inflation, and contact sensors, including deep and fine touch contact sensors. The multimaterial manufacturing platform enables complex sensing motifs to be easily integrated into soft actuating systems, which is a necessary step toward closed-loop feedback control of soft robots, machines, and haptic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Overview of the NASA Environmentally Responsible Aviation Project's Propulsion Technology Portfolio
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.
2012-01-01
The NASA Environmentally Responsible Aviation (ERA) Project is focused on developing and demonstrating integrated systems technologies to TRL 4-6 by 2020 that enable reduced fuel burn, emissions, and noise for futuristic air vehicles. The specific goals aim to simultaneously reduce fuel burn by 50%, reduce Landing and Take-off Nitrous Oxides emissions by 75% relative to the CAEP 6 guidelines, and reduce cumulative noise by 42 Decibels relative to the Stage 4 guidelines. These goals apply to the integrated vehicle and propulsion system and are based on a reference mission of 3000nm flight of a Boeing 777-200 with GE90 engines. This paper will focus primarily on the ERA propulsion technology portfolio, which consists of advanced combustion, propulsor, and core technologies to enable these integrated air vehicle systems goals. An overview of the ERA propulsion technologies will be described and the status and results to date will be presented.
Design and simulation of a sensor for heliostat field closed loop control
NASA Astrophysics Data System (ADS)
Collins, Mike; Potter, Daniel; Burton, Alex
2017-06-01
Significant research has been completed in pursuit of capital cost reductions for heliostats [1],[2]. The camera array closed loop control concept has potential to radically alter the way heliostats are controlled and installed by replacing high quality open loop targeting systems with low quality targeting devices that rely on measurement of image position to remove tracking errors during operation. Although the system could be used for any heliostat size, the system significantly benefits small heliostats by reducing actuation costs, enabling large numbers of heliostats to be calibrated simultaneously, and enabling calibration of heliostats that produce low irradiance (similar or less than ambient light images) on Lambertian calibration targets, such as small heliostats that are far from the tower. A simulation method for the camera array has been designed and verified experimentally. The simulation tool demonstrates that closed loop calibration or control is possible using this device.
NASA Astrophysics Data System (ADS)
Goumiri, I. R.; Rowley, C. W.; Sabbagh, S. A.; Gates, D. A.; Boyer, M. D.; Gerhardt, S. P.; Kolemen, E.; Menard, J. E.
2017-05-01
A model-based feedback system is presented enabling the simultaneous control of the stored energy through βn and the toroidal rotation profile of the plasma in National Spherical Torus eXperiment Upgrade device. Actuation is obtained using the momentum from six injected neutral beams and the neoclassical toroidal viscosity generated by applying three-dimensional magnetic fields. Based on a model of the momentum diffusion and torque balance, a feedback controller is designed and tested in closed-loop simulations using TRANSP, a time dependent transport analysis code, in predictive mode. Promising results for the ongoing experimental implementation of controllers are obtained.
Goumiri, I. R.; Sabbagh, S. A.; Boyer, M. D.; Gerhardt, S. P.; Kolemen, E.; Menard, J. E.
2017-01-01
A model-based feedback system is presented enabling the simultaneous control of the stored energy through βn and the toroidal rotation profile of the plasma in National Spherical Torus eXperiment Upgrade device. Actuation is obtained using the momentum from six injected neutral beams and the neoclassical toroidal viscosity generated by applying three-dimensional magnetic fields. Based on a model of the momentum diffusion and torque balance, a feedback controller is designed and tested in closed-loop simulations using TRANSP, a time dependent transport analysis code, in predictive mode. Promising results for the ongoing experimental implementation of controllers are obtained. PMID:28435207
Goumiri, I. R.; Rowley, C. W.; Sabbagh, S. A.; ...
2017-02-23
In this study, a model-based feedback system is presented enabling the simultaneous control of the stored energy through β n and the toroidal rotation profile of the plasma in National Spherical Torus eXperiment Upgrade device. Actuation is obtained using the momentum from six injected neutral beams and the neoclassical toroidal viscosity generated by applying three-dimensional magnetic fields. Based on a model of the momentum diffusion and torque balance, a feedback controller is designed and tested in closed-loop simulations using TRANSP, a time dependent transport analysis code, in predictive mode. Promising results for the ongoing experimental implementation of controllers are obtained.
NASA Technical Reports Server (NTRS)
Van Zante, Dale; Suder, Kenneth
2015-01-01
The NASA Environmentally Responsible Aviation (ERA) program is maturing technologies to enable simultaneous reduction of fuel burn, noise and emissions from an aircraft engine system. Three engine related Integrated Technology Demonstrations (ITDs) have been completed at Glenn Research Center in collaboration with Pratt Whitney, General Electric and the Federal Aviation Administration. The engine technologies being matured are: a low NOx, fuel flexible combustor in partnership with Pratt Whitney; an ultra-high bypass, ducted propulsor system in partnership with Pratt Whitney and FAA; and high pressure ratio, front-stage core compressor technology in partnership with General Electric. The technical rationale, test configurations and overall results from the test series in each ITD are described. ERA is using system analysis to project the benefits of the ITD technologies on potential aircraft systems in the 2025 timeframe. Data from the ITD experiments were used to guide the system analysis assumptions. Results from the current assessments for fuel burn, noise and oxides of nitrogen emissions are presented.
Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging
NASA Astrophysics Data System (ADS)
Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas
2016-03-01
In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.
NASA Technical Reports Server (NTRS)
Van Zante, Dale E.; Suder, Kenneth L.
2015-01-01
The NASA Environmentally Responsible Aviation (ERA) program is maturing technologies to enable simultaneous reduction of fuel burn, noise and emissions from an aircraft engine system. Three engine related Integrated Technology Demonstrations (ITDs) have been completed at Glenn Research Center in collaboration with Pratt Whitney, General Electric and the Federal Aviation Administration. The engine technologies being matured are a low NOx, fuel flexible combustor in partnership with Pratt Whitney, an ultra-high bypass, ducted propulsor system in partnership with Pratt Whitney FAA and high pressure ratio, front-stage core compressor technology in partnership with General Electric. The technical rationale, test configurations and overall results from the test series in each ITD are described. ERA is using system analysis to project the benefits of the ITD technologies on potential aircraft systems in the 2025 timeframe. Data from the ITD experiments were used to guide the system analysis assumptions. Results from the current assessments for fuel burn, noise and oxides of nitrogen emissions are presented.
Long sequence correlation coprocessor
NASA Astrophysics Data System (ADS)
Gage, Douglas W.
1994-09-01
A long sequence correlation coprocessor (LSCC) accelerates the bitwise correlation of arbitrarily long digital sequences by calculating in parallel the correlation score for 16, for example, adjacent bit alignments between two binary sequences. The LSCC integrated circuit is incorporated into a computer system with memory storage buffers and a separate general purpose computer processor which serves as its controller. Each of the LSCC's set of sequential counters simultaneously tallies a separate correlation coefficient. During each LSCC clock cycle, computer enable logic associated with each counter compares one bit of a first sequence with one bit of a second sequence to increment the counter if the bits are the same. A shift register assures that the same bit of the first sequence is simultaneously compared to different bits of the second sequence to simultaneously calculate the correlation coefficient by the different counters to represent different alignments of the two sequences.
Mathew, Manoj; Santos, Susana I C O; Zalvidea, Dobryna; Loza-Alvarez, Pablo
2009-07-01
In this work we propose and build a multimodal optical workstation that extends a commercially available confocal microscope (Nikon Confocal C1-Si) to include nonlinear/multiphoton microscopy and optical manipulation/stimulation tools such as nanosurgery. The setup allows both subsystems (confocal and nonlinear) to work independently and simultaneously. The workstation enables, for instance, nanosurgery along with simultaneous confocal and brightfield imaging. The nonlinear microscopy capabilities are added around the commercial confocal microscope by exploiting all the flexibility offered by this microscope and without need for any mechanical or electronic modification of the confocal microscope systems. As an example, the standard differential interference contrast condenser and diascopic detector in the confocal microscope are readily used as a forward detection mount for second harmonic generation imaging. The various capabilities of this workstation, as applied directly to biology, are demonstrated using the model organism Caenorhabditis elegans.
A brain-machine interface enables bimanual arm movements in monkeys.
Ifft, Peter J; Shokur, Solaiman; Li, Zheng; Lebedev, Mikhail A; Nicolelis, Miguel A L
2013-11-06
Brain-machine interfaces (BMIs) are artificial systems that aim to restore sensation and movement to paralyzed patients. So far, BMIs have enabled only one arm to be moved at a time. Control of bimanual arm movements remains a major challenge. We have developed and tested a bimanual BMI that enables rhesus monkeys to control two avatar arms simultaneously. The bimanual BMI was based on the extracellular activity of 374 to 497 neurons recorded from several frontal and parietal cortical areas of both cerebral hemispheres. Cortical activity was transformed into movements of the two arms with a decoding algorithm called a fifth-order unscented Kalman filter (UKF). The UKF was trained either during a manual task performed with two joysticks or by having the monkeys passively observe the movements of avatar arms. Most cortical neurons changed their modulation patterns when both arms were engaged simultaneously. Representing the two arms jointly in a single UKF decoder resulted in improved decoding performance compared with using separate decoders for each arm. As the animals' performance in bimanual BMI control improved over time, we observed widespread plasticity in frontal and parietal cortical areas. Neuronal representation of the avatar and reach targets was enhanced with learning, whereas pairwise correlations between neurons initially increased and then decreased. These results suggest that cortical networks may assimilate the two avatar arms through BMI control. These findings should help in the design of more sophisticated BMIs capable of enabling bimanual motor control in human patients.
Epidermal electronics with advanced capabilities in near-field communication.
Kim, Jeonghyun; Banks, Anthony; Cheng, Huanyu; Xie, Zhaoqian; Xu, Sheng; Jang, Kyung-In; Lee, Jung Woo; Liu, Zhuangjian; Gutruf, Philipp; Huang, Xian; Wei, Pinghung; Liu, Fei; Li, Kan; Dalal, Mitul; Ghaffari, Roozbeh; Feng, Xue; Huang, Yonggang; Gupta, Sanjay; Paik, Ungyu; Rogers, John A
2015-02-25
Epidermal electronics with advanced capabilities in near field communications (NFC) are presented. The systems include stretchable coils and thinned NFC chips on thin, low modulus stretchable adhesives, to allow seamless, conformal contact with the skin and simultaneous capabilities for wireless interfaces to any standard, NFC-enabled smartphone, even under extreme deformation and after/during normal daily activities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction.
Pircher, Michael; Baumann, Bernhard; Götzinger, Erich; Sattmann, Harald; Hitzenberger, Christoph K
2007-12-10
It has been shown that transversal scanning (or en-face) optical coherence tomography (TS-OCT) represents an imaging modality capable to record high isotropic resolution images of the human retina in vivo. However, axial eye motion still remains a challenging problem of this technique. In this paper we introduce a novel method to compensate for this eye motion. An auxiliary spectral domain partial coherence interferometer (SD-PCI) was integrated into an existing TS-OCT system and used to measure accurately the position of the cornea. A light source emitting at 1310nm was used in the additional interferometer which enabled a nearly loss free coupling of the two measurement beams via a dichroic mirror. The recorded corneal position was used to drive an additional voice coil translation stage in the reference arm of the TS-OCT system to correct for axial eye motion. Currently, the correction can be performed with an update rate of ~200Hz. The TS-OCT instrument is operated with a line scan rate of 4000 transversal lines per second which enables simultaneous SLO/OCT imaging at a frame rate of 40fps. 3D data of the human retina with isotropic high resolution, that was sufficient to visualize the human cone mosaic in vivo, is presented.
Two schemes for rapid generation of digital video holograms using PC cluster
NASA Astrophysics Data System (ADS)
Park, Hanhoon; Song, Joongseok; Kim, Changseob; Park, Jong-Il
2017-12-01
Computer-generated holography (CGH), which is a process of generating digital holograms, is computationally expensive. Recently, several methods/systems of parallelizing the process using graphic processing units (GPUs) have been proposed. Indeed, use of multiple GPUs or a personal computer (PC) cluster (each PC with GPUs) enabled great improvements in the process speed. However, extant literature has less often explored systems involving rapid generation of multiple digital holograms and specialized systems for rapid generation of a digital video hologram. This study proposes a system that uses a PC cluster and is able to more efficiently generate a video hologram. The proposed system is designed to simultaneously generate multiple frames and accelerate the generation by parallelizing the CGH computations across a number of frames, as opposed to separately generating each individual frame while parallelizing the CGH computations within each frame. The proposed system also enables the subprocesses for generating each frame to execute in parallel through multithreading. With these two schemes, the proposed system significantly reduced the data communication time for generating a digital hologram when compared with that of the state-of-the-art system.
Zhang, Xinming; Cen, Xi; Ravichandran, Rijuta; Hughes, Lauren A; van Benthem, Klaus
2016-06-01
The scanning electron microscope provides a platform for subnanometer resolution characterization of material morphology with excellent topographic and chemical contrast dependent on the used detectors. For imaging applications, the predominantly utilized signals are secondary electrons (SEs) and backscattered electrons (BSEs) that are emitted from the sample surface. Recent advances in detector technology beyond the traditional Everhart-Thornley geometry have enabled the simultaneous acquisition and discrimination of SE and BSE signals. This study demonstrates the imaging capabilities of a recently introduced new detector system that consists of the combination of two in-lens (I-L) detectors and one in-column (I-C) detector. Coupled with biasing the sample stage to reduce electron-specimen interaction volumes, this trinity of detector geometry allows simultaneous acquisition of signals to distinguish chemical contrast from topographical changes of the sample, including the identification of surface contamination. The I-C detector provides 4× improved topography, whereas the I-L detector closest to the sample offers excellent simultaneous chemical contrast imaging while not limiting the minimization of working distance to obtain optimal lateral resolution. Imaging capabilities and contrast mechanisms for all three detectors are discussed quantitatively in direct comparison to each other and the conventional Everhart-Thornley detector.
The ViewRay system: magnetic resonance-guided and controlled radiotherapy.
Mutic, Sasa; Dempsey, James F
2014-07-01
A description of the first commercially available magnetic resonance imaging (MRI)-guided radiation therapy (RT) system is provided. The system consists of a split 0.35-T MR scanner straddling 3 (60)Co heads mounted on a ring gantry, each head equipped with independent doubly focused multileaf collimators. The MR and RT systems share a common isocenter, enabling simultaneous and continuous MRI during RT delivery. An on-couch adaptive RT treatment-planning system and integrated MRI-guided RT control system allow for rapid adaptive planning and beam delivery control based on the visualization of soft tissues. Treatment of patients with this system commenced at Washington University in January 2014. Copyright © 2014 Elsevier Inc. All rights reserved.
Purdon, Patrick L.; Millan, Hernan; Fuller, Peter L.; Bonmassar, Giorgio
2008-01-01
Simultaneous recording of electrophysiology and functional magnetic resonance imaging (fMRI) is a technique of growing importance in neuroscience. Rapidly evolving clinical and scientific requirements have created a need for hardware and software that can be customized for specific applications. Hardware may require customization to enable a variety of recording types (e.g., electroencephalogram, local field potentials, or multi-unit activity) while meeting the stringent and costly requirements of MRI safety and compatibility. Real-time signal processing tools are an enabling technology for studies of learning, attention, sleep, epilepsy, neurofeedback, and neuropharmacology, yet real-time signal processing tools are difficult to develop. We describe an open source system for simultaneous electrophysiology and fMRI featuring low-noise (< 0.6 uV p-p input noise), electromagnetic compatibility for MRI (tested up to 7 Tesla), and user-programmable real-time signal processing. The hardware distribution provides the complete specifications required to build an MRI-compatible electrophysiological data acquisition system, including circuit schematics, print circuit board (PCB) layouts, Gerber files for PCB fabrication and robotic assembly, a bill of materials with part numbers, data sheets, and vendor information, and test procedures. The software facilitates rapid implementation of real-time signal processing algorithms. This system has used in human EEG/fMRI studies at 3 and 7 Tesla examining the auditory system, visual system, sleep physiology, and anesthesia, as well as in intracranial electrophysiological studies of the non-human primate visual system during 3 Tesla fMRI, and in human hyperbaric physiology studies at depths of up to 300 feet below sea level. PMID:18761038
Purdon, Patrick L; Millan, Hernan; Fuller, Peter L; Bonmassar, Giorgio
2008-11-15
Simultaneous recording of electrophysiology and functional magnetic resonance imaging (fMRI) is a technique of growing importance in neuroscience. Rapidly evolving clinical and scientific requirements have created a need for hardware and software that can be customized for specific applications. Hardware may require customization to enable a variety of recording types (e.g., electroencephalogram, local field potentials, or multi-unit activity) while meeting the stringent and costly requirements of MRI safety and compatibility. Real-time signal processing tools are an enabling technology for studies of learning, attention, sleep, epilepsy, neurofeedback, and neuropharmacology, yet real-time signal processing tools are difficult to develop. We describe an open-source system for simultaneous electrophysiology and fMRI featuring low-noise (<0.6microV p-p input noise), electromagnetic compatibility for MRI (tested up to 7T), and user-programmable real-time signal processing. The hardware distribution provides the complete specifications required to build an MRI-compatible electrophysiological data acquisition system, including circuit schematics, print circuit board (PCB) layouts, Gerber files for PCB fabrication and robotic assembly, a bill of materials with part numbers, data sheets, and vendor information, and test procedures. The software facilitates rapid implementation of real-time signal processing algorithms. This system has been used in human EEG/fMRI studies at 3 and 7T examining the auditory system, visual system, sleep physiology, and anesthesia, as well as in intracranial electrophysiological studies of the non-human primate visual system during 3T fMRI, and in human hyperbaric physiology studies at depths of up to 300 feet below sea level.
Research opportunities with the Centrifuge Facility
NASA Technical Reports Server (NTRS)
Funk, Glenn A.
1992-01-01
The Centrifuge Facility on Space Station Freedom will consist of a 2.5-meter diameter Centrifuge accommodating two concentric rings of habitats and providing variable g-forces between 0.01 g and 2.0 g; modular habitats providing housing and lifesupport for rats, mice, and plants; a habitat holding system providing power, water, airflow and other utilities to several modular habitats; and a life sciences glovebox, an isolated work volume accommodating simultaneous operations by at least two scientists and providing lighting, airflow, video and data access, and other experiment support functions. The centrifuge facility will enable long-duration animal and plant microgravity research not previously possible in the NASA flight research program. It will offer unprecedented opportunities for use of on-board 1-g control populations and statistically significant numbers of specimens. On orbit 1-g controls will allow separation of the effects of microgravity from other environmental factors. Its selectable-g and simultaneous multiple-g capabilities will enable studies of gravitational thresholds, the use of artificial gravity as a countermeasure to the effects of microgravity, and ready simulation of Lunar and Martian gravities.
Widefield TSCSPC-systems with large-area-detectors: application in simultaneous multi-channel-FLIM
NASA Astrophysics Data System (ADS)
Stepanov, Sergei; Bakhlanov, Sergei; Drobchenko, Evgeny; Eckert, Hann-Jörg; Kemnitz, Klaus
2010-11-01
Novel proximity-type Time- and Space-Correlated Single Photon Counting (TSCSPC) crossed-delay-line (DL)- and multi-anode (MA)-systems of outstanding performance and homogeneity were developed, using large-area detector heads of 25 and 40 mm diameter. Instrument response functions IRF(space) = (60 +/- 5) μm FWHM and IRF(time) = (28 +/- 3) ps FWHM were achieved over the full 12 cm2 area of the detector. Deadtime at throughput of 105 cps is 10% for "high-resolution" system and 5% in the "video"-system at 106 cps, at slightly reduced time- and space resolution. A fluorescence lifetime of (3.5 +/- 1) ps can be recovered from multi-exponential dynamics of a single living cyanobacterium (Acaryochloris marina). The present large-area detectors are particularly useful in simultaneous multichannel applications, such as 2-colour anisotropy or 4-colour lifetime imaging, utilizing dual- or quad-view image splitters. The long-term stability, low- excitation-intensity (< 100 mW/cm2) widefield systems enable minimal-invasive observation, without significant bleaching or photodynamic reactions, thus allowing long-period observation of up to several hours in living cells.
Botsivaly, M.; Spyropoulos, B.; Koutsourakis, K.; Mertika, K.
2006-01-01
The purpose of this study is the presentation of a system appropriate to be used upon the transition of a patient from hospital to homecare. The developed system is structured according to the ASTM E2369-05 Standard Specification for Continuity of Care Record and its function is based upon the creation of a structured subset of data, containing the patient’s most relevant clinical information, enabling simultaneously the planning and the optimal documentation of the provided homecare. PMID:17238479
NASA Technical Reports Server (NTRS)
Charles, J. F.; Theakston, H. A. (Inventor)
1980-01-01
A floating nut retention system includes a nut with a central aperture. An inner retainer plate has an opening which is fixedly aligned with the nut aperture. An outer retainer member is formed of a base plate having an opening and a surface adjacent to a surface of the inner retainer plate. The outer retainer member includes a securing mechanism for retaining the inner retainer plate adjacent to the outer retainer member. The securing mechanism enables the inner retainer plate to float with respect to the outer retainer number, while simultaneously forming a bearing surface for inner retainer plate.
Pinpointing chiral structures with front-back polarized neutron reflectometry.
O'Donovan, K V; Borchers, J A; Majkrzak, C F; Hellwig, O; Fullerton, E E
2002-02-11
A new development in spin-polarized neutron reflectometry enables us to more fully characterize the nucleation and growth of buried domain walls in layered magnetic materials. We applied this technique to a thin-film exchange-spring magnet. After first measuring the reflectivity with the neutrons striking the front, we measure with the neutrons striking the back. Simultaneous fits are sensitive to the presence of spiral spin structures. The technique reveals previously unresolved features of field-dependent domain walls in exchange-spring systems and has sufficient generality to apply to a variety of magnetic systems.
Multiple-Star System Adaptive Vortex Coronagraphy Using a Liquid Crystal Light Valve
NASA Astrophysics Data System (ADS)
Aleksanyan, Artur; Kravets, Nina; Brasselet, Etienne
2017-05-01
We propose the development of a high-contrast imaging technique enabling the simultaneous and selective nulling of several light sources. This is done by realizing a reconfigurable multiple-vortex phase mask made of a liquid crystal thin film on which local topological features can be addressed electro-optically. The method is illustrated by reporting on a triple-star optical vortex coronagraphy laboratory demonstration, which can be easily extended to higher multiplicity. These results allow considering the direct observation and analysis of worlds with multiple suns and more complex extrasolar planetary systems.
Chemical reactivation of resin-embedded pHuji adds red for simultaneous two-color imaging with EGFP
Guo, Wenyan; Liu, Xiuli; Liu, Yurong; Gang, Yadong; He, Xiaobin; Jia, Yao; Yin, Fangfang; Li, Pei; Huang, Fei; Zhou, Hongfu; Wang, Xiaojun; Gong, Hui; Luo, Qingming; Xu, Fuqiang; Zeng, Shaoqun
2017-01-01
The pH-sensitive fluorescent proteins enabling chemical reactivation in resin are useful tools for fluorescence microimaging. EGFP or EYFP is good for such applications. For simultaneous two-color imaging, a suitable red fluorescent protein is an urgent need. Here a pH-sensitive red fluorescent protein, pHuji, is selected and verified to remain pH-sensitive in HM20 resin. We observe 183% fluorescence intensity of pHuji in resin-embeded mouse brain and 29.08-fold fluorescence intensity of reactivated pHuji compared to the quenched state. pHuji and EGFP can be quenched and chemically reactivated simultaneously in resin, thus enabling simultaneous two-color micro-optical sectioning tomography of resin-embedded mouse brain. This method may greatly facilitate the visualization of neuronal morphology and neural circuits to promote understanding of the structure and function of the brain. PMID:28717566
Chemical reactivation of resin-embedded pHuji adds red for simultaneous two-color imaging with EGFP.
Guo, Wenyan; Liu, Xiuli; Liu, Yurong; Gang, Yadong; He, Xiaobin; Jia, Yao; Yin, Fangfang; Li, Pei; Huang, Fei; Zhou, Hongfu; Wang, Xiaojun; Gong, Hui; Luo, Qingming; Xu, Fuqiang; Zeng, Shaoqun
2017-07-01
The pH-sensitive fluorescent proteins enabling chemical reactivation in resin are useful tools for fluorescence microimaging. EGFP or EYFP is good for such applications. For simultaneous two-color imaging, a suitable red fluorescent protein is an urgent need. Here a pH-sensitive red fluorescent protein, pHuji, is selected and verified to remain pH-sensitive in HM20 resin. We observe 183% fluorescence intensity of pHuji in resin-embeded mouse brain and 29.08-fold fluorescence intensity of reactivated pHuji compared to the quenched state. pHuji and EGFP can be quenched and chemically reactivated simultaneously in resin, thus enabling simultaneous two-color micro-optical sectioning tomography of resin-embedded mouse brain. This method may greatly facilitate the visualization of neuronal morphology and neural circuits to promote understanding of the structure and function of the brain.
Note: A wide temperature range MOKE system with annealing capability.
Chahil, Narpinder Singh; Mankey, G J
2017-07-01
A novel sample stage integrated with a longitudinal MOKE system has been developed for wide temperature range measurements and annealing capabilities in the temperature range 65 K < T < 760 K. The sample stage incorporates a removable platen and copper block with inserted cartridge heater and two thermocouple sensors. It is supported and thermally coupled to a cold finger with two sapphire bars. The sapphire based thermal coupling enables the system to perform at higher temperatures without adversely affecting the cryostat and minimizes thermal drift in position. In this system the hysteresis loops of magnetic samples can be measured simultaneously while annealing the sample in a magnetic field.
Simultaneous dual modality optical and MR imaging of mouse dorsal skin-fold window chamber
NASA Astrophysics Data System (ADS)
Salek, Mir Farrokh; Pagel, Mark D.; Gmitro, Arthur F.
2011-02-01
Optical imaging and MRI have both been used extensively to study tumor microenvironment. The two imaging modalities are complementary and can be used to cross-validate one another for specific measurements. We have developed a modular platform that is capable of doing optical microscopy inside an MRI instrument. To do this, an optical relay system transfers the image to outside of the MR bore to a commercial grade CCD camera. This enables simultaneous optical and MR imaging of the same tissue and thus creates the ideal situation for comparative or complementary studies using both modalities. Initial experiments have been done using GFP labeled prostate cancer cells implanted in mouse dorsal skin fold window chamber. Vascular hemodynamics and vascular permeability were studied using our imaging system. Towards this goal, we developed a dual MR-Optical contrast agent by labeling BSA with both Gd-DTPA and Alexa Fluor. Overall system design and results of these preliminary vascular studies are presented.
How Much Higher Can HTCondor Fly?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fajardo, E. M.; Dost, J. M.; Holzman, B.
The HTCondor high throughput computing system is heavily used in the high energy physics (HEP) community as the batch system for several Worldwide LHC Computing Grid (WLCG) resources. Moreover, it is the backbone of GlidelnWMS, the pilot system used by the computing organization of the Compact Muon Solenoid (CMS) experiment. To prepare for LHC Run 2, we probed the scalability limits of new versions and configurations of HTCondor with a goal of reaching 200,000 simultaneous running jobs in a single internationally distributed dynamic pool.In this paper, we first describe how we created an opportunistic distributed testbed capable of exercising runsmore » with 200,000 simultaneous jobs without impacting production. This testbed methodology is appropriate not only for scale testing HTCondor, but potentially for many other services. In addition to the test conditions and the testbed topology, we include the suggested configuration options used to obtain the scaling results, and describe some of the changes to HTCondor inspired by our testing that enabled sustained operations at scales well beyond previous limits.« less
Automated Parallel Capillary Electrophoretic System
Li, Qingbo; Kane, Thomas E.; Liu, Changsheng; Sonnenschein, Bernard; Sharer, Michael V.; Kernan, John R.
2000-02-22
An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.
Fluid Delivery System For Capillary Electrophoretic Applications.
Li, Qingbo; Liu, Changsheng; Kane, Thomas E.; Kernan, John R.; Sonnenschein, Bernard; Sharer, Michael V.
2002-04-23
An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.
RF/optical shared aperture for high availability wideband communication RF/FSO links
Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul
2014-04-29
An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.
RF/optical shared aperture for high availability wideband communication RF/FSO links
Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul
2015-03-24
An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
2007-01-01
A thrust roller bearing system comprising an inner rotating member, an outer rotating member and multiple rollers coupling the inner rotating member with outer rotating member. The inner and outer rotating members include thrust lips to enable the rollers to act as thrust rollers. The rollers contact inner and outer rotating members at bearing contact points along a contact line. Consequently, the radial/tilt and thrust forces move synchronously and simultaneously to create a bearing action with no slipping.
Six-beam homodyne laser Doppler vibrometry based on silicon photonics technology.
Li, Yanlu; Zhu, Jinghao; Duperron, Matthieu; O'Brien, Peter; Schüler, Ralf; Aasmul, Soren; de Melis, Mirko; Kersemans, Mathias; Baets, Roel
2018-02-05
This paper describes an integrated six-beam homodyne laser Doppler vibrometry (LDV) system based on a silicon-on-insulator (SOI) full platform technology, with on-chip photo-diodes and phase modulators. Electronics and optics are also implemented around the integrated photonic circuit (PIC) to enable a simultaneous six-beam measurement. Measurement of a propagating guided elastic wave in an aluminum plate (speed ≈ 909 m/s @ 61.5 kHz) is demonstrated.
Simultaneous observation of chemomechanical coupling of a molecular motor.
Nishizaka, Takayuki; Hasimoto, Yuh; Masaike, Tomoko
2011-01-01
F(1)-ATPase is the smallest rotary molecular motor ever found. Unidirectional rotation of the γ-shaft is driven by precisely coordinated sequential ATP hydrolysis reactions in three catalytic sites arranged 120° apart in the cylinder. Single-molecule observation allows us to directly watch the rotation of the shaft using micron-sized plastic beads. Additionally, an advanced version of "total internal reflection fluorescence microscope (TIRFM)" enables us to detect binding and release of energy currency through fluorescently labeled ATP. In this chapter, we describe how to set up the system for simultaneous observation of these two critical events. This specialized optical setup is applicable to a variety of research, not only molecular motors but also other single-molecule topics.
Simultaneous two-wavelength tri-window common-path digital holography
NASA Astrophysics Data System (ADS)
Liu, Lei; Shan, Mingguang; Zhong, Zhi
2018-06-01
Two-wavelength common-path off-axis digital holography is proposed with a tri-window in a single shot. It is established using a standard 4f optical image system with a 2D Ronchi grating placed outside the Fourier plane. The input plane consists of three windows: one for the object and the other two for reference. Aided by a spatial filter together with two orthogonal linear polarizers in the Fourier plane, the two-wavelength information is encoded into a multiplexed hologram with two orthogonal spatial frequencies that enable full separation of spectral information in the digital Fourier space without resolution loss. Theoretical analysis and experimental results illustrate that our approach can simultaneously perform quantitative phase imaging at two wavelengths.
Development Of A Combined Sensor System For Atmospheric Entry Missions
NASA Astrophysics Data System (ADS)
Preci, A.; Eswein, N.; Herdrich, G.; Fasoulas, S.; Roser, H.-P.; Auweter-Kurtz, M.
2011-05-01
The payload COMPARE is developed at the Institute of Space Systems for various entry scenarios. It was previously laid out for a Mars entry mission and afterwards redesigned for the German Aerospace Centre suborbital re-entry mission SHEFEX II, which had its successful roll-out in July 2010 and is due to be launched in September 2011. The sensor system aims to simultaneously measure the temperature of the thermal protection shield, the radiation from the plasma and the pressure. The most recent development of COMPARE is a combined sensor system for ablative thermal protection systems enabling a separation of the radiative heat flux from the total heat flux. Furthermore, it enables also the detection of specific species in the plasma by measuring the radiative heat flux at a defined wavelength range. In the frame of an ESA funded project a breadboard has been build and tested in a plasma wind tunnel in order to prove the feasibility of such a sensor system for upcoming entry missions. Results of these measurements are presented in this work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnum-Johnson, Kristin E.; Kyle, Jennifer E.; Eisfeld, Amie J.
The continued emergence and spread of infectious agents is of increasing concern due to increased population growth and the associated increased livestock production to meet food demands, increased urbanization and land-use changes, and greater travel. A systems biology approach to infectious disease research can significantly advance our understanding of host-pathogen relationships and facilitate the development of new therapies and vaccines. Molecular characterization of infectious samples outside of appropriate biosafety containment can only take place subsequent to pathogen inactivation. Herein, we describe a modified Folch extraction using chloroform/methanol that facilitates the molecular characterization of infectious samples by enabling simultaneous pathogen inactivationmore » and extraction of proteins, metabolites, and lipids for subsequent mass spectrometry-based multi-omics measurements. This metabolite, protein and lipid extraction (MPLEx) method resulted in complete inactivation of bacterial and viral pathogens with exposed lipid membranes, including Yersinia pestis, Salmonella Typhimurium, and Campylobacter jejuni in pure culture, and Yersinia pestis, Campylobacter jejuni, West Nile, MERS-CoV, Ebola, and influenza H7N9 viruses in infection studies. Partial inactivation was observed for pathogens without exposed lipid membranes including 99.99% inactivation of community-associated methicillin-resistant Staphylococcus aureus, 99.6% and >99% inactivation of Clostridium difficile spores and vegetative cells, respectively, and 50% inactivation of adenovirus type 5. To demonstrate that MPLEx yields biomaterial of sufficient quality for subsequent multi-omics analyses, we highlight select proteomics, metabolomics and lipidomics data from human epithelial lung cells infected with wild-type and mutant forms of influenza H7N9. We believe that MPLEx will facilitate systems biology studies of infectious samples by enabling simultaneous pathogen inactivation and multi-omics measurements from a single specimen.« less
Burnum-Johnson, Kristin E; Kyle, Jennifer E; Eisfeld, Amie J; Casey, Cameron P; Stratton, Kelly G; Gonzalez, Juan F; Habyarimana, Fabien; Negretti, Nicholas M; Sims, Amy C; Chauhan, Sadhana; Thackray, Larissa B; Halfmann, Peter J; Walters, Kevin B; Kim, Young-Mo; Zink, Erika M; Nicora, Carrie D; Weitz, Karl K; Webb-Robertson, Bobbie-Jo M; Nakayasu, Ernesto S; Ahmer, Brian; Konkel, Michael E; Motin, Vladimir; Baric, Ralph S; Diamond, Michael S; Kawaoka, Yoshihiro; Waters, Katrina M; Smith, Richard D; Metz, Thomas O
2017-01-26
The continued emergence and spread of infectious agents is of great concern, and systems biology approaches to infectious disease research can advance our understanding of host-pathogen relationships and facilitate the development of new therapies and vaccines. Molecular characterization of infectious samples outside of appropriate biosafety containment can take place only subsequent to pathogen inactivation. Herein, we describe a modified Folch extraction using chloroform/methanol that facilitates the molecular characterization of infectious samples by enabling simultaneous pathogen inactivation and extraction of proteins, metabolites, and lipids for subsequent mass spectrometry-based multi-omics measurements. This single-sample metabolite, protein and lipid extraction (MPLEx) method resulted in complete inactivation of clinically important bacterial and viral pathogens with exposed lipid membranes, including Yersinia pestis, Salmonella Typhimurium, and Campylobacter jejuni in pure culture, and Yersinia pestis, Campylobacter jejuni, and West Nile, MERS-CoV, Ebola, and influenza H7N9 viruses in infection studies. In addition, >99% inactivation, which increased with solvent exposure time, was also observed for pathogens without exposed lipid membranes including community-associated methicillin-resistant Staphylococcus aureus, Clostridium difficile spores and vegetative cells, and adenovirus type 5. The overall pipeline of inactivation and subsequent proteomic, metabolomic, and lipidomic analyses was evaluated using a human epithelial lung cell line infected with wild-type and mutant influenza H7N9 viruses, thereby demonstrating that MPLEx yields biomaterial of sufficient quality for subsequent multi-omics analyses. Based on these experimental results, we believe that MPLEx will facilitate systems biology studies of infectious samples by enabling simultaneous pathogen inactivation and multi-omics measurements from a single specimen with high success for pathogens with exposed lipid membranes.
Burnum-Johnson, Kristin E.; Kyle, Jennifer E.; Eisfeld, Amie J.; Casey, Cameron P.; Stratton, Kelly G.; Gonzalez, Juan F.; Habyarimana, Fabien; Negretti, Nicholas M.; Sims, Amy C.; Chauhan, Sadhana; Thackray, Larissa B.; Halfmann, Peter J.; Walters, Kevin B.; Kim, Young-Mo; Zink, Erika M.; Nicora, Carrie D.; Weitz, Karl K.; Webb-Robertson, Bobbie-Jo M.; Nakayasu, Ernesto S.; Ahmer, Brian; Konkel, Michael E.; Motin, Vladimir; Baric, Ralph S.; Diamond, Michael S.; Kawaoka, Yoshihiro; Waters, Katrina M.; Smith, Richard D.; Metz, Thomas O.
2017-01-01
The continued emergence and spread of infectious agents is of great concern, and systems biology approaches to infectious disease research can advance our understanding of host-pathogen relationships and facilitate the development of new therapies and vaccines. Molecular characterization of infectious samples outside of appropriate biosafety containment can take place only subsequent to pathogen inactivation. Herein, we describe a modified Folch extraction using chloroform/methanol that facilitates the molecular characterization of infectious samples by enabling simultaneous pathogen inactivation and extraction of proteins, metabolites, and lipids for subsequent mass spectrometry-based multi-omics measurements. This single-sample metabolite, protein and lipid extraction (MPLEx) method resulted in complete inactivation of clinically important bacterial and viral pathogens with exposed lipid membranes, including Yersinia pestis, Salmonella Typhimurium, and Campylobacter jejuni in pure culture, and Yersinia pestis, Campylobacter jejuni, and West Nile, MERS-CoV, Ebola, and influenza H7N9 viruses in infection studies. In addition, >99% inactivation, which increased with solvent exposure time, was also observed for pathogens without exposed lipid membranes including community-associated methicillin-resistant Staphylococcus aureus, Clostridium difficile spores and vegetative cells, and adenovirus type 5. The overall pipeline of inactivation and subsequent proteomic, metabolomic, and lipidomic analyses was evaluated using a human epithelial lung cell line infected with wild-type and mutant influenza H7N9 viruses, thereby demonstrating that MPLEx yields biomaterial of sufficient quality for subsequent multi-omics analyses. Based on these experimental results, we believe that MPLEx will facilitate systems biology studies of infectious samples by enabling simultaneous pathogen inactivation and multi-omics measurements from a single specimen with high success for pathogens with exposed lipid membranes. PMID:28091625
Automated target recognition and tracking using an optical pattern recognition neural network
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin
1991-01-01
The on-going development of an automatic target recognition and tracking system at the Jet Propulsion Laboratory is presented. This system is an optical pattern recognition neural network (OPRNN) that is an integration of an innovative optical parallel processor and a feature extraction based neural net training algorithm. The parallel optical processor provides high speed and vast parallelism as well as full shift invariance. The neural network algorithm enables simultaneous discrimination of multiple noisy targets in spite of their scales, rotations, perspectives, and various deformations. This fully developed OPRNN system can be effectively utilized for the automated spacecraft recognition and tracking that will lead to success in the Automated Rendezvous and Capture (AR&C) of the unmanned Cargo Transfer Vehicle (CTV). One of the most powerful optical parallel processors for automatic target recognition is the multichannel correlator. With the inherent advantages of parallel processing capability and shift invariance, multiple objects can be simultaneously recognized and tracked using this multichannel correlator. This target tracking capability can be greatly enhanced by utilizing a powerful feature extraction based neural network training algorithm such as the neocognitron. The OPRNN, currently under investigation at JPL, is constructed with an optical multichannel correlator where holographic filters have been prepared using the neocognitron training algorithm. The computation speed of the neocognitron-type OPRNN is up to 10(exp 14) analog connections/sec that enabling the OPRNN to outperform its state-of-the-art electronics counterpart by at least two orders of magnitude.
Electrphoretic Sample Excitation Light Assembly.
Li, Qingbo; Liu, Changsheng
2002-04-02
An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.
Motorized Positioning Apparatus Having Coaxial Carrousels.
Li, Qingbo; Kane, Thomas E.; Liu, Changsheng; Sonnenschein, Bernard; Sharer, Michael V.; Kernan, John R.
2002-04-02
An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.
Abi-Abdallah Rodriguez, Dima; Durand, Emmanuel; de Rochefort, Ludovic; Boudjemline, Younes; Mousseaux, Elie
2015-01-01
Simultaneous pressure and volume measurements enable the extraction of valuable parameters for left ventricle function assessment. Cardiac MR has proven to be the most accurate method for volume estimation. Nonetheless, measuring pressure simultaneously during MRI acquisitions remains a challenge given the magnetic nature of the widely used pressure transducers. In this study we show the feasibility of simultaneous in vivo pressure-volume acquisitions with MRI using optical pressure sensors. Pressure-volume loops were calculated while inducing three inotropic states in a sheep and functional indices were extracted, using single beat loops, to characterize systolic and diastolic performance. Functional indices evolved as expected in response to positive inotropic stimuli. The end-systolic elastance, representing the contractility index, the diastolic myocardium compliance, and the cardiac work efficiency all increased when inducing inotropic state enhancement. The association of MRI and optical pressure sensors within the left ventricle successfully enabled pressure-volume loop analysis after having respective data simultaneously recorded during the experimentation without the need to move the animal between each inotropic state. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Demonstration of micro-projection enabled short-range communication system for 5G.
Chou, Hsi-Hsir; Tsai, Cheng-Yu
2016-06-13
A liquid crystal on silicon (LCoS) based polarization modulated image (PMI) system architecture using red-, green- and blue-based light-emitting diodes (LEDs), which offers simultaneous micro-projection and high-speed data transmission at nearly a gigabit, serving as an alternative short-range communication (SRC) approach for personal communication device (PCD) application in 5G, is proposed and experimentally demonstrated. In order to make the proposed system architecture transparent to the future possible wireless data modulation format, baseband modulation schemes such as multilevel pulse amplitude modulation (M-PAM), M-ary phase shift keying modulation (M-PSK) and M-ary quadrature amplitude modulation (M-QAM) which can be further employed by more advanced multicarrier modulation schemes (such as DMT, OFDM and CAP) were used to investigate the highest possible data transmission rate of the proposed system architecture. The results demonstrated that an aggregative data transmission rate of 892 Mb/s and 900 Mb/s at a BER of 10^(-3) can be achieved by using 16-QAM baseband modulation scheme when data transmission were performed with and without micro-projection simultaneously.
Simulated microsurgery monitoring using intraoperative multimodal surgical microscopy
NASA Astrophysics Data System (ADS)
Lee, Donghyun; Lee, Changho; Kim, Sehui; Zhou, Qifa; Kim, Jeehyun; Kim, Chulhong
2016-03-01
We have developed an intraoperative multimodal surgical microscopy system that provides simultaneous real-time enlarged surface views and subsurface anatomic information during surgeries by integrating spectral domain optical coherence tomography (SD-OCT), optical-resolution photoacoustic microscopy (OR-PAM), and conventional surgical microscopy. By sharing the same optical path, both OCT and PAM images were simultaneously acquired. Additionally, the custom-made needle-type transducer received the generated PA signals enabling convenient surgical operation without using a water bath. Using a simple augmented device, the OCT and PAM images were projected on the view plane of the surgical microscope. To quantify the performance of our system, we measured spatial resolutions of our system. Then, three microsurgery simulation and analysis were processed: (1) ex vivo needle tracking and monitoring injection of carbon particles in biological tissues, (2) in vivo needle tracking and monitoring injection of carbon particles in tumor-bearing mice, and (3) in vivo guiding of melanoma removal in melanoma-bearing mice. The results indicate that this triple modal system is useful for intraoperative purposes, and can potentially be a vital tool in microsurgeries.
Yuan, Shuai; Roney, Celeste A.; Wierwille, Jerry; Chen, Chao-Wei; Xu, Biying; Jiang, James; Ma, Hongzhou; Cable, Alex; Summers, Ronald M.; Chen, Yu
2010-01-01
Optical coherence tomography (OCT) provides high-resolution, cross-sectional imaging of tissue microstructure in situ and in real-time, while fluorescence molecular imaging (FMI) enables the visualization of basic molecular processes. There are great interests in combining these two modalities so that the tissue's structural and molecular information can be obtained simultaneously. This could greatly benefit biomedical applications such as detecting early diseases and monitoring therapeutic interventions. In this research, an optical system that combines OCT and FMI was developed. The system demonstrated that it could co-register en face OCT and FMI images with a 2.4 × 2.4 mm field of view. The transverse resolutions of OCT and FMI of the system are both ~10 μm. Capillary tubes filled with fluorescent dye Cy 5.5 in different concentrations under a scattering medium are used as the phantom. En face OCT images of the phantoms were obtained and successfully co-registered with FMI images that were acquired simultaneously. A linear relationship between FMI intensity and dye concentration was observed. The relationship between FMI intensity and target fluorescence tube depth measured by OCT images was also observed and compared with theoretical modeling. This relationship could help in correcting reconstructed dye concentration. Imaging of colon polyps of APCmin mouse model is presented as an example of biological applications of this co-registered OCT/FMI system. PMID:20009192
La, Sookie; Kim, Jiyung; Kim, Jung-Han; Goto, Junichi; Kim, Kyoung-Rae
2003-08-01
Simultaneous enantioseparations of nine profens for their accurate chiral discrimination were achieved by capillary electrophoresis (CE) in the normal polarity (NP) mode with a single cyclodextrin (CD) system and in the reversed polarity (RP) mode with a dual CD system. The single CD system in the NP mode employed heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin (TMbetaCD) added at 75 mM-100 mM 2-(N-morpholino)ethanesulfonic acid buffer (pH 6.0) as the optimum run buffer. The dual CD system operated in the RP mode used 30 mM TMbetaCD and 1.0% anionic carboxymethyl-beta-cyclodextrin dissolved in pH 3.0, 100 mM phosphoric acid-triethanolamine buffer containing 0.01% hexadimethrine bromide added to reverse the electroosmotic flow. Fairly good enantiomeric resolutions and the opposite enantiomer migration orders were achieved in the two modes. Relative migration times to internal standard under respective optimum conditions were characteristic of each enantiomer with good precision (< 2% relative standard deviation, RSD), thereby enabling to crosscheck the chemical identification of profens and also their accurate chiralities. The method linearity in the two modes was found to be adequate (r > or = 0.9991) for the chiral assay of the profens investigated. Simultaneous enantiomeric purity test of ibuprofen, ketoprofen and flurbiprofen in a mixture was feasible in a single analysis by the present method.
Tebani, Abdellah; Afonso, Carlos; Marret, Stéphane; Bekri, Soumeya
2016-01-01
The rise of technologies that simultaneously measure thousands of data points represents the heart of systems biology. These technologies have had a huge impact on the discovery of next-generation diagnostics, biomarkers, and drugs in the precision medicine era. Systems biology aims to achieve systemic exploration of complex interactions in biological systems. Driven by high-throughput omics technologies and the computational surge, it enables multi-scale and insightful overviews of cells, organisms, and populations. Precision medicine capitalizes on these conceptual and technological advancements and stands on two main pillars: data generation and data modeling. High-throughput omics technologies allow the retrieval of comprehensive and holistic biological information, whereas computational capabilities enable high-dimensional data modeling and, therefore, accessible and user-friendly visualization. Furthermore, bioinformatics has enabled comprehensive multi-omics and clinical data integration for insightful interpretation. Despite their promise, the translation of these technologies into clinically actionable tools has been slow. In this review, we present state-of-the-art multi-omics data analysis strategies in a clinical context. The challenges of omics-based biomarker translation are discussed. Perspectives regarding the use of multi-omics approaches for inborn errors of metabolism (IEM) are presented by introducing a new paradigm shift in addressing IEM investigations in the post-genomic era. PMID:27649151
Tebani, Abdellah; Afonso, Carlos; Marret, Stéphane; Bekri, Soumeya
2016-09-14
The rise of technologies that simultaneously measure thousands of data points represents the heart of systems biology. These technologies have had a huge impact on the discovery of next-generation diagnostics, biomarkers, and drugs in the precision medicine era. Systems biology aims to achieve systemic exploration of complex interactions in biological systems. Driven by high-throughput omics technologies and the computational surge, it enables multi-scale and insightful overviews of cells, organisms, and populations. Precision medicine capitalizes on these conceptual and technological advancements and stands on two main pillars: data generation and data modeling. High-throughput omics technologies allow the retrieval of comprehensive and holistic biological information, whereas computational capabilities enable high-dimensional data modeling and, therefore, accessible and user-friendly visualization. Furthermore, bioinformatics has enabled comprehensive multi-omics and clinical data integration for insightful interpretation. Despite their promise, the translation of these technologies into clinically actionable tools has been slow. In this review, we present state-of-the-art multi-omics data analysis strategies in a clinical context. The challenges of omics-based biomarker translation are discussed. Perspectives regarding the use of multi-omics approaches for inborn errors of metabolism (IEM) are presented by introducing a new paradigm shift in addressing IEM investigations in the post-genomic era.
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Martin, James
2003-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fusion propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will most likely occur if frequent, significant hardware-based milestones can be achieved throughout the program. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system pe$ormance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the Early Flight Fission Test Facilities (EFF-TF) at the Marshall Space Flight Center. The EFF-TF is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers.
Zheng, Xiaomei; Zheng, Ping; Zhang, Kun; Cairns, Timothy C; Meyer, Vera; Sun, Jibin; Ma, Yanhe
2018-04-30
The CRISPR/Cas9 system is a revolutionary genome editing tool. However, in eukaryotes, search and optimization of a suitable promoter for guide RNA expression is a significant technical challenge. Here we used the industrially important fungus, Aspergillus niger, to demonstrate that the 5S rRNA gene, which is both highly conserved and efficiently expressed in eukaryotes, can be used as a guide RNA promoter. The gene editing system was established with 100% rates of precision gene modifications among dozens of transformants using short (40-bp) homologous donor DNA. This system was also applicable for generation of designer chromosomes, as evidenced by deletion of a 48 kb gene cluster required for biosynthesis of the mycotoxin fumonisin B1. Moreover, this system also facilitated simultaneous mutagenesis of multiple genes in A. niger. We anticipate that the use of the 5S rRNA gene as guide RNA promoter can broadly be applied for engineering highly efficient eukaryotic CRISPR/Cas9 toolkits. Additionally, the system reported here will enable development of designer chromosomes in model and industrially important fungi.
Citrin, David; Thapa, Poshan; Nirola, Isha; Pandey, Sachit; Kunwar, Lal Bahadur; Tenpa, Jasmine; Acharya, Bibhav; Rayamazi, Hari; Thapa, Aradhana; Maru, Sheela; Raut, Anant; Poudel, Sanjaya; Timilsina, Diwash; Dhungana, Santosh Kumar; Adhikari, Mukesh; Khanal, Mukti Nath; Pratap Kc, Naresh; Acharya, Bhim; Karki, Khem Bahadur; Singh, Dipendra Raman; Bangura, Alex Harsha; Wacksman, Jeremy; Storisteanu, Daniel; Halliday, Scott; Schwarz, Ryan; Schwarz, Dan; Choudhury, Nandini; Kumar, Anirudh; Wu, Wan-Ju; Kalaunee, S P; Chaudhari, Pushpa; Maru, Duncan
2018-06-04
Integrating care at the home and facility level is a critical yet neglected function of healthcare delivery systems. There are few examples in practice or in the academic literature of affordable, digitally-enabled integrated care approaches embedded within healthcare delivery systems in low- and middle-income countries. Simultaneous advances in affordable digital technologies and community healthcare workers offer an opportunity to address this challenge. We describe the development of an integrated care system involving community healthcare worker networks that utilize a home-to-facility electronic health record platform for rural municipalities in Nepal. Key aspects of our approach of relevance to a global audience include: community healthcare workers continuously engaging with populations through household visits every three months; community healthcare workers using digital tools during the routine course of clinical care; individual and population-level data generated routinely being utilized for program improvement; and being responsive to privacy, security, and human rights concerns. We discuss implementation, lessons learned, challenges, and opportunities for future directions in integrated care delivery systems. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Brändström; Gustavsson, Björn; Pellinen-Wannberg, Asta; Sandahl, Ingrid; Sergienko, Tima; Steen, Ake
2005-08-01
The Auroral Large Imaging System (ALIS) was first proposed at the ESA-PAC meeting in Lahnstein 1989. The first spectroscopic imaging station was operational in 1994, and since then up to six stations have been in simultaneous operation. Each station has a scientific-grade CCD-detector and a filter-wheel for narrow-band interference-filters with six positions. The field-of-view is around 70°. Each imager is mounted in a positioning system, enabling imaging of a common volume from several sites. This enables triangulation and tomography. Raw data from ALIS is freely available at ("http://alis.irf.se") and ALIS is open for scientific colaboration. ALIS made the first unambiguous observations of Radio-induced optical emissions at high latitudes, and the detection of water in a Leonid meteor-trail. Both rockets and satellite coordination are considered for future observations with ALIS.
Lightning protection of full authority digital electronic systems
NASA Astrophysics Data System (ADS)
Crofts, David
1991-08-01
Modern electronic systems are vulnerable to transient and they now provide safety critical functions such as full authority digital electronic control (FADEC) units for fly by wire aircraft. Of the traditional suppression technologies available diodes have gained the wider acceptance, however, they lack the current handling capacity to meet existing threat levels. The development of high speed fold back devices where, at a specified voltage, the off state resistance switches to a very low on state one has provided the equivalent to a semiconductor spark gap. The size of the technology enables it to be integrated into connectors of interconnection cables. To illustrate the performance the technology was developed to meet the Lightning Protection requirements for FADEC units within aeroengines. Work was also carried out to study switching behavior with the waveform 5, the 500 us, 10 kA pulse applied to cable assemblies. This test enabled all the switches in a connector to be fired simultaneously.
Lightning protection of full authority digital electronic systems
NASA Technical Reports Server (NTRS)
Crofts, David
1991-01-01
Modern electronic systems are vulnerable to transient and they now provide safety critical functions such as full authority digital electronic control (FADEC) units for fly by wire aircraft. Of the traditional suppression technologies available diodes have gained the wider acceptance, however, they lack the current handling capacity to meet existing threat levels. The development of high speed fold back devices where, at a specified voltage, the off state resistance switches to a very low on state one has provided the equivalent to a semiconductor spark gap. The size of the technology enables it to be integrated into connectors of interconnection cables. To illustrate the performance the technology was developed to meet the Lightning Protection requirements for FADEC units within aeroengines. Work was also carried out to study switching behavior with the waveform 5, the 500 us, 10 kA pulse applied to cable assemblies. This test enabled all the switches in a connector to be fired simultaneously.
Health economics in clinical research.
Manns, Braden J
2015-01-01
The pressure for health care systems to provide more resource intensive health care and newer, more costly, therapies is significant, despite limited health care budgets. As such, demonstration that a new therapy is effective is no longer sufficient to ensure that it is funded within publicly funded health care systems. The impact of a therapy on health care costs is also an important consideration for decision-makers who must allocate scarce resources. The clinical benefits and costs of a new therapy can be estimated simultaneously using economic evaluation, the strengths and limitations of which are discussed herein. In addition, this chapter includes discussion of the important economic outcomes that can be collected within a clinical trial (alongside the clinical outcome data) enabling consideration of the impact of the therapy on overall resource use, thus enabling performance of an economic evaluation, if the therapy is shown to be effective.
Chezar, H.; Lee, J.
1985-01-01
A deep-towed photographic system with completely self-contained recording instrumentation and power can obtain color-video and still-photographic transects along rough terrane without need for a long electrically conducting cable. Both the video- and still-camera systems utilize relatively inexpensive and proven off-the-shelf hardware adapted for deep-water environments. The small instrument frame makes the towed sled an ideal photographic tool for use on ship or small-boat operations. The system includes a temperature probe and altimeter that relay data acoustically from the sled to the surface ship. This relay enables the operator to monitor simultaneously water temperature and the precise height off the bottom. ?? 1985.
Long-range, low-cost electric vehicles enabled by robust energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ping; Ross, Russel; Newman, Aron
2015-09-18
ABSTRACT A variety of inherently robust energy storage technologies hold the promise to increase the range and decrease the cost of electric vehicles (EVs). These technologies help diversify approaches to EV energy storage, complementing current focus on high specific energy lithium-ion batteries. The need for emission-free transportation and a decrease in reliance on imported oil has prompted the development of EVs. To reach mass adoption, a significant reduction in cost and an increase in range are needed. Using the cost per mile of range as the metric, we analyzed the various factors that contribute to the cost and weight ofmore » EV energy storage systems. Our analysis points to two primary approaches for minimizing cost. The first approach, of developing redox couples that offer higher specific energy than state-of-the-art lithium-ion batteries, dominates current research effort, and its challenges and potentials are briefly discussed. The second approach represents a new insight into the EV research landscape. Chemistries and architectures that are inherently more robust reduce the need for system protection and enables opportunities of using energy storage systems to simultaneously serve vehicle structural functions. This approach thus enables the use of low cost, lower specific energy chemistries without increasing vehicle weight. Examples of such systems include aqueous batteries, flow cells, and all solid-state batteries. Research progress in these technical areas is briefly reviewed. Potential research directions that can enable low-cost EVs using multifunctional energy storage technologies are described.« less
Optical barcoding of PLGA for multispectral analysis of nanoparticle fate in vivo.
Medina, David X; Householder, Kyle T; Ceton, Ricki; Kovalik, Tina; Heffernan, John M; Shankar, Rohini V; Bowser, Robert P; Wechsler-Reya, Robert J; Sirianni, Rachael W
2017-05-10
Understanding of the mechanisms by which systemically administered nanoparticles achieve delivery across biological barriers remains incomplete, due in part to the challenge of tracking nanoparticle fate in the body. Here, we develop a new approach for "barcoding" nanoparticles composed of poly(lactic-co-glycolic acid) (PLGA) with bright, spectrally defined quantum dots (QDs) to enable direct, fluorescent detection of nanoparticle fate with subcellular resolution. We show that QD labeling does not affect major biophysical properties of nanoparticles or their interaction with cells and tissues. Live cell imaging enabled simultaneous visualization of the interaction of control and targeted nanoparticles with bEnd.3 cells in a flow chamber, providing direct evidence that surface modification of nanoparticles with the cell-penetrating peptide TAT increases their biophysical association with cell surfaces over very short time periods under convective current. We next developed this technique for quantitative biodistribution analysis in vivo. These studies demonstrate that nanoparticle surface modification with the cell penetrating peptide TAT facilitates brain-specific delivery that is restricted to brain vasculature. Although nanoparticle entry into the healthy brain parenchyma is minimal, with no evidence for movement of nanoparticles across the blood-brain barrier (BBB), we observed that nanoparticles are able to enter to the central nervous system (CNS) through regions of altered BBB permeability - for example, into circumventricular organs in the brain or leaky vasculature of late-stage intracranial tumors. In sum, these data demonstrate a new, multispectral approach for barcoding PLGA, which enables simultaneous, quantitative analysis of the fate of multiple nanoparticle formulations in vivo. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.; Delaat, John C.
2012-01-01
The NASA Environmentally Responsible Aviation (ERA) Project is focused on developing and demonstrating integrated systems technologies to TRL 4-6 by 2020 that enable reduced fuel burn, emissions, and noise for futuristic air vehicles. The specific goals aim to simultaneously reduce fuel burn by 50%, reduce Landing and Take-off Nitrous Oxides emissions by 75% relative to the CAEP 6 guidelines, and reduce cumulative noise by 42 Decibels relative to the Stage 4 guidelines. These goals apply to the integrated vehicle and propulsion system and are based on a reference mission of 3000nm flight of a Boeing 777-200 with GE90 engines. This paper will focus primarily on the ERA propulsion technology portfolio, which consists of advanced combustion, propulsor, and core technologies to enable these integrated air vehicle systems goals. An overview of the ERA propulsion technologies will be described and highlights of the results obtained during the first phase of ERA will be presented.
Power-to-Syngas: An Enabling Technology for the Transition of the Energy System?
Foit, Severin R; Vinke, Izaak C; de Haart, Lambertus G J; Eichel, Rüdiger-A
2017-05-08
Power-to-X concepts promise a reduction of greenhouse gas emissions simultaneously guaranteeing a safe energy supply even at high share of renewable power generation, thus becoming a cornerstone of a sustainable energy system. Power-to-syngas, that is, the electrochemical conversion of steam and carbon dioxide with the use of renewably generated electricity to syngas for the production of synfuels and high-value chemicals, offers an efficient technology to couple different energy-intense sectors, such as "traffic and transportation" and "chemical industry". Syngas produced by co-electrolysis can thus be regarded as a key-enabling step for a transition of the energy system, which offers additionally features of CO 2 -valorization and closed carbon cycles. Here, we discuss advantages and current limitations of low- and high-temperature co-electrolysis. Advances in both fundamental understanding of the basic reaction schemes and stable high-performance materials are essential to further promote co-electrolysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bani, Farhad; Bodaghi, Ali; Dadkhah, Abbas; Movahedi, Soodabeh; Bodaghabadi, Narges; Sadeghizadeh, Majid; Adeli, Mohsen
2018-05-01
In this work, we reported a facile method to produce stable aqueous graphene dispersion through direct exfoliation of graphite by modified hyperbranched polyglycerol. Size of graphene sheets was manipulated by simultaneous exfoliation and sonication of graphite, and functionalized graphene sheets with narrow size distribution were obtained. The polyglycerol-functionalized graphene sheets exhibited highly efficient cellular uptake and photothermal conversion, enabling it to serve as a photothermal agent for cancer therapy.
Software For Drawing Design Details Concurrently
NASA Technical Reports Server (NTRS)
Crosby, Dewey C., III
1990-01-01
Software system containing five computer-aided-design programs enables more than one designer to work on same part or assembly at same time. Reduces time necessary to produce design by implementing concept of parallel or concurrent detailing, in which all detail drawings documenting three-dimensional model of part or assembly produced simultaneously, rather than sequentially. Keeps various detail drawings consistent with each other and with overall design by distributing changes in each detail to all other affected details.
A compact high-resolution 3-D imaging spectrometer for discovering Oases on Mars
Ge, J.; Ren, D.; Lunine, J.I.; Brown, R.H.; Yelle, R.V.; Soderblom, L.A.; ,
2002-01-01
A new design for a very lightweight, very high throughput reflectance sectrometer enabled by two new technologies being developed is presented. These new technologies include integral field unit optics to enable simultaneous imaging and spectroscopy at high spatial resolution with an infrared (IR) array, and silicon grisms to enable compact and high-resolution spectroscopy.
Dynamic quantitative phase images of pond life, insect wings, and in vitro cell cultures
NASA Astrophysics Data System (ADS)
Creath, Katherine
2010-08-01
This paper presents images and data of live biological samples taken with a novel Linnik interference microscope. The specially designed optical system enables instantaneous and 3D video measurements of dynamic motions within and among live cells without the need for contrast agents. This "label-free", vibration insensitive imaging system enables measurement of biological objects in reflection using harmless light levels with current magnifications of 10X (NA 0.3) and 20X (NA 0.5) and wavelengths of 660 nm and 785 nm over fields of view from several hundred microns up to a millimeter. At the core of the instrument is a phasemeasurement camera (PMC) enabling simultaneous measurement of multiple interference patterns utilizing a pixelated phase mask taking advantage of the polarization properties of light. Utilizing this technology enables the creation of phase image movies in real time at video rates so that dynamic motions and volumetric changes can be tracked. Objects are placed on a reflective surface in liquid under a coverslip. Phase values are converted to optical thickness data enabling volumetric, motion and morphological studies. Data from a number of different mud puddle organisms such as paramecium, flagellates and rotifers will be presented, as will measurements of flying ant wings and cultures of human breast cancer cells. These data highlight examples of monitoring different biological processes and motions. The live presentation features 4D phase movies of these examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meemken, Fabian; Müller, Philipp; Hungerbühler, Konrad
Design and performance of a reactor set-up for attenuated total reflection infrared (ATR-IR) spectroscopy suitable for simultaneous reaction monitoring of bulk liquid and catalytic solid-liquid-gas interfaces under working conditions are presented. As advancement of in situ spectroscopy an operando methodology for gas-liquid-solid reaction monitoring was developed that simultaneously combines catalytic activity and molecular level detection at the catalytically active site of the same sample. Semi-batch reactor conditions are achieved with the analytical set-up by implementing the ATR-IR flow-through cell in a recycle reactor system and integrating a specifically designed gas feeding system coupled with a bubble trap. By the usemore » of only one spectrometer the design of the new ATR-IR reactor cell allows for simultaneous detection of the bulk liquid and the catalytic interface during the working reaction. Holding two internal reflection elements (IRE) the sample compartments of the horizontally movable cell are consecutively flushed with reaction solution and pneumatically actuated, rapid switching of the cell (<1 s) enables to quasi simultaneously follow the heterogeneously catalysed reaction at the catalytic interface on a catalyst-coated IRE and in the bulk liquid on a blank IRE. For a complex heterogeneous reaction, the asymmetric hydrogenation of 2,2,2-trifluoroacetophenone on chirally modified Pt catalyst the elucidation of catalytic activity/enantioselectivity coupled with simultaneous monitoring of the catalytic solid-liquid-gas interface is shown. Both catalytic activity and enantioselectivity are strongly dependent on the experimental conditions. The opportunity to gain improved understanding by coupling measurements of catalytic performance and spectroscopic detection is presented. In addition, the applicability of modulation excitation spectroscopy and phase-sensitive detection are demonstrated.« less
Ito, Yoichiro; Yamanishi, Mamoru; Ikeuchi, Akinori; Matsuyama, Takashi
2015-01-16
Control of the expression levels of multiple enzymes in transgenic yeasts is essential for the effective production of complex molecules through fermentation. Here, we propose a tunable strategy for the control of expression levels based on the design of terminator regions and other gene-expression control elements in Saccharomyces cerevisiae. Our genome-integrated system, which is capable of producing high expression levels over a wide dynamic range, will broadly enable metabolic engineering and synthetic biology. We demonstrated that the activities of multiple cellulases and the production of ethanol were doubled in a transgenic yeast constructed with our system compared with those achieved with a standard expression system.
Electrochemical thermodynamic measurement system
Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA
2009-09-29
The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.
Autonomous Metabolomics for Rapid Metabolite Identification in Global Profiling
Benton, H. Paul; Ivanisevic, Julijana; Mahieu, Nathaniel G.; ...
2014-12-12
An autonomous metabolomic workflow combining mass spectrometry analysis with tandem mass spectrometry data acquisition was designed to allow for simultaneous data processing and metabolite characterization. Although previously tandem mass spectrometry data have been generated on the fly, the experiments described herein combine this technology with the bioinformatic resources of XCMS and METLIN. We can analyze large profiling datasets and simultaneously obtain structural identifications, as a result of this unique integration. Furthermore, validation of the workflow on bacterial samples allowed the profiling on the order of a thousand metabolite features with simultaneous tandem mass spectra data acquisition. The tandem mass spectrometrymore » data acquisition enabled automatic search and matching against the METLIN tandem mass spectrometry database, shortening the current workflow from days to hours. Overall, the autonomous approach to untargeted metabolomics provides an efficient means of metabolomic profiling, and will ultimately allow the more rapid integration of comparative analyses, metabolite identification, and data analysis at a systems biology level.« less
Xia, Yuan; Du, LiFang; Cheng, XueWu; Li, FaQuan; Wang, JiHong; Wang, ZeLong; Yang, Yong; Lin, Xin; Xun, YuChang; Gong, ShunSheng; Yang, GuoTao
2017-03-06
A solid-state sodium (Na) Doppler lidar developed at YanQing Station, Beijing, China (40°N, 116°E) aiming to simultaneous wind and temperature measurement of mesopause region was reported. The 589 nm pulse laser was produced by two injection seeded 1064 nm and 1319 nm Nd:YAG pulse lasers using the sum-frequency generation (SFG) technique. A fiber amplifier is implemented to boost the seed power at 1064 nm, enabling a robust, all-fiber-coupled design for seeding laser unit, absolute laser frequency locking, and cyclic three-frequency switching necessary for simultaneous temperature and wind measurements. The all-fiber-coupled injection seeding configuration together with the solid-state Nd:YAG lasers make the Na Doppler lidar more compact and greatly reduce the system maintenance, which is conducive to transportable and unattended operation. A preliminary observational result obtained with this solid-state sodium Doppler lidar was also reported in this paper.
A Robust Damage-Reporting Strategy for Polymeric Materials Enabled by Aggregation-Induced Emission.
Robb, Maxwell J; Li, Wenle; Gergely, Ryan C R; Matthews, Christopher C; White, Scott R; Sottos, Nancy R; Moore, Jeffrey S
2016-09-28
Microscopic damage inevitably leads to failure in polymers and composite materials, but it is difficult to detect without the aid of specialized equipment. The ability to enhance the detection of small-scale damage prior to catastrophic material failure is important for improving the safety and reliability of critical engineering components, while simultaneously reducing life cycle costs associated with regular maintenance and inspection. Here, we demonstrate a simple, robust, and sensitive fluorescence-based approach for autonomous detection of damage in polymeric materials and composites enabled by aggregation-induced emission (AIE). This simple, yet powerful system relies on a single active component, and the general mechanism delivers outstanding performance in a wide variety of materials with diverse chemical and mechanical properties.
Optical power transfer and communication methods for wireless implantable sensing platforms.
Mujeeb-U-Rahman, Muhammad; Adalian, Dvin; Chang, Chieh-Feng; Scherer, Axel
2015-09-01
Ultrasmall scale implants have recently attracted focus as valuable tools for monitoring both acute and chronic diseases. Semiconductor optical technologies are the key to miniaturizing these devices to the long-sought sub-mm scale, which will enable long-term use of these devices for medical applications. This can also enable the use of multiple implantable devices concurrently to form a true body area network of sensors. We demonstrate optical power transfer techniques and methods to effectively harness this power for implantable devices. Furthermore, we also present methods for optical data transfer from such implants. Simultaneous use of these technologies can result in miniaturized sensing platforms that can allow for large-scale use of such systems in real world applications.
NASA Astrophysics Data System (ADS)
Carles, Guillem; Muyo, Gonzalo; van Hemert, Jano; Harvey, Andrew R.
2017-11-01
We demonstrate a multimode detection system in a scanning laser ophthalmoscope (SLO) that enables simultaneous operation in confocal, indirect, and direct modes to permit an agile trade between image contrast and optical sensitivity across the retinal field of view to optimize the overall imaging performance, enabling increased contrast in very wide-field operation. We demonstrate the method on a wide-field SLO employing a hybrid pinhole at its image plane, to yield a twofold increase in vasculature contrast in the central retina compared to its conventional direct mode while retaining high-quality imaging across a wide field of the retina, of up to 200 deg and 20 μm on-axis resolution.
Optical power transfer and communication methods for wireless implantable sensing platforms
NASA Astrophysics Data System (ADS)
Mujeeb-U-Rahman, Muhammad; Adalian, Dvin; Chang, Chieh-Feng; Scherer, Axel
2015-09-01
Ultrasmall scale implants have recently attracted focus as valuable tools for monitoring both acute and chronic diseases. Semiconductor optical technologies are the key to miniaturizing these devices to the long-sought sub-mm scale, which will enable long-term use of these devices for medical applications. This can also enable the use of multiple implantable devices concurrently to form a true body area network of sensors. We demonstrate optical power transfer techniques and methods to effectively harness this power for implantable devices. Furthermore, we also present methods for optical data transfer from such implants. Simultaneous use of these technologies can result in miniaturized sensing platforms that can allow for large-scale use of such systems in real world applications.
Burns, Clare L; Ward, Elizabeth C; Hill, Anne J; Phillips, Nick; Porter, Linda
2016-06-01
A small number of studies have examined the feasibility of conducting videofluoroscopic swallow studies (VFSS) via telepractice. While the results have confirmed this potential, the systems tested to date have either reported issues that impacted the ability to analyze/interpret the VFSS recordings in real time, or they were not designed to enable real-time interpretation. Further system design is needed to establish a telepractice model that enables the VFSS assessment to be both guided and interpreted live in real time. The aim of this study was to test the feasibility and reliability of using a telepractice system to enable live VFSS assessment. Twenty adult patients underwent a VFSS assessment directed by a telepractice SLP with competency in VFSS located in another room of the hospital. The telepractice clinician led the sessions using a C20 Cisco TelePresence System. This was linked in real time via a secure telehealth network (at 4 megabits per second (Mbit/s)) to a C60 Cisco TelePresence System located in a fluoroscopy suite, connected to the digital fluoroscopy system. Levels of agreement were calculated between the telepractice clinician and a face-to-face clinician who simultaneously rated the VFSS in real time. High levels of agreement for swallowing parameters (range = 75-100 %; k = -0.34 to 1.0) and management decisions (range = 70-100 %, k = 0.64-1.0) were found. A post-session questionnaire revealed clinicians agreed that the telepractice system enabled successful remote assessment of VFSS. The findings support the potential to conduct live VFSS assessment via a telepractice model.
Kneist, W; Kauff, D W; Koch, K P; Schmidtmann, I; Heimann, A; Hoffmann, K P; Lang, H
2011-01-01
Pelvic autonomic nerve preservation avoids postoperative functional disturbances. The aim of this feasibility study was to develop a neuromonitoring system with simultaneous intraoperative verification of internal anal sphincter (IAS) activity and intravesical pressure. 14 pigs underwent low anterior rectal resection. During intermittent bipolar electric stimulation of the inferior hypogastric plexus (IHP) and the pelvic splanchnic nerves (PSN), electromyographic signals of the IAS and manometry of the urinary bladder were observed simultaneously. Stimulation of IHP and PSN as well as simultaneous intraoperative monitoring could be realized with an adapted neuromonitoring device. Neurostimulation resulted in either bladder or IAS activation or concerted activation of both. Intravesical pressure increase as well as amplitude increase of the IAS neuromonitoring signal did not differ significantly between stimulation of IHP and PSN [6.0 cm H(2)O (interquartile range [IQR] 3.5-9.0) vs. 6.0 cm H(2)O (IQR 3.0-10.0) and 12.1 μV (IQR 3.0-36.7) vs. 40.1 μV (IQR 9.0-64.3)] (p > 0.05). Pelvic autonomic nerve stimulation with simultaneous intraoperative monitoring of IAS and bladder innervation is feasible. The method may enable neuromonitoring with increasing selectivity for pelvic autonomic nerve preservation. Copyright © 2011 S. Karger AG, Basel.
Simultaneous Estimation of Electromechanical Modes and Forced Oscillations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follum, Jim; Pierre, John W.; Martin, Russell
Over the past several years, great strides have been made in the effort to monitor the small-signal stability of power systems. These efforts focus on estimating electromechanical modes, which are a property of the system that dictate how generators in different parts of the system exchange energy. Though the algorithms designed for this task are powerful and important for reliable operation of the power system, they are susceptible to severe bias when forced oscillations are present in the system. Forced oscillations are fundamentally different from electromechanical oscillations in that they are the result of a rogue input to the system,more » rather than a property of the system itself. To address the presence of forced oscillations, the frequently used AutoRegressive Moving Average (ARMA) model is adapted to include sinusoidal inputs, resulting in the AutoRegressive Moving Average plus Sinusoid (ARMA+S) model. From this model, a new Two-Stage Least Squares algorithm is derived to incorporate the forced oscillations, thereby enabling the simultaneous estimation of the electromechanical modes and the amplitude and phase of the forced oscillations. The method is validated using simulated power system data as well as data obtained from the western North American power system (wNAPS) and Eastern Interconnection (EI).« less
Harel, Elad; Long, Phillip D; Engel, Gregory S
2011-05-01
Here we present two-dimensional (2D) electronic spectra of the light-harvesting complex LH2 from purple bacteria using coherent pulses with bandwidth of over 100 nm FWHM. This broadband excitation and detection has allowed the simultaneous capture of both the B800 and B850 bands using a single light source. We demonstrate that one laser pulse is sufficient to capture the entire 2D electronic spectrum with a high signal-to-noise ratio. At a waiting time of 800 fs, we observe population transfer from the B800 to B850 band as manifested by a prominent cross peak. These results will enable observation of the dynamics of biological systems across both ultrafast (<1 ps) and slower (>1 ms) timescales simultaneously.
Enhanced Imaging of Corrosion in Aircraft Structures with Reverse Geometry X-ray(registered tm)
NASA Technical Reports Server (NTRS)
Winfree, William P.; Cmar-Mascis, Noreen A.; Parker, F. Raymond
2000-01-01
The application of Reverse Geometry X-ray to the detection and characterization of corrosion in aircraft structures is presented. Reverse Geometry X-ray is a unique system that utilizes an electronically scanned x-ray source and a discrete detector for real time radiographic imaging of a structure. The scanned source system has several advantages when compared to conventional radiography. First, the discrete x-ray detector can be miniaturized and easily positioned inside a complex structure (such as an aircraft wing) enabling images of each surface of the structure to be obtained separately. Second, using a measurement configuration with multiple detectors enables the simultaneous acquisition of data from several different perspectives without moving the structure or the measurement system. This provides a means for locating the position of flaws and enhances separation of features at the surface from features inside the structure. Data is presented on aircraft specimens with corrosion in the lap joint. Advanced laminographic imaging techniques utilizing data from multiple detectors are demonstrated to be capable of separating surface features from corrosion in the lap joint and locating the corrosion in multilayer structures. Results of this technique are compared to computed tomography cross sections obtained from a microfocus x-ray tomography system. A method is presented for calibration of the detectors of the Reverse Geometry X-ray system to enable quantification of the corrosion to within 2%.
CAVE2: a hybrid reality environment for immersive simulation and information analysis
NASA Astrophysics Data System (ADS)
Febretti, Alessandro; Nishimoto, Arthur; Thigpen, Terrance; Talandis, Jonas; Long, Lance; Pirtle, J. D.; Peterka, Tom; Verlo, Alan; Brown, Maxine; Plepys, Dana; Sandin, Dan; Renambot, Luc; Johnson, Andrew; Leigh, Jason
2013-03-01
Hybrid Reality Environments represent a new kind of visualization spaces that blur the line between virtual environments and high resolution tiled display walls. This paper outlines the design and implementation of the CAVE2TM Hybrid Reality Environment. CAVE2 is the world's first near-seamless flat-panel-based, surround-screen immersive system. Unique to CAVE2 is that it will enable users to simultaneously view both 2D and 3D information, providing more flexibility for mixed media applications. CAVE2 is a cylindrical system of 24 feet in diameter and 8 feet tall, and consists of 72 near-seamless, off-axisoptimized passive stereo LCD panels, creating an approximately 320 degree panoramic environment for displaying information at 37 Megapixels (in stereoscopic 3D) or 74 Megapixels in 2D and at a horizontal visual acuity of 20/20. Custom LCD panels with shifted polarizers were built so the images in the top and bottom rows of LCDs are optimized for vertical off-center viewing- allowing viewers to come closer to the displays while minimizing ghosting. CAVE2 is designed to support multiple operating modes. In the Fully Immersive mode, the entire room can be dedicated to one virtual simulation. In 2D model, the room can operate like a traditional tiled display wall enabling users to work with large numbers of documents at the same time. In the Hybrid mode, a mixture of both 2D and 3D applications can be simultaneously supported. The ability to treat immersive work spaces in this Hybrid way has never been achieved before, and leverages the special abilities of CAVE2 to enable researchers to seamlessly interact with large collections of 2D and 3D data. To realize this hybrid ability, we merged the Scalable Adaptive Graphics Environment (SAGE) - a system for supporting 2D tiled displays, with Omegalib - a virtual reality middleware supporting OpenGL, OpenSceneGraph and Vtk applications.
Changing Dielectrics into Multiferroics---Alchemy Enabled by Strain
NASA Astrophysics Data System (ADS)
Schlom, Darrell
2011-03-01
Ferroelectric ferromagnets are exceedingly rare, fundamentally interesting multiferroic materials. The properties of what few compounds simultaneously exhibit these phenomena pale in comparison to useful ferroelectrics or ferromagnets: their spontaneous polarizations (Ps) or magnetizations (Ms) are smaller by a factor of 1000 or more. The same holds for (magnetic or electric) field-induced multiferroics. Recently, however, Fennie and Rabe proposed a new route to ferroelectric ferromagnets---transforming magnetically ordered insulators that are neither ferroelectric nor ferromagnetic, of which there are many, into ferroelectric ferromagnets using a single control parameter: strain. The system targeted, EuTi O3 , was predicted to simultaneously exhibit strong ferromagnetism (Ms ~ ~ ~7~μB /Eu) and strong ferroelectricity (Ps ~ ~ ~10~ μ C/cm2) under large biaxial compressive strain. These values are orders of magnitude higher than any known ferroelectric ferromagnet and rival the best materials that are solely ferroelectric or ferromagnetic. Hindered by the absence of an appropriate substrate to provide the desired compression, we show 3 both experimentally and theoretically the emergence of a multiferroic state under biaxial tension with the unexpected benefit that even lower misfits are required, thereby enabling higher quality crystalline films. The resulting genesis of a strong ferromagnetic ferroelectric points the way to high temperature manifestations of this spin-phonon coupling mechanism. Our work demonstrates that a single experimental parameter, strain, simultaneously controls multiple order parameters and is a viable alternative tuning parameter to composition for creating multiferroics. C.J. Fennie and K.M. Rabe, Phys. Rev. Lett. 97 (2006) 267602.
NASA Astrophysics Data System (ADS)
De Freitas, Carolina; Hernandez, Victor M.; Ruggeri, Marco; Durkee, Heather A.; Williams, Siobhan; Gregori, Giovanni; Ho, Arthur; Manns, Fabrice; Parel, Jean-Marie
2016-03-01
The purpose of this project is to design and evaluate a system that will enable objective assessment of the optical accommodative response in real-time while acquiring axial biometric information. The system combines three sub-systems which were integrated and mounted on a joystick x-y-z adjustable modified slit-lamp base to facilitate alignment and data acquisition: (1) a Shack-Hartmann wavefront sensor for dynamic refraction measurement, provided software calculates sphere, cylinder and axis values, (2) an extended-depth Optical Coherence Tomography (OCT) system using an optical switch records high-resolution cross-sectional images across the length of the eye, from which, dynamic axial biometry (corneal thickness, anterior chamber depth, crystalline lens thickness and vitreous depth) can be extracted, and (3) a modified dual-channel accommodation stimulus unit based on the Badal optometer for providing a step change in accommodative stimulus. The prototypal system is capable of taking simultaneous measurements of both the optical and the mechanical response of lens accommodation. These measurements can provide insight into correlating changes in lens shape with changes in lens power and ocular refraction and ultimately provide a more comprehensive understanding of accommodation, presbyopia and an objective assessment of presbyopia correction techniques.
A study of interactive control scheduling and economic assessment for robotic systems
NASA Technical Reports Server (NTRS)
1982-01-01
A class of interactive control systems is derived by generalizing interactive manipulator control systems. Tasks of interactive control systems can be represented as a network of a finite set of actions which have specific operational characteristics and specific resource requirements, and which are of limited duration. This has enabled the decomposition of the overall control algorithm simultaneously and asynchronously. The performance benefits of sensor referenced and computer-aided control of manipulators in a complex environment is evaluated. The first phase of the CURV arm control system software development and the basic features of the control algorithms and their software implementation are presented. An optimal solution for a production scheduling problem that will be easy to implement in practical situations is investigated.
Goddard's New Approach to Information Technology: The Information Systems Center an Overview
NASA Technical Reports Server (NTRS)
Kea, Howard E.
1994-01-01
The Information Center (ISC) at Goddard was created as part of the Goddard reorganization and was located within the Applied Engineering and Technology (AET) Directorate. The creation of ISC was to: (1) focus expertise and leadership in information system development; (2) Promote organizational collaboration, partnerships, and resource sharing; (3) Stimulate design/development of seamless end-to-end flight and ground systems; (4) Enable flexibility to effectively support many simultaneous projects by improved access to critical mass of discipline expertise; (5) Enhance career growth and opportunities including multi-disciplinary opportunities; and (6) to improve communications among information system professionals. This paper presents a general overview of the Information Systems Center as well as the role of the Software Engineering Laboratory within the center.
Lee, Eun Jung; Luo, Jianwen; Duan, Yi; Yeager, Keith; Konofagou, Elisa; Vunjak-Novakovic, Gordana
2012-01-01
Maintenance of normal myocardial function depends intimately on synchronous tissue contraction driven by electrical activation and on adequate nutrient perfusion in support thereof. Bioreactors have been used to mimic aspects of these factors in vitro to engineer cardiac tissue, but due to design limitations, previous bioreactor systems have yet to simultaneously support nutrient perfusion, electrical stimulation, and unconstrained (i.e., not isometric) tissue contraction. To the best of our knowledge, the bioreactor system described herein is the first to integrate in concert these three key factors. We present the design of our bioreactor and characterize its capability in integrated experimental and mathematical modeling studies. We then culture cardiac cells obtained from neonatal rats in porous, channeled elastomer scaffolds with the simultaneous application of perfusion and electrical stimulation, with controls excluding either one or both of these two conditions. After eight days of culture, constructs grown with the simultaneous perfusion and electrical stimulation exhibited substantially improved functional properties, as evidenced by a significant increase in contraction amplitude (0.23±0.10% vs. 0.14±0.05, 0.13±0.08, or 0.09±0.02% in control constructs grown without stimulation, without perfusion, or either stimulation or perfusion, respectively). Consistently, these constructs had significantly improved DNA contents, cell distribution throughout the scaffold thickness, cardiac protein expression, cell morphology and overall tissue organization than either control group. Thus, the simultaneous application of medium perfusion and electrical conditioning enabled by the use of the novel bioreactor system may accelerate the generation of fully functional, clinically sized cardiac tissue constructs. PMID:22170772
SCRMS: An RFID and Sensor Web-Enabled Smart Cultural Relics Management System
Xiao, Changjiang; Chen, Nengcheng; Li, Dandan; Lv, You; Gong, Jianya
2016-01-01
Cultural relics represent national or even global resources of inestimable value. How to efficiently manage and preserve these cultural relics is a vitally important issue. To achieve this goal, this study proposed, designed, and implemented an RFID and Sensor Web–enabled smart cultural relics management system (SCRMS). In this system, active photovoltaic subtle energy-powered Radio Frequency Identification (RFID) is used for long-range contactless identification and lifecycle management of cultural relics during their storage and circulation. In addition, different types of ambient sensors are integrated with the RFID tags and deployed around cultural relics to monitor their environmental parameters, helping to ensure that they remain in good condition. An Android-based smart mobile application, as middleware, is used in collaboration with RFID readers to collect information and provide convenient management for the circulation of cultural relics. Moreover, multiple sensing techniques are taken advantage of simultaneously for preservation of cultural relics. The proposed system was successfully applied to a museum in the Yongding District, Fujian Province, China, demonstrating its feasibility and advantages for smart and efficient management and preservation of cultural relics. PMID:28042820
SCRMS: An RFID and Sensor Web-Enabled Smart Cultural Relics Management System.
Xiao, Changjiang; Chen, Nengcheng; Li, Dandan; Lv, You; Gong, Jianya
2016-12-30
Cultural relics represent national or even global resources of inestimable value. How to efficiently manage and preserve these cultural relics is a vitally important issue. To achieve this goal, this study proposed, designed, and implemented an RFID and Sensor Web-enabled smart cultural relics management system (SCRMS). In this system, active photovoltaic subtle energy-powered Radio Frequency Identification (RFID) is used for long-range contactless identification and lifecycle management of cultural relics during their storage and circulation. In addition, different types of ambient sensors are integrated with the RFID tags and deployed around cultural relics to monitor their environmental parameters, helping to ensure that they remain in good condition. An Android-based smart mobile application, as middleware, is used in collaboration with RFID readers to collect information and provide convenient management for the circulation of cultural relics. Moreover, multiple sensing techniques are taken advantage of simultaneously for preservation of cultural relics. The proposed system was successfully applied to a museum in the Yongding District, Fujian Province, China, demonstrating its feasibility and advantages for smart and efficient management and preservation of cultural relics.
Laser a balayage spectral double-bande pour l'imagerie biomedicale multimodale
NASA Astrophysics Data System (ADS)
Goulamhoussen, Nadir
A novel swept laser providing simultaneous dual-band (780nm and 1 300 nm) wavelength scanning has been designed for use in multimodal imaging systems. The swept laser is based on two gain media : a fibered semiconductor optical amplifier (SOA) centered at 1 300nm and a free-space laser diode centered at 780 nm. Simultaneous wavelength tuning for both bands is obtained by separate wavelength filters set up around the same rotating polygonal mirror. For each band, a telescope in an infinite conjugate setup converges the wavelengths dispersed by a grating on the polygon. The polygon reflects back a narrow band of wavelengths for amplification in the gain medium. Rotating the polygon enables wavelength tuning and imaging at a rate of 6 000 to 30 000 spectral lines/s, or A-lines/s in Optical Coherence Tomography (OCT). The 780nm source has a bandwidth of 37 nm, a fibered output power of 54 mW and a coherence length of 11 mm. The 1 300nm source has a bandwidth of 75 nm, a fibered output power of 17mW and a coherence length of 7.2 mm. Three multimodal systems were designed to test the potential of the swept laser in biomedical imaging. A two color OCT which allows three-dimensional in depth imaging of biological tissues with good morphological contrast was first designed, including a novel arrangement for balanced detection in both bands. A simultaneous OCT and SECM instrument was also built in which spectrally encoded confocal microscopy (SECM) provides en face images of subcellular features with high resolution on top of the 3D high penetration image obtained by OCT. Finally, a system combining OCT with fluorescence was designed, thus adding functional imaging to structural OCT images. There are many prospective paths for these three modalities, first among them the adaptation of the systems such that they may be used with imaging probes. One potential solution would be the development of novel fiber components to combine the illumination of theses modalities while demultiplexing their detection, and as would be the development of new optomechanics to enable 3D real-time in vivo imaging.
Characterization of a novel bioreactor system for 3D cellular mechanobiology studies.
Cook, Colin A; Huri, Pinar Y; Ginn, Brian P; Gilbert-Honick, Jordana; Somers, Sarah M; Temple, Joshua P; Mao, Hai-Quan; Grayson, Warren L
2016-08-01
In vitro engineering systems can be powerful tools for studying tissue development in response to biophysical stimuli as well as for evaluating the functionality of engineered tissue grafts. It has been challenging, however, to develop systems that adequately integrate the application of biomimetic mechanical strain to engineered tissue with the ability to assess functional outcomes in real time. The aim of this study was to design a bioreactor system capable of real-time conditioning (dynamic, uniaxial strain, and electrical stimulation) of centimeter-long 3D tissue engineered constructs simultaneously with the capacity to monitor local strains. The system addresses key limitations of uniform sample loading and real-time imaging capabilities. Our system features an electrospun fibrin scaffold, which exhibits physiologically relevant stiffness and uniaxial alignment that facilitates cell adhesion, alignment, and proliferation. We have demonstrated the capacity for directly incorporating human adipose-derived stromal/stem cells into the fibers during the electrospinning process and subsequent culture of the cell-seeded constructs in the bioreactor. The bioreactor facilitates accurate pre-straining of the 3D constructs as well as the application of dynamic and static uniaxial strains while monitoring bulk construct tensions. The incorporation of fluorescent nanoparticles throughout the scaffolds enables in situ monitoring of local strain fields using fluorescent digital image correlation techniques, since the bioreactor is imaging compatible, and allows the assessment of local sample stiffness and stresses when coupled with force sensor measurements. In addition, the system is capable of measuring the electromechanical coupling of skeletal muscle explants by applying an electrical stimulus and simultaneously measuring the force of contraction. The packaging of these technologies, biomaterials, and analytical methods into a single bioreactor system has produced a powerful tool that will enable improved engineering of functional 3D ligaments, tendons, and skeletal muscles. Biotechnol. Bioeng. 2016;113: 1825-1837. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Molecular dispersion spectroscopy based on Fabry-Perot quantum cascade lasers.
Sterczewski, Lukasz A; Westberg, Jonas; Wysocki, Gerard
2017-01-15
Two Fabry-Perot quantum cascade lasers are used in a differential dual comb configuration to perform rapidly swept dispersion spectroscopy of low-pressure nitrous oxide with <1 ms acquisition time. Active feedback control of the laser injection current enables simultaneous wavelength modulation of both lasers at kilohertz rates. The system demonstrates similar performance in both absorption and dispersion spectroscopy modes and achieves a noise-equivalent absorption figure of merit in the low 10-4/Hz range.
Noise-Robust Monitoring of Lombard Speech Using a Wireless Neck-surface Accelerometer and Microphone
2017-08-20
rechargeable, lithium - ion polymer battery that can be charged through a micro-USB input on the circuit. The micro-USB input also allows for communication to...protection, an on/off switch for the battery , status LEDs, and a logic switch that enables the `Bluetooth module to be fully functional when...simultaneously powered via USB and battery . The system contains a small receiver that is equipped with the same Bluetooth module as the transmitter (BC127
Addition of CF3 across unsaturated moieties: a powerful functionalization tool
2014-01-01
In the last few years, the efficient introduction of trifluoromethyl groups in organic molecules has become a major research focus. This review highlights the recent developments enabling the incorporation of CF3 groups across unsaturated moieties, preferentially alkenes, and the mechanistic scenarios governing these transformations. We have specially focused on methods involving the simultaneous formation of C–CF3 and C–C or C–heteroatom bonds by formal addition reactions across π-systems, as such difunctionalization processes hold valuable synthetic potential. PMID:24789472
NASA Astrophysics Data System (ADS)
Yang, Guotao; Xia, Yuan; Cheng, Xuewu; Du, Lifang; Wang, Jihong; Xun, Yuchang
2017-04-01
We present a solid-state sodium (Na) Doppler lidar developed at YanQing Station, Beijing, China (40°N, 116°E) to achieve simultaneous wind and temperature measurements of mesopause region. The 589nm pulse laser is produced by two injection seeded 1064nm and 1319nm Nd:YAG pulse lasers using the sum-frequency generation (SFG) technique. An all-fiber-coupled seeding laser unit was designed to enable absolute laser frequency locking and cycling the measurements among three different operating frequencies. Experimental observations were carried out using this Na lidar system and the preliminary results were described and compared with the temperature of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) and the horizontal wind of the meteor Radar, demonstrating the reliability and good performance of this lidar system. The all-fiber-coupled injection seeding configuration together with the solid-state Nd:YAG lasers make the Na Doppler lidar more compact and greatly reduce the system maintenance, which is conducive to transportable and unattended operation.
Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition.
Portalupi, Simone Luca; Widmann, Matthias; Nawrath, Cornelius; Jetter, Michael; Michler, Peter; Wrachtrup, Jörg; Gerhardt, Ilja
2016-11-25
Hybrid quantum systems integrating semiconductor quantum dots (QDs) and atomic vapours become important building blocks for scalable quantum networks due to the complementary strengths of individual parts. QDs provide on-demand single-photon emission with near-unity indistinguishability comprising unprecedented brightness-while atomic vapour systems provide ultra-precise frequency standards and promise long coherence times for the storage of qubits. Spectral filtering is one of the key components for the successful link between QD photons and atoms. Here we present a tailored Faraday anomalous dispersion optical filter based on the caesium-D 1 transition for interfacing it with a resonantly pumped QD. The presented Faraday filter enables a narrow-bandwidth (Δω=2π × 1 GHz) simultaneous filtering of both Mollow triplet sidebands. This result opens the way to use QDs as sources of single as well as cascaded photons in photonic quantum networks aligned to the primary frequency standard of the caesium clock transition.
Kawaguchi, Hideo; Yoshihara, Kumiko; Hara, Kiyotaka Y; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko
2018-05-17
L-Arabinose is the second most abundant component of hemicellulose in lignocellulosic biomass, next to D-xylose. However, few microorganisms are capable of utilizing pentoses, and catabolic genes and operons enabling bacterial utilization of pentoses are typically subject to carbon catabolite repression by more-preferred carbon sources, such as D-glucose, leading to a preferential utilization of D-glucose over pentoses. In order to simultaneously utilize both D-glucose and L-arabinose at the same rate, a modified metabolic pathway was rationally designed based on metabolome analysis. Corynebacterium glutamicum ATCC 31831 utilized D-glucose and L-arabinose simultaneously at a low concentration (3.6 g/L each) but preferentially utilized D-glucose over L-arabinose at a high concentration (15 g/L each), although L-arabinose and D-glucose were consumed at comparable rates in the absence of the second carbon source. Metabolome analysis revealed that phosphofructokinase and pyruvate kinase were major bottlenecks for D-glucose and L-arabinose metabolism, respectively. Based on the results of metabolome analysis, a metabolic pathway was engineered by overexpressing pyruvate kinase in combination with deletion of araR, which encodes a repressor of L-arabinose uptake and catabolism. The recombinant strain utilized high concentrations of D-glucose and L-arabinose (15 g/L each) at the same consumption rate. During simultaneous utilization of both carbon sources at high concentrations, intracellular levels of phosphoenolpyruvate declined and acetyl-CoA levels increased significantly as compared with the wild-type strain that preferentially utilized D-glucose. These results suggest that overexpression of pyruvate kinase in the araR deletion strain increased the specific consumption rate of L-arabinose and that citrate synthase activity becomes a new bottleneck in the engineered pathway during the simultaneous utilization of D-glucose and L-arabinose. Metabolome analysis identified potential bottlenecks in D-glucose and L-arabinose metabolism and was then applied to the following rational metabolic engineering. Manipulation of only two genes enabled simultaneous utilization of D-glucose and L-arabinose at the same rate in metabolically engineered C. glutamicum. This is the first report of rational metabolic design and engineering for simultaneous hexose and pentose utilization without inactivating the phosphotransferase system.
Brain-Machine Interface Enables Bimanual Arm Movements in Monkeys
Ifft, Peter J.; Shokur, Solaiman; Li, Zheng; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.
2014-01-01
Brain-machine interfaces (BMIs) are artificial systems that aim to restore sensation and movement to severely paralyzed patients. However, previous BMIs enabled only single arm functionality, and control of bimanual movements was a major challenge. Here, we developed and tested a bimanual BMI that enabled rhesus monkeys to control two avatar arms simultaneously. The bimanual BMI was based on the extracellular activity of 374–497 neurons recorded from several frontal and parietal cortical areas of both cerebral hemispheres. Cortical activity was transformed into movements of the two arms with a decoding algorithm called a 5th order unscented Kalman filter (UKF). The UKF is well-suited for BMI decoding because it accounts for both characteristics of reaching movements and their representation by cortical neurons. The UKF was trained either during a manual task performed with two joysticks or by having the monkeys passively observe the movements of avatar arms. Most cortical neurons changed their modulation patterns when both arms were engaged simultaneously. Representing the two arms jointly in a single UKF decoder resulted in improved decoding performance compared with using separate decoders for each arm. As the animals’ performance in bimanual BMI control improved over time, we observed widespread plasticity in frontal and parietal cortical areas. Neuronal representation of the avatar and reach targets was enhanced with learning, whereas pairwise correlations between neurons initially increased and then decreased. These results suggest that cortical networks may assimilate the two avatar arms through BMI control. PMID:24197735
Parallel inferencing method and apparatus for rule-based expert systems
NASA Technical Reports Server (NTRS)
Schwuttke, Ursula M. (Inventor); Moldovan, Dan (Inventor); Kuo, Steve (Inventor)
1993-01-01
The invention analyzes areas of conditions with an expert knowledge base of rules using plural separate nodes which fire respective rules of said knowledge base, each of said rules upon being fired altering certain of said conditions predicated upon the existence of other said conditions. The invention operates by constructing a P representation of all pairs of said rules which are input dependent or output dependent; constructing a C representation of all pairs of said rules which are communication dependent or input dependent; determining which of the rules are ready to fire by matching the predicate conditions of each rule with the conditions of said set; enabling said node means to simultaneously fire those of the rules ready to fire which are defined by said P representation as being free of input and output dependencies; and communicating from each node enabled by said enabling step the alteration of conditions by the corresponding rule to other nodes whose rules are defined by said C matrix means as being input or communication dependent upon the rule of said enabled node.
Surveying the Sky at Low Frequencies with the Commensal VLITE System
NASA Astrophysics Data System (ADS)
Clarke, Tracy; Kassim, Namir E.; Richards, Emily; Peters, Wendy; Polisensky, Emil
2017-05-01
We present details of a new commensal observing program on NRAO's Karl G. Jansky Very Large Array (VLA). The VLA Low-band Ionosphere and Transient Experiment (VLITE) provides a simultaneous sub-GHz data stream during all Cassegrain (1-50 GHz) observations. This unique low frequency opportunity opens up over 6000 hours per year of VLA observing time to the low frequency community. In the first 2 1/4 years of operation, VLITE processed images cover regions containing 2,322 unique exoplanets in 62,000 individual scans. VLITE observations provide a large database to observe samples of nearby stellar systems, enabling a powerful means of monitoring these systems for stellar activity as well as emission from exoplanets.
Systems Analysis Approach for the NASA Environmentally Responsible Aviation Project
NASA Technical Reports Server (NTRS)
Kimmel, William M.
2011-01-01
This conference paper describes the current systems analysis approach being implemented for the Environmentally Responsible Aviation Project within the Integrated Systems Research Program under the NASA Aeronautics Research Mission Directorate. The scope and purpose of these systems studies are introduced followed by a methodology overview. The approach involves both top-down and bottoms-up components to provide NASA s stakeholders with a rationale for the prioritization and tracking of a portfolio of technologies which enable the future fleet of aircraft to operate with a simultaneous reduction of aviation noise, emissions and fuel-burn impacts to our environment. Examples of key current results and relevant decision support conclusions are presented along with a forecast of the planned analyses to follow.
Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control
NASA Technical Reports Server (NTRS)
Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.
2015-01-01
The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.
Hybrid rendering of the chest and virtual bronchoscopy [corrected].
Seemann, M D; Seemann, O; Luboldt, W; Gebicke, K; Prime, G; Claussen, C D
2000-10-30
Thin-section spiral computed tomography was used to acquire the volume data sets of the thorax. The tracheobronchial system and pathological changes of the chest were visualized using a color-coded surface rendering method. The structures of interest were then superimposed on a volume rendering of the other thoracic structures, thus producing a hybrid rendering. The hybrid rendering technique exploit the advantages of both rendering methods and enable virtual bronchoscopic examinations using different representation models. Virtual bronchoscopic examinations with a transparent color-coded shaded-surface model enables the simultaneous visualization of both the airways and the adjacent structures behind of the tracheobronchial wall and therefore, offers a practical alternative to fiberoptic bronchoscopy. Hybrid rendering and virtual endoscopy obviate the need for time consuming detailed analysis and presentation of axial source images.
Size, weight and position: ion mobility spectrometry and imaging MS combined.
Kiss, András; Heeren, Ron M A
2011-03-01
Size, weight and position are three of the most important parameters that describe a molecule in a biological system. Ion mobility spectrometry is capable of separating molecules on the basis of their size or shape, whereas imaging mass spectrometry is an effective tool to measure the molecular weight and spatial distribution of molecules. Recent developments in both fields enabled the combination of the two technologies. As a result, ion-mobility-based imaging mass spectrometry is gaining more and more popularity as a (bio-)analytical tool enabling the determination of the size, weight and position of several molecules simultaneously on biological surfaces. This paper reviews the evolution of ion-mobility-based imaging mass spectrometry and provides examples of its application in analytical studies of biological surfaces.
NASA Astrophysics Data System (ADS)
Zhang, Zh.
2016-11-01
Because of the limited value of the wave propagation speed in water the propagation of a pressure surge in transient flows can be tracked in the time series. This enables both the pressure head and the flow velocity in pipe flows to be determined as a function of both the coordinate along the pipe and the time. The propagation of the pressure surge includes both wave transmission and reflection. The latter occurs where the flow section is changed. The wave tracking method has been demonstrated as highly accurate and subsequently was applied to much more complex hydraulic systems, in which the pump is shut off and the spherical valve is simultaneously progressively closed. A combined four-quadrant characteristic of the pump and a spherical valve has been worked out, with which the computational procedure for the transient flow in the complex system could be significantly simplified. It has been demonstrated that not only the pressure surge in the hydraulic system but also the rotational speed of the pump could be satisfactorily computed. The computational algorithm has been demonstrated as quite simple, so that all calculations could be performed simply by means of the Microsoft Excel module.
Malone, Joseph D.; El-Haddad, Mohamed T.; Bozic, Ivan; Tye, Logan A.; Majeau, Lucas; Godbout, Nicolas; Rollins, Andrew M.; Boudoux, Caroline; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.
2016-01-01
Scanning laser ophthalmoscopy (SLO) benefits diagnostic imaging and therapeutic guidance by allowing for high-speed en face imaging of retinal structures. When combined with optical coherence tomography (OCT), SLO enables real-time aiming and retinal tracking and provides complementary information for post-acquisition volumetric co-registration, bulk motion compensation, and averaging. However, multimodality SLO-OCT systems generally require dedicated light sources, scanners, relay optics, detectors, and additional digitization and synchronization electronics, which increase system complexity. Here, we present a multimodal ophthalmic imaging system using swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography (SS-SESLO-OCT) for in vivo human retinal imaging. SESLO reduces the complexity of en face imaging systems by multiplexing spatial positions as a function of wavelength. SESLO image quality benefited from single-mode illumination and multimode collection through a prototype double-clad fiber coupler, which optimized scattered light throughput and reduce speckle contrast while maintaining lateral resolution. Using a shared 1060 nm swept-source, shared scanner and imaging optics, and a shared dual-channel high-speed digitizer, we acquired inherently co-registered en face retinal images and OCT cross-sections simultaneously at 200 frames-per-second. PMID:28101411
Actor-critic-based optimal tracking for partially unknown nonlinear discrete-time systems.
Kiumarsi, Bahare; Lewis, Frank L
2015-01-01
This paper presents a partially model-free adaptive optimal control solution to the deterministic nonlinear discrete-time (DT) tracking control problem in the presence of input constraints. The tracking error dynamics and reference trajectory dynamics are first combined to form an augmented system. Then, a new discounted performance function based on the augmented system is presented for the optimal nonlinear tracking problem. In contrast to the standard solution, which finds the feedforward and feedback terms of the control input separately, the minimization of the proposed discounted performance function gives both feedback and feedforward parts of the control input simultaneously. This enables us to encode the input constraints into the optimization problem using a nonquadratic performance function. The DT tracking Bellman equation and tracking Hamilton-Jacobi-Bellman (HJB) are derived. An actor-critic-based reinforcement learning algorithm is used to learn the solution to the tracking HJB equation online without requiring knowledge of the system drift dynamics. That is, two neural networks (NNs), namely, actor NN and critic NN, are tuned online and simultaneously to generate the optimal bounded control policy. A simulation example is given to show the effectiveness of the proposed method.
NCBI2RDF: enabling full RDF-based access to NCBI databases.
Anguita, Alberto; García-Remesal, Miguel; de la Iglesia, Diana; Maojo, Victor
2013-01-01
RDF has become the standard technology for enabling interoperability among heterogeneous biomedical databases. The NCBI provides access to a large set of life sciences databases through a common interface called Entrez. However, the latter does not provide RDF-based access to such databases, and, therefore, they cannot be integrated with other RDF-compliant databases and accessed via SPARQL query interfaces. This paper presents the NCBI2RDF system, aimed at providing RDF-based access to the complete NCBI data repository. This API creates a virtual endpoint for servicing SPARQL queries over different NCBI repositories and presenting to users the query results in SPARQL results format, thus enabling this data to be integrated and/or stored with other RDF-compliant repositories. SPARQL queries are dynamically resolved, decomposed, and forwarded to the NCBI-provided E-utilities programmatic interface to access the NCBI data. Furthermore, we show how our approach increases the expressiveness of the native NCBI querying system, allowing several databases to be accessed simultaneously. This feature significantly boosts productivity when working with complex queries and saves time and effort to biomedical researchers. Our approach has been validated with a large number of SPARQL queries, thus proving its reliability and enhanced capabilities in biomedical environments.
Monocular Stereo Measurement Using High-Speed Catadioptric Tracking
Hu, Shaopeng; Matsumoto, Yuji; Takaki, Takeshi; Ishii, Idaku
2017-01-01
This paper presents a novel concept of real-time catadioptric stereo tracking using a single ultrafast mirror-drive pan-tilt active vision system that can simultaneously switch between hundreds of different views in a second. By accelerating video-shooting, computation, and actuation at the millisecond-granularity level for time-division multithreaded processing in ultrafast gaze control, the active vision system can function virtually as two or more tracking cameras with different views. It enables a single active vision system to act as virtual left and right pan-tilt cameras that can simultaneously shoot a pair of stereo images for the same object to be observed at arbitrary viewpoints by switching the direction of the mirrors of the active vision system frame by frame. We developed a monocular galvano-mirror-based stereo tracking system that can switch between 500 different views in a second, and it functions as a catadioptric active stereo with left and right pan-tilt tracking cameras that can virtually capture 8-bit color 512×512 images each operating at 250 fps to mechanically track a fast-moving object with a sufficient parallax for accurate 3D measurement. Several tracking experiments for moving objects in 3D space are described to demonstrate the performance of our monocular stereo tracking system. PMID:28792483
Block sparsity-based joint compressed sensing recovery of multi-channel ECG signals.
Singh, Anurag; Dandapat, Samarendra
2017-04-01
In recent years, compressed sensing (CS) has emerged as an effective alternative to conventional wavelet based data compression techniques. This is due to its simple and energy-efficient data reduction procedure, which makes it suitable for resource-constrained wireless body area network (WBAN)-enabled electrocardiogram (ECG) telemonitoring applications. Both spatial and temporal correlations exist simultaneously in multi-channel ECG (MECG) signals. Exploitation of both types of correlations is very important in CS-based ECG telemonitoring systems for better performance. However, most of the existing CS-based works exploit either of the correlations, which results in a suboptimal performance. In this work, within a CS framework, the authors propose to exploit both types of correlations simultaneously using a sparse Bayesian learning-based approach. A spatiotemporal sparse model is employed for joint compression/reconstruction of MECG signals. Discrete wavelets transform domain block sparsity of MECG signals is exploited for simultaneous reconstruction of all the channels. Performance evaluations using Physikalisch-Technische Bundesanstalt MECG diagnostic database show a significant gain in the diagnostic reconstruction quality of the MECG signals compared with the state-of-the art techniques at reduced number of measurements. Low measurement requirement may lead to significant savings in the energy-cost of the existing CS-based WBAN systems.
A Simultaneous Mobile E-Learning Environment and Application
ERIC Educational Resources Information Center
Karal, Hasan; Bahcekapili, Ekrem; Yildiz, Adil
2010-01-01
The purpose of the present study was to design a mobile learning environment that enables the use of a teleconference application used in simultaneous e-learning with mobile devices and to evaluate this mobile learning environment based on students' views. With the mobile learning environment developed in the study, the students are able to follow…
Hecht, G; Bar-Nathan, C; Milite, G; Alon, I; Moshe, Y; Greenfeld, L; Dotsenko, N; Suez, J; Levy, M; Thaiss, C A; Dafni, H; Elinav, E; Harmelin, A
2014-10-01
The use of germ-free (GF) isolators for microbiome-related research is exponentially increasing, yet limited by its cost, isolator size and potential for trans-contamination. As such, current isolator technology is highly limiting to researchers engaged in short period experiments involving multiple mouse strains and employing a variety of mono-inoculated microorganisms. In this study, we evaluate the use of positive pressure Isocages as a solution for short period studies (days to 2-3 weeks) of experimentation with GF mice at multiple simultaneous conditions. We demonstrate that this new Isocage technology is cost-effective and room-sparing, and enables maintenance of multiple simultaneous groups of GF mice. Using this technology, transferring GF mice from isolators to Isocage racks for experimentation, where they are kept under fully germ-free conditions, enables parallel inoculation with different bacterial strains and simultaneous experimentation with multiple research conditions. Altogether, the new GF Isocage technology enables the expansion of GF capabilities in a safe and cost-effective manner that can facilitate the growth, elaboration and flexibility of microbiome research. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Status of ERA Vehicle System Integration Technology Demonstrators
NASA Technical Reports Server (NTRS)
Flamm, Jeffrey D.; Fernandez, Hamilton; Khorrami, Mehdi; James, Kevin D.; Thomas, Russell
2015-01-01
The Environmentally Responsible Aviation (ERA) Project within the Integrated Systems Research Program (ISRP) of the NASA Aeronautics Research Mission Directorate (ARMD) has the responsibility to explore and document the feasibility, benefits, and technical risk of air vehicle concepts and enabling technologies that will reduce the impact of aviation on the environment. The primary goal of the ERA Project is to select air vehicle concepts and technologies that can simultaneously reduce fuel burn, noise, and emissions. In addition, the ERA Project will identify and mitigate technical risk and transfer knowledge to the aeronautics community at large so that new technologies and vehicle concepts can be incorporated into the future design of aircraft.
[A skin cell segregating control system based on PC].
Liu, Wen-zhong; Zhou, Ming; Zhang, Hong-bing
2005-11-01
A skin cell segregating control system based on PC (personal computer) is presented in this paper. Its front controller is a single-chip microcomputer which enables the manipulation for 6 patients simultaneously, and thus provides a great convenience for clinical treatments for vitiligo. With the use of serial port communication technology, it's possible to monitor and control the front controller in a PC terminal. And the application of computer image acquisition technology realizes the synchronous acquisition of pathologic shin cell images pre/after the operation and a case history. Clinical tests prove its conformity with national standards and the pre-set technological requirements.
Positron Scanner for Locating Brain Tumors
DOE R&D Accomplishments Database
Rankowitz, S.; Robertson, J. S.; Higinbotham, W. A.; Rosenblum, M. J.
1962-03-01
A system is described that makes use of positron emitting isotopes for locating brain tumors. This system inherently provides more information about the distribution of radioactivity in the head in less time than existing scanners which use one or two detectors. A stationary circular array of 32 scintillation detectors scans a horizontal layer of the head from many directions simultaneously. The data, consisting of the number of counts in all possible coincidence pairs, are coded and stored in the memory of a Two-Dimensional Pulse-Height Analyzer. A unique method of displaying and interpreting the data is described that enables rapid approximate analysis of complex source distribution patterns. (auth)
Kalal, M; Nugent, K A; Luther-Davies, B
1987-05-01
An interferometric technique which enables simultaneous phase and amplitude imaging of optically transparent objects is discussed with respect to its application for the measurement of spontaneous toroidal magnetic fields generated in laser-produced plasmas. It is shown that this technique can replace the normal independent pair of optical systems (interferometry and shadowgraphy) by one system and use computer image processing to recover both the plasma density and magnetic field information with high accuracy. A fully automatic algorithm for the numerical analysis of the data has been developed and its performance demonstrated for the case of simulated as well as experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalal, M.; Nugent, K.A.; Luther-Davies, B.
1987-05-01
An interferometric technique which enables simultaneous phase and amplitude imaging of optically transparent objects is discussed with respect to its application for the measurement of spontaneous toroidal magnetic fields generated in laser-produced plasmas. It is shown that this technique can replace the normal independent pair of optical systems (interferometry and shadowgraphy) by one system and use computer image processing to recover both the plasma density and magnetic field information with high accuracy. A fully automatic algorithm for the numerical analysis of the data has been developed and its performance demonstrated for the case of simulated as well as experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramamoorthy, Sripriya; Zhang, Yuan; Jacques, Steven
In this study, we have developed a phase-sensitive Fourier-domain optical coherence tomography system to simultaneously measure the in vivo inner ear vibrations in the hook area and second turn of the mouse cochlea. This technical development will enable measurement of intra-cochlear distortion products at ideal locations such as the distortion product generation site and reflection site. This information is necessary to un-mix the complex mixture of intra-cochlear waves comprising the DPOAE and thus leads to the non-invasive identification of the local region of cochlear damage.
Nikcevic, Irena; Piruska, Aigars; Wehmeyer, Kenneth R; Seliskar, Carl J; Limbach, Patrick A; Heineman, William R
2010-08-01
Parallel separations using CE on a multilane microchip with multiplexed LIF detection is demonstrated. The detection system was developed to simultaneously record data on all channels using an expanded laser beam for excitation, a camera lens to capture emission, and a CCD camera for detection. The detection system enables monitoring of each channel continuously and distinguishing individual lanes without significant crosstalk between adjacent lanes. Multiple analytes can be determined in parallel lanes within a single microchip in a single run, leading to increased sample throughput. The pK(a) determination of small molecule analytes is demonstrated with the multilane microchip.
Nikcevic, Irena; Piruska, Aigars; Wehmeyer, Kenneth R.; Seliskar, Carl J.; Limbach, Patrick A.; Heineman, William R.
2010-01-01
Parallel separations using capillary electrophoresis on a multilane microchip with multiplexed laser induced fluorescence detection is demonstrated. The detection system was developed to simultaneously record data on all channels using an expanded laser beam for excitation, a camera lens to capture emission, and a CCD camera for detection. The detection system enables monitoring of each channel continuously and distinguishing individual lanes without significant crosstalk between adjacent lanes. Multiple analytes can be analyzed on parallel lanes within a single microchip in a single run, leading to increased sample throughput. The pKa determination of small molecule analytes is demonstrated with the multilane microchip. PMID:20737446
Ruggles, Molly E.; Jayaraman, Arul; Ugaz, Victor M.
2016-01-01
The ability to harness enzymatic activity as an etchant to precisely machine biodegradable substrates introduces new possibilities for microfabrication. This flow-based etching is straightforward to implement, enabling patterning of microchannels with topologies that incorporate variable depth along the cross-sectional dimension. Additionally, unlike conventional small-molecule formulations, the macromolecular nature of enzymatic etchants enables features to be precisely positioned. Here, we introduce a kinetic model to characterize the enzymatic machining process and its localization by co-injection of a macromolecular inhibitor species. Our model captures the interaction between enzyme, inhibitor, and substrate under laminar flow, enabling rational prediction of etched microchannel profiles so that cross-sectional topologies incorporating complex lateral variations in depth can be constructed. We also apply this approach to achieve simultaneous widening of an entire network of microchannels produced in the biodegradable polymeric substrate poly(lactic acid), laying a foundation to construct systems incorporating a broad range of internal cross-sectional dimensions by manipulating the process conditions. PMID:27190566
Multi-focus and multi-level techniques for visualization and analysis of networks with thematic data
NASA Astrophysics Data System (ADS)
Cossalter, Michele; Mengshoel, Ole J.; Selker, Ted
2013-01-01
Information-rich data sets bring several challenges in the areas of visualization and analysis, even when associated with node-link network visualizations. This paper presents an integration of multi-focus and multi-level techniques that enable interactive, multi-step comparisons in node-link networks. We describe NetEx, a visualization tool that enables users to simultaneously explore different parts of a network and its thematic data, such as time series or conditional probability tables. NetEx, implemented as a Cytoscape plug-in, has been applied to the analysis of electrical power networks, Bayesian networks, and the Enron e-mail repository. In this paper we briefly discuss visualization and analysis of the Enron social network, but focus on data from an electrical power network. Specifically, we demonstrate how NetEx supports the analytical task of electrical power system fault diagnosis. Results from a user study with 25 subjects suggest that NetEx enables more accurate isolation of complex faults compared to an especially designed software tool.
Toward Simultaneous Real-Time Fluoroscopic and Nuclear Imaging in the Intervention Room.
Beijst, Casper; Elschot, Mattijs; Viergever, Max A; de Jong, Hugo W A M
2016-01-01
To investigate the technical feasibility of hybrid simultaneous fluoroscopic and nuclear imaging. An x-ray tube, an x-ray detector, and a gamma camera were positioned in one line, enabling imaging of the same field of view. Since a straightforward combination of these elements would block the lines of view, a gamma camera setup was developed to be able to view around the x-ray tube. A prototype was built by using a mobile C-arm and a gamma camera with a four-pinhole collimator. By using the prototype, test images were acquired and sensitivity, resolution, and coregistration error were analyzed. Nuclear images (two frames per second) were acquired simultaneously with fluoroscopic images. Depending on the distance from point source to detector, the system resolution was 1.5-1.9-cm full width at half maximum, the sensitivity was (0.6-1.5) × 10(-5) counts per decay, and the coregistration error was -0.13 to 0.15 cm. With good spatial and temporal alignment of both modalities throughout the field of view, fluoroscopic images can be shown in grayscale and corresponding nuclear images in color overlay. Measurements obtained with the hybrid imaging prototype device that combines simultaneous fluoroscopic and nuclear imaging of the same field of view have demonstrated the feasibility of real-time simultaneous hybrid imaging in the intervention room. © RSNA, 2015
Towards ubiquitous access of computer-assisted surgery systems.
Liu, Hui; Lufei, Hanping; Shi, Weishong; Chaudhary, Vipin
2006-01-01
Traditional stand-alone computer-assisted surgery (CAS) systems impede the ubiquitous and simultaneous access by multiple users. With advances in computing and networking technologies, ubiquitous access to CAS systems becomes possible and promising. Based on our preliminary work, CASMIL, a stand-alone CAS server developed at Wayne State University, we propose a novel mobile CAS system, UbiCAS, which allows surgeons to retrieve, review and interpret multimodal medical images, and to perform some critical neurosurgical procedures on heterogeneous devices from anywhere at anytime. Furthermore, various optimization techniques, including caching, prefetching, pseudo-streaming-model, and compression, are used to guarantee the QoS of the UbiCAS system. UbiCAS enables doctors at remote locations to actively participate remote surgeries, share patient information in real time before, during, and after the surgery.
Fletcher, Richard Ribón; Amemori, Ken-ichi; Goodwin, Matthew; Graybiel, Ann M
2012-01-01
A portable system has been designed to enable remote monitoring of autonomic nervous system output in non-human primates for the purpose of studying neural function related to social behavior over extended periods of time in an ambulatory setting. In contrast to prior systems which only measure heart activity, are restricted to a constrained laboratory setting, or require surgical attachment, our system is comprised of a multi-sensor self-contained wearable vest that can easily be transferred from one subject to another. The vest contains a small detachable low-power electronic sensor module for measuring electrodermal activity (EDA), electrocardiography (ECG), 3-axis acceleration, and temperature. The wireless transmission is implemented using a standard Bluetooth protocol and a mobile phone, which enables freedom of movement for the researcher as well as for the test subject. A custom Android software application was created on the mobile phone for viewing and recording live data as well as creating annotations. Data from up to seven monkeys can be recorded simultaneously using the mobile phone, with the option of real-time upload to a remote web server. Sample data are presented from two rhesus macaque monkeys showing stimulus-induced response in the laboratory as well as long-term ambulatory data collected in a large monkey cage. This system enables new possibilities for studying underlying mechanisms between autonomic brain function and social behavior with connection to human research in areas such as autism, substance abuse, and mood disorders.
A metadata-aware application for remote scoring and exchange of tissue microarray images
2013-01-01
Background The use of tissue microarrays (TMA) and advances in digital scanning microscopy has enabled the collection of thousands of tissue images. There is a need for software tools to annotate, query and share this data amongst researchers in different physical locations. Results We have developed an open source web-based application for remote scoring of TMA images, which exploits the value of Microsoft Silverlight Deep Zoom to provide a intuitive interface for zooming and panning around digital images. We use and extend existing XML-based standards to ensure that the data collected can be archived and that our system is interoperable with other standards-compliant systems. Conclusion The application has been used for multi-centre scoring of TMA slides composed of tissues from several Phase III breast cancer trials and ten different studies participating in the International Breast Cancer Association Consortium (BCAC). The system has enabled researchers to simultaneously score large collections of TMA and export the standardised data to integrate with pathological and clinical outcome data, thereby facilitating biomarker discovery. PMID:23635078
Recent advances in near-infrared fluorescence-guided imaging surgery using indocyanine green.
Namikawa, Tsutomu; Sato, Takayuki; Hanazaki, Kazuhiro
2015-12-01
Near-infrared (NIR) fluorescence imaging has better tissue penetration, allowing for the effective rejection of excitation light and detection deep inside organs. Indocyanine green (ICG) generates NIR fluorescence after illumination by an NIR ray, enabling real-time intraoperative visualization of superficial lymphatic channels and vessels transcutaneously. The HyperEye Medical System (HEMS) can simultaneously detect NIR rays under room light to provide color imaging, which enables visualization under bright light. Thus, NIR fluorescence imaging using ICG can provide for excellent diagnostic accuracy in detecting sentinel lymph nodes in cancer and microvascular circulation in various ischemic diseases, to assist us with intraoperative decision making. Including HEMS in this system could further improve the sentinel lymph node mapping and intraoperative identification of blood supply in reconstructive organs and ischemic diseases, making it more attractive than conventional imaging. Moreover, the development of new laparoscopic imaging systems equipped with NIR will allow fluorescence-guided surgery in a minimally invasive setting. Future directions, including the conjugation of NIR fluorophores to target specific cancer markers might be realistic technology with diagnostic and therapeutic benefits.
Multimodal optoacoustic and multiphoton fluorescence microscopy
NASA Astrophysics Data System (ADS)
Sela, Gali; Razansky, Daniel; Shoham, Shy
2013-03-01
Multiphoton microscopy is a powerful imaging modality that enables structural and functional imaging with cellular and sub-cellular resolution, deep within biological tissues. Yet, its main contrast mechanism relies on extrinsically administered fluorescent indicators. Here we developed a system for simultaneous multimodal optoacoustic and multiphoton fluorescence 3D imaging, which attains both absorption and fluorescence-based contrast by integrating an ultrasonic transducer into a two-photon laser scanning microscope. The system is readily shown to enable acquisition of multimodal microscopic images of fluorescently labeled targets and cell cultures as well as intrinsic absorption-based images of pigmented biological tissue. During initial experiments, it was further observed that that detected optoacoustically-induced response contains low frequency signal variations, presumably due to cavitation-mediated signal generation by the high repetition rate (80MHz) near IR femtosecond laser. The multimodal system may provide complementary structural and functional information to the fluorescently labeled tissue, by superimposing optoacoustic images of intrinsic tissue chromophores, such as melanin deposits, pigmentation, and hemoglobin or other extrinsic particle or dye-based markers highly absorptive in the NIR spectrum.
Large area high-speed metrology SPM system.
Klapetek, P; Valtr, M; Picco, L; Payton, O D; Martinek, J; Yacoot, A; Miles, M
2015-02-13
We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm(2) regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope.
Large area high-speed metrology SPM system
NASA Astrophysics Data System (ADS)
Klapetek, P.; Valtr, M.; Picco, L.; Payton, O. D.; Martinek, J.; Yacoot, A.; Miles, M.
2015-02-01
We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope.
GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
Hess, Berk; Kutzner, Carsten; van der Spoel, David; Lindahl, Erik
2008-03-01
Molecular simulation is an extremely useful, but computationally very expensive tool for studies of chemical and biomolecular systems. Here, we present a new implementation of our molecular simulation toolkit GROMACS which now both achieves extremely high performance on single processors from algorithmic optimizations and hand-coded routines and simultaneously scales very well on parallel machines. The code encompasses a minimal-communication domain decomposition algorithm, full dynamic load balancing, a state-of-the-art parallel constraint solver, and efficient virtual site algorithms that allow removal of hydrogen atom degrees of freedom to enable integration time steps up to 5 fs for atomistic simulations also in parallel. To improve the scaling properties of the common particle mesh Ewald electrostatics algorithms, we have in addition used a Multiple-Program, Multiple-Data approach, with separate node domains responsible for direct and reciprocal space interactions. Not only does this combination of algorithms enable extremely long simulations of large systems but also it provides that simulation performance on quite modest numbers of standard cluster nodes.
Muramoto, Nobuhiko; Oda, Arisa; Tanaka, Hidenori; Nakamura, Takahiro; Kugou, Kazuto; Suda, Kazuki; Kobayashi, Aki; Yoneda, Shiori; Ikeuchi, Akinori; Sugimoto, Hiroki; Kondo, Satoshi; Ohto, Chikara; Shibata, Takehiko; Mitsukawa, Norihiro; Ohta, Kunihiro
2018-05-18
DNA double-strand break (DSB)-mediated genome rearrangements are assumed to provide diverse raw genetic materials enabling accelerated adaptive evolution; however, it remains unclear about the consequences of massive simultaneous DSB formation in cells and their resulting phenotypic impact. Here, we establish an artificial genome-restructuring technology by conditionally introducing multiple genomic DSBs in vivo using a temperature-dependent endonuclease TaqI. Application in yeast and Arabidopsis thaliana generates strains with phenotypes, including improved ethanol production from xylose at higher temperature and increased plant biomass, that are stably inherited to offspring after multiple passages. High-throughput genome resequencing revealed that these strains harbor diverse rearrangements, including copy number variations, translocations in retrotransposons, and direct end-joinings at TaqI-cleavage sites. Furthermore, large-scale rearrangements occur frequently in diploid yeasts (28.1%) and tetraploid plants (46.3%), whereas haploid yeasts and diploid plants undergo minimal rearrangement. This genome-restructuring system (TAQing system) will enable rapid genome breeding and aid genome-evolution studies.
Self-organized adaptation of a simple neural circuit enables complex robot behaviour
NASA Astrophysics Data System (ADS)
Steingrube, Silke; Timme, Marc; Wörgötter, Florentin; Manoonpong, Poramate
2010-03-01
Controlling sensori-motor systems in higher animals or complex robots is a challenging combinatorial problem, because many sensory signals need to be simultaneously coordinated into a broad behavioural spectrum. To rapidly interact with the environment, this control needs to be fast and adaptive. Present robotic solutions operate with limited autonomy and are mostly restricted to few behavioural patterns. Here we introduce chaos control as a new strategy to generate complex behaviour of an autonomous robot. In the presented system, 18 sensors drive 18 motors by means of a simple neural control circuit, thereby generating 11 basic behavioural patterns (for example, orienting, taxis, self-protection and various gaits) and their combinations. The control signal quickly and reversibly adapts to new situations and also enables learning and synaptic long-term storage of behaviourally useful motor responses. Thus, such neural control provides a powerful yet simple way to self-organize versatile behaviours in autonomous agents with many degrees of freedom.
Aqueous two-phase systems enable multiplexing of homogeneous immunoassays
Simon, Arlyne B.; Frampton, John P.; Huang, Nien-Tsu; Kurabayashi, Katsuo; Paczesny, Sophie; Takayama, Shuichi
2014-01-01
Quantitative measurement of protein biomarkers is critical for biomarker validation and early disease detection. Current multiplex immunoassays are time consuming costly and can suffer from low accuracy. For example, multiplex ELISAs require multiple, tedious, washing and blocking steps. Moreover, they suffer from nonspecific antibody cross-reactions, leading to high background and false-positive signals. Here, we show that co-localizing antibody-bead pairs in an aqueous two-phase system (ATPS) enables multiplexing of sensitive, no-wash, homogeneous assays, while preventing nonspecific antibody cross-reactions. Our cross-reaction-free, multiplex assay can simultaneously detect picomolar concentrations of four protein biomarkers ((C-X-C motif) ligand 10 (CXCL10), CXCL9, interleukin (IL)-8 and IL-6) in cell supernatants using a single assay well. The potential clinical utility of the assay is demonstrated by detecting diagnostic biomarkers (CXCL10 and CXCL9) in plasma from 88 patients at the onset of the clinical symptoms of chronic graft-versus-host disease (GVHD). PMID:25083509
Maidhof, Robert; Tandon, Nina; Lee, Eun Jung; Luo, Jianwen; Duan, Yi; Yeager, Keith; Konofagou, Elisa; Vunjak-Novakovic, Gordana
2012-11-01
Maintenance of normal myocardial function depends intimately on synchronous tissue contraction, driven by electrical activation and on adequate nutrient perfusion in support thereof. Bioreactors have been used to mimic aspects of these factors in vitro to engineer cardiac tissue but, due to design limitations, previous bioreactor systems have yet to simultaneously support nutrient perfusion, electrical stimulation and unconstrained (i.e. not isometric) tissue contraction. To the best of our knowledge, the bioreactor system described herein is the first to integrate these three key factors in concert. We present the design of our bioreactor and characterize its capability in integrated experimental and mathematical modelling studies. We then cultured cardiac cells obtained from neonatal rats in porous, channelled elastomer scaffolds with the simultaneous application of perfusion and electrical stimulation, with controls excluding either one or both of these two conditions. After 8 days of culture, constructs grown with simultaneous perfusion and electrical stimulation exhibited substantially improved functional properties, as evidenced by a significant increase in contraction amplitude (0.23 ± 0.10% vs 0.14 ± 0.05%, 0.13 ± 0.08% or 0.09 ± 0.02% in control constructs grown without stimulation, without perfusion, or either stimulation or perfusion, respectively). Consistently, these constructs had significantly improved DNA contents, cell distribution throughout the scaffold thickness, cardiac protein expression, cell morphology and overall tissue organization compared to control groups. Thus, the simultaneous application of medium perfusion and electrical conditioning enabled by the use of the novel bioreactor system may accelerate the generation of fully functional, clinically sized cardiac tissue constructs. Copyright © 2011 John Wiley & Sons, Ltd.
Xing, X H; Inoue, T; Tanji, Y; Unno, H
1999-01-01
In order to examine the microbial degradation of p-nitrophenol (PNP) by a mixed culture system and simultaneous removal of nitrite released via the degradation, an activated sludge retained in porous carrier particles and a suspension culture as a control were acclimated to artificial sewage containing PNP as the sole carbon source. The adaptation of microbes retained in porous carrier particles to PNP was faster than that of suspended microbes by more than 20 d. After microbial adaptation to PNP, it was degraded completely without significant accumulation of intermediate metabolites. The PNP degradation activity of the retained microbes was more than 2 times higher than that of the suspended microbes. By increasing the retained microbial concentration, nitrite released from the degraded PNP was removed by denitrification. This research demonstrates that using microbes retained in porous carrier particles is not only effective for reduction of acclimation time but also enables simultaneous removal of the nitrogen compounds resulting from the degradation of nitroaromatics.
Meckes, Brian; Arce, Fernando Teran; Connelly, Laura S.; Lal, Ratnesh
2014-01-01
Biological membranes contain ion channels, which are nanoscale pores allowing controlled ionic transport and mediating key biological functions underlying normal/abnormal living. Synthetic membranes with defined pores are being developed to control various processes, including filtration of pollutants, charge transport for energy storage, and separation of fluids and molecules. Although ionic transport (currents) can be measured with single channel resolution, imaging their structure and ionic currents simultaneously is difficult. Atomic force microscopy enables high resolution imaging of nanoscale structures and can be modified to measure ionic currents simultaneously. Moreover, the ionic currents can also be used to image structures. A simple method for fabricating conducting AFM cantilevers to image pore structures at high resolution is reported. Tungsten microwires with nanoscale tips are insulated except at the apex. This allows simultaneous imaging via cantilever deflections in normal AFM force feedback mode as well as measuring localized ionic currents. These novel probes measure ionic currents as small as picoampere while providing nanoscale spatial resolution surface topography and is suitable for measuring ionic currents and conductance of biological ion channels. PMID:24663394
Processing multilevel secure test and evaluation information
NASA Astrophysics Data System (ADS)
Hurlburt, George; Hildreth, Bradley; Acevedo, Teresa
1994-07-01
The Test and Evaluation Community Network (TECNET) is building a Multilevel Secure (MLS) system. This system features simultaneous access to classified and unclassified information and easy access through widely available communications channels. It provides the necessary separation of classification levels, assured through the use of trusted system design techniques, security assessments and evaluations. This system enables cleared T&E users to view and manipulate classified and unclassified information resources either using a single terminal interface or multiple windows in a graphical user interface. TECNET is in direct partnership with the National Security Agency (NSA) to develop and field the MLS TECNET capability in the near term. The centerpiece of this partnership is a state-of-the-art Concurrent Systems Security Engineering (CSSE) process. In developing the MLS TECNET capability, TECNET and NSA are providing members, with various expertise and diverse backgrounds, to participate in the CSSE process. The CSSE process is founded on the concepts of both Systems Engineering and Concurrent Engineering. Systems Engineering is an interdisciplinary approach to evolve and verify an integrated and life cycle balanced set of system product and process solutions that satisfy customer needs (ASD/ENS-MIL STD 499B 1992). Concurrent Engineering is design and development using the simultaneous, applied talents of a diverse group of people with the appropriate skills. Harnessing diverse talents to support CSSE requires active participation by team members in an environment that both respects and encourages diversity.
ERIC Educational Resources Information Center
Dollar, Chad A.; Fredrick, Laura D.; Alberto, Paul A.; Luke, Jaye K.
2012-01-01
The acquisition of independent living and leisure skills enables adults to experience an enhanced quality of life by increasing competence, self-reliance, and the development of autonomy. This study examined the effectiveness of simultaneous prompting to teach behavior chains (i.e., independent living and leisure skills) to adults with SID…
ERIC Educational Resources Information Center
Lowe, Warren C.
This report outlines the limitations and weaknesses of singlecase, time-series research designs, of which the ABAB design is one of the widely used. An alternative design, the simultaneous treatment design, proposed by Browning and Stover (1971), has several advantages over the ABAB design. The design enables an experimenter to simultaneously…
A Wireless Implantable Switched-Capacitor Based Optogenetic Stimulating System
Lee, Hyung-Min; Kwon, Ki-Yong; Li, Wen
2015-01-01
This paper presents a power-efficient implantable optogenetic interface using a wireless switched-capacitor based stimulating (SCS) system. The SCS efficiently charges storage capacitors directly from an inductive link and periodically discharges them into an array of micro-LEDs, providing high instantaneous power without affecting wireless link and system supply voltage. A custom-designed computer interface in LabVIEW environment wirelessly controls stimulation parameters through the inductive link, and an optrode array enables simultaneous neural recording along with optical stimulation. The 4-channel SCS system prototype has been implemented in a 0.35-μm CMOS process and combined with the optrode array. In vivo experiments involving light-induced local field potentials verified the efficacy of the SCS system. An implantable version of the SCS system with flexible hermetic sealing is under development for chronic experiments. PMID:25570099
An Analysis Method for Superconducting Resonator Parameter Extraction with Complex Baseline Removal
NASA Technical Reports Server (NTRS)
Cataldo, Giuseppe
2014-01-01
A new semi-empirical model is proposed for extracting the quality (Q) factors of arrays of superconducting microwave kinetic inductance detectors (MKIDs). The determination of the total internal and coupling Q factors enables the computation of the loss in the superconducting transmission lines. The method used allows the simultaneous analysis of multiple interacting discrete resonators with the presence of a complex spectral baseline arising from reflections in the system. The baseline removal allows an unbiased estimate of the device response as measured in a cryogenic instrumentation setting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forslund, D.W.; Cook, J.L.
One of the most powerful tools available for telemedicine is a multimedia medical record accessible over a wide area and simultaneously editable by multiple physicians. The ability to do this through an intuitive interface linking multiple distributed data repositories while maintaining full data integrity is a fundamental enabling technology in healthcare. The authors discuss the role of distributed object technology using Java and CORBA in providing this capability including an example of such a system (TeleMed) which can be accessed through the World Wide Web. Issues of security, scalability, data integrity, and usability are emphasized.
Ultrasonic Array for Obstacle Detection Based on CDMA with Kasami Codes
Diego, Cristina; Hernández, Álvaro; Jiménez, Ana; Álvarez, Fernando J.; Sanz, Rebeca; Aparicio, Joaquín
2011-01-01
This paper raises the design of an ultrasonic array for obstacle detection based on Phased Array (PA) techniques, which steers the acoustic beam through the environment by electronics rather than mechanical means. The transmission of every element in the array has been encoded, according to Code Division for Multiple Access (CDMA), which allows multiple beams to be transmitted simultaneously. All these features together enable a parallel scanning system which does not only improve the image rate but also achieves longer inspection distances in comparison with conventional PA techniques. PMID:22247675
A technique to measure rotordynamic coefficients in hydrostatic bearings
NASA Technical Reports Server (NTRS)
Capaldi, Russell J.
1993-01-01
An experimental technique is described for measuring the rotordynamic coefficients of fluid film journal bearings. The bearing tester incorporates a double-spool shaft assembly that permits independent control over the journal spin speed and the frequency of an adjustable-magnitude circular orbit. This configuration yields data that enables determination of the full linear anisotropic rotordynamic coefficient matrices. The dynamic force measurements were made simultaneously with two independent systems, one with piezoelectric load cells and the other with strain gage load cells. Some results are presented for a four-recess, oil-fed hydrostatic journal bearing.
Simultaneous topography imaging and broadband nanomechanical mapping on atomic force microscope
NASA Astrophysics Data System (ADS)
Li, Tianwei; Zou, Qingze
2017-12-01
In this paper, an approach is proposed to achieve simultaneous imaging and broadband nanomechanical mapping of soft materials in air by using an atomic force microscope. Simultaneous imaging and nanomechanical mapping are needed, for example, to correlate the morphological and mechanical evolutions of the sample during dynamic phenomena such as the cell endocytosis process. Current techniques for nanomechanical mapping, however, are only capable of capturing static elasticity of the material, or the material viscoelasticity in a narrow frequency band around the resonant frequency(ies) of the cantilever used, not competent for broadband nanomechanical mapping, nor acquiring topography image of the sample simultaneously. These limitations are addressed in this work by enabling the augmentation of an excitation force stimuli of rich frequency spectrum for nanomechanical mapping in the imaging process. Kalman-filtering technique is exploited to decouple and split the mixed signals for imaging and mapping, respectively. Then the sample indentation generated is quantified online via a system-inversion method, and the effects of the indentation generated and the topography tracking error on the topography quantification are taken into account. Moreover, a data-driven feedforward-feedback control is utilized to track the sample topography. The proposed approach is illustrated through experimental implementation on a polydimethylsiloxane sample with a pre-fabricated pattern.
NASA Technical Reports Server (NTRS)
Frost, J. D., Jr.
1976-01-01
A self-contained and portable device which permits clinical electroencephalography (EEG) to be conducted in remote locations by minimally trained, nontechnical personnel was developed and tested. The unit accomplishes semiautomatic acquisition of EEG data from the patient, simultaneous transmission of eight data channels to a central hospital facility over conventional telephone equipment, and automatic printing (at the remote site) of the EEG report generated at the central location. Consequently, this system enables the delivery of high-quality EEG diagnostic services in a geographically remote site with the accuracy and speed formerly possible only in certain large medical centers. Beside obvious potential clinical applications, this system serves as an initial prototype of a unit which could provide inflight EEG during future space missions.
Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes.
Qian, Chenjiang; Wu, Shiyao; Song, Feilong; Peng, Kai; Xie, Xin; Yang, Jingnan; Xiao, Shan; Steer, Matthew J; Thayne, Iain G; Tang, Chengchun; Zuo, Zhanchun; Jin, Kuijuan; Gu, Changzhi; Xu, Xiulai
2018-05-25
Two-photon Rabi splitting in a cavity-dot system provides a basis for multiqubit coherent control in a quantum photonic network. Here we report on two-photon Rabi splitting in a strongly coupled cavity-dot system. The quantum dot was grown intentionally large in size for a large oscillation strength and small biexciton binding energy. Both exciton and biexciton transitions couple to a high-quality-factor photonic crystal cavity with large coupling strengths over 130 μeV. Furthermore, the small binding energy enables the cavity to simultaneously couple with two exciton states. Thereby, two-photon Rabi splitting between the biexciton and cavity is achieved, which can be well reproduced by theoretical calculations with quantum master equations.
Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes
NASA Astrophysics Data System (ADS)
Qian, Chenjiang; Wu, Shiyao; Song, Feilong; Peng, Kai; Xie, Xin; Yang, Jingnan; Xiao, Shan; Steer, Matthew J.; Thayne, Iain G.; Tang, Chengchun; Zuo, Zhanchun; Jin, Kuijuan; Gu, Changzhi; Xu, Xiulai
2018-05-01
Two-photon Rabi splitting in a cavity-dot system provides a basis for multiqubit coherent control in a quantum photonic network. Here we report on two-photon Rabi splitting in a strongly coupled cavity-dot system. The quantum dot was grown intentionally large in size for a large oscillation strength and small biexciton binding energy. Both exciton and biexciton transitions couple to a high-quality-factor photonic crystal cavity with large coupling strengths over 130 μ eV . Furthermore, the small binding energy enables the cavity to simultaneously couple with two exciton states. Thereby, two-photon Rabi splitting between the biexciton and cavity is achieved, which can be well reproduced by theoretical calculations with quantum master equations.
Information transfer satellite concept study. Volume 4: computer manual
NASA Technical Reports Server (NTRS)
Bergin, P.; Kincade, C.; Kurpiewski, D.; Leinhaupel, F.; Millican, F.; Onstad, R.
1971-01-01
The Satellite Telecommunications Analysis and Modeling Program (STAMP) provides the user with a flexible and comprehensive tool for the analysis of ITS system requirements. While obtaining minimum cost design points, the program enables the user to perform studies over a wide range of user requirements and parametric demands. The program utilizes a total system approach wherein the ground uplink and downlink, the spacecraft, and the launch vehicle are simultaneously synthesized. A steepest descent algorithm is employed to determine the minimum total system cost design subject to the fixed user requirements and imposed constraints. In the process of converging to the solution, the pertinent subsystem tradeoffs are resolved. This report documents STAMP through a technical analysis and a description of the principal techniques employed in the program.
Liquid rocket propulsion: Retrospective and prospects
NASA Astrophysics Data System (ADS)
Rosenberg, Sanders D.
1993-02-01
Rocket propulsion has made a fundamental contribution to change in the human condition during the second half of the 20th Century. This paper presents a survey of the basic elements of and future prospects for liquid rocket propulsion systems, with emphasis placed on their bipropellant engines, which have contributed profoundly to the successes of this 'aerospace century.' Many technologies had to reach maturity simultaneously to enable our current progress: materials, electronics, guidance and control, systems engineering, and propulsion, made major contributions. However, chemical propellants and the engine systems required to extract and control their propulsive power successfully are at the heart of all that humankind has accomplished through space flight and the use of space for the betterment of all. And it is a fascinating story to tell.
Enablement, Constraint, and "The 7 Habits of Highly Effective People."
ERIC Educational Resources Information Center
Carlone, David
2001-01-01
Uses interviews to examine how the self-help book "The 7 Habits of Highly Effective People" shapes the identity of organization members who read and use the book. Suggests that such people are simultaneously enabled and constrained as they confront tensions between individualism and community, competition and cooperation, and domination and…
NASA Astrophysics Data System (ADS)
Zhang, Wanshu; Zhang, Lanying; Liang, Xiao; Le Zhou; Xiao, Jiumei; Yu, Li; Li, Fasheng; Cao, Hui; Li, Kexuan; Yang, Zhou; Yang, Huai
2017-02-01
High-performance and cost-effective laser protection system is of crucial importance for the rapid advance of lasers in military and civilian fields leading to severe damages of human eyes and sensitive optical devices. However, it is crucially hindered by the angle-dependent protective effect and the complex preparation process. Here we demonstrate that angle-independence, good processibility, wavelength tunability, high optical density and good visibility can be effectuated simultaneously, by embedding dichroic anthraquinone dyes in a cholesteric liquid crystal matrix. More significantly, unconventional two-dimensional parabolic protection behavior is reported for the first time that in stark contrast to the existing protection systems, the overall parabolic protection behavior enables protective effect to increase with incident angles, hence providing omnibearing high-performance protection. The protective effect is controllable by dye concentration, LC cell thickness and CLC reflection efficiency, and the system can be made flexible enabling applications in flexible and even wearable protection devices. This research creates a promising avenue for the high-performance and cost-effective laser protection, and may foster the development of optical applications such as solar concentrators, car explosion-proof membrane, smart windows and polarizers.
NASA Astrophysics Data System (ADS)
Hargart, F.; Roy-Choudhury, K.; John, T.; Portalupi, S. L.; Schneider, C.; Höfling, S.; Kamp, M.; Hughes, S.; Michler, P.
2016-12-01
In this work we present an extensive experimental and theoretical investigation of different regimes of strong field light-matter interaction for cavity-driven quantum dot (QD) cavity systems. The electric field enhancement inside a high-Q micropillar cavity facilitates exceptionally strong interaction with few cavity photons, enabling the simultaneous investigation for a wide range of QD-laser detuning. In case of a resonant drive, the formation of dressed states and a Mollow triplet sideband splitting of up to 45 μeV is measured for a mean cavity photon number < {n}c> ≤slant 1. In the asymptotic limit of the linear AC Stark effect we systematically investigate the power and detuning dependence of more than 400 QDs. Some QD-cavity systems exhibit an unexpected anomalous Stark shift, which can be explained by an extended dressed 4-level QD model. We provide a detailed analysis of the QD-cavity systems properties enabling this novel effect. The experimental results are successfully reproduced using a polaron master equation approach for the QD-cavity system, which includes the driving laser field, exciton-cavity and exciton-phonon interactions.
Nguyen, Mary -Anne; Srijanto, Bernadeta; Collier, C. Patrick; ...
2016-08-02
The droplet interface bilayer (DIB) is a modular technique for assembling planar lipid membranes between water droplets in oil. The DIB method thus provides a unique capability for developing digital, droplet-based membrane platforms for rapid membrane characterization, drug screening and ion channel recordings. This paper demonstrates a new, low-volume microfluidic system that automates droplet generation, sorting, and sequential trapping in designated locations to enable the rapid assembly of arrays of DIBs. The channel layout of the device is guided by an equivalent circuit model, which predicts that a serial arrangement of hydrodynamic DIB traps enables sequential droplet placement and minimizesmore » the hydrodynamic pressure developed across filled traps to prevent squeeze-through of trapped droplets. Furthermore, the incorporation of thin-film electrodes fabricated via evaporation metal deposition onto the glass substrate beneath the channels allows for the first time in situ, simultaneous electrical interrogation of multiple DIBs within a sealed device. Combining electrical measurements with imaging enables measurements of membrane capacitance and resistance and bilayer area, and our data show that DIBs formed in different trap locations within the device exhibit similar sizes and transport properties. Simultaneous, single channel recordings of ion channel gating in multiple membranes are obtained when alamethicin peptides are incorporated into the captured droplets, qualifying the thin-film electrodes as a means for measuring stimuli-responsive functions of membrane-bound biomolecules. Furthermore, this novel microfluidic-electrophysiology platform provides a reproducible, high throughput method for performing electrical measurements to study transmembrane proteins and biomembranes in low-volume, droplet-based membranes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Mary -Anne; Srijanto, Bernadeta; Collier, C. Patrick
The droplet interface bilayer (DIB) is a modular technique for assembling planar lipid membranes between water droplets in oil. The DIB method thus provides a unique capability for developing digital, droplet-based membrane platforms for rapid membrane characterization, drug screening and ion channel recordings. This paper demonstrates a new, low-volume microfluidic system that automates droplet generation, sorting, and sequential trapping in designated locations to enable the rapid assembly of arrays of DIBs. The channel layout of the device is guided by an equivalent circuit model, which predicts that a serial arrangement of hydrodynamic DIB traps enables sequential droplet placement and minimizesmore » the hydrodynamic pressure developed across filled traps to prevent squeeze-through of trapped droplets. Furthermore, the incorporation of thin-film electrodes fabricated via evaporation metal deposition onto the glass substrate beneath the channels allows for the first time in situ, simultaneous electrical interrogation of multiple DIBs within a sealed device. Combining electrical measurements with imaging enables measurements of membrane capacitance and resistance and bilayer area, and our data show that DIBs formed in different trap locations within the device exhibit similar sizes and transport properties. Simultaneous, single channel recordings of ion channel gating in multiple membranes are obtained when alamethicin peptides are incorporated into the captured droplets, qualifying the thin-film electrodes as a means for measuring stimuli-responsive functions of membrane-bound biomolecules. Furthermore, this novel microfluidic-electrophysiology platform provides a reproducible, high throughput method for performing electrical measurements to study transmembrane proteins and biomembranes in low-volume, droplet-based membranes.« less
Climate tools in mainstream Linux distributions
NASA Astrophysics Data System (ADS)
McKinstry, Alastair
2015-04-01
Debian/meterology is a project to integrate climate tools and analysis software into the mainstream Debian/Ubuntu Linux distributions. This work describes lessons learnt, and recommends practices for scientific software to be adopted and maintained in OS distributions. In addition to standard analysis tools (cdo,, grads, ferret, metview, ncl, etc.), software used by the Earth System Grid Federation was chosen for integraion, to enable ESGF portals to be built on this base; however exposing scientific codes via web APIs enables security weaknesses, normally ignorable, to be exposed. How tools are hardened, and what changes are required to handle security upgrades, are described. Secondly, to enable libraries and components (e.g. Python modules) to be integrated requires planning by writers: it is not sufficient to assume users can upgrade their code when you make incompatible changes. Here, practices are recommended to enable upgrades and co-installability of C, C++, Fortran and Python codes. Finally, software packages such as NetCDF and HDF5 can be built in multiple configurations. Tools may then expect incompatible versions of these libraries (e.g. serial and parallel) to be simultaneously available; how this was solved in Debian using "pkg-config" and shared library interfaces is described, and best practices for software writers to enable this are summarised.
A Wearable System for Real-Time Continuous Monitoring of Physical Activity
2018-01-01
Over the last decades, wearable systems have gained interest for monitoring of physiological variables, promoting health, and improving exercise adherence in different populations ranging from elite athletes to patients. In this paper, we present a wearable system for the continuous real-time monitoring of respiratory frequency (fR), heart rate (HR), and movement cadence during physical activity. The system has been experimentally tested in the laboratory (by simulating the breathing pattern with a mechanical ventilator) and by collecting data from one healthy volunteer. Results show the feasibility of the proposed device for real-time continuous monitoring of fR, HR, and movement cadence both in resting condition and during activity. Finally, different synchronization techniques have been investigated to enable simultaneous data collection from different wearable modules. PMID:29849993
Topalov, Angel A; Katsounaros, Ioannis; Meier, Josef C; Klemm, Sebastian O; Mayrhofer, Karl J J
2011-11-01
This paper describes a system for performing electrochemical catalyst testing where all hardware components are controlled simultaneously using a single LabVIEW-based software application. The software that we developed can be operated in both manual mode for exploratory investigations and automatic mode for routine measurements, by using predefined execution procedures. The latter enables the execution of high-throughput or combinatorial investigations, which decrease substantially the time and cost for catalyst testing. The software was constructed using a modular architecture which simplifies the modification or extension of the system, depending on future needs. The system was tested by performing stability tests of commercial fuel cell electrocatalysts, and the advantages of the developed system are discussed. © 2011 American Institute of Physics
Single-shot hyperspectral coherent Raman planar imaging in the range 0–4200 cm⁻¹
Bohlin, Alexis; Kliewer, Christopher J.
2014-10-23
We propose a technique for ultrabroadband planar coherent Raman spectroscopy that enables wideband chemically selective mapping of molecular partition functions in the gas-phase within a single-laser-shot. A spectral region spanning 0–4200 cm⁻¹ is excited simultaneously, in principle allowing for coherent planar imaging of most all fundamental Raman-active modes. This unique instantaneous and spatially correlated assessment enables multiplexed studies of transient dynamical systems in a two-dimensional (2D) field. Here, we demonstrate single-laser-shot high temperature diagnostics of H₂, with spatially resolved 2D measurement of transitions of both the pure-rotational H₂ S-branch and the vibrational H₂ Q-branch, analyzing the temperature contour of amore » reacting fuel-species as it evolves at a flame-front.« less
Gopinath, T; Veglia, Gianluigi
2018-01-01
Conventional NMR pulse sequences record one spectrum per experiment, while spending most of the time waiting for the spin system to return to the equilibrium. As a result, a full set of multidimensional NMR experiments for biological macromolecules may take up to several months to complete. Here, we present a practical guide for setting up a new class of MAS solid-state NMR experiments (POE or polarization optimized experiments) that enable the simultaneous acquisition of multiple spectra of proteins, accelerating data acquisition. POE exploit the long-lived 15 N polarization of isotopically labeled proteins and enable one to obtain up to eight spectra, by concatenating classical NMR pulse sequences. This new strategy propels data throughput of solid-state NMR spectroscopy of fibers, microcrystalline preparations, as well as membrane proteins.
NASA Astrophysics Data System (ADS)
Greef, Charles; Petropavlovskikh, Viatcheslav; Nilsen, Oyvind; Khattatov, Boris; Plam, Mikhail; Gardner, Patrick; Hall, John
2008-04-01
Small non-coding RNA sequences have recently been discovered as unique identifiers of certain bacterial species, raising the possibility that they can be used as highly specific Biowarfare Agent detection markers in automated field deployable integrated detection systems. Because they are present in high abundance they could allow genomic based bacterial species identification without the need for pre-assay amplification. Further, a direct detection method would obviate the need for chemical labeling, enabling a rapid, efficient, high sensitivity mechanism for bacterial detection. Surface Plasmon Resonance enhanced Common Path Interferometry (SPR-CPI) is a potentially market disruptive, high sensitivity dual technology that allows real-time direct multiplex measurement of biomolecule interactions, including small molecules, nucleic acids, proteins, and microbes. SPR-CPI measures differences in phase shift of reflected S and P polarized light under Total Internal Reflection (TIR) conditions at a surface, caused by changes in refractive index induced by biomolecular interactions within the evanescent field at the TIR interface. The measurement is performed on a microarray of discrete 2-dimensional areas functionalized with biomolecule capture reagents, allowing simultaneous measurement of up to 100 separate analytes. The optical beam encompasses the entire microarray, allowing a solid state detector system with no scanning requirement. Output consists of simultaneous voltage measurements proportional to the phase differences resulting from the refractive index changes from each microarray feature, and is automatically processed and displayed graphically or delivered to a decision making algorithm, enabling a fully automatic detection system capable of rapid detection and quantification of small nucleic acids at extremely sensitive levels. Proof-of-concept experiments on model systems and cell culture samples have demonstrated utility of the system, and efforts are in progress for full development and deployment of the device. The technology has broad applicability as a universal detection platform for BWA detection, medical diagnostics, and drug discovery research, and represents a new class of instrumentation as a rapid, high sensitivity, label-free methodology.
Motor Control of Two Flywheels Enabling Combined Attitude Control and Bus Regulation
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.
2004-01-01
This presentation discussed the flywheel technology development work that is ongoing at NASA GRC with a particular emphasis on the flywheel system control. The "field orientation" motor/generator control algorithm was discussed and explained. The position-sensorless angle and speed estimation algorithm was presented. The motor current response to a step change in command at low (10 kRPM) and high (60 kRPM) was discussed. The flywheel DC bus regulation control was explained and experimental results presented. Finally, the combined attitude control and energy storage algorithm that controls two flywheels simultaneously was presented. Experimental results were shown that verified the operational capability of the algorithm. shows high speed flywheel energy storage (60,000 RPM) and the successful implementation of an algorithm to simultaneously control both energy storage and a single axis of attitude with two flywheels. Overall, the presentation demonstrated that GRC has an operational facility that
Coupling Functions Enable Secure Communications
NASA Astrophysics Data System (ADS)
Stankovski, Tomislav; McClintock, Peter V. E.; Stefanovska, Aneta
2014-01-01
Secure encryption is an essential feature of modern communications, but rapid progress in illicit decryption brings a continuing need for new schemes that are harder and harder to break. Inspired by the time-varying nature of the cardiorespiratory interaction, here we introduce a new class of secure communications that is highly resistant to conventional attacks. Unlike all earlier encryption procedures, this cipher makes use of the coupling functions between interacting dynamical systems. It results in an unbounded number of encryption key possibilities, allows the transmission or reception of more than one signal simultaneously, and is robust against external noise. Thus, the information signals are encrypted as the time variations of linearly independent coupling functions. Using predetermined forms of coupling function, we apply Bayesian inference on the receiver side to detect and separate the information signals while simultaneously eliminating the effect of external noise. The scheme is highly modular and is readily extendable to support different communications applications within the same general framework.
Leston, Sara; Freitas, Andreia; Rosa, João; Barbosa, Jorge; Lemos, Marco F L; Pardal, Miguel Ângelo; Ramos, Fernando
2016-10-15
Together with fish, algae reared in aquaculture systems have gained importance in the last years, for many purposes. Besides their use as biofilters of effluents, macroalgae's rich nutritional profiles have increased their inclusion in human diets but also in animal feeds as sources of fatty acids, especially important for the fish industry. Nonetheless, algae are continuously exposed to environmental contaminants including antibiotics and possess the ability for bioaccumulation of such compounds. Therefore, the present paper describes the development and validation of an ultra-high performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous quantification of antibiotics in the green macroalgae Ulva lactuca. This multi-residue method enables the determination of 38 compounds distributed between seven classes and was fully validated according to EU Decision 2002/657/EC. Copyright © 2016 Elsevier B.V. All rights reserved.
Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo.
Yang, Joon-Mo; Favazza, Christopher; Chen, Ruimin; Yao, Junjie; Cai, Xin; Maslov, Konstantin; Zhou, Qifa; Shung, K Kirk; Wang, Lihong V
2012-08-01
At present, clinicians routinely apply ultrasound endoscopy in a variety of interventional procedures that provide treatment solutions for diseased organs. Ultrasound endoscopy not only produces high-resolution images, but also is safe for clinical use and broadly applicable. However, for soft tissue imaging, its mechanical wave-based image contrast fundamentally limits its ability to provide physiologically specific functional information. By contrast, photoacoustic endoscopy possesses a unique combination of functional optical contrast and high spatial resolution at clinically relevant depths, ideal for imaging soft tissues. With these attributes, photoacoustic endoscopy can overcome the current limitations of ultrasound endoscopy. Moreover, the benefits of photoacoustic imaging do not come at the expense of existing ultrasound functions; photoacoustic endoscopy systems are inherently compatible with ultrasound imaging, thereby enabling multimodality imaging with complementary contrast. Here we present simultaneous photoacoustic and ultrasonic dual-mode endoscopy and show its ability to image internal organs in vivo, thus illustrating its potential clinical application.
Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo
Yang, Joon-Mo; Favazza, Christopher; Chen, Ruimin; Yao, Junjie; Cai, Xin; Maslov, Konstantin; Zhou, Qifa; Shung, K. Kirk; Wang, Lihong V.
2013-01-01
Presently, clinicians routinely apply ultrasound endoscopy in a variety of interventional procedures which provide treatment solutions for diseased organs. Ultrasound endoscopy not only produces high resolution images, it is also safe for clinical use and broadly applicable. However, for soft tissue imaging, its mechanical wave-based image contrast fundamentally limits its ability to provide physiologically-specific functional information. By contrast, photoacoustic endoscopy possesses a unique combination of functional optical contrast and high spatial resolution at clinically-relevant depths, ideal for soft tissue imaging. With these attributes, photoacoustic endoscopy can overcome the current limitations of ultrasound endoscopy. Moreover, the benefits of photoacoustic imaging do not come at the expense of existing ultrasound functions; photoacoustic endoscopy systems are inherently compatible with ultrasound imaging, enabling multi-modality imaging with complementary contrast. Here, we present simultaneous photoacoustic and ultrasonic dual-mode endoscopy and demonstrate its ability to image internal organs in vivo, illustrating its potential clinical application. PMID:22797808
NASA Astrophysics Data System (ADS)
Hebden, Jeremy C.; Cooper, Robert J.; Gibson, Adam; Everdell, Nick; Austin, Topun
2012-06-01
An optical imaging system has been developed which uses measurements of diffusely reflected near-infrared light to produce maps of changes in blood flow and oxygenation occurring within the cerebral cortex. Optical sources and detectors are coupled to the head via an array of optical fibers, on a probe held in contact with the scalp, and data is collected at a rate of 10 Hz. A clinical electroencephalography (EEG) system has been integrated with the optical system to enable simultaneous observation of electrical and hemodynamic activity in the cortex of neurologically compromised newborn infants diagnosed with seizures. Studies have made a potentially critically important discovery of previously unknown transient hemodynamic events in infants treated with anticonvulsant medication. We observed repeated episodes of small increases in cortical oxyhemoglobin concentration followed by a profound decrease in 3 of 4 infants studied, each with cerebral injury who presented with neonatal seizures. This was not accompanied by clinical or EEG seizure activity and was not present in nineteen matched controls. The underlying cause of these changes is currently unknown. We tentatively suggest that our results may be associated with a phenomenon known as cortical spreading depolarization, not previously observed in the infant brain.
NASA Astrophysics Data System (ADS)
Hu, Gang; Zhang, Quan; Ivkovic, Vladimir; Strangman, Gary E.
2016-09-01
Ambulatory diffuse optical tomography (aDOT) is based on near-infrared spectroscopy (NIRS) and enables three-dimensional imaging of regional hemodynamics and oxygen consumption during a person's normal activities. Although NIRS has been previously used for muscle assessment, it has been notably limited in terms of the number of channels measured, the extent to which subjects can be ambulatory, and/or the ability to simultaneously acquire synchronized auxiliary data such as electromyography (EMG) or electrocardiography (ECG). We describe the development of a prototype aDOT system, called NINscan-M, capable of ambulatory tomographic imaging as well as simultaneous auxiliary multimodal physiological monitoring. Powered by four AA size batteries and weighing 577 g, the NINscan-M prototype can synchronously record 64-channel NIRS imaging data, eight channels of EMG, ECG, or other analog signals, plus force, acceleration, rotation, and temperature for 24+ h at up to 250 Hz. We describe the system's design, characterization, and performance characteristics. We also describe examples of isometric, cycle ergometer, and free-running ambulatory exercise to demonstrate tomographic imaging at 25 Hz. NINscan-M represents a multiuse tool for muscle physiology studies as well as clinical muscle assessment.
Remote Diagnosis of the International Space Station Utilizing Telemetry Data
NASA Technical Reports Server (NTRS)
Deb, Somnath; Ghoshal, Sudipto; Malepati, Venkat; Domagala, Chuck; Patterson-Hine, Ann; Alena, Richard; Norvig, Peter (Technical Monitor)
2000-01-01
Modern systems such as fly-by-wire aircraft, nuclear power plants, manufacturing facilities, battlefields, etc., are all examples of highly connected network enabled systems. Many of these systems are also mission critical and need to be monitored round the clock. Such systems typically consist of embedded sensors in networked subsystems that can transmit data to central (or remote) monitoring stations. Moreover, many legacy are safety systems were originally not designed for real-time onboard diagnosis, but a critical and would benefit from such a solution. Embedding additional software or hardware in such systems is often considered too intrusive and introduces flight safety and validation concerns. Such systems can be equipped to transmit the sensor data to a remote-processing center for continuous health monitoring. At Qualtech Systems, we are developing a Remote Diagnosis Server (RDS) that can support multiple simultaneous diagnostic sessions from a variety of remote subsystems.
Enabling a systems biology knowledgebase with gaggle and firegoose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baliga, Nitin S.
The overall goal of this project was to extend the existing Gaggle and Firegoose systems to develop an open-source technology that runs over the web and links desktop applications with many databases and software applications. This technology would enable researchers to incorporate workflows for data analysis that can be executed from this interface to other online applications. The four specific aims were to (1) provide one-click mapping of genes, proteins, and complexes across databases and species; (2) enable multiple simultaneous workflows; (3) expand sophisticated data analysis for online resources; and enhance open-source development of the Gaggle-Firegoose infrastructure. Gaggle is anmore » open-source Java software system that integrates existing bioinformatics programs and data sources into a user-friendly, extensible environment to allow interactive exploration, visualization, and analysis of systems biology data. Firegoose is an extension to the Mozilla Firefox web browser that enables data transfer between websites and desktop tools including Gaggle. In the last phase of this funding period, we have made substantial progress on development and application of the Gaggle integration framework. We implemented the workspace to the Network Portal. Users can capture data from Firegoose and save them to the workspace. Users can create workflows to start multiple software components programmatically and pass data between them. Results of analysis can be saved to the cloud so that they can be easily restored on any machine. We also developed the Gaggle Chrome Goose, a plugin for the Google Chrome browser in tandem with an opencpu server in the Amazon EC2 cloud. This allows users to interactively perform data analysis on a single web page using the R packages deployed on the opencpu server. The cloud-based framework facilitates collaboration between researchers from multiple organizations. We have made a number of enhancements to the cmonkey2 application to enable and improve the integration within different environments, and we have created a new tools pipeline for generating EGRIN2 models in a largely automated way.« less
Gopinath, T; Mote, Kaustubh R; Veglia, Gianluigi
2015-05-01
We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living (15)N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through (15)N-(15)N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish (15)N-(15)N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI-HETCOR and 3D PISEMAI-HETCOR-mixing experiments.
Németh, Károly; Chapman, Karena W; Balasubramanian, Mahalingam; Shyam, Badri; Chupas, Peter J; Heald, Steve M; Newville, Matt; Klingler, Robert J; Winans, Randall E; Almer, Jonathan D; Sandi, Giselle; Srajer, George
2012-02-21
An efficient implementation of simultaneous reverse Monte Carlo (RMC) modeling of pair distribution function (PDF) and EXAFS spectra is reported. This implementation is an extension of the technique established by Krayzman et al. [J. Appl. Cryst. 42, 867 (2009)] in the sense that it enables simultaneous real-space fitting of x-ray PDF with accurate treatment of Q-dependence of the scattering cross-sections and EXAFS with multiple photoelectron scattering included. The extension also allows for atom swaps during EXAFS fits thereby enabling modeling the effects of chemical disorder, such as migrating atoms and vacancies. Significant acceleration of EXAFS computation is achieved via discretization of effective path lengths and subsequent reduction of operation counts. The validity and accuracy of the approach is illustrated on small atomic clusters and on 5500-9000 atom models of bcc-Fe and α-Fe(2)O(3). The accuracy gains of combined simultaneous EXAFS and PDF fits are pointed out against PDF-only and EXAFS-only RMC fits. Our modeling approach may be widely used in PDF and EXAFS based investigations of disordered materials. © 2012 American Institute of Physics
[Principles of the EOS™ X-ray machine and its use in daily orthopedic practice].
Illés, Tamás; Somoskeöy, Szabolcs
2012-02-26
The EOS™ X-ray machine, based on a Nobel prize-winning invention in Physics in the field of particle detection, is capable of simultaneously capturing biplanar X-ray images by slot scanning of the whole body in an upright, physiological load-bearing position, using ultra low radiation doses. The simultaneous capture of spatially calibrated anterioposterior and lateral images allows the performance of a three-dimensional (3D) surface reconstruction of the skeletal system by a special software. Parts of the skeletal system in X-ray images and 3D-reconstructed models appear in true 1:1 scale for size and volume, thus spinal and vertebral parameters, lower limb axis lengths and angles, as well as any relevant clinical parameters in orthopedic practice could be very precisely measured and calculated. Visualization of 3D reconstructed models in various views by the sterEOS 3D software enables the presentation of top view images, through which one can analyze the rotational conditions of lower limbs, joints and spine deformities in horizontal plane and this provides revolutionary novel possibilities in orthopedic surgery, especially in spine surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubart, Philippe; Hautot, Felix; Morichi, Massimo
Good management of dismantling and decontamination (D and D) operations and activities is requiring safety, time saving and perfect radiological knowledge of the contaminated environment as well as optimization for personnel dose and minimization of waste volume. In the same time, Fukushima accident has imposed a stretch to the nuclear measurement operational approach requiring in such emergency situation: fast deployment and intervention, quick analysis and fast scenario definition. AREVA, as return of experience from his activities carried out at Fukushima and D and D sites has developed a novel multi-sensor solution as part of his D and D research, approachmore » and method, a system with real-time 3D photo-realistic spatial radiation distribution cartography of contaminated premises. The system may be hand-held or mounted on a mobile device (robot, drone, e.g). In this paper, we will present our current development based on a SLAM technology (Simultaneous Localization And Mapping) and integrated sensors and detectors allowing simultaneous topographic and radiological (dose rate and/or spectroscopy) data acquisitions. This enabling technology permits 3D gamma activity cartography in real-time. (authors)« less
Kudr, Jiri; Nguyen, Hoai Viet; Gumulec, Jaromir; Nejdl, Lukas; Blazkova, Iva; Ruttkay-Nedecky, Branislav; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene
2015-01-01
In this study a device for automatic electrochemical analysis was designed. A three electrodes detection system was attached to a positioning device, which enabled us to move the electrode system from one well to another of a microtitre plate. Disposable carbon tip electrodes were used for Cd(II), Cu(II) and Pb(II) ion quantification, while Zn(II) did not give signal in this electrode configuration. In order to detect all mentioned heavy metals simultaneously, thin-film mercury electrodes (TFME) were fabricated by electrodeposition of mercury on the surface of carbon tips. In comparison with bare electrodes the TMFEs had lower detection limits and better sensitivity. In addition to pure aqueous heavy metal solutions, the assay was also performed on mineralized rock samples, artificial blood plasma samples and samples of chicken embryo organs treated with cadmium. An artificial neural network was created to evaluate the concentrations of the mentioned heavy metals correctly in mixture samples and an excellent fit was observed (R2 = 0.9933). PMID:25558996
A System to Measure Both Inner and Outer Car Tire Temperatures ``in situ''
NASA Astrophysics Data System (ADS)
Koštial, P.; Mokryšová, M.; Šišáková, J.; Mošková, Z.; Rusnáková, S.
2009-02-01
In the paper, a system for the complex analysis of the internal and external tire temperatures and pressure of sporty tires is presented. Tests were performed on the test circuit of a tire producer. The CTPA 05 measuring system (complex temperature-pressure analyzer) enables simultaneous measurements of the internal temperature and pressure in a passenger or sports tire. The experimentalist determines that the CTPA 05 can be used to measure independently the external temperature of the overcoat on the front wheel driving tires at three points. Measurements of both the internal tire temperature and pressure, as well as of the external tire temperature, are collected together with GPS (global position system) data. The system of measurement is fully automatic and contactless. The obtained results are in very good agreement with those obtained by independent methods.
Characterization of Acousto-Electric Cluster and Array Levitation and its Application to Evaporation
NASA Technical Reports Server (NTRS)
Robert E. Apfel; Zheng, Yibing
2000-01-01
An acousto-electric levitator has been developed to study the behavior of liquid drop and solid particle clusters and arrays. Unlike an ordinary acoustic levitator that uses only a standing acoustic wave to levitate a single drop or particle, this device uses an extra electric static field and the acoustic field simultaneously to generate and levitate charged drops in two-dimensional arrays in air without any contact to a solid surface. This cluster and array generation (CAG) instrument enables us to steadily position drops and arrays to study the behavior of multiple drop and particle systems such as spray and aerosol systems relevant to the energy, environmental, and material sciences.
A novel ultrasonic phased array inspection system to NDT for offshore platform structures
NASA Astrophysics Data System (ADS)
Wang, Hua; Shan, Baohua; Wang, Xin; Ou, Jinping
2007-01-01
A novel ultrasonic phased array detection system is developed for nondestructive testing (NDT). The purpose of the system is to make acquisition of data in real-time from 64-element ultrasonic phased array transducer, and to enable real- time processing of the acquired data. The system is composed of five main parts: master unit, main board, eight transmit/receive units, a 64-element transducer and an external PC. The system can be used with 64 element transducers, excite 32 elements, receive and sample echo signals form 32 elements simultaneously at 62.5MHz with 8 bit precision. The external PC is used as the user interface showing the real time images and controls overall operation of the system through USB serial link. The use of Universal Serial Bus (USB) improves the transform speed and reduces hardware interface complexity. The program of the system is written in Visual C++.NET and is platform independent.
Renovating a 65-year-old performing arts center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gifford, R.S.
This article describes the HVAC, electrical and lighting systems that were upgraded in the renovations to the Wang Center for the Performing Arts. The renovations and restorations involved a complete restoration to elaborate interior finishes and a comprehensive upgrade of antiquated core mechanical and electrical systems in a 65-year-old performing arts theater. A new thermal storage cooling system, a new electrical power distribution system, new lighting systems and a new fire protection system were accomplished simultaneously as the theater interior was completely refinished with meticulous detail. The project offered a rare opportunity to integrate current technology with what may atmore » first appear to be obsolete systems to enable the original architectural grandeur to be maintained, yet be fully functional to meet the demanding requirements of a modern performing arts center. It is an example of a successful project that was completed within a very aggressive construction schedule and within a controlled budget.« less
Wen, Xin; Gong, Benzhou; Zhou, Jian; He, Qiang; Qing, Xiaoxia
2017-08-01
Simultaneous partial nitrification, anammox and denitrification (SNAD) process was studied in a sequencing batch biofilm reactor (SBBR) fed with synthetic wastewater in a range of 2200 mgN/L ∼ 50 mgN/L. Important was an external real-time precision dissolved oxygen (DO) intelligent control system that consisted of feed forward control system and feedback control system. This DO control system permitted close control of oxygen supply according to influent concentration, effluent quality and other environmental factors in the reactor. In this study the operation was divided into six phases according to influent nitrogen applied. SNAD system was successfully set up after adding COD into a CANON system. And the presence of COD enabled the survival of denitrifiers, and made Thauera and Pseudomonas predominant as functional denitrifiers in this system. Denaturing gradient gel electrophoresis (DGGE), fluorescence in situ hybridization (FISH) and 16S rRNA amplicon pyrosequencing were used to analyze the microbial variations of different substrate concentrations. Results indicated that the relative population of ammonia oxidizing bacteria (AOB) members decreased when influent ammonia concentration decreased from 2200 mg/L to 50 mg/L, while no dramatic drop of the percent of anammox bacteria was seen. And Nitrosomonas europaea was the predominant AOB in SNAD system treating sewage, while Candidatus Brocadia was the dominant anammox bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.
Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy.
You, Sixian; Tu, Haohua; Chaney, Eric J; Sun, Yi; Zhao, Youbo; Bower, Andrew J; Liu, Yuan-Zhi; Marjanovic, Marina; Sinha, Saurabh; Pu, Yang; Boppart, Stephen A
2018-05-29
Intravital microscopy (IVM) emerged and matured as a powerful tool for elucidating pathways in biological processes. Although label-free multiphoton IVM is attractive for its non-perturbative nature, its wide application has been hindered, mostly due to the limited contrast of each imaging modality and the challenge to integrate them. Here we introduce simultaneous label-free autofluorescence-multiharmonic (SLAM) microscopy, a single-excitation source nonlinear imaging platform that uses a custom-designed excitation window at 1110 nm and shaped ultrafast pulses at 10 MHz to enable fast (2-orders-of-magnitude improvement), simultaneous, and efficient acquisition of autofluorescence (FAD and NADH) and second/third harmonic generation from a wide array of cellular and extracellular components (e.g., tumor cells, immune cells, vesicles, and vessels) in living tissue using only 14 mW for extended time-lapse investigations. Our work demonstrates the versatility and efficiency of SLAM microscopy for tracking cellular events in vivo, and is a major enabling advance in label-free IVM.
The Multi-Spectral Imaging Diagnostic on Alcator C-MOD and TCV
NASA Astrophysics Data System (ADS)
Linehan, B. L.; Mumgaard, R. T.; Duval, B. P.; Theiler, C. G.; TCV Team
2017-10-01
The Multi-Spectral Imaging (MSI) diagnostic is a new instrument that captures simultaneous spectrally filtered images from a common sight view while maintaining a large tendue and high spatial resolution. The system uses a polychromator layout where each image is sequentially filtered. This procedure yields a high transmission for each spectral channel with minimal vignetting and aberrations. A four-wavelength system was installed on Alcator C-Mod and then moved to TCV. The system uses industrial cameras to simultaneously image the divertor region at 95 frames per second at f/# 2.8 via a coherent fiber bundle (C-Mod) or a lens-based relay optic (TCV). The images are absolutely calibrated and spatially registered enabling accurate measurement of atomic line ratios and absolute line intensities. The images will be used to study divertor detachment by imaging impurities and Balmer series emissions. Furthermore, the large field of view and an ability to support many types of detectors opens the door for other novel approaches to optically measuring plasma with high temporal, spatial, and spectral resolution. Such measurements will allow for the study of Stark broadening and divertor turbulence. Here, we present the first measurements taken with this cavity imaging system. USDoE awards DE-FC02-99ER54512 and award DE-AC05-06OR23100, ORISE, administered by ORAU.
Heaton, James T.; Kowaleski, Jeffrey M.; Bermejo, Roberto; Zeigler, H. Philip; Ahlgren, David J.; Hadlock, Tessa A.
2008-01-01
The occurrence of inappropriate co-contraction of facially innervated muscles in humans (synkinesis) is a common sequela of facial nerve injury and recovery. We have developed a system for studying facial nerve function and synkinesis in restrained rats using non-contact opto-electronic techniques that enable simultaneous bilateral monitoring of eyelid and whisker movements. Whisking is monitored in high spatio-temporal resolution using laser micrometers, and eyelid movements are detected using infrared diode and phototransistor pairs that respond to the increased reflection when the eyelids cover the cornea. To validate the system, eight rats were tested with multiple five-minute sessions that included corneal air puffs to elicit blink and scented air flows to elicit robust whisking. Four rats then received unilateral facial nerve section and were tested at weeks 3–6. Whisking and eye blink behavior occurred both spontaneously and under stimulus control, with no detectable difference from published whisking data. Proximal facial nerve section caused an immediate ipsilateral loss of whisking and eye blink response, but some ocular closures emerged due to retractor bulbi muscle function. The independence observed between whisker and eyelid control indicates that this system may provide a powerful tool for identifying abnormal co-activation of facial zones resulting from aberrant axonal regeneration. PMID:18442856
Plenoptic imaging with second-order correlations of light
NASA Astrophysics Data System (ADS)
Pepe, Francesco V.; Scarcelli, Giuliano; Garuccio, Augusto; D'Angelo, Milena
2016-01-01
Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable tridimensional imaging in a single shot. We demonstrate that it is possible to implement plenoptic imaging through second-order correlations of chaotic light, thus enabling to overcome the typical limitations of classical plenoptic devices.
Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis.
Gao, Wei; Emaminejad, Sam; Nyein, Hnin Yin Yin; Challa, Samyuktha; Chen, Kevin; Peck, Austin; Fahad, Hossain M; Ota, Hiroki; Shiraki, Hiroshi; Kiriya, Daisuke; Lien, Der-Hsien; Brooks, George A; Davis, Ronald W; Javey, Ali
2016-01-28
Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual's state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications.
Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis
NASA Astrophysics Data System (ADS)
Gao, Wei; Emaminejad, Sam; Nyein, Hnin Yin Yin; Challa, Samyuktha; Chen, Kevin; Peck, Austin; Fahad, Hossain M.; Ota, Hiroki; Shiraki, Hiroshi; Kiriya, Daisuke; Lien, Der-Hsien; Brooks, George A.; Davis, Ronald W.; Javey, Ali
2016-01-01
Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual’s state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications.
NCBI2RDF: Enabling Full RDF-Based Access to NCBI Databases
Anguita, Alberto; García-Remesal, Miguel; de la Iglesia, Diana; Maojo, Victor
2013-01-01
RDF has become the standard technology for enabling interoperability among heterogeneous biomedical databases. The NCBI provides access to a large set of life sciences databases through a common interface called Entrez. However, the latter does not provide RDF-based access to such databases, and, therefore, they cannot be integrated with other RDF-compliant databases and accessed via SPARQL query interfaces. This paper presents the NCBI2RDF system, aimed at providing RDF-based access to the complete NCBI data repository. This API creates a virtual endpoint for servicing SPARQL queries over different NCBI repositories and presenting to users the query results in SPARQL results format, thus enabling this data to be integrated and/or stored with other RDF-compliant repositories. SPARQL queries are dynamically resolved, decomposed, and forwarded to the NCBI-provided E-utilities programmatic interface to access the NCBI data. Furthermore, we show how our approach increases the expressiveness of the native NCBI querying system, allowing several databases to be accessed simultaneously. This feature significantly boosts productivity when working with complex queries and saves time and effort to biomedical researchers. Our approach has been validated with a large number of SPARQL queries, thus proving its reliability and enhanced capabilities in biomedical environments. PMID:23984425
Optogenetic stimulation of multiwell MEA plates for neural and cardiac applications
NASA Astrophysics Data System (ADS)
Clements, Isaac P.; Millard, Daniel C.; Nicolini, Anthony M.; Preyer, Amanda J.; Grier, Robert; Heckerling, Andrew; Blum, Richard A.; Tyler, Phillip; McSweeney, K. M.; Lu, Yi-Fan; Hall, Diana; Ross, James D.
2016-03-01
Microelectrode array (MEA) technology enables advanced drug screening and "disease-in-a-dish" modeling by measuring the electrical activity of cultured networks of neural or cardiac cells. Recent developments in human stem cell technologies, advancements in genetic models, and regulatory initiatives for drug screening have increased the demand for MEA-based assays. In response, Axion Biosystems previously developed a multiwell MEA platform, providing up to 96 MEA culture wells arrayed into a standard microplate format. Multiwell MEA-based assays would be further enhanced by optogenetic stimulation, which enables selective excitation and inhibition of targeted cell types. This capability for selective control over cell culture states would allow finer pacing and probing of cell networks for more reliable and complete characterization of complex network dynamics. Here we describe a system for independent optogenetic stimulation of each well of a 48-well MEA plate. The system enables finely graded control of light delivery during simultaneous recording of network activity in each well. Using human induced pluripotent stem cell (hiPSC) derived cardiomyocytes and rodent primary neuronal cultures, we demonstrate high channel-count light-based excitation and suppression in several proof-of-concept experimental models. Our findings demonstrate advantages of combining multiwell optical stimulation and MEA recording for applications including cardiac safety screening, neural toxicity assessment, and advanced characterization of complex neuronal diseases.
Multi-Spacecraft Autonomous Positioning System
NASA Technical Reports Server (NTRS)
Anzalone, Evan
2015-01-01
As the number of spacecraft in simultaneous operation continues to grow, there is an increased dependency on ground-based navigation support. The current baseline system for deep space navigation utilizes Earth-based radiometric tracking, requiring long-duration observations to perform orbit determination and generate a state update. The age, complexity, and high utilization of the ground assets pose a risk to spacecraft navigation performance. In order to perform complex operations at large distances from Earth, such as extraterrestrial landing and proximity operations, autonomous systems are required. With increasingly complex mission operations, the need for frequent and Earth-independent navigation capabilities is further reinforced. The Multi-spacecraft Autonomous Positioning System (MAPS) takes advantage of the growing interspacecraft communication network and infrastructure to allow for Earth-autonomous state measurements to enable network-based space navigation. A notional concept of operations is given in figure 1. This network is already being implemented and routinely used in Martian communications through the use of the Mars Reconnaissance Orbiter and Mars Odyssey spacecraft as relays for surface assets. The growth of this communications architecture is continued through MAVEN, and future potential commercial Mars telecom orbiters. This growing network provides an initial Marslocal capability for inter-spacecraft communication and navigation. These navigation updates are enabled by cross-communication between assets in the network, coupled with onboard navigation estimation routines to integrate packet travel time to generate ranging measurements. Inter-spacecraft communication allows for frequent state broadcasts and time updates from trusted references. The architecture is a software-based solution, enabling its implementation on a wide variety of current assets, with the operational constraints and measurement accuracy determined by onboard systems.
Tsai, Cheng-Yu; Jiang, Jhih-Shan
2018-01-01
A micro-projection enabled short-range communication (SRC) approach using red-, green- and blue-based light-emitting diodes (RGB-LEDs) has experimentally demonstrated recently that micro-projection and high-speed data transmission can be performed simultaneously. In this research, a reconfigurable design of a polarization modulated image system based on the use of a Liquid Crystal on Silicon based Spatial Light Modulator (LCoS-based SLM) serving as a portable optical terminal capable of micro-projection and bidirectional multi-wavelength communications is proposed and experimentally demonstrated. For the proof of concept, the system performance was evaluated through a bidirectional communication link at a transmission distance over 0.65 m. In order to make the proposed communication system architecture compatible with the data modulation format of future possible wireless communication system, baseband modulation scheme, i.e., Non-Return-to-Zero On-Off-Keying (NRZ_OOK), M-ary Phase Shift Keying (M-PSK) and M-ary Quadrature Amplitude Modulation (M-QAM) were used to investigate the system transmission performance. The experimental results shown that an acceptable BER (satisfying the limitation of Forward Error Correction, FEC standard) and crosstalk can all be achieved in the bidirectional multi-wavelength communication scenario. PMID:29587457
Design of a Novel Flexible Capacitive Sensing Mattress for Monitoring Sleeping Respiratory
Chang, Wen-Ying; Huang, Chien-Chun; Chen, Chi-Chun; Chang, Chih-Cheng; Yang, Chin-Lung
2014-01-01
In this paper, an algorithm to extract respiration signals using a flexible projected capacitive sensing mattress (FPCSM) designed for personal health assessment is proposed. Unlike the interfaces of conventional measurement systems for poly-somnography (PSG) and other alternative contemporary systems, the proposed FPCSM uses projected capacitive sensing capability that is not worn or attached to the body. The FPCSM is composed of a multi-electrode sensor array that can not only observe gestures and motion behaviors, but also enables the FPCSM to function as a respiration monitor during sleep using the proposed approach. To improve long-term monitoring when body movement is possible, the FPCSM enables the selection of data from the sensing array, and the FPCSM methodology selects the electrodes with the optimal signals after the application of a channel reduction algorithm that counts the reversals in the capacitive sensing signals as a quality indicator. The simple algorithm is implemented in the time domain. The FPCSM system is used in experimental tests and is simultaneously compared with a commercial PSG system for verification. Multiple synchronous measurements are performed from different locations of body contact, and parallel data sets are collected. The experimental comparison yields a correlation coefficient of 0.88 between FPCSM and PSG, demonstrating the feasibility of the system design. PMID:25420152
Ordering, thermal excitations and phase transitions in dipolar coupled mono-domain magnet arrays
NASA Astrophysics Data System (ADS)
Kapaklis, Vassilios
2015-03-01
Magnetism has provided a fertile test bed for physical models, such as the Heisenberg and Ising models. Most of these investigations have focused on solid materials and relate to their atomic properties such as the atomic magnetic moments and their interactions. Recently, advances in nanotechnology have enabled the controlled patterning of nano-sized magnetic particles, which can be arranged in extended lattices. Tailoring the geometry and the magnetic material of these lattices, the magnetic interactions and magnetization reversal energy barriers can be tuned. This enables interesting interaction schemes to be examined on adjustable length and energy scales. As a result such nano-magnetic systems represent an ideal playground for the study of physical model systems, being facilitated by direct magnetic imaging techniques. One particularly interesting case is that of systems exhibiting frustration, where competing interactions cannot be simultaneously satisfied. This results in a degeneracy of the ground state and intricate thermodynamic properties. An archetypical frustrated physical system is water ice. Similar physics can be mirrored in nano-magnetic arrays, by tuning the arrangement of neighboring magnetic islands, referred to as artificial spin ice. Thermal excitations in such systems resemble magnetic monopoles. In this presentation key concepts related to nano-magnetism and artificial spin ice will be introduced and discussed, along with recent experimental and theoretical developments.
Kim, Myungjoon; Lee, Chiwon; Hong, Nhayoung; Kim, Yoon Jae; Kim, Sungwan
2017-06-24
Although robotic laparoscopic surgery has various benefits when compared with conventional open surgery and minimally invasive surgery, it also has issues to overcome and one of the issues is the discontinuous surgical flow that occurs whenever control is swapped between the endoscope system and the operating robot arm system. This can lead to problems such as collision between surgical instruments, injury to patients, and increased operation time. To achieve continuous surgical operation, a wireless controllable stereo endoscope system is proposed which enables the simultaneous control of the operating robot arm system and the endoscope system. The proposed system consists of two improved novel master interfaces (iNMIs), a four-degrees of freedom (4-DOFs) endoscope control system (ECS), and a simple three-dimensional (3D) endoscope. In order to simultaneously control the proposed system and patient side manipulators of da Vinci research kit (dVRK), the iNMIs are installed to the master tool manipulators of dVRK system. The 4-DOFs ECS consists of four servo motors and employs a two-parallel link structure to provide translational and fulcrum point motion to the simple 3D endoscope. The images acquired by the endoscope undergo stereo calibration and rectification to provide a clear 3D vision to the surgeon as available in clinically used da Vinci surgical robot systems. Tests designed to verify the accuracy, data transfer time, and power consumption of the iNMIs were performed. The workspace was calculated to estimate clinical applicability and a modified peg transfer task was conducted with three novice volunteers. The iNMIs operated for 317 min and moved in accordance with the surgeon's desire with a mean latency of 5 ms. The workspace was calculated to be 20378.3 cm 3 , which exceeds the reference workspace of 549.5 cm 3 . The novice volunteers were able to successfully execute the modified peg transfer task designed to evaluate the proposed system's overall performance. The experimental results verify that the proposed 3D endoscope system enables continuous surgical flow. The workspace is suitable for the performance of numerous types of surgeries. Therefore, the proposed system is expected to provide much higher safety and efficacy for current surgical robot systems.
Luciferase-Zinc-Finger System for the Rapid Detection of Pathogenic Bacteria.
Shi, Chu; Xu, Qing; Ge, Yue; Jiang, Ling; Huang, He
2017-08-09
Rapid and reliable detection of pathogenic bacteria is crucial for food safety control. Here, we present a novel luciferase-zinc finger system for the detection of pathogens that offers rapid and specific profiling. The system, which uses a zinc-finger protein domain to probe zinc finger recognition sites, was designed to bind the amplified conserved regions of 16S rDNA, and the obtained products were detected using a modified luciferase. The luciferase-zinc finger system not only maintained luciferase activity but also allowed the specific detection of different bacterial species, with a sensitivity as low as 10 copies and a linear range from 10 to 10 4 copies per microliter of the specific PCR product. Moreover, the system is robust and rapid, enabling the simultaneous detection of 6 species of bacteria in artificially contaminated samples with excellent accuracy. Thus, we envision that our luciferase-zinc finger system will have far-reaching applications.
Robust Real-Time Musculoskeletal Modeling Driven by Electromyograms.
Durandau, Guillaume; Farina, Dario; Sartori, Massimo
2018-03-01
Current clinical biomechanics involves lengthy data acquisition and time-consuming offline analyses with biomechanical models not operating in real-time for man-machine interfacing. We developed a method that enables online analysis of neuromusculoskeletal function in vivo in the intact human. We used electromyography (EMG)-driven musculoskeletal modeling to simulate all transformations from muscle excitation onset (EMGs) to mechanical moment production around multiple lower-limb degrees of freedom (DOFs). We developed a calibration algorithm that enables adjusting musculoskeletal model parameters specifically to an individual's anthropometry and force-generating capacity. We incorporated the modeling paradigm into a computationally efficient, generic framework that can be interfaced in real-time with any movement data collection system. The framework demonstrated the ability of computing forces in 13 lower-limb muscle-tendon units and resulting moments about three joint DOFs simultaneously in real-time. Remarkably, it was capable of extrapolating beyond calibration conditions, i.e., predicting accurate joint moments during six unseen tasks and one unseen DOF. The proposed framework can dramatically reduce evaluation latency in current clinical biomechanics and open up new avenues for establishing prompt and personalized treatments, as well as for establishing natural interfaces between patients and rehabilitation systems. The integration of EMG with numerical modeling will enable simulating realistic neuromuscular strategies in conditions including muscular/orthopedic deficit, which could not be robustly simulated via pure modeling formulations. This will enable translation to clinical settings and development of healthcare technologies including real-time bio-feedback of internal mechanical forces and direct patient-machine interfacing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutic, S; Low, D; Chmielewski, T
Purpose: To describe the design and characteristics of a novel linac-based MRI guided radiation therapy system that addresses RF and magnetic field interference and that can be housed in conventional radiotherapy vaults. Methods: The MR-IGRT system will provide simultaneous MR imaging combined with both simple (3D) and complex (IMRT, SBRT, SRS) techniques. The system is a combination of a) double-donut split solenoidal superconducting 0.345T MRI; and b) a 90 cm isocenter ring-gantry mounted 6MV, flattening filter-free linac coupled with a stacked doubly-focused multileaf collimator with 4 mm resolution. A novel RF shielding and absorption technology was developed to isolate themore » beam generating RF emissions from the MR, while a novel magnetic shielding sleeve system was developed to place the magnetic field-sensitive components in low-magnetic field regions. The system design produces high spatial resolution radiation beams with state-of-the art radiation dose characteristics and simultaneous MR imaging. Results: Prototype testing with a spectrum analyzer has demonstrated complete elimination of linac RF inside the treatment room. The magnetic field inside of the magnetic shielding was well below the specification, allowing the linear accelerator to operate normally. A novel on-gantry shimming system maintained < 25 ppm magnetic field homogeneity over a 45 cm spherical field of view for all gantry angles. Conclusion: The system design demonstrates the feasibility coupling a state-of-the art linac system with a 0.345T MRI, enabling highly conformal radiation therapy with simultaneous MR image guidance. S. Mutic’s employer (Washington University) has grant with ViewRay; D. Low is former ViewRay scientific advisory board member (ended October 2015); T. Chmielewski, G. Fought, M. Hernandez, I. Kawrakow, A. Sharma, S. Shvartsman, J. Dempsey are employees of ViewRay with stock options (Dempsey has leadership role and Dempsey/Kawrakow have stock).« less
Role of Bioreactor Technology in Tissue Engineering for Clinical Use and Therapeutic Target Design.
Selden, Clare; Fuller, Barry
2018-04-24
Micro and small bioreactors are well described for use in bioprocess development in pre-production manufacture, using ultra-scale down and microfluidic methodology. However, the use of bioreactors to understand normal and pathophysiology by definition must be very different, and the constraints of the physiological environment influence such bioreactor design. This review considers the key elements necessary to enable bioreactors to address three main areas associated with biological systems. All entail recreation of the in vivo cell niche as faithfully as possible, so that they may be used to study molecular and cellular changes in normal physiology, with a view to creating tissue-engineered grafts for clinical use; understanding the pathophysiology of disease at the molecular level; defining possible therapeutic targets; and enabling appropriate pharmaceutical testing on a truly representative organoid, thus enabling better drug design, and simultaneously creating the potential to reduce the numbers of animals in research. The premise explored is that not only cellular signalling cues, but also mechano-transduction from mechanical cues, play an important role.
NASA Astrophysics Data System (ADS)
Stack, J. R.; Guthrie, R. S.; Cramer, M. A.
2009-05-01
The purpose of this paper is to outline the requisite technologies and enabling capabilities for network-centric sensor data analysis within the mine warfare community. The focus includes both automated processing and the traditional humancentric post-mission analysis (PMA) of tactical and environmental sensor data. This is motivated by first examining the high-level network-centric guidance and noting the breakdown in the process of distilling actionable requirements from this guidance. Examples are provided that illustrate the intuitive and substantial capability improvement resulting from processing sensor data jointly in a network-centric fashion. Several candidate technologies are introduced including the ability to fully process multi-sensor data given only partial overlap in sensor coverage and the ability to incorporate target identification information in stride. Finally the critical enabling capabilities are outlined including open architecture, open business, and a concept of operations. This ability to process multi-sensor data in a network-centric fashion is a core enabler of the Navy's vision and will become a necessity with the increasing number of manned and unmanned sensor systems and the requirement for their simultaneous use.
Multispectral imaging with vertical silicon nanowires
Park, Hyunsung; Crozier, Kenneth B.
2013-01-01
Multispectral imaging is a powerful tool that extends the capabilities of the human eye. However, multispectral imaging systems generally are expensive and bulky, and multiple exposures are needed. Here, we report the demonstration of a compact multispectral imaging system that uses vertical silicon nanowires to realize a filter array. Multiple filter functions covering visible to near-infrared (NIR) wavelengths are simultaneously defined in a single lithography step using a single material (silicon). Nanowires are then etched and embedded into polydimethylsiloxane (PDMS), thereby realizing a device with eight filter functions. By attaching it to a monochrome silicon image sensor, we successfully realize an all-silicon multispectral imaging system. We demonstrate visible and NIR imaging. We show that the latter is highly sensitive to vegetation and furthermore enables imaging through objects opaque to the eye. PMID:23955156
Method and system for controlling the position of a beam of light
Steinkraus, Jr., Robert F.; Johnson, Gary W [Livermore, CA; Ruggiero, Anthony J [Livermore, CA
2011-08-09
An method and system for laser beam tracking and pointing is based on a conventional position sensing detector (PSD) or quadrant cell but with the use of amplitude-modulated light. A combination of logarithmic automatic gain control, filtering, and synchronous detection offers high angular precision with exceptional dynamic range and sensitivity, while maintaining wide bandwidth. Use of modulated light enables the tracking of multiple beams simultaneously through the use of different modulation frequencies. It also makes the system resistant to interfering light sources such as ambient light. Beam pointing is accomplished by feeding back errors in the measured beam position to a beam steering element, such as a steering mirror. Closed-loop tracking performance is superior to existing methods, especially under conditions of atmospheric scintillation.
Geostar - Navigation location system
NASA Astrophysics Data System (ADS)
Keyser, Donald A.
The author describes the Radiodetermination Satellite Service (RDSS). The initial phase of the RDSS provides for a unique service enabling central offices and headquarters to obtain position-location information and receive short digital messages from mobile user terminals throughout the contiguous United States, southern Canada, and northern Mexico. The system employs a spread-spectrum, CDMA modulation technique allowing multiple customers to use the system simultaneously, without preassigned coordination with fellow users. Position location is currently determined by employing an existing radio determination receiver, such as Loran-C, GPS, or Transit, in the mobile user terminal. In the early 1990s position location will be determined at a central earth station by time-differential ranging of the user terminals via two or more geostationary satellites. A brief overview of the RDSS system architecture is presented with emphasis on the user terminal and its diverse applications.
Ethernet-based test stand for a CAN network
NASA Astrophysics Data System (ADS)
Ziebinski, Adam; Cupek, Rafal; Drewniak, Marek
2017-11-01
This paper presents a test stand for the CAN-based systems that are used in automotive systems. The authors propose applying an Ethernet-based test system that supports the virtualisation of a CAN network. The proposed solution has many advantages compared to classical test beds that are based on dedicated CAN-PC interfaces: it allows the physical constraints associated with the number of interfaces that can be simultaneously connected to a tested system to be avoided, which enables the test time for parallel tests to be shortened; the high speed of Ethernet transmission allows for more frequent sampling of the messages that are transmitted by a CAN network (as the authors show in the experiment results section) and the cost of the proposed solution is much lower than the traditional lab-based dedicated CAN interfaces for PCs.
Metasurface optics for full-color computational imaging.
Colburn, Shane; Zhan, Alan; Majumdar, Arka
2018-02-01
Conventional imaging systems comprise large and expensive optical components that successively mitigate aberrations. Metasurface optics offers a route to miniaturize imaging systems by replacing bulky components with flat and compact implementations. The diffractive nature of these devices, however, induces severe chromatic aberrations, and current multiwavelength and narrowband achromatic metasurfaces cannot support full visible spectrum imaging (400 to 700 nm). We combine principles of both computational imaging and metasurface optics to build a system with a single metalens of numerical aperture ~0.45, which generates in-focus images under white light illumination. Our metalens exhibits a spectrally invariant point spread function that enables computational reconstruction of captured images with a single digital filter. This work connects computational imaging and metasurface optics and demonstrates the capabilities of combining these disciplines by simultaneously reducing aberrations and downsizing imaging systems using simpler optics.
Exploitation of Multi-beam Directional Antennas for a Wireless TDMA/FDD MAC
NASA Astrophysics Data System (ADS)
Atmaca, Sedat; Ceken, Celal; Erturk, Ismail
2008-05-01
The effects of the multi-beam directional antennas on the performance of a new wireless TDMA/FDD MAC system are presented. Directional antennas intrinsically enable development of the SDMA systems and allow transmitting and receiving signals simultaneously at the same time slot. Employing a dynamic slot allocation table at a base station with 4 or 8 sector directional antennas and holding the wireless terminals' location information, a new SDMA/TDMA/FDD frame structure has been developed for wireless communications. The simulation studies realized using OPNET Modeler show that the proposed SDMA/TDMA/FDD system has substantially increased the traditional TDMA/FDD system capacity and provides 1.37 to 4 times better mean delay results when the number of users is increased from 4 to 32 under the same load in the wireless network models.
Design for active and passive flutter suppression and gust alleviation. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Karpel, M.
1981-01-01
Analytical design techniques for active and passive control of aeroelastic systems are based on a rational approximation of the unsteady aerodynamic loads in the entire Laplace domain, which yields matrix equations of motion with constant coefficients. Some existing schemes are reviewed, the matrix Pade approximant is modified, and a technique which yields a minimal number of augmented states for a desired accuracy is presented. The state-space aeroelastic model is used to design an active control system for simultaneous flutter suppression and gust alleviation. The design target is for a continuous controller which transfers some measurements taken on the vehicle to a control command applied to a control surface. Structural modifications are formulated in a way which enables the treatment of passive flutter suppression system with the same procedures by which active control systems are designed.
Generation of surgical pathology report using a 5,000-word speech recognizer.
Tischler, A S; Martin, M R
1989-10-01
Pressures to decrease both turnaround time and operating costs simultaneously have placed conflicting demands on traditional forms of medical transcription. The new technology of voice recognition extends the promise of enabling the pathologist or other medical professional to dictate a correct report and have it printed and/or transmitted to a database immediately. The usefulness of voice recognition systems depends on several factors, including ease of use, reliability, speed, and accuracy. These in turn depend on the general underlying design of the systems and inclusion in the systems of a specific knowledge base appropriate for each application. Development of a good knowledge base requires close collaboration between a domain expert and a knowledge engineer with expertise in voice recognition. The authors have recently completed a knowledge base for surgical pathology using the Kurzweil VoiceReport 5,000-word system.
Barakat, Tahsin Stefan; Gribnau, Joost
2014-01-01
Fluorescent in situ hybridization (FISH) is a molecular technique which enables the detection of nucleic acids in cells. DNA FISH is often used in cytogenetics and cancer diagnostics, and can detect aberrations of the genome, which often has important clinical implications. RNA FISH can be used to detect RNA molecules in cells and has provided important insights in regulation of gene expression. Combining DNA and RNA FISH within the same cell is technically challenging, as conditions suitable for DNA FISH might be too harsh for fragile, single stranded RNA molecules. We here present an easily applicable protocol which enables the combined, simultaneous detection of Xist RNA and DNA encoded by the X chromosomes. This combined DNA-RNA FISH protocol can likely be applied to other systems where both RNA and DNA need to be detected. PMID:24961515
Electrically Injected UV-Visible Nanowire Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, George T.; Li, Changyi; Li, Qiming
2015-09-01
There is strong interest in minimizing the volume of lasers to enable ultracompact, low-power, coherent light sources. Nanowires represent an ideal candidate for such nanolasers as stand-alone optical cavities and gain media, and optically pumped nanowire lasing has been demonstrated in several semiconductor systems. Electrically injected nanowire lasers are needed to realize actual working devices but have been elusive due to limitations of current methods to address the requirement for nanowire device heterostructures with high material quality, controlled doping and geometry, low optical loss, and efficient carrier injection. In this project we proposed to demonstrate electrically injected single nanowire lasersmore » emitting in the important UV to visible wavelengths. Our approach to simultaneously address these challenges is based on high quality III-nitride nanowire device heterostructures with precisely controlled geometries and strong gain and mode confinement to minimize lasing thresholds, enabled by a unique top-down nanowire fabrication technique.« less
Zhuang, Tao-Tao; Liu, Yan; Li, Yi; Zhao, Yuan; Wu, Liang; Jiang, Jun; Yu, Shu-Hong
2016-05-23
The full harvest of solar energy by semiconductors requires a material that simultaneously absorbs across the whole solar spectrum and collects photogenerated electrons and holes separately. The stepwise integration of three semiconducting sulfides, namely ZnS, CdS, and Cu2-x S, into a single nanocrystal, led to a unique ternary multi-node sheath ZnS-CdS-Cu2-x S heteronanorod for full-spectrum solar energy absorption. Localized surface plasmon resonance (LSPR) in the nonstoichiometric copper sulfide nanostructures enables effective NIR absorption. More significantly, the construction of pn heterojunctions between Cu2-x S and CdS leads to staggered gaps, as confirmed by first-principles simulations. This band alignment causes effective electron-hole separation in the ternary system and hence enables efficient solar energy conversion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Parot, Vicente; Lim, Daryl; González, Germán; Traverso, Giovanni; Nishioka, Norman S; Vakoc, Benjamin J; Durr, Nicholas J
2013-07-01
While color video endoscopy has enabled wide-field examination of the gastrointestinal tract, it often misses or incorrectly classifies lesions. Many of these missed lesions exhibit characteristic three-dimensional surface topographies. An endoscopic system that adds topographical measurements to conventional color imagery could therefore increase lesion detection and improve classification accuracy. We introduce photometric stereo endoscopy (PSE), a technique which allows high spatial frequency components of surface topography to be acquired simultaneously with conventional two-dimensional color imagery. We implement this technique in an endoscopic form factor and demonstrate that it can acquire the topography of small features with complex geometries and heterogeneous optical properties. PSE imaging of ex vivo human gastrointestinal tissue shows that surface topography measurements enable differentiation of abnormal shapes from surrounding normal tissue. Together, these results confirm that the topographical measurements can be obtained with relatively simple hardware in an endoscopic form factor, and suggest the potential of PSE to improve lesion detection and classification in gastrointestinal imaging.
Dual-Color Click Beetle Luciferase Heteroprotein Fragment Complementation Assays
Villalobos, Victor; Naik, Snehal; Bruinsma, Monique; Dothager, Robin S.; Pan, Mei-Hsiu; Samrakandi, Mustapha; Moss, Britney; Elhammali, Adnan; Piwnica-Worms, David
2010-01-01
Summary Understanding the functional complexity of protein interactions requires mapping biomolecular complexes within the cellular environment over biologically-relevant time scales. Herein we describe a novel set of reversible, multicolored heteroprotein complementation fragments based on various firefly and click beetle luciferases that utilize the same substrate, D-luciferin. Luciferase heteroprotein fragment complementation systems enabled dual-color quantification of two discreet pairs of interacting proteins simultaneously or two distinct proteins interacting with a third shared protein in live cells. Using real-time analysis of click beetle green and click beetle red luciferase heteroprotein fragment complementation applied to β-TrCP, an E3-ligase common to the regulation of both β-catenin and IκBα, GSK3β was identified as a novel candidate kinase regulating IκBα processing. These dual-color protein interaction switches may enable directed dynamic analysis of a variety of protein interactions in living cells. PMID:20851351
NASA Astrophysics Data System (ADS)
Gruzin, A. V.; Gruzin, V. V.; Shalay, V. V.
2017-08-01
The development of technology for a directional soil compaction of tank foundations for oil and oil products storage is a relevant problem which solution will enable simultaneously provide required operational characteristics of a soil foundation and reduce time and material costs to prepare the foundation. The impact dynamics of rammers' operating elements on the soil foundation is planned to specify in the course of laboratory studies. A specialized technique is developed to justify the parameters and select the equipment for laboratory researches. The usage of this technique enabled us to calculate dimensions of the models, of a test bench and specifications of the recording equipment, and a lighting system. The necessary equipment for laboratory studies was selected. Preliminary laboratory tests were carried out. The estimate of accuracy for planned laboratory studies was given.
Fluorescent Labeling of COS-7 Expressing SNAP-tag Fusion Proteins for Live Cell Imaging
Provost, Christopher R.; Sun, Luo
2010-01-01
SNAP-tag and CLIP-tag protein labeling systems enable the specific, covalent attachment of molecules, including fluorescent dyes, to a protein of interest in live cells. These systems offer a broad selection of fluorescent substrates optimized for a range of imaging instrumentation. Once cloned and expressed, the tagged protein can be used with a variety of substrates for numerous downstream applications without having to clone again. There are two steps to using this system: cloning and expression of the protein of interest as a SNAP-tag fusion, and labeling of the fusion with the SNAP-tag substrate of choice. The SNAP-tag is a small protein based on human O6-alkylguanine-DNA-alkyltransferase (hAGT), a DNA repair protein. SNAP-tag labels are dyes conjugated to guanine or chloropyrimidine leaving groups via a benzyl linker. In the labeling reaction, the substituted benzyl group of the substrate is covalently attached to the SNAP-tag. CLIP-tag is a modified version of SNAP-tag, engineered to react with benzylcytosine rather than benzylguanine derivatives. When used in conjunction with SNAP-tag, CLIP-tag enables the orthogonal and complementary labeling of two proteins simultaneously in the same cells. PMID:20485262
A high throughput array microscope for the mechanical characterization of biomaterials
NASA Astrophysics Data System (ADS)
Cribb, Jeremy; Osborne, Lukas D.; Hsiao, Joe Ping-Lin; Vicci, Leandra; Meshram, Alok; O'Brien, E. Tim; Spero, Richard Chasen; Taylor, Russell; Superfine, Richard
2015-02-01
In the last decade, the emergence of high throughput screening has enabled the development of novel drug therapies and elucidated many complex cellular processes. Concurrently, the mechanobiology community has developed tools and methods to show that the dysregulation of biophysical properties and the biochemical mechanisms controlling those properties contribute significantly to many human diseases. Despite these advances, a complete understanding of the connection between biomechanics and disease will require advances in instrumentation that enable parallelized, high throughput assays capable of probing complex signaling pathways, studying biology in physiologically relevant conditions, and capturing specimen and mechanical heterogeneity. Traditional biophysical instruments are unable to meet this need. To address the challenge of large-scale, parallelized biophysical measurements, we have developed an automated array high-throughput microscope system that utilizes passive microbead diffusion to characterize mechanical properties of biomaterials. The instrument is capable of acquiring data on twelve-channels simultaneously, where each channel in the system can independently drive two-channel fluorescence imaging at up to 50 frames per second. We employ this system to measure the concentration-dependent apparent viscosity of hyaluronan, an essential polymer found in connective tissue and whose expression has been implicated in cancer progression.
Integrating a mobile health setup in a chronic disease management network.
Ding, Hang; Ireland, Derek; Jayasena, Rajiv; Curmi, Jamie; Karunanithi, Mohan
2013-01-01
Supporting self management of chronic disease in collaboration with primary healthcare has been a national priority in order to mitigate the emerging disease burden on the already strained healthcare system. However, in practice, the uptake of self-management programs and compliance with clinical guidelines remain poor. Time constraints due to work commitments and lack of efficient monitoring tools have been the major barrier to the uptake and compliance. In this paper, we present a newly integrated mobile health system with a clinical chronic disease management network called cdmNet, which has already been validated to facilitate General Practitioners (GPs) to provide collaborative disease management services. The newly integrated solution takes advantage of the latest mobile web and wireless Bluetooth communication techniques to enable patients to record health data entries through ubiquitous mobile phones, and allows the data to be simultaneously shared by multidisciplinary care teams. This integration would enable patients to self-manage their chronic disease conditions in collaboration with GPs and hence, improve the uptake and compliance. Additionally, the proposed integration will provide a useful framework encouraging the translation of innovative mobile health technologies into highly regulated healthcare systems.
Low Noise Cruise Efficient Short Take-Off and Landing Transport Vehicle Study
NASA Technical Reports Server (NTRS)
Kim, Hyun D.; Berton, Jeffrey J.; Jones, Scott M.
2007-01-01
The saturation of the airspace around current airports combined with increasingly stringent community noise limits represents a serious impediment to growth in world aviation travel. Breakthrough concepts that both increase throughput and reduce noise impacts are required to enable growth in aviation markets. Concepts with a 25 year horizon must facilitate a 4x increase in air travel while simultaneously meeting community noise constraints. Attacking these horizon issues holistically is the concept study of a Cruise Efficient Short Take-Off and Landing (CESTOL) high subsonic transport under the NASA's Revolutionary Systems Concepts for Aeronautics (RSCA) project. The concept is a high-lift capable airframe with a partially embedded distributed propulsion system that takes a synergistic approach in propulsion-airframe-integration (PAI) by fully integrating the airframe and propulsion systems to achieve the benefits of both low-noise short take-off and landing (STOL) operations and efficient high speed cruise. This paper presents a summary of the recent study of a distributed propulsion/airframe configuration that provides low-noise STOL operation to enable 24-hour use of the untapped regional and city center airports to increase the capacity of the overall airspace while still maintaining efficient high subsonic cruise flight capability.
Enabling a Science Support Structure for NASAs Global Hawk UASs
NASA Technical Reports Server (NTRS)
Sullivan, Donald V.
2014-01-01
In this paper we describe the information technologies developed by NASA for the Winter/Spring 2013/2014, and Fall 2014, NASA Earth Venture Campaigns, Hurricane and Severe Storm Sentinel (HS3) and Airborne Tropical TRopopause EXperiment (ATTREX). These campaigns utilized Global Hawk UAS vehicles equipped at the NASA Armstrong (previously Dryden) Flight Research Facility (AFRC), Edwards Air Force Base, California, and operated from there, the NASA Wallops Flight Facility (WFF), Virginia, and Anderson Air Force Base (AAFB), Guam. Part of this enabling infrastructure utilized a layer 2 encrypted terrestrial Virtual Local Area Network (VLAN) that, at times, spanned greater than ten thousand miles (AAFB <-> AFRC <-> WFF) and was routed over geosynchronous Ku band communication Satellites directly to the aircraft sensor network. This infrastructure enabled seamless hand off between Satellites, and Satellite ground stations in Guam, California and Virginia, so allowing simultaneous Aircraft Command and Control and Science operations from remote locations. Additionally, we will describe the other elements of this infrastructure, from on-board geo-enabled databases, to real time communications directly from the instruments (in some cases, more than twelve were carried, and simultaneously operated, on one aircraft) to the researchers and other interested parties, world wide.
Superconductor Digital Electronics: -- Current Status, Future Prospects
NASA Astrophysics Data System (ADS)
Mukhanov, Oleg
2011-03-01
Two major applications of superconductor electronics: communications and supercomputing will be presented. These areas hold a significant promise of a large impact on electronics state-of-the-art for the defense and commercial markets stemming from the fundamental advantages of superconductivity: simultaneous high speed and low power, lossless interconnect, natural quantization, and high sensitivity. The availability of relatively small cryocoolers lowered the foremost market barrier for cryogenically-cooled superconductor electronic systems. These fundamental advantages enabled a novel Digital-RF architecture - a disruptive technological approach changing wireless communications, radar, and surveillance system architectures dramatically. Practical results were achieved for Digital-RF systems in which wide-band, multi-band radio frequency signals are directly digitized and digital domain is expanded throughout the entire system. Digital-RF systems combine digital and mixed signal integrated circuits based on Rapid Single Flux Quantum (RSFQ) technology, superconductor analog filter circuits, and semiconductor post-processing circuits. The demonstrated cryocooled Digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals, enabling multi-net data links, and performing signal acquisition from HF to L-band with 30 GHz clock frequencies. In supercomputing, superconductivity leads to the highest energy efficiencies per operation. Superconductor technology based on manipulation and ballistic transfer of magnetic flux quanta provides a superior low-power alternative to CMOS and other charge-transfer based device technologies. The fundamental energy consumption in SFQ circuits defined by flux quanta energy 2 x 10-19 J. Recently, a novel energy-efficient zero-static-power SFQ technology, eSFQ/ERSFQ was invented, which retains all advantages of standard RSFQ circuits: high-speed, dc power, internal memory. The voltage bias regulation, determined by SFQ clock, enables the zero-power at zero-activity regimes, indispensable for sensor and quantum bit readout.
Yu, Kenneth K.; Aguilar, Kiefer; Tsai, Jonathan; Galimidi, Rachel; Gnanapragasam, Priyanthi; Yang, Lili; Baltimore, David
2012-01-01
In nature, B cells produce surface immunoglobulin and secreted antibody from the same immunoglobulin gene via alternative splicing of the pre-messenger RNA. Here we present a novel system for genetically programming B cells to direct the simultaneous formation of membrane-bound and secreted immunoglobulins that we term a “Molecular Rheostat”, based on the use of mutated “self-cleaving” 2A peptides. The Molecular Rheostat is designed so that the ratio of secreted to membrane-bound immunoglobulins can be controlled by selecting appropriate mutations in the 2A peptide. Lentiviral transgenesis of Molecular Rheostat constructs into B cell lines enables the simultaneous expression of functional b12-based IgM-like BCRs that signal to the cells and mediate the secretion of b12 IgG broadly neutralizing antibodies that can bind and neutralize HIV-1 pseudovirus. We show that these b12-based Molecular Rheostat constructs promote the maturation of EU12 B cells in an in vitro model of B lymphopoiesis. The Molecular Rheostat offers a novel tool for genetically manipulating B cell specificity for B-cell based gene therapy. PMID:23209743
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goumiri, I. R.; Rowley, C. W.; Sabbagh, S. A.
In this study, a model-based feedback system is presented enabling the simultaneous control of the stored energy through β n and the toroidal rotation profile of the plasma in National Spherical Torus eXperiment Upgrade device. Actuation is obtained using the momentum from six injected neutral beams and the neoclassical toroidal viscosity generated by applying three-dimensional magnetic fields. Based on a model of the momentum diffusion and torque balance, a feedback controller is designed and tested in closed-loop simulations using TRANSP, a time dependent transport analysis code, in predictive mode. Promising results for the ongoing experimental implementation of controllers are obtained.
NASA Astrophysics Data System (ADS)
Doronkin, D. E.; Baier, S.; Sheppard, T.; Benzi, F.; Grunwaldt, J.-D.
2016-05-01
Selective catalytic reduction of NOx by ammonia over Cu-ZSM-5 was monitored by operando QEXAFS during simulation of the New European Driving Cycle. The required fast temperature transients were realized using a novel silicon microreactor, enabling simultaneous spectroscopic and kinetic analysis by X-ray absorption spectroscopy (XAS) and mass spectrometry (MS). Periods of high temperature were correlated to an increase in both N2 production and change of coordination of Cu sites. This operando approach using Si microreactors can be applied to other heterogeneous catalytic systems involving fast temperature transients.
High-speed measurements of steel-plate deformations during laser surface processing.
Jezersek, Matija; Gruden, Valter; Mozina, Janez
2004-10-04
In this paper we present a novel approach to monitoring the deformations of a steel plate's surface during various types of laser processing, e.g., engraving, marking, cutting, bending, and welding. The measuring system is based on a laser triangulation principle, where the laser projector generates multiple lines simultaneously. This enables us to measure the shape of the surface with a high sampling rate (80 Hz with our camera) and high accuracy (+/-7 microm). The measurements of steel-plate deformations for plates of different thickness and with different illumination patterns are presented graphically and in an animation.
Correlation Plenoptic Imaging.
D'Angelo, Milena; Pepe, Francesco V; Garuccio, Augusto; Scarcelli, Giuliano
2016-06-03
Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.
NASA Astrophysics Data System (ADS)
D'Angelo, Milena; Pepe, Francesco V.; Garuccio, Augusto; Scarcelli, Giuliano
2016-06-01
Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.
Vital, Anne; Vital, Claude
2014-01-01
Simultaneous combined superficial peroneal nerve and peroneous brevis muscle biopsy, via the same cutaneous incision, allows examination of several tissue specimens and significantly improves the diagnosis of systemic diseases with peripheral nerve involvement. Vasculitides are certainly the most frequently diagnosed on neuro-muscular biopsies, but this procedure is also well advised to asses a diagnosis of sarcoidosis or amyloidosis. More occasionally, combined nerve and muscle biopsy may reveal an unpredicted diagnosis of cholesterol embolism, intra-vascular lymphoma, or enables complementary diagnosis investigations on mitochondrial cytopathy or storage disease.
A 0.2 V Micro-Electromechanical Switch Enabled by a Phase Transition.
Dong, Kaichen; Choe, Hwan Sung; Wang, Xi; Liu, Huili; Saha, Bivas; Ko, Changhyun; Deng, Yang; Tom, Kyle B; Lou, Shuai; Wang, Letian; Grigoropoulos, Costas P; You, Zheng; Yao, Jie; Wu, Junqiao
2018-04-01
Micro-electromechanical (MEM) switches, with advantages such as quasi-zero leakage current, emerge as attractive candidates for overcoming the physical limits of complementary metal-oxide semiconductor (CMOS) devices. To practically integrate MEM switches into CMOS circuits, two major challenges must be addressed: sub 1 V operating voltage to match the voltage levels in current circuit systems and being able to deliver at least millions of operating cycles. However, existing sub 1 V mechanical switches are mostly subject to significant body bias and/or limited lifetimes, thus failing to meet both limitations simultaneously. Here 0.2 V MEM switching devices with ≳10 6 safe operating cycles in ambient air are reported, which achieve the lowest operating voltage in mechanical switches without body bias reported to date. The ultralow operating voltage is mainly enabled by the abrupt phase transition of nanolayered vanadium dioxide (VO 2 ) slightly above room temperature. The phase-transition MEM switches open possibilities for sub 1 V hybrid integrated devices/circuits/systems, as well as ultralow power consumption sensors for Internet of Things applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The MPLEx Protocol for Multi-omic Analyses of Soil Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicora, Carrie D.; Burnum-Johnson, Kristin E.; Nakayasu, Ernesto S.
Mass spectrometry (MS)-based integrated metaproteomic, metabolomic and lipidomic (multi-omic) studies are transforming our ability to understand and characterize microbial communities in environmental and biological systems. These measurements are even enabling enhanced analyses of complex soil microbial communities, which are the most complex microbial systems known to date. Multi-omic analyses, however, do have sample preparation challenges since separate extractions are typically needed for each omic study, thereby greatly amplifying the preparation time and amount of sample required. To address this limitation, a 3-in-1 method for simultaneous metabolite, protein, and lipid extraction (MPLEx) from the exact same soil sample was created bymore » adapting a solvent-based approach. This MPLEx protocol has proven to be simple yet robust for many sample types and even when utilized for limited quantities of complex soil samples. The MPLEx method also greatly enabled the rapid multi-omic measurements needed to gain a better understanding of the members of each microbial community, while evaluating the changes taking place upon biological and environmental perturbations.« less
High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing
Yun, S.H.; Vakoc, B.J.; Shishkov, M.; Desjardins, A.E.; Park, B.H.; de Boer, J.F.; Tearney, G.J.; Bouma, B.E.
2009-01-01
Polarization sensitive optical coherence tomography (PS-OCT) provides a cross-sectional image of birefringence in biological samples that is complementary in many applications to the standard reflectance-based image. Recent ex vivo studies have demonstrated that birefringence mapping enables the characterization of collagen and smooth muscle concentration and distribution in vascular tissues. Instruments capable of applying these measurements percutaneously in vivo may provide new insights into coronary atherosclerosis and acute myocardial infarction. We have developed a polarization sensitive optical frequency domain imaging (PS-OFDI) system that enables high-speed intravascular birefringence imaging through a fiber-optic catheter. The novel design of this system utilizes frequency multiplexing to simultaneously measure reflectance of two incident polarization states, overcoming concerns regarding temporal variations of the catheter fiber birefringence and spatial variations in the birefringence of the sample. We demonstrate circular cross-sectional birefringence imaging of a human coronary artery ex vivo through a flexible fiber-optic catheter with an A-line rate of 62 kHz and a ranging depth of 6.2 mm. PMID:18542183
Graphene-based aptamer logic gates and their application to multiplex detection.
Wang, Li; Zhu, Jinbo; Han, Lei; Jin, Lihua; Zhu, Chengzhou; Wang, Erkang; Dong, Shaojun
2012-08-28
In this work, a GO/aptamer system was constructed to create multiplex logic operations and enable sensing of multiplex targets. 6-Carboxyfluorescein (FAM)-labeled adenosine triphosphate binding aptamer (ABA) and FAM-labeled thrombin binding aptamer (TBA) were first adsorbed onto graphene oxide (GO) to form a GO/aptamer complex, leading to the quenching of the fluorescence of FAM. We demonstrated that the unique GO/aptamer interaction and the specific aptamer-target recognition in the target/GO/aptamer system were programmable and could be utilized to regulate the fluorescence of FAM via OR and INHIBIT logic gates. The fluorescence changed according to different input combinations, and the integration of OR and INHIBIT logic gates provided an interesting approach for logic sensing applications where multiple target molecules were present. High-throughput fluorescence imagings that enabled the simultaneous processing of many samples by using the combinatorial logic gates were realized. The developed logic gates may find applications in further development of DNA circuits and advanced sensors for the identification of multiple targets in complex chemical environments.
NASA Astrophysics Data System (ADS)
Matsuura, H.; Nagasaka, Y.
2018-02-01
We describe an instrument for the measurement of the Soret and thermodiffusion coefficients in ternary systems based on the transient holographic grating technique, which is called Soret forced Rayleigh scattering (SFRS) or thermal diffusion forced Rayleigh scattering (TDFRS). We integrated the SFRS technique and the two-wavelength detection technique, which enabled us to obtain two different signals to determine the two independent Soret coefficients and thermodiffusion coefficients in ternary systems. The instrument has been designed to read the mass transport simultaneously by two-wavelength lasers with wavelengths of λ = 403 nm and λ = 639 nm. The irradiation time of the probing lasers is controlled to reduce the effect of laser absorption to the sample with dye (quinizarin), which is added to convert the interference pattern of the heating laser of λ = 532 nm to the temperature grating. The result of the measurement of binary benchmark mixtures composed of 1,2,3,4-tetrahydronaphthalene (THN), isobutylbenzene (IBB), and n-dodecane (nC12) shows that the simultaneous two-wavelength observation of the Soret effect and the mass diffusion are adequately performed. To evaluate performance in the measurement of ternary systems, we carried out experiments on the ternary benchmark mixtures of THN/IBB/nC12 with the mass fractions of 0.800/0.100/0.100 at a temperature of 298.2 K. The Soret coefficient and thermodiffusion coefficient agreed with the ternary benchmark values within the range of the standard uncertainties (23% for the Soret coefficient of THN and 30% for the thermodiffusion coefficient of THN).
Design of a Low Power, Fast-Spectrum, Liquid-Metal Cooled Surface Reactor System
NASA Astrophysics Data System (ADS)
Marcille, T. F.; Dixon, D. D.; Fischer, G. A.; Doherty, S. P.; Poston, D. I.; Kapernick, R. J.
2006-01-01
In the current 2005 US budget environment, competition for fiscal resources make funding for comprehensive space reactor development programs difficult to justify and accommodate. Simultaneously, the need to develop these systems to provide planetary and deep space-enabling power systems is increasing. Given that environment, designs intended to satisfy reasonable near-term surface missions, using affordable technology-ready materials and processes warrant serious consideration. An initial lunar application design incorporating a stainless structure, 880 K pumped NaK coolant system and a stainless/UO2 fuel system can be designed, fabricated and tested for a fraction of the cost of recent high-profile reactor programs (JIMO, SP-100). Along with the cost reductions associated with the use of qualified materials and processes, this design offers a low-risk, high-reliability implementation associated with mission specific low temperature, low burnup, five year operating lifetime requirements.
Direct and simultaneous estimation of cardiac four chamber volumes by multioutput sparse regression.
Zhen, Xiantong; Zhang, Heye; Islam, Ali; Bhaduri, Mousumi; Chan, Ian; Li, Shuo
2017-02-01
Cardiac four-chamber volume estimation serves as a fundamental and crucial role in clinical quantitative analysis of whole heart functions. It is a challenging task due to the huge complexity of the four chambers including great appearance variations, huge shape deformation and interference between chambers. Direct estimation has recently emerged as an effective and convenient tool for cardiac ventricular volume estimation. However, existing direct estimation methods were specifically developed for one single ventricle, i.e., left ventricle (LV), or bi-ventricles; they can not be directly used for four chamber volume estimation due to the great combinatorial variability and highly complex anatomical interdependency of the four chambers. In this paper, we propose a new, general framework for direct and simultaneous four chamber volume estimation. We have addressed two key issues, i.e., cardiac image representation and simultaneous four chamber volume estimation, which enables accurate and efficient four-chamber volume estimation. We generate compact and discriminative image representations by supervised descriptor learning (SDL) which can remove irrelevant information and extract discriminative features. We propose direct and simultaneous four-chamber volume estimation by the multioutput sparse latent regression (MSLR), which enables jointly modeling nonlinear input-output relationships and capturing four-chamber interdependence. The proposed method is highly generalized, independent of imaging modalities, which provides a general regression framework that can be extensively used for clinical data prediction to achieve automated diagnosis. Experiments on both MR and CT images show that our method achieves high performance with a correlation coefficient of up to 0.921 with ground truth obtained manually by human experts, which is clinically significant and enables more accurate, convenient and comprehensive assessment of cardiac functions. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Zhog, Cheng Frank; Ye, Jing Yong; Norris, Theodore B.; Myc, Andrzej; Cao, Zhengyl; Bielinska, Anna; Thomas, Thommey; Baker, James R., Jr.
2004-01-01
Flow cytometry is a powerful technique for obtaining quantitative information from fluorescence in cells. Quantitation is achieved by assuring a high degree of uniformity in the optical excitation and detection, generally by using a highly controlled flow such as is obtained via hydrodynamic focusing. In this work, we demonstrate a two-beam, two- channel detection and two-photon excitation flow cytometry (T(sup 3)FC) system that enables multi-dye analysis to be performed very simply, with greatly relaxed requirements on the fluid flow. Two-photon excitation using a femtosecond near-infrared (NIR) laser has the advantages that it enables simultaneous excitation of multiple dyes and achieves very high signal-to-noise ratio through simplified filtering and fluorescence background reduction. By matching the excitation volume to the size of a cell, single-cell detection is ensured. Labeling of cells by targeted nanoparticles with multiple fluorophores enables normalization of the fluorescence signal and thus ratiometric measurements under nonuniform excitation. Quantitative size measurements can also be done even under conditions of nonuniform flow via a two-beam layout. This innovative detection scheme not only considerably simplifies the fluid flow system and the excitation and collection optics, it opens the way to quantitative cytometry in simple and compact microfluidics systems, or in vivo. Real-time detection of fluorescent microbeads in the vasculature of mouse ear demonstrates the ability to do flow cytometry in vivo. The conditions required to perform quantitative in vivo cytometry on labeled cells will be presented.
A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants[OPEN
Gil-Humanes, Javier; Čegan, Radim; Kono, Thomas J.Y.; Konečná, Eva; Belanto, Joseph J.; Starker, Colby G.
2017-01-01
We report a comprehensive toolkit that enables targeted, specific modification of monocot and dicot genomes using a variety of genome engineering approaches. Our reagents, based on transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, are systematized for fast, modular cloning and accommodate diverse regulatory sequences to drive reagent expression. Vectors are optimized to create either single or multiple gene knockouts and large chromosomal deletions. Moreover, integration of geminivirus-based vectors enables precise gene editing through homologous recombination. Regulation of transcription is also possible. A Web-based tool streamlines vector selection and construction. One advantage of our platform is the use of the Csy-type (CRISPR system yersinia) ribonuclease 4 (Csy4) and tRNA processing enzymes to simultaneously express multiple guide RNAs (gRNAs). For example, we demonstrate targeted deletions in up to six genes by expressing 12 gRNAs from a single transcript. Csy4 and tRNA expression systems are almost twice as effective in inducing mutations as gRNAs expressed from individual RNA polymerase III promoters. Mutagenesis can be further enhanced 2.5-fold by incorporating the Trex2 exonuclease. Finally, we demonstrate that Cas9 nickases induce gene targeting at frequencies comparable to native Cas9 when they are delivered on geminivirus replicons. The reagents have been successfully validated in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), Medicago truncatula, wheat (Triticum aestivum), and barley (Hordeum vulgare). PMID:28522548
A multi-purpose toolkit to enable advanced genome engineering in plants
Cermak, Tomas; Curtin, Shaun J.; Gil-Humanes, Javier; ...
2017-05-18
Here, we report a comprehensive toolkit that enables targeted, specific modification of monocot and dicot genomes using a variety of genome engineering approaches. Our reagents, based on Transcription Activator-Like Effector Nucleases TALENs and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system, are systematized for fast, modular cloning and accommodate diverse regulatory sequences to drive reagent expression. Vectors are optimized to create either single or multiple gene knockouts and large chromosomal deletions. Moreover, integration of geminivirus-based vectors enables precise gene editing through homologous recombination. Regulation of transcription is also possible. A web-based tool streamlines vector selection and construction. One advantagemore » of our platform is the use of the Csy-type (CRISPR system yersinia) ribonuclease 4 Csy4 and tRNA processing enzymes to simultaneously express multiple guide RNAs (gRNAs). For example, we demonstrate targeted deletions in up to six genes by expressing twelve gRNAs from a single transcript. Csy4 and tRNA expression systems are almost twice as effective in inducing mutations as gRNAs expressed from individual RNA polymerase III promoters. Mutagenesis can be further enhanced 2.5-fold by incorporating the Trex2 exonuclease. Finally, we demonstrate that Cas9 nickases induce gene targeting at frequencies comparable to native Cas9 when they are delivered on geminivirus replicons. The reagents have been successfully validated in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), Medicago truncatula, wheat (Triticum aestivum), and barley (Hordeum vulgare).« less
A multi-purpose toolkit to enable advanced genome engineering in plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cermak, Tomas; Curtin, Shaun J.; Gil-Humanes, Javier
Here, we report a comprehensive toolkit that enables targeted, specific modification of monocot and dicot genomes using a variety of genome engineering approaches. Our reagents, based on Transcription Activator-Like Effector Nucleases TALENs and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system, are systematized for fast, modular cloning and accommodate diverse regulatory sequences to drive reagent expression. Vectors are optimized to create either single or multiple gene knockouts and large chromosomal deletions. Moreover, integration of geminivirus-based vectors enables precise gene editing through homologous recombination. Regulation of transcription is also possible. A web-based tool streamlines vector selection and construction. One advantagemore » of our platform is the use of the Csy-type (CRISPR system yersinia) ribonuclease 4 Csy4 and tRNA processing enzymes to simultaneously express multiple guide RNAs (gRNAs). For example, we demonstrate targeted deletions in up to six genes by expressing twelve gRNAs from a single transcript. Csy4 and tRNA expression systems are almost twice as effective in inducing mutations as gRNAs expressed from individual RNA polymerase III promoters. Mutagenesis can be further enhanced 2.5-fold by incorporating the Trex2 exonuclease. Finally, we demonstrate that Cas9 nickases induce gene targeting at frequencies comparable to native Cas9 when they are delivered on geminivirus replicons. The reagents have been successfully validated in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), Medicago truncatula, wheat (Triticum aestivum), and barley (Hordeum vulgare).« less
Naidu, Gayathri; Jeong, Sanghyun; Johir, Md Abu Hasan; Fane, Anthony G; Kandasamy, Jaya; Vigneswaran, Saravanamuthu
2017-10-15
The ultimate goal of seawater reverse osmosis (SWRO) brine management is to achieve minimal liquid discharge while recovering valuable resources. The suitability of an integrated system of membrane distillation (MD) with sorption for the recovery of rubidium (Rb + ) and simultaneous SWRO brine volume reduction has been evaluated for the first time. Polymer encapsulated potassium copper hexacyanoferrate (KCuFC(PAN)) sorbent exhibited a good selectivity for Rb + sorption with 10-15% increment at 55 °C (Langmuir Q max = 125.11 ± 0.20 mg/g) compared to at 25 °C (Langmuir Q max = 108.71 ± 0.20 mg/g). The integrated MD-KCuFC(PAN) system with periodic membrane cleaning, enabled concentration of SWRO brine to a volume concentration factor (VCF) of 2.9 (65% water recovery). A stable MD permeate flux was achieved with good quality permeate (conductivity of 15-20 μS/cm). Repeated cycles of MD-KCuFC(PAN) sorption with SWRO brine enabled the extraction of 2.26 mg Rb + from 12 L of brine (equivalent to 1.9 kg of Rb/day, or 0.7 tonne/yr from a plant producing 10,000 m 3 /day brine). KCuFC(PAN) showed a high regeneration and reuse capacity. NH 4 Cl air stripping followed by resorcinol formaldehyde (RF) resin filtration enabled to recover Rb + from the desorbed solution. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Kiho; Yun, Jiwon; Lee, Donghyuck; Kim, Dohun
2018-02-01
A simple and convenient design enables real-time three-dimensional position tracking of nitrogen-vacancy (NV) centers in diamond. The system consists entirely of commercially available components (a single-photon counter, a high-speed digital-to-analog converter, a phase-sensitive detector-based feedback device, and a piezo stage), eliminating the need for custom programming or rigorous optimization processes. With a large input range of counters and trackers combined with high sensitivity of single-photon counting, high-speed position tracking (upper bound recovery time of 0.9 s upon 250 nm of step-like positional shift) not only of bright ensembles, but also of low-photon-collection-efficiency single to few NV centers (down to 103 s-1) is possible. The tracking requires position modulation of only 10 nm, which allows simultaneous position tracking and pulsed measurements in the long term. Therefore, this tracking system enables measuring a single-spin magnetic resonance and Rabi oscillations at a very high resolution even without photon collection optimization. The system is widely applicable to various fields related to NV center quantum manipulation research such as NV optical trapping, NV tracking in fluid dynamics, and biological sensing using NV centers inside a biological cell.
Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector
Kabadi, Ami M.; Ousterout, David G.; Hilton, Isaac B.; Gersbach, Charles A.
2014-01-01
Engineered DNA-binding proteins that manipulate the human genome and transcriptome have enabled rapid advances in biomedical research. In particular, the RNA-guided CRISPR/Cas9 system has recently been engineered to create site-specific double-strand breaks for genome editing or to direct targeted transcriptional regulation. A unique capability of the CRISPR/Cas9 system is multiplex genome engineering by delivering a single Cas9 enzyme and two or more single guide RNAs (sgRNAs) targeted to distinct genomic sites. This approach can be used to simultaneously create multiple DNA breaks or to target multiple transcriptional activators to a single promoter for synergistic enhancement of gene induction. To address the need for uniform and sustained delivery of multiplex CRISPR/Cas9-based genome engineering tools, we developed a single lentiviral system to express a Cas9 variant, a reporter gene and up to four sgRNAs from independent RNA polymerase III promoters that are incorporated into the vector by a convenient Golden Gate cloning method. Each sgRNA is efficiently expressed and can mediate multiplex gene editing and sustained transcriptional activation in immortalized and primary human cells. This delivery system will be significant to enabling the potential of CRISPR/Cas9-based multiplex genome engineering in diverse cell types. PMID:25122746
Rabenhold, Markus; Steiniger, Frank; Fahr, Alfred; Kontermann, Roland E; Rüger, Ronny
2015-03-10
Liposomes are well-established drug delivery systems with cancer chemotherapy as main focus. To increase the cellular drug delivery, liposomes can be endowed with ligands, e.g. recombinant antibody fragments, which ensure specific cell interaction. Multispecific immunoliposomes can be prepared to improve the liposome to cell interaction by targeting multiple different targets at the same time, for instance by coupling two or more different ligands to the liposomal surface, resulting in a synergistic or additive increase in binding. An alternative approach is the use of bispecific ligands to address at least two different targets. For this purpose we cloned a single-chain diabody fragment (scDb`), a bispecific molecule targeting two antigens, endoglin (CD105) and fibroblast activation protein (FAP), expressed on cells of the tumor microenvironment. As model cell system, a human fibrosarcoma cell line was used expressing endoglin and FAP simultaneously. Monospecific immunoliposomes directed either against endoglin or FAP were compared in vitro for cell binding and cytotoxic activity with bispecific dual-targeted scFv`-IL (bispecific scFv`FAP/CD105-IL) and bispecific single-chain diabody`-IL (scDb`CD105/FAP-IL) targeting endoglin and FAP simultaneously. In the underlying study, bispecific scFv`FAP/CD105-IL interacted stronger with cells expressing FAP and endoglin (both targets simultaneously) compared to the monospecific immunoliposomes. Furthermore, bispecific scDb`-immunoliposomes increased the cell interaction massively and showed enhanced cytotoxicity against target cells using doxorubicin-loaded immunoliposomes. The use of recombinant bispecific ligands as scDb`-molecules facilitates the generation of bispecific immunoliposomes by using the established post-insertion technique, enabling an extension of the ligand specificity spectrum via genetic modification. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Malone, Joseph D.; El-Haddad, Mohamed T.; Tye, Logan A.; Majeau, Lucas; Godbout, Nicolas; Rollins, Andrew M.; Boudoux, Caroline; Tao, Yuankai K.
2016-03-01
Scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) benefit clinical diagnostic imaging in ophthalmology by enabling in vivo noninvasive en face and volumetric visualization of retinal structures, respectively. Spectrally encoding methods enable confocal imaging through fiber optics and reduces system complexity. Previous applications in ophthalmic imaging include spectrally encoded confocal scanning laser ophthalmoscopy (SECSLO) and a combined SECSLO-OCT system for image guidance, tracking, and registration. However, spectrally encoded imaging suffers from speckle noise because each spectrally encoded channel is effectively monochromatic. Here, we demonstrate in vivo human retinal imaging using a swept source spectrally encoded scanning laser ophthalmoscope and OCT (SSSESLO- OCT) at 1060 nm. SS-SESLO-OCT uses a shared 100 kHz Axsun swept source, shared scanner and imaging optics, and are detected simultaneously on a shared, dual channel high-speed digitizer. SESLO illumination and detection was performed using the single mode core and multimode inner cladding of a double clad fiber coupler, respectively, to preserve lateral resolution while improving collection efficiency and reducing speckle contrast at the expense of confocality. Concurrent en face SESLO and cross-sectional OCT images were acquired with 1376 x 500 pixels at 200 frames-per-second. Our system design is compact and uses a shared light source, imaging optics, and digitizer, which reduces overall system complexity and ensures inherent co-registration between SESLO and OCT FOVs. En face SESLO images acquired concurrent with OCT cross-sections enables lateral motion tracking and three-dimensional volume registration with broad applications in multivolume OCT averaging, image mosaicking, and intraoperative instrument tracking.
NASA Technical Reports Server (NTRS)
1994-01-01
The ChemScan UV-6100 is a spectrometry system originally developed by Biotronics Technologies, Inc. under a Small Business Innovation Research (SBIR) contract. It is marketed to the water and wastewater treatment industries, replacing "grab sampling" with on-line data collection. It analyzes the light absorbance characteristics of a water sample, simultaneously detects hundreds of individual wavelengths absorbed by chemical substances in a process solution, and quantifies the information. Spectral data is then processed by ChemScan analyzer and compared with calibration files in the system's memory in order to calculate concentrations of chemical substances that cause UV light absorbance in specific patterns. Monitored substances can be analyzed for quality and quantity. Applications include detection of a variety of substances, and the information provided enables an operator to control a process more efficiently.
Micromechanical Characterization and Testing of Carbon Based Woven Thermal Protection Materials
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Pham, John T.; Arnold, James O.; Peterson, Keith; Venkatapathy, Ethiraj
2013-01-01
Woven thermal protection system (TPS) materials are one of the enabling technologies for mechanically deployable hypersonic decelerator systems. These materials can be simultaneously used for thermal protection and as structural load bearing members during the entry, descent and landing operations. In order to ensure successful thermal and structural performance during the atmospheric entry, it is important to characterize the properties of these materials, once they have been subjected to entry like conditions. The present paper focuses on mechanical characteristics of pre-and post arc-jet tested woven TPS samples at different scales. It also presents the observations from scanning electron microscope and computed tomography images, and explains the changes in microstructure after being subjected to combined thermal-mechanical loading environments.
Losier, Y; Englehart, K; Hudgins, B
2007-01-01
The integration of multiple input sources within a control strategy for powered upper limb prostheses could provide smoother, more intuitive multi-joint reaching movements based on the user's intended motion. The work presented in this paper presents the results of using myoelectric signals (MES) of the shoulder area in combination with the position of the shoulder as input sources to multiple linear discriminant analysis classifiers. Such an approach may provide users with control signals capable of controlling three degrees of freedom (DOF). This work is another important step in the development of hybrid systems that will enable simultaneous control of multiple degrees of freedom used for reaching tasks in a prosthetic limb.
Mass sensing based on a circuit cavity electromechanical system
NASA Astrophysics Data System (ADS)
Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di
2011-10-01
We present a scheme for mass sensing based on a circuit cavity electromechanical system where a free-standing, flexible aluminium membrane is capacitively coupled to a superconducting microwave cavity. Integration with the microwave cavity enables capacitive readout of the mechanical resonance directly on the chip. A microwave pump field and a second probe field are simultaneously applied to the cavity. The accreted mass landing on the membrane can be measured conveniently by tracking the mechanical resonance frequency shifts due to mass changes in the probe transmission spectrum. The mass responsivity for the membrane is 0.72 Hz/ag and we demonstrate that frequency shifts induced by adsorption of one hundred 1587 bp DNA molecules can be well resolved in the probe transmission spectrum.
Evidence for simultaneous sound production in the bowhead whale (Balaena mysticetus).
Tervo, Outi M; Christoffersen, Mads Fage; Parks, Susan E; Kristensen, Reinhardt Møbjerg; Madsen, Peter Teglberg
2011-10-01
Simultaneous production of two harmonically independent sounds, the two-voice phenomenon, is a well-known feature in bird song. Some toothed whales can click and whistle simultaneously, and a few studies have also reported simultaneous sound production by baleen whales. The mechanism for sound production in toothed whales has been largely uncovered within the last three decades, whereas mechanism for sound production in baleen whales remains poorly understood. This study provides three lines of evidence from recordings made in 2008 and 2009 in Disko Bay, Western Greenland, strongly indicating that bowhead whales are capable of simultaneous dual frequency sound production. This capability may function to enable more complex singing in an acoustically mediated reproductive advertisement display, as has been suggested for songbirds, and/or have significance in individual recognition. © 2011 Acoustical Society of America
Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions
Carrillo-Reid, Luis; Bando, Yuki; Peterka, Darcy S
2018-01-01
The simultaneous imaging and manipulating of neural activity could enable the functional dissection of neural circuits. Here we have combined two-photon optogenetics with simultaneous volumetric two-photon calcium imaging to measure and manipulate neural activity in mouse neocortex in vivo in three-dimensions (3D) with cellular resolution. Using a hybrid holographic approach, we simultaneously photostimulate more than 80 neurons over 150 μm in depth in layer 2/3 of the mouse visual cortex, while simultaneously imaging the activity of the surrounding neurons. We validate the usefulness of the method by photoactivating in 3D selected groups of interneurons, suppressing the response of nearby pyramidal neurons to visual stimuli in awake animals. Our all-optical approach could be used as a general platform to read and write neuronal activity. PMID:29412138
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele
2011-06-01
Recent advances in micro-optical element fabrication using gray scale technology have opened up the opportunity to create simultaneous multi-spectral imaging with fine structure diffractive lenses. This paper will discuss an approach that uses diffractive optical lenses configured in an array (lenslet array) and placed in close proximity to the focal plane array which enables a small compact simultaneous multispectral imaging camera [1]. The lenslet array is designed so that all lenslets have a common focal length with each lenslet tuned for a different wavelength. The number of simultaneous spectral images is determined by the number of individually configured lenslets in the array. The number of spectral images can be increased by a factor of 2 when using it with a dual-band focal plane array (MWIR/LWIR) by exploiting multiple diffraction orders. In addition, modulation of the focal length of the lenslet array with piezoelectric actuation will enable spectral bin fill-in allowing additional spectral coverage while giving up simultaneity. Different lenslet array spectral imaging concept designs are presented in this paper along with a unique concept for prefiltering the radiation focused on the detector. This approach to spectral imaging has applications in the detection of chemical agents in both aerosolized form and as a liquid on a surface. It also can be applied to the detection of weaponized biological agent and IED detection in various forms from manufacturing to deployment and post detection during forensic analysis.
Cup waveguide antenna with integrated polarizer and OMT
NASA Technical Reports Server (NTRS)
Kory, Carol (Inventor); Acosta, Roberto J. (Inventor); Lambert, Kevin M. (Inventor)
2011-01-01
A cup waveguide antenna with integrated polarizer and OMT for simultaneously communicating left and right hand circularly polarized electromagnetic waves is adjustable to obtain efficient propagation and reception of electromagnetic waves. The antenna includes a circular waveguide having an orthomode transducer utilizing first and second pins longitudinally spaced apart and oriented orthogonally with respect to each other. Six radially-oriented adjustable polarizer screws extend from the exterior to the interior of the waveguide. A septum intermediate the first and second pins is aligned with the first pin. Adjustment of the polarizer screws enables maximized propagation of and/or response to left hand circularly polarized electromagnetic waves by the first pin while simultaneously enabling maximized propagation of and/or response to right hand circularly polarized electromagnetic waves by the second pin.
Wolfe, Jace; Morais, Mila; Schafer, Erin; Agrawal, Smita; Koch, Dawn
2015-05-01
Cochlear implant recipients often experience difficulty with understanding speech in the presence of noise. Cochlear implant manufacturers have developed sound processing algorithms designed to improve speech recognition in noise, and research has shown these technologies to be effective. Remote microphone technology utilizing adaptive, digital wireless radio transmission has also been shown to provide significant improvement in speech recognition in noise. There are no studies examining the potential improvement in speech recognition in noise when these two technologies are used simultaneously. The goal of this study was to evaluate the potential benefits and limitations associated with the simultaneous use of a sound processing algorithm designed to improve performance in noise (Advanced Bionics ClearVoice) and a remote microphone system that incorporates adaptive, digital wireless radio transmission (Phonak Roger). A two-by-two way repeated measures design was used to examine performance differences obtained without these technologies compared to the use of each technology separately as well as the simultaneous use of both technologies. Eleven Advanced Bionics (AB) cochlear implant recipients, ages 11 to 68 yr. AzBio sentence recognition was measured in quiet and in the presence of classroom noise ranging in level from 50 to 80 dBA in 5-dB steps. Performance was evaluated in four conditions: (1) No ClearVoice and no Roger, (2) ClearVoice enabled without the use of Roger, (3) ClearVoice disabled with Roger enabled, and (4) simultaneous use of ClearVoice and Roger. Speech recognition in quiet was better than speech recognition in noise for all conditions. Use of ClearVoice and Roger each provided significant improvement in speech recognition in noise. The best performance in noise was obtained with the simultaneous use of ClearVoice and Roger. ClearVoice and Roger technology each improves speech recognition in noise, particularly when used at the same time. Because ClearVoice does not degrade performance in quiet settings, clinicians should consider recommending ClearVoice for routine, full-time use for AB implant recipients. Roger should be used in all instances in which remote microphone technology may assist the user in understanding speech in the presence of noise. American Academy of Audiology.
Gaertner, Maria; Cimalla, Peter; Meissner, Sven; Kuebler, Wolfgang M; Koch, Edmund
2012-07-01
Although several strategies exist for a minimal-invasive treatment of patients with lung failure, the mortality rate of acute respiratory distress syndrome still reaches 30% at minimum. This striking number indicates the necessity of understanding lung dynamics on an alveolar level. To investigate the dynamical behavior on a microscale, we used three-dimensional geometrical and functional imaging to observe tissue parameters including alveolar size and length of embedded elastic fibers during ventilation. We established a combined optical coherence tomography (OCT) and confocal fluorescence microscopy system that is able to monitor the distension of alveolar tissue and elastin fibers simultaneously within three dimensions. The OCT system can laterally resolve a 4.9 μm line pair feature and has an approximately 11 μm full-width-half-maximum axial resolution in air. confocal fluorescence microscopy visualizes molecular properties of the tissue with a resolution of 0.75 μm (laterally), and 5.9 μm (axially) via fluorescence detection of the dye sulforhodamine B specifically binding to elastin. For system evaluation, we used a mouse model in situ to perform lung distension by application of different constant pressure values within the physiological regime. Our method enables the investigation of alveolar dynamics by helping to reveal basic processes emerging during artificial ventilation and breathing.
A global positioning measurement system for regional geodesy in the caribbean
NASA Astrophysics Data System (ADS)
Renzetti, N. A.
1986-11-01
Low cost, portable receivers using signals from satellites of the Global Positioning System (GPS) will enable precision geodetic observations to be made on a large scale. A number of important geophysical questions relating to plate-motion kinematics and dynamics can be addressed with this measurement capability. We describe a plan to design and validate a GPS-based geodetic system, and to demonstrate its capability in California, Mexico and the Caribbean region. The Caribbean program is a prototype for a number of regional geodetic networks to be globally distributed. In 1985, efforts will be concentrated on understanding and minimizing error sources. Two dominant sources of error are uncertainties in the orbit ephemeris of the GPS satellites, and uncertainties in the correction for signal delay due to variable tropospheric water vapor. Orbit ephemeris uncertainties can be minimized by performing simultaneous satellite observations with GPS receivers at known (fiducial) points. Water vapor corrections can be made by performing simultaneous line-of-sight measurements of integrated water vapor content with ground-based water vapor radiometers. Specific experiments to validate both concepts are outlined. Caribbean measurements will begin in late 1985 or early 1986. Key areas of measurement are the northern strike-slip boundary, and the western convergent boundary. Specific measurement plans in both regions are described.
Iyer, Rohin K; Chiu, Loraine L Y; Radisic, Milica
2009-06-01
The purpose of this study was to design a simple system for cultivation of micro-scale cardiac organoids and investigate the effects of cellular composition on the organoid function. We hypothesized that cultivation of cardiomyocytes (CM) on preformed networks of fibroblasts (FB) and endothelial cells (EC) would enhance the structural and functional properties of the organoids, compared to simultaneously seeding the three cell types or cultivating enriched CM alone. Microchannels for cell seeding were created by photopolymerization of poly(ethylene glycol) diacrylate. In the preculture group the channels were seeded with a mixture of NIH 3T3 FB and D4T EC, following by addition of neonatal rat CM after 2 days of FB/EC preculture. The control microchannels were seeded simultaneously with FB/EC/CM (simultaneous triculture) or with enriched CM alone (enriched CM). Preculture resulted in cylindrical, contractile, and compact cardiac organoids that contained elongated CM expressing connexin-43 and cardiac troponin I. In contrast, simultaneous triculture resulted in noncontractile organoids with clusters of CM growing separately from elongated FBs and ECs. The staining for Connexin-43 was absent in the simultaneous triculture group. When fixed or frozen FB/EC were utilized as a preculture substrate for CM, noncontractile organoids were obtained; while preculture on a single cell type (either FB or EC) resulted in contractile organoids but with inferior properties compared to preculture with both FB/EC. These results emphasize the importance of living cells, presence of both nonmyocyte cell types as well as sequential seeding approach for cultivation of functional multicell type cardiac organoids. 2008 Wiley Periodicals, Inc.
SIMULTANEOUS MULTISLICE MAGNETIC RESONANCE FINGERPRINTING WITH LOW-RANK AND SUBSPACE MODELING
Zhao, Bo; Bilgic, Berkin; Adalsteinsson, Elfar; Griswold, Mark A.; Wald, Lawrence L.; Setsompop, Kawin
2018-01-01
Magnetic resonance fingerprinting (MRF) is a new quantitative imaging paradigm that enables simultaneous acquisition of multiple magnetic resonance tissue parameters (e.g., T1, T2, and spin density). Recently, MRF has been integrated with simultaneous multislice (SMS) acquisitions to enable volumetric imaging with faster scan time. In this paper, we present a new image reconstruction method based on low-rank and subspace modeling for improved SMS-MRF. Here the low-rank model exploits strong spatiotemporal correlation among contrast-weighted images, while the subspace model captures the temporal evolution of magnetization dynamics. With the proposed model, the image reconstruction problem is formulated as a convex optimization problem, for which we develop an algorithm based on variable splitting and the alternating direction method of multipliers. The performance of the proposed method has been evaluated by numerical experiments, and the results demonstrate that the proposed method leads to improved accuracy over the conventional approach. Practically, the proposed method has a potential to allow for a 3x speedup with minimal reconstruction error, resulting in less than 5 sec imaging time per slice. PMID:29060594
Simultaneous multislice magnetic resonance fingerprinting with low-rank and subspace modeling.
Bo Zhao; Bilgic, Berkin; Adalsteinsson, Elfar; Griswold, Mark A; Wald, Lawrence L; Setsompop, Kawin
2017-07-01
Magnetic resonance fingerprinting (MRF) is a new quantitative imaging paradigm that enables simultaneous acquisition of multiple magnetic resonance tissue parameters (e.g., T 1 , T 2 , and spin density). Recently, MRF has been integrated with simultaneous multislice (SMS) acquisitions to enable volumetric imaging with faster scan time. In this paper, we present a new image reconstruction method based on low-rank and subspace modeling for improved SMS-MRF. Here the low-rank model exploits strong spatiotemporal correlation among contrast-weighted images, while the subspace model captures the temporal evolution of magnetization dynamics. With the proposed model, the image reconstruction problem is formulated as a convex optimization problem, for which we develop an algorithm based on variable splitting and the alternating direction method of multipliers. The performance of the proposed method has been evaluated by numerical experiments, and the results demonstrate that the proposed method leads to improved accuracy over the conventional approach. Practically, the proposed method has a potential to allow for a 3× speedup with minimal reconstruction error, resulting in less than 5 sec imaging time per slice.
Lee, Annie W T; Lam, Johnson K S; Lam, Ricky K W; Ng, Wan H; Lee, Ella N L; Lee, Vicky T Y; Sze, Po P; Rajwani, Rahim; Fung, Kitty S C; To, Wing K; Lee, Rodney A; Tsang, Dominic N C; Siu, Gilman K H
2018-01-01
Objective: This study evaluated the capability of a MALDI Biotyper system equipped with the newly introduced MBT STAR-BL module to simultaneously perform species identification and β-lactamase-mediated resistance detection in bacteremia -causing bacteria isolated from cultured isolates and patient-derived blood cultures (BCs). Methods: Two hundred retrospective cultured isolates and 153 prospective BCs containing Gram-negative rods (GNR) were collected and subjected to direct bacterial identification, followed by the measurement of β-lactamase activities against ampicillin, piperacillin, cefotaxime, ceftazidime, and meropenem using the MBT STAR-BL module. The results and turnaround times were compared with those of routine microbiological processing. All strains were also characterized by beta-lactamase PCR and sequencing. Results: Using the saponin-based extraction method, MALDI-TOF MS correctly identified bacteria in 116/134 (86.6%) monomicrobial BCs. The detection sensitivities for β-lactamase activities against ampicillin, piperacillin, third-generation cephalosporin and meropenem were 91.3, 100, 97.9, and 100% for cultured isolates, and 80.4, 100, 68.8, and 40% for monomicrobial BCs ( n = 134) respectively. The overall specificities ranged from 91.5 to 100%. Furthermore, the MBT STAR-BL and conventional drug susceptibility test results were concordant in 14/19 (73.7%) polymicrobial cultures. Reducing the logRQ cut-off value from 0.4 to 0.2 increased the direct detection sensitivities for β-lactamase activities against ampicillin, cefotaxime and meropenem in BCs to 85.7, 87.5, and 100% respectively. The MBT STAR-BL test enabled the reporting of β-lactamase-producing GNR at 14.16 and 47.64 h before the interim and final reports of routine BCs processing, respectively, were available. Conclusion: The MALDI Biotyper system equipped with the MBT STAR-BL module enables the simultaneous rapid identification of bacterial species and β-lactamase-mediated resistance from BCs and cultured isolates. Adjustment of the logRQ cut-off value to 0.2 significantly increased the detection sensitivities for clinically important drug-resistant pathogens.
Lee, Annie W. T.; Lam, Johnson K. S.; Lam, Ricky K. W.; Ng, Wan H.; Lee, Ella N. L.; Lee, Vicky T. Y.; Sze, Po P.; Rajwani, Rahim; Fung, Kitty S. C.; To, Wing K.; Lee, Rodney A.; Tsang, Dominic N. C.; Siu, Gilman K. H.
2018-01-01
Objective: This study evaluated the capability of a MALDI Biotyper system equipped with the newly introduced MBT STAR-BL module to simultaneously perform species identification and β-lactamase-mediated resistance detection in bacteremia -causing bacteria isolated from cultured isolates and patient-derived blood cultures (BCs). Methods: Two hundred retrospective cultured isolates and 153 prospective BCs containing Gram-negative rods (GNR) were collected and subjected to direct bacterial identification, followed by the measurement of β-lactamase activities against ampicillin, piperacillin, cefotaxime, ceftazidime, and meropenem using the MBT STAR-BL module. The results and turnaround times were compared with those of routine microbiological processing. All strains were also characterized by beta-lactamase PCR and sequencing. Results: Using the saponin-based extraction method, MALDI-TOF MS correctly identified bacteria in 116/134 (86.6%) monomicrobial BCs. The detection sensitivities for β-lactamase activities against ampicillin, piperacillin, third-generation cephalosporin and meropenem were 91.3, 100, 97.9, and 100% for cultured isolates, and 80.4, 100, 68.8, and 40% for monomicrobial BCs (n = 134) respectively. The overall specificities ranged from 91.5 to 100%. Furthermore, the MBT STAR-BL and conventional drug susceptibility test results were concordant in 14/19 (73.7%) polymicrobial cultures. Reducing the logRQ cut-off value from 0.4 to 0.2 increased the direct detection sensitivities for β-lactamase activities against ampicillin, cefotaxime and meropenem in BCs to 85.7, 87.5, and 100% respectively. The MBT STAR-BL test enabled the reporting of β-lactamase-producing GNR at 14.16 and 47.64 h before the interim and final reports of routine BCs processing, respectively, were available. Conclusion: The MALDI Biotyper system equipped with the MBT STAR-BL module enables the simultaneous rapid identification of bacterial species and β-lactamase-mediated resistance from BCs and cultured isolates. Adjustment of the logRQ cut-off value to 0.2 significantly increased the detection sensitivities for clinically important drug-resistant pathogens. PMID:29527202
Jakob, Thilo; Forstenlechner, Peter; Matricardi, Paolo; Kleine-Tebbe, Jörg
The availability of single allergens and their use in microarray technology enables the simultaneous determination of specific IgE (sIgE) to a multitude of different allergens (> 100) in a multiplex procedure requiring only minute amounts of serum. This allows extensive individual sensitization profiles to be determined from a single analysis. Combined with a patient's medical history, these profiles simplify identification of cross-reactivity; permit a more accurate estimation of the risk of severe reactions; and enable the indication for specific immunotherapy to be more precisely established, particularly in cases of polysensitization. Strictly speaking, a multiplex assay is not a single test, but instead more than 100 simultaneous tests. This places considerable demands on the production, quality assurance, and interpretation of data. The following chapter describes the multiplex test systems currently available and discusses their characteristics. Performance data are presented and the sIgE values obtained from multiplex and singleplex assays are compared. Finally, the advantages and limitations of molecular allergy diagnostics using multiplex assays in clinical routine are discussed, and innovative possibilities for clinical research are described. The multiplex diagnostic tests available for clinical routine have now become well established. The interpretation of test results is demanding, particularly since all individual results need to be checked for their plausibility and clinical relevance on the basis of previous history (patient history, clinical symptoms, challenge test results). There is still room for improvement in certain areas, for example with respect to the overall test sensitivity of the method, as well as the availability and quality of particular allergens. The current test systems are just the beginning of a continuous development that will influence and most likely change clinical allergology in the coming years.
Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis
Nyein, Hnin Yin Yin; Challa, Samyuktha; Chen, Kevin; Peck, Austin; Fahad, Hossain M.; Ota, Hiroki; Shiraki, Hiroshi; Kiriya, Daisuke; Lien, Der-Hsien; Brooks, George A.; Davis, Ronald W.; Javey, Ali
2016-01-01
Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual's state of health1–12. Sampling human sweat, which is rich in physiological information13, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state14–18. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications. PMID:26819044
Cellular-V2X Communications for Platooning: Design and Evaluation
2018-01-01
Platooning is a cooperative driving application where autonomous/semi-autonomous vehicles move on the same lane in a train-like manner, keeping a small constant inter-vehicle distance, in order to reduce fuel consumption and gas emissions and to achieve safe and efficient transport. To this aim, they may exploit multiple on-board sensors (e.g., radars, LiDARs, positioning systems) and direct vehicle-to-vehicle communications to synchronize their manoeuvres. The main objective of this paper is to discuss the design choices and factors that determine the performance of a platooning application, when exploiting the emerging cellular vehicle-to-everything (C-V2X) communication technology and considering the scheduled mode, specified by 3GPP for communications over the sidelink assisted by the eNodeB. Since no resource management algorithm is currently mandated by 3GPP for this new challenging context, we focus on analyzing the feasibility and performance of the dynamic scheduling approach, with platoon members asking for radio resources on a per-packet basis. We consider two ways of implementing dynamic scheduling, currently unspecified by 3GPP: the sequential mode, that is somehow reminiscent of time division multiple access solutions based on IEEE 802.11p—till now the only investigated access technology for platooning—and the simultaneous mode with spatial frequency reuse enabled by the eNodeB. The evaluation conducted through system-level simulations provides helpful insights about the proposed configurations and C-V2X parameter settings that mainly affect the reliability and latency performance of data exchange in platoons, under different load settings. Achieved results show that the proposed simultaneous mode succeeds in reducing the latency in the update cycle in each vehicle’s controller, thus enabling future high-density platooning scenarios. PMID:29751690
Cellular-V2X Communications for Platooning: Design and Evaluation.
Nardini, Giovanni; Virdis, Antonio; Campolo, Claudia; Molinaro, Antonella; Stea, Giovanni
2018-05-11
Platooning is a cooperative driving application where autonomous/semi-autonomous vehicles move on the same lane in a train-like manner, keeping a small constant inter-vehicle distance, in order to reduce fuel consumption and gas emissions and to achieve safe and efficient transport. To this aim, they may exploit multiple on-board sensors (e.g., radars, LiDARs, positioning systems) and direct vehicle-to-vehicle communications to synchronize their manoeuvres. The main objective of this paper is to discuss the design choices and factors that determine the performance of a platooning application, when exploiting the emerging cellular vehicle-to-everything (C-V2X) communication technology and considering the scheduled mode, specified by 3GPP for communications over the sidelink assisted by the eNodeB. Since no resource management algorithm is currently mandated by 3GPP for this new challenging context, we focus on analyzing the feasibility and performance of the dynamic scheduling approach, with platoon members asking for radio resources on a per-packet basis. We consider two ways of implementing dynamic scheduling, currently unspecified by 3GPP: the sequential mode, that is somehow reminiscent of time division multiple access solutions based on IEEE 802.11p-till now the only investigated access technology for platooning-and the simultaneous mode with spatial frequency reuse enabled by the eNodeB. The evaluation conducted through system-level simulations provides helpful insights about the proposed configurations and C-V2X parameter settings that mainly affect the reliability and latency performance of data exchange in platoons, under different load settings. Achieved results show that the proposed simultaneous mode succeeds in reducing the latency in the update cycle in each vehicle's controller, thus enabling future high-density platooning scenarios.
Multi-client quantum key distribution using wavelength division multiplexing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grice, Warren P; Bennink, Ryan S; Earl, Dennis Duncan
Quantum Key Distribution (QKD) exploits the rules of quantum mechanics to generate and securely distribute a random sequence of bits to two spatially separated clients. Typically a QKD system can support only a single pair of clients at a time, and so a separate quantum link is required for every pair of users. We overcome this limitation with the design and characterization of a multi-client entangled-photon QKD system with the capacity for up to 100 clients simultaneously. The time-bin entangled QKD system includes a broadband down-conversion source with two unique features that enable the multi-user capability. First, the photons aremore » emitted across a very large portion of the telecom spectrum. Second, and more importantly, the photons are strongly correlated in their energy degree of freedom. Using standard wavelength division multiplexing (WDM) hardware, the photons can be routed to different parties on a quantum communication network, while the strong spectral correlations ensure that each client is linked only to the client receiving the conjugate wavelength. In this way, a single down-conversion source can support dozens of channels simultaneously--and to the extent that the WDM hardware can send different spectral channels to different clients, the system can support multiple client pairings. We will describe the design and characterization of the down-conversion source, as well as the client stations, which must be tunable across the emission spectrum.« less
A simple laser-based device for simultaneous microbial culture and absorbance measurement
NASA Astrophysics Data System (ADS)
Abrevaya, X. C.; Cortón, E.; Areso, O.; Mauas, P. J. D.
2013-07-01
In this work we present a device specifically designed to study microbial growth with several applications related to environmental microbiology and other areas of research as astrobiology. The Automated Measuring and Cultivation device (AMC-d) enables semi-continuous absorbance measurements directly during cultivation. It can measure simultaneously up to 16 samples. Growth curves using low and fast growing microorganism were plotted, including Escherichia coli and Haloferax volcanii, a halophilic archaeon.
Simultaneous orbit determination
NASA Technical Reports Server (NTRS)
Wright, J. R.
1988-01-01
Simultaneous orbit determination is demonstrated using live range and Doppler data for the NASA/Goddard tracking configuration defined by the White Sands Ground Terminal (WSGT), the Tracking and Data Relay Satellite (TDRS), and the Earth Radiation Budget Satellite (ERBS). A physically connected sequential filter-smoother was developed for this demonstration. Rigorous necessary conditions are used to show that the state error covariance functions are realistic; and this enables the assessment of orbit estimation accuracies for both TDRS and ERBS.
Silicon photonics for high-performance interconnection networks
NASA Astrophysics Data System (ADS)
Biberman, Aleksandr
2011-12-01
We assert in the course of this work that silicon photonics has the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems, and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. This work showcases that chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, enable unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of this work, we demonstrate such feasibility of waveguides, modulators, switches, and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. Furthermore, we leverage the unique properties of available silicon photonic materials to create novel silicon photonic devices, subsystems, network topologies, and architectures to enable unprecedented performance of these photonic interconnection networks and computing systems. We show that the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. Furthermore, we explore the immense potential of all-optical functionalities implemented using parametric processing in the silicon platform, demonstrating unique methods that have the ability to revolutionize computation and communication. Silicon photonics enables new sets of opportunities that we can leverage for performance gains, as well as new sets of challenges that we must solve. Leveraging its inherent compatibility with standard fabrication techniques of the semiconductor industry, combined with its capability of dense integration with advanced microelectronics, silicon photonics also offers a clear path toward commercialization through low-cost mass-volume production. Combining empirical validations of feasibility, demonstrations of massive performance gains in large-scale systems, and the potential for commercial penetration of silicon photonics, the impact of this work will become evident in the many decades that follow.
Study of the ink-paper interaction by image analysis: surface and bulk inspection
NASA Astrophysics Data System (ADS)
Fiadeiro, Paulo T.; de O. Mendes, António; M. Ramos, Ana M.; L. de Sousa, Sónia C.
2013-11-01
In this work, two optical systems previously designed and implemented by our research team, were used to enable the surface and bulk inspection of the ink-paper interaction by image analysis. Basically, the first system works by ejecting micro-liter ink drops onto the papers surface while monitoring the event under three different views over time. The second system is used for sectioning the paper samples through their thickness and to simultaneously acquire images of the ink penetration of each section cut. In the performed experiments, three black inks of different brands and a common copy paper were chosen, used, and tested with the two developed optical systems. Both qualitative and quantitative analyses were carried out at the surface level and in the bulk of the paper. In terms of conclusions, it was shown that the three tested ink-paper combinations revealed very distinct characteristics.
A wireless breathing-training support system for kinesitherapy.
Tawa, Hiroki; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Caldwell, W Morton
2009-01-01
We have developed a new wireless breathing-training support system for kinesitherapy. The system consists of an optical sensor, an accelerometer, a microcontroller, a Bluetooth module and a laptop computer. The optical sensor, which is attached to the patient's chest, measures chest circumference. The low frequency components of circumference are mainly generated by breathing. The optical sensor outputs the circumference as serial digital data. The accelerometer measures the dynamic acceleration force produced by exercise, such as walking. The microcontroller sequentially samples this force. The acceleration force and chest circumference are sent sequentially via Bluetooth to a physical therapist's laptop computer, which receives and stores the data. The computer simultaneously displays these data so that the physical therapist can monitor the patient's breathing and acceleration waveforms and give instructions to the patient in real time during exercise. Moreover, the system enables a quantitative training evaluation and calculation the volume of air inspired and expired by the lungs.
Multi-camera digital image correlation method with distributed fields of view
NASA Astrophysics Data System (ADS)
Malowany, Krzysztof; Malesa, Marcin; Kowaluk, Tomasz; Kujawinska, Malgorzata
2017-11-01
A multi-camera digital image correlation (DIC) method and system for measurements of large engineering objects with distributed, non-overlapping areas of interest are described. The data obtained with individual 3D DIC systems are stitched by an algorithm which utilizes the positions of fiducial markers determined simultaneously by Stereo-DIC units and laser tracker. The proposed calibration method enables reliable determination of transformations between local (3D DIC) and global coordinate systems. The applicability of the method was proven during in-situ measurements of a hall made of arch-shaped (18 m span) self-supporting metal-plates. The proposed method is highly recommended for 3D measurements of shape and displacements of large and complex engineering objects made from multiple directions and it provides the suitable accuracy of data for further advanced structural integrity analysis of such objects.
Multi-Agent Strategic Modeling in a Specific Environment
NASA Astrophysics Data System (ADS)
Gams, Matjaz; Bezek, Andraz
Multi-agent modeling in ambient intelligence (AmI) is concerned with the following task [19]: How can external observations of multi-agent systems in the ambient be used to analyze, model, and direct agent behavior? The main purpose is to obtain knowledge about acts in the environment thus enabling proper actions of the AmI systems [1]. Analysis of such systems must thus capture complex world state representation and asynchronous agent activities. Instead of studying basic numerical data, researchers often use more complex data structures, such as rules and decision trees. Some methods are extremely useful when characterizing state space, but lack the ability to clearly represent temporal state changes occurred by agent actions. To comprehend simultaneous agent actions and complex changes of state space, most often a combination of graphical and symbolical representation performs better in terms of human understanding and performance.
Chemiresistive and Gravimetric Dual-Mode Gas Sensor toward Target Recognition and Differentiation.
Chen, Yan; Zhang, Hao; Feng, Zhihong; Zhang, Hongxiang; Zhang, Rui; Yu, Yuanyuan; Tao, Jin; Zhao, Hongyuan; Guo, Wenlan; Pang, Wei; Duan, Xuexin; Liu, Jing; Zhang, Daihua
2016-08-24
We demonstrate a dual-mode gas sensor for simultaneous and independent acquisition of electrical and mechanical signals from the same gas adsorption event. The device integrates a graphene field-effect transistor (FET) with a piezoelectric resonator in a seamless manner by leveraging multiple structural and functional synergies. Dual signals resulting from independent physical processes, i.e., mass attachment and charge transfer can reflect intrinsic properties of gas molecules and potentially enable target recognition and quantification at the same time. Fabrication of the device is based on standard Integrated Circuit (IC) foundry processes and fully compatible with system-on-a-chip (SoC) integration to achieve extremely small form factors. In addition, the ability of simultaneous measurements of mass adsorption and charge transfer guides us to a more precise understanding of the interactions between graphene and various gas molecules. Besides its practical functions, the device serves as an effective tool to quantitatively investigate the physical processes and sensing mechanisms for a large library of sensing materials and target analytes.
NASA Astrophysics Data System (ADS)
Spring, Bryan Q.; Bryan Sears, R.; Zheng, Lei Zak; Mai, Zhiming; Watanabe, Reika; Sherwood, Margaret E.; Schoenfeld, David A.; Pogue, Brian W.; Pereira, Stephen P.; Villa, Elizabeth; Hasan, Tayyaba
2016-04-01
Nanoscale drug delivery vehicles can facilitate multimodal therapies of cancer by promoting tumour-selective drug release. However, few are effective because cancer cells develop ways to resist and evade treatment. Here, we introduce a photoactivable multi-inhibitor nanoliposome (PMIL) that imparts light-induced cytotoxicity in synchrony with a photoinitiated and sustained release of inhibitors that suppress tumour regrowth and treatment escape signalling pathways. The PMIL consists of a nanoliposome doped with a photoactivable chromophore (benzoporphyrin derivative, BPD) in the lipid bilayer, and a nanoparticle containing cabozantinib (XL184)—a multikinase inhibitor—encapsulated inside. Near-infrared tumour irradiation, following intravenous PMIL administration, triggers photodynamic damage of tumour cells and microvessels, and simultaneously initiates release of XL184 inside the tumour. A single PMIL treatment achieves prolonged tumour reduction in two mouse models and suppresses metastatic escape in an orthotopic pancreatic tumour model. The PMIL offers new prospects for cancer therapy by enabling spatiotemporal control of drug release while reducing systemic drug exposure and associated toxicities.
Takeda, Kohsuke; Norisuye, Tomohisa; Tran-Cong-Miyata, Qui
2013-07-01
Multi-echo reflection ultrasound spectroscopy (MERUS), which enables one to simultaneously evaluate the attenuation coefficient α, the sound velocity v and the density ρ, has been developed for measurements of elastic moduli. In the present study, the technique was further developed to analyze systems undergoing gelation where an unphysical decrease in the apparent density was previously observed after polymerization. The main reason for this problem was that the shrinkage accompanying the gelation led to a small gap between the cell wall and the sample, resulting in the superposition of the reflected signals which were not separable into individual components. By taking into account the multiply reflecting echoes at the interface of the gap, the corrected densities were systematically obtained and compared with the results for the floating test. The present technique opens a new route to simultaneously evaluate the three parameters α, v and ρ and also the sample thickness for solid thin films. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Angelopoulos, V.; Hietala, H.; Liu, Z.; Mende, S. B.; Phan, T.; Nishimura, T.; Strangeway, R. J.; Burch, J. L.; Moore, T. E.; Giles, B. L.
2015-12-01
The recent launch of MMS, the impending launch of ERG, the continued availability of space (NASA, NOAA, International) and ground based assets (THEMIS GBOs, TREx, SuperDARN) enable a comprehensive study of global drivers of (and responses to) kinetic processes at the magnetopause, the magnetotail, the inner magnetosphere and the ionosphere. Previously unresolved questions related to the nature of the modes of magnetospheric convection (pseudobreakups, substorms, SMCs and storms) can now be addressed simultaneously at a kinetic level (with multi-spacecraft missions) and at a global level (with the emerging, powerful H/GSO). THEMIS has been tasked to perform orbital changes that will optimize the observatory, and simultaneously place its probes, along with MMS's, at the heart of where critical kinetic processes occur, near sites of magnetic reconnection and magnetic energy conversion, and in optimal view of ground based assets. I will discuss these unique alignments of the H/GSO fleet that can reveal how cross-scale coupling is manifest, allowing us to view old paradigms in a new light.
High resolution EUV monochromator/spectrometer
Koike, Masako
1996-01-01
This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution.
High resolution EUV monochromator/spectrometer
Koike, Masako
1996-06-18
This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution. 10 figs.
Deng, Lulu; O'Reilly, Meaghan A.; Jones, Ryan M.; An, Ran; Hynynen, Kullervo
2016-01-01
Focused ultrasound (FUS) phased arrays show promise for non-invasive brain therapy. However, the majority of them are limited to a single transmit/receive frequency and therefore lack the versatility to expose and monitor the treatment volume. Multi-frequency arrays could offer variable transmit focal sizes under a fixed aperture, and detect different spectral content on receive for imaging purposes. Here, a three-frequency (306, 612 and 1224 kHz) sparse hemispherical ultrasound phased array (31.8 cm aperture; 128 transducer modules) was constructed and evaluated for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. The array is able to perform effective electronic beam steering over a volume spanning [−40, 40] and [−30, 50] mm in the lateral and axial directions, respectively. The focal size at the geometric center is approximately 0.9 (2.1) mm, 1.7 (3.9) mm, and 3.1 (6.5) mm in lateral (axial) pressure full width at half maximum (FWHM) at 1224, 612, and 306 kHz, respectively. The array was also found capable of dual-frequency excitation and simultaneous multi–foci sonication, which enables the future exploration of more complex exposure strategies. Passive acoustic mapping of dilute microbubble clouds demonstrated that the point spread function of the receive array has a lateral (axial) intensity FWHM between 0.8-3.5 mm (1.7-11.7 mm) over a volume spanning [−25, 25] mm in both the lateral and axial directions, depending on the transmit/receive frequency combination and the imaging location. The device enabled both half and second harmonic imaging through the intact skull, which may be useful for improving the contrast-to-tissue ratio or imaging resolution, respectively. Preliminary in-vivo experiments demonstrated the system's ability to induce blood-brain barrier opening and simultaneously spatially map microbubble cavitation activity in a rat model. This work presents a tool to investigate optimal strategies for non-thermal FUS brain therapy and concurrent microbubble cavitation monitoring through the availability of multiple frequencies. PMID:27845920
Deng, Lulu; O'Reilly, Meaghan A; Jones, Ryan M; An, Ran; Hynynen, Kullervo
2016-12-21
Focused ultrasound (FUS) phased arrays show promise for non-invasive brain therapy. However, the majority of them are limited to a single transmit/receive frequency and therefore lack the versatility to expose and monitor the treatment volume. Multi-frequency arrays could offer variable transmit focal sizes under a fixed aperture, and detect different spectral content on receive for imaging purposes. Here, a three-frequency (306, 612, and 1224 kHz) sparse hemispherical ultrasound phased array (31.8 cm aperture; 128 transducer modules) was constructed and evaluated for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. The array is able to perform effective electronic beam steering over a volume spanning (-40, 40) and (-30, 50) mm in the lateral and axial directions, respectively. The focal size at the geometric center is approximately 0.9 (2.1) mm, 1.7 (3.9) mm, and 3.1 (6.5) mm in lateral (axial) pressure full width at half maximum (FWHM) at 1224, 612, and 306 kHz, respectively. The array was also found capable of dual-frequency excitation and simultaneous multi-foci sonication, which enables the future exploration of more complex exposure strategies. Passive acoustic mapping of dilute microbubble clouds demonstrated that the point spread function of the receive array has a lateral (axial) intensity FWHM between 0.8-3.5 mm (1.7-11.7 mm) over a volume spanning (-25, 25) mm in both the lateral and axial directions, depending on the transmit/receive frequency combination and the imaging location. The device enabled both half and second harmonic imaging through the intact skull, which may be useful for improving the contrast-to-tissue ratio or imaging resolution, respectively. Preliminary in vivo experiments demonstrated the system's ability to induce blood-brain barrier opening and simultaneously spatially map microbubble cavitation activity in a rat model. This work presents a tool to investigate optimal strategies for non-thermal FUS brain therapy and concurrent microbubble cavitation monitoring through the availability of multiple frequencies.
Golden Gate Assembly of CRISPR gRNA expression array for simultaneously targeting multiple genes.
Vad-Nielsen, Johan; Lin, Lin; Bolund, Lars; Nielsen, Anders Lade; Luo, Yonglun
2016-11-01
The engineered CRISPR/Cas9 technology has developed as the most efficient and broadly used genome editing tool. However, simultaneously targeting multiple genes (or genomic loci) in the same individual cells using CRISPR/Cas9 remain one technical challenge. In this article, we have developed a Golden Gate Assembly method for the generation of CRISPR gRNA expression arrays, thus enabling simultaneous gene targeting. Using this method, the generation of CRISPR gRNA expression array can be accomplished in 2 weeks, and contains up to 30 gRNA expression cassettes. We demonstrated in the study that simultaneously targeting 10 genomic loci or simultaneously inhibition of multiple endogenous genes could be achieved using the multiplexed gRNA expression array vector in human cells. The complete set of plasmids is available through the non-profit plasmid repository Addgene.
A robust approach for a filter-based monocular simultaneous localization and mapping (SLAM) system.
Munguía, Rodrigo; Castillo-Toledo, Bernardino; Grau, Antoni
2013-07-03
Simultaneous localization and mapping (SLAM) is an important problem to solve in robotics theory in order to build truly autonomous mobile robots. This work presents a novel method for implementing a SLAM system based on a single camera sensor. The SLAM with a single camera, or monocular SLAM, is probably one of the most complex SLAM variants. In this case, a single camera, which is freely moving through its environment, represents the sole sensor input to the system. The sensors have a large impact on the algorithm used for SLAM. Cameras are used more frequently, because they provide a lot of information and are well adapted for embedded systems: they are light, cheap and power-saving. Nevertheless, and unlike range sensors, which provide range and angular information, a camera is a projective sensor providing only angular measurements of image features. Therefore, depth information (range) cannot be obtained in a single step. In this case, special techniques for feature system-initialization are needed in order to enable the use of angular sensors (as cameras) in SLAM systems. The main contribution of this work is to present a novel and robust scheme for incorporating and measuring visual features in filtering-based monocular SLAM systems. The proposed method is based in a two-step technique, which is intended to exploit all the information available in angular measurements. Unlike previous schemes, the values of parameters used by the initialization technique are derived directly from the sensor characteristics, thus simplifying the tuning of the system. The experimental results show that the proposed method surpasses the performance of previous schemes.
NASA Astrophysics Data System (ADS)
Gopinath, T.; Nelson, Sarah E. D.; Veglia, Gianluigi
2017-12-01
Magic angle spinning (MAS) solid-state NMR (ssNMR) spectroscopy is emerging as a unique method for the atomic resolution structure determination of native membrane proteins in lipid bilayers. Although 13C-detected ssNMR experiments continue to play a major role, recent technological developments have made it possible to carry out 1H-detected experiments, boosting both sensitivity and resolution. Here, we describe a new set of 1H-detected hybrid pulse sequences that combine through-bond and through-space correlation elements into single experiments, enabling the simultaneous detection of rigid and dynamic domains of membrane proteins. As proof-of-principle, we applied these new pulse sequences to the membrane protein phospholamban (PLN) reconstituted in lipid bilayers under moderate MAS conditions. The cross-polarization (CP) based elements enabled the detection of the relatively immobile residues of PLN in the transmembrane domain using through-space correlations; whereas the most dynamic region, which is in equilibrium between folded and unfolded states, was mapped by through-bond INEPT-based elements. These new 1H-detected experiments will enable one to detect not only the most populated (ground) states of biomacromolecules, but also sparsely populated high-energy (excited) states for a complete characterization of protein free energy landscapes.
Lunar Relay Satellite Network for Space Exploration: Architecture, Technologies and Challenges
NASA Technical Reports Server (NTRS)
Bhasin, Kul B.; Hackenberg, Anthony W.; Slywczak, Richard A.; Bose, Prasanta; Bergamo, Marcos; Hayden, Jeffrey L.
2006-01-01
NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. A key objective of these missions is to grow, through a series of launches, a system of systems infrastructure with the capability for safe and sustainable autonomous operations at minimum cost while maximizing the exploration capabilities and science return. An incremental implementation process will enable a buildup of the communication, navigation, networking, computing, and informatics architectures to support human exploration missions in the vicinities and on the surfaces of the Moon and Mars. These architectures will support all space and surface nodes, including other orbiters, lander vehicles, humans in spacesuits, robots, rovers, human habitats, and pressurized vehicles. This paper describes the integration of an innovative MAC and networking technology with an equally innovative position-dependent, data routing, network technology. The MAC technology provides the relay spacecraft with the capability to autonomously discover neighbor spacecraft and surface nodes, establish variable-rate links and communicate simultaneously with multiple in-space and surface clients at varying and rapidly changing distances while making optimum use of the available power. The networking technology uses attitude sensors, a time synchronization protocol and occasional orbit-corrections to maintain awareness of its instantaneous position and attitude in space as well as the orbital or surface location of its communication clients. A position-dependent data routing capability is used in the communication relay satellites to handle the movement of data among any of multiple clients (including Earth) that may be simultaneously in view; and if not in view, the relay will temporarily store the data from a client source and download it when the destination client comes into view. The integration of the MAC and data routing networking technologies would enable a relay satellite system to provide end-to-end communication services for robotic and human missions in the vicinity, or on the surface of the Moon with a minimum of Earth-based operational support.
Laser-activated remote phosphor light engine for projection applications
NASA Astrophysics Data System (ADS)
Daniels, Martin; Mehl, Oliver; Hartwig, Ulrich
2015-09-01
Recent developments in blue emitting laser diodes enable attractive solutions in projection applications using phosphors for efficient light conversion with very high luminance levels. Various commercially available projectors incorporating this technology have entered the market in the past years. While luminous flux levels are still comparable to lamp-based systems, lifetime expectations of classical lamp systems are exceeded by far. OSRAM GmbH has been exploring this technology for several years and has introduced the PHASER® brand name (Phosphor + laser). State-of-the-art is a rotating phosphor wheel excited by blue laser diodes to deliver the necessary primary colors, either sequentially for single-imager projection engines, or simultaneously for 3-panel systems. The PHASER® technology enables flux and luminance scaling, which allows for smaller imagers and therefore cost-efficient projection solutions. The resulting overall efficiency and ANSI lumen specification at the projection screen of these systems is significantly determined by the target color gamut and the light transmission efficiency of the projection system. With increasing power and flux level demand, thermal issues, especially phosphor conversion related, dominate the opto-mechanical system design requirements. These flux levels are a great challenge for all components of an SSL-projection system (SSL:solid-state lighting). OSRAḾs PHASER® light engine platform is constantly expanded towards higher luminous flux levels as well as higher luminance levels for various applications. Recent experiments employ blue laser pump powers of multiple 100 Watts to excite various phosphors resulting in luminous flux levels of more than 40 klm.
Contrast-enhanced optical coherence microangiography with acoustic-actuated microbubbles
NASA Astrophysics Data System (ADS)
Liu, Yu-Hsuan; Zhang, Jia-Wei; Yeh, Chih-Kuang; Wei, Kuo-Chen; Liu, Hao-Li; Tsai, Meng-Tsan
2017-04-01
In this study, we propose to use gas-filled microbubbles (MBs) simultaneously actuated by the acoustic wave to enhance the imaging contrast of optical coherence tomography (OCT)-based angiography. In the phantom experiments, MBs can result in stronger backscattered intensity, enabling to enhance the contrast of OCT intensity image. Moreover, simultaneous application of low-intensity acoustic wave enables to temporally induce local vibration of particles and MBs in the vessels, resulting in time-variant OCT intensity which can be used for enhancing the contrast of OCT intensitybased angiography. Additionally, different acoustic modes and different acoustic powers to actuate MBs are performed and compared to investigate the feasibility of contrast enhancement. Finally, animal experiments are performed. The findings suggest that acoustic-actuated MBs can effectively enhance the imaging contrast of OCT-based angiography and the imaging depth of OCT angiography is also extended.
Ito, Yuhei; Suzuki, Kyouichi; Ichikawa, Tsuyoshi; Watanabe, Yoichi; Sato, Taku; Sakuma, Jun; Saito, Kiyoshi
2018-06-12
Laser surgical microscopes should enable uniform illumination of the operative field, and require less luminous energy compared with existing xenon surgical microscopes. To examine the utility of laser illumination in fluorescence cerebral angiography. Fluorescein sodium (fluorescein) was used as a fluorescent dye. We first compared the clarity of cerebral blood flow images collected by fluorescence angiography between the laser illumination and xenon illumination methods. We then assessed use of the laser illuminator for simultaneous observation of blood flow and surrounding structures during fluorescence angiography. Furthermore, the study was designed to evaluate usefulness of the thus determined excitation light in clinical cases. Fluorescence angiography using blue light laser for excitation provided higher clarity and contrast blood flow images compared with using blue light generated from a xenon lamp. Further, illumination with excitation light consisting of a combination of 3 types of laser (higher level of blue light, no green light, and lower level of red light) enabled both blood flow and surrounding structures to be observed through the microscope directly by the surgeon. Laser-illuminated fluorescence angiography provides high clarity and contrast images of cerebral blood flow. Further, a laser providing strong blue light and weak red light for excitation light enables simultaneous visual observation of fluorescent blood flow and surrounding structures by the surgeon using a surgical microscope. Overall, these data suggest that laser surgical microscopes are useful for both ordinary operative manipulations and fluorescence angiography.
A framework for simultaneous aerodynamic design optimization in the presence of chaos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Günther, Stefanie, E-mail: stefanie.guenther@scicomp.uni-kl.de; Gauger, Nicolas R.; Wang, Qiqi
Integrating existing solvers for unsteady partial differential equations into a simultaneous optimization method is challenging due to the forward-in-time information propagation of classical time-stepping methods. This paper applies the simultaneous single-step one-shot optimization method to a reformulated unsteady constraint that allows for both forward- and backward-in-time information propagation. Especially in the presence of chaotic and turbulent flow, solving the initial value problem simultaneously with the optimization problem often scales poorly with the time domain length. The new formulation relaxes the initial condition and instead solves a least squares problem for the discrete partial differential equations. This enables efficient one-shot optimizationmore » that is independent of the time domain length, even in the presence of chaos.« less
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Kaufman, Yoram J.; Hao, Wei Min; Habib, Shahid
2004-01-01
The radiative energy emitted by large fires and the corresponding smoke aerosol loading are simultaneously measured from the MODIS sensor from both the Terra and Aqua satellites. Quantitative relationships between the rates of emission of fire radiative energy and smoke are being developed for different fire-prone regions of the globe. Preliminary results are presented. When fully developed, the system will enable the use of MODIS direct broadcast fire data for near real-time monitoring of fire strength and smoke emission as well as forecasting of fire progression and smoke dispersion, several hours to a few days in advance.
Acoustical Detection Of Leakage In A Combustor
NASA Technical Reports Server (NTRS)
Puster, Richard L.; Petty, Jeffrey L.
1993-01-01
Abnormal combustion excites characteristic standing wave. Acoustical leak-detection system gives early warning of failure, enabling operating personnel to stop combustion process and repair spray bar before leak grows large enough to cause damage. Applicable to engines, gas turbines, furnaces, and other machines in which acoustic emissions at known frequencies signify onset of damage. Bearings in rotating machines monitored for emergence of characteristic frequencies shown in previous tests associated with incipient failure. Also possible to monitor for signs of trouble at multiple frequencies by feeding output of transducer simultaneously to multiple band-pass filters and associated circuitry, including separate trigger circuit set to appropriate level for each frequency.
NASA Technical Reports Server (NTRS)
Carr, John; Martinez, Andres; Petro, Andrew
2015-01-01
The Lightweight Integrated Solar Array and Transceiver (LISA-T) project will leverage several existing and on-going efforts at Marshall Space Flight Center (MSFC) for the design, development, fabrication, and test of a launch stowed, orbit deployed structure on which thin-film photovoltaics for power generation and antenna elements for communication, are embedded. Photovoltaics is a method for converting solar energy into electricity using semiconductor materials. The system will provide higher power generation with a lower mass, smaller stowage volume, and lower cost than the state of the art solar arrays, while simultaneously enabling deployable antenna concepts.
The Space Infrared Interferometric Telescope (SPIRIT)
NASA Technical Reports Server (NTRS)
Rinehart, Stephen
2007-01-01
The Space Infrared Interferometric Telescope (SPIRIT) is a candidate NASA Origins Probe Mission. SPIRIT is a two-telescope Michelson interferometer covering wavelengths from 25-400 microns, providing simultaneously high spectral resolution and high angular resolution. With comparable sensitivity to Spitzer, but two orders of magnitude improvement in angular resolution, SPIRIT will enable us to address a wide array of compelling scientific questions, including how planetary systems form in disks and how new planets interact with the disk. Further, SPIRIT will lay the technological groundwork for an array of future interferometry missions with ambitious scientific goals, including the Terrestrial Planet Finder Interferometer / Darwin, and the Submillimeter Probe of the Evolution of Cosmic Structure.
The Space Infrared Interferometric Telescope (SPIRIT)
NASA Technical Reports Server (NTRS)
Rinehart, Stephen
2007-01-01
The Space Infrared Interferometric Telescope (SPIRIT) is a candidate NASA Origins Probe Mission. SPIRIT is a two-telescope Michelson interferometer covering wavelengths from 25-400 microns, providing simultaneously high spectral resolution and high angular resolution. With comparable sensitivity to Spitzer, but two orders of magnitude improvement in angular resolution, SPIRIT will enable us to address a wide array of compelling scientific questions, including how planetary systems form in disks and how new planets interact with the disk. Further, SPIRIT will lay the technological groundwork for an array of future interferometry missions with ambitious scientific goals, including the Terrestrial Planet Finder Interferometer/Darwin, and the Submillimeter Probe of the Evolution of Cosmic Structure.
High channel density wavelength division multiplexer with defined diffracting means positioning
Jannson, Tomasz P.; Jannson, Joanna L.; Yeung, Peter C.
1990-01-01
A wavelength division multiplexer/demultiplexer having optical path lengths between a fiber array and a Fourier transform lens, and between a dispersion grating and the lens equal to the focal length of the lens. The optical path lengths reduce losses due to angular acceptance mismatch in the multiplexer. Close orientation of the fiber array about the optical axis and the use of a holographic dispersion grating reduces other losses in the system. Multi-exposure holographic dispersion gratings enable the multiplexer/demultiplexer for extremely broad-band simultaneous transmission and reflection operation. Individual Bragg plane sets recorded in the grating are dedicated to and operate efficiently on discrete wavelength ranges.
Automated batch characterization of inkjet-printed elastomer lenses using a LEGO platform.
Sung, Yu-Lung; Garan, Jacob; Nguyen, Hoang; Hu, Zhenyu; Shih, Wei-Chuan
2017-09-10
Small, self-adhesive, inkjet-printed elastomer lenses have enabled smartphone cameras to image and resolve microscopic objects. However, the performance of different lenses within a batch is affected by hard-to-control environmental variables. We present a cost-effective platform to perform automated batch characterization of 300 lens units simultaneously for quality inspection. The system was designed and configured with LEGO bricks, 3D printed parts, and a digital camera. The scheme presented here may become the basis of a high-throughput, in-line inspection tool for quality control purposes and can also be employed for optimization of the manufacturing process.
Observation of the immune response of cells and tissue through multimodal label-free microscopy
NASA Astrophysics Data System (ADS)
Pavillon, Nicolas; Smith, Nicholas I.
2017-02-01
We present applications of a label-free approach to assess the immune response based on the combination of interferometric microscopy and Raman spectroscopy, which makes it possible to simultaneously acquire morphological and molecular information of live cells. We employ this approach to derive statistical models for predicting the activation state of macrophage cells based both on morphological parameters extracted from the high-throughput full-field quantitative phase imaging, and on the molecular content information acquired through Raman spectroscopy. We also employ a system for 3D imaging based on coherence gating, enabling specific targeting of the Raman channel to structures of interest within tissue.
Vital, Anne; Vital, Claude
2014-01-01
Simultaneous combined superficial peroneal nerve and peroneous brevis muscle biopsy, via the same cutaneous incision, allows examination of several tissue specimens and significantly improves the diagnosis of systemic diseases with peripheral nerve involvement. Vasculitides are certainly the most frequently diagnosed on neuro-muscular biopsies, but this procedure is also well advised to asses a diagnosis of sarcoidosis or amyloidosis. More occasionally, combined nerve and muscle biopsy may reveal an unpredicted diagnosis of cholesterol embolism, intra-vascular lymphoma, or enables complementary diagnosis investigations on mitochondrial cytopathy or storage disease. PMID:24618073
NASA Astrophysics Data System (ADS)
Wang, Tianyi; Gong, Feng; Lu, Anjiang; Zhang, Damin; Zhang, Zhengping
2017-12-01
In this paper, we propose a scheme that integrates quantum key distribution and private classical communication via continuous variables. The integrated scheme employs both quadratures of a weak coherent state, with encrypted bits encoded on the signs and Gaussian random numbers encoded on the values of the quadratures. The integration enables quantum and classical data to share the same physical and logical channel. Simulation results based on practical system parameters demonstrate that both classical communication and quantum communication can be implemented over distance of tens of kilometers, thus providing a potential solution for simultaneous transmission of quantum communication and classical communication.
Zhang, Jing; Liu, Xiaojun; Xu, Wenjing; Luo, Wenhan; Li, Ming; Chu, Fangbing; Xu, Lu; Cao, Anyuan; Guan, Jisong; Tang, Shiming; Duan, Xiaojie
2018-05-09
Recent developments of transparent electrode arrays provide a unique capability for simultaneous optical and electrical interrogation of neural circuits in the brain. However, none of these electrode arrays possess the stretchability highly desired for interfacing with mechanically active neural systems, such as the brain under injury, the spinal cord, and the peripheral nervous system (PNS). Here, we report a stretchable transparent electrode array from carbon nanotube (CNT) web-like thin films that retains excellent electrochemical performance and broad-band optical transparency under stretching and is highly durable under cyclic stretching deformation. We show that the CNT electrodes record well-defined neuronal response signals with negligible light-induced artifacts from cortical surfaces under optogenetic stimulation. Simultaneous two-photon calcium imaging through the transparent CNT electrodes from cortical surfaces of GCaMP-expressing mice with epilepsy shows individual activated neurons in brain regions from which the concurrent electrical recording is taken, thus providing complementary cellular information in addition to the high-temporal-resolution electrical recording. Notably, the studies on rats show that the CNT electrodes remain operational during and after brain contusion that involves the rapid deformation of both the electrode array and brain tissue. This enables real-time, continuous electrophysiological monitoring of cortical activity under traumatic brain injury. These results highlight the potential application of the stretchable transparent CNT electrode arrays in combining electrical and optical modalities to study neural circuits, especially under mechanically active conditions, which could potentially provide important new insights into the local circuit dynamics of the spinal cord and PNS as well as the mechanism underlying traumatic injuries of the nervous system.
Next generation miniature simultaneous multi-hyperspectral imaging systems
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Gupta, Neelam
2014-03-01
The concept for a hyperspectral imaging system using a Fabry-Perot tunable filter (FPTF) array that is fabricated using "miniature optical electrical mechanical system" (MOEMS) technology. [1] Using an array of FPTF as an approach to hyperspectral imaging relaxes wavelength tuning requirements considerably because of the reduced portion of the spectrum that is covered by each element in the array. In this paper, Pacific Advanced Technology and ARL present the results of a concept design and performed analysis of a MOEMS based tunable Fabry-Perot array (FPTF) to perform simultaneous multispectral and hyperspectral imaging with relatively high spatial resolution. The concept design was developed with support of an Army SBIR Phase I program The Fabry-Perot tunable MOEMS filter array was combined with a miniature optics array and a focal plane array of 1024 x 1024 pixels to produce 16 colors every frame of the camera. Each color image has a spatial resolution of 256 x 256 pixels with an IFOV of 1.7 mrads and FOV of 25 degrees. The spectral images are collected simultaneously allowing high resolution spectral-spatial-temporal information in each frame of the camera, thus enabling the implementation of spectral-temporal-spatial algorithms in real-time to provide high sensitivity for the detection of weak signals in a high clutter background environment with low sensitivity to camera motion. The challenge in the design was the independent actuation of each Fabry Perot element in the array allowing for individual tuning. An additional challenge was the need to maximize the fill factor to improve the spatial coverage with minimal dead space. This paper will only address the concept design and analysis of the Fabry-Perot tunable filter array. A previous paper presented at SPIE DSS in 2012 explained the design of the optical array.
McKernan, Kevin J.; Spangler, Jessica; Zhang, Lei; Tadigotla, Vasisht; McLaughlin, Stephen; Warner, Jason; Zare, Amir; Boles, Richard G.
2014-01-01
We have developed a PCR method, coined Déjà vu PCR, that utilizes six nucleotides in PCR with two methyl specific restriction enzymes that respectively digest these additional nucleotides. Use of this enzyme-and-nucleotide combination enables what we term a “DNA diode”, where DNA can advance in a laboratory in only one direction and cannot feedback into upstream assays. Here we describe aspects of this method that enable consecutive amplification with the introduction of a 5th and 6th base while simultaneously providing methylation dependent mitochondrial DNA enrichment. These additional nucleotides enable a novel DNA decontamination technique that generates ephemeral and easy to decontaminate DNA. PMID:24788618
Townsend, Alexandra D; Wilken, Gerald H; Mitchell, Kyle K; Martin, R Scott; Macarthur, Heather
2016-06-15
Sympathetic nerves are known to release three neurotransmitters: norepinephrine, ATP, and neuropeptide Y that play a role in controlling vascular tone. This paper focuses on the co-release of norepinephrine and ATP from the mesenteric arterial sympathetic nerves of the rat. In this paper, a quantification technique is described that allows simultaneous detection of norepinephrine and ATP in a near-real-time fashion from the isolated perfused mesenteric arterial bed of the rat. Simultaneous detection is enabled with 3-D printing technology, which is shown to help integrate the perfusate with different detection methods (norepinephrine by microchip-based amperometery and ATP by on-line chemiluminescence). Stimulated levels relative to basal levels of norepinephrine and ATP were found to be 363nM and 125nM, respectively (n=6). The limit of detection for norepinephrine is 80nM using microchip-based amperometric detection. The LOD for on-line ATP detection using chemiluminescence is 35nM. In previous studies, the co-transmitters have been separated and detected with HPLC techniques. With HPLC, the samples from biological preparations have to be derivatized for ATP detection and require collection time before analysis. Thus real-time measurements are not made and the delay in analysis by HPLC can cause degradation. In conclusion, the method described in the paper can be used to successfully detect norepinephrine and ATP simultaneously and in a near-real-time fashion. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Najmr, Stan; Lu, Tianfeng; Keller, Austin W.; Zhang, Mingyue; Lee, Jennifer D.; Makvandi, Mehran; Pryma, Daniel A.; Kagan, Cherie R.; Murray, Christopher B.
2018-06-01
Rare-earth (RE) compounds have been actively pursued for therapeutic and diagnostic applications due to their ability to upconvert near infrared light into the UV–vis range. Through nanoengineering and bottom-up synthesis, additional functionality can be added to these upconverting systems. Herein, we report the synthesis of 90Y-doped β-NaYF4:Er, Yb upconverting nanophosphors (UCNPs) to enable β-particle emission and upconversion by the same UCNP. To homogenously incorporate the radionuclides, we employ a hydroxide metathesis method to produce the RE precursor required for the solvothermal synthesis of monodisperse UCNPs. Once incorporated, we find that the β-emitting 90Y dopants do not influence the energy pathways required for upconversion, enabling simultaneous radio- and optical-tracing. The resulting large (>100 nm in height and width), anisotropic, 90Y-radiolabeled β-NaYF4 UCNPs are then coated with silica using a modified, micelle-driven Stöber process to enable their dispersion in polar solvents. Doing so highlights the importance of surfactant (Igepal CO-520) and silica source (tetraethyl orthosilicate) interactions to the continuity of the silica shell and makes the vast library of silica surface chemistry and functionality accessible to upconverting radiotracers.
The multi-spectral line-polarization MSE system on Alcator C-Mod
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mumgaard, R. T., E-mail: mumgaard@psfc.mit.edu; Khoury, M.; Scott, S. D.
A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSEmore » emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. All system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.« less
The multi-spectral line-polarization MSE system on Alcator C-Mod
Mumgaard, R. T.; Scott, S. D.; Khoury, M.
2016-08-17
A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSEmore » emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. Furthermore, all system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.« less
IGMS: An Integrated ISO-to-Appliance Scale Grid Modeling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan; Hale, Elaine; Hansen, Timothy M.
This paper describes the Integrated Grid Modeling System (IGMS), a novel electric power system modeling platform for integrated transmission-distribution analysis that co-simulates off-the-shelf tools on high performance computing (HPC) platforms to offer unprecedented resolution from ISO markets down to appliances and other end uses. Specifically, the system simultaneously models hundreds or thousands of distribution systems in co-simulation with detailed Independent System Operator (ISO) markets and AGC-level reserve deployment. IGMS uses a new MPI-based hierarchical co-simulation framework to connect existing sub-domain models. Our initial efforts integrate opensource tools for wholesale markets (FESTIV), bulk AC power flow (MATPOWER), and full-featured distribution systemsmore » including physics-based end-use and distributed generation models (many instances of GridLAB-D[TM]). The modular IGMS framework enables tool substitution and additions for multi-domain analyses. This paper describes the IGMS tool, characterizes its performance, and demonstrates the impacts of the coupled simulations for analyzing high-penetration solar PV and price responsive load scenarios.« less
Bracale, Antonio; Barros, Julio; Cacciapuoti, Angela Sara; ...
2015-06-10
Electrical power systems are undergoing a radical change in structure, components, and operational paradigms, and are progressively approaching the new concept of smart grids (SGs). Future power distribution systems will be characterized by the simultaneous presence of various distributed resources, such as renewable energy systems (i.e., photovoltaic power plant and wind farms), storage systems, and controllable/non-controllable loads. Control and optimization architectures will enable network-wide coordination of these grid components in order to improve system efficiency and reliability and to limit greenhouse gas emissions. In this context, the energy flows will be bidirectional from large power plants to end users andmore » vice versa; producers and consumers will continuously interact at different voltage levels to determine in advance the requests of loads and to adapt the production and demand for electricity flexibly and efficiently also taking into account the presence of storage systems.« less
Clean energy and the hydrogen economy.
Brandon, N P; Kurban, Z
2017-07-28
In recent years, new-found interest in the hydrogen economy from both industry and academia has helped to shed light on its potential. Hydrogen can enable an energy revolution by providing much needed flexibility in renewable energy systems. As a clean energy carrier, hydrogen offers a range of benefits for simultaneously decarbonizing the transport, residential, commercial and industrial sectors. Hydrogen is shown here to have synergies with other low-carbon alternatives, and can enable a more cost-effective transition to de-carbonized and cleaner energy systems. This paper presents the opportunities for the use of hydrogen in key sectors of the economy and identifies the benefits and challenges within the hydrogen supply chain for power-to-gas, power-to-power and gas-to-gas supply pathways. While industry players have already started the market introduction of hydrogen fuel cell systems, including fuel cell electric vehicles and micro-combined heat and power devices, the use of hydrogen at grid scale requires the challenges of clean hydrogen production, bulk storage and distribution to be resolved. Ultimately, greater government support, in partnership with industry and academia, is still needed to realize hydrogen's potential across all economic sectors.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).
Antfolk, Maria; Kim, Soo Hyeon; Koizumi, Saori; Fujii, Teruo; Laurell, Thomas
2017-01-01
The incidence of cancer is increasing worldwide and metastatic disease, through the spread of circulating tumor cells (CTCs), is responsible for the majority of the cancer deaths. Accurate monitoring of CTC levels in blood provides clinical information supporting therapeutic decision making, and improved methods for CTC enumeration are asked for. Microfluidics has been extensively used for this purpose but most methods require several post-separation processing steps including concentration of the sample before analysis. This induces a high risk of sample loss of the collected rare cells. Here, an integrated system is presented that efficiently eliminates this risk by integrating label-free separation with single cell arraying of the target cell population, enabling direct on-chip tumor cell identification and enumeration. Prostate cancer cells (DU145) spiked into a sample with whole blood concentration of the peripheral blood mononuclear cell (PBMC) fraction were efficiently separated and trapped at a recovery of 76.2 ± 5.9% of the cancer cells and a minute contamination of 0.12 ± 0.04% PBMCs while simultaneously enabling a 20x volumetric concentration. This constitutes a first step towards a fully integrated system for rapid label-free separation and on-chip phenotypic characterization of circulating tumor cells from peripheral venous blood in clinical practice. PMID:28425472
Antfolk, Maria; Kim, Soo Hyeon; Koizumi, Saori; Fujii, Teruo; Laurell, Thomas
2017-04-20
The incidence of cancer is increasing worldwide and metastatic disease, through the spread of circulating tumor cells (CTCs), is responsible for the majority of the cancer deaths. Accurate monitoring of CTC levels in blood provides clinical information supporting therapeutic decision making, and improved methods for CTC enumeration are asked for. Microfluidics has been extensively used for this purpose but most methods require several post-separation processing steps including concentration of the sample before analysis. This induces a high risk of sample loss of the collected rare cells. Here, an integrated system is presented that efficiently eliminates this risk by integrating label-free separation with single cell arraying of the target cell population, enabling direct on-chip tumor cell identification and enumeration. Prostate cancer cells (DU145) spiked into a sample with whole blood concentration of the peripheral blood mononuclear cell (PBMC) fraction were efficiently separated and trapped at a recovery of 76.2 ± 5.9% of the cancer cells and a minute contamination of 0.12 ± 0.04% PBMCs while simultaneously enabling a 20x volumetric concentration. This constitutes a first step towards a fully integrated system for rapid label-free separation and on-chip phenotypic characterization of circulating tumor cells from peripheral venous blood in clinical practice.
Hydrogen/Oxygen Propellant Densifier Thermoacoustic Stirling Heat Engine
NASA Astrophysics Data System (ADS)
Nguyen, C. T.; Yeckley, A. J.; Schieb, D. J.; Haberbusch, M. S.
2004-06-01
A unique, patent pending, thermoacoustic propellant densifier for the simultaneous densification of hydrogen and oxygen propellants for aerospace vehicles is introduced. The densifier uses a high-pressure amplitude, low-frequency Thermoacoustic Stirling Heat Engine (TASHE) coupled with a uniquely designed half-wave-length resonator to drive a pulse tube cryocooler using a Gas Helium (GHe) working fluid. The extremely reliable TASHE has no moving parts, is water cooled, and is electrically powered. The helium-filled TASHE is designed to ASME piping codes, which enables the safe inspection of the system while in operation. The resonator is designed to eliminate higher-order harmonics with minimal acoustic losses. A system description will be presented, and experimental data on both the TASHE and the resonator will be compared with analytical results.
Diurnal evolution of wind structure and data availability measured by the DOE prototype radar system
NASA Astrophysics Data System (ADS)
Hirth, Brian D.; Schroeder, John L.; Guynes, Jerry G.
2017-11-01
A new Doppler radar prototype has been developed and deployed at Texas Tech University with a focus on enhancing the technologies’ capability to contribute to wind plant relevant complex flow measurements. In particular, improvements in data availability, total data coverage, and autonomous operation were targeted to enable contributions to a wider range of wind energy applications. Doppler radar offers rapid scan speeds, extended maximum range and excellent along-beam range resolution allowing for the simultaneous measurement of various wind phenomena ranging from regional and wind plant scales to inflow and wake flow assessment for an individual turbine. Data examples and performance improvements relative to a previous edition of the technology are presented, including insights into the influence of diurnal atmospheric stability evolution of wind structure and system performance.
Optofluidic lens with tunable focal length and asphericity
Mishra, Kartikeya; Murade, Chandrashekhar; Carreel, Bruno; Roghair, Ivo; Oh, Jung Min; Manukyan, Gor; van den Ende, Dirk; Mugele, Frieder
2014-01-01
Adaptive micro-lenses enable the design of very compact optical systems with tunable imaging properties. Conventional adaptive micro-lenses suffer from substantial spherical aberration that compromises the optical performance of the system. Here, we introduce a novel concept of liquid micro-lenses with superior imaging performance that allows for simultaneous and independent tuning of both focal length and asphericity. This is achieved by varying both hydrostatic pressures and electric fields to control the shape of the refracting interface between an electrically conductive lens fluid and a non-conductive ambient fluid. Continuous variation from spherical interfaces at zero electric field to hyperbolic ones with variable ellipticity for finite fields gives access to lenses with positive, zero, and negative spherical aberration (while the focal length can be tuned via the hydrostatic pressure). PMID:25224851
Applying Web-Based Tools for Research, Engineering, and Operations
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2011-01-01
Personnel in the NASA Glenn Research Center Network and Architectures branch have performed a variety of research related to space-based sensor webs, network centric operations, security and delay tolerant networking (DTN). Quality documentation and communications, real-time monitoring and information dissemination are critical in order to perform quality research while maintaining low cost and utilizing multiple remote systems. This has been accomplished using a variety of Internet technologies often operating simultaneously. This paper describes important features of various technologies and provides a number of real-world examples of how combining Internet technologies can enable a virtual team to act efficiently as one unit to perform advanced research in operational systems. Finally, real and potential abuses of power and manipulation of information and information access is addressed.
Systems identification using a modified Newton-Raphson method: A FORTRAN program
NASA Technical Reports Server (NTRS)
Taylor, L. W., Jr.; Iliff, K. W.
1972-01-01
A FORTRAN program is offered which computes a maximum likelihood estimate of the parameters of any linear, constant coefficient, state space model. For the case considered, the maximum likelihood estimate can be identical to that which minimizes simultaneously the weighted mean square difference between the computed and measured response of a system and the weighted square of the difference between the estimated and a priori parameter values. A modified Newton-Raphson or quasilinearization method is used to perform the minimization which typically requires several iterations. A starting technique is used which insures convergence for any initial values of the unknown parameters. The program and its operation are described in sufficient detail to enable the user to apply the program to his particular problem with a minimum of difficulty.
Simultaneous stabilization of global temperature and precipitation through cocktail geoengineering
NASA Astrophysics Data System (ADS)
Cao, Long; Duan, Lei; Bala, Govindasamy; Caldeira, Ken
2017-07-01
Solar geoengineering has been proposed as a backup plan to offset some aspects of anthropogenic climate change if timely CO2 emission reductions fail to materialize. Modeling studies have shown that there are trade-offs between changes in temperature and hydrological cycle in response to solar geoengineering. Here we investigate the possibility of stabilizing both global mean temperature and precipitation simultaneously by combining two geoengineering approaches: stratospheric sulfate aerosol increase (SAI) that deflects sunlight to space and cirrus cloud thinning (CCT) that enables more longwave radiation to escape to space. Using the slab ocean configuration of National Center for Atmospheric Research Community Earth System Model, we simulate SAI by uniformly adding sulfate aerosol in the upper stratosphere and CCT by uniformly increasing cirrus cloud ice particle falling speed. Under an idealized warming scenario of abrupt quadrupling of atmospheric CO2, we show that by combining appropriate amounts of SAI and CCT geoengineering, global mean (or land mean) temperature and precipitation can be restored simultaneously to preindustrial levels. However, compared to SAI, cocktail geoengineering by mixing SAI and CCT does not markedly improve the overall similarity between geoengineered climate and preindustrial climate on regional scales. Some optimal spatially nonuniform mixture of SAI with CCT might have the potential to better mitigate climate change at both the global and regional scales.
Initial development of the DIII–D snowflake divertor control
NASA Astrophysics Data System (ADS)
Kolemen, E.; Vail, P. J.; Makowski, M. A.; Allen, S. L.; Bray, B. D.; Fenstermacher, M. E.; Humphreys, D. A.; Hyatt, A. W.; Lasnier, C. J.; Leonard, A. W.; McLean, A. G.; Maingi, R.; Nazikian, R.; Petrie, T. W.; Soukhanovskii, V. A.; Unterberg, E. A.
2018-06-01
Simultaneous control of two proximate magnetic field nulls in the divertor region is demonstrated on DIII–D to enable plasma operations in an advanced magnetic configuration known as the snowflake divertor (SFD). The SFD is characterized by a second-order poloidal field null, created by merging two first-order nulls of the standard divertor configuration. The snowflake configuration has many magnetic properties, such as high poloidal flux expansion, large plasma-wetted area, and additional strike points, that are advantageous for divertor heat flux management in future fusion reactors. However, the magnetic configuration of the SFD is highly-sensitive to changes in currents within the plasma and external coils and therefore requires complex magnetic control. The first real-time snowflake detection and control system on DIII–D has been implemented in order to stabilize the configuration. The control algorithm calculates the position of the two nulls in real-time by locally-expanding the Grad–Shafranov equation in the divertor region. A linear relation between variations in the poloidal field coil currents and changes in the null locations is then analytically derived. This formulation allows for simultaneous control of multiple coils to achieve a desired SFD configuration. It is shown that the control enabled various snowflake configurations on DIII–D in scenarios such as the double-null advanced tokamak. The SFD resulted in a 2.5× reduction in the peak heat flux for many energy confinement times (2–3 s) without any adverse effects on core plasma performance.
Berger, Andrew J; Page, Michael R; Jacob, Jan; Young, Justin R; Lewis, Jim; Wenzel, Lothar; Bhallamudi, Vidya P; Johnston-Halperin, Ezekiel; Pelekhov, Denis V; Hammel, P Chris
2014-12-01
Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Andrew J., E-mail: berger.156@osu.edu; Page, Michael R.; Young, Justin R.
Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform themore » various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.« less
Sugimura, Daisuke; Kobayashi, Suguru; Hamamoto, Takayuki
2017-11-01
Light field imaging is an emerging technique that is employed to realize various applications such as multi-viewpoint imaging, focal-point changing, and depth estimation. In this paper, we propose a concept of a dual-resolution light field imaging system to synthesize super-resolved multi-viewpoint images. The key novelty of this study is the use of an organic photoelectric conversion film (OPCF), which is a device that converts spectra information of incoming light within a certain wavelength range into an electrical signal (pixel value), for light field imaging. In our imaging system, we place the OPCF having the green spectral sensitivity onto the micro-lens array of the conventional light field camera. The OPCF allows us to acquire the green spectra information only at the center viewpoint with the full resolution of the image sensor. In contrast, the optical system of the light field camera in our imaging system captures the other spectra information (red and blue) at multiple viewpoints (sub-aperture images) but with low resolution. Thus, our dual-resolution light field imaging system enables us to simultaneously capture information about the target scene at a high spatial resolution as well as the direction information of the incoming light. By exploiting these advantages of our imaging system, our proposed method enables the synthesis of full-resolution multi-viewpoint images. We perform experiments using synthetic images, and the results demonstrate that our method outperforms other previous methods.
Large-field-of-view imaging by multi-pupil adaptive optics.
Park, Jung-Hoon; Kong, Lingjie; Zhou, Yifeng; Cui, Meng
2017-06-01
Adaptive optics can correct for optical aberrations. We developed multi-pupil adaptive optics (MPAO), which enables simultaneous wavefront correction over a field of view of 450 × 450 μm 2 and expands the correction area to nine times that of conventional methods. MPAO's ability to perform spatially independent wavefront control further enables 3D nonplanar imaging. We applied MPAO to in vivo structural and functional imaging in the mouse brain.
Real-time optical fiber digital speckle pattern interferometry for industrial applications
NASA Astrophysics Data System (ADS)
Chan, Robert K.; Cheung, Y. M.; Lo, C. H.; Tam, T. K.
1997-03-01
There is current interest, especially in the industrial sector, to use the digital speckle pattern interferometry (DSPI) technique to measure surface stress. Indeed, many publications in the subject are evident of the growing interests in the field. However, to bring the technology to industrial use requires the integration of several emerging technologies, viz. optics, feedback control, electronics, imaging processing and digital signal processing. Due to the highly interdisciplinary nature of the technique, successful implementation and development require expertise in all of the fields. At Baptist University, under the funding of a major industrial grant, we are developing the technology for the industrial sector. Our system fully exploits optical fibers and diode lasers in the design to enable practical and rugged systems suited for industrial applications. Besides the development in optics, we have broken away from the reliance of a microcomputer PC platform for both image capture and processing, and have developed a digital signal processing array system that can handle simultaneous and independent image capture/processing with feedback control. The system, named CASPA for 'cascadable architecture signal processing array,' is a third generation development system that utilizes up to 7 digital signal processors has proved to be a very powerful system. With our CASPA we are now in a better position to developing novel optical measurement systems for industrial application that may require different measurement systems to operate concurrently and requiring information exchange between the systems. Applications in mind such as simultaneous in-plane and out-of-plane DSPI image capture/process, vibrational analysis with interactive DSPI and phase shifting control of optical systems are a few good examples of the potentials.
Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA.
Kanazashi, Yuhei; Hirose, Aya; Takahashi, Ippei; Mikami, Masafumi; Endo, Masaki; Hirose, Sakiko; Toki, Seiichi; Kaga, Akito; Naito, Ken; Ishimoto, Masao; Abe, Jun; Yamada, Tetsuya
2018-03-01
Using a gRNA and Agrobacterium-mediated transformation, we performed simultaneous site-directed mutagenesis of two GmPPD loci in soybean. Mutations in GmPPD loci were confirmed in at least 33% of T 2 seeds. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated endonuclease 9 (Cas9) system is a powerful tool for site-directed mutagenesis in crops. Using a single guide RNA (gRNA) and Agrobacterium-mediated transformation, we performed simultaneous site-directed mutagenesis of two homoeologous loci in soybean (Glycine max), GmPPD1 and GmPPD2, which encode the orthologs of Arabidopsis thaliana PEAPOD (PPD). Most of the T 1 plants had heterozygous and/or chimeric mutations for the targeted loci. The sequencing analysis of T 1 and T 2 generations indicates that putative mutation induced in the T 0 plant is transmitted to the T 1 generation. The inheritable mutation induced in the T 1 plant was also detected. This result indicates that continuous induction of mutations during T 1 plant development increases the occurrence of mutations in germ cells, which ensures the transmission of mutations to the next generation. Simultaneous site-directed mutagenesis in both GmPPD loci was confirmed in at least 33% of T 2 seeds examined. Approximately 19% of double mutants did not contain the Cas9/gRNA expression construct. Double mutants with frameshift mutations in both GmPPD1 and GmPPD2 had dome-shaped trifoliate leaves, extremely twisted pods, and produced few seeds. Taken together, our data indicate that continuous induction of mutations in the whole plant and advancing generations of transgenic plants enable efficient simultaneous site-directed mutagenesis in duplicated loci in soybean.
FAST: framework for heterogeneous medical image computing and visualization.
Smistad, Erik; Bozorgi, Mohammadmehdi; Lindseth, Frank
2015-11-01
Computer systems are becoming increasingly heterogeneous in the sense that they consist of different processors, such as multi-core CPUs and graphic processing units. As the amount of medical image data increases, it is crucial to exploit the computational power of these processors. However, this is currently difficult due to several factors, such as driver errors, processor differences, and the need for low-level memory handling. This paper presents a novel FrAmework for heterogeneouS medical image compuTing and visualization (FAST). The framework aims to make it easier to simultaneously process and visualize medical images efficiently on heterogeneous systems. FAST uses common image processing programming paradigms and hides the details of memory handling from the user, while enabling the use of all processors and cores on a system. The framework is open-source, cross-platform and available online. Code examples and performance measurements are presented to show the simplicity and efficiency of FAST. The results are compared to the insight toolkit (ITK) and the visualization toolkit (VTK) and show that the presented framework is faster with up to 20 times speedup on several common medical imaging algorithms. FAST enables efficient medical image computing and visualization on heterogeneous systems. Code examples and performance evaluations have demonstrated that the toolkit is both easy to use and performs better than existing frameworks, such as ITK and VTK.
A Flexible CUDA LU-based Solver for Small, Batched Linear Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumeo, Antonino; Gawande, Nitin A.; Villa, Oreste
This chapter presents the implementation of a batched CUDA solver based on LU factorization for small linear systems. This solver may be used in applications such as reactive flow transport models, which apply the Newton-Raphson technique to linearize and iteratively solve the sets of non linear equations that represent the reactions for ten of thousands to millions of physical locations. The implementation exploits somewhat counterintuitive GPGPU programming techniques: it assigns the solution of a matrix (representing a system) to a single CUDA thread, does not exploit shared memory and employs dynamic memory allocation on the GPUs. These techniques enable ourmore » implementation to simultaneously solve sets of systems with over 100 equations and to employ LU decomposition with complete pivoting, providing the higher numerical accuracy required by certain applications. Other currently available solutions for batched linear solvers are limited by size and only support partial pivoting, although they may result faster in certain conditions. We discuss the code of our implementation and present a comparison with the other implementations, discussing the various tradeoffs in terms of performance and flexibility. This work will enable developers that need batched linear solvers to choose whichever implementation is more appropriate to the features and the requirements of their applications, and even to implement dynamic switching approaches that can choose the best implementation depending on the input data.« less
NASA Astrophysics Data System (ADS)
Bélanger, Erik; Crépeau, Joël; Laffray, Sophie; Vallée, Réal; De Koninck, Yves; Côté, Daniel
2012-02-01
In vivo imaging of cellular dynamics can be dramatically enabling to understand the pathophysiology of nervous system diseases. To fully exploit the power of this approach, the main challenges have been to minimize invasiveness and maximize the number of concurrent optical signals that can be combined to probe the interplay between multiple cellular processes. Label-free coherent anti-Stokes Raman scattering (CARS) microscopy, for example, can be used to follow demyelination in neurodegenerative diseases or after trauma, but myelin imaging alone is not sufficient to understand the complex sequence of events that leads to the appearance of lesions in the white matter. A commercially available microendoscope is used here to achieve minimally invasive, video-rate multimodal nonlinear imaging of cellular processes in live mouse spinal cord. The system allows for simultaneous CARS imaging of myelin sheaths and two-photon excitation fluorescence microendoscopy of microglial cells and axons. Morphometric data extraction at high spatial resolution is also described, with a technique for reducing motion-related imaging artifacts. Despite its small diameter, the microendoscope enables high speed multimodal imaging over wide areas of tissue, yet at resolution sufficient to quantify subtle differences in myelin thickness and microglial motility.
Integrating System Dynamics and Bayesian Networks with Application to Counter-IED Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarman, Kenneth D.; Brothers, Alan J.; Whitney, Paul D.
2010-06-06
The practice of choosing a single modeling paradigm for predictive analysis can limit the scope and relevance of predictions and their utility to decision-making processes. Considering multiple modeling methods simultaneously may improve this situation, but a better solution provides a framework for directly integrating different, potentially complementary modeling paradigms to enable more comprehensive modeling and predictions, and thus better-informed decisions. The primary challenges of this kind of model integration are to bridge language and conceptual gaps between modeling paradigms, and to determine whether natural and useful linkages can be made in a formal mathematical manner. To address these challenges inmore » the context of two specific modeling paradigms, we explore mathematical and computational options for linking System Dynamics (SD) and Bayesian network (BN) models and incorporating data into the integrated models. We demonstrate that integrated SD/BN models can naturally be described as either state space equations or Dynamic Bayes Nets, which enables the use of many existing computational methods for simulation and data integration. To demonstrate, we apply our model integration approach to techno-social models of insurgent-led attacks and security force counter-measures centered on improvised explosive devices.« less
Force-controlled patch clamp of beating cardiac cells.
Ossola, Dario; Amarouch, Mohamed-Yassine; Behr, Pascal; Vörös, János; Abriel, Hugues; Zambelli, Tomaso
2015-03-11
From its invention in the 1970s, the patch clamp technique is the gold standard in electrophysiology research and drug screening because it is the only tool enabling accurate investigation of voltage-gated ion channels, which are responsible for action potentials. Because of its key role in drug screening, innovation efforts are being made to reduce its complexity toward more automated systems. While some of these new approaches are being adopted in pharmaceutical companies, conventional patch-clamp remains unmatched in fundamental research due to its versatility. Here, we merged the patch clamp and atomic force microscope (AFM) techniques, thus equipping the patch-clamp with the sensitive AFM force control. This was possible using the FluidFM, a force-controlled nanopipette based on microchanneled AFM cantilevers. First, the compatibility of the system with patch-clamp electronics and its ability to record the activity of voltage-gated ion channels in whole-cell configuration was demonstrated with sodium (NaV1.5) channels. Second, we showed the feasibility of simultaneous recording of membrane current and force development during contraction of isolated cardiomyocytes. Force feedback allowed for a gentle and stable contact between AFM tip and cell membrane enabling serial patch clamping and injection without apparent cell damage.
Automated computer-based detection of encounter behaviours in groups of honeybees.
Blut, Christina; Crespi, Alessandro; Mersch, Danielle; Keller, Laurent; Zhao, Linlin; Kollmann, Markus; Schellscheidt, Benjamin; Fülber, Carsten; Beye, Martin
2017-12-15
Honeybees form societies in which thousands of members integrate their behaviours to act as a single functional unit. We have little knowledge on how the collaborative features are regulated by workers' activities because we lack methods that enable collection of simultaneous and continuous behavioural information for each worker bee. In this study, we introduce the Bee Behavioral Annotation System (BBAS), which enables the automated detection of bees' behaviours in small observation hives. Continuous information on position and orientation were obtained by marking worker bees with 2D barcodes in a small observation hive. We computed behavioural and social features from the tracking information to train a behaviour classifier for encounter behaviours (interaction of workers via antennation) using a machine learning-based system. The classifier correctly detected 93% of the encounter behaviours in a group of bees, whereas 13% of the falsely classified behaviours were unrelated to encounter behaviours. The possibility of building accurate classifiers for automatically annotating behaviours may allow for the examination of individual behaviours of worker bees in the social environments of small observation hives. We envisage that BBAS will be a powerful tool for detecting the effects of experimental manipulation of social attributes and sub-lethal effects of pesticides on behaviour.
An approach to develop an algorithm to detect the climbing height in radial-axial ring rolling
NASA Astrophysics Data System (ADS)
Husmann, Simon; Hohmann, Magnus; Kuhlenkötter, Bernd
2017-10-01
Radial-axial ring rolling is the mainly used forming process to produce seamless rings, which are applied in miscellaneous industries like the energy sector, the aerospace technology or in the automotive industry. Due to the simultaneously forming in two opposite rolling gaps and the fact that ring rolling is a mass forming process, different errors could occur during the rolling process. Ring climbing is one of the most occurring process errors leading to a distortion of the ring's cross section and a deformation of the rings geometry. The conventional sensors of a radial-axial rolling machine could not detect this error. Therefore, it is a common strategy to roll a slightly bigger ring, so that random occurring process errors could be reduce afterwards by removing the additional material. The LPS installed an image processing system to the radial rolling gap of their ring rolling machine to enable the recognition and measurement of climbing rings and by this, to reduce the additional material. This paper presents the algorithm which enables the image processing system to detect the error of a climbing ring and ensures comparable reliable results for the measurement of the climbing height of the rings.
Oversampling in virtual visual sensors as a means to recover higher modes of vibration
NASA Astrophysics Data System (ADS)
Shariati, Ali; Schumacher, Thomas
2015-03-01
Vibration-based structural health monitoring (SHM) techniques require modal information from the monitored structure in order to estimate the location and severity of damage. Natural frequencies also provide useful information to calibrate finite element models. There are several types of physical sensors that can measure the response over a range of frequencies. For most of those sensors however, accessibility, limitation of measurement points, wiring, and high system cost represent major challenges. Recent optical sensing approaches offer advantages such as easy access to visible areas, distributed sensing capabilities, and comparatively inexpensive data recording while having no wiring issues. In this research we propose a novel methodology to measure natural frequencies of structures using digital video cameras based on virtual visual sensors (VVS). In our initial study where we worked with commercially available inexpensive digital video cameras we found that for multiple degrees of freedom systems it is difficult to detect all of the natural frequencies simultaneously due to low quantization resolution. In this study we show how oversampling enabled by the use of high-end high-frame-rate video cameras enable recovering all of the three natural frequencies from a three story lab-scale structure.
A Comparison of Propulsion Concepts for SSTO Reusable Launchers
NASA Astrophysics Data System (ADS)
Varvill, R.; Bond, A.
This paper discusses the relevant selection criteria for a single stage to orbit (SSTO) propulsion system and then reviews the characteristics of the typical engine types proposed for this role against these criteria. The engine types considered include Hydrogen/Oxygen (H2/O2) rockets, Scramjets, Turbojets, Turborockets and Liquid Air Cycle Engines. In the authors opinion none of the above engines are able to meet all the necessary criteria for an SSTO propulsion system simultaneously. However by selecting appropriate features from each it is possible to synthesise a new class of engines which are specifically optimised for the SSTO role. The resulting engines employ precooling of the airstream and a high internal pressure ratio to enable a relatively conventional high pressure rocket combustion chamber to be utilised in both airbreathing and rocket modes. This results in a significant mass saving with installation advantages which by careful design of the cycle thermodynamics enables the full potential of airbreathing to be realised. The SABRE engine which powers the SKYLON launch vehicle is an example of one of these so called `Precooled hybrid airbreathing rocket engines' and the concep- tual reasoning which leads to its main design parameters are described in the paper.
Earth Observing System Data Gateway
NASA Technical Reports Server (NTRS)
Pfister, Robin; McMahon, Joe; Amrhein, James; Sefert, Ed; Marsans, Lorena; Solomon, Mark; Nestler, Mark
2006-01-01
The Earth Observing System Data Gateway (EDG) software provides a "one-stop-shopping" standard interface for exploring and ordering Earth-science data stored at geographically distributed sites. EDG enables a user to do the following: 1) Search for data according to high-level criteria (e.g., geographic location, time, or satellite that acquired the data); 2) Browse the results of a search, viewing thumbnail sketches of data that satisfy the user s criteria; and 3) Order selected data for delivery to a specified address on a chosen medium (e.g., compact disk or magnetic tape). EDG consists of (1) a component that implements a high-level client/server protocol, and (2) a collection of C-language libraries that implement the passing of protocol messages between an EDG client and one or more EDG servers. EDG servers are located at sites usually called "Distributed Active Archive Centers" (DAACs). Each DAAC may allow access to many individual data items, called "granules" (e.g., single Landsat images). Related granules are grouped into collections called "data sets." EDG enables a user to send a search query to multiple DAACs simultaneously, inspect the resulting information, select browseable granules, and then order selected data from the different sites in a seamless fashion.
NASA Technical Reports Server (NTRS)
Aghazarian, Hrand
2009-01-01
The R4SA GUI mentioned in the immediately preceding article is a userfriendly interface for controlling one or more robot(s). This GUI makes it possible to perform meaningful real-time field experiments and research in robotics at an unmatched level of fidelity, within minutes of setup. It provides such powerful graphing modes as that of a digitizing oscilloscope that displays up to 250 variables at rates between 1 and 200 Hz. This GUI can be configured as multiple intuitive interfaces for acquisition of data, command, and control to enable rapid testing of subsystems or an entire robot system while simultaneously performing analysis of data. The R4SA software establishes an intuitive component-based design environment that can be easily reconfigured for any robotic platform by creating or editing setup configuration files. The R4SA GUI enables event-driven and conditional sequencing similar to those of Mars Exploration Rover (MER) operations. It has been certified as part of the MER ground support equipment and, therefore, is allowed to be utilized in conjunction with MER flight hardware. The R4SA GUI could also be adapted to use in embedded computing systems, other than that of the MER, for commanding and real-time analysis of data.
NASA Astrophysics Data System (ADS)
Pantelić, Dejan V.; Grujić, Dušan Ž.; Vasiljević, Darko M.
2014-12-01
We describe a method for dual-view biomechanical strain measurements of highly asymmetrical biological objects, like teeth or bones. By using a spherical mirror, we were able to simultaneously record a digital hologram of the object itself and the mirror image of its (otherwise invisible) rear side. A single laser beam was sufficient to illuminate both sides of the object, and to provide a reference beam. As a result, the system was mechanically very stable, enabling long exposure times (up to 2 min) without the need for vibration isolation. The setup is simple to construct and adjust, and can be used to interferometrically observe any object that is smaller than the mirror diameter. Parallel data processing on a CUDA-enabled (compute unified device architecture) graphics card was used to reconstruct digital holograms and to further correct image distortion. We used the setup to measure the deformation of a tooth due to mastication forces. The finite-element method was used to compare experimental results and theoretical predictions.
Digitally synthesized beat frequency-multiplexed fluorescence lifetime spectroscopy
Chan, Jacky C. K.; Diebold, Eric D.; Buckley, Brandon W.; Mao, Sien; Akbari, Najva; Jalali, Bahram
2014-01-01
Frequency domain fluorescence lifetime imaging is a powerful technique that enables the observation of subtle changes in the molecular environment of a fluorescent probe. This technique works by measuring the phase delay between the optical emission and excitation of fluorophores as a function of modulation frequency. However, high-resolution measurements are time consuming, as the excitation modulation frequency must be swept, and faster low-resolution measurements at a single frequency are prone to large errors. Here, we present a low cost optical system for applications in real-time confocal lifetime imaging, which measures the phase vs. frequency spectrum without sweeping. Deemed Lifetime Imaging using Frequency-multiplexed Excitation (LIFE), this technique uses a digitally-synthesized radio frequency comb to drive an acousto-optic deflector, operated in a cat’s-eye configuration, to produce a single laser excitation beam modulated at multiple beat frequencies. We demonstrate simultaneous fluorescence lifetime measurements at 10 frequencies over a bandwidth of 48 MHz, enabling high speed frequency domain lifetime analysis of single- and multi-component sample mixtures. PMID:25574449
All-in-One CRISPR-Cas9/FokI-dCas9 Vector-Mediated Multiplex Genome Engineering in Cultured Cells.
Sakuma, Tetsushi; Sakamoto, Takuya; Yamamoto, Takashi
2017-01-01
CRISPR-Cas9 enables highly convenient multiplex genome engineering in cultured cells, because it utilizes generic Cas9 nuclease and an easily customizable single-guide RNA (sgRNA) for site-specific DNA double-strand break induction. We previously established a multiplex CRISPR-Cas9 assembly system for constructing an all-in-one vector simultaneously expressing multiple sgRNAs and Cas9 nuclease or other Cas9 variants including FokI-dCas9, which supersedes the wild-type Cas9 with regard to high specificity. In this chapter, we describe a streamlined protocol to design and construct multiplex CRISPR-Cas9 or FokI-dCas9 vectors, to introduce them into cultured cells by lipofection or electroporation, to enrich the genomically edited cells with a transient puromycin selection, to validate the mutation efficiency by Surveyor nuclease assay, and to perform off-target analyses. We show that our protocol enables highly efficient multiplex genome engineering even in hard-to-transfect HepG2 cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herter, Karen; Rasin, Josh; Perry, Tim
2009-11-30
The goal of this study was to demonstrate a demand response system that can signal nearly every customer in all sectors through the integration of two widely available and non- proprietary communications technologies--Open Automated Demand Response (OpenADR) over lnternet protocol and Utility Messaging Channel (UMC) over FM radio. The outcomes of this project were as follows: (1) a software bridge to allow translation of pricing signals from OpenADR to UMC; and (2) a portable demonstration unit with an lnternet-connected notebook computer, a portfolio of DR-enabling technologies, and a model home. The demonstration unit provides visitors the opportunity to send electricity-pricingmore » information over the lnternet (through OpenADR and UMC) and then watch as the model appliances and lighting respond to the signals. The integration of OpenADR and UMC completed and demonstrated in this study enables utilities to send hourly or sub-hourly electricity pricing information simultaneously to the residential, commercial and industrial sectors.« less
Pantelić, Dejan V; Grujić, Dušan Ž; Vasiljević, Darko M
2014-12-01
We describe a method for dual-view biomechanical strain measurements of highly asymmetrical biological objects, like teeth or bones. By using a spherical mirror, we were able to simultaneously record a digital hologram of the object itself and the mirror image of its (otherwise invisible) rear side. A single laser beam was sufficient to illuminate both sides of the object, and to provide a reference beam. As a result, the system was mechanically very stable, enabling long exposure times (up to 2 min) without the need for vibration isolation. The setup is simple to construct and adjust, and can be used to interferometrically observe any object that is smaller than the mirror diameter. Parallel data processing on a CUDA-enabled (compute unified device architecture) graphics card was used to reconstruct digital holograms and to further correct image distortion. We used the setup to measure the deformation of a tooth due to mastication forces. The finite-element method was used to compare experimental results and theoretical predictions.
Parot, Vicente; Lim, Daryl; González, Germán; Traverso, Giovanni; Nishioka, Norman S.; Vakoc, Benjamin J.
2013-01-01
Abstract. While color video endoscopy has enabled wide-field examination of the gastrointestinal tract, it often misses or incorrectly classifies lesions. Many of these missed lesions exhibit characteristic three-dimensional surface topographies. An endoscopic system that adds topographical measurements to conventional color imagery could therefore increase lesion detection and improve classification accuracy. We introduce photometric stereo endoscopy (PSE), a technique which allows high spatial frequency components of surface topography to be acquired simultaneously with conventional two-dimensional color imagery. We implement this technique in an endoscopic form factor and demonstrate that it can acquire the topography of small features with complex geometries and heterogeneous optical properties. PSE imaging of ex vivo human gastrointestinal tissue shows that surface topography measurements enable differentiation of abnormal shapes from surrounding normal tissue. Together, these results confirm that the topographical measurements can be obtained with relatively simple hardware in an endoscopic form factor, and suggest the potential of PSE to improve lesion detection and classification in gastrointestinal imaging. PMID:23864015
Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics
NASA Astrophysics Data System (ADS)
Jeong, Sinyoung; Kim, Yong-Il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong
2015-03-01
Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures.
Wehner, Rüdiger; Müller, Martin
2006-08-15
As textbook knowledge has it, bees and ants use polarized skylight as a backup cue whenever the main compass cue, the sun, is obscured by clouds. Here we show, by employing a unique experimental paradigm, that the celestial compass system of desert ants, Cataglyphis, relies predominantly on polarized skylight. If ants experience only parts of the polarization pattern during training but the full pattern in a subsequent test situation, they systematically deviate from their true homeward courses, with the systematics depending on what parts of the skylight patterns have been presented during training. This "signature" of the polarization compass remains unaltered, even if the ants can simultaneously experience the sun, which, if presented alone, enables the ants to select their true homeward courses. Information provided by direct sunlight and polarized skylight is picked up by different parts of the ant's compound eyes and is channeled into two rather separate systems of navigation.
Hao, Shiying; Gorjon, Jose; Taylor, Stephen
2014-03-01
This work describes the functions of the external, portable part of a telemetry system for powering and interrogating implantable electrical devices built within orthopaedic implants for real-time data acquisition of strain, load, temperature, humidity and other relevant data (e.g. from inertial sensors). The system contains a battery powered inductive energiser and demodulator to remotely power the implant electronics and demodulate the signals transmitted from the implanted device. Due to the housing of the internal coil, sufficient inductive coupling is obtained between the external and internal tuned circuits to enable simultaneous power and data transmission over the same inductive link. The actual performance of this system when used with one specific implant was studied, and some correspondence made to the relevant theory. Performance factors relating to both power efficiency and data reconstruction were identified. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Mars NanoOrbiter: A CubeSat for Mars System Science
NASA Astrophysics Data System (ADS)
Ehlmann, Bethany; Klesh, Andrew; Alsedairy, Talal
2017-10-01
The Mars NanoOrbiter mission consists of two identical 12U spacecraft, launched simultaneously as secondary payloads on a larger planetary mission launch, and deployed to Earth-escape, as early as with Mars 2020. The nominal mission will last for 1 year, during which time the craft will independently navigate to Mars, enter into elliptical orbit, and achieve close flybys of Phobos and Deimos, obtaining unprecedented coverage of each moon. The craft will additionally provide high temporal resolution data of Mars clouds and atmospheric phenomena at multiple times of day. Two spacecraft provide redundancy to reduce the risk in meeting the science objectives at the Mars moons and enhanced coverage of the dynamic Mars atmosphere. This technology is enabled by recent advances in CubeSat propulsion technology, attitude control systems, guidance, navigation and control. NanoOrbiter builds directly on the systems heritage of the MarCO mission, scheduled to launch with the 2018 Discovery mission Insight.
Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond
NASA Astrophysics Data System (ADS)
Neukirch, Levi P.; von Haartman, Eva; Rosenholm, Jessica M.; Nick Vamivakas, A.
2015-10-01
Considerable advances made in the development of nanomechanical and nano-optomechanical devices have enabled the observation of quantum effects, improved sensitivity to minute forces, and provided avenues to probe fundamental physics at the nanoscale. Concurrently, solid-state quantum emitters with optically accessible spin degrees of freedom have been pursued in applications ranging from quantum information science to nanoscale sensing. Here, we demonstrate a hybrid nano-optomechanical system composed of a nanodiamond (containing a single nitrogen-vacancy centre) that is levitated in an optical dipole trap. The mechanical state of the diamond is controlled by modulation of the optical trapping potential. We demonstrate the ability to imprint the multi-dimensional mechanical motion of the cavity-free mechanical oscillator into the nitrogen-vacancy centre fluorescence and manipulate the mechanical system's intrinsic spin. This result represents the first step towards a hybrid quantum system based on levitating nanoparticles that simultaneously engages optical, phononic and spin degrees of freedom.
Space and Atmospheric Environments: From Low Earth Orbits to Deep Space
NASA Technical Reports Server (NTRS)
Barth, Janet L.
2003-01-01
Natural space and atmospheric environments pose a difficult challenge for designers of technological systems in space. The deleterious effects of environment interactions with the systems include degradation of materials, thermal changes, contamination, excitation, spacecraft glow, charging, radiation damage, and induced background interference. Design accommodations must be realistic with minimum impact on performance while maintaining a balance between cost and risk. The goal of applied research in space environments and effects is to limit environmental impacts at low cost relative to spacecraft cost and to infuse enabling and commercial off-the-shelf technologies into space programs. The need to perform applied research to understand the space environment in a practical sense and to develop methods to mitigate these environment effects is frequently underestimated by space agencies and industry. Applied science research in this area is critical because the complexity of spacecraft systems is increasing, and they are exposed simultaneously to a multitude of space environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehoff, Ryan R; Love, Lonnie J; Lind, Randall F
This work explores the integration of miniaturized fluid power and additive manufacturing. Oak Ridge National Laboratory (ORNL) has been developing an approach to miniaturized fluidic actuation and control that enables high dexterity, low cost and a pathway towards energy efficiency. Previous work focused on mesoscale digital control valves (high pressure, low flow) and the integration of actuation and fluid passages directly with the structure, the primary application being fluid powered robotics. The fundamental challenge was part complexity. ORNL s new additive manufacturing technologies (e-beam, laser and ultrasonic deposition) enables freeform manufacturing using conventional metal alloys with excellent mechanical properties. Themore » combination of these two technologies, miniaturized fluid power and additive manufacturing, can enable a paradigm shift in fluid power, increasing efficiency while simultaneously reducing weight, size, complexity and cost. This paper focuses on the impact additive manufacturing can have on new forms of fluid power components and systems. We begin with a description of additive manufacturing processes, highlighting the strengths and weaknesses of each technology. Next we describe fundamental results of material characterization to understand the design and mechanical limits of parts made with the e-beam process. A novel design approach is introduced that enables integration of fluid powered actuation with mechanical structure. Finally, we describe a proof-of-principle demonstration: an anthropomorphic (human-like) hydraulically powered hand with integrated power supply and actuation.« less
Test Facilities in Support of High Power Electric Propulsion Systems
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Dickens, Ricky; Martin, James J.; Salvail, Patrick; Carter, Robert
2002-01-01
Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the High Power Propulsion Thermal Simulator (HPPTS). The HPPTS is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the HPPTS is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. Through hardware based design and testing, the HPPTS investigates High Power Electric Propulsion (HPEP) component, subsystem, and integrated system design and performance.
Development of a current collection loss management system for SDI homopolar power supplies
NASA Astrophysics Data System (ADS)
Brown, D. W.
1991-04-01
High speed, high power density current collection systems have been identified as an enabling technology required to construct homopolar power supplies to meet SDI missions. This work is part of a three-year effort directed towards the analysis, experimental verification, and prototype construction of a current collection system designed to operate continuously at 2 kA/sq cm, at a rubbing speed of 200 m/s, and with acceptable losses in a space environment. To date, no system has achieved these conditions simultaneously. This is the final report covering the three year period of performance on DOE contract AC03-86SF-16518. Major areas covered include design, construction and operation of a cryogenically cooled brush test rig, design and construction of a high speed brush test rig, optimization study for homopolar machines, loss analysis of the current collection system, and an application study which defines the air-core homopolar construction necessary to achieve the goal of 80 kW/kg generator power density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Xiangzhi, E-mail: xiangzhi.yu@rochester.edu; Gillmer, Steven R.; Woody, Shane C.
2016-06-15
A compact, fiber-coupled, six degree-of-freedom measurement system which enables fast, accurate calibration, and error mapping of precision linear stages is presented. The novel design has the advantages of simplicity, compactness, and relatively low cost. This proposed sensor can simultaneously measure displacement, two straightness errors, and changes in pitch, yaw, and roll using a single optical beam traveling between the measurement system and a small target. The optical configuration of the system and the working principle for all degrees-of-freedom are presented along with the influence and compensation of crosstalk motions in roll and straightness measurements. Several comparison experiments are conducted tomore » investigate the feasibility and performance of the proposed system in each degree-of-freedom independently. Comparison experiments to a commercial interferometer demonstrate error standard deviations of 0.33 μm in straightness, 0.14 μrad in pitch, 0.44 μradin yaw, and 45.8 μrad in roll.« less
A Prototype Cryogenic Oxygen Storage and Delivery Subsystem for Advanced Spacesuits
NASA Technical Reports Server (NTRS)
Overbeeke, Arend; Hodgson, Edward; Paul, Heather; Geier, Harold; Bradt, Howard
2007-01-01
Future spacesuit systems for the exploration of Mars will need to be much lighter than current designs while at the same time reducing the consumption of water for crew cooling. One of the technology paths NASA has identified to achieve these objectives is the replacement of current high pressure oxygen storage technology in EVA systems with cryogenic technology that can simultaneously reduce the mass of tankage required for oxygen storage and enable the use of the stored oxygen as a means of cooling the EVA astronaut. During the past year NASA has funded Hamilton Sundstrand production of a prototype system demonstrating this capability in a design that will allow the cryogenic oxygen to be used in any attitude and gravity environment. This paper will describe the design and manufacture of the prototype system and present the results of preliminary testing to verify its performance characteristics. The potential significance and application of the system will also be discussed.
Tsutsumi, K; Otsuki, Y; Kinoshita, T
1982-09-10
The simultaneous determination of azathioprine and its metabolite 6-mercaptopurine in serum by reversed-phase high-performance liquid chromatography is described. 6-Mercaptopurine was converted to a derivative, 6-mercaptopurine-N-ethylmaleimide, which is stable against autoxidation, on reaction with N-ethylmaleimide. Since the N-ethylmaleimide derivative was more hydrophobic than the parent compound, it could be extracted into ethyl acetate together with azathioprine and the derivative was retained on the reversed-phase column better than 6-mercaptopurine. In addition, 6-mercaptopurine-N-ethylmaleimide absorbed at the same wavelength (280 nm) as azathioprine. Consequently, this derivatization procedure enabled the simultaneous extraction, separation, and detection of these compounds.
Bieda, Marcin S; Sobotka, Piotr; Woliński, Tomasz R
2017-02-20
A new sensor configuration is proposed for simultaneous strain and temperature monitoring in a composite material that is based on a chirped fiber Bragg grating (CFBG) written in a highly birefringent (HB) polarization-maintaining fiber. The sensor is designed in the reflective configuration in which the CFBG acts both as a reflector and a sensing element. Since CFBG and HB fiber induce changes in the state of polarization (SOP), interference between polarization modes in the reflected spectrum is observed and analyzed. We used a simple readout setup to enable fast, linear operation of strain sensing as well simultaneous strain and temperature measurements in the composite.
Mirrored pyramidal wells for simultaneous multiple vantage point microscopy.
Seale, K T; Reiserer, R S; Markov, D A; Ges, I A; Wright, C; Janetopoulos, C; Wikswo, J P
2008-10-01
We report a novel method for obtaining simultaneous images from multiple vantage points of a microscopic specimen using size-matched microscopic mirrors created from anisotropically etched silicon. The resulting pyramidal wells enable bright-field and fluorescent side-view images, and when combined with z-sectioning, provide additional information for 3D reconstructions of the specimen. We have demonstrated the 3D localization and tracking over time of the centrosome of a live Dictyostelium discoideum. The simultaneous acquisition of images from multiple perspectives also provides a five-fold increase in the theoretical collection efficiency of emitted photons, a property which may be useful for low-light imaging modalities such as bioluminescence, or low abundance surface-marker labelling.
Tool For Driving Many Fasteners Simultaneously
NASA Technical Reports Server (NTRS)
Cook, Joseph S., Jr.
1995-01-01
Proposed tool tightens or loosens several bolts, screws, nuts, or other threaded fasteners arranged in circle on compressor head, automotive wheel, pipe-end flange, or similar object. Enables assembly or disassembly in fraction of time needed to tighten fasteners one at a time. Simultaneously applies same torque to all fasteners, preventing distortion and enhancing reliability. Concept not limited to circular fastener patterns. Adapted to rectangular configurations like on engine intake manifolds, by adding gears to drive train to provide proper spacing. Designed to deliver fixed or adjustable maximum torque. To ensure even seal loading, piston pressure simultaneously ramped from initial to final values to maintain relatively constant torque loading on all fasteners until final specifications limit achieved.
Fatigue of internal combustion engines
NASA Technical Reports Server (NTRS)
Dumanois, P
1924-01-01
The above conditions enable the employment of a criterion of general fatigue which simultaneously takes account of both mechanical and thermal conditions, for the sake of comparing any projected engine with engines of the same type already in use.
NASA Astrophysics Data System (ADS)
Matsuda, M.; Asozu, T.; Sataka, M.; Iwase, A.
2013-11-01
We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, 132Xe11+ and 12C+). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.
Tomassini, R; Rossi, G; Brouckaert, J-F
2016-10-01
A simultaneous blade tip timing (BTT) and blade tip clearance (BTC) measurement system enables the determination of turbomachinery blade vibrations and ensures the monitoring of the existing running gaps between the blade tip and the casing. This contactless instrumentation presents several advantages compared to the well-known telemetry system with strain gauges, at the cost of a more complex data processing procedure. The probes used can be optical, capacitive, eddy current as well as microwaves, everyone with its dedicated electronics and many existing different signal processing algorithms. Every company working in this field has developed its own processing method and sensor technology. Hence, repeating the same test with different instrumentations, the answer is often different. Moreover, rarely it is possible to achieve reliability for in-service measurements. Developments are focused on innovative instrumentations and a common standard. This paper focuses on the results achieved using a novel magnetoresistive sensor for simultaneous tip timing and tip clearance measurements. The sensor measurement principle is described. The sensitivity to gap variation is investigated. In terms of measurement of vibrations, experimental investigations were performed at the Air Force Institute of Technology (ITWL, Warsaw, Poland) in a real aeroengine and in the von Karman Institute (VKI) R2 compressor rig. The advantages and limitations of the magnetoresistive probe for turbomachinery testing are highlighted.
A non-inheritable maternal Cas9-based multiple-gene editing system in mice.
Sakurai, Takayuki; Kamiyoshi, Akiko; Kawate, Hisaka; Mori, Chie; Watanabe, Satoshi; Tanaka, Megumu; Uetake, Ryuichi; Sato, Masahiro; Shindo, Takayuki
2016-01-28
The CRISPR/Cas9 system is capable of editing multiple genes through one-step zygote injection. The preexisting method is largely based on the co-injection of Cas9 DNA (or mRNA) and guide RNAs (gRNAs); however, it is unclear how many genes can be simultaneously edited by this method, and a reliable means to generate transgenic (Tg) animals with multiple gene editing has yet to be developed. Here, we employed non-inheritable maternal Cas9 (maCas9) protein derived from Tg mice with systemic Cas9 overexpression (Cas9 mice). The maCas9 protein in zygotes derived from mating or in vitro fertilization of Tg/+ oocytes and +/+ sperm could successfully edit the target genome. The efficiency of such maCas9-based genome editing was comparable to that of zygote microinjection-based genome editing widely used at present. Furthermore, we demonstrated a novel approach to create "Cas9 transgene-free" gene-modified mice using non-Tg (+/+) zygotes carrying maCas9. The maCas9 protein in mouse zygotes edited nine target loci simultaneously after injection with nine different gRNAs alone. Cas9 mouse-derived zygotes have the potential to facilitate the creation of genetically modified animals carrying the Cas9 transgene, enabling repeatable genome engineering and the production of Cas9 transgene-free mice.
NASA Astrophysics Data System (ADS)
Tomassini, R.; Rossi, G.; Brouckaert, J.-F.
2016-10-01
A simultaneous blade tip timing (BTT) and blade tip clearance (BTC) measurement system enables the determination of turbomachinery blade vibrations and ensures the monitoring of the existing running gaps between the blade tip and the casing. This contactless instrumentation presents several advantages compared to the well-known telemetry system with strain gauges, at the cost of a more complex data processing procedure. The probes used can be optical, capacitive, eddy current as well as microwaves, everyone with its dedicated electronics and many existing different signal processing algorithms. Every company working in this field has developed its own processing method and sensor technology. Hence, repeating the same test with different instrumentations, the answer is often different. Moreover, rarely it is possible to achieve reliability for in-service measurements. Developments are focused on innovative instrumentations and a common standard. This paper focuses on the results achieved using a novel magnetoresistive sensor for simultaneous tip timing and tip clearance measurements. The sensor measurement principle is described. The sensitivity to gap variation is investigated. In terms of measurement of vibrations, experimental investigations were performed at the Air Force Institute of Technology (ITWL, Warsaw, Poland) in a real aeroengine and in the von Karman Institute (VKI) R2 compressor rig. The advantages and limitations of the magnetoresistive probe for turbomachinery testing are highlighted.
Ha, Unsoo; Lee, Yongsu; Kim, Hyunki; Roh, Taehwan; Bae, Joonsung; Kim, Changhyeon; Yoo, Hoi-Jun
2015-12-01
A multimodal mental management system in the shape of the wearable headband and earplugs is proposed to monitor electroencephalography (EEG), hemoencephalography (HEG) and heart rate variability (HRV) for accurate mental health monitoring. It enables simultaneous transcranial electrical stimulation (tES) together with real-time monitoring. The total weight of the proposed system is less than 200 g. The multi-loop low-noise amplifier (MLLNA) achieves over 130 dB CMRR for EEG sensing and the capacitive correlated-double sampling transimpedance amplifier (CCTIA) has low-noise characteristics for HEG and HRV sensing. Measured three-physiology domains such as neural, vascular and autonomic domain signals are combined with canonical correlation analysis (CCA) and temporal kernel canonical correlation analysis (tkCCA) algorithm to find the neural-vascular-autonomic coupling. It supports highly accurate classification with the 19% maximum improvement with multimodal monitoring. For the multi-channel stimulation functionality, after-effects maximization monitoring and sympathetic nerve disorder monitoring, the stimulator is designed as reconfigurable. The 3.37 × 2.25 mm(2) chip has 2-channel EEG sensor front-end, 2-channel NIRS sensor front-end, NIRS current driver to drive dual-wavelength VCSEL and 6-b DAC current source for tES mode. It dissipates 24 mW with 2 mA stimulation current and 5 mA NIRS driver current.
In, Jung Bin; Lee, Daeho; Fornasiero, Francesco; Noy, Aleksandr; Grigoropoulos, Costas P
2012-09-25
We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications.
Veerbeek, Janneke; Firet, Nienke J; Vijselaar, Wouter; Elbersen, Rick; Gardeniers, Han; Huskens, Jurriaan
2017-01-11
Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based solar cells. Organic monolayers were coupled to silicon surfaces by hydrosilylation in order to avoid an insulating silicon oxide layer at the surface. Monolayers of 1-tetradecyne were shown to passivate silicon micropillar-based solar cells with radial junctions, by which the efficiency increased from 8.7% to 9.9% for n + /p junctions and from 7.8% to 8.8% for p + /n junctions. This electrical passivation of the surface, most likely by removal of dangling bonds, is reflected in a higher shunt resistance in the J-V measurements. Monolayers of 1,8-nonadiyne were still reactive for click chemistry with a model catalyst, thus enabling simultaneous passivation and future catalyst coupling.
Phase-locked bifrequency Raman lasing in a double-Λ system
NASA Astrophysics Data System (ADS)
Alaeian, Hadiseh; Shahriar, M. S.
2018-05-01
We show that it is possible to realize simultaneous Raman lasing at two different frequencies using a double-Λ system pumped by a bifrequency field. The bifrequency Raman lasers are phase-locked to one another and the beat-frequency matches the energy difference between the two metastable ground states. Akin to a conventional Raman laser, the bifrequency Raman lasers are expected to be subluminal. As such, these are expected to be highly stable against perturbations in cavity length and have quantum noise limited linewidths that are far below that of a conventional laser. Because of these properties, the bifrequency Raman lasers may find important applications in precision metrology, including atomic interferometry and magnetometry. The phase-locked Raman laser pair also represent a manifestation of lasing without inversion, albeit in a configuration that produces a pair of nondegenerate lasers simultaneously. This feature may enable lasing without inversion in frequency regimes not accessible using previous techniques of lasing without inversion. To elucidate the behavior of this laser pair, we develop an analytical model that describes the stimulated Raman interaction in a double-Λ system using an effective two-level transition. The approximation is valid as long as the excited states adiabatically follow the ground states, as verified by numerical simulations. The effective model is used to identify the optimal operating conditions for the bifrequency Raman lasing process. This model may also prove useful in other potential applications of the double-Λ system, including generation of squeezed light and spatial solitons.
Fiáth, Richárd; Beregszászi, Patrícia; Horváth, Domonkos; Wittner, Lucia; Aarts, Arno A. A.; Ruther, Patrick; Neves, Hercules P.; Bokor, Hajnalka; Acsády, László
2016-01-01
Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study. PMID:27535370
2013-07-01
Additionally, a physically consistent BRDF and radiation pressure model is utilized thus enabling an accurate physical link between the observed... BRDF and radiation pressure model is utilized thus enabling an accurate physical link between the observed photometric brightness and the attitudinal...source and the observer is ( ) VLVLH ˆˆˆˆˆ ++= (2) with angles α and β from N̂ and is used in many analytic BRDF models . There are many
New spectral imaging techniques for blood oximetry in the retina
NASA Astrophysics Data System (ADS)
Alabboud, Ied; Muyo, Gonzalo; Gorman, Alistair; Mordant, David; McNaught, Andrew; Petres, Clement; Petillot, Yvan R.; Harvey, Andrew R.
2007-07-01
Hyperspectral imaging of the retina presents a unique opportunity for direct and quantitative mapping of retinal biochemistry - particularly of the vasculature where blood oximetry is enabled by the strong variation of absorption spectra with oxygenation. This is particularly pertinent both to research and to clinical investigation and diagnosis of retinal diseases such as diabetes, glaucoma and age-related macular degeneration. The optimal exploitation of hyperspectral imaging however, presents a set of challenging problems, including; the poorly characterised and controlled optical environment of structures within the retina to be imaged; the erratic motion of the eye ball; and the compounding effects of the optical sensitivity of the retina and the low numerical aperture of the eye. We have developed two spectral imaging techniques to address these issues. We describe first a system in which a liquid crystal tuneable filter is integrated into the illumination system of a conventional fundus camera to enable time-sequential, random access recording of narrow-band spectral images. Image processing techniques are described to eradicate the artefacts that may be introduced by time-sequential imaging. In addition we describe a unique snapshot spectral imaging technique dubbed IRIS that employs polarising interferometry and Wollaston prism beam splitters to simultaneously replicate and spectrally filter images of the retina into multiple spectral bands onto a single detector array. Results of early clinical trials acquired with these two techniques together with a physical model which enables oximetry map are reported.
NASA Astrophysics Data System (ADS)
Kim, Wihan; Zebrowski, Erin; Lopez, Hazel C.; Applegate, Brian E.; Charoenphol, Phapanin; Jo, Javier A.
2016-03-01
Molecular contrast imaging can target specific molecules or receptors to provide detailed information on the local biochemistry and yield enhanced visualization of pathological and physiological processes. When paired with Optical Coherence Tomography (OCT) it can simultaneously supply the morphological context for the molecular information. We recently demonstrated in vivo molecular contrast imaging of methylene blue (MB) using a 663 nm diode laser as a pump in a Pump-Probe OCT (PPOCT) system. The simple addition of a dichroic mirror in the sample arm enabled PPOCT imaging with a typical 830-nm band spectral-domain OCT system. Here we report on the development of a microencapsulated MB contrast agent. The poly lactic-co-glycolic acid (PLGA) microspheres loaded with MB offer several advantages over bare MB. The microsphere encapsulation improves the PPOCT signal both by enhancing the scattering and preventing the reduction of MB to leucomethylene blue. The surface of the microsphere can readily be functionalized to enable active targeting of the contrast agent without modifying the excited state dynamics of MB that enable PPOCT imaging. Both MB and PLGA are used clinically. PLGA is FDA approved and used in drug delivery and tissue engineering applications. 2.5 μm diameter microspheres were synthesized with an inner core containing 0.01% (w/v) aqueous MB. As an initial demonstration the MB microspheres were imaged in a 100 μm diameter capillary tube submerged in a 1% intralipid emulsion.
A Robust Approach for a Filter-Based Monocular Simultaneous Localization and Mapping (SLAM) System
Munguía, Rodrigo; Castillo-Toledo, Bernardino; Grau, Antoni
2013-01-01
Simultaneous localization and mapping (SLAM) is an important problem to solve in robotics theory in order to build truly autonomous mobile robots. This work presents a novel method for implementing a SLAM system based on a single camera sensor. The SLAM with a single camera, or monocular SLAM, is probably one of the most complex SLAM variants. In this case, a single camera, which is freely moving through its environment, represents the sole sensor input to the system. The sensors have a large impact on the algorithm used for SLAM. Cameras are used more frequently, because they provide a lot of information and are well adapted for embedded systems: they are light, cheap and power-saving. Nevertheless, and unlike range sensors, which provide range and angular information, a camera is a projective sensor providing only angular measurements of image features. Therefore, depth information (range) cannot be obtained in a single step. In this case, special techniques for feature system-initialization are needed in order to enable the use of angular sensors (as cameras) in SLAM systems. The main contribution of this work is to present a novel and robust scheme for incorporating and measuring visual features in filtering-based monocular SLAM systems. The proposed method is based in a two-step technique, which is intended to exploit all the information available in angular measurements. Unlike previous schemes, the values of parameters used by the initialization technique are derived directly from the sensor characteristics, thus simplifying the tuning of the system. The experimental results show that the proposed method surpasses the performance of previous schemes. PMID:23823972
A near-field scanning microwave microscope for characterization of inhomogeneous photovoltaics.
Weber, J C; Schlager, J B; Sanford, N A; Imtiaz, A; Wallis, T M; Mansfield, L M; Coakley, K J; Bertness, K A; Kabos, P; Bright, V M
2012-08-01
We present a near-field scanning microwave microscope (NSMM) that has been configured for imaging photovoltaic samples. Our system incorporates a Pt-Ir tip inserted into an open-ended coaxial cable to form a weakly coupled resonator, allowing the microwave reflection S(11) signal to be measured across a sample over a frequency range of 1 GHz - 5 GHz. A phase-tuning circuit increased impedance-measurement sensitivity by allowing for tuning of the S(11) minimum down to -78 dBm. A bias-T and preamplifier enabled simultaneous, non-contact measurement of the DC tip-sample current, and a tuning fork feedback system provided simultaneous topographic data. Light-free tuning fork feedback provided characterization of photovoltaic samples both in the dark and under illumination at 405 nm. NSMM measurements were obtained on an inhomogeneous, third-generation Cu(In,Ga)Se(2) (CIGS) sample. The S(11) and DC current features were found to spatially broaden around grain boundaries with the sample under illumination. The broadening is attributed to optically generated charge that becomes trapped and changes the local depletion of the grain boundaries, thereby modifying the local capacitance. Imaging provided by the NSMM offers a new RF methodology to resolve and characterize nanoscale electrical features in photovoltaic materials and devices.
Zheng, Haiwu; Zi, Yunlong; He, Xu; Guo, Hengyu; Lai, Ying-Chih; Wang, Jie; Zhang, Steven L; Wu, Changsheng; Cheng, Gang; Wang, Zhong Lin
2018-05-02
Harvesting energy available from ambient environment is highly desirable for powering personal electronics and health applications. Due to natural process and human activities, steam can be produced by boilers, human perspiration, and the wind exists ubiquitously. In the outdoor environment, these two phenomena usually exist at the same place, which contain heat and mechanical energies simultaneously. However, previous studies have isolated them as separate sources of energy to harvest and hence failed to utilize them effectively. Herein, we present unique hybrid nanogenerators for individually/simultaneously harvesting thermal energy from water vapors and mechanical energy from intermittent wind blowing from the bottom side, which consist of a wind-driven triboelectric nanogenerator (TENG) and pyroelectric-piezoelectric nanogenerators (PPENGs). The output power of the PPENG and the TENG can be up to about 184.32 μW and 4.74 mW, respectively, indicating the TENG plays the dominant role. Our hybrid nanogenerators could provide different applications such as to power digital watch and enable self-powered sensing with wireless transmission. The device could also be further integrated into a face mask for potentially wearable applications. This work not only provides a promising approach for renewable energy harvesting but also enriches potential applications for self-powered systems and wireless sensors.
Wired and Wireless Camera Triggering with Arduino
NASA Astrophysics Data System (ADS)
Kauhanen, H.; Rönnholm, P.
2017-10-01
Synchronous triggering is an important task that allows simultaneous data capture from multiple cameras. Accurate synchronization enables 3D measurements of moving objects or from a moving platform. In this paper, we describe one wired and four wireless variations of Arduino-based low-cost remote trigger systems designed to provide a synchronous trigger signal for industrial cameras. Our wireless systems utilize 315 MHz or 434 MHz frequencies with noise filtering capacitors. In order to validate the synchronization accuracy, we developed a prototype of a rotating trigger detection system (named RoTriDeS). This system is suitable to detect the triggering accuracy of global shutter cameras. As a result, the wired system indicated an 8.91 μs mean triggering time difference between two cameras. Corresponding mean values for the four wireless triggering systems varied between 7.92 and 9.42 μs. Presented values include both camera-based and trigger-based desynchronization. Arduino-based triggering systems appeared to be feasible, and they have the potential to be extended to more complicated triggering systems.
Vorberg, Ellen; Fleischer, Heidi; Junginger, Steffen; Liu, Hui; Stoll, Norbert; Thurow, Kerstin
2016-10-01
Life science areas require specific sample pretreatment to increase the concentration of the analytes and/or to convert the analytes into an appropriate form for the detection and separation systems. Various workstations are commercially available, allowing for automated biological sample pretreatment. Nevertheless, due to the required temperature, pressure, and volume conditions in typical element and structure-specific measurements, automated platforms are not suitable for analytical processes. Thus, the purpose of the presented investigation was the design, realization, and evaluation of an automated system ensuring high-precision sample preparation for a variety of analytical measurements. The developed system has to enable system adaption and high performance flexibility. Furthermore, the system has to be capable of dealing with the wide range of required vessels simultaneously, allowing for less cost and time-consuming process steps. However, the system's functionality has been confirmed in various validation sequences. Using element-specific measurements, the automated system was up to 25% more precise compared to the manual procedure and as precise as the manual procedure using structure-specific measurements. © 2015 Society for Laboratory Automation and Screening.
NASA Astrophysics Data System (ADS)
Meeker, Seth R.; Mazin, Benjamin A.; Walter, Alex B.; Strader, Paschal; Fruitwala, Neelay; Bockstiegel, Clint; Szypryt, Paul; Ulbricht, Gerhard; Coiffard, Grégoire; Bumble, Bruce; Cancelo, Gustavo; Zmuda, Ted; Treptow, Ken; Wilcer, Neal; Collura, Giulia; Dodkins, Rupert; Lipartito, Isabel; Zobrist, Nicholas; Bottom, Michael; Shelton, J. Chris; Mawet, Dimitri; van Eyken, Julian C.; Vasisht, Gautam; Serabyn, Eugene
2018-06-01
We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.
Electrostatic micromembrane actuator arrays as motion generator
NASA Astrophysics Data System (ADS)
Wu, X. T.; Hui, J.; Young, M.; Kayatta, P.; Wong, J.; Kennith, D.; Zhe, J.; Warde, C.
2004-05-01
A rigid-body motion generator based on an array of micromembrane actuators is described. Unlike previous microelectromechanical systems (MEMS) techniques, the architecture employs a large number (typically greater than 1000) of micron-sized (10-200 μm) membrane actuators to simultaneously generate the displacement of a large rigid body, such as a conventional optical mirror. For optical applications, the approach provides optical design freedom of MEMS mirrors by enabling large-aperture mirrors to be driven electrostatically by MEMS actuators. The micromembrane actuator arrays have been built using a stacked architecture similar to that employed in the Multiuser MEMS Process (MUMPS), and the motion transfer from the arrayed micron-sized actuators to macro-sized components was demonstrated.
NASA Astrophysics Data System (ADS)
Demos, Stavros G.; Urayama, Shiro
2014-03-01
Despite best efforts, bile duct injury during laparoscopic cholecystectomy is a major potential complication. Precise detection method of extrahepatic bile duct during laparoscopic procedures would minimize the risk of injury. Towards this goal, we have developed a compact imaging instrumentation designed to enable simultaneous acquisition of conventional white color and NIR fluorescence endoscopic/laparoscopic imaging using ICG as contrast agent. The capabilities of this system, which offers optimized sensitivity and functionality, are demonstrated for the detection of the bile duct in an animal model. This design could also provide a low-cost real-time surgical navigation capability to enhance the efficacy of a variety of other image-guided minimally invasive procedures.
Magnetite-doped polydimethylsiloxane (PDMS) for phosphopeptide enrichment.
Sandison, Mairi E; Jensen, K Tveen; Gesellchen, F; Cooper, J M; Pitt, A R
2014-10-07
Reversible phosphorylation plays a key role in numerous biological processes. Mass spectrometry-based approaches are commonly used to analyze protein phosphorylation, but such analysis is challenging, largely due to the low phosphorylation stoichiometry. Hence, a number of phosphopeptide enrichment strategies have been developed, including metal oxide affinity chromatography (MOAC). Here, we describe a new material for performing MOAC that employs a magnetite-doped polydimethylsiloxane (PDMS), that is suitable for the creation of microwell array and microfluidic systems to enable low volume, high throughput analysis. Incubation time and sample loading were explored and optimized and demonstrate that the embedded magnetite is able to enrich phosphopeptides. This substrate-based approach is rapid, straightforward and suitable for simultaneously performing multiple, low volume enrichments.
High channel density wavelength division multiplexer with defined diffracting means positioning
Jannson, T.P.; Jannson, J.L.; Yeung, P.C.
1990-05-15
A wavelength division multiplexer/demultiplexer is disclosed having optical path lengths between a fiber array and a Fourier transform lens, and between a dispersion grating and the lens equal to the focal length of the lens. The optical path lengths reduce losses due to angular acceptance mismatch in the multiplexer. Close orientation of the fiber array about the optical axis and the use of a holographic dispersion grating reduces other losses in the system. Multi-exposure holographic dispersion gratings enable the multiplexer/demultiplexer for extremely broad-band simultaneous transmission and reflection operation. Individual Bragg plane sets recorded in the grating are dedicated to and operate efficiently on discrete wavelength ranges. 11 figs.
Seat, H C; Chawah, P; Cattoen, M; Sourice, A; Plantier, G; Boudin, F; Chéry, J; Brunet, C; Bernard, P; Suleiman, M
2012-07-15
This Letter describes a dual-amplitude modulation technique incorporated into a double reflection extrinsic-type fiber Fabry-Perot interferometer to measure periodic, nonperiodic as well as quasi-static displacements. The modulation scheme simultaneously maintains the interference signal pair in quadrature and provides a reference signal for displacements inferior to a quarter of the source wavelength. The control and phase demodulation of the interferometer carried out via software enable quasi-real-time measurement and facilitates sensor alignment. The sensor system can be exploited in the low frequency range from 10(-3) to ∼500 Hz and has a resolution better than 2.2 nm, targeting applications in geophysics.
Varo-achro-phobia: the fear of broad spectrum zoom optics
NASA Astrophysics Data System (ADS)
Vogel, Steven; Pollica, Naomi
2015-05-01
Today's battlefield is evolving at light speed. Our war fighters are being tasked with highly complex missions requiring the very best technology our industry can offer. The demand for advanced ISR platforms is challenging designers and engineers in the optics industry to push the envelope and develop wider band solutions to support multiple and broadband sensor platforms. Recently, significant attention has been directed towards the development of optical systems that enable simultaneous operation in the visible and shortwave infrared spectral wavebands. This paper will present a review of the evolution of StingRay Optics' GhostSight™ continuous zoom optics that offer broad chromatic imaging capabilities from the visible through the shortwave infrared spectrum.
Detection of collaborative activity with Kinect depth cameras.
Sevrin, Loic; Noury, Norbert; Abouchi, Nacer; Jumel, Fabrice; Massot, Bertrand; Saraydaryan, Jacques
2016-08-01
The health status of elderly subjects is highly correlated to their activities together with their social interactions. Thus, the long term monitoring in home of their health status, shall also address the analysis of collaborative activities. This paper proposes a preliminary approach of such a system which can detect the simultaneous presence of several subjects in a common area using Kinect depth cameras. Most areas in home being dedicated to specific tasks, the localization enables the classification of tasks, whether collaborative or not. A scenario of a 24 hours day shrunk into 24 minutes was used to validate our approach. It pointed out the need of artifacts removal to reach high specificity and good sensitivity.
Dielectric Waveguides Splitter and Hybrid/Isolator for Bidirectional Link
NASA Technical Reports Server (NTRS)
Tang, Adrian Joseph (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer E. (Inventor); Decrossas, Emmanuel (Inventor)
2016-01-01
A system, method, device, and apparatus provide a dielectric waveguide splitter/bi-directional link. A dielectric substrate fabricated into a first Y-junction waveguide with a first port splitting into a first branch leading to a second port and a second branch leading to a third port. An angle between the first branch and the second branch is below ninety degrees (90.degree.). The dielectric waveguide splitter enables millimeter-wave (mmWave) transmission between the first port and the second port while reducing feedback of the mmWave between the second and third port. Two Y-junction waveguides may be fabricated back-to-back to provide simultaneous bidirectional mmWave transmission at a single frequency.
Interferometer design and controls for pulse stacking in high power fiber lasers
NASA Astrophysics Data System (ADS)
Wilcox, Russell; Yang, Yawei; Dahlen, Dar; Xu, Yilun; Huang, Gang; Qiang, Du; Doolittle, Lawrence; Byrd, John; Leemans, Wim; Ruppe, John; Zhou, Tong; Sheikhsofla, Morteza; Nees, John; Galvanauskas, Almantas; Dawson, Jay; Chen, Diana; Pax, Paul
2017-03-01
In order to develop a design for a laser-plasma accelerator (LPA) driver, we demonstrate key technologies that enable fiber lasers to produce high energy, ultrafast pulses. These technologies must be scalable, and operate in the presence of thermal drift, acoustic noise, and other perturbations typical of an operating system. We show that coherent pulse stacking (CPS), which requires optical interferometers, can be made robust by image-relaying, multipass optical cavities, and by optical phase control schemes that sense pulse train amplitudes from each cavity. A four-stage pulse stacking system using image-relaying cavities is controlled for 14 hours using a pulse-pattern sensing algorithm. For coherent addition of simultaneous ultrafast pulses, we introduce a new scheme using diffractive optics, and show experimentally that four pulses can be added while a preserving pulse width of 128 fs.
System for precise position registration
Sundelin, Ronald M.; Wang, Tong
2005-11-22
An apparatus for enabling accurate retaining of a precise position, such as for reacquisition of a microscopic spot or feature having a size of 0.1 mm or less, on broad-area surfaces after non-in situ processing. The apparatus includes a sample and sample holder. The sample holder includes a base and three support posts. Two of the support posts interact with a cylindrical hole and a U-groove in the sample to establish location of one point on the sample and a line through the sample. Simultaneous contact of the third support post with the surface of the sample defines a plane through the sample. All points of the sample are therefore uniquely defined by the sample and sample holder. The position registration system of the current invention provides accuracy, as measured in x, y repeatability, of at least 140 .mu.m.
Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells.
Okuno, Masanari; Hamaguchi, Hiro-o
2010-12-15
We have developed a multifocus confocal Raman microspectroscopic system for the fast multimode vibrational imaging of living cells. It consists of an inverted microscope equipped with a microlens array, a pinhole array, a fiber bundle, and a multichannel Raman spectrometer. Forty-eight Raman spectra from 48 foci under the microscope are simultaneously obtained by using multifocus excitation and image-compression techniques. The multifocus confocal configuration suppresses the background generated from the cover glass and the cell culturing medium so that high-contrast images are obtainable with a short accumulation time. The system enables us to obtain multimode (10 different vibrational modes) vibrational images of living cells in tens of seconds with only 1 mW laser power at one focal point. This image acquisition time is more than 10 times faster than that in conventional single-focus Raman microspectroscopy.
A New Concept of Dual Fuelled SI Engines Run on Gasoline and Alcohol
NASA Astrophysics Data System (ADS)
Stelmasiak, Zdzisław
2011-06-01
The paper discusses tests results of dual-fuel spark ignition engine with multipoint injection of alcohol and gasoline, injected in area of inlet valve. Fuelling of the engine was accomplished via prototype inlet system comprising duplex injectors controlled electronically. Implemented system enables feeding of the engine with gasoline only or alcohol only, and simultaneous combustion of a mixture of the both fuels with any fraction of alcohol. The tests were performed on four cylinders, spark ignition engine of Fiat 1100 MPI type. The paper presents comparative results of dual-fuel engine test when the engine runs on changing fraction of methyl alcohol. The tests have demonstrated an advantageous effect of alcohol additive on efficiency and TCH and NOx emission of the engine, especially in case of bigger shares of the alcohol and higher engine loads.
Depth detection in interactive projection system based on one-shot black-and-white stripe pattern.
Zhou, Qian; Qiao, Xiaorui; Ni, Kai; Li, Xinghui; Wang, Xiaohao
2017-03-06
A novel method enabling estimation of not only the screen surface as the conventional one, but the depth information from two-dimensional coordinates in an interactive projection system was proposed in this research. In this method, a one-shot black-and-white stripe pattern from a projector is projected on a screen plane, where the deformed pattern is captured by a charge-coupled device camera. An algorithm based on object/shadow simultaneous detection is proposed for fulfillment of the correspondence. The depth information of the object is then calculated using the triangulation principle. This technology provides a more direct feeling of virtual interaction in three dimensions without using auxiliary equipment or a special screen as interaction proxies. Simulation and experiments are carried out and the results verified the effectiveness of this method in depth detection.
Yamada, I; Narihara, K; Funaba, H; Hayashi, H; Kohmoto, T; Takahashi, H; Shimozuma, T; Kubo, S; Yoshimura, Y; Igami, H; Tamura, N
2010-10-01
In Large Helical Device (LHD) experiments, an electron temperature (T(e)) more than 15 keV has been observed by the yttrium-aluminum-garnet (YAG) laser Thomson scattering diagnostic. Since the LHD Thomson scattering system has been optimized for the temperature region, 50 eV≤T(e)≤10 keV, the data quality becomes worse in the higher T(e) region exceeding 10 keV. In order to accurately determine T(e) in the LHD high-T(e) experiments, we tried to increase the laser pulse energy by simultaneously firing three lasers. The technique enables us to decrease the uncertainties in the measured T(e). Another signal accumulation method was also tested. In addition, we estimated the influence of high-energy electrons on T(e) obtained by the LHD Thomson scattering system.
Menet, M C; Cottart, C H; Taghi, M; Nivet-Antoine, V; Dargère, D; Vibert, F; Laprévote, O; Beaudeux, J-L
2013-01-25
Resveratrol is a polyphenol that has numerous interesting biological properties, but, per os, it is quickly metabolized. Some of its metabolites are more concentrated than resveratrol, may have greater biological activities, and may act as a kind of store for resveratrol. Thus, to understand the biological impact of resveratrol on a physiological system, it is crucial to simultaneously analyze resveratrol and its metabolites in plasma. This study presents an analytical method based on UHPLC-Q-TOF mass spectrometry for the quantification of resveratrol and of its most common hydrophilic metabolites. The use of (13)C- and D-labeled standards specific to each molecule led to a linear calibration curve on a larger concentration range than described previously. The use of high resolution mass spectrometry in the full scan mode enabled simultaneous identification and quantification of some hydrophilic metabolites not previously described in mice. In addition, UHPLC separation, allowing run times lower than 10 min, can be used in studies that requiring analysis of many samples. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liebmann, Marcus; Bindel, Jan Raphael; Pezzotta, Mike; Becker, Stefan; Muckel, Florian; Johnsen, Tjorven; Saunus, Christian; Ast, Christian R.; Morgenstern, Markus
2017-12-01
We present the design and calibration measurements of a scanning tunneling microscope setup in a 3He ultrahigh-vacuum cryostat operating at 400 mK with a hold time of 10 days. With 2.70 m in height and 4.70 m free space needed for assembly, the cryostat fits in a one-story lab building. The microscope features optical access, an xy table, in situ tip and sample exchange, and enough contacts to facilitate atomic force microscopy in tuning fork operation and simultaneous magneto-transport measurements on the sample. Hence, it enables scanning tunneling spectroscopy on microstructured samples which are tuned into preselected transport regimes. A superconducting magnet provides a perpendicular field of up to 14 T. The vertical noise of the scanning tunneling microscope amounts to 1 pmrms within a 700 Hz bandwidth. Tunneling spectroscopy using one superconducting electrode revealed an energy resolution of 120 μeV. Data on tip-sample Josephson contacts yield an even smaller feature size of 60 μeV, implying that the system operates close to the physical noise limit.
Design and fabrication of a new electrolarynx and voice amplifier for laryngectomees.
Sundeep Krishna, M; Jayanthy, A K; Divakar, C; Mekhala, R
2005-01-01
A Laryngectomee is a person whose vocal cords i.e. voice box is surgically removed owing to cancer or due to automobile accidents, burns or trauma. The patient, therefore permanently loses the ability to speak normally. An Electrolarynx is an electronic speech aid that enables the Laryngectomee to communicate with other people as quickly as possible after the successful removal of the larynx. A neck type Electrolarynx has been designed. Earlier designs could not alter frequency and intensity simultaneously during conversation. The Electrolarynx developed can control both frequency and intensity simultaneously during conversation. The device has been tested on the patient and found to be very effective. A portable, pocket size, battery powered voice amplifier (PA system) has also been developed which uses an electret condenser microphone as the input. The voice amplifier developed is a two stage amplifier which uses a preamplifier stage and a power amplifier stage. The output of the power amplifier is connected to a speaker. The device is being used by the patient and found to be very useful.
Liebmann, Marcus; Bindel, Jan Raphael; Pezzotta, Mike; Becker, Stefan; Muckel, Florian; Johnsen, Tjorven; Saunus, Christian; Ast, Christian R; Morgenstern, Markus
2017-12-01
We present the design and calibration measurements of a scanning tunneling microscope setup in a 3 He ultrahigh-vacuum cryostat operating at 400 mK with a hold time of 10 days. With 2.70 m in height and 4.70 m free space needed for assembly, the cryostat fits in a one-story lab building. The microscope features optical access, an xy table, in situ tip and sample exchange, and enough contacts to facilitate atomic force microscopy in tuning fork operation and simultaneous magneto-transport measurements on the sample. Hence, it enables scanning tunneling spectroscopy on microstructured samples which are tuned into preselected transport regimes. A superconducting magnet provides a perpendicular field of up to 14 T. The vertical noise of the scanning tunneling microscope amounts to 1 pm rms within a 700 Hz bandwidth. Tunneling spectroscopy using one superconducting electrode revealed an energy resolution of 120 μeV. Data on tip-sample Josephson contacts yield an even smaller feature size of 60 μeV, implying that the system operates close to the physical noise limit.
NASA Astrophysics Data System (ADS)
Spearrin, R. M.; Goldenstein, C. S.; Schultz, I. A.; Jeffries, J. B.; Hanson, R. K.
2014-07-01
A mid-infrared laser absorption sensor was developed for gas temperature and carbon oxide (CO, CO2) concentrations in high-enthalpy, hydrocarbon combustion flows. This diagnostic enables non-intrusive, in situ measurements in harsh environments produced by hypersonic propulsion ground test facilities. The sensing system utilizes tunable quantum cascade lasers capable of probing the fundamental mid-infrared absorption bands of CO and CO2 in the 4-5 µm wavelength domain. A scanned-wavelength direct absorption technique was employed with two lasers, one dedicated to each species, free-space fiber-coupled using a bifurcated hollow-core fiber for remote light delivery on a single line of sight. Scanned-wavelength modulation spectroscopy with second-harmonic detection was utilized to extend the dynamic range of the CO measurement. The diagnostic was field-tested on a direct-connect scramjet combustor for ethylene-air combustion. Simultaneous, laser-based measurements of carbon monoxide and carbon dioxide provide a basis for evaluating combustion completion or efficiency with temporal and spatial resolution in practical hydrocarbon-fueled engines.
NASA Astrophysics Data System (ADS)
Li, Shuanghong; Cao, Hongliang; Yang, Yupu
2018-02-01
Fault diagnosis is a key process for the reliability and safety of solid oxide fuel cell (SOFC) systems. However, it is difficult to rapidly and accurately identify faults for complicated SOFC systems, especially when simultaneous faults appear. In this research, a data-driven Multi-Label (ML) pattern identification approach is proposed to address the simultaneous fault diagnosis of SOFC systems. The framework of the simultaneous-fault diagnosis primarily includes two components: feature extraction and ML-SVM classifier. The simultaneous-fault diagnosis approach can be trained to diagnose simultaneous SOFC faults, such as fuel leakage, air leakage in different positions in the SOFC system, by just using simple training data sets consisting only single fault and not demanding simultaneous faults data. The experimental result shows the proposed framework can diagnose the simultaneous SOFC system faults with high accuracy requiring small number training data and low computational burden. In addition, Fault Inference Tree Analysis (FITA) is employed to identify the correlations among possible faults and their corresponding symptoms at the system component level.
Real-time DNA Amplification and Detection System Based on a CMOS Image Sensor.
Wang, Tiantian; Devadhasan, Jasmine Pramila; Lee, Do Young; Kim, Sanghyo
2016-01-01
In the present study, we developed a polypropylene well-integrated complementary metal oxide semiconductor (CMOS) platform to perform the loop mediated isothermal amplification (LAMP) technique for real-time DNA amplification and detection simultaneously. An amplification-coupled detection system directly measures the photon number changes based on the generation of magnesium pyrophosphate and color changes. The photon number decreases during the amplification process. The CMOS image sensor observes the photons and converts into digital units with the aid of an analog-to-digital converter (ADC). In addition, UV-spectral studies, optical color intensity detection, pH analysis, and electrophoresis detection were carried out to prove the efficiency of the CMOS sensor based the LAMP system. Moreover, Clostridium perfringens was utilized as proof-of-concept detection for the new system. We anticipate that this CMOS image sensor-based LAMP method will enable the creation of cost-effective, label-free, optical, real-time and portable molecular diagnostic devices.
NASA Astrophysics Data System (ADS)
Tikan, Alexey; Bielawski, Serge; Szwaj, Christophe; Randoux, Stéphane; Suret, Pierre
2018-04-01
Temporal imaging systems are outstanding tools for single-shot observation of optical signals that have irregular and ultrafast dynamics. They allow long time windows to be recorded with femtosecond resolution, and do not rely on complex algorithms. However, simultaneous recording of amplitude and phase remains an open challenge for these systems. Here, we present a new heterodyne time-lens arrangement that efficiently records both the amplitude and phase of complex and random signals over large temporal windows (tens of picoseconds). Phase and time are encoded onto the two spatial dimensions of a camera. We implement this phase-sensitive time-lens system in two configurations: a time microscope and a digital temporal-holography device that enables single-shot measurement with a temporal resolution of 80 fs. We demonstrate direct application of our heterodyne time-lens to turbulent-like optical fields and optical rogue waves generated from nonlinear propagation of partially coherent waves inside optical fibres.
Farhan, Alan; Petersen, Charlotte F; Dhuey, Scott; Anghinolfi, Luca; Qin, Qi Hang; Saccone, Michael; Velten, Sven; Wuth, Clemens; Gliga, Sebastian; Mellado, Paula; Alava, Mikko J; Scholl, Andreas; van Dijken, Sebastiaan
2017-10-17
Geometrical frustration occurs when entities in a system, subject to given lattice constraints, are hindered to simultaneously minimize their local interactions. In magnetism, systems incorporating geometrical frustration are fascinating, as their behavior is not only hard to predict, but also leads to the emergence of exotic states of matter. Here, we provide a first look into an artificial frustrated system, the dipolar trident lattice, where the balance of competing interactions between nearest-neighbor magnetic moments can be directly controlled, thus allowing versatile tuning of geometrical frustration and manipulation of ground state configurations. Our findings not only provide the basis for future studies on the low-temperature physics of the dipolar trident lattice, but also demonstrate how this frustration-by-design concept can deliver magnetically frustrated metamaterials.Artificial magnetic nanostructures enable the study of competing frustrated interactions with more control over the system parameters than is possible in magnetic materials. Farhan et al. present a two-dimensional lattice geometry where the frustration can be controlled by tuning the unit cell parameters.
Hwang, Jae Youn; Wachsmann-Hogiu, Sebastian; Ramanujan, V. Krishnan; Ljubimova, Julia; Gross, Zeev; Gray, Harry B.; Medina-Kauwe, Lali K.; Farkas, Daniel L.
2012-01-01
Purpose Several established optical imaging approaches have been applied, usually in isolation, to preclinical studies; however, truly useful in vivo imaging may require a simultaneous combination of imaging modalities to examine dynamic characteristics of cells and tissues. We developed a new multimode optical imaging system designed to be application-versatile, yielding high sensitivity, and specificity molecular imaging. Procedures We integrated several optical imaging technologies, including fluorescence intensity, spectral, lifetime, intravital confocal, two-photon excitation, and bioluminescence, into a single system that enables functional multiscale imaging in animal models. Results The approach offers a comprehensive imaging platform for kinetic, quantitative, and environmental analysis of highly relevant information, with micro-to-macroscopic resolution. Applied to small animals in vivo, this provides superior monitoring of processes of interest, represented here by chemo-/nanoconstruct therapy assessment. Conclusions This new system is versatile and can be optimized for various applications, of which cancer detection and targeted treatment are emphasized here. PMID:21874388
Solar optics-based active panel for solar energy storage and disinfection of greywater.
Lee, W; Song, J; Son, J H; Gutierrez, M P; Kang, T; Kim, D; Lee, L P
2016-09-01
Smart city and innovative building strategies are becoming increasingly more necessary because advancing a sustainable building system is regarded as a promising solution to overcome the depleting water and energy. However, current sustainable building systems mainly focus on energy saving and miss a holistic integration of water regeneration and energy generation. Here, we present a theoretical study of a solar optics-based active panel (SOAP) that enables both solar energy storage and photothermal disinfection of greywater simultaneously. Solar collector efficiency of energy storage and disinfection rate of greywater have been investigated. Due to the light focusing by microlens, the solar collector efficiency is enhanced from 25% to 65%, compared to that without the microlens. The simulation of greywater sterilization shows that 100% disinfection can be accomplished by our SOAP for different types of bacteria including Escherichia coli . Numerical simulation reveals that our SOAP as a lab-on-a-wall system can resolve the water and energy problem in future sustainable building systems.