Sample records for system experiment engineering

  1. Engineering data management: Experience and projections

    NASA Technical Reports Server (NTRS)

    Jefferson, D. K.; Thomson, B.

    1978-01-01

    Experiences in developing a large engineering data management system are described. Problems which were encountered are presented and projected to future systems. Business applications involving similar types of data bases are described. A data base management system architecture proposed by the business community is described and its applicability to engineering data management is discussed. It is concluded that the most difficult problems faced in engineering and business data management can best be solved by cooperative efforts.

  2. A Modular Artificial Intelligence Inference Engine System (MAIS) for support of on orbit experiments

    NASA Technical Reports Server (NTRS)

    Hancock, Thomas M., III

    1994-01-01

    This paper describes a Modular Artificial Intelligence Inference Engine System (MAIS) support tool that would provide health and status monitoring, cognitive replanning, analysis and support of on-orbit Space Station, Spacelab experiments and systems.

  3. Enhancing Systems Engineering Education Through Case Study Writing

    NASA Technical Reports Server (NTRS)

    Stevens, Jennifer Stenger

    2016-01-01

    Developing and refining methods for teaching systems engineering is part of Systems Engineering grand challenges and agenda for research in the SE research community. Retention of systems engineering knowledge is a growing concern in the United States as the baby boom generation continues to retire and the faster pace of technology development does not allow for younger generations to gain experiential knowledge through years of practice. Government agencies, including the National Aeronautics and Space Administration (NASA), develop their own curricula and SE leadership development programs to "grow their own" systems engineers. Marshall Space Flight Center (MSFC) conducts its own Center-focused Marshall Systems Engineering Leadership Development Program (MSELDP), a competitive program consisting of coursework, a guest lecture series, and a rotational assignment into an unfamiliar organization engaged in systems engineering. Independently, MSFC developed two courses to address knowledge retention and sharing concerns: Real World Marshall Mission Success course and its Case Study Writers Workshop and Writers Experience. Teaching case study writing and leading students through a hands-on experience at writing a case study on an SE topic can enhance SE training and has the potential to accelerate the transfer of experiential knowledge. This paper is an overview of the pilot experiences with teaching case study writing, its application in case study-based learning, and identifies potential areas of research and application for case study writing in systems engineering education.

  4. Collaborative Systems Thinking: A Response to the Problems Faced by Systems Engineering's 'Middle Tier'

    NASA Technical Reports Server (NTRS)

    Phfarr, Barbara B.; So, Maria M.; Lamb, Caroline Twomey; Rhodes, Donna H.

    2009-01-01

    Experienced systems engineers are adept at more than implementing systems engineering processes: they utilize systems thinking to solve complex engineering problems. Within the space industry demographics and economic pressures are reducing the number of experienced systems engineers that will be available in the future. Collaborative systems thinking within systems engineering teams is proposed as a way to integrate systems engineers of various experience levels to handle complex systems engineering challenges. This paper uses the GOES-R Program Systems Engineering team to illustrate the enablers and barriers to team level systems thinking and to identify ways in which performance could be improved. Ways NASA could expand its engineering training to promote team-level systems thinking are proposed.

  5. Exploration on the matching between Optical Comprehensive Design Experiment and Washington Accord

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Chen, Wenjing; Zhang, Qican; Liu, Yuankun; Li, Dahai; Zhou, Xinzhi; Wei, Jun

    2017-08-01

    Common problems faced in optical comprehensive design experiment and going against the Washington Accord are pointed out. For resolving these problems, an instructional and innovative teaching scheme for Optics Comprehensive Design Experiment is proposed. We would like to understand the student that can improve the hands-on practical ability, theory knowledge understanding ability, complex problem solving ability, engineering application ability, cooperative ability after tracking and researching the student who have attended the class about Optical Comprehensive Design Experiment, We found that there are some problems on the course such as the experiment content vague, the student beginning less time, phase separation theory and engineering application, the experiment content lack of selectivity and so on. So we have made some improvements reference to the Washington Accord for the class teaching plan about Optical Comprehensive Design Experiment. This class must relevant to the engineering basic courses, professional foundation course and the major courses, so far as to the future study and work that which can play a role in inheriting and continuity to the students. The Optical Comprehensive Design Experiment teaching program requires students learning this course to have learnt basic courses like analog electronics technique, digital electronic technique, applied optics and computer and other related courses which students are required to comprehensively utilize. This teaching scheme contains six practical complex engineering problems which are respectively optical system design, light energy meter design, illuminometer design, material refractive index measuring system design, light intensity measuring system design and open design. Establishing the optional experiment and open experiment can provide students with a greater choice and enhance the students' creativity, vivid teaching experimental teachers and enriching contents of experiment can make the experiment more interesting, providing students with more opportunities to conduct experiment and improving students' practical ability with long learning time, putting emphasis on student's understanding of complex engineering problems and the cognitive of the process to solve complex engineering problems with actual engineering problems. Applying the scheme in other courses and improving accordingly will be able to ensure the quality of engineering education. Look forward to offering useful reference for the curriculum system construction in colleges and universities.

  6. Coping with Variability in Model-Based Systems Engineering: An Experience in Green Energy

    NASA Astrophysics Data System (ADS)

    Trujillo, Salvador; Garate, Jose Miguel; Lopez-Herrejon, Roberto Erick; Mendialdua, Xabier; Rosado, Albert; Egyed, Alexander; Krueger, Charles W.; de Sosa, Josune

    Model-Based Systems Engineering (MBSE) is an emerging engineering discipline whose driving motivation is to provide support throughout the entire system life cycle. MBSE not only addresses the engineering of software systems but also their interplay with physical systems. Quite frequently, successful systems need to be customized to cater for the concrete and specific needs of customers, end-users, and other stakeholders. To effectively meet this demand, it is vital to have in place mechanisms to cope with the variability, the capacity to change, that such customization requires. In this paper we describe our experience in modeling variability using SysML, a leading MBSE language, for developing a product line of wind turbine systems used for the generation of electricity.

  7. Statistical Analysis Tools for Learning in Engineering Laboratories.

    ERIC Educational Resources Information Center

    Maher, Carolyn A.

    1990-01-01

    Described are engineering programs that have used automated data acquisition systems to implement data collection and analyze experiments. Applications include a biochemical engineering laboratory, heat transfer performance, engineering materials testing, mechanical system reliability, statistical control laboratory, thermo-fluid laboratory, and a…

  8. MIT January Operational Internship Experience 2011

    NASA Technical Reports Server (NTRS)

    DeLatte, Danielle; Furhmann, Adam; Habib, Manal; Joujon-Roche, Cecily; Opara, Nnaemeka; Pasterski, Sabrina Gonzalez; Powell, Christina; Wimmer, Andrew

    2011-01-01

    This slide presentation reviews the 2011 January Operational Internship experience (JOIE) program which allows students to study operational aspects of spaceflight, how design affects operations and systems engineering in practice for 3 weeks. Topics include: (1) Systems Engineering (2) NASA Organization (3) Workforce Core Values (4) Human Factors (5) Safety (6) Lean Engineering (7) NASA Now (8) Press, Media, and Outreach and (9) Future of Spaceflight.

  9. A case study for retaining nuclear power experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckjord, E.S.

    1996-12-31

    Nuclear engineering departments at U.S. universities are rethinking curricula to focus on essentials. Prospective engineers must know nuclear engineering disciplines, but knowing how their engineering forebears solved important problems will empower them even more by learning some history along with engineering. I suggest a way to retain experience, giving an example: the emergency core cooling system (ECCS) controversy and resolution.

  10. Implementing an integrated engineering data base system: A developer's experience and the application to IPAD

    NASA Technical Reports Server (NTRS)

    Bruce, E. A.

    1980-01-01

    The software developed by the IPAD project, a new and very powerful tool for the implementation of integrated Computer Aided Design (CAD) systems in the aerospace engineering community, is discussed. The IPAD software is a tool and, as such, can be well applied or misapplied in any particular environment. The many benefits of an integrated CAD system are well documented, but there are few such systems in existence, especially in the mechanical engineering disciplines, and therefore little available experience to guide the implementor.

  11. Experiences From Creating the Guide to the Systems Engineering Body of Knowledge (SEBoK) v. 1.0

    DTIC Science & Technology

    2013-03-01

    00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Experiences From Creating the Guide to the Systems Engineering Body of Knowledge (SEBoK) v. 1.0 5a...external sources, was not easy to achieve. SE Literature: The most comprehensive source of SE knowledge today is the Systems Engineering Handbook [3...recommended for further reading - SEBoK v. 1.0 includes 224 primary references; and (3) Additional references include other related literature that are good

  12. Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses

    ERIC Educational Resources Information Center

    Martinez-Luaces, Victor

    2009-01-01

    In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…

  13. Exploration on the reform of the science and engineering experiment teaching based on the combination with teaching and scientific research

    NASA Astrophysics Data System (ADS)

    Song, Peng

    2017-08-01

    The existing problems of the experiment education in colleges and universities are analyzed. Take the science and engineering specialty as example, the idea of the combination with teaching and scientific research is discussed. The key problems are how the scientific research and scientific research achievements are used effectively in the experiment education, how to effectively use scientific research laboratories and scientific researchers. Then, a specialty experiment education system is established which is good for the teaching in accordance of all students' aptitude. The research in this paper can give the construction of the experiment teaching methods and the experiment system reform for the science and engineering specialties in colleges and universities.

  14. Prototyping of Remote Experiment and Exercise Systems for an Engineering Education based on World Wide Web

    NASA Astrophysics Data System (ADS)

    Iwatsuki, Masami; Kato, Yoriyuki; Yonekawa, Akira

    State-of-the-art Internet technologies allow us to provide advanced and interactive distance education services. However, we could not help but gather students for experiments and exercises in an education for engineering because large-scale equipments and expensive software are required. On the other hand, teleoperation systems with robot manipulator or vehicle via Internet have been developed in the field of robotics. By fusing these two techniques, we can realize remote experiment and exercise systems for the engineering education based on World Wide Web. This paper presents how to construct the remote environment that allows students to take courses on experiment and exercise independently of their locations. By using the proposed system, users can exercise and practice remotely about control of a manipulator and a robot vehicle and programming of image processing.

  15. Experiences in Developing an Experimental Robotics Course Program for Undergraduate Education

    ERIC Educational Resources Information Center

    Jung, Seul

    2013-01-01

    An interdisciplinary undergraduate-level robotics course offers students the chance to integrate their engineering knowledge learned throughout their college years by building a robotic system. Robotics is thus a core course in system and control-related engineering education. This paper summarizes the experience of developing robotics courses…

  16. Cryogenic gear technology for an orbital transfer vehicle engine and tester design

    NASA Technical Reports Server (NTRS)

    Calandra, M.; Duncan, G.

    1986-01-01

    Technology available for gears used in advanced Orbital Transfer Vehicle rocket engines and the design of a cryogenic adapted tester used for evaluating advanced gears are presented. The only high-speed, unlubricated gears currently in cryogenic service are used in the RL10 rocket engine turbomachinery. Advanced rocket engine gear systems experience operational load conditions and rotational speed that are beyond current experience levels. The work under this task consisted of a technology assessment and requirements definition followed by design of a self-contained portable cryogenic adapted gear test rig system.

  17. A business process modeling experience in a complex information system re-engineering.

    PubMed

    Bernonville, Stéphanie; Vantourout, Corinne; Fendeler, Geneviève; Beuscart, Régis

    2013-01-01

    This article aims to share a business process modeling experience in a re-engineering project of a medical records department in a 2,965-bed hospital. It presents the modeling strategy, an extract of the results and the feedback experience.

  18. Rocket University at KSC

    NASA Technical Reports Server (NTRS)

    Sullivan, Steven J.

    2014-01-01

    "Rocket University" is an exciting new initiative at Kennedy Space Center led by NASA's Engineering and Technology Directorate. This hands-on experience has been established to develop, refine & maintain targeted flight engineering skills to enable the Agency and KSC strategic goals. Through "RocketU", KSC is developing a nimble, rapid flight engineering life cycle systems knowledge base. Ongoing activities in RocketU develop and test new technologies and potential customer systems through small scale vehicles, build and maintain flight experience through balloon and small-scale rocket missions, and enable a revolving fresh perspective of engineers with hands on expertise back into the large scale NASA programs, providing a more experienced multi-disciplined set of systems engineers. This overview will define the Program, highlight aspects of the training curriculum, and identify recent accomplishments and activities.

  19. Developing the Systems Engineering Experience Accelerator (SEEA) Prototype and Roadmap

    DTIC Science & Technology

    2013-12-31

    information to be automatically presented without comment. 2.2.2 NEW FEATURES AND CAPABILITIES A number of new multiplayer capabilities were...2.4.1 OVERVIEW The EA game engine has two components: the runtime engine and the tools suite. The tools suite includes the Experience Development...the Learner. Figure 6: Experience Accelerator Logical Block Diagram The EARTE is a multiuser architecture for internet gaming . It has light

  20. Training to Enhance Design Team Performance: A Cure for Tunnel Vision

    NASA Technical Reports Server (NTRS)

    Parker, James W.; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Design Team performance is a function of the quality and degree of academic training and the cumulative, learned experience of the individual members of the team. Teamwork, leadership, and communications certainly are factors that affect the measure of the performance of the team, but they are not addressed here. This paper focuses on accelerating the learned experience of team members and describes an organizational approach that can significantly increase the effective experience level for any engineering design team. The performance measure of the whole team can be increased by increasing the engineering disciplines' cross awareness of each other and by familiarizing them with their affect at the system level. Discipline engineers know their own discipline well, but typically are not intimately familiar with their technical interaction with and dependencies on all the other disciplines of engineering. These dependencies are design integration functions and are worked out well by the discipline engineers as long as they are involved in the design of types of systems that they have experience with.

  1. Attitudes and Perceptions of Students in a Systems Engineering E-Learnig Course

    ERIC Educational Resources Information Center

    de Vega, Carolina Armijo; McAnally-Salas, Lewis; Lavigne, Gilles

    2009-01-01

    In this paper is reported the attitudes and perception of students in a systems Engineering e-learning course and a teacher with more than six years of experience teaching online courses. The paper reports the teacher and students' perceptions about the e-learning courses experience. Personalized interviews with some of the students were carried…

  2. Measurements of Low-Frequency Acoustic Attenuation in Soils.

    DTIC Science & Technology

    1994-10-13

    Engineering Research Laboratory to design an acoustic subsurface imaging system, a set of experiments was conducted in which the attenuation and the velocity...support of the U.S. Army Construction Engineering Research Laboratory’s efforts to design an acoustic subsurface imaging system which would ideally be...of acoustic waves such as those generated by a subsurface imaging system. An experiment reported in the literature characterized the acoustic

  3. Developing Systems Engineering Experience Accelerator (SEEA) Prototype and Roadmap -- Increment 4

    DTIC Science & Technology

    2017-08-08

    of an acquisition program, two categories of new capabilities were added to the UAV experience. Based on a student project at Stevens Institute of...program for a new unmanned aerial vehicle (UAV) system. It was based on the concept of the learners assuming this role shortly after preliminary...University curriculum for systems engineers. First, several new capabilities have been added. These include a trade study for additional technical

  4. High-Performance Liquid Chromatography in the Undergraduate Chemical Engineering Laboratory

    ERIC Educational Resources Information Center

    Frey, Douglas D.; Guo, Hui; Karnik, Nikhila

    2013-01-01

    This article describes the assembly of a simple, low-cost, high-performance liquid chromatography (HPLC) system and its use in the undergraduate chemical engineering laboratory course to perform simple experiments. By interpreting the results from these experiments students are able to gain significant experience in the general method of…

  5. Vibration modelling and verifications for whole aero-engine

    NASA Astrophysics Data System (ADS)

    Chen, G.

    2015-08-01

    In this study, a new rotor-ball-bearing-casing coupling dynamic model for a practical aero-engine is established. In the coupling system, the rotor and casing systems are modelled using the finite element method, support systems are modelled as lumped parameter models, nonlinear factors of ball bearings and faults are included, and four types of supports and connection models are defined to model the complex rotor-support-casing coupling system of the aero-engine. A new numerical integral method that combines the Newmark-β method and the improved Newmark-β method (Zhai method) is used to obtain the system responses. Finally, the new model is verified in three ways: (1) modal experiment based on rotor-ball bearing rig, (2) modal experiment based on rotor-ball-bearing-casing rig, and (3) fault simulations for a certain type of missile turbofan aero-engine vibration. The results show that the proposed model can not only simulate the natural vibration characteristics of the whole aero-engine but also effectively perform nonlinear dynamic simulations of a whole aero-engine with faults.

  6. Apollo experience report: Guidance and control systems. Engineering simulation program

    NASA Technical Reports Server (NTRS)

    Gilbert, D. W.

    1973-01-01

    The Apollo Program experience from early 1962 to July 1969 with respect to the engineering-simulation support and the problems encountered is summarized in this report. Engineering simulation in support of the Apollo guidance and control system is discussed in terms of design analysis and verification, certification of hardware in closed-loop operation, verification of hardware/software compatibility, and verification of both software and procedures for each mission. The magnitude, time, and cost of the engineering simulations are described with respect to hardware availability, NASA and contractor facilities (for verification of the command module, the lunar module, and the primary guidance, navigation, and control system), and scheduling and planning considerations. Recommendations are made regarding implementation of similar, large-scale simulations for future programs.

  7. Proceedings of Tenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Papers are presented on the following topics: measurement of software technology, recent studies of the Software Engineering Lab, software management tools, expert systems, error seeding as a program validation technique, software quality assurance, software engineering environments (including knowledge-based environments), the Distributed Computing Design System, and various Ada experiments.

  8. A review and forecast of engine system research at the Army Propulsion Directorate

    NASA Technical Reports Server (NTRS)

    Bobula, George A.

    1989-01-01

    An account is given of the development status and achievements to date of the U.S. Army Propulsion Directorate's Small Turbine Engine Research (STER) programs, which are experimental investigations of the physics of entire engine systems from the viewpoints of component interactions and/or system dynamics. STER efforts are oriented toward the evaluation of complete turboshaft engine advanced concepts and are conducted at the ECRL-2 indoor, sea-level engine test facility. Attention is given to the results obtained by STER experiments concerned with IR-suppressing engine exhausts, a ceramic turbine-blade shroud, an active shaft-vibration control system, and a ceramic-matrix combustor liner.

  9. NASA's Robotics Mining Competition Provides Undergraduates Full Life Cycle Systems Engineering Experience

    NASA Technical Reports Server (NTRS)

    Stecklein, Jonette

    2017-01-01

    NASA has held an annual robotic mining competition for teams of university/college students since 2010. This competition is yearlong, suitable for a senior university engineering capstone project. It encompasses the full project life cycle from ideation of a robot design to actual tele-operation of the robot in simulated Mars conditions mining and collecting simulated regolith. A major required element for this competition is a Systems Engineering Paper in which each team describes the systems engineering approaches used on their project. The score for the Systems Engineering Paper contributes 25% towards the team's score for the competition's grand prize. The required use of systems engineering on the project by this competition introduces the students to an intense practical application of systems engineering throughout a full project life cycle.

  10. Design and optimization of smart grid system based on renewable energy in Nyamuk Island, Karimunjawa district, Central Java

    NASA Astrophysics Data System (ADS)

    Novitasari, D.; Indartono, Y. S.; Rachmidha, T. D.; Reksowardojo, I. K.; Irsyad, M.

    2017-03-01

    Nyamuk Island in Karimunjawa District is one of the regions in Java that has no access to electricity grid. The electricity in Nyamuk Island relies on diesel engine which is managed by local government and only operated for 6 hours per day. It occurs as a consequence of high fuel cost. A study on smart micro grid system based on renewable energy was conducted in Combustion Engine and Propulsion System Laboratory of Institut Teknologi Bandung by using 1 kWp solar panels and a 3 kW bio based diesel engine. The fuels used to run the bio based diesel engine were diesel, virgin coconut oil and pure palm oil. The results show that the smart grid system run well at varying load and also with different fuel. Based on the experiments, average inverter efficiency was about 87%. This experiments proved that the use of biofuels had no effects to the overall system performance. Based on the results of prototype experiments, this paper will focus on design and optimization of smart micro grid system using HOMER software for Nyamuk Island. The design consists of (1) a diesel engine existing in Nyamuk Island whose fuel was diesel, (2) a lister engine whose fuel was from vegetable oil from Callophyllum inophyllum, (3) solar panels, (4) batteries and (5) converter. In this simulation, the existing diesel engine was set to operate 2 hours per day, while operating time of the lister engine has been varied with several scenarios. In scenario I, the lister engine was operated 5 hours per day, in scenario II the lister engine was operated 24 hours per day and in scenario III the lister engine was operated 8 hours per week in the weekend. In addition, a design using a modified diesel engine was conducted as well with an assumption that the modified cost was about 10% of new diesel engine cost. By modifying the diesel engine, the system will not need a lister engine. Assessments has been done to evaluate the designs, and the result shows that the optimal value obtains by the lister engine being operated for 24 hours a day in which the capacity of each component was 27 kWp PV, 7 kW lister engine, 26 kVA existing diesel engine, 40 kW converter and 128 batteries. The result is based on the lowest value of Net Present Cost (NPC) of 542.682 and Cost Of Electricity (COE) of 0.49.

  11. NASA's Robotic Mining Competition Provides Undergraduates Full Life Cycle Systems Engineering Experience

    NASA Technical Reports Server (NTRS)

    Stecklein, Jonette

    2017-01-01

    NASA has held an annual robotic mining competition for teams of university/college students since 2010. This competition is yearlong, suitable for a senior university engineering capstone project. It encompasses the full project life cycle from ideation of a robot design, through tele-operation of the robot collecting regolith in simulated Mars conditions, to disposal of the robot systems after the competition. A major required element for this competition is a Systems Engineering Paper in which each team describes the systems engineering approaches used on their project. The score for the Systems Engineering Paper contributes 25% towards the team’s score for the competition’s grand prize. The required use of systems engineering on the project by this competition introduces the students to an intense practical application of systems engineering throughout a full project life cycle.

  12. Flight-determined benefits of integrated flight-propulsion control systems

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.

    1992-01-01

    Over the last two decades, NASA has conducted several experiments in integrated flight-propulsion control. Benefits have included improved maneuverability; increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. This paper presents the basic concepts for control integration, examples of implementation, and benefits. The F-111E experiment integrated the engine and inlet control systems. The YF-12C incorporated an integral control system involving the inlet, autopilot, autothrottle, airdata, navigation, and stability augmentation systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real-time, onboard optimization of engine, inlet, and flight control variables; a self-repairing flight control system; and an engines-only control concept for emergency control. The F-18A aircraft incorporated thrust vectoring integrated with the flight control system to provide enhanced maneuvering at high angles of attack. The flight research programs and the resulting benefits of each program are described.

  13. The Keller Plan: A Successful Experiment in Engineering Education.

    ERIC Educational Resources Information Center

    Koen, Billy; And Others

    1985-01-01

    Discusses the Keller Plan or personalized system of instruction (PSI), a mastery-oriented, self-paced, modular teaching strategy using student/peer proctors. Success for PSI in chemical engineering, operations research, electrical engineering, and nuclear engineering courses is explained. (DH)

  14. Agent-based re-engineering of ErbB signaling: a modeling pipeline for integrative systems biology.

    PubMed

    Das, Arya A; Ajayakumar Darsana, T; Jacob, Elizabeth

    2017-03-01

    Experiments in systems biology are generally supported by a computational model which quantitatively estimates the parameters of the system by finding the best fit to the experiment. Mathematical models have proved to be successful in reverse engineering the system. The data generated is interpreted to understand the dynamics of the underlying phenomena. The question we have sought to answer is that - is it possible to use an agent-based approach to re-engineer a biological process, making use of the available knowledge from experimental and modelling efforts? Can the bottom-up approach benefit from the top-down exercise so as to create an integrated modelling formalism for systems biology? We propose a modelling pipeline that learns from the data given by reverse engineering, and uses it for re-engineering the system, to carry out in-silico experiments. A mathematical model that quantitatively predicts co-expression of EGFR-HER2 receptors in activation and trafficking has been taken for this study. The pipeline architecture takes cues from the population model that gives the rates of biochemical reactions, to formulate knowledge-based rules for the particle model. Agent-based simulations using these rules, support the existing facts on EGFR-HER2 dynamics. We conclude that, re-engineering models, built using the results of reverse engineering, opens up the possibility of harnessing the power pack of data which now lies scattered in literature. Virtual experiments could then become more realistic when empowered with the findings of empirical cell biology and modelling studies. Implemented on the Agent Modelling Framework developed in-house. C ++ code templates available in Supplementary material . liz.csir@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  15. Aerodynamic effects by cooling flows within engine room of a car model

    NASA Astrophysics Data System (ADS)

    Sawaguchi, T.; Takakura, Y.

    2017-10-01

    The purpose of this research is to clarify the change of characteristics of aerodynamic drag and lift of a car by the engine loading system (engine arrangement) and the air inlet system (opening area and position) with and without a radiator in wind-tunnel experiments. A simplified car model with 1/5 scale is generated with reproduction of the engine room covered with the transparent acryl externals for visualization. In the wind-tunnel experiments, the moving-belt ground board is adopted to include ground effects with force measurements by use of load cells. The flows are visualized by the smoke method. As results, with enlargement of the opening area, the drag increased overall although depending largely on the engine loading system and the inlet opening position, the front lift increased and the rear left decreased; the effect of the radiator was to relieve the change of the drag and lift.

  16. Propulsion control experience used in the Highly Integrated Digital Electronic Control (HIDEC) program

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Burcham, F. W., Jr.

    1984-01-01

    The highly integrated digital electronic control (HIDEC) program will integrate the propulsion and flight control systems on an F-15 airplane at NASA Ames Research Center's Dryden Flight Research Facility. Ames-Dryden has conducted several propulsion control programs that have contributed to the HIDEC program. The digital electronic engine control (DEEC) flight evaluation investigated the performance and operability of the F100 engine equipped with a full-authority digital electronic control system. Investigations of nozzle instability, fault detection and accommodation, and augmentor transient capability provided important information for the HIDEC program. The F100 engine model derivative (EMD) was also flown in the F-15 airplane, and airplane performance was significantly improved. A throttle response problem was found and solved with a software fix to the control logic. For the HIDEC program, the F100 EMD engines equipped with DEEC controls will be integrated with the digital flight control system. The control modes to be implemented are an integrated flightpath management mode and an integrated adaptive engine control system mode. The engine control experience that will be used in the HIDEC program is discussed.

  17. Reconfiguring practice: the interdependence of experimental procedure and computing infrastructure in distributed earthquake engineering.

    PubMed

    De La Flor, Grace; Ojaghi, Mobin; Martínez, Ignacio Lamata; Jirotka, Marina; Williams, Martin S; Blakeborough, Anthony

    2010-09-13

    When transitioning local laboratory practices into distributed environments, the interdependent relationship between experimental procedure and the technologies used to execute experiments becomes highly visible and a focal point for system requirements. We present an analysis of ways in which this reciprocal relationship is reconfiguring laboratory practices in earthquake engineering as a new computing infrastructure is embedded within three laboratories in order to facilitate the execution of shared experiments across geographically distributed sites. The system has been developed as part of the UK Network for Earthquake Engineering Simulation e-Research project, which links together three earthquake engineering laboratories at the universities of Bristol, Cambridge and Oxford. We consider the ways in which researchers have successfully adapted their local laboratory practices through the modification of experimental procedure so that they may meet the challenges of coordinating distributed earthquake experiments.

  18. Airborne Visible Laser Optical Communications (AVLOC) experiment

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A series of optical communication experiments between a high altitude aircraft at 18.3 km (60,000 ft) and a ground station were conducted by NASA from summer 1972 through winter 1973. The basic system was an optical tracker and transmitter located in each terminal. The aircraft transceiver consisted of a 5-mW HeNe laser transmitter with a 30-megabit modulator. The ground station beacon was an argon laser operating at 488 nm. A separate pulsed laser radar was used for initial acquisition. The objective of the experiment was to obtain engineering data on the precision tracking and communication system performance at both terminals. Atmospheric effects on the system performance was also an experiment objective. The system description, engineering analysis, testing, and flight results are discussed.

  19. A study experiment of auto idle application in the excavator engine performance

    NASA Astrophysics Data System (ADS)

    Purwanto, Wawan; Maksum, Hasan; Putra, Dwi Sudarno; Azmi, Meri; Wahyudi, Retno

    2016-03-01

    The purpose of this study was to analyze the effect of applying auto idle to excavator engine performance, such as machine unitization and fuel consumption in Excavator. Steps to be done are to modify the system JA 44 and 67 in Vehicle Electronic Control Unit (V-ECU). The modifications will be obtained from the pattern of the engine speed. If the excavator attachment is not operated, the engine speed will return to the idle speed automatically. From the experiment results the auto idle reduces fuel consumption in excavator engine.

  20. A study experiment of auto idle application in the excavator engine performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwanto, Wawan, E-mail: wawan5527@gmail.com; Maksum, Hasan; Putra, Dwi Sudarno, E-mail: dwisudarnoputra@ft.unp.ac.id

    2016-03-29

    The purpose of this study was to analyze the effect of applying auto idle to excavator engine performance, such as machine unitization and fuel consumption in Excavator. Steps to be done are to modify the system JA 44 and 67 in Vehicle Electronic Control Unit (V-ECU). The modifications will be obtained from the pattern of the engine speed. If the excavator attachment is not operated, the engine speed will return to the idle speed automatically. From the experiment results the auto idle reduces fuel consumption in excavator engine.

  1. Emulation-Based Virtual Laboratories: A Low-Cost Alternative to Physical Experiments in Control Engineering Education

    ERIC Educational Resources Information Center

    Goodwin, G. C.; Medioli, A. M.; Sher, W.; Vlacic, L. B.; Welsh, J. S.

    2011-01-01

    This paper argues the case for emulation-based virtual laboratories in control engineering education. It demonstrates that such emulation experiments can give students an industrially relevant educational experience at relatively low cost. The paper also describes a particular emulation-based system that has been developed with the aim of giving…

  2. Women Working in Engineering and Science

    NASA Technical Reports Server (NTRS)

    Luna, Bernadette; Kliss, Mark (Technical Monitor)

    1998-01-01

    The presentation will focus on topics of interest to young women pursuing an engineering or scientific career, such as intrinsic personality traits of most engineers, average salaries for the various types of engineers, appropriate preparation classes at the high school and undergraduate levels, gaining experience through internships, summer jobs and graduate school, skills necessary but not always included in engineering curricula (i.e., multimedia, computer skills, communication skills), the work environment, balancing family and career, and sexual harassment. Specific examples from the speaker's own experience in NASA's Space Life Sciences Program will be used to illustrate the above topics. In particular, projects from Extravehicular Activity and Protective Systems research and Regenerative Life Support research will be used as examples of real world problem-solving to enable human exploration of the solar system.

  3. The TAME Project: Towards improvement-oriented software environments

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Rombach, H. Dieter

    1988-01-01

    Experience from a dozen years of analyzing software engineering processes and products is summarized as a set of software engineering and measurement principles that argue for software engineering process models that integrate sound planning and analysis into the construction process. In the TAME (Tailoring A Measurement Environment) project at the University of Maryland, such an improvement-oriented software engineering process model was developed that uses the goal/question/metric paradigm to integrate the constructive and analytic aspects of software development. The model provides a mechanism for formalizing the characterization and planning tasks, controlling and improving projects based on quantitative analysis, learning in a deeper and more systematic way about the software process and product, and feeding the appropriate experience back into the current and future projects. The TAME system is an instantiation of the TAME software engineering process model as an ISEE (integrated software engineering environment). The first in a series of TAME system prototypes has been developed. An assessment of experience with this first limited prototype is presented including a reassessment of its initial architecture.

  4. Transpiration Cooling Experiment

    NASA Technical Reports Server (NTRS)

    Song, Kyo D.; Ries, Heidi R.; Scotti, Stephen J.; Choi, Sang H.

    1997-01-01

    The transpiration cooling method was considered for a scram-jet engine to accommodate thermally the situation where a very high heat flux (200 Btu/sq. ft sec) from hydrogen fuel combustion process is imposed to the engine walls. In a scram-jet engine, a small portion of hydrogen fuel passes through the porous walls of the engine combustor to cool the engine walls and at the same time the rest passes along combustion chamber walls and is preheated. Such a regenerative system promises simultaneously cooling of engine combustor and preheating the cryogenic fuel. In the experiment, an optical heating method was used to provide a heat flux of 200 Btu/sq. ft sec to the cylindrical surface of a porous stainless steel specimen which carried helium gas. The cooling efficiencies by transpiration were studied for specimens with various porosity. The experiments of various test specimens under high heat flux have revealed a phenomenon that chokes the medium flow when passing through a porous structure. This research includes the analysis of the system and a scaling conversion study that interprets the results from helium into the case when hydrogen medium is used.

  5. Orbit Transfer Vehicle (OTV) advanced expander cycle engine point design study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The objective of the study was to generate the system design of a performance-optimized, advanced LOX/hydrogen expander cycle space engine. The engine requirements are summarized, and the development and operational experience with the expander cycle RL10 engine were reviewed. The engine development program is outlined.

  6. 322-R2U2 Engineering Assessment - August 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abri, M.; Griffin, D.

    This Engineering Assessment and Certification of Integrity of retention tank system 322-R2 has been prepared for tank systems that store and neutralizes hazardous waste and have secondary containment. The regulations require that this assessment be completed periodically and certified by an independent, qualified, California-registered professional engineer. Abri Environmental Engineering performed an inspection of the 322-R2 Tank system at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA. Mr. William W. Moore, P.E., conducted this inspection on March 16, 2015. Mr. Moore is a California Registered Civil Engineer, with extensive experience in civil engineering, and hazardous waste management.

  7. Learning Objects and Learning Content Management Systems in Engineering Education: Implications of New Trends

    ERIC Educational Resources Information Center

    Sjoer, Ellen; Dopper, Sofia

    2006-01-01

    Learning objects and learning content management systems are considered to be "the next wave in engineering education". The results of experiments with these new trends in ICT in engineering education are described in this paper. The prospects were examined and the concepts of reusability of content for teachers and for personalized…

  8. Automotive Control Systems: For Engine, Driveline, and Vehicle

    NASA Astrophysics Data System (ADS)

    Kiencke, Uwe; Nielsen, Lars

    Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience

  9. A Hydrocarbon Fuel Flash Vaporization System for a Pulsed Detonation Engine

    DTIC Science & Technology

    2006-12-01

    Experiments were performed in the Air Force Research Laboratory (AFRL) Pulsed Detonation Research Facility at Wright Patterson AFB, Ohio. The PDE ...AFRL-MN-EG-TP-2006-7420 A HYDROCARBON FUEL FLASH VAPORIZATION SYSTEM FOR A PULSED DETONATION ENGINE (PREPRINT) K. Colin Tucker...85,7<&/$66,),&$7,212) E7(/(3+21(180%(5 ,QFOXGHDUHDFRGH A Hydrocarbon Fuel Flash Vaporization System for a Pulsed Detonation Engine K

  10. Gemini Observatory base facility operations: systems engineering process and lessons learned

    NASA Astrophysics Data System (ADS)

    Serio, Andrew; Cordova, Martin; Arriagada, Gustavo; Adamson, Andy; Close, Madeline; Coulson, Dolores; Nitta, Atsuko; Nunez, Arturo

    2016-08-01

    Gemini North Observatory successfully began nighttime remote operations from the Hilo Base Facility control room in November 2015. The implementation of the Gemini North Base Facility Operations (BFO) products was a great learning experience for many of our employees, including the author of this paper, the BFO Systems Engineer. In this paper we focus on the tailored Systems Engineering processes used for the project, the various software tools used in project support, and finally discuss the lessons learned from the Gemini North implementation. This experience and the lessons learned will be used both to aid our implementation of the Gemini South BFO in 2016, and in future technical projects at Gemini Observatory.

  11. Space Station Freedom - Configuration management approach to supporting concurrent engineering and total quality management. [for NASA Space Station Freedom Program

    NASA Technical Reports Server (NTRS)

    Gavert, Raymond B.

    1990-01-01

    Some experiences of NASA configuration management in providing concurrent engineering support to the Space Station Freedom program for the achievement of life cycle benefits and total quality are discussed. Three change decision experiences involving tracing requirements and automated information systems of the electrical power system are described. The potential benefits of concurrent engineering and total quality management include improved operational effectiveness, reduced logistics and support requirements, prevention of schedule slippages, and life cycle cost savings. It is shown how configuration management can influence the benefits attained through disciplined approaches and innovations that compel consideration of all the technical elements of engineering and quality factors that apply to the program development, transition to operations and in operations. Configuration management experiences involving the Space Station program's tiered management structure, the work package contractors, international partners, and the participating NASA centers are discussed.

  12. Shawn Sheng | NREL

    Science.gov Websites

    experience includes mechanical and electrical system modeling and analysis, data sensing and sensor placement . Education Ph.D. in Mechanical Engineering, University of Massachusetts at Amherst; M.S. in Electrical Engineering, Institute of Electrical Engineering, Chinese Academy of Sciences; B.S. in Electrical Engineering

  13. List of Publications of the U.S. Army Engineer Waterways Experiment Station. Volume 2

    DTIC Science & Technology

    1993-09-01

    Station List of Publications of the U.S. Army Engineer Waterways Experiment Station Volume II compiled by Research Library Information Management Division...Waterways Experiment Station for Other Agencies Air Base Survivability Systems Management Office Headquarters .............................. Z-1 Airport... manages , conducts, and coordinates research and development in the Information Management (IM) technology areas that include computer science

  14. Training for Engineering Craftsmen: The Module System.

    ERIC Educational Resources Information Center

    Engineering Industry Training Board, London (England).

    New arrangements for craft training in the British engineering industry call for a three stage structure: (1) a year of basic training in a wide variety of skills (welding, vehicle painting, electrical engineering, mechanical engineering, and others); (2) selected training in specialized skills under controlled conditions; (3) experience in using…

  15. Renewable Microgrid STEM Education & Colonias Outreach Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    To provide Science, Technology, Engineering, and Math (STEM) outreach and education to secondary students to encourage them to select science and engineering as a career by providing an engineering-based problem-solving experience involving renewable energy systems such as photovoltaic (PV) panels or wind turbines. All public and private schools, community colleges, and vocational training programs would be eligible for participation. The Power Microgrids High School Engineering Experience used renewable energy systems (PV and wind) to provide a design capstone experience to secondary students. The objective for each student team was to design a microgrid for the student’s school using renewable energymore » sources under cost, schedule, performance, and risk constraints. The students then implemented their designs in a laboratory environment to evaluate the completeness of the proposed design, which is a unique experience even for undergraduate college students. This application-based program was marketed to secondary schools in the 28th Congressional District through the Texas Education Agency’s (TEA) Regional Service Centers. Upon application, TEES identified regionally available engineers to act as mentors and supervisors for the projects. Existing curriculum was modified to include microgrid and additional renewable technologies and was made available to the schools.« less

  16. UAF Space Systems Engineering Program: Engaging Students through an Apprenticeship Model

    NASA Astrophysics Data System (ADS)

    Thorsen, D.

    2017-12-01

    Learning by doing has been the mantra of engineering education for decades, however, the constraints of semester length courses limits the types and size of experiences that can be offered to students. The Space Systems Engineering Program (SSEP) at the University of Alaska Fairbanks provides interdisciplinary engineering and science students with hands-on experience in all aspects of space systems engineering through a design, build, launch paradigm applied to balloon and rocket payloads and small satellites. The program is structured using an apprenticeship model such that students, freshmen through graduate, can participate in multi-year projects thereby gaining experiences appropriate to their level in college. Students enter the lab in a trainee position and receive training on lab processes and design software. Depending on the student's interests they learn how to use specific lab equipment and software design tools. Trainees provide support engineering under guidance of an upper classman. As the students' progress in their degree program and gain more expertise, they typically become part of a specific subsystem team, where they receive additional training in developing design documents and in writing requirements and test documents, and direct their efforts to meeting specific objectives. By the time the student reaches their senior year, they have acquired the leadership role for a specific subsystem and/or a general leadership role in the lab. If students stay to pursue graduate degrees, they assume the responsibility of training and mentoring other undergraduates in their areas of expertise. Throughout the program upper class students mentor the newer students. The Space Systems Engineering Program strives to reinforce a student's degree program through these large scale projects that place engineering in context.

  17. Engineering aspects of the Stanford relativity gyro experiment

    NASA Technical Reports Server (NTRS)

    Everitt, C. W. F.; Debra, D. B.

    1981-01-01

    According to certain theoretical predictions, the Newtonian laws of motion must be corrected for the effect of a gravitational field. Schiff (1960) proposed an experiment which would demonstrate the effect predicted by Einstein's Theory of General Relativity on a gyroscope. The experiment has been under development at Stanford University since 1961. The requirements involved make it necessary that the test be performed in a satellite to take advantage of weightlessness in space. In a discussion of engineering developments related to the experiment, attention is given to the development of proportional helium thrusters, the simulation of the attitude control system, aspects of inner loop control, the mechanization of the two-loop attitude control system, the effects of helium slosh on spacecraft pointing, and the data instrumentation system.

  18. Systems Engineering Applied to Training.

    ERIC Educational Resources Information Center

    Silvern, Leonard C.

    Written for training directors and human resource developers who have had experience and now need a systematic way to plan new programs, this book presents a new way of thinking about human learning and of organizing programs which has been developed from the systems engineering field. A first chapter explains what is meant by "systems"…

  19. Phase 1 of the First Solar Small Power System Experiment (experimental System No. 1). Volume 2: Appendix A - D

    NASA Technical Reports Server (NTRS)

    Clark, T. B. (Editor)

    1979-01-01

    Recommended conceptual designs for the baseline solar concentrator and electrical subsystems are defined, and trade offs that were evaluated to arrive at the baseline systems are presented. In addition, the developmental history of the Stirling engine is reviewed, the U4 configuration is described, and a Stirling engine heat pipe system is evaluated for solar application where sodium vapor is used as the heat source. An organic Rankine cycle engine is also evaluated for solar small power system application.

  20. Making the most of MBSE: pragmatic model-based engineering for the SKA Telescope Manager

    NASA Astrophysics Data System (ADS)

    Le Roux, Gerhard; Bridger, Alan; MacIntosh, Mike; Nicol, Mark; Schnetler, Hermine; Williams, Stewart

    2016-08-01

    Many large projects including major astronomy projects are adopting a Model Based Systems Engineering approach. How far is it possible to get value for the effort involved in developing a model that accurately represents a significant project such as SKA? Is it possible for such a large project to ensure that high-level requirements are traceable through the various system-engineering artifacts? Is it possible to utilize the tools available to produce meaningful measures for the impact of change? This paper shares one aspect of the experience gained on the SKA project. It explores some of the recommended and pragmatic approaches developed, to get the maximum value from the modeling activity while designing the Telescope Manager for the SKA. While it is too early to provide specific measures of success, certain areas are proving to be the most helpful and offering significant potential over the lifetime of the project. The experience described here has been on the 'Cameo Systems Modeler' tool-set, supporting a SysML based System Engineering approach; however the concepts and ideas covered would potentially be of value to any large project considering a Model based approach to their Systems Engineering.

  1. Mountain Plains Learning Experience Guide: Automotive Repair. Course: Engine Repair.

    ERIC Educational Resources Information Center

    Schramm, C.; Osland, Walt

    One of twelve individualized courses included in an automotive repair curriculum, this course covers theory and construction, inspection diagnoses, and service and overhaul of automotive engines. The course is comprised of five units: (1) Fundamentals of Four-Cycle Engines, (2) Engine Construction, (3) Valve Train, (4) Lubricating Systems, and (5)…

  2. Providing Nuclear Criticality Safety Analysis Education through Benchmark Experiment Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess; J. Blair Briggs; David W. Nigg

    2009-11-01

    One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.

  3. Education and Research Related to Organic Waste Management at Agricultural Engineering Schools

    ERIC Educational Resources Information Center

    Soliva, Montserrat; Bernat, Carles; Gil, Emilio; Martinez, Xavier; Pujol, Miquel; Sabate, Josep; Valero, Jordi

    2007-01-01

    Purpose: The purpose of this paper is to describe the experience of the Agriculture Engineering School of Barcelona (ESAB), where undergraduate students were involved in field research experiments on organic waste use in agricultural systems. Design/methodology/approach: The paper outlines how the formation of professionals oriented to work for…

  4. Improving Aerospace Engineering Students' Achievements by an Open Aero Control Experiment Apparatus

    ERIC Educational Resources Information Center

    Zeng, QingHua; Zhang, WeiHua; Huang, ZheZhi; Dong, RongHua

    2014-01-01

    This paper describes the development of an aero control experiment apparatus (ACEA) for use in aerospace control practical courses. The ACEA incorporates a systematic multihierarchy learning and teaching method, and was designed to improve aerospace engineering students' understanding of unmanned aerial vehicle (UAV) control systems. It offers a…

  5. Versatile Desktop Experiment Module (DEMo) on Heat Transfer

    ERIC Educational Resources Information Center

    Minerick, Adrienne R.

    2010-01-01

    This paper outlines a new Desktop Experiment Module (DEMo) engineered for a chemical engineering junior-level Heat Transfer course. This new DEMo learning tool is versatile, fairly inexpensive, and portable such that it can be positioned on student desks throughout a classroom. The DEMo system can illustrate conduction of various materials,…

  6. Implementing Concepts of Pharmaceutical Engineering into High School Science Classrooms

    ERIC Educational Resources Information Center

    Kimmel, Howard; Hirsch, Linda S.; Simon, Laurent; Burr-Alexander, Levelle; Dave, Rajesh

    2009-01-01

    The Research Experience for Teachers was designed to help high school science teachers develop skills and knowledge in research, science and engineering with a focus on the area of pharmaceutical particulate and composite systems. The experience included time for the development of instructional modules for classroom teaching. Results of the…

  7. Visual Computing Environment Workshop

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles (Compiler)

    1998-01-01

    The Visual Computing Environment (VCE) is a framework for intercomponent and multidisciplinary computational simulations. Many current engineering analysis codes simulate various aspects of aircraft engine operation. For example, existing computational fluid dynamics (CFD) codes can model the airflow through individual engine components such as the inlet, compressor, combustor, turbine, or nozzle. Currently, these codes are run in isolation, making intercomponent and complete system simulations very difficult to perform. In addition, management and utilization of these engineering codes for coupled component simulations is a complex, laborious task, requiring substantial experience and effort. To facilitate multicomponent aircraft engine analysis, the CFD Research Corporation (CFDRC) is developing the VCE system. This system, which is part of NASA's Numerical Propulsion Simulation System (NPSS) program, can couple various engineering disciplines, such as CFD, structural analysis, and thermal analysis.

  8. A software engineering approach to expert system design and verification

    NASA Technical Reports Server (NTRS)

    Bochsler, Daniel C.; Goodwin, Mary Ann

    1988-01-01

    Software engineering design and verification methods for developing expert systems are not yet well defined. Integration of expert system technology into software production environments will require effective software engineering methodologies to support the entire life cycle of expert systems. The software engineering methods used to design and verify an expert system, RENEX, is discussed. RENEX demonstrates autonomous rendezvous and proximity operations, including replanning trajectory events and subsystem fault detection, onboard a space vehicle during flight. The RENEX designers utilized a number of software engineering methodologies to deal with the complex problems inherent in this system. An overview is presented of the methods utilized. Details of the verification process receive special emphasis. The benefits and weaknesses of the methods for supporting the development life cycle of expert systems are evaluated, and recommendations are made based on the overall experiences with the methods.

  9. Mechatronic system design course for undergraduate programmes

    NASA Astrophysics Data System (ADS)

    Saleem, A.; Tutunji, T.; Al-Sharif, L.

    2011-08-01

    Technology advancement and human needs have led to integration among many engineering disciplines. Mechatronics engineering is an integrated discipline that focuses on the design and analysis of complete engineering systems. These systems include mechanical, electrical, computer and control subsystems. In this paper, the importance of teaching mechatronic system design to undergraduate engineering students is emphasised. The paper offers the collaborative experience in preparing and delivering the course material for two universities in Jordan. A detailed description of such a course is provided and a case study is presented. The case study used is a final year project, where students applied a six-stage design procedure that is described in the paper.

  10. ENGINEERING DESIGN CRITERIA FOR SUB-SLAB DEPRESSURIZATION SYSTEMS IN LOW-PERMEABILTY SOLIDS

    EPA Science Inventory

    The report describes the development of engineering design criteria for the successful design, installation, and operation of sub-slab depressurization systems, based on radon (Rn) mitigation experience on 14 slab-on-grade houses in South Central Florida. The Florida houses are c...

  11. Inductive knowledge acquisition experience with commercial tools for space shuttle main engine testing

    NASA Technical Reports Server (NTRS)

    Modesitt, Kenneth L.

    1990-01-01

    Since 1984, an effort has been underway at Rocketdyne, manufacturer of the Space Shuttle Main Engine (SSME), to automate much of the analysis procedure conducted after engine test firings. Previously published articles at national and international conferences have contained the context of and justification for this effort. Here, progress is reported in building the full system, including the extensions of integrating large databases with the system, known as Scotty. Inductive knowledge acquisition has proven itself to be a key factor in the success of Scotty. The combination of a powerful inductive expert system building tool (ExTran), a relational data base management system (Reliance), and software engineering principles and Computer-Assisted Software Engineering (CASE) tools makes for a practical, useful and state-of-the-art application of an expert system.

  12. Using Model-Based Systems Engineering To Provide Artifacts for NASA Project Life-Cycle and Technical Reviews

    NASA Technical Reports Server (NTRS)

    Parrott, Edith L.; Weiland, Karen J.

    2017-01-01

    The ability of systems engineers to use model-based systems engineering (MBSE) to generate self-consistent, up-to-date systems engineering products for project life-cycle and technical reviews is an important aspect for the continued and accelerated acceptance of MBSE. Currently, many review products are generated using labor-intensive, error-prone approaches based on documents, spreadsheets, and chart sets; a promised benefit of MBSE is that users will experience reductions in inconsistencies and errors. This work examines features of SysML that can be used to generate systems engineering products. Model elements, relationships, tables, and diagrams are identified for a large number of the typical systems engineering artifacts. A SysML system model can contain and generate most systems engineering products to a significant extent and this paper provides a guide on how to use MBSE to generate products for project life-cycle and technical reviews. The use of MBSE can reduce the schedule impact usually experienced for review preparation, as in many cases the review products can be auto-generated directly from the system model. These approaches are useful to systems engineers, project managers, review board members, and other key project stakeholders.

  13. Performance mapping of the STM4-120 kinematic Stirling engine using a statistical design of experiments method

    NASA Astrophysics Data System (ADS)

    Powell, M. A.; Rawlinson, K. S.

    A kinetic Stirling cycle engine, the Stirling Thermal Motors (STM) STM4-120, was tested at the Sandia National Laboratories Engine Test Facility (ETF) from March 1989-August 1992. Sandia is interested in determining this engine's potential for solar-thermal-electric applications. The last round of testing was conducted from July-August 1992 using Sandia-designed gas-fired heat pipe evaporators as the heat input system to the engine. The STM4-120 was performance mapped over a range of sodium vapor temperatures, cooling water temperatures, and cycle pressures. The resulting shaft power output levels ranged from 5-9 kW. The engine demonstrated high conversion efficiency (24-31%) even though the power output level was less than 40% of the rated output of 25 kW. The engine had been previously derated from 25 kW to 10 kW shaft power due to mechanical limitations that were identified by STM during parallel testing at their facility in Ann Arbor, MI. A statistical method was used to design the experiment, to choose the experimental points, and to generate correlation equations describing the engine performance given the operating parameters. The testing was truncated due to a failure of the heat pipe system caused by entrainment of liquid sodium in the condenser section of the heat pipes. Enough data was gathered to generate the correlations and to demonstrate the experimental technique. The correlation is accurate in the experimental space and is simple enough for use in hand calculations and spreadsheet-based system models. Use of this method can simplify the construction of accurate performance and economic models of systems in which the engine is a component. The purpose of this paper is to present the method used to design the experiments and to analyze the performance data.

  14. Teaching the Next Generation of Scientists and Engineers the NASA Design Process

    NASA Technical Reports Server (NTRS)

    Caruso, Pamela W.; Benfield, Michael P. J.; Justice, Stefanie H.

    2011-01-01

    The Integrated Product Team (IPT) program, led by The University of Alabama in Huntsville (UAH), is a multidisciplinary, multi-university, multi-level program whose goal is to provide opportunities for high school and undergraduate scientists and engineers to translate stakeholder needs and requirements into viable engineering design solutions via a distributed multidisciplinary team environment. The current program supports three projects. The core of the program is the two-semester senior design experience where science, engineering, and liberal arts undergraduate students from UAH, the College of Charleston, Southern University at Baton Rouge, and Ecole Suprieure des Techniques Aronautiques et de Construction Automobile (ESTACA) in Paris, France form multidisciplinary competitive teams to develop system concepts of interest to the local aerospace community. External review boards form to provide guidance and feedback throughout the semester and to ultimately choose a winner from the competing teams. The other two projects, the Innovative Student Project for the Increased Recruitment of Engineering and Science Students (InSPIRESS) Level I and Level II focus exclusively on high school students. InSPIRESS Level I allows high schools to develop a payload to be accommodated on the system being developed by senior design experience teams. InSPIRESS Level II provides local high school students first-hand experience in the senior design experience by allowing them to develop a subsystem or component of the UAH-led system over the two semesters. This program provides a model for NASA centers to engage the local community to become more involved in design projects.

  15. Developing the Next Generation of Science Data System Engineers

    NASA Technical Reports Server (NTRS)

    Moses, John F.; Behnke, Jeanne; Durachka, Christopher D.

    2016-01-01

    At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects.The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peermentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breadth of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multidiscipline science and practitioner communities expect to have access to all types of observational data.This paper describes an approach to defining career-path guidance for college-bound high school and undergraduate engineering students, junior and senior engineers from various disciplines.

  16. Developing the Next Generation of Science Data System Engineers

    NASA Astrophysics Data System (ADS)

    Moses, J. F.; Durachka, C. D.; Behnke, J.

    2015-12-01

    At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects. The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peer mentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breath of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multi-discipline science and practitioner communities expect to have access to all types of observational data. This paper describes an approach to defining career-path guidance for college-bound high school and undergraduate engineering students, junior and senior engineers from various disciplines.

  17. Readings in Systems Engineering

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor); Lawbaugh, William M. (Editor)

    1993-01-01

    This present collection was inspired by seven papers prepared by the NASA Alumni League, illustrating the members' systems engineering experience. These papers make up the heart of this collection. We have supplemented them with papers describing industry processes and other governmental practices to illustrate the diversity of systems engineering as it is formulated and practiced. This is one discipline that clearly benefits from cross-fertilization and infusion of new ideas. There is also a wide variety of tools and techniques described herein, some standard and some unique.

  18. Introducing new technologies into Space Station subsystems

    NASA Technical Reports Server (NTRS)

    Wiskerchen, Michael J.; Mollakarimi, Cindy L.

    1989-01-01

    A new systems engineering technology has been developed and applied to Shuttle processing. The new engineering approach emphasizes the identification, quantitative assessment, and management of system performance and risk related to the dynamic nature of requirements, technology, and operational concepts. The Space Shuttle Tile Automation System is described as an example of the first application of the new engineering technology. Lessons learned from the Shuttle processing experience are examined, and concepts are presented which are applicable to the design and development of the Space Station Freedom.

  19. Systems engineering and the user: Incorporation of user requirements into the SE process

    NASA Technical Reports Server (NTRS)

    Naugle, John E.

    1993-01-01

    This paper is organized into four parts. In the Gestation Phase, I describe the process of starting a new mission and establishing its rough boundaries. Next I show how the scientific experiments are selected. Then we enter the Preliminary Design Phase, where we incorporate the scientist's instruments into the systems engineering process. Finally, I show how the Preliminary Design Review (PDR) assures NASA management and the scientists that the scientific requirements have been incorporated into the systems engineering process to everyone's satisfaction.

  20. ATS-6 engineering performance report. Volume 5: Propagation experiments

    NASA Technical Reports Server (NTRS)

    Wales, R. O. (Editor)

    1981-01-01

    Propagation experiments at 1550 MHz to 1650 MHz are reviewed, including the Integrated L-Band Experiments system and results, and the Mobile L-Band Terminals for Satellite Communication system. Experiments at 4 GHz to 6 GHz are reported, including the Radio Frequency Interferometer Measurements system and results, and Earth station antenna evaluations. Experiments above 10 GHz are discussed, including Comsat and ATS-6 millimeter wave propagation/experiments, and communication ATS-6 version at 20 and 30 GHz.

  1. Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.

    PubMed

    Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier

    2009-12-01

    This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.

  2. Interdisciplinary Team-Teaching Experience for a Computer and Nuclear Energy Course for Electrical and Computer Engineering Students

    ERIC Educational Resources Information Center

    Kim, Charles; Jackson, Deborah; Keiller, Peter

    2016-01-01

    A new, interdisciplinary, team-taught course has been designed to educate students in Electrical and Computer Engineering (ECE) so that they can respond to global and urgent issues concerning computer control systems in nuclear power plants. This paper discusses our experience and assessment of the interdisciplinary computer and nuclear energy…

  3. Parabolic dish systems at work - Applying the concepts

    NASA Technical Reports Server (NTRS)

    Marriott, A. T.

    1981-01-01

    An overview is given of parabolic dish solar concentrator application experiments being conducted by the U.S. Department of Energy. The 'engineering experiments' comprise the testing of (1) a small-community powerplant system, in conjunction with a grid-connected utility; (2) stand-alone applications at remote sites such as military installations, radar stations and villages; and (3) dish modules that can deliver heat for direct use in industrial processes. Applicability projections are based on a dish and receiver that use a Brayton engine with an engine/generator efficiency of 25% and a production level of up to 25,000 units per year. Analyses indicate that parabolic-dish power systems can potentially replace small, oil-fired power plants in all regions of the U.S. between 1985 and 1991.

  4. Embedding Context in Teaching Engineering Design

    ERIC Educational Resources Information Center

    Neumeyer, Xaver; Chen, Wei; McKenna, Ann F.

    2013-01-01

    Understanding the global, societal, environmental and economic (GSEE) context of a product, process or system is critical to an engineer's ability to design and innovate. The already packed curricula in engineering programs provide few occasions to offer meaningful experiences to address this issue, and most departments delegate this requirement…

  5. The Use of Multimedia in Engineering Education--An Experience.

    ERIC Educational Resources Information Center

    Grimoni, J. A. B.; Belico dos Reis, L.; Tori, R.

    This paper presents an experience with the development of multimedia systems for power systems education. An application of a multimedia course titled "Electrical Energy Generation" is also described. The main conclusions of this experience are discussed, emphasizing the most relevant aspects to be considered in the development of…

  6. Educating next-generation civil engineers about smart structures technology

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng

    2005-05-01

    The implementation of smart structures technology in the design, construction and maintenance of civil and mechanical systems have been shown beneficial to the performance enhancement, operating efficiency and reliability of structural systems. However, most of today's engineering students are unaware of the remarkable properties of smart sensors and many applications of smart structures technology. It is thus desirable to prepare the future engineers of the society for the cutting-edge technologies in smart structures, for which they may see broad application in their generation. Pioneering work in incorporating smart structures technologies into civil engineering curriculum has been done by the writer at Lehigh University and is described in this paper. In particular, a graduate-level course entitled "Smart Structural Systems" has been taught in the Spring Semester of Year 2004 at Lehigh University. To better convey the course material to students, a smart structures test-bed, which is used not only to showcase various technological aspects of a smart structural system but also offer students an opportunity to gain hands-on experience by doing experiments has been under development at Lehigh University. The hands-on experience that could be developed with the smart structures test-bed is believed being essential for students to have a good understanding and mastering of the smart structures technologies.

  7. Thermal power systems small power systems application project: Siting issues for solar thermal power plants with small community applications

    NASA Technical Reports Server (NTRS)

    Holbeck, H. J.; Ireland, S. J.

    1979-01-01

    The siting issues associated with small, dispersed solar thermal power plants for utility/small community applications of less than 10 MWe are reported. Some specific requirements are refered to the first engineering experiment for the Small Power Systems Applications (SPSA) Project. The background for the subsequent issue discussions is provided. The SPSA Project and the requirements for the first engineering experiment are described, and the objectives and scope for the report as a whole. A overview of solar thermal technologies and some technology options are discussed.

  8. Model-Based Systems Engineering in Concurrent Engineering Centers

    NASA Technical Reports Server (NTRS)

    Iwata, Curtis; Infeld, Samantha; Bracken, Jennifer Medlin; McGuire; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman

    2015-01-01

    Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a focused design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.

  9. Model-Based Systems Engineering in Concurrent Engineering Centers

    NASA Technical Reports Server (NTRS)

    Iwata, Curtis; Infeld, Samatha; Bracken, Jennifer Medlin; McGuire, Melissa; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman

    2015-01-01

    Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a narrow design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.

  10. A Multidisciplinary Course in Bioengineering.

    ERIC Educational Resources Information Center

    Bienkowski, Paul R.; And Others

    1989-01-01

    Outlines a graduate course, "Microbial Systems Analysis," for students in chemical and environmental engineering or engineering mechanics, as well as microbiology, ecology and biotechnology. Describes the objectives, structure and laboratory experiments for the course. (YP)

  11. Tailoring Systems Engineering Projects for Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Horan, Stephen; Belvin, Keith

    2013-01-01

    NASA maintains excellence in its spaceflight systems by utilizing rigorous engineering processes based on over 50 years of experience. The NASA systems engineering process for flight projects described in NPR 7120.5E was initially developed for major flight projects. The design and development of low-cost small satellite systems does not entail the financial and risk consequences traditionally associated with spaceflight projects. Consequently, an approach is offered to tailoring of the processes such that the small satellite missions will benefit from the engineering rigor without overly burdensome overhead. In this paper we will outline the approaches to tailoring the standard processes for these small missions and describe how it will be applied in a proposed small satellite mission.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skibo, A.

    SRNL has considerable experience in designing, engineering, and operating systems for removing iodine-129 (I-129) and ruthenium-106 (Ru-106) from waste streams that are directly analogous to the Advanced Liquid Processing System (ALPS) waste streams. SRNL proposes to provide the technical background and design and engineering support for an improved I-129 and Ru-106 removal system for application to ALPS on the Fukushima Daiichi Nuclear Power Station (NPS).

  13. Concept of a self-pressurized feed system for liquid rocket engines and its fundamental experiment results

    NASA Astrophysics Data System (ADS)

    Matsumoto, Jun; Okaya, Shunichi; Igoh, Hiroshi; Kawaguchi, Junichiro

    2017-04-01

    A new propellant feed system referred to as a self-pressurized feed system is proposed for liquid rocket engines. The self-pressurized feed system is a type of gas-pressure feed system; however, the pressurization source is retained in the liquid state to reduce tank volume. The liquid pressurization source is heated and gasified using heat exchange from the hot propellant using a regenerative cooling strategy. The liquid pressurization source is raised to critical pressure by a pressure booster referred to as a charger in order to avoid boiling and improve the heat exchange efficiency. The charger is driven by a part of the generated pressurization gas using a closed-loop self-pressurized feed system. The purpose of this study is to propose a propellant feed system that is lighter and simpler than traditional gas pressure feed systems. The proposed system can be applied to all liquid rocket engines that use the regenerative cooling strategy. The concept and mathematical models of the self-pressurized feed system are presented first. Experiment results for verification are then shown and compared with the mathematical models.

  14. Sound synthesis and evaluation of interactive footsteps and environmental sounds rendering for virtual reality applications.

    PubMed

    Nordahl, Rolf; Turchet, Luca; Serafin, Stefania

    2011-09-01

    We propose a system that affords real-time sound synthesis of footsteps on different materials. The system is based on microphones, which detect real footstep sounds from subjects, from which the ground reaction force (GRF) is estimated. Such GRF is used to control a sound synthesis engine based on physical models. Two experiments were conducted. In the first experiment, the ability of subjects to recognize the surface they were exposed to was assessed. In the second experiment, the sound synthesis engine was enhanced with environmental sounds. Results show that, in some conditions, adding a soundscape significantly improves the recognition of the simulated environment.

  15. Transferring experience labs for production engineering students to universities in newly industrialized countries

    NASA Astrophysics Data System (ADS)

    Leiden, A.; Posselt, G.; Bhakar, V.; Singh, R.; Sangwan, K. S.; Herrmann, C.

    2018-01-01

    The Indian economy is one of the fastest growing economies in the world and the demand for the skilled engineers is increasing. Subsequently the Indian education sector is growing to provide the necessary number of skilled engineers. Current Indian engineering graduates have broad theoretical background but lack in methodological, soft and practical skills. To bridge this gap, the experience lab ideas from the engineering education at “Die Lernfabrik” (learning factory) of the Technische Universität Braunschweig (TU Braunschweig) is transferred to the Birla Institute of Technology and Science in Pilani (BITS Pilani), India. This Lernfabrik successfully strengthened the methodological, soft and practical skills of the TU Braunschweig production-engineering graduates. The target group is discrete manufacturing education with focusing on energy and resource efficiency as well as cyber physical production systems. As the requirements of industry and academia in India differs from Germany, the transfer of the experience lab to the Indian education system needs special attention to realize a successful transfer project. This publication provides a unique approach to systematically transfer the educational concept in Learning Factory from a specific university environment to a different environment in a newly industrialized country. The help of a bilateral university driven practice partnership between the two universities creates a lighthouse for the Indian university environment.

  16. Using hybrid expert system approaches for engineering applications

    NASA Technical Reports Server (NTRS)

    Allen, R. H.; Boarnet, M. G.; Culbert, C. J.; Savely, R. T.

    1987-01-01

    In this paper, the use of hybrid expert system shells and hybrid (i.e., algorithmic and heuristic) approaches for solving engineering problems is reported. Aspects of various engineering problem domains are reviewed for a number of examples with specific applications made to recently developed prototype expert systems. Based on this prototyping experience, critical evaluations of and comparisons between commercially available tools, and some research tools, in the United States and Australia, and their underlying problem-solving paradigms are made. Characteristics of the implementation tool and the engineering domain are compared and practical software engineering issues are discussed with respect to hybrid tools and approaches. Finally, guidelines are offered with the hope that expert system development will be less time consuming, more effective, and more cost-effective than it has been in the past.

  17. The Systems Engineering Process for Human Support Technology Development

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    Systems engineering is designing and optimizing systems. This paper reviews the systems engineering process and indicates how it can be applied in the development of advanced human support systems. Systems engineering develops the performance requirements, subsystem specifications, and detailed designs needed to construct a desired system. Systems design is difficult, requiring both art and science and balancing human and technical considerations. The essential systems engineering activity is trading off and compromising between competing objectives such as performance and cost, schedule and risk. Systems engineering is not a complete independent process. It usually supports a system development project. This review emphasizes the NASA project management process as described in NASA Procedural Requirement (NPR) 7120.5B. The process is a top down phased approach that includes the most fundamental activities of systems engineering - requirements definition, systems analysis, and design. NPR 7120.5B also requires projects to perform the engineering analyses needed to ensure that the system will operate correctly with regard to reliability, safety, risk, cost, and human factors. We review the system development project process, the standard systems engineering design methodology, and some of the specialized systems analysis techniques. We will discuss how they could apply to advanced human support systems development. The purpose of advanced systems development is not directly to supply human space flight hardware, but rather to provide superior candidate systems that will be selected for implementation by future missions. The most direct application of systems engineering is in guiding the development of prototype and flight experiment hardware. However, anticipatory systems engineering of possible future flight systems would be useful in identifying the most promising development projects.

  18. IT Project Management and Systems Engineering Internship

    NASA Technical Reports Server (NTRS)

    Cardamone, Lauren

    2011-01-01

    In the summer of 2009 I had the privilege of participating in the NASA INSPIRE program and during the summer of 2010 I was hired by ASRC Aerospace, a NASA contractor on the USTDC contract, as an Engineering Aide. These experiences combined inspired me to pursue a career in engineering and a goal to work as a NASA engineer and astronaut.

  19. Proceedings of the Ninth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Experiences in measurement, utilization, and evaluation of software methodologies, models, and tools are discussed. NASA's involvement in ever larger and more complex systems, like the space station project, provides a motive for the support of software engineering research and the exchange of ideas in such forums. The topics of current SEL research are software error studies, experiments with software development, and software tools.

  20. Authoring Immersive Mixed Reality Experiences

    NASA Astrophysics Data System (ADS)

    Misker, Jan M. V.; van der Ster, Jelle

    Creating a mixed reality experience is a complicated endeavour. From our practice as a media lab in the artistic domain we found that engineering is “only” a first step in creating a mixed reality experience. Designing the appearance and directing the user experience are equally important for creating an engaging, immersive experience. We found that mixed reality artworks provide a very good test bed for studying these topics. This chapter details three steps required for authoring mixed reality experiences: engineering, designing and directing. We will describe a platform (VGE) for creating mixed reality environments that incorporates these steps. A case study (EI4) is presented in which this platform was used to not only engineer the system, but in which an artist was given the freedom to explore the artistic merits of mixed reality as an artistic medium, which involved areas such as the look and feel, multimodal experience and interaction, immersion as a subjective emotion and game play scenarios.

  1. Implementing large projects in software engineering courses

    NASA Astrophysics Data System (ADS)

    Coppit, David

    2006-03-01

    In software engineering education, large projects are widely recognized as a useful way of exposing students to the real-world difficulties of team software development. But large projects are difficult to put into practice. First, educators rarely have additional time to manage software projects. Second, classrooms have inherent limitations that threaten the realism of large projects. Third, quantitative evaluation of individuals who work in groups is notoriously difficult. As a result, many software engineering courses compromise the project experience by reducing the team sizes, project scope, and risk. In this paper, we present an approach to teaching a one-semester software engineering course in which 20 to 30 students work together to construct a moderately sized (15KLOC) software system. The approach combines carefully coordinated lectures and homeworks, a hierarchical project management structure, modern communication technologies, and a web-based project tracking and individual assessment system. Our approach provides a more realistic project experience for the students, without incurring significant additional overhead for the instructor. We present our experiences using the approach the last 2 years for the software engineering course at The College of William and Mary. Although the approach has some weaknesses, we believe that they are strongly outweighed by the pedagogical benefits.

  2. Using Model-Based Systems Engineering to Provide Artifacts for NASA Project Life-cycle and Technical Reviews

    NASA Technical Reports Server (NTRS)

    Parrott, Edith L.; Weiland, Karen J.

    2017-01-01

    This paper is for the AIAA Space Conference. The ability of systems engineers to use model-based systems engineering (MBSE) to generate self-consistent, up-to-date systems engineering products for project life-cycle and technical reviews is an important aspect for the continued and accelerated acceptance of MBSE. Currently, many review products are generated using labor-intensive, error-prone approaches based on documents, spreadsheets, and chart sets; a promised benefit of MBSE is that users will experience reductions in inconsistencies and errors. This work examines features of SysML that can be used to generate systems engineering products. Model elements, relationships, tables, and diagrams are identified for a large number of the typical systems engineering artifacts. A SysML system model can contain and generate most systems engineering products to a significant extent and this paper provides a guide on how to use MBSE to generate products for project life-cycle and technical reviews. The use of MBSE can reduce the schedule impact usually experienced for review preparation, as in many cases the review products can be auto-generated directly from the system model. These approaches are useful to systems engineers, project managers, review board members, and other key project stakeholders.

  3. Engineering Knowledge for Assistive Living

    NASA Astrophysics Data System (ADS)

    Chen, Liming; Nugent, Chris

    This paper introduces a knowledge based approach to assistive living in smart homes. It proposes a system architecture that makes use of knowledge in the lifecycle of assistive living. The paper describes ontology based knowledge engineering practices and discusses mechanisms for exploiting knowledge for activity recognition and assistance. It presents system implementation and experiments, and discusses initial results.

  4. Teachers Learning to Prepare Future Engineers: A Systemic Analysis Through Five Components of Development and Transfer

    ERIC Educational Resources Information Center

    Hardré, Patricia L.; Ling, Chen; Shehab, Randa L.; Nanny, Mark A.; Refai, Hazem; Nollert, Matthias U.; Ramseyer, Christopher; Wollega, Ebisa D.; Huang, Su-Min; Herron, Jason

    2018-01-01

    This study used a systemic perspective to examine a five-component experiential process of perceptual and developmental growth, and transfer-to-teaching. Nineteen secondary math and science teachers participated in a year-long, engineering immersion and support experience, with university faculty mentors. Teachers identified critical shifts in…

  5. Active Methodologies in a Queueing Systems Course for Telecommunication Engineering Studies

    ERIC Educational Resources Information Center

    Garcia, J.; Hernandez, A.

    2010-01-01

    This paper presents the results of a one-year experiment in incorporating active methodologies in a Queueing Systems course as part of the Telecommunication Engineering degree at the University of Zaragoza, Spain, during the period of adaptation to the European Higher Education Area. A problem-based learning methodology has been introduced, and…

  6. The Role of Formal Experiment Design in Hypersonic Flight System Technology Development

    NASA Technical Reports Server (NTRS)

    McClinton, Charles R.; Ferlemann, Shelly M.; Rock, Ken E.; Ferlemann, Paul G.

    2002-01-01

    Hypersonic airbreathing engine (scramjet) powered vehicles are being considered to replace conventional rocket-powered launch systems. Effective utilization of scramjet engines requires careful integration with the air vehicle. This integration synergistically combines aerodynamic forces with propulsive cycle functions of the engine. Due to the highly integrated nature of the hypersonic vehicle design problem, the large flight envelope, and the large number of design variables, the use of a statistical design approach in design is effective. Modern Design-of-Experiments (MDOE) has been used throughout the Hyper-X program, for both systems analysis and experimental testing. Application of MDOE fall into four categories: (1) experimental testing; (2) studies of unit phenomena; (3) refining engine design; and (4) full vehicle system optimization. The MDOE process also provides analytical models, which are also used to document lessons learned, supplement low-level design tools, and accelerate future studies. This paper will discuss the design considerations for scramjet-powered vehicles, specifics of MDOE utilized for Hyper-X, and present highlights from the use of these MDOE methods within the Hyper-X Program.

  7. Experimental Replication of an Aeroengine Combustion Instability

    NASA Technical Reports Server (NTRS)

    Cohen, J. M.; Hibshman, J. R.; Proscia, W.; Rosfjord, T. J.; Wake, B. E.; McVey, J. B.; Lovett, J.; Ondas, M.; DeLaat, J.; Breisacher, K.

    2000-01-01

    Combustion instabilities in gas turbine engines are most frequently encountered during the late phases of engine development, at which point they are difficult and expensive to fix. The ability to replicate an engine-traceable combustion instability in a laboratory-scale experiment offers the opportunity to economically diagnose the problem (to determine the root cause), and to investigate solutions to the problem, such as active control. The development and validation of active combustion instability control requires that the causal dynamic processes be reproduced in experimental test facilities which can be used as a test bed for control system evaluation. This paper discusses the process through which a laboratory-scale experiment was designed to replicate an instability observed in a developmental engine. The scaling process used physically-based analyses to preserve the relevant geometric, acoustic and thermo-fluid features. The process increases the probability that results achieved in the single-nozzle experiment will be scalable to the engine.

  8. Developing Systems Engineering Skills Through NASA Summer Intern Project

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Barritt, Brian; Golden, Bert; Knoblock, Eric; Matthews, Seth; Warner, Joe

    2010-01-01

    During the Formulation phases of the NASA Project Life Cycle, communication systems engineers are responsible for designing space communication links and analyzing their performance to ensure that the proposed communication architecture is capable of satisfying high-level mission requirements. Senior engineers with extensive experience in communications systems perform these activities. However, the increasing complexity of space systems coupled with the current shortage of communications systems engineers has led to an urgent need for expedited training of new systems engineers. A pilot program, in which college-bound high school and undergraduate students studying various engineering disciplines are immersed in NASA s systems engineering practices, was conceived out of this need. This rapid summerlong training approach is feasible because of the availability of advanced software and technology tools and the students inherent ability to operate such tools. During this pilot internship program, a team of college-level and recently-hired engineers configured and utilized various software applications in the design and analysis of communication links for a plausible lunar sortie mission. The approach taken was to first design the direct-to-Earth communication links for the lunar mission elements, then to design the links between lunar surface and lunar orbital elements. Based on the data obtained from these software applications, an integrated communication system design was realized and the students gained valuable systems engineering knowledge. This paper describes this approach to rapidly training college-bound high school and undergraduate engineering students from various disciplines in NASA s systems engineering practices and tools. A summary of the potential use of NASA s emerging systems engineering internship program in broader applications is also described.

  9. Cardiovascular system simulation in biomedical engineering education.

    NASA Technical Reports Server (NTRS)

    Rideout, V. C.

    1972-01-01

    Use of complex cardiovascular system models, in conjunction with a large hybrid computer, in biomedical engineering courses. A cardiovascular blood pressure-flow model, driving a compartment model for the study of dye transport, was set up on the computer for use as a laboratory exercise by students who did not have the computer experience or skill to be able to easily set up such a simulation involving some 27 differential equations running at 'real time' rate. The students were given detailed instructions regarding the model, and were then able to study effects such as those due to septal and valve defects upon the pressure, flow, and dye dilution curves. The success of this experiment in the use of involved models in engineering courses was such that it seems that this type of laboratory exercise might be considered for use in physiology courses as an adjunct to animal experiments.

  10. A Comparison of Two Approaches to Safety Analysis Based on Use Cases

    NASA Astrophysics Data System (ADS)

    Stålhane, Tor; Sindre, Guttorm

    Engineering has a long tradition in analyzing the safety of mechanical, electrical and electronic systems. Important methods like HazOp and FMEA have also been adopted by the software engineering community. The misuse case method, on the other hand, has been developed by the software community as an alternative to FMEA and preliminary HazOp for software development. To compare the two methods misuse case and FMEA we have run a small experiment involving 42 third year software engineering students. In the experiment, the students should identify and analyze failure modes from one of the use cases for a commercial electronic patient journals system. The results of the experiment show that on the average, the group that used misuse cases identified and analyzed more user related failure modes than the persons using FMEA. In addition, the persons who used the misuse cases scored better on perceived ease of use and intention to use.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Jun-hyung

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a hugemore » opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)« less

  12. A comparative analysis of user preference-based and existing knowledge management systems attributes in the aerospace industry

    NASA Astrophysics Data System (ADS)

    Varghese, Nishad G.

    Knowledge management (KM) exists in various forms throughout organizations. Process documentation, training courses, and experience sharing are examples of KM activities performed daily. The goal of KM systems (KMS) is to provide a tool set which serves to standardize the creation, sharing, and acquisition of business critical information. Existing literature provides numerous examples of targeted evaluations of KMS, focusing on specific system attributes. This research serves to bridge the targeted evaluations with an industry-specific, holistic approach. The user preferences of aerospace employees in engineering and engineering-related fields were compared to profiles of existing aerospace KMS based on three attribute categories: technical features, system administration, and user experience. The results indicated there is a statistically significant difference between aerospace user preferences and existing profiles in the user experience attribute category, but no statistically significant difference in the technical features and system administration attribute categories. Additional analysis indicated in-house developed systems exhibit higher technical features and user experience ratings than commercial-off-the-self (COTS) systems.

  13. Experimental Study on Relationship between NOx Emission and Fuel Consumption of a Diesel Engine

    NASA Astrophysics Data System (ADS)

    Ning, Ping; Liu, Chunjiang; Feng, Zhiqiang; Xia, Yijiang

    2018-01-01

    For YC6112 diesel engine assembled Delphl model single fuel pump electric controlled, in the premise of not changing its overall unit structure parameters of other systems, three different types of camshaft for single pumps, two kinds of fuel injectors, two types of superchargers and some phase shifting angle of different camshafts were chosen to match with the engine precisely, the experiments under thirteen kinds of working conditions for the engine with different matching were carried out, the change regulation between NOX emission and fuel consumption for the engine with different kinds of configurations was analyzed. The experiment results show the NOX emission and fuel consumption can be reduced greatly by configuring proper camshaft, fuel injectors and superchargers with YC6112 diesel engine.

  14. Systems Engineering Education Development(SEED)Case Study

    NASA Technical Reports Server (NTRS)

    Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.

    2003-01-01

    The Systems Engineering Development Program (SEED) was initiated to help Goddard resolve a Systems Engineering skill shortage. The chronology of events and the experiences of the pilot program are outlined to describe the development of the present program. The program goals are included in order to give a focus on what the developers saw as the program drivers. Lessons learned from a pilot program were incorporated into the present program. This program is constantly learning from its past efforts and looks for continuous improvement. We list several future ideas for improvement and change.

  15. Challenges of Engineering Higher Education in a Transitional Economy: A Russian Experience

    ERIC Educational Resources Information Center

    Matveev, Alexei; Matveev, Olga; Zhukov, Vassily

    2005-01-01

    Education and training serve as critical elements of advancement of a nation's economy in transition. The restructuring of the power engineering industry in Russia has called for a fast implementation of new management system in electric power engineering and radical training of professional managers at different levels in organizations.…

  16. SSME leak detection feasibility investigation by utilization of infrared sensor technology

    NASA Technical Reports Server (NTRS)

    Shohadaee, Ahmad A.; Crawford, Roger A.

    1990-01-01

    This investigation examined the potential of using state-of-the-art technology of infrared (IR) thermal imaging systems combined with computer, digital image processing and expert systems for Space Shuttle Main Engines (SSME) propellant path peak detection as an early warning system of imminent engine failure. A low-cost, laboratory experiment was devised and an experimental approach was established. The system was installed, checked out, and data were successfully acquired demonstrating the proof-of-concept. The conclusion from this investigation is that both numerical and experimental results indicate that the leak detection by using infrared sensor technology proved to be feasible for a rocket engine health monitoring system.

  17. Experimental investigation of a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine.

    PubMed

    Luo, E C; Dai, W; Zhang, Y; Ling, H

    2006-12-22

    In this paper, a thermally-driven thermoacoustic refrigerator system without any moving part is reported. This refrigeration system consists of a thermoacoustic-Stirling heat engine and a thermoacoustic-Stirling refrigerator; that is, the former is the driving source for the latter. Both the subsystems are designed to operate on traveling-wave mode. In the experiment, it was found that the DC-flows had significant negative effect on the heat engine and the refrigerator. To suppress these DC-flows, two flexible membranes were inserted into the two subsystems and worked very well. Then extensive experiments were made to test the influence of different parameters on refrigeration performance of the whole system. The system has so far achieved a no-load temperature of -65 degrees C, a cooling capacity of about 270 W at -20 degrees C and 405 W at 0 degrees C; in fact, the result showed a good prospect of the refrigeration system in room-temperature cooling such as food refrigeration and air-conditioning.

  18. A minimum cost tolerance allocation method for rocket engines and robust rocket engine design

    NASA Technical Reports Server (NTRS)

    Gerth, Richard J.

    1993-01-01

    Rocket engine design follows three phases: systems design, parameter design, and tolerance design. Systems design and parameter design are most effectively conducted in a concurrent engineering (CE) environment that utilize methods such as Quality Function Deployment and Taguchi methods. However, tolerance allocation remains an art driven by experience, handbooks, and rules of thumb. It was desirable to develop and optimization approach to tolerancing. The case study engine was the STME gas generator cycle. The design of the major components had been completed and the functional relationship between the component tolerances and system performance had been computed using the Generic Power Balance model. The system performance nominals (thrust, MR, and Isp) and tolerances were already specified, as were an initial set of component tolerances. However, the question was whether there existed an optimal combination of tolerances that would result in the minimum cost without any degradation in system performance.

  19. Initial experiments with a laser driven Stirling engine

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1976-01-01

    Operation of a Beale free piston Stirling engine with a 40-W CO2 laser is described. Advantages of such a system include: closed-cycle operation, long life, inexpensive construction, and size scalability to 100 MW.

  20. ATS-6 engineering performance report. Volume 2: Orbit and attitude controls

    NASA Technical Reports Server (NTRS)

    Wales, R. O. (Editor)

    1981-01-01

    Attitude control is reviewed, encompassing the attitude control subsystem, spacecraft attitude precision pointing and slewing adaptive control experiment, and RF interferometer experiment. The spacecraft propulsion system (SPS) is discussed, including subsystem, SPS design description and validation, orbital operations and performance, in-orbit anomalies and contingency operations, and the cesium bombardment ion engine experiment. Thruster failure due to plugging of the propellant feed passages, a major cause for mission termination, are considered among the critical generic failures on the satellite.

  1. Life-Cycle Analysis of Aircraft Turbine Engines

    DTIC Science & Technology

    1977-11-01

    actual experience. Mixed but promisng results were obtained in modeling ownership costs for military engines. Depot maintenance costs were more...Acquisition Experience, The Rand Corporation, RM-6072-PR, November 1969. System Acquisition Stategies , The Rand Corporation, R-733-PR/ARPA, June 1971. 98...Paris, 1971I. Phillips. Almarin, Technology and Market Structure, IA•xington Books, D.C. Heath and Company, Lexington, Mass.. 1971. A Position Paper on

  2. A controlled double-duration inducible gene expression system for cartilage tissue engineering.

    PubMed

    Ma, Ying; Li, Junxiang; Yao, Yi; Wei, Daixu; Wang, Rui; Wu, Qiong

    2016-05-25

    Cartilage engineering that combines competent seeding cells and a compatible scaffold is increasingly gaining popularity and is potentially useful for the treatment of various bone and cartilage diseases. Intensive efforts have been made by researchers to improve the viability and functionality of seeding cells of engineered constructs that are implanted into damaged cartilage. Here, we designed an integrative system combining gene engineering and the controlled-release concept to solve the problems of both seeding cell viability and functionality through precisely regulating the anti-apoptotic gene bcl-2 in the short-term and the chondrogenic master regulator Sox9 in the long-term. Both in vitro and in vivo experiments demonstrated that our system enhances the cell viability and chondrogenic effects of the engineered scaffold after introduction of the system while restricting anti-apoptotic gene expression to only the early stage, thereby preventing potential oncogenic and overdose effects. Our system was designed to be modular and can also be readily adapted to other tissue engineering applications with minor modification.

  3. Reverse engineering and identification in systems biology: strategies, perspectives and challenges.

    PubMed

    Villaverde, Alejandro F; Banga, Julio R

    2014-02-06

    The interplay of mathematical modelling with experiments is one of the central elements in systems biology. The aim of reverse engineering is to infer, analyse and understand, through this interplay, the functional and regulatory mechanisms of biological systems. Reverse engineering is not exclusive of systems biology and has been studied in different areas, such as inverse problem theory, machine learning, nonlinear physics, (bio)chemical kinetics, control theory and optimization, among others. However, it seems that many of these areas have been relatively closed to outsiders. In this contribution, we aim to compare and highlight the different perspectives and contributions from these fields, with emphasis on two key questions: (i) why are reverse engineering problems so hard to solve, and (ii) what methods are available for the particular problems arising from systems biology?

  4. LOH- RadGene experiment at Cell Biology Experiment Facility (CBEF)

    NASA Image and Video Library

    2009-02-20

    ISS018-E-034090 (20 Feb. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, uses a communication system near the Cell Biology Experiment Facility (CBEF) in the Kibo laboratory of the International Space Station.

  5. Temperature measurement using infrared imaging systems during turbine engine altitude testing

    NASA Technical Reports Server (NTRS)

    Burns, Maureen E.

    1994-01-01

    This report details the use of infrared imaging for temperature measurement and thermal pattern determination during simulated altitude engine testing in the NASA Lewis Propulsion Systems Laboratory. Three identical argon-cooled imaging systems were installed in the facility exhaust collector behind sapphire windows to look at engine internal surfaces. The report describes the components of each system, presents the specifics of the complicated installation, and explains the operation of the systems during engine testing. During the program, several problems emerged, such as argon contamination system, component overheating, cracked sapphire windows, and other unexplained effects. This report includes a summary of the difficulties as well as the solutions developed. The systems performed well, considering they were in an unusually harsh exhaust environment. Both video and digital data were recorded, and the information provided valuable material for the engineers and designers to quickly make any necessary design changes to the engine hardware cooling system. The knowledge and experience gained during this program greatly simplified the installation and use of the systems during later test programs in the facility. The infrared imaging systems have significantly enhanced the measurement capabilities of the facility, and have become an outstanding and versatile testing resource in the Propulsion Systems Laboratory.

  6. Use of Student Experiments for Teaching Embedded Software Development Including HW/SW Co-Design

    ERIC Educational Resources Information Center

    Mitsui, H.; Kambe, H.; Koizumi, H.

    2009-01-01

    Embedded systems have been applied widely, not only to consumer products and industrial machines, but also to new applications such as ubiquitous or sensor networking. The increasing role of software (SW) in embedded system development has caused a great demand for embedded SW engineers, and university education for embedded SW engineering has…

  7. Thermal Power Systems (TPS); Point-Focusing Thermal and Electric Applications (PFTEA). Volume 2: Detailed report, fiscal year 1979

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Progress in the development of systems which employ point focusing distributed receiver technology is reported. Emphasis is placed on the first engineering experiment, the Small Community Solar Thermal Power Experiment. Procurement activities for the Military Module Power Experiment the first of a series of experiments planned as part of the Isolated Load Series are included.

  8. Validation of multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Siewiorek, D. P.; Segall, Z.; Kong, T.

    1982-01-01

    Experiments that can be used to validate fault free performance of multiprocessor systems in aerospace systems integrating flight controls and avionics are discussed. Engineering prototypes for two fault tolerant multiprocessors are tested.

  9. Solar-Thermal Engine Testing

    NASA Technical Reports Server (NTRS)

    Tucker, Stephen; Salvail, Pat; Haynes, Davy (Technical Monitor)

    2001-01-01

    A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle. collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (I(sub sp)). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemical vapor deposited (CVD) rhenium. The engine 'module' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to Supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine I(sub sp). In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational aspects of the engine and associated subsystems, and will include independent variation of both steady slate heat-exchanger temperature prior to thrust operation and nitrogen inlet pressure (flow rate) during thrust operation. Although the Shooting Star engines were designed as thermal-storage engines to accommodate mission parameters, they are fully capable of operating as scalable, direct-gain engines. Tests are conducted in both operational modes. Engine thrust and propellant flow rate will be measured and thereby I(sub sp). The objective of these tests is to investigate the effectiveness of the solar engine as a heat exchanger and a rocket. Of particular interest is the effectiveness of the support structure as a thermal insulator, the integrity of both the insulation system and the insulation containment system, the overall temperature distribution throughout the engine module, and the thermal power required to sustain steady state fluid temperatures at various flow rates.

  10. Joint US/Russia TU-144 Engine Ground Tests

    NASA Technical Reports Server (NTRS)

    Acosta, Waldo A.; Balser, Jeffrey S.; McCartney, Timothy P.; Richter, Charles A.; Woike, Mark R.

    1997-01-01

    Two engine research experiments were recently completed in Moscow, Russia using an engine from the Tu-144 supersonic transport airplane. This was a joint project between the United States and Russia. Personnel from the NASA Lewis Research Center, General Electric Aircraft Engines, Pratt & Whitney, the Tupolev Design Bureau, and EBP Aircraft LTD worked together as a team to overcome the many technical and cultural challenges. The objective was to obtain large scale inlet data that could be used in the development of a supersonic inlet system for a future High Speed Civil Transport (HSCT). The-first experiment studied the impact of typical inlet structures that have trailing edges in close proximity to the inlet/engine interface plane on the flow characteristics at that plane. The inlet structure simulated the subsonic diffuser of a supersonic inlet using a bifurcated splitter design. The centerbody maximum diameter was designed to permit choking and slightly supercritical operation. The second experiment measured the reflective characteristics of the engine face to incoming perturbations of pressure amplitude. The basic test rig from the first experiment was used with a longer spacer equipped with fast actuated doors. All the objectives set forth at the beginning of the project were met.

  11. Resilient Propulsion Control Research for the NASA Integrated Resilient Aircraft Control (IRAC) Project

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei; Litt, Jonathan S.

    2007-01-01

    Gas turbine engines are designed to provide sufficient safety margins to guarantee robust operation with an exceptionally long life. However, engine performance requirements may be drastically altered during abnormal flight conditions or emergency maneuvers. In some situations, the conservative design of the engine control system may not be in the best interest of overall aircraft safety; it may be advantageous to "sacrifice" the engine to "save" the aircraft. Motivated by this opportunity, the NASA Aviation Safety Program is conducting resilient propulsion research aimed at developing adaptive engine control methodologies to operate the engine beyond the normal domain for emergency operations to maximize the possibility of safely landing the damaged aircraft. Previous research studies and field incident reports show that the propulsion system can be an effective tool to help control and eventually land a damaged aircraft. Building upon the flight-proven Propulsion Controlled Aircraft (PCA) experience, this area of research will focus on how engine control systems can improve aircraft safe-landing probabilities under adverse conditions. This paper describes the proposed research topics in Engine System Requirements, Engine Modeling and Simulation, Engine Enhancement Research, Operational Risk Analysis and Modeling, and Integrated Flight and Propulsion Controller Designs that support the overall goal.

  12. Next-Generation RS-25 Engines for the NASA Space Launch System

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2017-01-01

    The utilization of heritage RS-25 engines, also known as the Space Shuttle Main Engine (SSME), has enabled rapid progress in the development and certification of the NASA Space Launch System (SLS) toward operational flight status. The RS-25 brings design maturity and extensive experience gained through 135 missions, 3000+ ground tests, and over 1 million seconds total accumulated hot-fire time. In addition, there were also 16 flight engines and 2 development engines remaining from the Space Shuttle program that could be leveraged to support the first four flights. Beyond these initial SLS flights, NASA must have a renewed supply of RS-25 engines that must reflect program affordability imperatives as well as technical requirements imposed by the SLS Block-1B vehicle (i.e., 111% RPL power level, reduced service life). Recognizing the long lead times needed for the fabrication, assembly and acceptance testing of flight engines, design activities are underway to improve system affordability and eliminate obsolescence concerns. These key objectives are enabled largely by utilizing modern materials and fabrication technologies, but also by innovations in systems engineering and integration (SE&I) practices.

  13. CloudSat system engineering: techniques that point to a future success

    NASA Technical Reports Server (NTRS)

    Basilio, R. R.; Boain, R. J.; Lam, T.

    2002-01-01

    Over the past three years the CloutSat Project, a NASA Earth System Science Pathfinder mission to provide from space the first global survey of cloud profiles and cloud physical properties, has implemented a successful project system engineering approach. Techniques learned through heuristic reasoning of past project events and professional experience were applied along with select methods recently touted to increase effectiveness without compromising effiency.

  14. A Student Experiment Method for Learning the Basics of Embedded Software Technologies Including Hardware/Software Co-design

    NASA Astrophysics Data System (ADS)

    Kambe, Hidetoshi; Mitsui, Hiroyasu; Endo, Satoshi; Koizumi, Hisao

    The applications of embedded system technologies have spread widely in various products, such as home appliances, cellular phones, automobiles, industrial machines and so on. Due to intensified competition, embedded software has expanded its role in realizing sophisticated functions, and new development methods like a hardware/software (HW/SW) co-design for uniting HW and SW development have been researched. The shortfall of embedded SW engineers was estimated to be approximately 99,000 in the year 2006, in Japan. Embedded SW engineers should understand HW technologies and system architecture design as well as SW technologies. However, a few universities offer this kind of education systematically. We propose a student experiment method for learning the basics of embedded system development, which includes a set of experiments for developing embedded SW, developing embedded HW and experiencing HW/SW co-design. The co-design experiment helps students learn about the basics of embedded system architecture design and the flow of designing actual HW and SW modules. We developed these experiments and evaluated them.

  15. General purpose simulation system of the data management system for Space Shuttle mission 18

    NASA Technical Reports Server (NTRS)

    Bengtson, N. M.; Mellichamp, J. M.; Smith, O. C.

    1976-01-01

    A simulation program for the flow of data through the Data Management System of Spacelab and Space Shuttle was presented. The science, engineering, command and guidance, navigation and control data were included. The programming language used was General Purpose Simulation System V (OS). The science and engineering data flow was modeled from its origin at the experiments and subsystems to transmission from Space Shuttle. Command data flow was modeled from the point of reception onboard and from the CDMS Control Panel to the experiments and subsystems. The GN&C data flow model handled data between the General Purpose Computer and the experiments and subsystems. Mission 18 was the particular flight chosen for simulation. The general structure of the program is presented, followed by a user's manual. Input data required to make runs are discussed followed by identification of the output statistics. The appendices contain a detailed model configuration, program listing and results.

  16. Physiology and the Biomedical Engineering Curriculum: Utilizing Emerging Instructional Technologies to Promote Development of Adaptive Expertise in Undergraduate Students

    ERIC Educational Resources Information Center

    Nelson, Regina K.

    2013-01-01

    A mixed-methods research study was designed to test whether undergraduate engineering students were better prepared to learn advanced topics in biomedical engineering if they learned physiology via a quantitative, concept-based approach rather than a qualitative, system-based approach. Experiments were conducted with undergraduate engineering…

  17. Deicing System Protects General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Kelly Aerospace Thermal Systems LLC worked with researchers at Glenn Research Center on deicing technology with assistance from the Small Business Innovation Research (SBIR) program. Kelly Aerospace acquired Northcoast Technologies Ltd., a firm that had conducted work on a graphite foil heating element under a NASA SBIR contract and developed a lightweight, easy-to-install, reliable wing and tail deicing system. Kelly Aerospace engineers combined their experiences with those of the Northcoast engineers, leading to the certification and integration of a thermoelectric deicing system called Thermawing, a DC-powered air conditioner for single-engine aircraft called Thermacool, and high-output alternators to run them both. Thermawing, a reliable anti-icing and deicing system, allows pilots to safely fly through ice encounters and provides pilots of single-engine aircraft the heated wing technology usually reserved for larger, jet-powered craft. Thermacool, an innovative electric air conditioning system, uses a new compressor whose rotary pump design runs off an energy-efficient, brushless DC motor and allows pilots to use the air conditioner before the engine even starts

  18. An improved approach for flight readiness certification: Methodology for failure risk assessment and application examples. Volume 2: Software documentation

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes, These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.

  19. An improved approach for flight readiness certification: Methodology for failure risk assessment and application examples, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.

  20. Glenn's Telescience Support Center Provided Around-the-Clock Operations Support for Space Experiments on the International Space Station

    NASA Technical Reports Server (NTRS)

    Malarik, Diane C.

    2005-01-01

    NASA Glenn Research Center s Telescience Support Center (TSC) allows researchers on Earth to operate experiments onboard the International Space Station (ISS) and the space shuttles. NASA s continuing investment in the required software, systems, and networks provides distributed ISS ground operations that enable payload developers and scientists to monitor and control their experiments from the Glenn TSC. The quality of scientific and engineering data is enhanced while the long-term operational costs of experiments are reduced because principal investigators and engineering teams can operate their payloads from their home institutions.

  1. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2004-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30,60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized information from psychological and medical testing, data on the knowledge, experience and skills of the applicants, and team building exercises. The design, development, buildup and operation of test hardware and documentation followed the established NASA processes and requirements for test buildup and operation.

  2. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2006-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30, 60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized information from psychological and medical testing, data on the knowledge, experience and skills of the applicants, and team building exercises. The design, development, buildup and operation of test hardware and documentation followed the established NASA processes and requirements for test buildup and operation.

  3. Simulation and experiment for oxygen-enriched combustion engine using liquid oxygen to solidify CO2

    NASA Astrophysics Data System (ADS)

    Liu, Yongfeng; Jia, Xiaoshe; Pei, Pucheng; Lu, Yong; Yi, Li; Shi, Yan

    2016-01-01

    For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine.

  4. Effects of Induction-System Icing on Aircraft-Engine Operating Characteristics

    NASA Technical Reports Server (NTRS)

    Stevens, Howard C., Jr.

    1947-01-01

    An investigation was conducted on a multicylinder aircraft engine on a dynamometer stand to determine the effect of induction-system icing on engine operating characteristics and to compare the results with those of a previous laboratory investigation in which only the carburetor and the engine-stage supercharger assembly from the engine were used. The experiments were conducted at simulated glide power, low cruise power, and normal rated power through a range of humidity ratios and air temperatures at approximately sea-level pressure. Induction-system icing was found to occur within approximately the same limits as those established by the previous laboratory investigation after making suitable allowances for the difference in fuel volatility and throttle angles. Rough operation of the engine was experienced when ice caused a marked reduction in the air flow. Photographs of typical ice formations from this investigation indicate close similarity to icing previously observed in the laboratory.

  5. Critical Thinking on the Introduction of Digitization Within Engineering Training Systems in the Manufacturing Stage of Cast Parts

    NASA Astrophysics Data System (ADS)

    Lehene, T. R.; Samoilă, V.; Soporan, V. F.; Pădurețu, S.; Vescan, M. M.

    2018-06-01

    The paper aims to present a methodology for the analysis of the engineering training systems at the manufacturing stage of castings through critical engineering thinking. Its use [4, 5] requires the development of procedures capable of responding to the problems faced by engineering training in terms of acquiring the tools and procedures. The structure of the analysis took into consideration the following aspects: the motivation to use the proposed procedure, considerations on the engineering behavior, the design of the reasoning adapted to the analysis of the engineering training systems, the determination of the correlations in the processes of obtaining the cast products, the definition and calibration of the digital experiment, the definition and analysis of the factors influencing the last solidification area (the nature of the alloy, the shape of the mold and the casting geometry).

  6. Preliminary plan for a Shuttle Coherent Atmospheric Lidar Experiment (SCALE)

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, D.; Beranek, R.; Bilbro, J.; Mabry, J.

    1985-01-01

    A study has been completed to define a Shuttle experiment that solves the most crucial scientific and engineering problems involved in building a satellite Doppler wind profiler for making global wind measurements. The study includes: (1) a laser study to determine the feasibility of using the existing NOAA Windvan laser in the Space Shuttle spacecraft; (2) a preliminary optics and telescope design; (3) an accommodations study including power, weight, thermal, and control system requirements; and (4) a flight trajectory and operations plan designed to accomplish the required scientific and engineering goals. The experiment will provide much-needed data on the global distribution of atmospheric aerosols and demonstrate the technique of making wind measurements from space, including scanning the laser beam and interpreting the data. Engineering accomplishments will include space qualification of the laser, development of signal processing and lag angle compensation hardware and software, and telescope and optics design. All of the results of this limited Spacelab experiment will be directly applicable to a complete satellite wind profiler for the Earth Observation System/Space Station or other free-flying satellite.

  7. RT 164: Design and Development Tools for the Systems Engineering Experience Accelerator - Part 3

    DTIC Science & Technology

    2017-04-29

    Investigator: Dr. Jon Wade, Stevens Institute of Technology Co-Principal Investigator: Dr. Doug Bodner, Georgia Institute of Technology Research Team...Defense Acquisition University: Yvette Rodriguez Georgia Institute of Technology : Jing Liu Stevens Institute of Technology : Dr. Richard Turner...Stevens Institute of Technology : Peizhu Zhang Sponsor: Office of the DASD (Systems Engineering) Report No. SERC-2017-TR-107

  8. Reverse engineering and identification in systems biology: strategies, perspectives and challenges

    PubMed Central

    Villaverde, Alejandro F.; Banga, Julio R.

    2014-01-01

    The interplay of mathematical modelling with experiments is one of the central elements in systems biology. The aim of reverse engineering is to infer, analyse and understand, through this interplay, the functional and regulatory mechanisms of biological systems. Reverse engineering is not exclusive of systems biology and has been studied in different areas, such as inverse problem theory, machine learning, nonlinear physics, (bio)chemical kinetics, control theory and optimization, among others. However, it seems that many of these areas have been relatively closed to outsiders. In this contribution, we aim to compare and highlight the different perspectives and contributions from these fields, with emphasis on two key questions: (i) why are reverse engineering problems so hard to solve, and (ii) what methods are available for the particular problems arising from systems biology? PMID:24307566

  9. Space shuttle hypergolic bipropellant RCS engine design study, Bell model 8701

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A research program was conducted to define the level of the current technology base for reaction control system rocket engines suitable for space shuttle applications. The project consisted of engine analyses, design, fabrication, and tests. The specific objectives are: (1) extrapolating current engine design experience to design of an RCS engine with required safety, reliability, performance, and operational capability, (2) demonstration of multiple reuse capability, and (3) identification of current design and technology deficiencies and critical areas for future effort.

  10. Exploring Three-Phase Systems and Synchronous Motors: A Low-Voltage and Low-Cost Experiment at the Sophomore Level

    ERIC Educational Resources Information Center

    Schubert, T. F., Jr.; Jacobitz, F. G.; Kim, E. M.

    2011-01-01

    In order to meet changing curricular and societal needs, a three-phase system and synchronous motor laboratory experience for sophomore-level students in a wide variety of engineering majors was designed, implemented, and assessed. The experiment is unusual in its early placement in the curriculum, and in that it focuses primarily on basic…

  11. Japanese propagation experiments with ETS-5

    NASA Technical Reports Server (NTRS)

    Ikegami, Tetsushi

    1989-01-01

    Propagation experiments for maritime, aeronautical, and land mobile satellite communications were performed using Engineering Test Satellite-Five (ETS-5). The propagation experiments are one of major mission of Experimental Mobile Satellite System (EMSS) which is aimed for establishing basic technology for future general mobile satellite communication systems. A brief introduction is presented for the experimental results on propagation problems of ETS-5/EMSS.

  12. Management system for the SND experiments

    NASA Astrophysics Data System (ADS)

    Pugachev, K.; Korol, A.

    2017-09-01

    A new management system for the SND detector experiments (at VEPP-2000 collider in Novosibirsk) is developed. We describe here the interaction between a user and the SND databases. These databases contain experiment configuration, conditions and metadata. The new system is designed in client-server architecture. It has several logical layers corresponding to the users roles. A new template engine is created. A web application is implemented using Node.js framework. At the time the application provides: showing and editing configuration; showing experiment metadata and experiment conditions data index; showing SND log (prototype).

  13. Minority University System Engineering: A Small Satellite Design Experience Held at the Jet Propulsion Laboratory During the Summer of 1996

    NASA Technical Reports Server (NTRS)

    Ordaz, Miguel Angel

    1997-01-01

    The University of Texas at El Paso (UTEP) in conjunction with the Jet Propulsion Laboratory (JPL), North Carolina A&T and California State University of Los Angeles participated during the summer of 1996 in a prototype program known as Minority University Systems Engineering (MUSE). The program consisted of a ten week internship at JPL for students and professors of the three universities. The purpose of MUSE as set forth in the MUSE program review August 5, 1996 was for the participants to gain experience in the following areas: 1) Gain experience in a multi-disciplinary project; 2) Gain experience working in a culturally diverse atmosphere; 3) Provide field experience for students to reinforce book learning; and 4) Streamline the design process in two areas: make it more financially feasible; and make it faster.

  14. Design and practice of a comprehensively functional integrated management information system for major construction

    NASA Astrophysics Data System (ADS)

    Liu, Yuling; Wang, Xiaoping; Zhu, Yuhui; Fei, Lanlan

    2017-08-01

    This paper introduces a Comprehensively Functional Integrated Management Information System designed for the Optical Engineering Major by the College of Optical Science and Engineering, Zhejiang University, which combines the functions of teaching, students learning, educational assessment and management. The system consists of 5 modules, major overview, online curriculum, experiment teaching management, graduation project management and teaching quality feedback. The major overview module introduces the development history, training program, curriculums and experiment syllabus and teaching achievements of optical engineering major in Zhejiang University. The Management Information System is convenient for students to learn in a mobile and personalized way. The online curriculum module makes it very easy for teachers to setup a website for new curriculums. On the website, teachers can help students on their problems about the curriculums in time and collect their homework online. The experiment teaching management module and the graduation project management module enables the students to fulfill their experiment process and graduation thesis under the help of their supervisors. Before students take an experiment in the lab, they must pass the pre-experiment quiz on the corresponding module. After the experiment, students need to submit the experiment report to the web server. Moreover, the module contains experiment process video recordings, which are very helpful to improve the effect of the experiment education. The management of the entire process of a student's graduation program, including the project selection, mid-term inspection, progress report of every two weeks, final thesis, et al, is completed by the graduation project management module. The teaching quality feedback module is not only helpful for teachers to know whether the education effect of curriculum is good or not, but also helpful for the administrators of the college to know whether the design of syllabus is reasonable or not. The Management Information System changes the management object from the education results to the entire education processes. And it improves the efficiency of the management. It provides an effective method to promote curriculum construction management by supervision and evaluation, which improves students' learning outcomes and the quality of curriculums. As a result, it promotes the quality system of education obviously.

  15. Space Station Freedom as an engineering experiment station: An overview

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank

    1992-01-01

    In this presentation, the premise that Space Station Freedom has great utility as an engineering experiment station will be explored. There are several modes in which it can be used for this purpose. The most obvious are space qualification, process development, in space satellite repair, and materials engineering. The range of engineering experiments which can be done at Space Station Freedom run the gamut from small process oriented experiments to full exploratory development models. A sampling of typical engineering experiments are discussed in this session. First and foremost, Space Station Freedom is an elaborate experiment itself, which, if properly instrumented, will provide engineering guidelines for even larger structures which must surely be built if humankind is truly 'outward bound.' Secondly, there is the test, evaluation and space qualification of advanced electric thruster concepts, advanced power technology and protective coatings which must of necessity be tested in the vacuum of space. The current approach to testing these technologies is to do exhaustive laboratory simulation followed by shuttle or unmanned flights. Third, the advanced development models of life support systems intended for future space stations, manned mars missions, and lunar colonies can be tested for operation in a low gravity environment. Fourth, it will be necessary to develop new protective coatings, establish construction techniques, evaluate new materials to be used in the upgrading and repair of Space Station Freedom. Finally, the industrial sector, if it is ever to build facilities for the production of commercial products, must have all the engineering aspects of the process evaluated in space prior to a commitment to such a facility.

  16. ENGINEERING APPLICATIONS OF ANALOG COMPUTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, L.T.; Janicke, M.J.; Just, L.C.

    1963-10-31

    Six experiments from the fields of reactor engineering, heat transfer, and dynamics are presented to illustrate the engineering applications of analog computers. The steps required for producing the analog solution are shown, as well as complete information for duplicating the solution. Graphical results are provided. The experiments include: deceleration of a reactor control rod, pressure variations through a packed bed, reactor kinetics over many decades with thermal feedback, a vibrating system with two degrees of freedom, temperature distribution in a radiating fin, temperature distribution in an infinite slab considering variable thermal properties, and iodine -xenon buildup in a reactor. (M.C.G.)

  17. Model-based diagnostics of gas turbine engine lubrication systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byington, C.S.

    1998-09-01

    The objective of the current research was to develop improved methodology for diagnosing anomalies and maintaining oil lubrication systems for gas turbine engines. The effort focused on the development of reasoning modules that utilize the existing, inexpensive sensors and are applicable to on-line monitoring within the full-authority digital engine controller (FADEC) of the engine. The target application is the Enhanced TF-40B gas turbine engine that powers the Landing Craft Air Cushion (LCAC) platform. To accomplish the development of the requisite data fusion algorithms and automated reasoning for the diagnostic modules, Penn State ARL produced a generic Turbine Engine Lubrication Systemmore » Simulator (TELSS) and Data Fusion Workbench (DFW). TELSS is a portable simulator code that calculates lubrication system parameters based upon one-dimensional fluid flow resistance network equations. Validation of the TF- 40B modules was performed using engineering and limited test data. The simulation model was used to analyze operational data from the LCAC fleet. The TELSS, as an integral portion of the DFW, provides the capability to experiment with combinations of variables and feature vectors that characterize normal and abnormal operation of the engine lubrication system. The model-based diagnostics approach is applicable to all gas turbine engines and mechanical transmissions with similar pressure-fed lubrication systems.« less

  18. An investigation of the performance of an electronic in-line pump system for diesel engines

    NASA Astrophysics Data System (ADS)

    Fan, Li-Yun; Zhu, Yuan-Xian; Long, Wu-Qiang; Ma, Xiu-Zhen; Xue, Ying-Ying

    2008-12-01

    WIT Electronic Fuel System Co., Ltd. has developed a new fuel injector, the Electronic In-line Pump (EIP) system, designed to meet China’s diesel engine emission and fuel economy regulations. It can be used on marine diesel engines and commercial vehicle engines through different EIP systems. A numerical model of the EIP system was built in the AMESim environment for the purpose of creating a design tool for engine application and system optimization. The model was used to predict key injection characteristics under different operating conditions, such as injection pressure, injection rate, and injection duration. To validate these predictions, experimental tests were conducted under the conditions that were modeled. The results were quite encouraging and in agreement with model predictions. Additional experiments were conducted to study the injection characteristics of the EIP system. These results show that injection pressure and injection quantity are insensitive to injection timing variations, this is due to the design of the constant velocity cam profile. Finally, injection quantity and pressure vs. pulse width at different cam speeds are presented, an important injection characteristic for EIP system calibration.

  19. Flight Hardware Fabricated for Combustion Science in Space

    NASA Technical Reports Server (NTRS)

    OMalley, Terence F.; Weiland, Karen J.

    2005-01-01

    NASA Glenn Research Center s Telescience Support Center (TSC) allows researchers on Earth to operate experiments onboard the International Space Station (ISS) and the space shuttles. NASA s continuing investment in the required software, systems, and networks provides distributed ISS ground operations that enable payload developers and scientists to monitor and control their experiments from the Glenn TSC. The quality of scientific and engineering data is enhanced while the long-term operational costs of experiments are reduced because principal investigators and engineering teams can operate their payloads from their home institutions.

  20. What's Happening in the Software Engineering Laboratory?

    NASA Technical Reports Server (NTRS)

    Pajerski, Rose; Green, Scott; Smith, Donald

    1995-01-01

    Since 1976 the Software Engineering Laboratory (SEL) has been dedicated to understanding and improving the way in which one NASA organization the Flight Dynamics Division (FDD) at Goddard Space Flight Center, develops, maintains, and manages complex flight dynamics systems. This paper presents an overview of recent activities and studies in SEL, using as a framework the SEL's organizational goals and experience based software improvement approach. It focuses on two SEL experience areas : (1) the evolution of the measurement program and (2) an analysis of three generations of Cleanroom experiments.

  1. Energy Experiments for STEM Students

    NASA Astrophysics Data System (ADS)

    Fanchi, John

    2011-03-01

    Texas Christian University (TCU) is developing an undergraduate program that prepares students to become engineers with an emphasis in energy systems. One of the courses in the program is a technical overview of traditional energy (coal, oil and gas), nuclear energy, and renewable energy that requires as a pre-requisite two semesters of calculus-based physics. Energy experiments are being developed that will facilitate student involvement and provide hands-on learning opportunities. Students participating in the course will improve their understanding of energy systems; be introduced to outstanding scientific and engineering problems; learn about the role of energy in a global and societal context; and evaluate contemporary issues associated with energy. This talk will present the status of experiments being developed for the technical energy survey course.

  2. New Architectures for Presenting Search Results Based on Web Search Engines Users Experience

    ERIC Educational Resources Information Center

    Martinez, F. J.; Pastor, J. A.; Rodriguez, J. V.; Lopez, Rosana; Rodriguez, J. V., Jr.

    2011-01-01

    Introduction: The Internet is a dynamic environment which is continuously being updated. Search engines have been, currently are and in all probability will continue to be the most popular systems in this information cosmos. Method: In this work, special attention has been paid to the series of changes made to search engines up to this point,…

  3. Automated visual inspection system based on HAVNET architecture

    NASA Astrophysics Data System (ADS)

    Burkett, K.; Ozbayoglu, Murat A.; Dagli, Cihan H.

    1994-10-01

    In this study, the HAusdorff-Voronoi NETwork (HAVNET) developed at the UMR Smart Engineering Systems Lab is tested in the recognition of mounted circuit components commonly used in printed circuit board assembly systems. The automated visual inspection system used consists of a CCD camera, a neural network based image processing software and a data acquisition card connected to a PC. The experiments are run in the Smart Engineering Systems Lab in the Engineering Management Dept. of the University of Missouri-Rolla. The performance analysis shows that the vision system is capable of recognizing different components under uncontrolled lighting conditions without being effected by rotation or scale differences. The results obtained are promising and the system can be used in real manufacturing environments. Currently the system is being customized for a specific manufacturing application.

  4. Computer-Aided Structural Engineering (CASE) Project: State of the Art on Expert Systems Applications in Design, Construction and Maintenance of Structures

    DTIC Science & Technology

    1989-09-01

    OGT, F1EPQRTJTL4, W" - 3^ n"r-- n *ON EXPERT SYSTEMS IN DESIGN, CONSTRUCTION AND’, IWAJNTENANCE-OF STRUCTURES Arockiasamy, Sunghoon Lee Clepartrhent...based expert system applications in the areas of structural design, design standards, and construction planning. This study will aid in the development...of a comprehensive expert system for tvical hydraulic structures. Funding for this report was provided by the US Army Engineer Waterways Experiment

  5. SSME to RS-25: Challenges of Adapting a Heritage Engine to a New Vehicle Architecture

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2015-01-01

    A key constituent of the NASA Space Launch System (SLS) architecture is the RS-25 engine, also known as the Space Shuttle Main Engine (SSME). This engine was selected largely due to the maturity and extensive experience gained through 30-plus years of service. However, while the RS-25 is a highly mature system, simply unbolting it from the Space Shuttle and mounting it on the new SLS vehicle is not a "plug-and-play" operation. In addition to numerous technical integration and operational details, there were also hardware upgrades needed. While the magnitude of effort is less than that needed to develop a new clean-sheet engine system, this paper describes some of the expected and unexpected challenges encountered to date on the path to the first flight of SLS.

  6. Control Strategies for HCCI Mixed-Mode Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Robert M; Edwards, Kevin Dean

    2010-03-01

    Delphi Automotive Systems and ORNL established this CRADA to expand the operational range of Homogenous Charge Compression Ignition (HCCI) mixed-mode combustion for gasoline en-gines. ORNL has extensive experience in the analysis, interpretation, and control of dynamic engine phenomena, and Delphi has extensive knowledge and experience in powertrain compo-nents and subsystems. The partnership of these knowledge bases was important to address criti-cal barriers associated with the realistic implementation of HCCI and enabling clean, efficient operation for the next generation of transportation engines. The foundation of this CRADA was established through the analysis of spark-assisted HCCI data from a single-cylinder research engine.more » This data was used to (1) establish a conceptual kinetic model to better understand and predict the development of combustion instabilities, (2) develop a low-order model framework suitable for real-time controls, and (3) provide guidance in the initial definition of engine valve strategies for achieving HCCI operation. The next phase focused on the development of a new combustion metric for real-time characterization of the combustion process. Rapid feedback on the state of the combustion process is critical to high-speed decision making for predictive control. Simultaneous to the modeling/analysis studies, Delphi was focused on the development of engine hardware and the engine management system. This included custom Delphi hardware and control systems allowing for flexible control of the valvetrain sys-tem to enable HCCI operation. The final phase of this CRADA included the demonstration of conventional and spark assisted HCCI on the multi-cylinder engine as well as the characterization of combustion instabilities, which govern the operational boundaries of this mode of combustion. ORNL and Delphi maintained strong collaboration throughout this project. Meetings were held on a bi-weekly basis with additional reports, presentation, and meetings as necessary to maintain progress. Delphi provided substantial support through modeling, hardware, data exchange, and technical consultation. This CRADA was also successful at establishing important next steps to further expanding the use of an HCCI engine for improved fuel efficiency and emissions. These topics will be address in a follow-on CRADA. The objectives are: (1) Improve fundamental understanding of the development of combustion instabilities with HCCI operation through modeling and experiments; (2) Develop low-order model and feedback combustion metrics which are well suited to real-time predictive controls; and (3) Construct multi-cylinder engine system with advanced Delphi technologies and charac-terize HCCI behavior to better understand limitations and opportunities for expanded high-efficiency operation.« less

  7. Spring 2013 Graduate Engineering Internship Summary

    NASA Technical Reports Server (NTRS)

    Ehrlich, Joshua

    2013-01-01

    In the spring of 2013, I participated in the National Aeronautics and Space Administration (NASA) Pathways Intern Employment Program at the Kennedy Space Center (KSC) in Florida. This was my final internship opportunity with NASA, a third consecutive extension from a summer 2012 internship. Since the start of my tenure here at KSC, I have gained an invaluable depth of engineering knowledge and extensive hands-on experience. These opportunities have granted me the ability to enhance my systems engineering approach in the field of payload design and testing as well as develop a strong foundation in the area of composite fabrication and testing for repair design on space vehicle structures. As a systems engineer, I supported the systems engineering and integration team with final acceptance testing of the Vegetable Production System, commonly referred to as Veggie. Verification and validation (V and V) of Veggie was carried out prior to qualification testing of the payload, which incorporated the process of confirming the system's design requirements dependent on one or more validation methods: inspection, analysis, demonstration, and testing.

  8. Space Propulsion Technology Program Overview

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1991-01-01

    The topics presented are covered in viewgraph form. Focused program elements are: (1) transportation systems, which include earth-to-orbit propulsion, commercial vehicle propulsion, auxiliary propulsion, advanced cryogenic engines, cryogenic fluid systems, nuclear thermal propulsion, and nuclear electric propulsion; (2) space platforms, which include spacecraft on-board propulsion, and station keeping propulsion; and (3) technology flight experiments, which include cryogenic orbital N2 experiment (CONE), SEPS flight experiment, and cryogenic orbital H2 experiment (COHE).

  9. BMTC: --A Tool for Standardized Tissue Engineering on Ground and in Space ---

    NASA Astrophysics Data System (ADS)

    Kern, Peter; Kemmerle, Kurt; Jones, David

    ESA is developing the BMTC (Biotechnology Mammalian Tissue Culture Facility) as ground demonstrator in order to: • establish a well characterised terrestrial platform for tissue engineer-ing under defined, reproducible conditions • prepare for future tissue engineering experiments in space using proven, well characterised, modular equipment. In the beginning the facility will be dedicated to support research of bone and cartilage growth under controlled mechanical and/or biochemical stimulation. Meanwhile, the industrial BMTC team has finalised the first model. The BMTC is highly automated system which provides standardized experiment hardware for tissue cultivation and stimulation under controlled conditions and the reproducible execution of the experiment according pre-programmed protocols. The BMTC consists of an incubator for the control of the experiment environment. Internally it offers all experiment relevant subsystems: • two Cultivation Units, each with eight Experiment Chamber Modules optical in-situ sensors for pO2 and pH • the Liquid Handling Device for medium exchange and sample taking • the handling devices for the internal transport of the experiment chamber modules to different experiment services • workstations for uni-axial loading of tissue samples; ZETOS (for bone tissue) / CHONDROS (for cartilage tissue) provision of reproducible displacement profiles measurement of the resulting forces computation of the visco-eleastic properties of the samples provision of flow induced shear stress fluorescence microscope • two different reactor types are included in the baseline flat reactor for 2D-and flat 3D-cultures with flow induced shear stress stimulation compatible with microscope cylindrical 3D-reactor for cultivation of vital bone and cartilage samples compatible with un-directional stimulation / analysis by ZETOS / CHONDROS. The modular, flexible design of the system allows the servicing and accommodation of a wide range of other experiment specific reactors. The functional principles and the essential features for controlled experiments will be reported. This facility complements the research done on ground on osteoporosis and the bone and muscle loss during bed rest studies during space flights. It is considered to become a new in-orbit research tool for tissue engineering and the verification of mechanical or pharmaceutical countermeasures.

  10. Developing the Systems Engineering Experience Accelerator (SEEA) Prototype and Roadmap

    DTIC Science & Technology

    2012-10-24

    system attributes. These metrics track non-requirements performance, typically relate to production cost per unit, maintenance costs, training costs...immediately implement lessons learned from the training experience to the job, assuming the culture allows this. 1.3 MANAGEMENT PLAN/TECHNICAL OVERVIEW...resolving potential conflicts as they arise. Incrementally implement and continuously integrate capability in priority order, to ensure that final system

  11. The Tools That Help Systems Engineering

    NASA Technical Reports Server (NTRS)

    Gamertsfelder, Jacob O.

    2017-01-01

    There are many tools that systems engineers use in today's space programs. In my time in the Commercial Crew Program I sought to improve one of the vital tools for the verification and validation team. This was my main project but only a small part of what I have done in the department. I have also had the chance to learn from the best and see actual hardware, this real world experience will help me be a better aerospace engineer when I enter the workforce. I look forward to seeing the Commercial Crew Program progress to launch.

  12. Centrifugal pumps for rocket engines

    NASA Technical Reports Server (NTRS)

    Campbell, W. E.; Farquhar, J.

    1974-01-01

    The use of centrifugal pumps for rocket engines is described in terms of general requirements of operational and planned systems. Hydrodynamic and mechanical design considerations and techniques and test procedures are summarized. Some of the pump development experiences, in terms of both problems and solutions, are highlighted.

  13. Organizational Influences on Interdisciplinary Interactions during Research and Design of Large-Scale Complex Engineered Systems

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria R.; Seifert, Colleen M.; Papalambros, Panos Y.

    2012-01-01

    The design of large-scale complex engineered systems (LaCES) such as an aircraft is inherently interdisciplinary. Multiple engineering disciplines, drawing from a team of hundreds to thousands of engineers and scientists, are woven together throughout the research, development, and systems engineering processes to realize one system. Though research and development (R&D) is typically focused in single disciplines, the interdependencies involved in LaCES require interdisciplinary R&D efforts. This study investigates the interdisciplinary interactions that take place during the R&D and early conceptual design phases in the design of LaCES. Our theoretical framework is informed by both engineering practices and social science research on complex organizations. This paper provides preliminary perspective on some of the organizational influences on interdisciplinary interactions based on organization theory (specifically sensemaking), data from a survey of LaCES experts, and the authors experience in the research and design. The analysis reveals couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their significant benefit to the engineered system, such as innovation and problem mitigation. Substantial obstacles to interdisciplinarity are uncovered beyond engineering that include communication and organizational challenges. Addressing these challenges may ultimately foster greater efficiencies in the design and development of LaCES and improved system performance by assisting with the collective integration of interdependent knowledge bases early in the R&D effort. This research suggests that organizational and human dynamics heavily influence and even constrain the engineering effort for large-scale complex systems.

  14. Characterization and Evaluation of Lunar Regolith and Simulants

    NASA Technical Reports Server (NTRS)

    Cross, William M.; Murphy, Gloria A.

    2010-01-01

    A NASA-ESMD (National Aeronautics and Space Administration-Exploration Systems Mission Directorate) funded senior design project "Mineral Separation Technology for Lunar Regolith Simulant Production" is directed toward designing processes to produce Simulant materials as close to lunar regolith as possible. The eight undergraduate (junior and senior) students involved are taking a systems engineering design approach to identifying the most pressing concerns in simulant needs, then designing subsystems and processing strategies to meet these needs using terrestrial materials. This allows the students to, not only learn the systems engineering design process, but also, to make a significant contribution to an important NASA ESMD project. This paper will primarily be focused on the implementation aspect, particularly related to the systems engineering process, of this NASA EMSD senior design project. In addition comparison of the NASA ESMD group experience to the implementation of systems engineering practices into a group of existing design projects is given.

  15. Helping System Engineers Bridge the Peaks

    NASA Technical Reports Server (NTRS)

    Rungta, Neha; Tkachuk, Oksana; Person, Suzette; Biatek, Jason; Whalen, Michael W.; Castle, Joseph; Castle, JosephGundy-Burlet, Karen

    2014-01-01

    In our experience at NASA, system engineers generally follow the Twin Peaks approach when developing safety-critical systems. However, iterations between the peaks require considerable manual, and in some cases duplicate, effort. A significant part of the manual effort stems from the fact that requirements are written in English natural language rather than a formal notation. In this work, we propose an approach that enables system engineers to leverage formal requirements and automated test generation to streamline iterations, effectively "bridging the peaks". The key to the approach is a formal language notation that a) system engineers are comfortable with, b) is supported by a family of automated V&V tools, and c) is semantically rich enough to describe the requirements of interest. We believe the combination of formalizing requirements and providing tool support to automate the iterations will lead to a more efficient Twin Peaks implementation at NASA.

  16. Global engineering education programs: More than just international experiences

    NASA Astrophysics Data System (ADS)

    McNeill, Nathan J.

    Engineers in both industry and academia recognize the global nature of the profession. This has lead to calls for engineering students to develop knowledge, skills, and attitudes necessary for success within a global profession. Many institutions are developing globally oriented programs specifically for their engineering students and are eager to know if these programs are helping their students to develop attributes that meet their program objectives, accreditation requirements, and the needs and desires of prospective employers. Administrators of such programs currently lack research data to support the learning objectives they are setting for their programs. This study documented the individual experiences and learning outcomes of students involved in three global education programs for engineering students. The first program provided a portfolio of experiences including foreign language instruction, one semester of study abroad, internships in the U.S. and abroad, and a two-semester global team design project. The second program was a one semester study abroad program in China, and the third was a global service project whose purpose was to design an irrigation system for two small farms in Rwanda. The research questions guiding this study were: 1. What specific knowledge, skills, and attitudes are students gaining from participation in their respective global engineering programs? 2. What kinds of experiences are resulting in these learning outcomes? Interviews were used to elicit the experiences and learning outcomes of participants in this study. Program administrators were also interviewed for their perspectives on the experiences and learning outcomes of participants for the purpose of triangulation. The study identified more than 50 outcomes that resulted from students' experiences in these three programs. The most prevalent outcomes across all three programs included knowledge of culture, openness to new experiences and other cultures, and communication skills.

  17. Flight Testing the Linear Aerospike SR-71 Experiment (LASRE)

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Neal, Bradford A.; Moes, Timothy R.; Cox, Timothy H.; Monaghan, Richard C.; Voelker, Leonard S.; Corpening, Griffin P.; Larson, Richard R.; Powers, Bruce G.

    1998-01-01

    The design of the next generation of space access vehicles has led to a unique flight test that blends the space and flight research worlds. The new space vehicle designs, such as the X-33 vehicle and Reusable Launch Vehicle (RLV), are powered by linear aerospike rocket engines. Conceived of in the 1960's, these aerospike engines have yet to be flown, and many questions remain regarding aerospike engine performance and efficiency in flight. To provide some of these data before flying on the X-33 vehicle and the RLV, a spacecraft rocket engine has been flight-tested atop the NASA SR-71 aircraft as the Linear Aerospike SR-71 Experiment (LASRE). A 20 percent-scale, semispan model of the X-33 vehicle, the aerospike engine, and all the required fuel and oxidizer tanks and propellant feed systems have been mounted atop the SR-71 airplane for this experiment. A major technical objective of the LASRE flight test is to obtain installed-engine performance flight data for comparison to wind-tunnel results and for the development of computational fluid dynamics-based design methodologies. The ultimate goal of firing the aerospike rocket engine in flight is still forthcoming. An extensive design and development phase of the experiment hardware has been completed, including approximately 40 ground tests. Five flights of the LASRE and firing the rocket engine using inert liquid nitrogen and helium in place of liquid oxygen and hydrogen have been successfully completed.

  18. A Combustion Laboratory for Undergraduates.

    ERIC Educational Resources Information Center

    Peters, James E.

    1985-01-01

    Describes a combustion laboratory facility and experiments for a senior-level (undergraduate) course in mechanical engineering. The experiment reinforces basic thermodynamic concepts and provides many students with their first opportunity to work with a combustion system. (DH)

  19. JPL Contamination Control Engineering

    NASA Technical Reports Server (NTRS)

    Blakkolb, Brian

    2013-01-01

    JPL has extensive expertise fielding contamination sensitive missions-in house and with our NASA/industry/academic partners.t Development and implementation of performance-driven cleanliness requirements for a wide range missions and payloads - UV-Vis-IR: GALEX, Dawn, Juno, WFPC-II, AIRS, TES, et al - Propulsion, thermal control, robotic sample acquisition systems. Contamination control engineering across the mission life cycle: - System and payload requirements derivation, analysis, and contamination control implementation plans - Hardware Design, Risk trades, Requirements V-V - Assembly, Integration & Test planning and implementation - Launch site operations and launch vehicle/payload integration - Flight ops center dot Personnel on staff have expertise with space materials development and flight experiments. JPL has capabilities and expertise to successfully address contamination issues presented by space and habitable environments. JPL has extensive experience fielding and managing contamination sensitive missions. Excellent working relationship with the aerospace contamination control engineering community/.

  20. Implementation of a model based fault detection and diagnosis for actuation faults of the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.

    1992-01-01

    In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the space shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the space shuttle main engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.

  1. The dish-Rankine SCSTPE program (Engineering Experiment no. 1). [systems engineering and economic analysis for a small community solar thermal electric system

    NASA Technical Reports Server (NTRS)

    Pons, R. L.; Grigsby, C. E.

    1980-01-01

    Activities planned for phase 2 Of the Small Community Solar Thermal Power Experiment (PFDR) program are summarized with emphasis on a dish-Rankine point focusing distributed receiver solar thermal electric system. Major design efforts include: (1) development of an advanced concept indirect-heated receiver;(2) development of hardware and software for a totally unmanned power plant control system; (3) implementation of a hybrid digital simulator which will validate plant operation prior to field testing; and (4) the acquisition of an efficient organic Rankine cycle power conversion unit. Preliminary performance analyses indicate that a mass-produced dish-Rankine PFDR system is potentially capable of producing electricity at a levelized busbar energy cost of 60 to 70 mills per KWh and with a capital cost of about $1300 per KW.

  2. Experiment/Analytical Characterization of the RBCC Rocket-Ejector Mode

    NASA Technical Reports Server (NTRS)

    Ruf, J. H.; Lehman, M.; Pal, S.; Santoro, R. J.; West, J.; Turner, James E. (Technical Monitor)

    2000-01-01

    Experimental and complementary CFD results from the study of the rocket-ejector mode of a Rocket Based Combined Cycle (RBCC) engine are presented and discussed. The experiments involved systematic flowfield measurements in a two-dimensional, variable geometry rocket-ejector system. The rocket-ejector system utilizes a single two-dimensional, gaseous oxygen/gaseous hydrogen rocket as the ejector. To gain a thorough understanding of the rocket-ejector's internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static configurations for a range of rocket operating conditions. Overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust, whereas detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (oxygen, hydrogen, nitrogen and water vapor). The experimental results for both the direct-connect and sea-level static configurations are compared with CFD predictions of the flowfield.

  3. Effects of Pulsed and CW (Continuous Wave) 2450 MHz Radiation on Transformation and Chromosomes of Human Lymphocytes in vitro

    DTIC Science & Technology

    1989-12-15

    conditions of these experiments. In order to provide reliable quantitative data on exposure, a system with automated dosimetry was developed, and tested...exposure system and dosimetry, and (2) studies on lymphocyte cultures, and (3) conclusions. EXPOSURE SYSTEM AND DOSIMETRY Description of the Exposure... System The experiments planned in this project necessitated the design and assembly of an exposure system that would meet several engineering

  4. Focused RBCC Experiments: Two-Rocket Configuration Experiments and Hydrocarbon/Oxygen Rocket Ejector Experiments

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    This addendum report documents the results of two additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Penn State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3 d generation Reusable Launch Vehicles (RLV). The tasks reported here build on an earlier NASA MSFC funded research program on rocket ejector investigations. The first task investigated the improvements of a gaseous hydrogen/oxygen twin thruster RBCC rocket ejector system over a single rocket system. The second task investigated the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. Detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen, nitrogen and water vapor) for the gaseous hydrogen/oxygen rocket ejector experiments.

  5. The architecture of a modern military health information system.

    PubMed

    Mukherji, Raj J; Egyhazy, Csaba J

    2004-06-01

    This article describes a melding of a government-sponsored architecture for complex systems with open systems engineering architecture developed by the Institute for Electrical and Electronics Engineers (IEEE). Our experience in using these two architectures in building a complex healthcare system is described in this paper. The work described shows that it is possible to combine these two architectural frameworks in describing the systems, operational, and technical views of a complex automation system. The advantage in combining the two architectural frameworks lies in the simplicity of implementation and ease of understanding of automation system architectural elements by medical professionals.

  6. Some engineering aspects of insulin delivery systems.

    PubMed

    Spencer, W J; Bair, R E; Carlson, G A; Love, J T; Urenda, R S; Eaton, R P; Schade, D S

    1980-01-01

    The characteristics of electronically controlled insulin delivery systems are presented. Early experiments with an external system have shown promise in providing improved glycemic control over conventional methods of single or multiple subcutaneous insulin injections. The encouraging results with external insulin delivery systems have led to the development and early testing in dogs of an implantable system with remote controls to permit variable insulin flow rates. A number of questions remain to be answered before widespread experimentation with external and implanted insulin delivery systems is possible. There appears to be no major development problems with the engineering aspects of such systems.

  7. High-speed schlieren imaging of rocket exhaust plumes

    NASA Astrophysics Data System (ADS)

    Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael

    2016-11-01

    Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.

  8. Applying object-oriented software engineering at the BaBar collaboration

    NASA Astrophysics Data System (ADS)

    Jacobsen, Bob; BaBar Collaboration Reconstruction Software Group

    1997-02-01

    The BaBar experiment at SLAC will start taking data in 1999. We are attempting to build its reconstruction software using good software engineering practices, including the use of object-oriented technology. We summarize our experience to date with analysis and design activities, training, CASE and documentation tools, C++ programming practice and similar topics. The emphasis is on the practical issues of simultaneously introducing new techniques to a large collaboration while under a deadline for system delivery.

  9. An improved approach for flight readiness certification: Methodology for failure risk assessment and application examples. Volume 3: Structure and listing of programs

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.

  10. Discrete Event Supervisory Control Applied to Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Shah, Neerav

    2005-01-01

    The theory of discrete event supervisory (DES) control was applied to the optimal control of a twin-engine aircraft propulsion system and demonstrated in a simulation. The supervisory control, which is implemented as a finite-state automaton, oversees the behavior of a system and manages it in such a way that it maximizes a performance criterion, similar to a traditional optimal control problem. DES controllers can be nested such that a high-level controller supervises multiple lower level controllers. This structure can be expanded to control huge, complex systems, providing optimal performance and increasing autonomy with each additional level. The DES control strategy for propulsion systems was validated using a distributed testbed consisting of multiple computers--each representing a module of the overall propulsion system--to simulate real-time hardware-in-the-loop testing. In the first experiment, DES control was applied to the operation of a nonlinear simulation of a turbofan engine (running in closed loop using its own feedback controller) to minimize engine structural damage caused by a combination of thermal and structural loads. This enables increased on-wing time for the engine through better management of the engine-component life usage. Thus, the engine-level DES acts as a life-extending controller through its interaction with and manipulation of the engine s operation.

  11. Photonics engineering: snapshot applications in healthcare, homeland security, agriculture, and industry

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun

    2015-01-01

    Throughout my experience in photonics engineering, this article shows that photonics is indeed a key technology enabler for enhancing our competitiveness. In particular, I snapshot the achievements of NECTEC research teams in implementing devices and systems suitable for healthcare, homeland security, agriculture, and industry.

  12. Bacterial cell-free expression technology to in vitro systems engineering and optimization.

    PubMed

    Caschera, Filippo

    2017-06-01

    Cell-free expression system is a technology for the synthesis of proteins in vitro . The system is a platform for several bioengineering projects, e.g. cell-free metabolic engineering, evolutionary design of experiments, and synthetic minimal cell construction. Bacterial cell-free protein synthesis system (CFPS) is a robust tool for synthetic biology. The bacteria lysate, the DNA, and the energy module, which are the three optimized sub-systems for in vitro protein synthesis, compose the integrated system. Currently, an optimized E. coli cell-free expression system can produce up to ∼2.3 mg/mL of a fluorescent reporter protein. Herein, I will describe the features of ATP-regeneration systems for in vitro protein synthesis, and I will present a machine-learning experiment for optimizing the protein yield of E. coli cell-free protein synthesis systems. Moreover, I will introduce experiments on the synthesis of a minimal cell using liposomes as dynamic containers, and E. coli cell-free expression system as biochemical platform for metabolism and gene expression. CFPS can be further integrated with other technologies for novel applications in environmental, medical and material science.

  13. The Many Faces of a Software Engineer in a Research Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinovici, Maria C.; Kirkham, Harold

    2013-10-14

    The ability to gather, analyze and make decisions based on real world data is changing nearly every field of human endeavor. These changes are particularly challenging for software engineers working in a scientific community, designing and developing large, complex systems. To avoid the creation of a communications gap (almost a language barrier), the software engineers should possess an ‘adaptive’ skill. In the science and engineering research community, the software engineers must be responsible for more than creating mechanisms for storing and analyzing data. They must also develop a fundamental scientific and engineering understanding of the data. This paper looks atmore » the many faces that a software engineer should have: developer, domain expert, business analyst, security expert, project manager, tester, user experience professional, etc. Observations made during work on a power-systems scientific software development are analyzed and extended to describe more generic software development projects.« less

  14. Marshall Amateur Radio Club experiment (MARCE) post flight data analysis

    NASA Technical Reports Server (NTRS)

    Rupp, Charles C.

    1987-01-01

    The Marshall Amateur Radio Club Experiment (MARCE) data system, the data recorded during the flight of STS-61C, the manner in which the data was reduced to engineering units, and the performance of the student experiments determined from the data are briefly described.

  15. Propulsion at the Marshall Space Flight Center - A brief history

    NASA Technical Reports Server (NTRS)

    Jones, L. W.; Fisher, M. F.; Mccool, A. A.; Mccarty, J. P.

    1991-01-01

    The history of propulsion development at the NASA Marshall Space Flight Center is summarized, beginning with the development of the propulsion system for the Redstone missile. This course of propulsion development continues through the Jupiter IRBM, the Saturn family of launch vehicles and the engines that powered them, the Centaur upper stage and RL-10 engine, the Reactor In-Flight Test stage and the NERVA nuclear engine. The Space Shuttle Main Engine and Solid Rocket Boosters are covered, as are spacecraft propulsion systems, including the reaction control systems for the High Energy Astronomy Observatory and the Space Station. The paper includes a description of several technology efforts such as those in high pressure turbomachinery, aerospike engines, and the AS203 cyrogenic fluid management flight experiment. These and other propulsion projects are documented, and the scope of activities in support of these efforts at Marshall delineated.

  16. Operation of Grid-tied 5 kWDC solar array to develop Laboratory Experiments for Solar PV Energy System courses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramos, Jaime

    2012-12-14

    To unlock the potential of micro grids we plan to build, commission and operate a 5 kWDC PV array and integrate it to the UTPA Engineering building low voltage network, as a micro grid; and promote community awareness. Assisted by a solar radiation tracker providing on-line information of its measurements and performing analysis for the use by the scientific and engineering community, we will write, perform and operate a set of Laboratory experiments and computer simulations supporting Electrical Engineering (graduate and undergraduate) courses on Renewable Energy, as well as Senior Design projects.

  17. Shape Memory Alloy Actuator Design: CASMART Collaborative Best Practices

    NASA Technical Reports Server (NTRS)

    Benafan, Othmane; Brown, Jeff; Calkins, F. Tad; Kumar, Parikshith; Stebner, Aaron; Turner, Travis; Vaidyanathan, Raj; Webster, John; Young, Marcus L.

    2011-01-01

    Upon examination of shape memory alloy (SMA) actuation designs, there are many considerations and methodologies that are common to them all. A goal of CASMART's design working group is to compile the collective experiences of CASMART's member organizations into a single medium that engineers can then use to make the best decisions regarding SMA system design. In this paper, a review of recent work toward this goal is presented, spanning a wide range of design aspects including evaluation, properties, testing, modeling, alloy selection, fabrication, actuator processing, design optimization, controls, and system integration. We have documented each aspect, based on our collective experiences, so that the design engineer may access the tools and information needed to successfully design and develop SMA systems. Through comparison of several case studies, it is shown that there is not an obvious single, linear route a designer can adopt to navigate the path of concept to product. SMA engineering aspects will have different priorities and emphasis for different applications.

  18. Gasdynamic Mirror (GDM) Fusion Propulsion Engine Experiment

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Gasdynamic Mirror, or GDM, is an example of a magnetic mirror-based fusion propulsion system. Its design is primarily consisting of a long slender solenoid surrounding a vacuum chamber that contains plasma. The bulk of the fusion plasma is confined by magnetic field generated by a series of toroidal-shaped magnets in the center section of the device. the purpose of the GDM Fusion Propulsion Experiment is to confirm the feasibility of the concept and to demonstrate many of the operational characteristics of a full-size plasma can be confined within the desired physical configuration and still reman stable. This image shows an engineer from Propulsion Research Technologies Division at Marshall Space Flight Center inspecting solenoid magnets-A, an integrate part of the Gasdynamic Mirror Fusion Propulsion Engine Experiment.

  19. Gear systems for advanced turboprops

    NASA Technical Reports Server (NTRS)

    Wagner, Douglas A.

    1987-01-01

    A new generation of transport aircraft will be powered by efficient, advanced turboprop propulsion systems. Systems that develop 5,000 to 15,000 horsepower have been studied. Reduction gearing for these advanced propulsion systems is discussed. Allison Gas Turbine Division's experience with the 5,000 horsepower reduction gearing for the T56 engine is reviewed and the impact of that experience on advanced gear systems is considered. The reliability needs for component design and development are also considered. Allison's experience and their research serve as a basis on which to characterize future gear systems that emphasize low cost and high reliability.

  20. A model for manuscript submitted to the nth IIR conference on overview of the long-baseline neutrino facility cryogenic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montanari, David; Adamowski, Mark; Bremer, Johan

    2017-03-09

    The Deep Underground Neutrino Experiment (DUNE) collaboration is developing a multi-kiloton Long-Baseline neutrino experiment that will be located one mile underground at the Sanford Underground Research Facility (SURF) in Lead, SD. In the present design, detectors will be located inside four cryostats filled with a total of 68,400 ton of ultrapure liquid argon, at the level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) is developing the conventional facilities and cryogenics infrastructure supporting this experiment. The cryogenics system is composed of several sub-systems: External/Infrastructure, Proximity, and Internal cryogenics. It will bemore » engineered, manufactured, commissioned, and qualified by an international engineering team. This contribution highlights the main features of the LBNF cryogenic system. It presents its performance, functional requirements and modes of operations. As a result, it also details the status of the design, present and future needs.« less

  1. Blade tip clearance measurement of the turbine engines based on a multi-mode fiber coupled laser ranging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Haotian; Duan, Fajie; Wu, Guoxiu

    2014-11-15

    The blade tip clearance is a parameter of great importance to guarantee the efficiency and safety of the turbine engines. In this article, a laser ranging system designed for blade tip clearance measurement is presented. Multi-mode fiber is utilized for optical transmission to guarantee that enough optical power is received by the sensor probe. The model of the tiny sensor probe is presented. The error brought by the optical path difference of different modes of the fiber is estimated and the length of the fiber is limited to reduce this error. The measurement range in which the optical power receivedmore » by the probe remains essentially unchanged is analyzed. Calibration experiments and dynamic experiments are conducted. The results of the calibration experiments indicate that the resolution of the system is about 0.02 mm and the range of the system is about 9 mm.« less

  2. Aerodynamic Flow Field Measurements for Automotive Systems

    NASA Technical Reports Server (NTRS)

    Hepner, Timothy E.

    1999-01-01

    The design of a modern automotive air handling system is a complex task. The system is required to bring the interior of the vehicle to a comfortable level in as short a time as possible. A goal of the automotive industry is to predict the interior climate of an automobile using advanced computational fluid dynamic (CFD) methods. The development of these advanced prediction tools will enable better selection of engine and accessory components. The goal of this investigation was to predict methods used by the automotive industry. To accomplish this task three separate experiments were performed. The first was a laboratory setup where laser velocimeter (LV) flow field measurements were made in the heating and air conditioning unit of a Ford Windstar. The second involved flow field measurements in the engine compartment of a Ford Explorer, with the engine running idle. The third mapped the flow field exiting the center dashboard panel vent inside the Explorer, while the circulating fan operated at 14 volts. All three experiments utilized full-coincidence three-component LV systems. This enabled the mean and fluctuating velocities to be measured along with the Reynolds stress terms.

  3. Characteristics Study of In-Situ Capacitive Sensor for Monitoring Lubrication Oil Debris.

    PubMed

    Han, Zhibin; Wang, Yishou; Qing, Xinlin

    2017-12-08

    As an essential part of engine health monitoring (EHM), online lubrication oil debris monitoring has recently received great attention for the assessment of rotating and reciprocating parts in aero-engines, due to its high integration, low cost and safe characteristics. However, it is be a challenge to find a suitable sensor operating in such a complex environment. We present an unconventional novel approach, in which a cylinder capacitive sensor is designed and integrated with the pipeline of an engine lubrication system, so that the capacitive sensor can effectively detect changes in the lubrication oil condition. In this paper, an attempt to illustrate the performance characteristics of the developed cylinder capacitive sensor is made, through an experiment system that simulates a real scenario of a lubrication oil system. The main aim of the research was to qualitatively describe the relationship between the sensor parameter and the lubrication oil debris. In addition, the effect of the temperature and flow rate of the lubrication oil on capacitance change was performed by several experiments and we figured out a compensation method. The experimental results demonstrated that the cylinder capacitive sensor can potentially be used for lubrication oil debris monitoring of the health condition of an aero-engine.

  4. Development and Implementation of a Design Metric for Systems Containing Long-Term Fluid Loops

    NASA Technical Reports Server (NTRS)

    Steele, John W.

    2016-01-01

    John Steele, a chemist and technical fellow from United Technologies Corporation, provided a water quality module to assist engineers and scientists with a metric tool to evaluate risks associated with the design of space systems with fluid loops. This design metric is a methodical, quantitative, lessons-learned based means to evaluate the robustness of a long-term fluid loop system design. The tool was developed by a cross-section of engineering disciplines who had decades of experience and problem resolution.

  5. Design of a CO2 laser power control system for a Spacelab microgravity experiment

    NASA Technical Reports Server (NTRS)

    Wenzler, Carl J.; Eichenberg, Dennis J.

    1990-01-01

    The surface tension driven convection experiment (STDCE) is a Space Transportation System flight experiment manifested to fly aboard the USML-1 Spacelab mission. A CO2 laser is used to heat a spot on the surface of silicone oil contained inside a test chamber. Several CO2 laser control systems were evaluated and the selected system will be interfaced with the balance of the experimental hardware to constitute a working engineering model. Descriptions and a discussion of these various design approaches are presented.

  6. Survey on Intelligent Assistance for Workplace Learning in Software Engineering

    NASA Astrophysics Data System (ADS)

    Ras, Eric; Rech, Jörg

    Technology-enhanced learning (TEL) systems and intelligent assistance systems aim at supporting software engineers during learning and work. A questionnaire-based survey with 89 responses from industry was conducted to find out what kinds of services should be provided and how, as well as to determine which software engineering phases they should focus on. In this paper, we present the survey results regarding intelligent assistance for workplace learning in software engineering. We analyzed whether specific types of assistance depend on the organization's size, the respondent's role, and the experience level. The results show a demand for TEL that supports short-term problem solving and long-term competence development at the workplace.

  7. Alternative Pulse Detonation Engine Ignition System Investigation through Detonation Splitting

    DTIC Science & Technology

    2002-03-01

    on the soccer field and later discovered is a brilliant and dedicated scientist and engineer. He’s been an inspiration and role model, who sees...designing configurations before cutting metal for an experiment reduces research time and cost. Dr. Vish Katta had built an in-house program ( UNICORN

  8. Lessons Learned in Engineering

    NASA Technical Reports Server (NTRS)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.

    2011-01-01

    This Contractor Report (CR) is a compilation of Lessons Learned in approximately 55 years of engineering experience by each James C. Blair, Robert S. Ryan, and Luke A. Schutzenhofer. The lessons are the basis of a course on Lessons Learned that has been taught at Marshall Space Flight Center. The lessons are drawn from NASA space projects and are characterized in terms of generic lessons learned from the project experience, which are further distilled into overarching principles that can be applied to future projects. Included are discussions of the overarching principles followed by a listing of the lessons associated with that principle. The lesson with sub-lessons are stated along with a listing of the project problems the lesson is drawn from, then each problem is illustrated and discussed, with conclusions drawn in terms of Lessons Learned. The purpose of this CR is to provide principles learned from past aerospace experience to help achieve greater success in future programs, and identify application of these principles to space systems design. The problems experienced provide insight into the engineering process and are examples of the subtleties one experiences performing engineering design, manufacturing, and operations.

  9. Economical graphics display system for flight simulation avionics

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During the past academic year the focal point of this project has been to enhance the economical flight simulator system by incorporating it into the aero engineering educational environment. To accomplish this goal it was necessary to develop appropriate software modules that provide a foundation for student interaction with the system. In addition experiments had to be developed and tested to determine if they were appropriate for incorporation into the beginning flight simulation course, AERO-41B. For the most part these goals were accomplished. Experiments were developed and evaluated by graduate students. More work needs to be done in this area. The complexity and length of the experiments must be refined to match the programming experience of the target students. It was determined that few undergraduate students are ready to absorb the full extent and complexity of a real-time flight simulation. For this reason the experiments developed are designed to introduce basic computer architectures suitable for simulation, the programming environment and languages, the concept of math modules, evaluation of acquired data, and an introduction to the meaning of real-time. An overview is included of the system environment as it pertains to the students, an example of a flight simulation experiment performed by the students, and a summary of the executive programming modules created by the students to achieve a user-friendly multi-processor system suitable to an aero engineering educational program.

  10. Systems Simulation of NASA Shooting Star Experiment Using Matlab/Simulink

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn

    1997-01-01

    The Shooting Star Experiment (SSE) is an experiment that incorporates advance propulsion technology. This project is being managed by the Marshall Space Flight Center, Huntsville, Alabama. Whenever spacecraft are launched from Low Earth Orbit (LEO), (typically 150 nautical miles) they are powered by a upper propulsive stage utilizing either a solid or liquid propellant engine. A typically mission for a spacecraft utilizing an upper stage would be a transfer from LEO to a Geostationary Orbit (GEO) or an interplanetary mission. These upper stages are heavy and bulky because they must carry propellants to provide sufficient energy to perform the mission. The SSE utilizes the energy of the Sun by focusing this energy by means of a Frensel lens into an engine where hydrogen (or nitrogen) gas is injected. The focusing of the solar energy heats the engine to very high temperatures. When the gas is injected into the hot engine, the gas is expelled at very high velocities. This process is extremely efficient. Because of the efficiency of the SSE type engine, more payload can be carried for a typical mission since the propulsive element is much smaller.

  11. Next-Generation RS-25 Engines for the NASA Space Launch System

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2017-01-01

    The utilization of heritage RS-25 engine, also known as the Space Shuttle Main Engine (SSME), has enabled rapid progress in the development and certification of the NASA Space Launch System (SLS) toward operational flight status. The RS-25 brings design maturity and extensive experience gained through 135 missions, 3000+ ground tests, and over a million seconds total accumulated hot-fire time. In addition, there were also over a dozen functional flight assets remaining from the Space Shuttle program that could be leveraged to support the first four flights. Beyond these initial SLS flights, NASA must have a renewed supply of RS-25 engines that must reflect program affordability imperatives as well as technical requirements imposed by the SLS Block-1B vehicle (i.e., 111% RPL power level, reduced service life). Recognizing the long lead times needed for the fabrication, assembly and acceptance testing of flight engines, design activities are underway at NASA and the RS-25 engine provider, Aerojet Rocketdyne, to improve system affordability and eliminate obsolescence concerns. This paper describes how the achievement of these key objectives are enabled largely by utilizing modern materials and fabrication technologies, but also by innovations in systems engineering and integration (SE&I) practices.

  12. Genome Engineering of the 2,3-Butanediol Biosynthetic Pathway for Tight Regulation in Cyanobacteria.

    PubMed

    Nozzi, Nicole E; Atsumi, Shota

    2015-11-20

    Cyanobacteria have gained popularity among the metabolic engineering community as a tractable photosynthetic host for renewable chemical production. However, though a number of successfully engineered production systems have been reported, long-term genetic stability remains an issue for cyanobacterial systems. The genetic engineering toolbox for cyanobacteria is largely lacking inducible systems for expression control. The characterization of tight regulation systems for use in cyanobacteria may help to alleviate this problem. In this work we explore the function of the IPTG inducible promoter P(L)lacO1 in the model cyanobacterium Synechococcus elongatus PCC 7942 as well as the effect of gene order within an operon on pathway expression. According to our experiments, P(L)lacO1 functions well as an inducible promoter in S. elongatus. Additionally, we found that gene order within an operon can strongly influence control of expression of each gene.

  13. Model based systems engineering for astronomical projects

    NASA Astrophysics Data System (ADS)

    Karban, R.; Andolfato, L.; Bristow, P.; Chiozzi, G.; Esselborn, M.; Schilling, M.; Schmid, C.; Sommer, H.; Zamparelli, M.

    2014-08-01

    Model Based Systems Engineering (MBSE) is an emerging field of systems engineering for which the System Modeling Language (SysML) is a key enabler for descriptive, prescriptive and predictive models. This paper surveys some of the capabilities, expectations and peculiarities of tools-assisted MBSE experienced in real-life astronomical projects. The examples range in depth and scope across a wide spectrum of applications (for example documentation, requirements, analysis, trade studies) and purposes (addressing a particular development need, or accompanying a project throughout many - if not all - its lifecycle phases, fostering reuse and minimizing ambiguity). From the beginnings of the Active Phasing Experiment, through VLT instrumentation, VLTI infrastructure, Telescope Control System for the E-ELT, until Wavefront Control for the E-ELT, we show how stepwise refinements of tools, processes and methods have provided tangible benefits to customary system engineering activities like requirement flow-down, design trade studies, interfaces definition, and validation, by means of a variety of approaches (like Model Checking, Simulation, Model Transformation) and methodologies (like OOSEM, State Analysis)

  14. Conceptual design studies and experiments related to cavity exhaust systems for nuclear light bulb configurations

    NASA Technical Reports Server (NTRS)

    Kendall, J. S.; Stoeffler, R. C.

    1972-01-01

    Investigations of various phases of gaseous nuclear rocket technology have been conducted. The principal research efforts have recently been directed toward the closed-cycle, vortex-stabilized nuclear light bulb engine and toward a small-scale fissioning uranium plasma experiment that could be conducted in the Los Alamos Scientific Laboratory's Nuclear Furnace. The engine concept is based on the transfer of energy by thermal radiation from gaseous fissioning uranium, through a transparent wall, to hydrogen propellant. The reference engine configuration is comprised of seven unit cavities, each having its own fuel transparent wall and propellant duct. The basic design of the engine is described. Subsequent studies performed to supplement and investigate the basic design are reported. Summaries of other nuclear light bulb research programs are included.

  15. Experimental Studies of Instability Development in Magnetically Driven Systems

    DOE PAGES

    Awe, Thomas James

    2015-03-01

    The author highlights results from a variety of experiments on the Z Machine, for which he served as the lead experimentalist. All experiments on Z take dedicated effort from a large collaboration of scientists, engineers, and technicians.

  16. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li-Ping, E-mail: yangliping302@hrbeu.edu.cn; Ding, Shun-Liang; Song, En-Zhe

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrencemore » plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.« less

  17. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine.

    PubMed

    Yang, Li-Ping; Ding, Shun-Liang; Litak, Grzegorz; Song, En-Zhe; Ma, Xiu-Zhen

    2015-01-01

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  18. Photonics Applications and Web Engineering: WILGA 2017

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2017-08-01

    XLth Wilga Summer 2017 Symposium on Photonics Applications and Web Engineering was held on 28 May-4 June 2017. The Symposium gathered over 350 participants, mainly young researchers active in optics, optoelectronics, photonics, modern optics, mechatronics, applied physics, electronics technologies and applications. There were presented around 300 oral and poster papers in a few main topical tracks, which are traditional for Wilga, including: bio-photonics, optical sensory networks, photonics-electronics-mechatronics co-design and integration, large functional system design and maintenance, Internet of Things, measurement systems for astronomy, high energy physics experiments, and other. The paper is a traditional introduction to the 2017 WILGA Summer Symposium Proceedings, and digests some of the Symposium chosen key presentations. This year Symposium was divided to the following topical sessions/conferences: Optics, Optoelectronics and Photonics, Computational and Artificial Intelligence, Biomedical Applications, Astronomical and High Energy Physics Experiments Applications, Material Research and Engineering, and Advanced Photonics and Electronics Applications in Research and Industry.

  19. An overview of integrated flight-propulsion controls flight research on the NASA F-15 research airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gatlin, Donald H.; Stewart, James F.

    1995-01-01

    The NASA Dryden Flight Research Center has been conducting integrated flight-propulsion control flight research using the NASA F-15 airplane for the past 12 years. The research began with the digital electronic engine control (DEEC) project, followed by the F100 Engine Model Derivative (EMD). HIDEC (Highly Integrated Digital Electronic Control) became the umbrella name for a series of experiments including: the Advanced Digital Engine Controls System (ADECS), a twin jet acoustics flight experiment, self-repairing flight control system (SRFCS), performance-seeking control (PSC), and propulsion controlled aircraft (PCA). The upcoming F-15 project is ACTIVE (Advanced Control Technology for Integrated Vehicles). This paper provides a brief summary of these activities and provides background for the PCA and PSC papers, and includes a bibliography of all papers and reports from the NASA F-15 project.

  20. Passively Adaptive Inflatable Structure for the Shooting Star Experiment

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L..

    1998-01-01

    An inflatable structural system is described for the Shooting Star Experiment that is a technology demonstrator flight for solar thermal propulsion. The inflatable structure is a pressurized assembly used in orbit to support a fresnel lens for focusing sunlight into a thermal storage engine. When the engine temperature reaches a preset level, the propellant is injected into the storage engine, absorbs heat from a heat exchanger, and is expanded through the nozzle to produce thrust. The inflatable structure is an adaptive system in that a regulator and relief valve are utilized to maintain pressure within design limits during the full range of orbital conditions. Further, the polyimide film material used for construction of the inflatable is highly nonlinear, with modulus varying as a function of frequency, temperature, and level of excitation. A series of tests is described for characterizing the structure in response to various operating conditions.

  1. Test Report for NASA MSFC Support of the Linear Aerospike SR-71 Experiment (LASRE)

    NASA Technical Reports Server (NTRS)

    Elam, S. K.

    2000-01-01

    The Linear Aerospike SR-71 Experiment (LASRE) was performed in support of the Reusable Launch Vehicle (RLV) program to help develop a linear aerospike engine. The objective of this program was to operate a small aerospike engine at various speeds and altitudes to determine how slipstreams affect the engine's performance. The joint program between government and industry included NASA!s Dryden Flight Research Center, The Air Force's Phillips Laboratory, NASA's Marshall Space Flight Center, Lockheed Martin Skunkworks, Lockheed-Martin Astronautics, and Rocketdyne Division of Boeing North American. Ground testing of the LASRE engine produced two successful hot-fire tests, along with numerous cold flows to verify sequencing and operation before mounting the assembly on the SR-71. Once installed on the aircraft, flight testing performed several cold flows on the engine system at altitudes ranging from 30,000 to 50,000 feet and Mach numbers ranging from 0.9 to 1.5. The program was terminated before conducting hot-fires in flight because excessive leaks in the propellant supply systems could not be fixed to meet required safety levels without significant program cost and schedule impacts.

  2. An Undergraduate-Built Prototype Altitude Determination System (PADS) for High Altitude Research Balloons.

    NASA Astrophysics Data System (ADS)

    Verner, E.; Bruhweiler, F. C.; Abot, J.; Casarotto, V.; Dichoso, J.; Doody, E.; Esteves, F.; Morsch Filho, E.; Gonteski, D.; Lamos, M.; Leo, A.; Mulder, N.; Matubara, F.; Schramm, P.; Silva, R.; Quisberth, J.; Uritsky, G.; Kogut, A.; Lowe, L.; Mirel, P.; Lazear, J.

    2014-12-01

    In this project a multi-disciplinary undergraduate team from CUA, comprising majors in Physics, Mechanical Engineering, Electrical Engineering, and Biology, design, build, test, fly, and analyze the data from a prototype attitude determination system (PADS). The goal of the experiment is to determine if an inexpensive attitude determination system could be built for high altitude research balloons using MEMS gyros. PADS is a NASA funded project, built by students with the cooperation of CUA faculty, Verner, Bruhweiler, and Abot, along with the contributed expertise of researchers and engineers at NASA/GSFC, Kogut, Lowe, Mirel, and Lazear. The project was initiated through a course taught in CUA's School of Engineering, which was followed by a devoted effort by students during the summer of 2014. The project is an experiment to use 18 MEMS gyros, similar to those used in many smartphones, to produce an averaged positional error signal that could be compared with the motion of the fixed optical system as recorded through a string of optical images of stellar fields to be stored on a hard drive flown with the experiment. The optical system, camera microprocessor, and hard drive are enclosed in a pressure vessel, which maintains approximately atmospheric pressure throughout the balloon flight. The experiment uses multiple microprocessors to control the camera exposures, record gyro data, and provide thermal control. CUA students also participated in NASA-led design reviews. Four students traveled to NASA's Columbia Scientific Balloon Facility in Palestine, Texas to integrate PADS into a large balloon gondola containing other experiments, before being shipped, then launched in mid-August at Ft. Sumner, New Mexico. The payload is to fly at a float altitude of 40-45,000 m, and the flight last approximately 15 hours. The payload is to return to earth by parachute and the retrieved data are to be analyzed by CUA undergraduates. A description of the instrument is presented here as well as a preliminary analysis of the anticipated data, which were not available at the time of abstract submission. Acknowledgements: NASA grant NNX13AR61 under NASA's Undergraduate Student Instrument Program (USIP). Participating Brazilian students acknowledge support through Brazil's "Science without Borders" program.

  3. Modeling and HIL Simulation of Flight Conditions Simulating Control System for the Altitude Test Facility

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Shen, Li; Zhang, Tianhong

    2016-12-01

    Simulated altitude test is an essential exploring, debugging, verification and validation means during the development of aero-engine. Free-jet engine test can simulate actual working conditions of aero-engine more realistically than direct-connect engine test but with relatively lower cost compared to propulsion wind tunnel test, thus becoming an important developing area of simulated altitude test technology. The Flight Conditions Simulating Control System (FCSCS) is of great importance to the Altitude Test Facility (ATF) but the development of that is a huge challenge. Aiming at improving the design efficiency and reducing risks during the development of FCSCS for ATFs, a Hardware- in-the-Loop (HIL) simulation system was designed and the mathematical models of key components such as the pressure stabilizing chamber, free-jet nozzle, control valve and aero-engine were built in this paper. Moreover, some HIL simulation experiments were carried out. The results show that the HIL simulation system designed and established in this paper is reasonable and effective, which can be used to adjust control parameters conveniently and assess the software and hardware in the control system immediately.

  4. Design and development status of ETS-7, an RVD and space robot experiment satellite

    NASA Technical Reports Server (NTRS)

    Oda, M.; Inagaki, T.; Nishida, M.; Kibe, K.; Yamagata, F.

    1994-01-01

    ETS-7 (Engineering Test Satellite #7) is an experimental satellite for the in-orbit experiment of the Rendezvous Docking (RVD) and the space robot (RBT) technologies. ETS-7 is a set of two satellites, a chaser satellite and a target satellite. Both satellites will be launched together by NASDA's H-2 rocket into a low earth orbit. Development of ETS-7 started in 1990. Basic design and EM (Engineering Model) development are in progress now in 1994. The satellite will be launched in mid 1997 and the above in-orbit experiments will be conducted for 1.5 years. Design of ETS-7 RBT experiment system and development status are described in this paper.

  5. The Colorado Student Space Weather Experiment: A successful student-run scientific spacecraft mission

    NASA Astrophysics Data System (ADS)

    Schiller, Q.; Li, X.; Palo, S. E.; Blum, L. W.; Gerhardt, D.

    2015-12-01

    The Colorado Student Space Weather Experiment is a spacecraft mission developed and operated by students at the University of Colorado, Boulder. The 3U CubeSat was launched from Vandenberg Air Force Base in September 2012. The massively successful mission far outlived its 4 month estimated lifetime and stopped transmitting data after over two years in orbit in December 2014. CSSWE has contributed to 15 scientific or engineering peer-reviewed journal publications. During the course of the project, over 65 undergraduate and graduate students from CU's Computer Science, Aerospace, and Mechanical Engineering Departments, as well as the Astrophysical and Planetary Sciences Department participated. The students were responsible for the design, development, build, integration, testing, and operations from component- to system-level. The variety of backgrounds on this unique project gave the students valuable experience in their own focus area, but also cross-discipline and system-level involvement. However, though the perseverance of the students brought the mission to fruition, it was only possible through the mentoring and support of professionals in the Aerospace Engineering Sciences Department and CU's Laboratory for Atmospheric and Space Physics.

  6. ViLLaGEs: opto-mechanical design of an on-sky visible-light MEMS-based AO system

    NASA Astrophysics Data System (ADS)

    Grigsby, Bryant; Lockwood, Chris; Baumann, Brian; Gavel, Don; Johnson, Jess; Ammons, S. Mark; Dillon, Daren; Morzinski, Katie; Reinig, Marc; Palmer, Dave; Severson, Scott; Gates, Elinor

    2008-07-01

    Visible Light Laser Guidestar Experiments (ViLLaGEs) is a new Micro-Electro Mechanical Systems (MEMS) based visible-wavelength adaptive optics (AO) testbed on the Nickel 1-meter telescope at Lick Observatory. Closed loop Natural Guide Star (NGS) experiments were successfully carried out during engineering during the fall of 2007. This is a major evolutionary step, signaling the movement of AO technologies into visible light with a MEMS mirror. With on-sky Strehls in I-band of greater than 20% during second light tests, the science possibilities have become evident. Described here is the advanced engineering used in the design and construction of the ViLLaGEs system, comparing it to the LickAO infrared system, and a discussion of Nickel dome infrastructural improvements necessary for this system. A significant portion of the engineering discussion revolves around the sizable effort that went towards eliminating flexure. Then, we detail upgrades to ViLLaGEs to make it a facility class instrument. These upgrades will focus on Nyquist sampling the diffraction limited point spread function during open loop operations, motorization and automation for technician level alignments, adding dithering capabilities and changes for near infrared science.

  7. CFE-2 Experiment Run

    NASA Image and Video Library

    2013-11-11

    ISS038-E-000269 (11 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, conducts a session with the Capillary Flow Experiment (CFE) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids move up surfaces in microgravity. The results aim to improve current computer models that are used by designers of low gravity fluid systems and may improve fluid transfer systems for water on future spacecraft.

  8. CFE-2 Experiment Run

    NASA Image and Video Library

    2013-11-11

    ISS038-E-000263 (11 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, conducts a session with the Capillary Flow Experiment (CFE) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids move up surfaces in microgravity. The results aim to improve current computer models that are used by designers of low gravity fluid systems and may improve fluid transfer systems for water on future spacecraft.

  9. University of Colorado CubeSat Student Projects as Successful Model for Teaching Students about Engineering Practices

    NASA Astrophysics Data System (ADS)

    Palo, S. E.; Li, X.; Woods, T. N.; Kohnert, R.

    2014-12-01

    There is a long history of cooperation between students at the University of Colorado, Boulder and professional engineers and scientists at LASP, which has led to many successful space missions with direct student involvement. The recent student-led missions include the Student Nitric Oxide Explorer (SNOE, 1998 - 2002), the Student Dust Counter (SDC) on New Horizons (2006 - present), the Colorado Student Space Weather Experiment (CSSWE), being a very successful NSF CubeSat that launched in September 2012, and the NASA Miniature X-ray Solar Spectrometer (MinXSS) CubeSat (launch will be in early 2015). Students are involved in all aspects of the design, and they experience the full scope of the mission process from concept, to fabrication and test, and mission operations. A significant part of the student involvement in the CubeSat projects is gained by using the CubeSat development as a focal point for an existing two-semester course sequence in CU's Aerospace Engineering Sciences (AES) Department: the Space Hardware Design section of Graduate Projects I & II (ASEN 5018 & ASEN 6028). The goal of these courses is to teach graduate students how to design and build systems using a requirement-based approach and fundamental systems engineering practices. The two-semester sequence takes teams of about 15 students from requirements definition and preliminary design through manufacturing, integration, and testing. In addition to the design process, students learn key professional skills such as working effectively in groups, finding solutions to open-ended problems, and actually building a system to their own set of specifications. The partnership between AES and LASP allows us to include engineering professionals in the mix, thus more effectively training science and engineering students for future roles in the civilian or commercial space industry. The mentoring process with LASP engineers helps to mitigate risk of the inexperience of the students and ensures consistent system engineer oversight for the multi-year CubeSat programs.

  10. Engineering Antifragile Systems: A Change In Design Philosophy

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.

    2014-01-01

    While technology has made astounding advances in the last century, problems are confronting the engineering community that must be solved. Cost and schedule of producing large systems are increasing at an unsustainable rate and these systems often do not perform as intended. New systems are required that may not be achieved by current methods. To solve these problems, NASA is working to infuse concepts from Complexity Science into the engineering process. Some of these problems may be solved by a change in design philosophy. Instead of designing systems to meet known requirements that will always lead to fragile systems at some degree, systems should be designed wherever possible to be antifragile: designing cognitive cyberphysical systems that can learn from their experience, adapt to unforeseen events they face in their environment, and grow stronger in the face of adversity. Several examples are presented of on ongoing research efforts to employ this philosophy.

  11. Biomedical engineering support. Final report, June 15, 1971--June 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolff, W.J.; Sandquist, G.; Olsen, D.B.

    On June 15, 1971 the Institute for Biomedical Engineering at the University of Utah contracted with the USAEC to provide biomedical support for an Artificial Heart Program. The goal of the program was to conceive, design, construct and test a prototype artificial heart system powered by an implantable radioisotope heat source. The system would serve as a total artificial heart for animal experiments and for studies directed at developing a total heart replacement system for humans. The major responsibilities of the Institute during the eight year contract period were to design, construct and test all blood handling components of themore » system and prove in vivo accommodation, performance and adequacy of the system in experimental animals. Upon completion of development of the Implantable Version of the Bench Model Blood Pump, a long series of comprehensive in vitro and in vivo experiments were conducted. In vivo experiments with the system conducted in calves demonstrated the general accommodation, adequate performance and good capacity to sustain the calf as a heart model for up to 36 days. During the more successful in vivo experiments the implanted calves were able to eat, drink, stand, exercise on a treadmill, and exhibited normal blood chemistry and pulmonary function.« less

  12. Howard University Energy Expert Systems Institute Summer Program (EESI)

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Chuku, Arunsi; Abban, Joseph

    1996-01-01

    Howard University, under the auspices of the Center for Energy Systems and Controls runs the Energy Expert Systems Institute (EESI) summer outreach program for high school/pre-college minority students. The main objectives are to introduce precollege minority students to research in the power industry using modern state-of-the-art technology such as Expert Systems, Fuzzy Logic and Artificial Neural Networks; to involve minority students in space power management, systems and failure diagnosis; to generate interest in career options in electrical engineering; and to experience problem-solving in a teamwork environment consisting of faculty, senior research associates and graduate students. For five weeks the students are exposed not only to the exciting experience of college life, but also to the inspiring field of engineering, especially electrical engineering. The program consists of lectures in the fundamentals of engineering, mathematics, communication skills and computer skills. The projects are divided into mini and major. Topics for the 1995 mini projects were Expert Systems for the Electric Bus and Breast Cancer Detection. Topics on the major projects include Hybrid Electric Vehicle, Solar Dynamics and Distribution Automation. On the final day, designated as 'EESI Day' the students did oral presentations of their projects and prizes were awarded to the best group. The program began in the summer of 1993. The reaction from the students has been very positive. The program also arranges field trips to special places of interest such as the NASA Goddard Space Center.

  13. An airline study of advanced technology requirements for advanced high speed commercial transport engines. 1: Engine design study assessment

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial tranport engine are presented. The results of the phase 1 study effort cover the following areas: (1) statement of an airline's major objectives for future transport engines, (2) airline's method of evaluating engine proposals, (3) description of an optimum engine for a long range subsonic commercial transport including installation and critical design features, (4) discussion of engine performance problems and experience with performance degradation, (5) trends in engine and pod prices with increasing technology and objectives for the future, (6) discussion of the research objectives for composites, reversers, advanced components, engine control systems, and devices to reduce the impact of engine stall, and (7) discussion of the airline objectives for noise and pollution reduction.

  14. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 4: Commercial System Definition. [development and testing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    The development and design of a modular solar thermal power system for application in the 1 to 10 MWe range is described. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. The operational reliability, the minimum risk of failure, and the maintenance and repair characteristics are determined and the commercial system design is defined.

  15. Applicability of a Crack-Detection System for Use in Rotor Disk Spin Test Experiments Being Evaluated

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Roth, Don J.

    2004-01-01

    Engine makers and aviation safety government institutions continue to have a strong interest in monitoring the health of rotating components in aircraft engines to improve safety and to lower maintenance costs. To prevent catastrophic failure (burst) of the engine, they use nondestructive evaluation (NDE) and major overhauls for periodic inspections to discover any cracks that might have formed. The lowest cost fluorescent penetrant inspection NDE technique can fail to disclose cracks that are tightly closed during rest or that are below the surface. The NDE eddy current system is more effective at detecting both crack types, but it requires careful setup and operation and only a small portion of the disk can be practically inspected. So that sensor systems can sustain normal function in a severe environment, health-monitoring systems require the sensor system to transmit a signal if a crack detected in the component is above a predetermined length (but below the length that would lead to failure) and lastly to act neutrally upon the overall performance of the engine system and not interfere with engine maintenance operations. Therefore, more reliable diagnostic tools and high-level techniques for detecting damage and monitoring the health of rotating components are very essential in maintaining engine safety and reliability and in assessing life.

  16. Minority Universities Systems Engineering (MUSE) Program at the University of Texas at El Paso

    NASA Technical Reports Server (NTRS)

    Robbins, Mary Clare; Usevitch, Bryan; Starks, Scott A.

    1997-01-01

    In 1995, The University of Texas at El Paso (UTEP) responded to the suggestion of NASA Jet Propulsion Laboratory (NASA JPL) to form a consortium comprised of California State University at Los Angeles (CSULA), North Carolina Agricultural and Technical University (NCAT), and UTEP from which developed the Minority Universities Systems Engineering (MUSE) Program. The mission of this consortium is to develop a unique position for minority universities in providing the nation's future system architects and engineers as well as enhance JPL's system design capability. The goals of this collaboration include the development of a system engineering curriculum which includes hands-on project engineering and design experiences. UTEP is in a unique position to take full advantage of this program since UTEP has been named a Model Institution for Excellence (MIE) by the National Science Foundation. The purpose of MIE is to produce leaders in Science, Math, and Engineering. Furthermore, UTEP has also been selected as the site for two new centers including the Pan American Center for Earth and Environmental Sciences (PACES) directed by Dr. Scott Starks and the FAST Center for Structural Integrity of Aerospace Systems directed by Dr. Roberto Osegueda. The UTEP MUSE Program operates under the auspices of the PACES Center.

  17. Enabling Innovation and Collaboration Across Geography and Culture: A Case Study of NASA's Systems Engineering Community of Practice

    NASA Technical Reports Server (NTRS)

    Topousis, Daria E.; Murphy, Keri; Robinson, Greg

    2008-01-01

    In 2004, NASA faced major knowledge sharing challenges due to geographically isolated field centers that inhibited personnel from sharing experiences and ideas. Mission failures and new directions for the agency demanded better collaborative tools. In addition, with the push to send astronauts back to the moon and to Mars, NASA recognized that systems engineering would have to improve across the agency. Of the ten field centers, seven had not built a spacecraft in over 30 years, and had lost systems engineering expertise. The Systems Engineering Community of Practice came together to capture the knowledge of its members using the suite of collaborative tools provided by the NASA Engineering Network (NEN.) The NEN provided a secure collaboration space for over 60 practitioners across the agency to assemble and review a NASA systems engineering handbook. Once the handbook was complete, they used the open community area to disseminate it. This case study explores both the technology and the social networking that made the community possible, describes technological approaches that facilitated rapid setup and low maintenance, provides best practices that other organizations could adopt, and discusses the vision for how this community will continue to collaborate across the field centers to benefit the agency as it continues exploring the solar system.

  18. A Comparative Study on Real Lab and Simulation Lab in Communication Engineering from Students' Perspectives

    ERIC Educational Resources Information Center

    Balakrishnan, B.; Woods, P. C.

    2013-01-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised…

  19. Exploring Students' Engineering Designs through Open-Ended Assignments

    ERIC Educational Resources Information Center

    Puente, S. M. Gómez; Jansen, J. W.

    2017-01-01

    This paper aims at presenting the experience of the Power Conversion project in teaching students to design a proof-of-principle contactless energy transfer system for the charging of electrical vehicles. The Power Conversion is a second-year electrical engineering (EE) project in which students are to gather and apply EE knowledge to design and…

  20. Evaluation of a Microwave Blade Tip Clearance Sensor for Propulsion Health Monitoring

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    2013-01-01

    The NASA Glenn Research Center has investigated a microwave blade tip clearance system for the structural health monitoring of gas turbine engines. This presentation describes the sensors and the experiments that have been conducted to evaluate their performance along with future plans for their use on an engine ground test.

  1. LMS Lessons

    ERIC Educational Resources Information Center

    Freifeld, Lorri

    2010-01-01

    With technology changing every second of every day, it is no surprise a learning management system (LMS) quickly can become outdated. But it is no easy task to re-engineer a current LMS or find exactly the right new one to purchase. In this article, three 2010 Top Young Trainers share their experiences with implementing or re-engineering an…

  2. CrossTalk: The Journal of Defense Software Engineering. Volume 20, Number 4

    DTIC Science & Technology

    2007-04-01

    and test markets . The decision fails the review, gets marked for adjustment, or passes. • The decision gets pushed out into the world. At this point...STD- 1521, Institute for Electrical and Electronics Engineers [IEEE]-15288). Myopically focused on early correctness, systems engineering can seem to...based on Mishkin Berteig’s experiences as an agile coach, consultant or trainer to teams and management in organizations across North America. From

  3. Processes in construction of failure management expert systems from device design information

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Lance, Nick

    1987-01-01

    This paper analyzes the tasks and problem solving methods used by an engineer in constructing a failure management expert system from design information about the device to te diagnosed. An expert test engineer developed a trouble-shooting expert system based on device design information and experience with similar devices, rather than on specific expert knowledge gained from operating the device or troubleshooting its failures. The construction of the expert system was intensively observed and analyzed. This paper characterizes the knowledge, tasks, methods, and design decisions involved in constructing this type of expert system, and makes recommendations concerning tools for aiding and automating construction of such systems.

  4. Application of an EGR system in a direct injection diesel engine to reduce NOx emissions

    NASA Astrophysics Data System (ADS)

    De Serio, D.; De Oliveira, A.; Sodré, J. R.

    2016-09-01

    This work presents the application of an exhaust gas recirculation (EGR) system in a direct injection diesel engine operating with diesel oil containing 7% biodiesel (B7). EGR rates of up to 10% were applied with the primary aim to reduce oxides of nitrogen (NOx) emissions. The experiments were conducted in a 44 kW diesel power generator to evaluate engine performance and emissions for different load settings. The use of EGR caused a peak pressure reduction during the combustion process and a decrease in thermal efficiency, mainly at high engine loads. A reduction of NOx emissions of up to 26% was achieved, though penalizing carbon monoxide (CO) and total hydrocarbons (THC) emissions.

  5. Doing Systems Engineering Without Thinking About It at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Bohn-Meyer, Marta; Kilp, Stephen; Chun, Peggy; Mizukami, Masashi

    2004-01-01

    When asked about his processes in designing a new airplane, Burt Rutan responded: ...there is always a performance requirement. So I start with the basic physics of an airplane that can get those requirements, and that pretty much sizes an airplane... Then I look at the functionality... And then I try a lot of different configurations to meet that, and then justify one at a time, throwing them out... Typically I'll have several different configurations... But I like to experiment, certainly. I like to see if there are other ways to provide the utility. This kind of thinking engineering as a total systems engineering approach is what is being instilled in all engineers at the NASA Dryden Flight Research Center.

  6. The Characteristics and Experiences of Successful Undergraduate Latina Students Who Persist in Engineering

    NASA Astrophysics Data System (ADS)

    Robinson, Carrie

    Females and underrepresented ethnic minorities earn a small percentage of engineering and computer science bachelor's degrees awarded in the United States, earn an even smaller proportion of master's and doctoral degrees, and are underrepresented in the engineering workforce (Engineering Workforce Commission, [2006], as cited in National Science Foundation, 2012; United States Department of Education, [2006], as cited in National Science Foundation, 2009a; United States Department of Education, [2006], as cited in National Science Foundation, 2009b). Considerable research has examined the perceptions, culture, curriculum, and pedagogy in engineering that inhibits the achievement of women and underrepresented ethnic minorities. This action research study used a qualitative approach to examine the characteristics and experiences of Latina students who pursued a bachelor's degree in the Ira A. Fulton Schools of Engineering at Arizona State University (ASU) as part of the 2008 first-time full-time freshman cohort. The researcher conducted two semi-structured individual interviews with seven undergraduate Latina students who successfully persisted to their fourth (senior) year in engineering. The researcher aimed to understand what characteristics made these students successful and how their experiences affected their persistence in an engineering major. The data collected showed that the Latina participants were motivated to persist in their engineering degree program due to their parents' expectations for success and high academic achievement; their desire to overcome the discrimination, stereotyping, and naysayers that they encountered; and their aspiration to become a role model for their family and other students interested in pursuing engineering. From the data collected, the researcher provided suggestions to implement and adapt educational activities and support systems within the Ira A. Fulton Schools of Engineering to improve the retention and graduation rates of Latinas in engineering at ASU.

  7. In-space research, technology and engineering experiments and Space Station

    NASA Technical Reports Server (NTRS)

    Tyson, Richard; Gartrell, Charles F.

    1988-01-01

    The NASA Space Station will serve as a technology research laboratory, a payload-servicing facility, and a large structure fabrication and assembly facility. Space structures research will encompass advanced structural concepts and their dynamics, advanced control concepts, sensors, and actuators. Experiments dealing with fluid management will gather data on such fundamentals as multiphase flow phenomena. As requirements for power systems and thermal management grow, experiments quantifying the performance of energy systems and thermal management concepts will be undertaken, together with expanded efforts in the fields of information systems, automation, and robotics.

  8. Experimental control requirements for life sciences

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Sharp, J. C.

    1978-01-01

    The Life Sciences dedicated Spacelab will enable scientists to test hypotheses in various disciplines. Building upon experience gained in mission simulations, orbital flight test experiments, and the first three Spacelab missions, NASA will be able to progressively develop the engineering and management capabilities necessary for the first Life Sciences Spacelab. Development of experiments for these missions will require implementation of life-support systems not previously flown in space. Plant growth chambers, animal holding facilities, aquatic specimen life-support systems, and centrifuge-mounted specimen holding units are examples of systems currently being designed and fabricated for flight.

  9. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along withmore » summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.« less

  10. Evaluation of an Enhanced Bank of Kalman Filters for In-Flight Aircraft Engine Sensor Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2004-01-01

    In this paper, an approach for in-flight fault detection and isolation (FDI) of aircraft engine sensors based on a bank of Kalman filters is developed. This approach utilizes multiple Kalman filters, each of which is designed based on a specific fault hypothesis. When the propulsion system experiences a fault, only one Kalman filter with the correct hypothesis is able to maintain the nominal estimation performance. Based on this knowledge, the isolation of faults is achieved. Since the propulsion system may experience component and actuator faults as well, a sensor FDI system must be robust in terms of avoiding misclassifications of any anomalies. The proposed approach utilizes a bank of (m+1) Kalman filters where m is the number of sensors being monitored. One Kalman filter is used for the detection of component and actuator faults while each of the other m filters detects a fault in a specific sensor. With this setup, the overall robustness of the sensor FDI system to anomalies is enhanced. Moreover, numerous component fault events can be accounted for by the FDI system. The sensor FDI system is applied to a commercial aircraft engine simulation, and its performance is evaluated at multiple power settings at a cruise operating point using various fault scenarios.

  11. Enabling High Efficiency Ethanol Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy ismore » due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.« less

  12. Wave Rotor Research and Technology Development

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1998-01-01

    Wave rotor technology offers the potential to increase the performance of gas turbine engines significantly, within the constraints imposed by current material temperature limits. The wave rotor research at the NASA Lewis Research Center is a three-element effort: 1) Development of design and analysis tools to accurately predict the performance of wave rotor components; 2) Experiments to characterize component performance; 3) System integration studies to evaluate the effect of wave rotor topping on the gas turbine engine system.

  13. The Effect of Flow Rate and Canister Geometry on the Effectiveness of Removing Carbon Dioxide with Soda Lime.

    DTIC Science & Technology

    1980-09-01

    1969 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN MECHANICAL ENGINEERING from the NAVAL POSTGRADUATE... Science and Engineering 3 ABSTRACT A continuation of experiments initiated by Commander Calvin G. Miller, USN, on the effect of flow rate, flow geometry and...Salvage Department INaval Coastal Systems Center Panama City, Florida 32401 6. Commander, Naval Sea Systems Command 2 Supervisor of Diving (Code GOC

  14. SOFIA Program SE and I Lessons Learned

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Fobel, Laura J.; Brignola, Michael P.

    2011-01-01

    Once a "Troubled Project" threatened with cancellation, the Stratospheric Observatory for Infrared Astronomy (SOFIA) Program has overcome many difficult challenges and recently achieved its first light images. To achieve success, SOFIA had to overcome significant deficiencies in fundamental Systems Engineering identified during a major Program restructuring. This presentation will summarize the lessons learn in Systems Engineering on the SOFIA Program. After the Program was reformulated, an initial assessment of Systems Engineering established the scope of the problem and helped to set a list of priorities that needed to be work. A revised Systems Engineering Management Plan (SEMP) was written to address the new Program structure and requirements established in the approved NPR7123.1A. An important result of the "Technical Planning" effort was the decision by the Program and Technical Leadership team to re-phasing the lifecycle into increments. The reformed SOFIA Program Office had to quickly develop and establish several new System Engineering core processes including; Requirements Management, Risk Management, Configuration Management and Data Management. Implementing these processes had to consider the physical and cultural diversity of the SOFIA Program team which includes two Projects spanning two NASA Centers, a major German partnership, and sub-contractors located across the United States and Europe. The SOFIA Program experience represents a creative approach to doing "System Engineering in the middle" while a Program is well established. Many challenges were identified and overcome. The SOFIA example demonstrates it is never too late to benefit from fixing deficiencies in the System Engineering processes.

  15. Analytical determination of space station response to crew motion and design of suspension system for microgravity experiments

    NASA Technical Reports Server (NTRS)

    Liu, F. C.

    1986-01-01

    The objective of this investigation is to make analytical determination of the acceleration produced by crew motion in an orbiting space station and define design parameters for the suspension system of microgravity experiments. A simple structural model for simulation of the IOC space station is proposed. Mathematical formulation of this model provides the engineers a simple and direct tool for designing an effective suspension system.

  16. Small scale adaptive optics experiment systems engineering

    NASA Technical Reports Server (NTRS)

    Boykin, William H.

    1993-01-01

    Assessment of the current technology relating to the laser power beaming system which in full scale is called the Beam Transmission Optical System (BTOS). Evaluation of system integration efforts are being conducted by the various government agencies and industry. Concepts are being developed for prototypes of adaptive optics for a BTOS.

  17. Propulsion Control Technology Development in the United States A Historical Perspective

    NASA Technical Reports Server (NTRS)

    Jaw, Link C.a; Garg, Sanjay

    2005-01-01

    This paper presents a historical perspective of the advancement of control technologies for aircraft gas turbine engines. The paper primarily covers technology advances in the United States in the last 60 years (1940 to approximately 2002). The paper emphasizes the pioneering technologies that have been tested or implemented during this period, assimilating knowledge and experience from industry experts, including personal interviews with both current and retired experts. Since the first United States-built aircraft gas turbine engine was flown in 1942, engine control technology has evolved from a simple hydro-mechanical fuel metering valve to a full-authority digital electronic control system (FADEC) that is common to all modern aircraft propulsion systems. At the same time, control systems have provided engine diagnostic functions. Engine diagnostic capabilities have also evolved from pilot observation of engine gauges to the automated on-board diagnostic system that uses mathematical models to assess engine health and assist in post-flight troubleshooting and maintenance. Using system complexity and capability as a measure, we can break the historical development of control systems down to four phases: (1) the start-up phase (1942 to 1949), (2) the growth phase (1950 to 1969), (3) the electronic phase (1970 to 1989), and (4) the integration phase (1990 to 2002). In each phase, the state-of-the-art control technology is described and the engines that have become historical landmarks, from the control and diagnostic standpoint, are identified. Finally, a historical perspective of engine controls in the last 60 years is presented in terms of control system complexity, number of sensors, number of lines of software (or embedded code), and other factors.

  18. Mechatronics as a technological basis for an innovative learning environment in engineering

    NASA Astrophysics Data System (ADS)

    Garner, Gavin Thomas

    Mechatronic systems that couple mechanical and electrical systems with the help of computer control are forcing a paradigm shift in the design, manufacture, and implementation of mechanical devices. The inherently interdisciplinary nature of these systems generates exciting new opportunities for developing a hands-on, inventive, and creativity-focused educational program while still embracing rigorous scientific fundamentals. The technologies associated with mechatronics are continually evolving (e.g., integrated circuit chips, miniature and new types of sensors, and state-of-the-art actuators). As a result, a mechatronics curriculum must prepare students to adapt along with these rapidly changing technologies---and perhaps even advance these technologies themselves. Such is the inspiring and uncharted new world that is presented for student exploration and experimentation in the University of Virginia's Mechatronics Laboratory. The underlying goal of this research has been to develop a framework for teaching mechatronics that helps students master fundamental concepts and build essential technical and analytical skills. To this end, two courses involving over fifty hours worth of technologically-innovative and educationally-effective laboratory experiments have been developed along with open-ended projects in response to the unique and new challenges associated with teaching mechatronics. These experiments synthesize an unprecedentedly vast array of skills from many different disciplines and enable students to haptically absorb the fundamental concepts involved in designing mechatronic systems. They have been optimized through several iterations to become highly efficient. Perspectives on the development of these courses and on the field of mechatronics in general are included. Furthermore, this dissertation demonstrates the integration of new technologies within a learning environment specifically designed to teach mechatronics to mechanical engineers. For mechanical engineering in particular, mechatronics poses considerable challenges, and necessitates a fundamental evolution in the understanding of the relationship between the various engineering disciplines. Consequently, this dissertation helps to define the role that mechatronics must play in mechanical engineering and presents unique laboratory experiments, creative projects, and modeling and simulation exercises as effective tools for teaching mechatronics to the modern mechanical engineering student.

  19. Highlights from a Mach 4 Experimental Demonstration of Inlet Mode Transition for Turbine-Based Combined Cycle Hypersonic Propulsion

    NASA Technical Reports Server (NTRS)

    Foster, Lancert E.; Saunders, John D., Jr.; Sanders, Bobby W.; Weir, Lois J.

    2012-01-01

    NASA is focused on technologies for combined cycle, air-breathing propulsion systems to enable reusable launch systems for access to space. Turbine Based Combined Cycle (TBCC) propulsion systems offer specific impulse (Isp) improvements over rocket-based propulsion systems in the subsonic takeoff and return mission segments along with improved safety. Among the most critical TBCC enabling technologies are: 1) mode transition from the low speed propulsion system to the high speed propulsion system, 2) high Mach turbine engine development and 3) innovative turbine based combined cycle integration. To address these challenges, NASA initiated an experimental mode transition task including analytical methods to assess the state-of-the-art of propulsion system performance and design codes. One effort has been the Combined-Cycle Engine Large Scale Inlet Mode Transition Experiment (CCE-LIMX) which is a fully integrated TBCC propulsion system with flowpath sizing consistent with previous NASA and DoD proposed Hypersonic experimental flight test plans. This experiment was tested in the NASA GRC 10 by 10-Foot Supersonic Wind Tunnel (SWT) Facility. The goal of this activity is to address key hypersonic combined-cycle engine issues including: (1) dual integrated inlet operability and performance issues-unstart constraints, distortion constraints, bleed requirements, and controls, (2) mode-transition sequence elements caused by switching between the turbine and the ramjet/scramjet flowpaths (imposed variable geometry requirements), and (3) turbine engine transients (and associated time scales) during transition. Testing of the initial inlet and dynamic characterization phases were completed and smooth mode transition was demonstrated. A database focused on a Mach 4 transition speed with limited off-design elements was developed and will serve to guide future TBCC system studies and to validate higher level analyses.

  20. Linear Aerospike SR-71 Experiment (LASRE) dumps water after first in-flight cold flow test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The NASA SR-71A successfully completed its first cold flow flight as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California on March 4, 1998. During a cold flow flight, gaseous helium and liquid nitrogen are cycled through the linear aerospike engine to check the engine's plumbing system for leaks and to check the engine operating characterisitics. Cold-flow tests must be accomplished successfully before firing the rocket engine experiment in flight. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for one hour and fifty-seven minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards at 12:13 p.m. PST. 'I think all in all we had a good mission today,' Dryden LASRE Project Manager Dave Lux said. Flight crew member Bob Meyer agreed, saying the crew 'thought it was a really good flight.' Dryden Research Pilot Ed Schneider piloted the SR-71 during the mission. Lockheed Martin LASRE Project Manager Carl Meade added, 'We are extremely pleased with today's results. This will help pave the way for the first in-flight engine data-collection flight of the LASRE.' The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program.

  1. Experiences of high school Hispanic girls in pursuit of science, technology, engineering, and mathematics-related coursework and careers

    NASA Astrophysics Data System (ADS)

    Vijil, Veronica G.

    2011-12-01

    An overall increased awareness of the importance of science, technology, engineering, and mathematics (STEM) has prompted attention toward the continued underrepresentation of Hispanic women in this field. The purpose of this collective case study was to explore the support systems, perceived barriers, and prior experiences influencing high school Hispanic girls' decisions to pursue advanced coursework and related careers through a career pathway in science, technology, engineering, and mathematics (STEM) areas. Specifically, participants were interviewed regarding their mathematics and science experiences in elementary and middle schools, as well as perceived supports and barriers to their choices to pursue STEM careers and advanced coursework. Results indicated that the participants linked their elementary and middle school experiences with their teachers rather than specific activities. Accolades such as certificates and good grades for academic achievement contributed to the girls' strong self-efficacy at an early age. The participants possessed self-discipline and self-confidence, using intrinsic motivation to pursue their goals. Support systems included families and a few teachers. Barriers were revealed in different forms including derogatory comments by boys in class, difficult curricula with limited tutors available for higher level courses, and receipt of financial assistance to attend a university of their choice.

  2. Characteristics Study of In-Situ Capacitive Sensor for Monitoring Lubrication Oil Debris

    PubMed Central

    Han, Zhibin; Wang, Yishou; Qing, Xinlin

    2017-01-01

    As an essential part of engine health monitoring (EHM), online lubrication oil debris monitoring has recently received great attention for the assessment of rotating and reciprocating parts in aero-engines, due to its high integration, low cost and safe characteristics. However, it is be a challenge to find a suitable sensor operating in such a complex environment. We present an unconventional novel approach, in which a cylinder capacitive sensor is designed and integrated with the pipeline of an engine lubrication system, so that the capacitive sensor can effectively detect changes in the lubrication oil condition. In this paper, an attempt to illustrate the performance characteristics of the developed cylinder capacitive sensor is made, through an experiment system that simulates a real scenario of a lubrication oil system. The main aim of the research was to qualitatively describe the relationship between the sensor parameter and the lubrication oil debris. In addition, the effect of the temperature and flow rate of the lubrication oil on capacitance change was performed by several experiments and we figured out a compensation method. The experimental results demonstrated that the cylinder capacitive sensor can potentially be used for lubrication oil debris monitoring of the health condition of an aero-engine. PMID:29292748

  3. Operating experiences with rotary air-to-air heat exchangers: hospitals, schools, nursing homes, swimming pools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, R.J.

    1976-01-01

    Systems utilizing rotary air-to-air heat exchangers are discussed. Basic considerations of use (fresh air requirements, system configurations, cost considerations), typical system layout/design considerations, and operating observations by engineers, staff and maintenance personnel are described.

  4. Fall 2012 Graduate Engineering Internship Summary

    NASA Technical Reports Server (NTRS)

    Ehrlich, Joshua

    2013-01-01

    In the fall of 2012, I participated in the National Aeronautics and Space Administration (NASA) Pathways Intern Employment Program at the Kennedy Space Center (KSC) in Florida. This was my second internship opportunity with NASA, a consecutive extension from a summer 2012 internship. During my four-month tenure, I gained valuable knowledge and extensive hands-on experience with payload design and testing as well as composite fabrication for repair design on future space vehicle structures. As a systems engineer, I supported the systems engineering and integration team with the testing of scientific payloads such as the Vegetable Production System (Veggie). Verification and validation (V&V) of the Veggie was carried out prior to qualification testing of the payload, which incorporated a lengthy process of confirming design requirements that were integrated through one or more validatjon methods: inspection, analysis, demonstration, and testing. Additionally, I provided assistance in verifying design requirements outlined in the V&V plan with the requirements outlined by the scientists in the Science Requirements Envelope Document (SRED). The purpose of the SRED was to define experiment requirements intended for the payload to meet and carry out.

  5. A liquid-metal filling system for pumped primary loop space reactors

    NASA Astrophysics Data System (ADS)

    Crandall, D. L.; Reed, W. C.

    Some concepts for the SP-100 space nuclear power reactor use liquid metal as the primary coolant in a pumped loop. Prior to filling ground engineering test articles or reactor systems, the liquid metal must be purified and circulated through the reactor primary system to remove contaminants. If not removed, these contaminants enhance corrosion and reduce reliability. A facility was designed and built to support Department of Energy Liquid Metal Fast Breeder Reactor tests conducted at the Idaho National Engineering Laboratory. This test program used liquid sodium to cool nuclear fuel in in-pile experiments; thus, a system was needed to store and purify sodium inventories and fill the experiment assemblies. This same system, with modifications and potential changeover to lithium or sodium-potassium (NaK), can be used in the Space Nuclear Power Reactor Program. This paper addresses the requirements, description, modifications, operation, and appropriateness of using this liquid-metal system to support the SP-100 space reactor program.

  6. The Ion Propulsion System on NASA's Space Technology 4/Champollion Comet Rendezvous Mission

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Garner, Charles E.; Weiss, Jeffery M.

    1999-01-01

    The ST4/Champollion mission is designed to rendezvous with and land on the comet Tempel 1 and return data from the first-ever sampling of a comet surface. Ion propulsion is an enabling technology for this mission. The ion propulsion system on ST4 consists of three ion engines each essentially identical to the single engine that flew on the DS1 spacecraft. The ST4 propulsion system will operate at a maximum input power of 7.5 kW (3.4 times greater than that demonstrated on DS1), will produce a maximum thrust of 276 mN, and will provide a total (Delta)V of 11.4 km/s. To accomplish this the propulsion system will carry 385 kg of xenon. All three engines will be operated simultaneously for the first 168 days of the mission. The nominal mission requires that each engine be capable of processing 118 kg. If one engine fails after 168 days, the remaining two engines can perform the mission, but must be capable of processing 160 kg of xenon, or twice the original thruster design requirement. Detailed analyses of the thruster wear-out failure modes coupled with experience from long-duration engine tests indicate that the thrusters have a high probability of meeting the 160-kg throughput requirement.

  7. Research on fuzzy PID control to electronic speed regulator

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-gang; Chen, Xue-hui; Zheng, Sheng-guo

    2007-12-01

    As an important part of diesel engine, the speed regulator plays an important role in stabilizing speed and improving engine's performance. Because there are so many model parameters of diesel-engine considered in traditional PID control and these parameters present non-linear characteristic.The method to adjust engine speed using traditional PID is not considered as a best way. Especially for the diesel-engine generator set. In this paper, the Fuzzy PID control strategy is proposed. Some problems about its utilization in electronic speed regulator are discussed. A mathematical model of electric control system for diesel-engine generator set is established and the way of the PID parameters in the model to affect the function of system is analyzed. And then it is proposed the differential coefficient must be applied in control design for reducing dynamic deviation of system and adjusting time. Based on the control theory, a study combined control with PID calculation together for turning fuzzy PID parameter is implemented. And also a simulation experiment about electronic speed regulator system was conducted using Matlab/Simulink and the Fuzzy-Toolbox. Compared with the traditional PID Algorithm, the simulated results presented obvious improvements in the instantaneous speed governing rate and steady state speed governing rate of diesel-engine generator set when the fuzzy logic control strategy used.

  8. Flight Test of Propulsion Monitoring and Diagnostic System

    NASA Technical Reports Server (NTRS)

    Gabel, Steve; Elgersma, Mike

    2002-01-01

    The objective of this program was to perform flight tests of the propulsion monitoring and diagnostic system (PMDS) technology concept developed by Honeywell under the NASA Advanced General Aviation Transport Experiment (AGATE) program. The PMDS concept is intended to independently monitor the performance of the engine, providing continuous status to the pilot along with warnings if necessary as well as making the data available to ground maintenance personnel via a special interface. These flight tests were intended to demonstrate the ability of the PMDS concept to detect a class of selected sensor hardware failures, and the ability to successfully model the engine for the purpose of engine diagnosis.

  9. Systems engineering real estate development projects

    NASA Astrophysics Data System (ADS)

    Gusakova, Elena; Titarenko, Boris; Stepanov, Vitaliy

    2017-10-01

    In recent years, real estate development has accumulated a wealth of experience in implementing major projects, which requires comprehension and systematization. The scientific instrument of system engineering is studied in the article and is substantively interpreted with reference to real estate development projects. The most perspective approaches and models are substantiated, allowing strategically to plan the life cycle of the project as a whole, and also to solve the engineering butt problems of the project. The relevance of further scientific studies of regularities and specifics of the life cycle of real estate development projects conducted at the Moscow State University of Economics and Management at the ISTA department is shown.

  10. The Design of Large-Scale Complex Engineered Systems: Present Challenges and Future Promise

    NASA Technical Reports Server (NTRS)

    Bloebaum, Christina L.; McGowan, Anna-Maria Rivas

    2012-01-01

    Model-Based Systems Engineering techniques are used in the SE community to address the need for managing the development of complex systems. A key feature of the MBSE approach is the use of a model to capture the requirements, architecture, behavior, operating environment and other key aspects of the system. The focus on the model differentiates MBSE from traditional SE techniques that may have a document centric approach. In an effort to assess the benefit of utilizing MBSE on its flight projects, NASA Langley has implemented a pilot program to apply MBSE techniques during the early phase of the Materials International Space Station Experiment-X (MISSE-X). MISSE-X is a Technology Demonstration Mission being developed by the NASA Office of the Chief Technologist i . Designed to be installed on the exterior of the International Space Station (ISS), MISSE-X will host experiments that advance the technology readiness of materials and devices needed for future space exploration. As a follow-on to the highly successful series of previous MISSE experiments on ISS, MISSE-X benefits from a significant interest by the

  11. Industrial application experiment series

    NASA Technical Reports Server (NTRS)

    Bluhm, S. A.

    1981-01-01

    Two procurements within the Industrial Application Experiment Series of the Thermal Power Systems Project are discussed. The first procurement, initiated in April 1980, resulted in an award to the Applied Concepts Corporation for the Capital Concrete Experiment: two Fresnel concentrating collectors will be evaluated in single-unit installations at the Jet Propulsion Laboratory Parabolic Dish Test Site and at Capitol Concrete Products, Topeka, Kansas. The second procurement, initiated in March 1981, is titled, "Thermal System Engineering Experiment B." The objective of the procurement is the rapid deployment of developed parabolic dish collectors.

  12. TGeoCad: an Interface between ROOT and CAD Systems

    NASA Astrophysics Data System (ADS)

    Luzzi, C.; Carminati, F.

    2014-06-01

    In the simulation of High Energy Physics experiment a very high precision in the description of the detector geometry is essential to achieve the required performances. The physicists in charge of Monte Carlo Simulation of the detector need to collaborate efficiently with the engineers working at the mechanical design of the detector. Often, this collaboration is made hard by the usage of different and incompatible software. ROOT is an object-oriented C++ framework used by physicists for storing, analyzing and simulating data produced by the high-energy physics experiments while CAD (Computer-Aided Design) software is used for mechanical design in the engineering field. The necessity to improve the level of communication between physicists and engineers led to the implementation of an interface between the ROOT geometrical modeler used by the virtual Monte Carlo simulation software and the CAD systems. In this paper we describe the design and implementation of the TGeoCad Interface that has been developed to enable the use of ROOT geometrical models in several CAD systems. To achieve this goal, the ROOT geometry description is converted into STEP file format (ISO 10303), which can be imported and used by many CAD systems.

  13. Lessons Learned in Engineering. Supplement

    NASA Technical Reports Server (NTRS)

    Blair, James C.; Ryan, Robert S.; Schultzenhofer, Luke A.

    2011-01-01

    This Contractor Report (CR) is a compilation of Lessons Learned in approximately 55 years of engineering experience by each James C. Blair, Robert S. Ryan, and Luke A. Schutzenhofer. The lessons are the basis of a course on Lessons Learned that has been taught at Marshall Space Flight Center. The lessons are drawn from NASA space projects and are characterized in terms of generic lessons learned from the project experience, which are further distilled into overarching principles that can be applied to future projects. Included are discussions of the overarching principles followed by a listing of the lessons associated with that principle. The lesson with sub-lessons are stated along with a listing of the project problems the lesson is drawn from, then each problem is illustrated and discussed, with conclusions drawn in terms of Lessons Learned. The purpose of this CR is to provide principles learned from past aerospace experience to help achieve greater success in future programs, and identify application of these principles to space systems design. The problems experienced provide insight into the engineering process and are examples of the subtleties one experiences performing engineering design, manufacturing, and operations. The supplemental CD contains accompanying PowerPoint presentations.

  14. Extended temperature range ACPS thruster investigation

    NASA Technical Reports Server (NTRS)

    Blubaugh, A. L.; Schoenman, L.

    1974-01-01

    The successful hot fire demonstration of a pulsing liquid hydrogen/liquid oxygen and gaseous hydrogen/liquid oxygen attitude control propulsion system thruster is described. The test was the result of research to develop a simple, lightweight, and high performance reaction control system without the traditional requirements for extensive periods of engine thermal conditioning, or the use of complex equipment to convert both liquid propellants to gas prior to delivery to the engine. Significant departures from conventional injector design practice were employed to achieve an operable design. The work discussed includes thermal and injector manifold priming analyses, subscale injector chilldown tests, and 168 full scale and 550 N (1250 lbF) rocket engine tests. Ignition experiments, at propellant temperatures ranging from cryogenic to ambient, led to the generation of a universal spark ignition system which can reliably ignite an engine when supplied with liquid, two phase, or gaseous propellants. Electrical power requirements for spark igniter are very low.

  15. A compendium of solar dish/Stirling technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stine, W.B.; Diver, R.B.

    1994-01-01

    This report surveys the emerging dish/Stirling technology. It documents -- using consistent terminology the design characteristics of dish concentrators, receivers, and Stirling engines applicable to solar electric power generation. Development status and operating experience for each system and an overview of dish/Stirling technology are also presented. This report enables comparisons of concentrator, receiver, and engine technologies. Specifications and performance data are presented on systems and on components that are in use or that could be used in dish/Stirling systems. This report is organized into two parts: The first part (Chapters 1 through 4) provides an overview of dish/Stirling technology --more » the dish/ Stirling components (concentrator, receiver, and engine/alternator), current technology, basic theory, and technology development. The second part (Chapters 5 through 7) provides a detailed survey of the existing dish/Stirling concentrators, receivers, and engine/alternators.« less

  16. In-Flight Thermal Performance of the Lidar In-Space Technology Experiment

    NASA Technical Reports Server (NTRS)

    Roettker, William

    1995-01-01

    The Lidar In-Space Technology Experiment (LITE) was developed at NASA s Langley Research Center to explore the applications of lidar operated from an orbital platform. As a technology demonstration experiment, LITE was developed to gain experience designing and building future operational orbiting lidar systems. Since LITE was the first lidar system to be flown in space, an important objective was to validate instrument design principles in such areas as thermal control, laser performance, instrument alignment and control, and autonomous operations. Thermal and structural analysis models of the instrument were developed during the design process to predict the behavior of the instrument during its mission. In order to validate those mathematical models, extensive engineering data was recorded during all phases of LITE's mission. This inflight engineering data was compared with preflight predictions and, when required, adjustments to the thermal and structural models were made to more accurately match the instrument s actual behavior. The results of this process for the thermal analysis and design of LITE are presented in this paper.

  17. Vertical Stream Curricula Integration of Problem-Based Learning Using an Autonomous Vacuum Robot in a Mechatronics Course

    ERIC Educational Resources Information Center

    Chin, Cheng; Yue, Keng

    2011-01-01

    Difficulties in teaching a multi-disciplinary subject such as the mechatronics system design module in Departments of Mechatronics Engineering at Temasek Polytechnic arise from the gap in experience and skill among staff and students who have different backgrounds in mechanical, computer and electrical engineering within the Mechatronics…

  18. Water Reclamation Technology Development at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Pickering, Karen

    2014-01-01

    Who We Are: A staff of approximately 14 BS, MS, and PhD-Level Engineers and Scientists with experience in Aerospace, Civil, Environmental, and Mechanical Engineering, Chemistry, Physical Science and Water Pollution Microbiology. Our Primary Objective: To develop the next generation water recovery system technologies that will support NASA's long duration missions beyond low-earth orbit.

  19. Developing Design and Management Skills for Senior Industrial Engineering Students

    ERIC Educational Resources Information Center

    Urbanic, R. J.

    2011-01-01

    In Canadian engineering institutions, a significant design experience must occur in the final year of study. In the Department of Industrial and Manufacturing Systems at the University of Windsor, unsolved, open ended projects sponsored by industrial partners from a variety of sectors are provided to the student teams in order for them to apply…

  20. NASA Ames Research Center R and D Services Directorate Biomedical Systems Development

    NASA Technical Reports Server (NTRS)

    Pollitt, J.; Flynn, K.

    1999-01-01

    The Ames Research Center R&D Services Directorate teams with NASA, other government agencies and/or industry investigators for the development, design, fabrication, manufacturing and qualification testing of space-flight and ground-based experiment hardware for biomedical and general aerospace applications. In recent years, biomedical research hardware and software has been developed to support space-flight and ground-based experiment needs including the E 132 Biotelemetry system for the Research Animal Holding Facility (RAHF), E 100 Neurolab neuro-vestibular investigation systems, the Autogenic Feedback Systems, and the Standard Interface Glove Box (SIGB) experiment workstation module. Centrifuges, motion simulators, habitat design, environmental control systems, and other unique experiment modules and fixtures have also been developed. A discussion of engineered systems and capabilities will be provided to promote understanding of possibilities for future system designs in biomedical applications. In addition, an overview of existing engineered products will be shown. Examples of hardware and literature that demonstrate the organization's capabilities will be displayed. The Ames Research Center R&D Services Directorate is available to support the development of new hardware and software systems or adaptation of existing systems to meet the needs of academic, commercial/industrial, and government research requirements. The Ames R&D Services Directorate can provide specialized support for: System concept definition and feasibility Mathematical modeling and simulation of system performance Prototype hardware development Hardware and software design Data acquisition systems Graphical user interface development Motion control design Hardware fabrication and high-fidelity machining Composite materials development and application design Electronic/electrical system design and fabrication System performance verification testing and qualification.

  1. Experimental study on distributed optical fiber-based approach monitoring saturation line in levee engineering

    NASA Astrophysics Data System (ADS)

    Su, Huaizhi; Li, Hao; Kang, Yeyuan; Wen, Zhiping

    2018-02-01

    Seepage is one of key factors which affect the levee engineering safety. The seepage danger without timely detection and rapid response may likely lead to severe accidents such as seepage failure, slope instability, and even levee break. More than 90 percent of levee break events are caused by the seepage. It is very important for seepage behavior identification to determine accurately saturation line in levee engineering. Furthermore, the location of saturation line has a major impact on slope stability in levee engineering. Considering the structure characteristics and service condition of levee engineering, the distributed optical fiber sensing technology is introduced to implement the real-time observation of saturation line in levee engineering. The distributed optical fiber temperature sensor system (DTS)-based monitoring principle of saturation line in levee engineering is investigated. An experimental platform, which consists of DTS, heating system, water-supply system, auxiliary analysis system and levee model, is designed and constructed. The monitoring experiment of saturation line in levee model is implemented on this platform. According to the experimental results, the numerical relationship between moisture content and thermal conductivity in porous medium is identified. A line heat source-based distributed optical fiber method obtaining the thermal conductivity in porous medium is developed. A DTS-based approach is proposed to monitor the saturation line in levee engineering. The embedment pattern of optical fiber for monitoring saturation line is presented.

  2. Introducing Students to Computer Programming on a UNIX Time-Sharing System.

    ERIC Educational Resources Information Center

    Cook, Allen R.

    1983-01-01

    Reviews experiences in teaching computer programing to engineering freshmen at the University of Oklahoma. Focuses on the stimulating interactive environment that is possible when using the UNIX operating system to introduce students to programing. (JN)

  3. Dynamic Testing of the NASA Hypersonic Project Combined Cycle Engine Testbed for Mode Transition Experiments

    NASA Technical Reports Server (NTRS)

    2011-01-01

    NASA is interested in developing technology that leads to more routine, safe, and affordable access to space. Access to space using airbreathing propulsion systems has potential to meet these objectives based on Airbreathing Access to Space (AAS) system studies. To this end, the NASA Fundamental Aeronautics Program (FAP) Hypersonic Project is conducting fundamental research on a Turbine Based Combined Cycle (TBCC) propulsion system. The TBCC being studied considers a dual flow-path inlet system. One flow-path includes variable geometry to regulate airflow to a turbine engine cycle. The turbine cycle provides propulsion from take-off to supersonic flight. The second flow-path supports a dual-mode scramjet (DMSJ) cycle which would be initiated at supersonic speed to further accelerate the vehicle to hypersonic speed. For a TBCC propulsion system to accelerate a vehicle from supersonic to hypersonic speed, a critical enabling technology is the ability to safely and effectively transition from the turbine to the DMSJ-referred to as mode transition. To experimentally test methods of mode transition, a Combined Cycle Engine (CCE) Large-scale Inlet testbed was designed with two flow paths-a low speed flow-path sized for a turbine cycle and a high speed flow-path designed for a DMSJ. This testbed system is identified as the CCE Large-Scale Inlet for Mode Transition studies (CCE-LIMX). The test plan for the CCE-LIMX in the NASA Glenn Research Center (GRC) 10- by 10-ft Supersonic Wind Tunnel (10x10 SWT) is segmented into multiple phases. The first phase is a matrix of inlet characterization (IC) tests to evaluate the inlet performance and establish the mode transition schedule. The second phase is a matrix of dynamic system identification (SysID) experiments designed to support closed-loop control development at mode transition schedule operating points for the CCE-LIMX. The third phase includes a direct demonstration of controlled mode transition using a closed loop control system developed with the data obtained from the first two phases. Plans for a fourth phase include mode transition experiments with a turbine engine. This paper, focusing on the first two phases of experiments, presents developed operational and analysis tools for streamlined testing and data reduction procedures.

  4. Engineering for reliability in at-home chronic disease management

    PubMed Central

    Kendall, Logan; Eschler, Jordan; Lozano, Paula; McClure, Jennifer B.; Vizer, Lisa M.; Ralston, James D.; Pratt, Wanda

    2014-01-01

    Individuals with chronic conditions face challenges with maintaining lifelong adherence to self-management activities. Although reminders can help support the cognitive demands of managing daily and future health tasks, we understand little of how they fit into people’s daily lives. Utilizing a maximum variation sampling method, we interviewed and compared the experiences of 20 older adults with diabetes and 19 mothers of children with asthma to understand reminder use for at-home chronic disease management. Based on our participants’ experiences, we contend that many self-management failures should be viewed as systems failures, rather than individual failures and non-compliance. Furthermore, we identify key principles from reliability engineering that both explain current behavior and suggest strategies to improve patient reminder systems. PMID:25954384

  5. First Year Experiences in School of Mechanical Engineering Kanazawa University

    NASA Astrophysics Data System (ADS)

    Kinari, Toshiyasu; Kanjin, Yuichi; Furuhata, Toru; Tada, Yukio

    This paper reports two lectures of the first year experience, ‧Lecture on Life in Campus and Society‧ and ‧Freshman Seminar‧ and discusses their effects. Both lectures have been given freshmen of the school of mechanical engineering, Kanazawa University in H20 spring term. The former lecture is aimed at freshmen to keep on a proper way in both social and college life. It consists of normal class and e-learning system lectures. E-learning system examination requires students to review the whole text book and that seems to have brought better results in the survey. The latter seminar is aimed at freshmen to get active and self-disciplined learning way through their investigation, discussion, presentation, writing work, and so on.

  6. Engineering for reliability in at-home chronic disease management.

    PubMed

    Kendall, Logan; Eschler, Jordan; Lozano, Paula; McClure, Jennifer B; Vizer, Lisa M; Ralston, James D; Pratt, Wanda

    2014-01-01

    Individuals with chronic conditions face challenges with maintaining lifelong adherence to self-management activities. Although reminders can help support the cognitive demands of managing daily and future health tasks, we understand little of how they fit into people's daily lives. Utilizing a maximum variation sampling method, we interviewed and compared the experiences of 20 older adults with diabetes and 19 mothers of children with asthma to understand reminder use for at-home chronic disease management. Based on our participants' experiences, we contend that many self-management failures should be viewed as systems failures, rather than individual failures and non-compliance. Furthermore, we identify key principles from reliability engineering that both explain current behavior and suggest strategies to improve patient reminder systems.

  7. Engineering aspects of the experiment and results of animal tests. [Apollo 17 Biological Cosmic Ray Experiment

    NASA Technical Reports Server (NTRS)

    Look, B. C.; Tremor, J. W.; Barrows, W. F.; Zabower, H. R.; Suri, K.; Park, E. G., Jr.; Durso, J. A.; Leon, H. A.; Haymaker, W.; Lindberg, R. G.

    1975-01-01

    A closed passive system independent of support from the spacecraft or its crew was developed to house five pocket mice for their flight on Apollo XVII. The reaction of potassium superoxide with carbon dioxide and water vapor to produce oxygen provided a habitable atmosphere within the experiment package. The performance of the system and the ability of the mice to survive the key preflight tests gave reasonable assurance that the mice would also withstand the Apollo flight.-

  8. GEOSTATISTICS FOR WASTE MANAGEMENT: A USER'S MANUAL FOR THE GEOPACK (VERSION 1.0) GEOSTATISTICAL SOFTWARE SYSTEM

    EPA Science Inventory

    GEOPACK, a comprehensive user-friendly geostatistical software system, was developed to help in the analysis of spatially correlated data. The software system was developed to be used by scientists, engineers, regulators, etc., with little experience in geostatistical techniques...

  9. The time-frequency method of signal analysis in internal combustion engine diagnostics

    NASA Astrophysics Data System (ADS)

    Avramchuk, V. S.; Kazmin, V. P.; Faerman, V. A.; Le, V. T.

    2017-01-01

    The paper presents the results of the study of applicability of time-frequency correlation functions to solving the problems of internal combustion engine fault diagnostics. The proposed methods are theoretically justified and experimentally tested. In particular, the method’s applicability is illustrated by the example of specially generated signals that simulate the vibration of an engine both during the normal operation and in the case of a malfunction in the system supplying fuel to the cylinders. This method was confirmed during an experiment with an automobile internal combustion engine. The study offers the main findings of the simulation and the experiment and highlights certain characteristic features of time-frequency autocorrelation functions that allow one to identify malfunctions in an engine’s cylinder. The possibility in principle of using time-frequency correlation functions in function testing of the internal combustion engine is demonstrated. The paper’s conclusion proposes further research directions including the application of the method to diagnosing automobile gearboxes.

  10. Output feedback regulator design for jet engine control systems

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1977-01-01

    A multivariable control design procedure based on the output feedback regulator formulation is described and applied to turbofan engine model. Full order model dynamics, were incorporated in the example design. The effect of actuator dynamics on closed loop performance was investigaged. Also, the importance of turbine inlet temperature as an element of the dynamic feedback was studied. Step responses were given to indicate the improvement in system performance with this control. Calculation times for all experiments are given in CPU seconds for comparison purposes.

  11. Inverse problems in the design, modeling and testing of engineering systems

    NASA Technical Reports Server (NTRS)

    Alifanov, Oleg M.

    1991-01-01

    Formulations, classification, areas of application, and approaches to solving different inverse problems are considered for the design of structures, modeling, and experimental data processing. Problems in the practical implementation of theoretical-experimental methods based on solving inverse problems are analyzed in order to identify mathematical models of physical processes, aid in input data preparation for design parameter optimization, help in design parameter optimization itself, and to model experiments, large-scale tests, and real tests of engineering systems.

  12. Experiments in Sound and Structural Vibrations Using an Air-Analog Model Ducted Propulsion System

    DTIC Science & Technology

    2007-08-01

    Department of Aerospace S~and Mechanical Engineering I 20070904056 I EXPERIMENTS IN SOUND AND STRUCTURAL VIBRATIONS USING AN AIR -ANALOG MODEL DUCTED...SOUND AND STRUCTURAL * VIBRATIONS USING AN AIR -ANALOG MODEL DUCTED PROPULSION SYSTEM FINAL TECHNICAL REPORT Prepared by: Scott C. Morris Assistant...Vibration Using Air - 5b. GRANT NUMBER Analog Model Ducted Propulsion Systems N00014-1-0522 5C. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  13. Preliminary Assessment of the Nutrient Film Technique for Wastewater Treatment

    DTIC Science & Technology

    1982-03-01

    umre) Hydroponics Thin films Wastes (Sanitary engineering) \\Waslewater \\I MArWIASSACr a m evemww sb N nem y., d idenif, by block nm,6...) An experiment...best described attach themselves. as a modified hydroponic system in which a thin film of nutrient solution flows through the root mat of Purpose plants...of an experiment conducted at CRREL to de- tween an NFT system and a hydroponic plant system termine the feasibility of using the nutrient film tech

  14. Josh Gesick | NREL

    Science.gov Websites

    Expertise Chemical / Systems Engineer with over 15 years of experience developing, evaluating, validating . Department of Energy. Research Interests Developing new technologies from concept to commercial application

  15. KSC-2013-4342

    NASA Image and Video Library

    2013-12-11

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, from the left, Leandro James, rocket avionics lead, Gary Dahlke, high powered rocket subject matter expert, and Julio Najarro of Mechanical Systems make final adjustments to a small rocket prior to launch as part of Rocket University. The launch will test systems designed by the student engineers. As part of Rocket University, the engineers are given an opportunity to work a fast-track project to develop skills in developing spacecraft systems of the future. As NASA plans for future spaceflight programs to low-Earth orbit and beyond, teams of engineers at Kennedy are gaining experience in designing and flying launch vehicle systems on a small scale. Four teams of five to eight members from Kennedy are designing rockets complete with avionics and recovery systems. Launch operations require coordination with federal agencies, just as they would with rockets launched in support of a NASA mission. Photo credit: NASA/Jim Grossmann

  16. KSC-2013-4343

    NASA Image and Video Library

    2013-12-11

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, from the left, Leandro James, rocket avionics lead, and Julio Najarro of Mechanical Systems make final adjustments to a small rocket prior to launch as part of Rocket University. The launch will test systems designed by the student engineers. As part of Rocket University, the engineers are given an opportunity to work a fast-track project to develop skills in developing spacecraft systems of the future. As NASA plans for future spaceflight programs to low-Earth orbit and beyond, teams of engineers at Kennedy are gaining experience in designing and flying launch vehicle systems on a small scale. Four teams of five to eight members from Kennedy are designing rockets complete with avionics and recovery systems. Launch operations require coordination with federal agencies, just as they would with rockets launched in support of a NASA mission. Photo credit: NASA/Jim Grossmann

  17. Embedded systems engineering for products and services design.

    PubMed

    Ahram, Tareq Z; Karwowski, Waldemar; Soares, Marcelo M

    2012-01-01

    Systems engineering (SE) professionals strive to develop new techniques to enhance the value of contributions to multidisciplinary smart product design teams. Products and services designers challenge themselves to search beyond the traditional design concept of addressing the physical, social, and cognitive factors. This paper covers the application of embedded user-centered systems engineering design practices into work processes based on the ISO 13407 framework [20] to support smart systems and services design and development. As practitioners collaborate to investigate alternative smart product designs, they concentrate on creating valuable products which will enhance positive interaction. This paper capitalizes on the need to follow a user-centered SE approach to smart products design [4, 22]. Products and systems intelligence should embrace a positive approach to user-centered design while improving our understanding of usable value-adding, experience and extending our knowledge of what inspires others to design enjoyable services and products.

  18. Impingement effect of service module reaction control system engine plumes. Results of service module reaction control system plume model force field application to an inflight Skylab mission proximity operation situation with the inflight Skylab response

    NASA Technical Reports Server (NTRS)

    Lobb, J. D., Jr.

    1978-01-01

    Plume impingement effects of the service module reaction control system thruster firings were studied to determine if previous flight experience would support the current plume impingement model for the orbiter reaction control system engines. The orbiter reaction control system is used for rotational and translational maneuvers such as those required during rendezvous, braking, docking, and station keeping. Therefore, an understanding of the characteristics and effects of the plume force fields generated by the reaction control system thruster firings were examined to develop the procedures for orbiter/payload proximity operations.

  19. Problematising the `Career Academic' in UK construction and engineering education: does the system want what the system gets?

    NASA Astrophysics Data System (ADS)

    Pilcher, Nick; Forster, Alan; Tennant, Stuart; Murray, Mike; Craig, Nigel

    2017-11-01

    'Career Academics' are principally research-led, entering academia with limited or no industrial or practical experience. UK Higher Education Institutions welcome them for their potential to attain research grant funding and publish world-leading journal papers, ultimately enhancing institutional reputation. This polemical paper problematises the Career Academic around three areas: their institutional appeal; their impact on the student experience, team dynamics and broader academic functions; and current strategic policy to employ them. We also argue that recent UK Government teaching-focused initiatives will not address needs to employ practical academics, or 'Pracademics' in predominantly vocational Construction and Engineering Education. We generate questions for policy-makers, institutions and those implementing strategy. We argue that research is key, but partial rebalancing will achieve a diverse academic skill base to achieve contextualised construction and engineering education. In wider European contexts, the paper resonates with issues of academic 'drift' and provides reflection for others on the UK context.

  20. LWS/SET End-to-End Data System

    NASA Technical Reports Server (NTRS)

    Giffin, Geoff; Sherman, Barry; Colon, Gilberto (Technical Monitor)

    2002-01-01

    This paper describes the concept for the End-to-End Data System that will support NASA's Living With a Star Space Environment Testbed missions. NASA has initiated the Living With a Star (LWS) Program to develop a better scientific understanding to address the aspects of the connected Sun-Earth system that affect life and society. A principal goal of the program is to bridge the gap.between science, engineering, and user application communities. The Space Environment Testbed (SET) Project is one element of LWS. The Project will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The End-to-end data system allows investigators to access the SET control center, command their experiments, and receive data from their experiments back at their home facility, using the Internet. The logical functioning of major components of the end-to-end data system are described, including the GSFC Payload Operations Control Center (POCC), SET Payloads, the GSFC SET Simulation Lab, SET Experiment PI Facilities, and Host Systems. Host Spacecraft Operations Control Centers (SOCC) and the Host Spacecraft are essential links in the end-to-end data system, but are not directly under the control of the SET Project. Formal interfaces will be established between these entities and elements of the SET Project. The paper describes data flow through the system, from PI facilities connecting to the SET operations center via the Internet, communications to SET carriers and experiments via host systems, to telemetry returns to investigators from their flight experiments. It also outlines the techniques that will be used to meet mission requirements, while holding development and operational costs to a minimum. Additional information is included in the original extended abstract.

  1. Development of Science and Mathematics Education System Including Teaching Experience of Students in Local Area

    NASA Astrophysics Data System (ADS)

    Kage, Hiroyuki

    New reformation project on engineering education, which is supported from 2005 to 2008FY by Support Program for Contemporary Educational Needs of Ministry of Education, Culture, Sports, Science and Technology, started in Kyushu Institute of Technology. In this project, teaching experience of students is introduced into the curriculum of Faculty of Engineering. In the curriculum students try to prepare teaching materials and to teach local school pupils with them by themselves. Teaching experience is remarkably effective for them to strengthen their self-dependence and learning motivation. Science Education Center, Science Laboratory and Super Teachers College were also organized to promote the area cooperation on the education of science and mathematics.

  2. The impact of program experiences on the retention of women engineering students in Mexico

    NASA Astrophysics Data System (ADS)

    Villa, Maria Del Carmen Garcia

    This qualitative study sought to describe and understand the experiences of female students attending engineering colleges in Mexico and the sources of support and strategies that helped them persist in their programs. The participants were 20 women engineering students enrolled in at least their third year in selected colleges of engineering in Mexico, in both public and private universities, and pursuing a variety of engineering majors. Findings focus on the experiences of female students that helped them stay in their programs. Participants described their experiences in college as very challenging and perceived the environment as hostile and uncertain. In addition, patriarchal Mexican cultural values and stereotypes were identified by students as influencing and helping shape the engineering environment. However, in this context, participants were able to find sources of support and use strategies that helped them remain in their majors, such as a strong desire to succeed, a perceived academic self-ability; and support from their families, peers, institutions, and---most importantly---their professors. Furthermore, the fact that participants were able to persist in their programs gave them a sense of pride and satisfaction that was shared by their families, peers, and faculty. In addition, participants experienced contradictory forces and were constantly negotiating between rejecting traditional gender norms and upholding the norms that are so deeply engrained in Mexican society. Finally, as the students advanced in their programs and became "accepted to the club," they tended to reproduce the male-dominated value system present in engineering colleges accepting their professors' expectations of being "top students," accepting the elitist culture of engineering superiority, and embracing the protection given by their male peers. Retention of Mexican female engineering students is important for all engineering colleges, but cultural factors must be taken into consideration. The dominance of machismo attitudes and values in Mexican culture present specific challenges to achieve an environment more supportive of women in Mexican engineering colleges. Institutions need to be proactive and creative in order to help faculty and administrators provide an environment in which female engineering students can be successful.

  3. Linking Capabilities to Functionings: Adapting Narrative Forms from Role-Playing Games to Education

    ERIC Educational Resources Information Center

    Cheville, R. Alan

    2016-01-01

    This paper explores science, technology, engineering, and mathematics education in the context of inequality of opportunity by examining educational systems through two lenses: curricular mode and system scale. Curricular mode classifies learning experiences as addressing knowing, acting, or being, while system scale captures how learning…

  4. Classroom Evaluation of a Rapid Prototyping System.

    ERIC Educational Resources Information Center

    Tennyson, Stephen A.; Krueger, Thomas J.

    2001-01-01

    Introduces rapid prototyping which creates virtual models through a variety of automated material additive processes. Relates experiences using JP System 5 in freshman and sophomore engineering design graphics courses. Analyzes strengths and limitations of the JP System 5 and discusses how to use it effectively. (Contains 15 references.)…

  5. Payload crew training complex simulation engineer's handbook

    NASA Technical Reports Server (NTRS)

    Shipman, D. L.

    1984-01-01

    The Simulation Engineer's Handbook is a guide for new engineers assigned to Experiment Simulation and a reference for engineers previously assigned. The experiment simulation process, development of experiment simulator requirements, development of experiment simulator hardware and software, and the verification of experiment simulators are discussed. The training required for experiment simulation is extensive and is only referenced in the handbook.

  6. Waste Heat Recovery from a High Temperature Diesel Engine

    NASA Astrophysics Data System (ADS)

    Adler, Jonas E.

    Government-mandated improvements in fuel economy and emissions from internal combustion engines (ICEs) are driving innovation in engine efficiency. Though incremental efficiency gains have been achieved, most combustion engines are still only 30-40% efficient at best, with most of the remaining fuel energy being rejected to the environment as waste heat through engine coolant and exhaust gases. Attempts have been made to harness this waste heat and use it to drive a Rankine cycle and produce additional work to improve efficiency. Research on waste heat recovery (WHR) demonstrates that it is possible to improve overall efficiency by converting wasted heat into usable work, but relative gains in overall efficiency are typically minimal ( 5-8%) and often do not justify the cost and space requirements of a WHR system. The primary limitation of the current state-of-the-art in WHR is the low temperature of the engine coolant ( 90 °C), which minimizes the WHR from a heat source that represents between 20% and 30% of the fuel energy. The current research proposes increasing the engine coolant temperature to improve the utilization of coolant waste heat as one possible path to achieving greater WHR system effectiveness. An experiment was performed to evaluate the effects of running a diesel engine at elevated coolant temperatures and to estimate the efficiency benefits. An energy balance was performed on a modified 3-cylinder diesel engine at six different coolant temperatures (90 °C, 100 °C, 125 °C, 150 °C, 175 °C, and 200 °C) to determine the change in quantity and quality of waste heat as the coolant temperature increased. The waste heat was measured using the flow rates and temperature differences of the coolant, engine oil, and exhaust flow streams into and out of the engine. Custom cooling and engine oil systems were fabricated to provide adequate adjustment to achieve target coolant and oil temperatures and large enough temperature differences across the engine to reduce uncertainty. Changes to exhaust emissions were recorded using a 5-gas analyzer. The engine condition was also monitored throughout the tests by engine compression testing, oil analysis, and a complete teardown and inspection after testing was completed. The integrity of the head gasket seal proved to be a significant problem and leakage of engine coolant into the combustion chamber was detected when testing ended. The post-test teardown revealed problems with oil breakdown at locations where temperatures were highest, with accompanying component wear. The results from the experiment were then used as inputs for a WHR system model using ethanol as the working fluid, which provided estimates of system output and improvement in efficiency. Thermodynamic models were created for eight different WHR systems with coolant temperatures of 90 °C, 150 °C, 175 °C, and 200 °C and condenser temperatures of 60 °C and 90 °C at a single operating point of 3100 rpm and 24 N-m of torque. The models estimated that WHR output for both condenser temperatures would increase by over 100% when the coolant temperature was increased from 90 °C to 200 °C. This increased WHR output translated to relative efficiency gains as high as 31.0% for the 60 °C condenser temperature and 24.2% for the 90 °C condenser temperature over the baseline engine efficiency at 90 °C. Individual heat exchanger models were created to estimate the footprint for a WHR system for each of the eight systems. When the coolant temperature increased from 90 °C to 200 °C, the total heat exchanger volume increased from 16.6 x 103 cm3 to 17.1 x 10 3 cm3 with a 60 °C condenser temperature, but decreased from 15.1 x 103 cm3 to 14.2 x 10 3 cm3 with a 90 °C condenser temperature. For all cases, increasing the coolant temperature resulted in an improvement in the efficiency gain for each cubic meter of heat exchanger volume required. Additionally, the engine oil coolers represented a significant portion of the required heat exchanger volume due to abnormally low engine oil temperatures during the experiment ( 80 °C). Future studies should focus on allowing the engine oil to reach higher operating temperatures which would decrease the heat rejected to the engine oil and reduce the heat duty for the oil coolers resulting in reduced oil cooler volume.

  7. Supporting Weather Data

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Since its founding in 1992, Global Science & Technology, Inc. (GST), of Greenbelt, Maryland, has been developing technologies and providing services in support of NASA scientific research. GST specialties include scientific analysis, science data and information systems, data visualization, communications, networking and Web technologies, computer science, and software system engineering. As a longtime contractor to Goddard Space Flight Center s Earth Science Directorate, GST scientific, engineering, and information technology staff have extensive qualifications with the synthesis of satellite, in situ, and Earth science data for weather- and climate-related projects. GST s experience in this arena is end-to-end, from building satellite ground receiving systems and science data systems, to product generation and research and analysis.

  8. Arizona Geology Trip - February 25-28, 2008

    NASA Technical Reports Server (NTRS)

    Thomas, Gretchen A.; Ross, Amy J.

    2008-01-01

    A variety of hardware developers, crew, mission planners, and headquarters personnel traveled to Gila Bend, Arizona, in February 2008 for a CxP Lunar Surface Systems Team geology experience. Participating in this field trip were the CxP Space Suit System (EC5) leads: Thomas (PLSS) and Ross (PGS), who presented the activities and findings learned from being in the field during this KC. As for the design of a new spacesuit system, this allowed the engineers to understand the demands this type of activity will have on NASA's hardware, systems, and planning efforts. The engineers also experienced the methods and tools required for lunar surface activity.

  9. Experiences with a generator tool for building clinical application modules.

    PubMed

    Kuhn, K A; Lenz, R; Elstner, T; Siegele, H; Moll, R

    2003-01-01

    To elaborate main system characteristics and relevant deployment experiences for the health information system (HIS) Orbis/OpenMed, which is in widespread use in Germany, Austria, and Switzerland. In a deployment phase of 3 years in a 1.200 bed university hospital, where the system underwent significant improvements, the system's functionality and its software design have been analyzed in detail. We focus on an integrated CASE tool for generating embedded clinical applications and for incremental system evolution. We present a participatory and iterative software engineering process developed for efficient utilization of such a tool. The system's functionality is comparable to other commercial products' functionality; its components are embedded in a vendor-specific application framework, and standard interfaces are being used for connecting subsystems. The integrated generator tool is a remarkable feature; it became a key factor of our project. Tool generated applications are workflow enabled and embedded into the overall data base schema. Rapid prototyping and iterative refinement are supported, so application modules can be adapted to the users' work practice. We consider tools supporting an iterative and participatory software engineering process highly relevant for health information system architects. The potential of a system to continuously evolve and to be effectively adapted to changing needs may be more important than sophisticated but hard-coded HIS functionality. More work will focus on HIS software design and on software engineering. Methods and tools are needed for quick and robust adaptation of systems to health care processes and changing requirements.

  10. Using Multi-Robot Systems for Engineering Education: Teaching and Outreach with Large Numbers of an Advanced, Low-Cost Robot

    ERIC Educational Resources Information Center

    McLurkin, J.; Rykowski, J.; John, M.; Kaseman, Q.; Lynch, A. J.

    2013-01-01

    This paper describes the experiences of using an advanced, low-cost robot in science, technology, engineering, and mathematics (STEM) education. It presents three innovations: It is a powerful, cheap, robust, and small advanced personal robot; it forms the foundation of a problem-based learning curriculum; and it enables a novel multi-robot…

  11. Measurements of the ionospheric reaction to exhaust from dedicated burns of the space shuttle’s orbital maneuvering system engines over Kwajalein

    NASA Astrophysics Data System (ADS)

    Caton, R. G.; Groves, K. M.; Pedersen, T. R.; Hysell, D. L.; Carrano, C. S.; Bernhardt, P. A.; Tsunoda, R. T.; Coster, A. J.

    2009-12-01

    In a continuation of the Shuttle Ionospheric Modification with Pulsed Localized Exhaust (SIMPLEX) experiment, a series of Orbiting Maneuver Subsystem (OMS) engine burns from the space shuttle have been carried out over Kwajalein Atoll in the Republic of the Marshall Islands. Exhaust from the shuttle’s two OMS engines consists of CO, CO2, H2, H20, and N2, each of which interact with the background ionosphere (predominately O+) through charge exchange resulting in electron “holes.” Such interactions have been detected from the ground with radars, optical imagers, and GPS TEC measurements and from space with satellites such as the Communication/Navigation Outage Forecasting System (C/NOFS) in the Shuttle Exhaust Ion Turbulence Experiment (SEITE). In this talk, we present signatures of ionospheric modification resulting from OMS burns during recent shuttle missions observed in incoherent scatter returns on the ARPA Long-range Tracking And Instrumentation Radar (ALTAIR) and in optical data from an All-Sky Imager. GPS TEC measurements are investigated for evidence of depletions resulting from post-burn molecular recombination. Space Shuttle OMS Engine Burn

  12. Web survey data collection and retrieval to plan teleradiology implementation

    NASA Astrophysics Data System (ADS)

    Alaoui, Adil; Collmann, Jeff R.; Johnson, Jeffrey A.; Lindisch, David; Nguyen, Dan; Mun, Seong K.

    2003-05-01

    This case study details the experience of system engineers of the Imaging Science and Information Systems Center, Georgetown University Medical Center (ISIS) and radiologists from the department of Radiology in the implementation of a new Teleradiology system. The Teleradiology system enables radiologists to view medical images from remote sites under those circumstances where a resident radiologist needs assistance in evaluating the images after hours and during weekends; it also enables clinicians access to patients" medical images from different workstations within the hospital. The Implementation of the Teleradiology project was preceded by an evaluation phase to perform testing, gather users feedback using a web site and collect information that helped eliminate system bugs, complete recommendations regarding minimum hardware configuration and bandwidth and enhance system"s functions, this phase included a survey-based system assessment of computer configurations, Internet connections, problem identification, and recommendations for improvement, and a testing period with 2 radiologists and ISIS engineers; The second phase was designed to launch the system and make it available to all attending radiologists in the department. To accomplish the first phase of the project a web site was designed and ASP pages were created to enable users to securely logon and enter feedback and recommendations into an SQL database. This efficient, accurate data flow alleviated networking, software and hardware problems. Corrective recommendations were immediately forwarded to the software vendor. The vendor responded with software updates that better met the needs of the radiologists. The ISIS Center completed recommendations for minimum hardware and bandwidth requirements. This experience illustrates that the approach used in collecting the data and facilitating the teamwork between the system engineers and radiologists was instrumental in the project"s success. Major problems with the Teleradiology system were discovered and remedied early by linking the actual practice experience of the physicians to the system improvements.

  13. Operational Issues in the Development of a Cost-Effective Reusable LOX/LH2 Engine

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2003-01-01

    The NASA Space Launch Initiative (SLI) was initiated in early 2001 to conduct technology development and to reduce the business and technical risk associated with developing the next-generation reusable launch system. In the field of main propulsion, two LOXLH2 rocket engine systems, the Pratt & Whitney / Aerojet Joint Venture (JV) COBRA and the Rocketdyne RS-83, were funded to develop a safe, economical, and reusable propulsion system. Given that a large-thrust reusable rocket engine program had not been started in the U.S. since 1971, with the Space Shuttle Main Engine (SSME), this provided an opportunity to build on the experience developed on the SSME system, while exploiting advances in technology that had occurred in the intervening 30 years. One facet of engine development that was identified as being especially vital in order to produce an optimal system was in the areas of operability and maintainability. In order to achieve the high levels of performance required by the Space Shuttle, the SSME system is highly complex with very tight tolerances and detailed requirements. Over the lifetime of the SSME program, the engine has required a high level of manpower to support the performance of inspections, maintenance (scheduled and unscheduled) and operations (prelaunch and post-flight). As a consequence, the labor- intensive needs of the SSME provide a significant impact to the overall cost efficiency of the Space Transportation System (STS). One of the strategic goals of the SLI is to reduce cost by requiring the engine(s) to be easier (Le. less expensive) to operate and maintain. The most effective means of accomplishing this goal is to infuse the operability and maintainability features into the engine design from the start. This paper discusses some of the operational issues relevant to a reusable LOx/LH2 main engine, and the means by which their impact is mitigated in the design phase.

  14. RIM as the data base management system for a material properties data base

    NASA Technical Reports Server (NTRS)

    Karr, P. H.; Wilson, D. J.

    1984-01-01

    Relational Information Management (RIM) was selected as the data base management system for a prototype engineering materials data base. The data base provides a central repository for engineering material properties data, which facilitates their control. Numerous RIM capabilities are exploited to satisfy prototype data base requirements. Numerical, text, tabular, and graphical data and references are being stored for five material types. Data retrieval will be accomplished both interactively and through a FORTRAN interface. The experience gained in creating and exercising the prototype will be used in specifying requirements for a production system.

  15. Inference Engine in an Intelligent Ship Course-Keeping System

    PubMed Central

    2017-01-01

    The article presents an original design of an expert system, whose function is to automatically stabilize ship's course. The focus is put on the inference engine, a mechanism that consists of two functional components. One is responsible for the construction of state space regions, implemented on the basis of properly processed signals recorded by sensors from the input and output of an object. The other component is responsible for generating a control decision based on the knowledge obtained in the first module. The computing experiments described herein prove the effective and correct operation of the proposed system. PMID:29317859

  16. Optical Closed-Loop Propulsion Control System Development

    NASA Technical Reports Server (NTRS)

    Poppel, Gary L.

    1998-01-01

    The overall objective of this program was to design and fabricate the components required for optical closed-loop control of a F404-400 turbofan engine, by building on the experience of the NASA Fiber Optic Control System Integration (FOCSI) program. Evaluating the performance of fiber optic technology at the component and system levels will result in helping to validate its use on aircraft engines. This report includes descriptions of three test plans. The EOI Acceptance Test is designed to demonstrate satisfactory functionality of the EOI, primarily fail-safe throughput of the F404 sensor signals in the normal mode, and validation, switching, and output of the five analog sensor signals as generated from validated optical sensor inputs, in the optical mode. The EOI System Test is designed to demonstrate acceptable F404 ECU functionality as interfaced with the EOI, making use of a production ECU test stand. The Optical Control Engine Test Request describes planned hardware installation, optical signal calibrations, data system coordination, test procedures, and data signal comparisons for an engine test demonstration of the optical closed-loop control.

  17. Laminar Soot Processes Experiment Shedding Light on Flame Radiation

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    1998-01-01

    The Laminar Soot Processes (LSP) experiment investigated soot processes in nonturbulent, round gas jet diffusion flames in still air. The soot processes within these flames are relevant to practical combustion in aircraft propulsion systems, diesel engines, and furnaces. However, for the LSP experiment, the flames were slowed and spread out to allow measurements that are not tractable for practical, Earth-bound flames.

  18. MIT January Operational Internship Experience

    NASA Technical Reports Server (NTRS)

    Bosanac, Natasha; DeVivero, Charlie; James, Jillian; Perez-Martinez, Carla; Pino, Wendy; Wang, Andrew; Willett, Ezekiel; Williams, Kwami

    2010-01-01

    This viewgraph presentation describes the MIT January Operational Internship Experience (JOIE) program. The topics include: 1) Landing and Recovery; 2) Transportation; 3) Shuttle Processing; 4) Constellation Processing; 5) External Tank; 6) Launch Pad; 7) Ground Operations; 8) Hypergolic Propellants; 9) Environmental; 10) Logistics; 11) Six Sigma; 12) Systems Engineering; and 13) Human Factors.

  19. Instruction Using Experiments in a Computer. Final Report.

    ERIC Educational Resources Information Center

    Fulton, John P.; Hazeltine, Barrett

    Included are four computer programs which simulate experiments suitable for freshman engineering and physics courses. The subjects of the programs are ballistic trajectories, variable mass systems, trajectory of a particle under various forces, and design of an electronic emplifier. The report includes the problem statement, its objectives, the…

  20. Williams during the PFE-OUM Experiment in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-05-24

    ISS015-E-09461 (24 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) during a Periodic Fitness Evaluation with Oxygen Uptake Measurement (PFE-OUM) experiment in the Destiny laboratory of the International Space Station.

  1. Water Treatment Pilot Plant Design Manual: Low Flow Conventional/Direct Filtration Water Treatment Plant for Drinking Water Treatment Studies

    EPA Science Inventory

    This manual highlights the project constraints and concerns, and includes detailed design calculations and system schematics. The plant is based on engineering design principles and practices, previous pilot plant design experiences, and professional experiences and may serve as ...

  2. Veggie Harvest

    NASA Image and Video Library

    2017-10-27

    Charles Spern, project manager on the Engineering Services Contract, communicates instructions for the Veggie system to astronaut Joe Acaba on the International Space Station. Spern is in the Experiment Monitoring Room in the Space Station Processing Facility at Kennedy Space Center in Florida. Three different varieties of plants from the Veg-03D plant experiment were harvested.

  3. Design of digital load torque observer in hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Sun, Yukun; Zhang, Haoming; Wang, Yinghai

    2008-12-01

    In hybrid electric vehicle, engine begain to work only when motor was in high speed in order to decrease tail gas emission. However, permanent magnet motor was sensitive to its load, adding engine to the system always made its speed drop sharply, which caused engine to work in low efficiency again and produced much more environment pollution. Dynamic load torque model of permanent magnet synchronous motor is established on the basic of motor mechanical equation and permanent magnet synchronous motor vector control theory, Full- digital load torque observer and compensation control system is made based on TMS320F2407A. Experiment results prove load torque observer and compensation control system can detect and compensate torque disturbing effectively, which can solve load torque disturbing and decrease gas pollution of hybrid electric vehicle.

  4. Engineering study for pallet adapting the Apollo laser altimeter and photographic camera system for the Lidar Test Experiment on orbital flight tests 2 and 4

    NASA Technical Reports Server (NTRS)

    Kuebert, E. J.

    1977-01-01

    A Laser Altimeter and Mapping Camera System was included in the Apollo Lunar Orbital Experiment Missions. The backup system, never used in the Apollo Program, is available for use in the Lidar Test Experiments on the STS Orbital Flight Tests 2 and 4. Studies were performed to assess the problem associated with installation and operation of the Mapping Camera System in the STS. They were conducted on the photographic capabilities of the Mapping Camera System, its mechanical and electrical interface with the STS, documentation, operation and survivability in the expected environments, ground support equipment, test and field support.

  5. Re-Engineering the Mission Operations System (MOS) for the Prime and Extended Mission

    NASA Technical Reports Server (NTRS)

    Hunt, Joseph C., Jr.; Cheng, Leo Y.

    2012-01-01

    One of the most challenging tasks in a space science mission is designing the Mission Operations System (MOS). Whereas the focus of the project is getting the spacecraft built and tested for launch, the mission operations engineers must build a system to carry out the science objectives. The completed MOS design is then formally assessed in the many reviews. Once a mission has completed the reviews, the Mission Operation System (MOS) design has been validated to the Functional Requirements and is ready for operations. The design was built based on heritage processes, new technology, and lessons learned from past experience. Furthermore, our operational concepts must be properly mapped to the mission design and science objectives. However, during the course of implementing the science objective in the operations phase after launch, the MOS experiences an evolutional change to adapt for actual performance characteristics. This drives the re-engineering of the MOS, because the MOS includes the flight and ground segments. Using the Spitzer mission as an example we demonstrate how the MOS design evolved for both the prime and extended mission to enhance the overall efficiency for science return. In our re-engineering process, we ensured that no requirements were violated or mission objectives compromised. In most cases, optimized performance across the MOS, including gains in science return as well as savings in the budget profile was achieved. Finally, we suggest a need to better categorize the Operations Phase (Phase E) in the NASA Life-Cycle Phases of Formulation and Implementation

  6. Shuttle Radar Topography Mission (SRTM) Flight System Design and Operations Overview

    NASA Technical Reports Server (NTRS)

    Shen, Yuhsyen; Shaffer, Scott J.; Jordan, Rolando L.

    2000-01-01

    This paper provides an overview of the Shuttle Radar Topography Mission (SRTM), with emphasis on flight system implementation and mission operations from systems engineering perspective. Successfully flown in February, 2000, the SRTM's primary payload consists of several subsystems to form the first spaceborne dual-frequency (C-band and X-band) fixed baseline interferometric synthetic aperture radar (InSAR) system, with the mission objective to acquire data sets over 80% of Earth's landmass for height reconstruction. The paper provides system architecture, unique design features, engineering budgets, design verification, in-flight checkout and data acquisition of the SRTM payload, in particular for the C-band system. Mission operation and post-mission data processing activities are also presented. The complexity of the SRTM as a system, the ambitious mission objective, the demanding requirements and the high interdependency between multi-disciplined subsystems posed many challenges. The engineering experience and the insight thus gained have important implications for future spaceborne interferometric SAR mission design and implementation.

  7. Adaptive Modeling of the International Space Station Electrical Power System

    NASA Technical Reports Server (NTRS)

    Thomas, Justin Ray

    2007-01-01

    Software simulations provide NASA engineers the ability to experiment with spacecraft systems in a computer-imitated environment. Engineers currently develop software models that encapsulate spacecraft system behavior. These models can be inaccurate due to invalid assumptions, erroneous operation, or system evolution. Increasing accuracy requires manual calibration and domain-specific knowledge. This thesis presents a method for automatically learning system models without any assumptions regarding system behavior. Data stream mining techniques are applied to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). We also explore a knowledge fusion approach that uses traditional engineered EPS models to supplement the learned models. We observed that these engineered EPS models provide useful background knowledge to reduce predictive error spikes when confronted with making predictions in situations that are quite different from the training scenarios used when learning the model. Evaluations using ISS sensor data and existing EPS models demonstrate the success of the adaptive approach. Our experimental results show that adaptive modeling provides reductions in model error anywhere from 80% to 96% over these existing models. Final discussions include impending use of adaptive modeling technology for ISS mission operations and the need for adaptive modeling in future NASA lunar and Martian exploration.

  8. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 5: Supporting Analyses and Trade Studies. [development and testing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    The development and design of a modular solar thermal power system for application in the 1 to 10 MWe range is described. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. Thermal and stress analyses are performed on the collector subsystem, energy storage subsystem, energy transport subsystem, the power conversion subsystem, and the plant control subsystem.

  9. The Astronautics Laboratory of the Air Force Systems Command electric propulsion projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanks, T.M.; Andrews, J.C.

    1989-01-01

    Ongoing projects at the Astronautics Laboratory (AL) of the USAF Systems Command are described. Particular attention is given to experiments with arcjets, magnetoplasmadynamic thrusters, ion engines, and the Electric Insertion Transfer Experiment (ELITE). ELITE involves the integration of high-power ammonia arcjets, low-power xenon ion thrusters, advanced photovoltaic solar arrays, and an autononomous flight control system. It is believed that electric propulsion will become a dominant element in the military and industrial use of space. 6 refs.

  10. Model-Based Engineering Design for Trade Space Exploration throughout the Design Cycle

    NASA Technical Reports Server (NTRS)

    Lamassoure, Elisabeth S.; Wall, Stephen D.; Easter, Robert W.

    2004-01-01

    This paper presents ongoing work to standardize model-based system engineering as a complement to point design development in the conceptual design phase of deep space missions. It summarizes two first steps towards practical application of this capability within the framework of concurrent engineering design teams and their customers. The first step is standard generation of system sensitivities models as the output of concurrent engineering design sessions, representing the local trade space around a point design. A review of the chosen model development process, and the results of three case study examples, demonstrate that a simple update to the concurrent engineering design process can easily capture sensitivities to key requirements. It can serve as a valuable tool to analyze design drivers and uncover breakpoints in the design. The second step is development of rough-order- of-magnitude, broad-range-of-validity design models for rapid exploration of the trade space, before selection of a point design. At least one case study demonstrated the feasibility to generate such models in a concurrent engineering session. The experiment indicated that such a capability could yield valid system-level conclusions for a trade space composed of understood elements. Ongoing efforts are assessing the practicality of developing end-to-end system-level design models for use before even convening the first concurrent engineering session, starting with modeling an end-to-end Mars architecture.

  11. Soldier experiments and assessments using SPEAR speech control system for UGVs

    NASA Astrophysics Data System (ADS)

    Brown, Jonathan; Blanco, Chris; Czerniak, Jeffrey; Hoffman, Brian; Hoffman, Orin; Juneja, Amit; Ngia, Lester; Pruthi, Tarun; Liu, Dongqing

    2010-04-01

    This paper reports on a Soldier Experiment performed by the Army Research Lab's Human Research Engineering Directorate (HRED) Field Element located at the Maneuver Center of Excellence, Ft. Benning, and a Limited Use Assessment conducted by the Marine Corps Forces Pacific Command Experimentation Center (MEC) at Camp Pendleton evaluating the effectiveness of using speech commands to control an Unmanned Ground Vehicle. SPEAR, developed by Think-A-Move, Ltd., provides speech control of UGVs. SPEAR detects user speech in the ear canal with an earpiece containing an in-ear microphone. The system design provides up to 30 dB of passive noise reduction, enabling it to work well in high-noise environments, where traditional speech systems, using external microphones, fail; it also utilizes a proprietary speech recognition engine. SPEAR has been integrated with iRobot's PackBot 510 with FasTac Kit, and with Multi-Robot Operator Control Unit (MOCU), developed by SPAWAR Systems Center Pacific. These integrated systems allow speech to supplement the hand-controller for multi-modal control of different UGV functions simultaneously. HRED's experiment measured the impact of SPEAR on reducing the cognitive load placed on UGV Operators and the time to complete specific tasks. Army NCOs and Officer School Candidates participated in this experiment, which found that speech control was faster than manual control to complete tasks requiring menu navigation, as well as reducing the cognitive load on UGV Operators. The MEC assessment examined speech commands used for two different missions: Route Clearance and Cordon and Search; participants included Explosive Ordnance Disposal Technicians and Combat Engineers. The majority of the Marines thought it was easier to complete the mission scenarios with SPEAR than with only using manual controls, and that using SPEAR improved their situational awareness. Overall results of these Assessments are reported in the paper, along with possible applications to autonomous mine detection systems.

  12. Proceedings of the First NASA Ada Users' Symposium

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Ada has the potential to be a part of the most significant change in software engineering technology within NASA in the last twenty years. Thus, it is particularly important that all NASA centers be aware of Ada experience and plans at other centers. Ada activity across NASA are covered, with presenters representing five of the nine major NASA centers and the Space Station Freedom Program Office. Projects discussed included - Space Station Freedom Program Office: the implications of Ada on training, reuse, management and the software support environment; Johnson Space Center (JSC): early experience with the use of Ada, software engineering and Ada training and the evaluation of Ada compilers; Marshall Space Flight Center (MSFC): university research with Ada and the application of Ada to Space Station Freedom, the Orbital Maneuvering Vehicle, the Aero-Assist Flight Experiment and the Secure Shuttle Data System; Lewis Research Center (LeRC): the evolution of Ada software to support the Space Station Power Management and Distribution System; Jet Propulsion Laboratory (JPL): the creation of a centralized Ada development laboratory and current applications of Ada including the Real-time Weather Processor for the FAA; and Goddard Space Flight Center (GSFC): experiences with Ada in the Flight Dynamics Division and the Extreme Ultraviolet Explorer (EUVE) project and the implications of GSFC experience for Ada use in NASA. Despite the diversity of the presentations, several common themes emerged from the program: Methodology - NASA experience in general indicates that the effective use of Ada requires modern software engineering methodologies; Training - It is the software engineering principles and methods that surround Ada, rather than Ada itself, which requires the major training effort; Reuse - Due to training and transition costs, the use of Ada may initially actually decrease productivity, as was clearly found at GSFC; and real-time work at LeRC, JPL and GSFC shows that it is possible to use Ada for real-time applications.

  13. Undergraduate Students As Effective Climate Change Communicators

    NASA Astrophysics Data System (ADS)

    Sharif, H. O.; Joseph, J.; Mullendore, G. L.

    2014-12-01

    The University of Texas at San Antonio (UTSA), San Antonio College (SAC), and the University of North Dakota (UND) have partnered with NASA to provide underrepresented undergraduates from UTSA, SAC, and other community colleges climate-related research and education experiences through the Climate Change Communication: Engineer, Environmental science, and Education (C3E3) project. The program aims to develop a robust response to climate change by providing K-16 climate change education; enhance the effectiveness of K-16 education particularly in engineering and other STEM disciplines by use of new instructional technologies; increase the enrollment in engineering programs and the number of engineering degrees awarded by showing engineering's usefulness in relation to the much-discussed contemporary issue of climate change; increase persistence in STEM degrees by providing student research opportunities; and increase the ethnic diversity of those receiving engineering degrees and help ensure an ethnically diverse response to climate change. Students participated in the second summer internship funded by the project. The program is in its third year. More than 75 students participated in a guided research experiences aligned with NASA Science Plan objectives for climate and Earth system science and the educational objectives of the three institutions. The students went through training in modern media technology (webcasts), and in using this technology to communicate the information on climate change to others, especially high school students, culminating in production of webcasts on investigating the aspects of climate change using NASA data. Content developed is leveraged by NASA Earth observation data and NASA Earth system models and tools. Three Colleges were involved in the program: Engineering, Education, and Science.

  14. Pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    NASA Astrophysics Data System (ADS)

    Anderson, W. G.; Rosenfeld, J. H.; Saaski, E. L.; Noble, J.; Tower, L.

    Experiments to determine alkali metal/enhanced surface combinations that have stable boiling at the temperatures and heat fluxes that occur in the Stirling engine are reported. Two enhanced surfaces and two alkali metal working fluids were evaluated. The enhanced surfaces were an EDM hole covered surface and a sintered-powder-metal porous layer surface. The working fluids tested were potassium and eutectic sodium-potasium alloy (NaK), both with and without undissolved noncondensible gas. Noncondensible gas (He and Xe) was added to the system to provide gas in the nucleation sites, preventing quenching of the sites. The experiments demonstrated the potential of an alkali metal pool boiler heat transport system for use in a solar-powered Stirling engine. The most favorable fluid/surface combination tested was NaK boiling on a -100 +140 mesh 304L stainless steel sintered porous layer with no undissolved noncondensible gas. This combination provided stable, high-performance boiling at the operating temperature of 700 C. Heat fluxes into the system ranged from 10 to 50 W/sq cm. The transition from free convection to nucleate boiling occurred at temperatures near 540 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  15. Pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Anderson, W. G.; Rosenfeld, J. H.; Saaski, E. L.; Noble, J.; Tower, L.

    1990-01-01

    Experiments to determine alkali metal/enhanced surface combinations that have stable boiling at the temperatures and heat fluxes that occur in the Stirling engine are reported. Two enhanced surfaces and two alkali metal working fluids were evaluated. The enhanced surfaces were an EDM hole covered surface and a sintered-powder-metal porous layer surface. The working fluids tested were potassium and eutectic sodium-potasium alloy (NaK), both with and without undissolved noncondensible gas. Noncondensible gas (He and Xe) was added to the system to provide gas in the nucleation sites, preventing quenching of the sites. The experiments demonstrated the potential of an alkali metal pool boiler heat transport system for use in a solar-powered Stirling engine. The most favorable fluid/surface combination tested was NaK boiling on a -100 +140 mesh 304L stainless steel sintered porous layer with no undissolved noncondensible gas. This combination provided stable, high-performance boiling at the operating temperature of 700 C. Heat fluxes into the system ranged from 10 to 50 W/sq cm. The transition from free convection to nucleate boiling occurred at temperatures near 540 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  16. J-2X Abort System Development

    NASA Technical Reports Server (NTRS)

    Santi, Louis M.; Butas, John P.; Aguilar, Robert B.; Sowers, Thomas S.

    2008-01-01

    The J-2X is an expendable liquid hydrogen (LH2)/liquid oxygen (LOX) gas generator cycle rocket engine that is currently being designed as the primary upper stage propulsion element for the new NASA Ares vehicle family. The J-2X engine will contain abort logic that functions as an integral component of the Ares vehicle abort system. This system is responsible for detecting and responding to conditions indicative of impending Loss of Mission (LOM), Loss of Vehicle (LOV), and/or catastrophic Loss of Crew (LOC) failure events. As an earth orbit ascent phase engine, the J-2X is a high power density propulsion element with non-negligible risk of fast propagation rate failures that can quickly lead to LOM, LOV, and/or LOC events. Aggressive reliability requirements for manned Ares missions and the risk of fast propagating J-2X failures dictate the need for on-engine abort condition monitoring and autonomous response capability as well as traditional abort agents such as the vehicle computer, flight crew, and ground control not located on the engine. This paper describes the baseline J-2X abort subsystem concept of operations, as well as the development process for this subsystem. A strategy that leverages heritage system experience and responds to an evolving engine design as well as J-2X specific test data to support abort system development is described. The utilization of performance and failure simulation models to support abort system sensor selection, failure detectability and discrimination studies, decision threshold definition, and abort system performance verification and validation is outlined. The basis for abort false positive and false negative performance constraints is described. Development challenges associated with information shortfalls in the design cycle, abort condition coverage and response assessment, engine-vehicle interface definition, and abort system performance verification and validation are also discussed.

  17. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Piland, William M.

    2000-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operation). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographical distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across Agency.

  18. NASA Experience with Pogo in Human Spaceflight Vehicles

    NASA Technical Reports Server (NTRS)

    Larsen, Curtis E.

    2008-01-01

    An overview of more than 45 years of NASA human spaceflight experience is presented with respect to the thrust axis vibration response of liquid fueled rockets known as pogo. A coupled structure and propulsion system instability, pogo can result in the impairment of the astronaut crew, an unplanned engine shutdown, loss of mission, or structural failure. The NASA history begins with the Gemini Program and adaptation of the USAF Titan II ballistic missile as a spacecraft launch vehicle. It continues with the pogo experienced on several Apollo-Saturn flights in both the first and second stages of flight. The defining moment for NASA s subsequent treatment of pogo occurred with the near failure of the second stage on the ascent of the Apollo 13 mission. Since that time NASA has had a strict "no pogo" philosophy that was applied to the development of the Space Shuttle. The "no pogo" philosophy lead to the first vehicle designed to be pogo-free from the beginning and the first development of an engine with an integral pogo suppression system. Now, more than 30 years later, NASA is developing two new launch vehicles, the Ares I crew launch vehicle propelling the Orion crew excursion vehicle, and the Ares V cargo launch vehicle. A new generation of engineers must again exercise NASA s system engineering method for pogo mitigation during design, development and verification.

  19. 41 CFR 128-1.8004 - Seismic Safety Coordinators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Management Regulations System (Continued) DEPARTMENT OF JUSTICE 1-INTRODUCTION 1.80-Seismic Safety Program... individual with technical training, engineering experience and a seismic background as the Department of...

  20. Are Accessible Distance Learning Systems Useful for All Students?: Our Experience with IMES, an Accessible Web-Based Learning System

    ERIC Educational Resources Information Center

    Iglesias, Ana; Moreno, Lourdes; Cuadra, Dolores; Castro, Elena

    2013-01-01

    Nowadays the use of distance learning systems is widely extended in engineering education. Moreover, most of them use multimedia resources that sometimes are the only educational material available to provide certain educational knowledge to the students. Unfortunately, most of the current educational systems and their educational content present…

  1. Are Accessible Distance Learning Systems Useful for All Students?: Our Experience with IMES, an Accessible Web-Based Learning System

    ERIC Educational Resources Information Center

    Iglesias, Ana; Moreno, Lourdes; Castro, Elena; Cuadra, Dolores

    2014-01-01

    Nowadays the use of distance learning systems is widely extended in engineering education. Moreover, most of them use multimedia resources that sometimes are the only educational material available to provide certain educational knowledge to the students. Unfortunately, most of the current educational systems and their educational content present…

  2. Engineering, Life Sciences, and Health/Medicine Synergy in Aerospace Human Systems Integration: The Rosetta Stone Project

    NASA Technical Reports Server (NTRS)

    Williams, Richard S. (Editor); Doarn, Charles R. (Editor); Shepanek, Marc A.

    2017-01-01

    In the realm of aerospace engineering and the physical sciences, we have developed laws of physics based on empirical and research evidence that reliably guide design, research, and development efforts. For instance, an engineer designs a system based on data and experience that can be consistently and repeatedly verified. This reproducibility depends on the consistency and dependability of the materials on which the engineer works and is subject to physics, geometry and convention. In life sciences and medicine, these apply as well, but individuality introduces a host of variables into the mix, resulting in characteristics and outcomes that can be quite broad within a population of individuals. This individuality ranges from differences at the genetic and cellular level to differences in an individuals personality and abilities due to sex and gender, environment, education, etc.

  3. Linear Aerospike SR-71 Experiment (LASRE) dumps water after first in-flight cold flow test

    NASA Image and Video Library

    1998-03-04

    The NASA SR-71A successfully completed its first cold flow flight as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California on March 4, 1998. During a cold flow flight, gaseous helium and liquid nitrogen are cycled through the linear aerospike engine to check the engine's plumbing system for leaks and to check the engine operating characterisitics. Cold-flow tests must be accomplished successfully before firing the rocket engine experiment in flight. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for one hour and fifty-seven minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards at 12:13 p.m. PST. "I think all in all we had a good mission today," Dryden LASRE Project Manager Dave Lux said. Flight crew member Bob Meyer agreed, saying the crew "thought it was a really good flight." Dryden Research Pilot Ed Schneider piloted the SR-71 during the mission. Lockheed Martin LASRE Project Manager Carl Meade added, "We are extremely pleased with today's results. This will help pave the way for the first in-flight engine data-collection flight of the LASRE."

  4. Engineering of beam direct conversion for a 120-kV, 1-MW ion beam

    NASA Technical Reports Server (NTRS)

    Barr, W. L.; Doggett, J. N.; Hamilton, G. W.; Kinney, J. D.; Moir, R. W.

    1977-01-01

    Practical systems for beam direct conversion are required to recover the energy from ion beams at high efficiency and at very high beam power densities in the environment of a high-power neutral-injection system. Such an experiment is now in progress using a 120-kV beam with a maximum total current of 20 A. After neutralization, the H(+) component to be recovered will have a power of approximately 1 MW. A system testing these concepts has been designed and tested at 15 kV, 2 kW in preparation for the full-power tests. The engineering problems involved in the full-power tests affect electron suppression, gas pumping, voltage holding, diagnostics, and measurement conditions. Planning for future experiments at higher power includes the use of cryopumping and electron suppression by a magnetic field rather than by an electrostatic field. Beam direct conversion for large fusion experiments and reactors will save millions of dollars in the cost of power supplies and electricity and will dispose of the charged beam under conditions that may not be possible by other techniques.

  5. Impulsive response of an automatic transmission system with multiple clearances: Formulation, simulation and experiment

    NASA Astrophysics Data System (ADS)

    Crowther, Ashley R.; Singh, Rajendra; Zhang, Nong; Chapman, Chris

    2007-10-01

    Impulsive responses in geared systems with multiple clearances are studied when the mean torque excitation and system load change abruptly, with application to a vehicle driveline with an automatic transmission. First, torsional lumped-mass models of the planetary and differential gear sets are formulated using matrix elements. The model is then reduced to address tractable nonlinear problems while successfully retaining the main modes of interest. Second, numerical simulations for the nonlinear model are performed for transient conditions and a typical driving situation that induces an impulsive behaviour simulated. However, initial conditions and excitation and load profiles have to be carefully defined before the model can be numerically solved. It is shown that the impacts within the planetary or differential gears may occur under combinations of engine, braking and vehicle load transients. Our analysis shows that the shaping of the engine transient by the torque converter before reaching the clearance locations is more critical. Third, a free vibration experiment is developed for an analogous driveline with multiple clearances and three experiments that excite different response regimes have been carried out. Good correlations validate the proposed methodology.

  6. Solar Stirling power generation - Systems analysis and preliminary tests

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.; Wu, Y.-C.; Moynihan, P. I.; Day, F. D., III

    1977-01-01

    The feasibility of an electric power generation system utilizing a sun-tracking parabolic concentrator and a Stirling engine/linear alternator is being evaluated. Performance predictions and cost analysis of a proposed large distributed system are discussed. Design details and preliminary test results are presented for a 9.5 ft diameter parabolic dish at the Jet Propulsion Laboratory (Caltech) Table Mountain Test Facility. Low temperature calorimetric measurements were conducted to evaluate the concentrator performance, and a helium flow system is being used to test the solar receiver at anticipated working fluid temperatures (up to 650 or 1200 C) to evaluate the receiver thermal performance. The receiver body is designed to adapt to a free-piston Stirling engine which powers a linear alternator assembly for direct electric power generation. During the next phase of the program, experiments with an engine and receiver integrated into the concentrator assembly are planned.

  7. openSE: a Systems Engineering Framework Particularly Suited to Particle Accelerator Studies and Development Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnal, P.; Féral, B.; Kershaw, K.

    Particle accelerator projects share many characteristics with industrial projects. However, experience has shown that best practice of industrial project management is not always well suited to particle accelerator projects. Major differences include the number and complexity of technologies involved, the importance of collaborative work, development phases that can last more than a decade, and the importance of telerobotics and remote handling to address future preventive and corrective maintenance requirements due to induced radioactivity, to cite just a few. The openSE framework it is a systems engineering and project management framework specifically designed for scientific facilities’ systems and equipment studies andmore » development projects. Best practices in project management, in systems and requirements engineering, in telerobotics and remote handling and in radiation safety management were used as sources of inspiration, together with analysis of current practices surveyed at CERN, GSI and ESS.« less

  8. Flight testing the Digital Electronic Engine Control (DEEC) A unique management experience

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.; Burcham, F. W., Jr.; Kock, B. M.

    1983-01-01

    The concept for the DEEC had its origin in the early 1970s. At that time it was recognized that the F100 engine performance, operability, reliability, and cost could be substantially improved by replacing the original mechanical/supervisory electronic control system with a full-authority digital control system. By 1978, the engine manufacturer had designed and initiated the procurement of flight-qualified control system hardware. As a precursor to an integrated controls program, a flight evaluation of the DEEC system on the F-15 aircraft was proposed. Questions regarding the management of the DEEC flight evaluation program are discussed along with the program elements, the technical results of the F-15 evaluation, and the impact of the flight evaluation on after-burning turbofan controls technology and its use in and application to military aircraft. The lessons learned through the conduct of the program are discussed.

  9. Analysis of Performance of Jet Engine from Characteristics of Components II : Interaction of Components as Determined from Engine Operation

    NASA Technical Reports Server (NTRS)

    Goldstein, Arthur W; Alpert, Sumner; Beede, William; Kovach, Karl

    1949-01-01

    In order to understand the operation and the interaction of jet-engine components during engine operation and to determine how component characteristics may be used to compute engine performance, a method to analyze and to estimate performance of such engines was devised and applied to the study of the characteristics of a research turbojet engine built for this investigation. An attempt was made to correlate turbine performance obtained from engine experiments with that obtained by the simpler procedure of separately calibrating the turbine with cold air as a driving fluid in order to investigate the applicability of component calibration. The system of analysis was also applied to prediction of the engine and component performance with assumed modifications of the burner and bearing characteristics, to prediction of component and engine operation during engine acceleration, and to estimates of the performance of the engine and the components when the exhaust gas was used to drive a power turbine.

  10. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II. Part 3; Material Model Development and Simulation of Experiments

    NASA Technical Reports Server (NTRS)

    Simmons, J.; Erlich, D.; Shockey, D.

    2009-01-01

    A team consisting of Arizona State University, Honeywell Engines, Systems & Services, the National Aeronautics and Space Administration Glenn Research Center, and SRI International collaborated to develop computational models and verification testing for designing and evaluating turbine engine fan blade fabric containment structures. This research was conducted under the Federal Aviation Administration Airworthiness Assurance Center of Excellence and was sponsored by the Aircraft Catastrophic Failure Prevention Program. The research was directed toward improving the modeling of a turbine engine fabric containment structure for an engine blade-out containment demonstration test required for certification of aircraft engines. The research conducted in Phase II began a new level of capability to design and develop fan blade containment systems for turbine engines. Significant progress was made in three areas: (1) further development of the ballistic fabric model to increase confidence and robustness in the material models for the Kevlar(TradeName) and Zylon(TradeName) material models developed in Phase I, (2) the capability was improved for finite element modeling of multiple layers of fabric using multiple layers of shell elements, and (3) large-scale simulations were performed. This report concentrates on the material model development and simulations of the impact tests.

  11. Vertical stream curricula integration of problem-based learning using an autonomous vacuum robot in a mechatronics course

    NASA Astrophysics Data System (ADS)

    Chin, Cheng; Yue, Keng

    2011-10-01

    Difficulties in teaching a multi-disciplinary subject such as the mechatronics system design module in Departments of Mechatronics Engineering at Temasek Polytechnic arise from the gap in experience and skill among staff and students who have different backgrounds in mechanical, computer and electrical engineering within the Mechatronics Department. The departments piloted a new vertical stream curricula model (VSCAM) to enhance student learning in mechatronics system design through integration of educational activities from the first to the second year of the course. In this case study, a problem-based learning (PBL) method on an autonomous vacuum robot in the mechatronics systems design module was proposed to allow the students to have hands-on experience in the mechatronics system design. The proposed works included in PBL consist of seminar sessions, weekly works and project presentation to provide holistic assessment on teamwork and individual contributions. At the end of VSCAM, an integrative evaluation was conducted using confidence logs, attitude surveys and questionnaires. It was found that the activities were quite appreciated by the participating staff and students. Hence, PBL has served as an effective pedagogical framework for teaching multidisciplinary subjects in mechatronics engineering education if adequate guidance and support are given to staff and students.

  12. Engineering strategies for the design of plant nutrient delivery systems for use in space: approaches to countering microbiological contamination

    NASA Technical Reports Server (NTRS)

    Gonzales, A. A.; Schuerger, A. C.; Barford, C.; Mitchell, R.

    1996-01-01

    Microbiological contamination of crops within space-based plant growth research chambers has been postulated as a potentially significant problem. Microbial infestations; fouling of Nutrient Delivery System (NDS) fluid loops; and the formation of biofilms have been suggested as the most obvious and important manifestations of the problem. Strict sanitation and quarantine procedures will reduce, but not eliminate, microbial species introduced into plant growth systems in space habitats. Microorganisms transported into space most likely will occur as surface contaminants on spacecraft components, equipment, the crew, and plant-propagative materials. Illustrations of the potential magnitude of the microbiological contamination issue will be drawn from the literature and from documentation of laboratory and commercial field experience. Engineering strategies for limiting contamination and for the development of countermeasures will be described. Microbiological control technologies and NDS hardware will be discussed. Configurations appropriate for microgravity research facilities, as well as anticipated bio-regenerative life support system implementations, will be explored. An efficiently designed NDS, capable of adequately meeting the environmental needs of crop plants in space, is considered to be critical in both the research and operational domains. Recommended experiments, tests, and technology developments, structured to allow the development of prudent engineering solutions also will be presented.

  13. Engineering Strategies for the Design of Plant Nutrient Delivery Systems for Use in Space: Approaches to Countering Microbiological Contamination

    NASA Technical Reports Server (NTRS)

    Gonzales, A. A.; Schuerger, A. C.; Mitchell, R.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    Microbiological contamination of crops within space-based crop growth research chambers has been postulated as a potentially significant problem. Microbial infestations; fouling of Nutrient Delivery System (NDS) fluid loops; and the formation of biofilms, have been suggested as the most obvious and important manifestations of the problem. Strict sanitation and quarantine procedures will reduce, but not eliminate, microbial species introduced into plant growing systems in space habitats. Microorganisms transported into space will most likely occur as contaminants on spacecraft components, equipment, the crew, and plant-propagative materials. Illustrations of the potential magnitude of the microbiological contamination issue will be drawn from the literature and from documentation of laboratory and commercial field experience. Engineering strategies for limiting contamination and for the development of countermeasures will be described. Microbiological control technologies and NDS hardware will be discussed. Configurations appropriate for microgravity research facilities, as well as anticipated bio-regenerative life support system implementations, will be explored. An efficiently designed NDS, capable of adequately meeting the environmental needs of crop plants in space, is considered to be critical in both the research and operational domains. Recommended experiments, tests and technology developments, structured to allow the development of prudent engineering solutions, will also be presented.

  14. Understanding Probabilistic Interpretations of Physical Systems: A Prerequisite to Learning Quantum Physics.

    ERIC Educational Resources Information Center

    Bao, Lei; Redish, Edward F.

    2002-01-01

    Explains the critical role of probability in making sense of quantum physics and addresses the difficulties science and engineering undergraduates experience in helping students build a model of how to think about probability in physical systems. (Contains 17 references.) (Author/YDS)

  15. Lidar In-space Technology Experiment (LITE) Electronics Overview

    NASA Technical Reports Server (NTRS)

    Blythe, Michael P.; Couch, Richard H.; Rowland, Carroll W.; Kitchen, Wayne L.; Regan, Curtis P.; Koch, Michael R.; Antill, Charles W.; Stevens, William T.; Rollins, Courtney H.; Kist, Edward H.

    1992-01-01

    The LITE electronics system consists of the following seven subsystems: Laser Transmitter Module (LTM), Boresight Assembly (BA), Aft-Optics Electronics (AOE), Digital Data Handling Unit (DDHU), Engineering Data System (EDS), Instrument Controller (IC), and the Ground Support Equipment (GSE). Each of these subsystems is discussed.

  16. Skylab mission report, third visit

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation is presented of the operational and engineering aspects of the third Skylab visit, including information on the performance of the command and service module and the experiment hardware, the crew's evaluation of the visit, and other visit-related areas of interest such as biomedical observations. The specific areas discussed are contained in the following: (1) solar physics and astrophysics investigations; (2) Comet Kohoutek experiments; (3) medical experiments; (4) earth observations, including data for the multispectral photographic facility, the earth terrain camera, and the microwave radiometer/scattermometer and altimeter; (5) engineering and technology experiments; (6) food and medical operational equipment; (7) hardware and experiment anomalies; and (8) mission support, mission objectives, flight planning, and launch phase summary. Conclusions discussed as a result of the third visit to Skylab involve the advancement of the sciences, practical applications, the durability of man and systems in space, and spaceflight effectiveness and economy.

  17. Thermal barrier coating experience in the gas turbine engine

    NASA Technical Reports Server (NTRS)

    Bose, S.; Demasi-Marcin, J.

    1995-01-01

    Thermal Barrier Coatings (TBC), provide thermal insulation and oxidation resistance in an environment consisting of hot combustion gases. TBC's consist of a two layer system. The outer ceramic layer provides good thermal insulation due to the low thermal conductivity of the ceramic coatings used, while the inner metallic bond coat layer provides needed oxidation resistance to the underlying superalloy. Pratt & Whitney has over a decade of experience with several generations of TBC systems on turbine airfoils. This paper will focus on the latest TBC field experience along with a proposed durability model.

  18. Preparation of X-ray astronomy satellite experiment Development of computer programs for the Salyut-HEXE X-ray experiment ground station

    NASA Astrophysics Data System (ADS)

    Petrik, J.

    The engineering model of the Salyut-HEXE experiment is described. The detector system, electronics box, and ground station are addressed. The microprocessor system is considered, discussing the cards and presenting block diagrams of their functions. The telemetry is examined, including the various modes and the direct and indirect transmission modes. The ground station programs are discussed, including the tasks, program development, input and output programs, status, power supply, count rates, telemetry dump, hard copy, and checksum.

  19. Molecular Dynamics Visualization (MDV): Stereoscopic 3D Display of Biomolecular Structure and Interactions Using the Unity Game Engine.

    PubMed

    Wiebrands, Michael; Malajczuk, Chris J; Woods, Andrew J; Rohl, Andrew L; Mancera, Ricardo L

    2018-06-21

    Molecular graphics systems are visualization tools which, upon integration into a 3D immersive environment, provide a unique virtual reality experience for research and teaching of biomolecular structure, function and interactions. We have developed a molecular structure and dynamics application, the Molecular Dynamics Visualization tool, that uses the Unity game engine combined with large scale, multi-user, stereoscopic visualization systems to deliver an immersive display experience, particularly with a large cylindrical projection display. The application is structured to separate the biomolecular modeling and visualization systems. The biomolecular model loading and analysis system was developed as a stand-alone C# library and provides the foundation for the custom visualization system built in Unity. All visual models displayed within the tool are generated using Unity-based procedural mesh building routines. A 3D user interface was built to allow seamless dynamic interaction with the model while being viewed in 3D space. Biomolecular structure analysis and display capabilities are exemplified with a range of complex systems involving cell membranes, protein folding and lipid droplets.

  20. Limb radiance inversion radiometer. [Nimbus 6 satellite

    NASA Technical Reports Server (NTRS)

    Drozewski, R. W.; Gille, J. C.; Thomas, J. R.; Twohig, K. J.; Boyle, R. R.

    1975-01-01

    Engineering and scientific objectives of the LRIR experiment are described along with system requirements, subassemblies, and experiment operation. The mechanical, electrical, and thermal interfaces between the LRIR experiment and the Nimbus F spacecraft are defined. The protoflight model qualification and acceptance test program is summarized. Test data is presented in tables to give an overall view of each test parameter and possible trends of the performance of the LRIR experiment. Conclusions and recommendations are included.

  1. Hot-Fire Testing of 100 LB(sub F) LOX/LCH4 Reaction Control Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Kleinhenz, Julie E.

    2010-01-01

    Liquid oxygen/liquid methane (LO2/LCH4 ) has recently been viewed as a potential green propulsion system for both the Altair ascent main engine (AME) and reaction control system (RCS). The Propulsion and Cryogenic Advanced Development Project (PCAD) has been tasked by NASA to develop these green propellant systems to enable safe and cost effective exploration missions. However, experience with LO2/LCH4 as a propellant combination is limited, so testing of these systems is critical to demonstrating reliable ignition and performance. A test program of a 100 lb f reaction control engine (RCE) is underway at the Altitude Combustion Stand (ACS) of the NASA Glenn Research Center, with a focus on conducting tests at altitude conditions. These tests include a unique propellant conditioning feed system (PCFS) which allows for the inlet conditions of the propellant to be varied to test warm to subcooled liquid propellant temperatures. Engine performance, including thrust, c* and vacuum specific impulse (I(sub sp,vac)) will be presented as a function of propellant temperature conditions. In general, the engine performed as expected, with higher performance at warmer propellant temperatures but better efficiency at lower propellant temperatures. Mixture ratio effects were inconclusive within the uncertainty bands of data, but qualitatively showed higher performance at lower ratios.

  2. Improved Traceability of Mission Concept to Requirements Using Model Based Systems Engineering

    NASA Technical Reports Server (NTRS)

    Reil, Robin

    2014-01-01

    Model Based Systems Engineering (MBSE) has recently been gaining significant support as a means to improve the traditional document-based systems engineering (DBSE) approach to engineering complex systems. In the spacecraft design domain, there are many perceived and propose benefits of an MBSE approach, but little analysis has been presented to determine the tangible benefits of such an approach (e.g. time and cost saved, increased product quality). This thesis presents direct examples of how developing a small satellite system model can improve traceability of the mission concept to its requirements. A comparison of the processes and approaches for MBSE and DBSE is made using the NASA Ames Research Center SporeSat CubeSat mission as a case study. A model of the SporeSat mission is built using the Systems Modeling Language standard and No Magics MagicDraw modeling tool. The model incorporates mission concept and requirement information from the missions original DBSE design efforts. Active dependency relationships are modeled to analyze the completeness and consistency of the requirements to the mission concept. Overall experience and methodology are presented for both the MBSE and original DBSE design efforts of SporeSat.

  3. Undergraduate Students as Climate Communicators

    NASA Astrophysics Data System (ADS)

    Sharif, H. O.; Joseph, J.; Mullendore, G. L.

    2012-12-01

    The University of Texas at San Antonio (UTSA), San Antonio College (SAC), and the University of North Dakota (UND) are partnering with NASA to provide underrepresented undergraduates from UTSA, SAC, and other community colleges climate-related research and education experiences. The program aims to develop a robust response to climate change by providing K-16 climate change education; enhance the effectiveness of K-16 education particularly in engineering and other STEM disciplines by use of new instructional technologies; increase the enrollment in engineering programs and the number of engineering degrees awarded by showing engineering's usefulness in relation to the much-discussed contemporary issue of climate change; increase persistence in STEM degrees by providing student research opportunities; and increase the ethnic diversity of those receiving engineering degrees and help ensure an ethnically diverse response to climate change. Students will have the opportunity to participate in guided research experiences aligned with NASA Science Plan objectives for climate and Earth system science and the educational objectives of the three institutions. An integral part of the learning process will include training in modern media technology (webcasts), and in using this technology to communicate the information on climate change to others, especially high school students, culminating in production of a webcast about investigating aspects of climate change using NASA data. Content developed is leveraged by NASA Earth observation data and NASA Earth system models and tools. Several departments are involved in the educational program.

  4. Statistical Engineering in Air Traffic Management Research

    NASA Technical Reports Server (NTRS)

    Wilson, Sara R.

    2015-01-01

    NASA is working to develop an integrated set of advanced technologies to enable efficient arrival operations in high-density terminal airspace for the Next Generation Air Transportation System. This integrated arrival solution is being validated and verified in laboratories and transitioned to a field prototype for an operational demonstration at a major U.S. airport. Within NASA, this is a collaborative effort between Ames and Langley Research Centers involving a multi-year iterative experimentation process. Designing and analyzing a series of sequential batch computer simulations and human-in-the-loop experiments across multiple facilities and simulation environments involves a number of statistical challenges. Experiments conducted in separate laboratories typically have different limitations and constraints, and can take different approaches with respect to the fundamental principles of statistical design of experiments. This often makes it difficult to compare results from multiple experiments and incorporate findings into the next experiment in the series. A statistical engineering approach is being employed within this project to support risk-informed decision making and maximize the knowledge gained within the available resources. This presentation describes a statistical engineering case study from NASA, highlights statistical challenges, and discusses areas where existing statistical methodology is adapted and extended.

  5. Results of 30 kWt Safe Affordable Fission Engine (SAFE-30) primary heat transport testing

    NASA Astrophysics Data System (ADS)

    Pedersen, Kevin; van Dyke, Melissa; Houts, Mike; Godfroy, Tom; Martin, James; Dickens, Ricky; Williams, Eric; Harper, Roger; Salvil, Pat; Reid, Bob

    2001-02-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on the Safe Affordable Fission Engine-30 kilowatt (SAFE30) test article are being performed at the Marshall Space Flight Center. This paper discusses the results of these experiments to date, and describes the additional testing that will be performed. Recommendations related to the design of testable space fission power and propulsion systems are made. .

  6. Material engineering and fabrication experiences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havn, T.

    1995-10-01

    Material selection for hydrocarbon and sea water systems is shortly described and experiences are explained. The risk of external stress corrosion cracking is discussed. Same is the need for isolation pipe spools to avoid galvanic corrosion. Possible corrosion as result of hot work reduction on platform modification work is discussed. Benefit from positive material identification is explained and the solution of a weld problem due to mix-up of filler material is shown. Experiences with cold bending and subsea material engineering are discussed and recommendations are given. Fracture mechanic techniques with purpose of avoiding costly replacement and repair welding are shownmore » by two examples. At the end the new cost reduction trend of using performance based specifications is shortly discussed with respect to material requirements.« less

  7. Analysis of Student Service-Learning Reflections for the Assessment of Transferable-Skills Development

    NASA Astrophysics Data System (ADS)

    Rizzo, D. M.; Dewoolkar, M.; Hayden, N.; Oka, L.; Pearce, A. R.

    2010-12-01

    The civil and environmental engineering (CEE) programs at the University of Vermont (UVM) incorporate systems thinking and a systems approach to sustainable engineering problem solving. A systems approach considers long-term social, environmental and economic factors within the context of the engineering problem solution and encompasses sustainable engineering solutions. Our goal is to prepare students to become leaders in their chosen field who can anticipate co-products associated with forecasted solutions. As a way of practicing the systems approach, we include service-learning projects in many of our undergraduate engineering courses, culminating with the senior capstone design course. We use a variety of formative and summative assessment methods to gage student understanding and attitudes including student surveys, focus groups, assessment of student projects, and student reflections. Student reflections from two courses -Modeling Environmental and Transportation Systems (31 juniors) and Senior Design Project (30 seniors) are compared. Of these, 25 students were common to both courses. The focus of the systems modeling service-learning project involved mentoring home-schooled children (11-14 yrs old) to solve problems of mobility, using the fun and inspiration of biomimicry. Students were required to invent innovative methods to move people or goods that improve associated constraints (i.e., minimize congestion, reduce pollution, increase safety), or reduce the need for transportation altogether. The capstone design project required a comprehensive engineering design involving two or more CEE sub-disciplines. Both service-learning projects were intended to enhance students’ academic learning experience, attain civic engagement and reinforce transferable skills (written and oral communication, teamwork, leadership and mentoring skills). The student course reflections were not guided; yet they provided valuable data to assess commonalities and differences in student attitudes toward their service-learning projects, specifically, the development of transferable skills. In the spirit of service-learning pedagogy, we divide the contents of students’ written reflections into three categories - academic enhancement, civic engagement and personal growth skills. The commonalities focused mostly on civic engagement. Differences are observed primarily in academic enhancement and personal growth categories. Students working on the biomimicry design project reflected on personal growth (e.g. leadership skills, mentoring, creativity, organizational skills, communication to nontechnical audience), but did not credit it with academic enhancement. In contrast, the senior design reflections concentrated on academics, specifically, students appreciated the enhancement of technical skills as a part of their engineering experience.

  8. Stereotype Threat: A Qualitative Study of the Challenges Facing Female Undergraduate Engineering Students

    NASA Astrophysics Data System (ADS)

    Entsminger, J. R., II

    From a sociocultural point of view, this qualitative case study explored how upper-level, female undergraduate engineering students perceived the possibility of or experience with stereotype threat as shaping their experiences. The study also investigated how these students explained their reasons for choosing their engineering major, the challenges they encountered in the major, and their reasons for persevering in spite of those challenges. Using Steele and Aronson's (1995) stereotype threat theory as a framework, and considering the documented underrepresentation of females in engineering, the study sought to examine how stereotype threat shaped the experiences of these students and if stereotype threat could be considered a valid reason for the underrepresentation. The study was conducted at a large, four-year public university. First, students in the College of Engineering and Engineering Technology completed the Participant Screening Survey. Based on responses from the survey, six female engineering students from the college were identified and invited to participate in the study. The participants came from the following majors: Electrical Engineering, Industrial and Systems Engineering, and Mechanical Engineering. After receiving the study consent letter and agreeing to participate, the students were involved in a 90-minute focus group meeting, a 45-minute one-on-one interview, and a 30-minute follow-up interview. After conducting the data collection methods, the data were then transcribed, analyzed, and coded for theme development. The themes that emerged coincided with each research question. The themes highlighted the complex interactions and experiences shared by the female engineering majors. The female students were enveloped in an environment where there existed an increased risk for activating stereotype threat. In addition, the female students described feeling pushed to prove to themselves and to others that the negative stereotype that 'females are bad at engineering' was untrue. The findings illustrated the need for systematic changes at the university level. Intervention recommendations were provided. In regards to female underrepresentation in science fields, including engineering, stereotype threat certainly had the potential to cause the female students to question themselves, their abilities, their choice of an academic major, and subsequently remove themselves from a hostile learning or working environment. Thus, educational institutions and workplace organizations are responsible for not only educating themselves regarding stereotype threat, but also for taking steps to alleviate the pernicious effects of stereotype threat.

  9. Determination of two-stroke engine exhaust noise by the method of characteristics

    NASA Technical Reports Server (NTRS)

    Jones, A. D.; Brown, G. L.

    1981-01-01

    A computational technique was developed for the method of characteristics solution of a one-dimensional flow in a duct as applied to the wave action in an engine exhaust system. By using the method, it was possible to compute the unsteady flow in both straight pipe and tuned expansion chamber exhaust systems as matched to the flow from the cylinder of a small two-stroke engine. The radiated exhaust noise was then determined by assuming monopole radiation from the tailpipe outlet. Very good agreement with experiment on an operation engine was achieved in the calculation of both the third octave radiated noise and the associated pressure cycles at several locations in the different exhaust systems. Of particular interest is the significance of nonlinear behavior which results in wave steepening and shock wave formation. The method computes the precise paths on the x-t plane of a finite number of C(sub +), C(sub -) and P characteristics, thereby obtaining high accuracy in determining the tailpipe outlet velocity and the radiated noise.

  10. Determination of two-stroke engine exhaust noise by the method of characteristics

    NASA Astrophysics Data System (ADS)

    Jones, A. D.; Brown, G. L.

    1981-06-01

    A computational technique was developed for the method of characteristics solution of a one-dimensional flow in a duct as applied to the wave action in an engine exhaust system. By using the method, it was possible to compute the unsteady flow in both straight pipe and tuned expansion chamber exhaust systems as matched to the flow from the cylinder of a small two-stroke engine. The radiated exhaust noise was then determined by assuming monopole radiation from the tailpipe outlet. Very good agreement with experiment on an operation engine was achieved in the calculation of both the third octave radiated noise and the associated pressure cycles at several locations in the different exhaust systems. Of particular interest is the significance of nonlinear behavior which results in wave steepening and shock wave formation. The method computes the precise paths on the x-t plane of a finite number of C(sub +), C(sub -) and P characteristics, thereby obtaining high accuracy in determining the tailpipe outlet velocity and the radiated noise.

  11. The MUSES Satellite Team and Multidisciplinary System Engineering

    NASA Technical Reports Server (NTRS)

    Chen, John C.; Paiz, Alfred R.; Young, Donald L.

    1997-01-01

    In a unique partnership between three minority-serving institutions and NASA's Jet Propulsion Laboratory, a new course sequence, including a multidisciplinary capstone design experience, is to be developed and implemented at each of the schools with the ambitious goal of designing, constructing and launching a low-orbit Earth-resources satellite. The three universities involved are North Carolina A&T State University (NCA&T), University of Texas, El Paso (UTEP), and California State University, Los Angeles (CSULA). The schools form a consortium collectively known as MUSES - Minority Universities System Engineering and Satellite. Four aspects of this project make it unique: (1) Including all engineering disciplines in the capstone design course, (2) designing, building and launching an Earth-resources satellite, (3) sustaining the partnership between the three schools to achieve this goal, and (4) implementing systems engineering pedagogy at each of the three schools. This paper will describe the partnership and its goals, the first design of the satellite, the courses developed at NCA&T, and the implementation plan for the course sequence.

  12. Summer Work Experience: Determining Methane Combustion Mechanisms and Sub-Scale Diffuser Properties for Space Transporation System Engine Testing

    NASA Technical Reports Server (NTRS)

    Williams, Powtawche N.

    1998-01-01

    To assess engine performance during the testing of Space Shuttle Main Engines (SSMEs), the design of an optimal altitude diffuser is studied for future Space Transportation Systems (STS). For other Space Transportation Systems, rocket propellant using kerosene is also studied. Methane and dodecane have similar reaction schemes as kerosene, and are used to simulate kerosene combustion processes at various temperatures. The equations for the methane combustion mechanism at high temperature are given, and engine combustion is simulated on the General Aerodynamic Simulation Program (GASP). The successful design of an altitude diffuser depends on the study of a sub-scaled diffuser model tested through two-dimensional (2-D) flow-techniques. Subroutines given calculate the static temperature and pressure at each Mach number within the diffuser flow. Implementing these subroutines into program code for the properties of 2-D compressible fluid flow determines all fluid characteristics, and will be used in the development of an optimal diffuser design.

  13. Turbomachine Sealing and Secondary Flows. Part 1; Review of Sealing Performance, Customer, Engine Designer, and Research Issues

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Steinetz, B. M.; Braun, M. J.

    2004-01-01

    Although forces outside our control shape our industry, turbomachine sealing research, design, and customer agendas established in 1978 by Ludwig, Campbell, and Smith in terms of specific fuel consumption and performance remain as objectives today. Advances have been made because failures of the space shuttle main engine turbomachinery ushered in a new understanding of sealing in high-power-density systems. Further, it has been shown that changes in sealing, especially for high-pressure rotors, dramatically change the performance of the entire engine or turbomachine. Maintaining seal leakages and secondary flows within engine design specifications remains the most efficient and cost effective way to enhance performance and minimize maintenance costs. This three-part review summarizes experiences, ideas, successes, and failures by NASA and the U.S. aerospace industry in secondary flow management in advanced turbomachinery. Part 1 presents system sealing, part 2 system rotordynamics, and part 3 modeling, with some overlap of each part.

  14. DomeGene Experiment at Cell Biology Experiment Facility (CBEF) in JPM

    NASA Image and Video Library

    2009-03-18

    ISS018-E-040985 (18 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18 flight engineer, uses a computer at the Japanese Remote Manipulator System (JEM-RMS) work station in the Kibo laboratory of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station.

  15. DomeGene Experiment at Cell Biology Experiment Facility (CBEF) in JPM

    NASA Image and Video Library

    2009-03-18

    ISS018-E-040986 (18 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18 flight engineer, uses a computer at the Japanese Remote Manipulator System (JEM-RMS) work station in the Kibo laboratory of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station.

  16. Accelerator Technology and High Energy Physics Experiments, Photonics Applications and Web Engineering, Wilga, May 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2012-05-01

    The paper is the second part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with accelerator technology and high energy physics experiments. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the XXXth Jubilee SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonicselectronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-275].

  17. Life sciences Spacelab Mission Development test 3 (SMD 3) data management report

    NASA Technical Reports Server (NTRS)

    Moseley, E. C.

    1977-01-01

    Development of a permanent data system for SMD tests was studied that would simulate all elements of the shuttle onboard, telemetry, and ground data systems that are involved with spacelab operations. The onboard data system (ODS) and the ground data system (GDS) were utilized. The air-to-ground link was simulated by a hardwired computer-to-computer interface. A patch board system was used on board to select experiment inputs, and the downlink configuration from the ODS was changed by a crew keyboard entry to support each experiment. The ODS provided a CRT display of experiment parameters to enable the crew to monitor experiment performance. An onboard analog system, with recording capability, was installed to handle high rate data and to provide a backup to the digital system. The GDS accomplished engineering unit conversion and limit sensing, and provided realtime parameter display on CRT's in the science monitoring area and the test control area.

  18. Advanced Reciprocating Engine Systems (ARES) Research at Argonne National Laboratory. A Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Sreenath; Biruduganti, Muni; Bihari, Bipin

    The goals of these experiments were to determine the potential of employing spectral measurements to deduce combustion metrics such as HRR, combustion temperatures, and equivalence ratios in a natural gas-fired reciprocating engine. A laser-ignited, natural gas-fired single-cylinder research engine was operated at various equivalence ratios between 0.6 and 1.0, while varying the EGR levels between 0% and maximum to thereby ensure steady combustion. Crank angle-resolved spectral signatures were collected over 266-795 nm, encompassing chemiluminescence emissions from OH*, CH*, and predominantly by CO2* species. Further, laser-induced gas breakdown spectra were recorded under various engine operating conditions.

  19. Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro.

    PubMed

    Termglinchan, Vittavat; Seeger, Timon; Chen, Caressa; Wu, Joseph C; Karakikes, Ioannis

    2017-01-01

    Precision genome engineering is rapidly advancing the application of the induced pluripotent stem cells (iPSCs) technology for in vitro disease modeling of cardiovascular diseases. Targeted genome editing using engineered nucleases is a powerful tool that allows for reverse genetics, genome engineering, and targeted transgene integration experiments to be performed in a precise and predictable manner. However, nuclease-mediated homologous recombination is an inefficient process. Herein, we describe the development of an optimized method combining site-specific nucleases and the piggyBac transposon system for "seamless" genome editing in pluripotent stem cells with high efficiency and fidelity in vitro.

  20. KSC-2012-1025

    NASA Image and Video Library

    2012-01-12

    CAPE CANAVERAL, Fla. – In the Space Shuttle Main Engine Processing Facility at NASA’s Kennedy Space Center in Florida, a technician oversees the closure of a transportation canister containing a Pratt Whitney Rocketdyne space shuttle main engine (SSME). This is the second of the 15 engines used during the Space Shuttle Program to be prepared for transfer to NASA's Stennis Space Center in Mississippi. The engines will be stored at Stennis for future use on NASA's new heavy-lift rocket, the Space Launch System (SLS), which will carry NASA's new Orion spacecraft, cargo, equipment and science experiments to space. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Gianni Woods

  1. A Software Engineering Approach based on WebML and BPMN to the Mediation Scenario of the SWS Challenge

    NASA Astrophysics Data System (ADS)

    Brambilla, Marco; Ceri, Stefano; Valle, Emanuele Della; Facca, Federico M.; Tziviskou, Christina

    Although Semantic Web Services are expected to produce a revolution in the development of Web-based systems, very few enterprise-wide design experiences are available; one of the main reasons is the lack of sound Software Engineering methods and tools for the deployment of Semantic Web applications. In this chapter, we present an approach to software development for the Semantic Web based on classical Software Engineering methods (i.e., formal business process development, computer-aided and component-based software design, and automatic code generation) and on semantic methods and tools (i.e., ontology engineering, semantic service annotation and discovery).

  2. Jim Sanovia - South Dakota School of Mines and Technology Undergrad: Geological Engineering (Jr.) September 7, 2004 thesanoves@hotmail.com Abstract Experiences Interning at NASA/GSFC

    NASA Astrophysics Data System (ADS)

    Sanovia, J. J.

    2004-12-01

    In the summer of 2001 and 2004 I experienced internships at the NASA/ Goddard Space Flight Center in Greenbelt, MD. Through these internships I was introduced to Geographical Information Systems and Remote Sensing. My experiences at NASA have also helped me acquire the ability to learn how I can now best utilize my networking contacts at NASA and other connections to facilitate my future plans as an engineer working on Indian and non-Indian Reservation lands. My experiences working at a large agency such as NASA have shown me the significance how a Native American engineer can strive to improve and preserve Indian and non-Indian lands for future generations. Formulating new and inventive methodologies on how to better approach Indian Reservation research while incorporating Native American culture I feel are vital for success. My accomplishments throughout the recent past years have also allowed me conduct outreach to Indian K-12 kids and college students alike.

  3. Qualitative models for space system engineering

    NASA Technical Reports Server (NTRS)

    Forbus, Kenneth D.

    1990-01-01

    The objectives of this project were: (1) to investigate the implications of qualitative modeling techniques for problems arising in the monitoring, diagnosis, and design of Space Station subsystems and procedures; (2) to identify the issues involved in using qualitative models to enhance and automate engineering functions. These issues include representing operational criteria, fault models, alternate ontologies, and modeling continuous signals at a functional level of description; and (3) to develop a prototype collection of qualitative models for fluid and thermal systems commonly found in Space Station subsystems. Potential applications of qualitative modeling to space-systems engineering, including the notion of intelligent computer-aided engineering are summarized. Emphasis is given to determining which systems of the proposed Space Station provide the most leverage for study, given the current state of the art. Progress on using qualitative models, including development of the molecular collection ontology for reasoning about fluids, the interaction of qualitative and quantitative knowledge in analyzing thermodynamic cycles, and an experiment on building a natural language interface to qualitative reasoning is reported. Finally, some recommendations are made for future research.

  4. The fusion of biology, computer science, and engineering: towards efficient and successful synthetic biology.

    PubMed

    Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J

    2012-01-01

    Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.

  5. Ceramic thermal barrier coatings for commercial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Meier, Susan Manning; Gupta, Dinesh K.; Sheffler, Keith D.

    1991-01-01

    The paper provides an overview of the short history, current status, and future prospects of ceramic thermal barrier coatings for gas turbine engines. Particular attention is given to plasma-sprayed and electron beam-physical vapor deposited yttria-stabilized (7 wt pct Y2O3) zirconia systems. Recent advances include improvements in the spallation life of thermal barrier coatings, improved bond coat composition and spraying techniques, and improved component design. The discussion also covers field experience, life prediction modeling, and future directions in ceramic coatings in relation to gas turbine engine design.

  6. Electric propulsion options for 10 kW class earth space missions

    NASA Technical Reports Server (NTRS)

    Patterson, M. J.; Curran, Francis M.

    1989-01-01

    Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment have been evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA II 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10(7) to 2.1x10(7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA II 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10(6) to 3.6x10(6) N-s, and approximately 662 to 1072 m/s, respectively.

  7. Model-Based Systems Engineering Pilot Program at NASA Langley

    NASA Technical Reports Server (NTRS)

    Vipavetz, Kevin G.; Murphy, Douglas G.; Infeld, Samatha I.

    2012-01-01

    NASA Langley Research Center conducted a pilot program to evaluate the benefits of using a Model-Based Systems Engineering (MBSE) approach during the early phase of the Materials International Space Station Experiment-X (MISSE-X) project. The goal of the pilot was to leverage MBSE tools and methods, including the Systems Modeling Language (SysML), to understand the net gain of utilizing this approach on a moderate size flight project. The System Requirements Review (SRR) success criteria were used to guide the work products desired from the pilot. This paper discusses the pilot project implementation, provides SysML model examples, identifies lessons learned, and describes plans for further use on MBSE on MISSE-X.

  8. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean R.

    2015-01-01

    Combustion instability in solid rocket motors and liquid engines is a complication that continues to plague designers and engineers. Many rocket systems experience violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. During sever cases of combustion instability fluctuation amplitudes can reach values equal to or greater than the average chamber pressure. Large amplitude oscillations lead to damaged injectors, loss of rocket performance, damaged payloads, and in some cases breach of case/loss of mission. Historic difficulties in modeling and predicting combustion instability has reduced most rocket systems experiencing instability into a costly fix through testing paradigm or to scrap the system entirely.

  9. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Piland, William M.

    1999-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.

  10. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Astrophysics Data System (ADS)

    Monell, Donald W.; Piland, William M.

    2000-07-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.

  11. Focused Rocket-Ejector RBCC Experiments

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    This document reports the results of additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Perm State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3rd generation Reusable Launch Vehicles (RLV). The two tasks conducted under this program build on earlier NASA MSFC funded research program on rocket ejector investigations. The first task continued a systematic investigation of the improvements provided by a gaseous hydrogen (GHz)/oxygen (GO2) twin thruster RBCC rocket ejector system over a single rocket system. In a similar vein, the second task continued investigations into the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. For the GH2/GO2 propellant rocket ejector experiments, high frequency measurements of the pressure field within the system were also made to understand the unsteady behavior of the flowfield.

  12. GSFC Technical Outreach: The Capitol College Model

    NASA Technical Reports Server (NTRS)

    Marius, Julio L.; Wagner, David

    2008-01-01

    In February 2005, as part of the National Aeronautic and Space Administration (NASA) Technical Outreach Program, Goddard Space Flight Center (GSFC) awarded Capitol College of Laurel, Maryland an Educational Grant to establish a Space Operation academic curriculum to meet the future needs of mission operations engineers. This was in part due to the aerospace industry and GSFC concerns that a large number of professional engineers are projected to retire in the near term with evidence showing that current enrollment in engineering schools will not produce sufficient number of space operation trained engineers that will meet industry and government demands. Capitol College, under the agreement of the Educational Grant, established the Space Operations Institute (SOI) with a new curriculum in Space Operations that was approved and certified by the State of Maryland. The SO1 programs focuses on attracting, recruiting, and training a pipeline of highly qualified engineers with experience in mission operations, system engineering and development. The selected students are integrated as members of the engineering support team in any of the missions supported by the institute. The students are mentored by professional engineers from several aerospace companies that support GSFC. Initially, the institute was involved in providing console engineers and mission planning trainees for the Upper Atmosphere Research Satellite (UARS), the Earth Radiation Budget Satellite (ERBS) and the Total Ozone Mapping Spectrometer mission (TOMS). Subsequently, the students were also involved in the technology refresh of the TOMS ground system and other mission operations development. Further mission assignment by GSFC management included participation in the Tropical Rainfall Measuring Mission (TRMM) mission operations and ground system technology refresh. The SOI program has been very successful. Since October 2005, sixty-four students have been enrolled in the SOI program and twenty-five have already graduated from the program, nineteen of whom are employed by company's supporting GSFC. Due to the success of the program, the initial grant period was extended for another period of two years. This paper presents the process that established the SOI as a viable pipeline of mission operations engineers, the lessons learned in the process of dealing with grants, and experience gained in mentoring engineering students that are responsible for particular areas of expertise and functionality. This paper can also be considered a case study and model for integrating a student team with government and industry professionals in the real world of mission operations.

  13. Lessons learned in transitioning to an open systems environment

    NASA Technical Reports Server (NTRS)

    Boland, Dillard E.; Green, David S.; Steger, Warren L.

    1994-01-01

    Software development organizations, both commercial and governmental, are undergoing rapid change spurred by developments in the computing industry. To stay competitive, these organizations must adopt new technologies, skills, and practices quickly. Yet even for an organization with a well-developed set of software engineering models and processes, transitioning to a new technology can be expensive and risky. Current industry trends are leading away from traditional mainframe environments and toward the workstation-based, open systems world. This paper presents the experiences of software engineers on three recent projects that pioneered open systems development for NASA's Flight Dynamics Division of the Goddard Space Flight Center (GSFC).

  14. Main propulsion system test requirements for the two-engine Shuttle-C

    NASA Technical Reports Server (NTRS)

    Lynn, E. E.; Platt, G. K.

    1989-01-01

    The Shuttle-C is an unmanned cargo carrying derivative of the space shuttle with optional two or three space shuttle main engines (SSME's), whereas the shuttle has three SSME's. Design and operational differences between the Shuttle-C and shuttle were assessed to determine requirements for additional main propulsion system (MPS) verification testing. Also, reviews were made of the shuttle main propulsion test program objectives and test results and shuttle flight experience. It was concluded that, if significant MPS modifications are not made beyond those currently planned, then main propulsion system verification can be concluded with an on-pad flight readiness firing.

  15. Damage-mitigating control of space propulsion systems for high performance and extended life

    NASA Technical Reports Server (NTRS)

    Ray, Asok; Wu, Min-Kuang; Dai, Xiaowen; Carpino, Marc; Lorenzo, Carl F.

    1993-01-01

    Calculations are presented showing that a substantial improvement in service life of a reusable rocket engine can be achieved by an insignificant reduction in the system dynamic performance. The paper introduces the concept of damage mitigation and formulates a continuous-time model of fatigue damage dynamics. For control of complex mechanical systems, damage prediction and damage mitigation are carried out based on the available sensory and operational information such that the plant can be inexpensively maintained and safely and efficiently steered under diverse operating conditions. The results of simulation experiments are presented for transient operations of a reusable rocket engine.

  16. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  17. Most common road safety engineering deficiencies in South Eastern Europe as a part of safe system approach

    NASA Astrophysics Data System (ADS)

    Jovanov, D.; Vollpracht, H. J.; Beles, H.; Popa, V.; Tolea, B. A.

    2017-10-01

    Most common road safety engineering deficiencies identified by the authors in South Eastern Europe, including Romania, have been collected together and presented in this paper as a part of road safety unbreakably connected to the safe system approach (driver-vehicle-road). In different South Eastern Europe countries Road Safety Audit (RSA), Road Safety Inspection (RSI), as well as Black Spot Management (BSM) was introduced and practical implementation experience enabled the authors to analyze the road safety problems. Typical road safety engineering deficiencies have been presented in 8 different subsections, based on PIARC (World Road Association) RSA approach. This paper presents collected common road safety problems with relevant illustrations (real pictures) with associated accident risks.

  18. Medical evaluations on the KC-135 1990 flight report summary

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles W.; Guess, Terrell M.; Whiting, Charles W.; Doarn, Charles R.

    1991-01-01

    The medical investigations completed on the KC-135 during FY 1990 in support of the development of the Health Maintenance Facility and Medical Operations are discussed. The experiments are comprised of engineering evaluations of medical hardware and medical procedures. The investigating teams are made up of both medical and engineering personnel responsible for the development of medical hardware and medical operations. The hardware evaluated includes dental equipment, a coagulation analyzer, selected pharmaceutical aerosol devices, a prototype air/fluid separator, a prototype packaging and stowage system for medical supplies, a microliter metering system, and a workstation for minor surgical procedures. The results of these engineering evaluations will be used in the design of fleet hardware as well as to identify hardware specific training requirements.

  19. Microgravity experiment system utilizing a balloon

    NASA Astrophysics Data System (ADS)

    Namiki, M.; Ohta, S.; Yamagami, T.; Koma, Y.; Akiyama, H.; Hirosawa, H.; Nishimura, J.

    A system for microgravity experiments by using a stratospheric balloon has been planned and developed in ISAS since 1978. A rocket-shaped chamber mounting the experiment apparatus is released from the balloon around 30 km altitude. The microgravity duration is from the release to opening of parachute, controlled by an on-board sequential timer. Test flights were performed in 1980 and in 1981. In September 1983 the first scientific experiment, observing behaviors and brain activities of fishes in the microgravity circumstance, have been successfully carried out. The chamber is specially equipped with movie cameras and subtransmitters, and its release altitude is about 32 km. The microgravity observed inside the chamber is less than 2.9 × 10-3 G during 10 sec. Engineering aspects of the system used in the 1983 experiment are presented.

  20. Learning Experiences | Argonne National Laboratory

    Science.gov Websites

    for Genomics and Systems Biology IMEInstitute for Molecular Engineering JCESRJoint Center for Energy SBCStructural Biology Center Energy.gov U.S. Department of Energy Office of Science UChicago Argonne LLC Privacy

  1. Application of physics engines in virtual worlds

    NASA Astrophysics Data System (ADS)

    Norman, Mark; Taylor, Tim

    2002-03-01

    Dynamic virtual worlds potentially can provide a much richer and more enjoyable experience than static ones. To realize such worlds, three approaches are commonly used. The first of these, and still widely applied, involves importing traditional animations from a modeling system such as 3D Studio Max. This approach is therefore limited to predefined animation scripts or combinations/blends thereof. The second approach involves the integration of some specific-purpose simulation code, such as car dynamics, and is thus generally limited to one (class of) application(s). The third approach involves the use of general-purpose physics engines, which promise to enable a range of compelling dynamic virtual worlds and to considerably speed up development. By far the largest market today for real-time simulation is computer games, revenues exceeding those of the movie industry. Traditionally, the simulation is produced by game developers in-house for specific titles. However, off-the-shelf middleware physics engines are now available for use in games and related domains. In this paper, we report on our experiences of using middleware physics engines to create a virtual world as an interactive experience, and an advanced scenario where artificial life techniques generate controllers for physically modeled characters.

  2. From biomedical-engineering research to clinical application and industrialization

    NASA Astrophysics Data System (ADS)

    Taguchi, Tetsushi; Aoyagi, Takao

    2012-12-01

    The rising costs and aging of the population due to a low birth rate negatively affect the healthcare system in Japan. In 2011, the Council for Science and Technology Policy released the 4th Japan's Science and Technology Basic Policy Report from 2011 to 2015. This report includes two major innovations, 'Life Innovation' and 'Green Innovation', to promote economic growth. Biomedical engineering research is part of 'Life Innovation' and its outcomes are required to maintain people's mental and physical health. It has already resulted in numerous biomedical products, and new ones should be developed using nanotechnology-based concepts. The combination of accumulated knowledge and experience, and 'nanoarchitechtonics' will result in novel, well-designed functional biomaterials. This focus issue contains three reviews and 19 original papers on various biomedical topics, including biomaterials, drug-delivery systems, tissue engineering and diagnostics. We hope that it demonstrates the importance of collaboration among scientists, engineers and clinicians, and will contribute to the further development of biomedical engineering.

  3. A study on an information security system of a regional collaborative medical platform.

    PubMed

    Zhao, Junping; Peng, Kun; Leng, Jinchang; Sun, Xiaowei; Zhang, Zhenjiang; Xue, Wanguo; Ren, Lianzhong

    2010-01-01

    The objective of this study was to share the experience of building an information security system for a regional collaborative medical platform (RCMP) and discuss the lessons learned from practical projects. Safety measures are analyzed from the perspective of system engineering. We present the essential requirements, critical architectures, and policies for system security of regional collaborative medical platforms.

  4. Training Program for Practical Engineering Design through the Collaboration with Regional Companies

    NASA Astrophysics Data System (ADS)

    Gofuku, Akio; Tabata, Nobuhisa; Tomita, Eiji; Funabiki, Nobuo

    An education program to bring up engineering design capabilities through long-term internship by the collaboration with regional companies has been put in practice for five years. The program is composed of two types of long-term internships and several lectures for patent systems and engineering ethics. This paper describes the outline of the program, educational effects, and our experiences. The program was improved into two educational programs in 2011. The one is a special course to educate engineers and scientists who can lead the technologies of their domains. The other is a long-term internship program for master students in engineering divisions of graduate school. This paper also describes the current activities of the latter program.

  5. Environmentally Responsible Aviation: Propulsion Research to Enable Fuel Burn, Noise and Emissions Reduction

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale; Suder, Kenneth

    2015-01-01

    The NASA Environmentally Responsible Aviation (ERA) program is maturing technologies to enable simultaneous reduction of fuel burn, noise and emissions from an aircraft engine system. Three engine related Integrated Technology Demonstrations (ITDs) have been completed at Glenn Research Center in collaboration with Pratt Whitney, General Electric and the Federal Aviation Administration. The engine technologies being matured are: a low NOx, fuel flexible combustor in partnership with Pratt Whitney; an ultra-high bypass, ducted propulsor system in partnership with Pratt Whitney and FAA; and high pressure ratio, front-stage core compressor technology in partnership with General Electric. The technical rationale, test configurations and overall results from the test series in each ITD are described. ERA is using system analysis to project the benefits of the ITD technologies on potential aircraft systems in the 2025 timeframe. Data from the ITD experiments were used to guide the system analysis assumptions. Results from the current assessments for fuel burn, noise and oxides of nitrogen emissions are presented.

  6. Environmentally Responsible Aviation: Propulsion Research to Enable Fuel Burn, Noise and Emissions Reduction

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale E.; Suder, Kenneth L.

    2015-01-01

    The NASA Environmentally Responsible Aviation (ERA) program is maturing technologies to enable simultaneous reduction of fuel burn, noise and emissions from an aircraft engine system. Three engine related Integrated Technology Demonstrations (ITDs) have been completed at Glenn Research Center in collaboration with Pratt Whitney, General Electric and the Federal Aviation Administration. The engine technologies being matured are a low NOx, fuel flexible combustor in partnership with Pratt Whitney, an ultra-high bypass, ducted propulsor system in partnership with Pratt Whitney FAA and high pressure ratio, front-stage core compressor technology in partnership with General Electric. The technical rationale, test configurations and overall results from the test series in each ITD are described. ERA is using system analysis to project the benefits of the ITD technologies on potential aircraft systems in the 2025 timeframe. Data from the ITD experiments were used to guide the system analysis assumptions. Results from the current assessments for fuel burn, noise and oxides of nitrogen emissions are presented.

  7. MSFC Skylab airlock module, volume 2. [systems design and performance, systems support activity, and reliability and safety programs

    NASA Technical Reports Server (NTRS)

    1974-01-01

    System design and performance of the Skylab Airlock Module and Payload Shroud are presented for the communication and caution and warning systems. Crew station and storage, crew trainers, experiments, ground support equipment, and system support activities are also reviewed. Other areas documented include the reliability and safety programs, test philosophy, engineering project management, and mission operations support.

  8. The Genome-Based Metabolic Systems Engineering to Boost Levan Production in a Halophilic Bacterial Model.

    PubMed

    Aydin, Busra; Ozer, Tugba; Oner, Ebru Toksoy; Arga, Kazim Yalcin

    2018-03-01

    Metabolic systems engineering is being used to redirect microbial metabolism for the overproduction of chemicals of interest with the aim of transforming microbial hosts into cellular factories. In this study, a genome-based metabolic systems engineering approach was designed and performed to improve biopolymer biosynthesis capability of a moderately halophilic bacterium Halomonas smyrnensis AAD6 T producing levan, which is a fructose homopolymer with many potential uses in various industries and medicine. For this purpose, the genome-scale metabolic model for AAD6 T was used to characterize the metabolic resource allocation, specifically to design metabolic engineering strategies for engineered bacteria with enhanced levan production capability. Simulations were performed in silico to determine optimal gene knockout strategies to develop new strains with enhanced levan production capability. The majority of the gene knockout strategies emphasized the vital role of the fructose uptake mechanism, and pointed out the fructose-specific phosphotransferase system (PTS fru ) as the most promising target for further metabolic engineering studies. Therefore, the PTS fru of AAD6 T was restructured with insertional mutagenesis and triparental mating techniques to construct a novel, engineered H. smyrnensis strain, BMA14. Fermentation experiments were carried out to demonstrate the high efficiency of the mutant strain BMA14 in terms of final levan concentration, sucrose consumption rate, and sucrose conversion efficiency, when compared to the AAD6 T . The genome-based metabolic systems engineering approach presented in this study might be considered an efficient framework to redirect microbial metabolism for the overproduction of chemicals of interest, and the novel strain BMA14 might be considered a potential microbial cell factory for further studies aimed to design levan production processes with lower production costs.

  9. Hopkins during CFE-2 Experiment

    NASA Image and Video Library

    2013-11-20

    ISS038-E-005962 (19 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the Capillary Flow Experiment-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.

  10. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor W. Wong; Tian Tian; Grant Smedley

    2003-08-28

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. A detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and concepts have been explored, and engine experiments will validate these concepts. An iterative process of experimentation, simulation and analysis, will be followed with the goal of demonstrating a complete optimized low-friction engine system. As planned, MIT has developed guidelinesmore » for an initial set of low-friction piston-ring-pack designs. Current recommendations focus on subtle top-piston-ring and oil-control-ring characteristics. A full-scale Waukesha F18 engine has been installed at Colorado State University and testing of the baseline configuration is in progress. Components for the first design iteration are being procured. Subsequent work includes examining the friction and engine performance data and extending the analyses to other areas to evaluate opportunities for further friction improvement and the impact on oil consumption/emission and wear, towards demonstrating an optimized reduced-friction engine system.« less

  11. The experiences of women engineers who have completed one to five years of professional engineering employment: A phenomenological study

    NASA Astrophysics Data System (ADS)

    White, Susan M.

    Women engineers remain underrepresented in employment in engineering fields in the United States. Feminist theory views this gender disparity beyond equity in numbers for women engineers and looks at structural issues of women's access, opportunities, and quality of experience in the workplace. Research on women's success and persistence in engineering education is diverse; however, there are few studies that focus on the early years of women's careers in engineering and less using a phenomenological research design. Experiences of women engineers who have completed one to five years of professional engineering employment are presented using a phenomenological research design. Research questions explored the individual and composite experiences for the co-researchers of the study as well as challenges and advantages of the phenomenon of having completed one to five years of professional engineering employment. Themes that emanated from the data were a feeling that engineering is a positive profession, liking math and science from an early age, having experiences of attending math and science camps or learning and practicing engineering interests with their fathers for some co-researchers. Other themes included a feeling of being different as a woman in the engineering workplace, taking advantage of opportunities for training, education, and advancement to further their careers, and the role of informal and formal mentoring in developing workplace networks and engineering expertise. Co-researchers negotiated issues of management quality and support, experiences of gender discrimination in the workplace, and having to make decisions balancing their careers and family responsibilities. Finally, the women engineers for this research study expressed intentions to persist in their careers while pursuing expertise and experience in their individual engineering fields.

  12. Bridging the Engineering and Medicine Gap

    NASA Technical Reports Server (NTRS)

    Walton, M.; Antonsen, E.

    2018-01-01

    A primary challenge NASA faces is communication between the disparate entities of engineers and human system experts in life sciences. Clear communication is critical for exploration mission success from the perspective of both risk analysis and data handling. The engineering community uses probabilistic risk assessment (PRA) models to inform their own risk analysis and has extensive experience managing mission data, but does not always fully consider human systems integration (HSI). The medical community, as a part of HSI, has been working 1) to develop a suite of tools to express medical risk in quantitative terms that are relatable to the engineering approaches commonly in use, and 2) to manage and integrate HSI data with engineering data. This talk will review the development of the Integrated Medical Model as an early attempt to bridge the communication gap between the medical and engineering communities in the language of PRA. This will also address data communication between the two entities in the context of data management considerations of the Medical Data Architecture. Lessons learned from these processes will help identify important elements to consider in future communication and integration of these two groups.

  13. ThermoData Engine (TDE): software implementation of the dynamic data evaluation concept. 5. Experiment planning and product design.

    PubMed

    Diky, Vladimir; Chirico, Robert D; Kazakov, Andrei F; Muzny, Chris D; Magee, Joseph W; Abdulagatov, Ilmutdin; Kang, Jeong Won; Kroenlein, Kenneth; Frenkel, Michael

    2011-01-24

    ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. In the present paper, we describe development of an algorithmic approach to assist experiment planning through assessment of the existing body of knowledge, including availability of experimental thermophysical property data, variable ranges studied, associated uncertainties, state of prediction methods, and parameters for deployment of prediction methods and how these parameters can be obtained using targeted measurements, etc., and, indeed, how the intended measurement may address the underlying scientific or engineering problem under consideration. A second new feature described here is the application of the software capabilities for aid in the design of chemical products through identification of chemical systems possessing desired values of thermophysical properties within defined ranges of tolerance. The algorithms and their software implementation to achieve this are described. Finally, implementation of a new data validation and weighting system is described for vapor-liquid equilibrium (VLE) data, and directions for future enhancements are outlined.

  14. The US Navy’s Helicopter Integrated Diagnostics System (HIDS) Program: Power Drive Train Crack Detection Diagnostics and Prognostics Life Usage Monitoring and Damage Tolerance; Techniques, Methodologies, and Experiences

    DTIC Science & Technology

    2000-02-01

    HIDS] Program: Power Drive Train Crack Detection Diagnostics and Prognostics ife Usage Monitoring and Damage Tolerance; Techniques, Methodologies, and...and Prognostics , Life Usage Monitoring , and Damage Tolerance; Techniques, Methodologies, and Experiences Andrew Hess Harrison Chin William Hardman...continuing program and deployed engine monitoring systems in fixed to evaluate helicopter diagnostic, prognostic , and wing aircraft, notably on the A

  15. CARDIOCOG. Experiment ops

    NASA Image and Video Library

    2006-11-29

    ISS014-E-08795 (29 Nov. 2006) --- European Space Agency (ESA) astronaut Thomas Reiter, Expedition 14 flight engineer, works with the Cognitive Cardiovascular (Cardiocog-2) experiment in the Zvezda Service Module of the International Space Station. Cardiocog-2 will determine the impact of weightlessness on the cardiovascular system and respiratory system and the cognitive reactions of crewmembers. The results of this study will be used to develop additional countermeasures that will continue to keep crewmembers healthy during long-duration space exploration.

  16. Challenges for academic accreditation: the UK experience

    NASA Astrophysics Data System (ADS)

    Shearman, Richard; Seddon, Deborah

    2010-08-01

    Several factors (government policy, demographic trends, employer pressure) are leading to new forms of degree programmes in UK universities. The government is strongly encouraging engagement between universities and employers. Work-based learning is increasingly found in first and second cycle programmes, along with modules designed by employers and increasing use of distance learning. Engineering faculties are playing a leading part in these developments, and the Engineering Council, the engineering professional bodies and some universities are collaborating to develop work-based learning programmes as a pathway to professional qualification. While potentially beneficial to the engineering profession, these developments pose a challenge to traditional approaches to programme accreditation. This paper explores how this system deals with these challenges and highlights the issues that will have to be addressed to ensure that the system can cope effectively with change, especially the development of individually tailored, work-based second cycle programmes, while maintaining appropriate standards and international confidence.

  17. Overview of Engineering Design and Analysis at the NASA John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Ryan, Harry; Congiardo, Jared; Junell, Justin; Kirkpatrick, Richard

    2007-01-01

    A wide range of rocket propulsion test work occurs at the NASA John C. Stennis Space Center (SSC) including full-scale engine test activities at test facilities A-1, A-2, B-1 and B-2 as well as combustion device research and development activities at the E-Complex (E-1, E-2, E-3 and E-4) test facilities. The propulsion test engineer at NASA SSC faces many challenges associated with designing and operating a test facility due to the extreme operating conditions (e.g., cryogenic temperatures, high pressures) of the various system components and the uniqueness of many of the components and systems. The purpose of this paper is to briefly describe the NASA SSC Engineering Science Directorate s design and analysis processes, experience, and modeling techniques that are used to design and support the operation of unique rocket propulsion test facilities.

  18. Turbomachinery Course

    NASA Technical Reports Server (NTRS)

    Stinson, Henry; Turner, James (Technical Monitor)

    2002-01-01

    In this viewgraph presentation, information and diagrams are provided on rocket engine turbopumps. These turbomachines are highly complex and have several unique features: (1) They are generally very high power density machines; (2) They experience high fluid dynamic loads; (3) They are exposed to severe thermal shocks in terms of rapid starts and stops and extremely high heat transfer coefficients; (4) They have stringent suction performance requirements to minimize tank weight; (5) Their working fluids significantly impact the design: oxidizers are generally explosive, they afford almost no lubrication for bearings and seals, some fuels can degrade material properties, cryogenics result in severe thermal gradients; (6) Their life requirements are short relative to other turbomachines in that there are hundreds of cycles and a few hours of operation for reusable systems. The design of rocket engine turbomachines is a systems engineering challenge because multiple engineering disciplines must be integrated to deal with issues pertaining to stress, structural dynamics, hydrodynamics, aerodynamics, thermodynamics, and materials and process selection.

  19. Propane-Fueled Jet Engine

    NASA Astrophysics Data System (ADS)

    Farwell, D. A.; Svenson, A. J.; Ramsier, R. D.

    2001-04-01

    We present our recent efforts to design, construct, and test a gas turbine, or jet, engine. Our design utilizes a turbocharger and ignition system from an automobile, and a flame tube/reaction chamber unit fabricated by hand from stainless steel. Once the engine is running, it is completely self-sustaining as long as there is a fuel supply, which in our case is propane. Air is forced into the intake where it is compressed and then injected into the combustion chamber where it is mixed with propane. The spark plugs ignite the air-propane mixture which burns to produce thrust at the exhaust. We have performed operational tests under different environmental conditions and with several turbochargers. We are currently working on adding a lubrication system to the engine, and will discuss our plan to experiment with the reaction chamber and flame tube design in an effort to improve performance and efficiency. *Corresponding author: rex@uakron.edu

  20. Flight experience with lightweight, low-power miniaturized instrumentation systems

    NASA Technical Reports Server (NTRS)

    Hamory, Philip J.; Murray, James E.

    1992-01-01

    Engineers at the NASA Dryden Flight Research Facility (NASA-Dryden) have conducted two flight research programs with lightweight, low-power miniaturized instrumentation systems built around commercial data loggers. One program quantified the performance of a radio-controlled model airplane. The other program was a laminar boundary-layer transition experiment on a manned sailplane. The purpose of this paper is to report NASA-Dryden personnel's flight experience with the miniaturized instrumentation systems used on these two programs. The paper will describe the data loggers, the sensors, and the hardware and software developed to complete the systems. The paper also describes how the systems were used and covers the challenges encountered to make them work. Examples of raw data and derived results will be shown as well. Finally, future plans for these systems will be discussed.

  1. Dan Olis | NREL

    Science.gov Websites

    | 303-384-7398 Dan Olis is a mechanical engineer with experience in mechanical and systems design, plant for the U.S. Department of Defense, Department of the Interior, National Park Service, and the

  2. 10 CFR 63.51 - License amendment for permanent closure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., and archives elsewhere in the world, that would be likely to be consulted by potential human intruders..., interactions between natural and engineered systems, and any other tests, experiments, or analyses pertinent to...

  3. 10 CFR 63.51 - License amendment for permanent closure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., and archives elsewhere in the world, that would be likely to be consulted by potential human intruders..., interactions between natural and engineered systems, and any other tests, experiments, or analyses pertinent to...

  4. 10 CFR 63.51 - License amendment for permanent closure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., and archives elsewhere in the world, that would be likely to be consulted by potential human intruders..., interactions between natural and engineered systems, and any other tests, experiments, or analyses pertinent to...

  5. A study of the portability of an Ada system in the software engineering laboratory (SEL)

    NASA Technical Reports Server (NTRS)

    Jun, Linda O.; Valett, Susan Ray

    1990-01-01

    A particular porting effort is discussed, and various statistics on analyzing the portability of Ada and the total staff months (overall and by phase) required to accomplish the rehost, are given. This effort is compared to past experiments on the rehosting of FORTRAN systems. The discussion includes an analysis of the types of errors encountered during the rehosting, the changes required to rehost the system, experiences with the Alsys IBM Ada compiler, the impediments encountered, and the lessons learned during this study.

  6. FOOT experiment (Foot/Ground Reaction Forces during Space Flight)

    NASA Image and Video Library

    2005-06-29

    ISS011-E-09822 (29 June 2005) --- Astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, uses the Cycle Ergometer with Vibration Isolation System (CEVIS) while participating in the Foot/Ground Reaction Forces During Spaceflight (FOOT) experiment in the Destiny laboratory of the International Space Station. Phillips wore the specially instrumented Lower Extremity Monitoring Suit (LEMS), cycling tights outfitted with sensors, during the experiment.

  7. Kaleri works with the Pilot experiment during Expedition 8

    NASA Image and Video Library

    2003-10-31

    ISS008-E-05179 (31 October 2003) --- Cosmonaut Alexander Y. Kaleri, Expedition 8 flight engineer, works with the Russian biomedical “Pilot” experiment (MBI-15) in the Zvezda Service Module on the International Space Station (ISS). The experiment, which looks at psychological and physiological changes in crew performance during long-duration spaceflight, requires a worktable, ankle restraint system and two control handles for testing piloting skill. Kaleri represents Rosaviakosmos.

  8. Survey of CELSS Concepts and Preliminary Research in Japan

    NASA Technical Reports Server (NTRS)

    Ohya, H.; Oshima, T.; Nitta, K.

    1985-01-01

    Agricultural and other experiments relating to the development of a controlled ecological life support system (CELSS) were proposed. The engineering feasibility of each proposal was investigated by a CELSS experiment concept met study group. The CELSS experiment concept to clarify the goals of CELSS and to determine three phases to achieve the goals. The resulting phases, or missions, and preliminary proposals and studies needed to develop a CELSS are described.

  9. SDLDS--System for Digital Logic Design and Simulation

    ERIC Educational Resources Information Center

    Stanisavljevic, Z.; Pavlovic, V.; Nikolic, B.; Djordjevic, J.

    2013-01-01

    This paper presents the basic features of a software system developed to support the teaching of digital logic, as well as the experience of using it in the Digital Logic course taught at the School of Electrical Engineering, University of Belgrade, Serbia. The system has been used for several years, both by students for self-learning and…

  10. Seismic Analysis of Intake Towers

    DTIC Science & Technology

    1982-10-01

    Experiment Station (WES) under the sponsorship of the Directorate of Civil Works of the Office, Chief of Engineers, U. S. Army. The work was funded under...the structural capacity of the intake S,-tower are contained in Engineer Technical Letter (ETL) 1110-2-265 " Civil Systems Incorporated, "Dynamic...Berkeley, Calif. " ___ 1975. "Earthquake Resistant Design of Intake-Outlet Towers," Journal of the Structural Division_ American Society of Civil

  11. Revised Rapid Soils Analysis Kit (RSAK) - Wet Methodology

    DTIC Science & Technology

    2018-01-01

    respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other...Airfields and Pavements Branch (GMA) of the Engineering Systems and Materials Division (GM), U.S. Army Engineer Research and Development Center...the soil type and the in-place soil conditions. This research project was designed to provide soldiers who have minimal to no experience in soil

  12. Lessons Learned from Engineering a Multi-Mission Satellite Operations Center

    NASA Technical Reports Server (NTRS)

    Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David

    2006-01-01

    NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being re-engineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the re-enginering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team's experiences with integrating multiple missions into a fleet-automated ground system.

  13. Astronaut Judy Resnik Visits Lewis Research Center

    NASA Image and Video Library

    1979-07-21

    Astronaut Judy Resnik visits the National Aeronautics and Space Administration (NASA) Lewis Research Center on July 18, 1979, the tenth anniversary of the Apollo 11 mission. The event, sponsored by the center’s Public Information Office, was attended by Lewis staff, Cleveland-area media and personalities, and the public. During her time in Cleveland, Resnik appeared on a local television program, gave a press conference, lunched with NASA officials, addressed employees at Lewis, and then met the public at the center’s Visitors Information Center. Resnik related her recent experiences as one of the first US female astronauts and her duties as a mission specialist. The Akron, Ohio native earned a Bachelor’s degree in electrical engineering from Carnegie-Mellon University in 1970 and a doctorate in electrical engineering from the University of Maryland in 1977. Resnik served as a biomedic engineer and staff fellow in the Laboratory of Neurophysiology at the National Institutes of Health from 1974 to 1977, where she performed biological research experiments on visual systems. She served as a senior systems engineer in private industry prior to her selection as an astronaut. Resnik first flew as a mission specialist on STS 41-D, Discovery’s maiden flight, in 1984. Resnik was killed in the January 28, 1986 Challenger accident.

  14. Phase 1 of the First Solar Small Power System Experiment (experimental System No. 1). Volume 1: Technical Studies for Solar Point-focusing, Distributed Collector System, with Energy Conversion at the Collector, Category C

    NASA Technical Reports Server (NTRS)

    Clark, T. B. (Editor)

    1979-01-01

    The technical and economic feasibility of a solar electric power plant for a small community is evaluated and specific system designs for development and demonstration are selected. All systems investigated are defined as point focusing, distributed receiver concepts, with energy conversion at the collector. The preferred system is comprised of multiple parabolic dish concentrators employing Stirling cycle engines for power conversion. The engine, AC generator, cavity receiver, and integral sodium pool boiler/heat transport system are combined in a single package and mounted at the focus of each concentrator. The output of each concentrator is collected by a conventional electrical distribution system which permits grid-connected or stand-alone operation, depending on the storage system selected.

  15. Critical Field Experiments on Uses of Scientific and Technical Information.

    ERIC Educational Resources Information Center

    Rubenstein, Albert H.; And Others

    Research in the field of "information-seeking behavior of scientists and engineers" has been done on the behavior and preferences of researchers with respect to technical literature, computer-based information systems, and other scientific and technical information (STI) systems and services. The objectives of this project are: (1) to…

  16. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 1: Executive Summary. [development and testing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    The development of a modular solar thermal power system for application in the 1 to 10 MWe range is presented. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. Investigations are performed on the energy storage requirements and type of energy storage, concentrator design and field optimization, energy transport, and power conversion subsystems. The system utilizes a Rankine cycle, an axial flow steam turbine for power conversion, and heat transfer sodium for collector fluid.

  17. Research on hypersonic aircraft using pre-cooled turbojet engines

    NASA Astrophysics Data System (ADS)

    Taguchi, Hideyuki; Kobayashi, Hiroaki; Kojima, Takayuki; Ueno, Atsushi; Imamura, Shunsuke; Hongoh, Motoyuki; Harada, Kenya

    2012-04-01

    Systems analysis of a Mach 5 class hypersonic aircraft is performed. The aircraft can fly across the Pacific Ocean in 2 h. A multidisciplinary optimization program for aerodynamics, structure, propulsion, and trajectory is used in the analysis. The result of each element model is improved using higher accuracy analysis tools. The aerodynamic performance of the hypersonic aircraft is examined through hypersonic wind tunnel tests. A thermal management system based on the data of the wind tunnel tests is proposed. A pre-cooled turbojet engine is adopted as the propulsion system for the hypersonic aircraft. The engine can be operated continuously from take-off to Mach 5. This engine uses a pre-cooling cycle using cryogenic liquid hydrogen. The high temperature inlet air of hypersonic flight would be cooled by the same liquid hydrogen used as fuel. The engine is tested under sea level static conditions. The engine is installed on a flight test vehicle. Both liquid hydrogen fuel and gaseous hydrogen fuel are supplied to the engine from a tank and cylinders installed within the vehicle. The designed operation of major components of the engine is confirmed. A large amount of liquid hydrogen is supplied to the pre-cooler in order to make its performance sufficient for Mach 5 flight. Thus, fuel rich combustion is adopted at the afterburner. The experiments are carried out under the conditions that the engine is mounted upon an experimental airframe with both set up either horizontally or vertically. As a result, the operating procedure of the pre-cooled turbojet engine is demonstrated.

  18. Climate Change Communicators: The C3E3 Project

    NASA Astrophysics Data System (ADS)

    Sharif, H. O.; Joseph, J.

    2013-12-01

    The University of Texas at San Antonio (UTSA), San Antonio College (SAC), and the University of North Dakota (UND) have partnered with NASA to provide underrepresented undergraduates from UTSA, SAC, and other community colleges climate-related research and education experiences through the Climate Change Communication: Engineer, Environmental science, and Education (C3E3) project. The program aims to develop a robust response to climate change by providing K-16 climate change education; enhance the effectiveness of K-16 education particularly in engineering and other STEM disciplines by use of new instructional technologies; increase the enrollment in engineering programs and the number of engineering degrees awarded by showing engineering's usefulness in relation to the much-discussed contemporary issue of climate change; increase persistence in STEM degrees by providing student research opportunities; and increase the ethnic diversity of those receiving engineering degrees and help ensure an ethnically diverse response to climate change. Students participated in the second summer internship funded by the project. More than 60 students participated in guided research experiences aligned with NASA Science Plan objectives for climate and Earth system science and the educational objectives of the three institutions. The students went through training in modern media technology (webcasts), and in using this technology to communicate the information on climate change to others, especially high school students, culminating in production of webcasts on investigating the aspects of climate change using NASA data. Content developed is leveraged by NASA Earth observation data and NASA Earth system models and tools. Several departments are involved in the educational program.

  19. Experiment Management System for the SND Detector

    NASA Astrophysics Data System (ADS)

    Pugachev, K.

    2017-10-01

    We present a new experiment management system for the SND detector at the VEPP-2000 collider (Novosibirsk). An important part to report about is access to experimental databases (configuration, conditions and metadata). The system is designed in client-server architecture. User interaction comes true using web-interface. The server side includes several logical layers: user interface templates; template variables description and initialization; implementation details. The templates are meant to involve as less IT knowledge as possible. Experiment configuration, conditions and metadata are stored in a database. To implement the server side Node.js, a modern JavaScript framework, has been chosen. A new template engine having an interesting feature is designed. A part of the system is put into production. It includes templates dealing with showing and editing first level trigger configuration and equipment configuration and also showing experiment metadata and experiment conditions data index.

  20. Engineering students' experiences and perceptions of workplace problem solving

    NASA Astrophysics Data System (ADS)

    Pan, Rui

    In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.

  1. GRIP Experiment

    NASA Image and Video Library

    2018-06-11

    iss056e009784 (June 11, 2018) --- Expedition 56 Flight Engineer Alexander Gerst of the European Space Agency (ESA) is seated in the Columbus laboratory module participating in the Grip study. Grip is an ESA-sponsored experiment that is researching how the nervous system adapts to microgravity. Observations may improve the design of safer space habitats and help patients on Earth with neurological diseases.

  2. GRIP Experiment

    NASA Image and Video Library

    2018-06-11

    iss056e009783 (June 11, 2018) --- Expedition 56 Flight Engineer Alexander Gerst of the European Space Agency (ESA) is seated in the Columbus laboratory module participating in the Grip study. Grip is an ESA-sponsored experiment that is researching how the nervous system adapts to microgravity. Observations may improve the design of safer space habitats and help patients on Earth with neurological diseases.

  3. Software engineering principles applied to large healthcare information systems--a case report.

    PubMed

    Nardon, Fabiane Bizinella; de A Moura, Lincoln

    2007-01-01

    São Paulo is the largest city in Brazil and one of the largest cities in the world. In 2004, São Paulo City Department of Health decided to implement a Healthcare Information System to support managing healthcare services and provide an ambulatory health record. The resulting information system is one of the largest public healthcare information systems ever built, with more than 2 million lines of code. Although statistics shows that most software projects fail, and the risks for the São Paulo initiative were enormous, the information system was completed on-time and on-budget. In this paper, we discuss the software engineering principles adopted that allowed to accomplish that project's goals, hoping that sharing the experience of this project will help other healthcare information systems initiatives to succeed.

  4. DC Linked Hybrid Generation System with an Energy Storage Device including a Photo-Voltaic Generation and a Gas Engine Cogeneration for Residential Houses

    NASA Astrophysics Data System (ADS)

    Lung, Chienru; Miyake, Shota; Kakigano, Hiroaki; Miura, Yushi; Ise, Toshifumi; Momose, Toshinari; Hayakawa, Hideki

    For the past few years, a hybrid generation system including solar panel and gas cogeneration is being used for residential houses. Solar panels can generate electronic power at daytime; meanwhile, it cannot generate electronic power at night time. But the power consumption of residential houses usually peaks in the evening. The gas engine cogeneration system can generate electronic power without such a restriction, and it also can generate heat power to warm up house or to produce hot water. In this paper, we propose the solar panel and gas engine co-generation hybrid system with an energy storage device that is combined by dc bus. If a black out occurs, the system still can supply electronic power for special house loads. We propose the control scheme for the system which are related with the charging level of the energy storage device, the voltage of the utility grid which can be applied both grid connected and stand alone operation. Finally, we carried out some experiments to demonstrate the system operation and calculation for loss estimation.

  5. Exploring the experiences of female students in introductory project-based engineering courses at two- and four-year institutions

    NASA Astrophysics Data System (ADS)

    Swan, Amy K.

    2011-12-01

    This qualitative study explored the experiential and contextual factors that shaped female students' pathways into introductory project-based engineering classes at two community colleges and one four-year institution, as well as female students' experiences within and outside of these classes. The study was framed by Social Cognitive Career Theory (SCCT) (Lent, Brown & Hackett, 1996) and Bronfenbrenner's (1979) ecological systems theory. Findings were based on analyses of data gathered through multiple methods: observations; individual interviews with female students; focus group interviews with project teams; and document collection. The findings of this study revealed that while positive experiences with math or science were a likely pre-cursor to engineering interest, experiential learning appeared to be a more powerful force in fostering students' engineering interest. Specifically, participants developed an interest in engineering through academic, professional, and extracurricular engineering- and design-related activities that familiarized them with the tasks and skills involved in engineering work and helped them develop a sense of selfefficacy with regard to this work. Interest and self-efficacy, in turn, played a role in students' postsecondary educational decision-making processes, as did contextual factors including families and finances. This study's findings also showed that participants' project teams were a critically important microsystem within participants' ecological environments. Within this sometimes "chilly" microsystem, female students negotiated intrateam processes, which were in some cases affected by gender norms. Intrateam processes that influenced female students' project-based learning experiences included: interpersonal dynamics; leadership; and division of labor. This study also identified several ways in which the lived experiences of participants at the community colleges were different from, or similar to, those of participants at the four-year institution. In the classroom, similarities and differences were related to projects, learning outcomes, language and time, while outside of the classroom they were primarily linked to time and peer support. This study's findings suggest a need for expanded access to experiential learning opportunities and ongoing attention to the role of community colleges in engineering education. Study findings also point toward ways that engineering educators might attend to the intrateam processes identified, and better accommodate the needs of all students in project-based introductory courses.

  6. Educational Projects in Unmanned Aerial Systems at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Dahlgren, Robert P.

    2017-01-01

    Unmanned aerial systems (UAS), autonomy and robotics technology have been fertile ground for developing a wide variety of interdisciplinary student learning opportunities. In this talk, several projects will be described that leverage small fixed-wing UAS that have been modified to carry science payloads. These aircraft provide a unique hands-on experience for a wide range of students from college juniors to graduate students pursuing degrees in electrical engineering, aeronautical engineering, mechanical engineering, applied mathematics, physics, structural engineering and other majors. By combining rapid prototyping, design reuse and open-source philosophies, a sustainable educational program has been organized structured as full-time internships during the summer, part-time internships during the school year, short details for military cadets, and paid positions. As part of this program, every summer one or more UAS is developed from concept through design, build and test phases using the tools and facilities at the NASA Ames Research Center, ultimately obtaining statements of airworthiness and flight release from the Agency before test flights are performed. In 2016 and 2017 student projects focused on the theme of 3D printed modular airframes that may be optimized for a given mission and payload. Now in its fifth year this program has served over 35 students, and has provided a rich learning experience as they learn to rapidly develop new aircraft concepts in a highly regulated environment, on systems that will support principal investigators at university, NASA, and other US federal agencies.

  7. Overview of the Turbine Based Combined Cycle Discipline

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Walker, James F.; Pittman, James L.

    2009-01-01

    The NASA Fundamental Aeronautics Hypersonics project is focused on technologies for combined cycle, airbreathing propulsions systems to enable reusable launch systems for access to space. Turbine Based Combined Cycle (TBCC) propulsion systems offer specific impulse (Isp) improvements over rocket-based propulsion systems in the subsonic takeoff and return mission segments and offer improved safety. The potential to realize more aircraft-like operations with expanded launch site capability and reduced system maintenance are additional benefits. The most critical TBCC enabling technologies as identified in the National Aeronautics Institute (NAI) study were: 1) mode transition from the low speed propulsion system to the high speed propulsion system, 2) high Mach turbine engine development, 3) transonic aero-propulsion performance, 4) low-Mach-number dual-mode scramjet operation, 5) innovative 3-D flowpath concepts and 6) innovative turbine based combined cycle integration. To address several of these key TBCC challenges, NASA s Hypersonics project (TBCC Discipline) initiated an experimental mode transition task that includes an analytic research endeavor to assess the state-of-the-art of propulsion system performance and design codes. This initiative includes inlet fluid and turbine performance codes and engineering-level algorithms. This effort has been focused on the Combined Cycle Engine Large-Scale Inlet Mode Transition Experiment (CCE LIMX) which is a fully integrated TBCC propulsion system with flow path sizing consistent with previous NASA and DoD proposed Hypersonic experimental flight test plans. This experiment is being tested in the NASA-GRC 10 x 10 Supersonic Wind Tunnel (SWT) Facility. The goal of this activity is to address key hypersonic combined-cycle-engine issues: (1) dual integrated inlet operability and performance issues unstart constraints, distortion constraints, bleed requirements, controls, and operability margins, (2) mode-transition constraints imposed by the turbine and the ramjet/scramjet flow paths (imposed variable geometry requirements), (3) turbine engine transients (and associated time scales) during transition, (4) high-altitude turbine engine re-light, and (5) the operating constraints of a Mach 3-7 combustor (specific to the TBCC). The model will be tested in several test phases to develop a unique TBCC database to assess and validate design and analysis tools and address operability, integration, and interaction issues for this class of advanced propulsion systems. The test article and all support equipment is complete and available at the facility. The test article installation and facility build-up in preparation for the inlet performance and operability characterization is near completion and testing is planned to commence in FY11.

  8. A tetracycline expression system in combination with Sox9 for cartilage tissue engineering.

    PubMed

    Yao, Yi; He, Yu; Guan, Qian; Wu, Qiong

    2014-02-01

    Cartilage tissue engineering using controllable transcriptional therapy together with synthetic biopolymer scaffolds shows higher potential for overcoming chondrocyte degradation and constructing artificial cartilages both in vivo and in vitro. Here, the potential regulating tetracycline expression (Tet-on) system was used to express Sox9 both in vivo and in vitro. Chondrocyte degradation was measured in vitro and overcome by Soxf9 expression. Experiments confirmed the feasibility of the combined use of Sox9 and Tet-on system in cartilage tissue engineering. Engineered poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) scaffolds were seeded with recombinant chondrocytes which were transfected with Tet-induced Sox9 expression; the scaffolds were implanted under the skin of 8-week-old rats. The experimental group was injected with Dox in the abdomen, while the control group was injected with normal saline. After 4 or 8 days of implantation in vivo, the newly formed pieces of articular chondrocytes were taken out and measured. Dox injection in vivo showed positive effect on recombinant chondrocytes, in which Sox9 expression was up-regulated by an inducible system with specific matrix proteins. The results demonstrate this controllable transcriptional therapy is a potential approach for tissue engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. A Discussion of the Software Quality Assurance Role

    NASA Technical Reports Server (NTRS)

    Kandt, Ronald Kirk

    2010-01-01

    The basic idea underlying this paper is that the conventional understanding of the role of a Software Quality Assurance (SQA) engineer is unduly limited. This is because few have asked who the customers of a SQA engineer are. Once you do this, you can better define what tasks a SQA engineer should perform, as well as identify the knowledge and skills that such a person should have. The consequence of doing this is that a SQA engineer can provide greater value to his or her customers. It is the position of this paper that a SQA engineer providing significant value to his or her customers must not only assume the role of an auditor, but also that of a software and systems engineer. This is because software engineers and their managers particularly value contributions that directly impact products and their development. These ideas are summarized as lessons learned, based on my experience at Jet Propulsion Laboratory (JPL).

  10. Colloidal heat engines: a review.

    PubMed

    Martínez, Ignacio A; Roldán, Édgar; Dinis, Luis; Rica, Raúl A

    2016-12-21

    Stochastic heat engines can be built using colloidal particles trapped using optical tweezers. Here we review recent experimental realizations of microscopic heat engines. We first revisit the theoretical framework of stochastic thermodynamics that allows to describe the fluctuating behavior of the energy fluxes that occur at mesoscopic scales, and then discuss recent implementations of the colloidal equivalents to the macroscopic Stirling, Carnot and steam engines. These small-scale motors exhibit unique features in terms of power and efficiency fluctuations that have no equivalent in the macroscopic world. We also consider a second pathway for work extraction from colloidal engines operating between active bacterial reservoirs at different temperatures, which could significantly boost the performance of passive heat engines at the mesoscale. Finally, we provide some guidance on how the work extracted from colloidal heat engines can be used to generate net particle or energy currents, proposing a new generation of experiments with colloidal systems.

  11. Education and research in fluid dynamics

    NASA Astrophysics Data System (ADS)

    López González-Nieto, P.; Redondo, J. M.; Cano, J. L.

    2009-04-01

    Fluid dynamics constitutes an essential subject for engineering, since auronautic engineers (airship flights in PBL, flight processes), industrial engineers (fluid transportation), naval engineers (ship/vessel building) up to agricultural engineers (influence of the weather conditions on crops/farming). All the above-mentioned examples possess a high social and economic impact on mankind. Therefore, the fluid dynamics education of engineers is very important, and, at the same time, this subject gives us an interesting methodology based on a cycle relation among theory, experiments and numerical simulation. The study of turbulent plumes -a very important convective flow- is a good example because their theoretical governing equations are simple; it is possible to make experimental plumes in an aesy way and to carry out the corresponding numerical simulatons to verify experimental and theoretical results. Moreover, it is possible to get all these aims in the educational system (engineering schools or institutions) using a basic laboratory and the "Modellus" software.

  12. Combined Cycle Engine Large-Scale Inlet for Mode Transition Experiments: System Identification Rack Hardware Design

    NASA Technical Reports Server (NTRS)

    Thomas, Randy; Stueber, Thomas J.

    2013-01-01

    The System Identification (SysID) Rack is a real-time hardware-in-the-loop data acquisition (DAQ) and control instrument rack that was designed and built to support inlet testing in the NASA Glenn Research Center 10- by 10-Foot Supersonic Wind Tunnel. This instrument rack is used to support experiments on the Combined-Cycle Engine Large-Scale Inlet for Mode Transition Experiment (CCE? LIMX). The CCE?LIMX is a testbed for an integrated dual flow-path inlet configuration with the two flow paths in an over-and-under arrangement such that the high-speed flow path is located below the lowspeed flow path. The CCE?LIMX includes multiple actuators that are designed to redirect airflow from one flow path to the other; this action is referred to as "inlet mode transition." Multiple phases of experiments have been planned to support research that investigates inlet mode transition: inlet characterization (Phase-1) and system identification (Phase-2). The SysID Rack hardware design met the following requirements to support Phase-1 and Phase-2 experiments: safely and effectively move multiple actuators individually or synchronously; sample and save effector control and position sensor feedback signals; automate control of actuator positioning based on a mode transition schedule; sample and save pressure sensor signals; and perform DAQ and control processes operating at 2.5 KHz. This document describes the hardware components used to build the SysID Rack including their function, specifications, and system interface. Furthermore, provided in this document are a SysID Rack effectors signal list (signal flow); system identification experiment setup; illustrations indicating a typical SysID Rack experiment; and a SysID Rack performance overview for Phase-1 and Phase-2 experiments. The SysID Rack described in this document was a useful tool to meet the project objectives.

  13. Hazards in the Solar System: Out-of-School Time Student Activities Focused on Engineering Protective Space Gloves

    NASA Astrophysics Data System (ADS)

    Vaughan, R. G.; Meyer, N.; Anderson, R. B.; Sokol, K.; Nolan, B.; Edgar, L. A.; Gaither, T. A.; Milazzo, M. P.; Clark, J.

    2017-12-01

    "In Good Hands: Engineering Space Gloves" is a new Engineering Adventures® curriculum unit created for students in grades 3-5 in out-of-school time programs. It was designed and created by the Engineering is Elementary® team at the Museum of Science in Boston, MA, in collaboration with subject matter experts at the USGS Astrogeology Science Center and teacher professional development experts at Northern Arizona University's Center for Science Teaching and Learning. As part of the NASA-funded PLANETS (Planetary Learning that Advances the Nexus of Engineering, Technology, and Science) project, the goals for this unit are to introduce students to some of the potential hazards that would be faced by astronauts exploring planetary bodies in the solar system, and to engage students in thinking about how to engineer solutions to these challenges. Potential human health hazards in planetary exploration include: little to no breathable oxygen, exposure to extreme temperatures and pressures, radiation, dusty or toxic environments, and/or high velocity debris. First, students experiment with gloves made of different materials to accomplish tasks like picking up paper clips, entering numbers on a calculator, and using simple tools, while also testing for insulating properties, protection from crushing forces, and resistance to dust contamination. Students explore the trade-offs between form and multiple desired functions, and gain an introduction to materials engineering. Students are then presented with three different missions. Mission 1 is to collect and return a sample from Saturn's moon, Titan; Mission 2 is mining asteroids for useful minerals; and Mission 3 is to build a radio tower on the far side of Earth's moon. Each of these missions exhibits different potential hazards. Based on their previous experiments with different types of glove materials, students develop and test glove designs that will protect astronauts from mission-specific hazards, while still retaining basic dexterity and functionality. Educators are given background information and links to in-depth descriptions of the science content, and students are guided through the engineering design process as well as given scientific background on hazards in the solar system in a fun and engaging series of activities.

  14. Transformation of engineering education: Taking a perspective for the challenges of change

    NASA Astrophysics Data System (ADS)

    Siddiqui, Junaid Abdul Wahid

    There are a variety of imperatives which call us to transform engineering education. Those who have made attempts to facilitate a change in engineering education have experienced slow or no progress. The literature on change has suggestions and strategies related to educational change but most of them are not able to guide the conversations and actions effectively. People interested in understanding the challenges often ask 'what makes educational change so difficult?' This research is an effort towards finding an answer to this question. The study adopted a transdisciplinary approach while taking a systems perspective on educational change in order to examine the challenges. Instead of exploring the effectiveness of change strategies and interventions, this study sought to understand the basic nature of change in engineering education organizations. For this purpose, the study adopted an integrated theoretical framework consisting of systems thinking, complexity theory, and transformative learning theory. The methodology was designed on the complexity research paradigm with interpretive qualitative methods used for data analysis. This approach enabled understanding the social and human conditions which reduce or enhance the likelihood of change in the context of an engineering education organization. The context for this study to investigate the challenges of transformation in engineering education is efforts around educating the Engineer of 2020. Four institutional initiatives at various stages in the transformation process provided cases for investigation in the study. The engineering educators at the four institutions participating in the study had experiences of active engagement in educational change. The interpretive qualitative analysis of the participants' accounts induced a systems perspective of the challenges which faculty face in their educational transformation efforts. The inertia which educational organizations experience against change appears to be caused by the commitment which the faculty members have to the educational paradigm prevalent in the organization and by the organizational structures and culture established in this paradigm. A condition that seems essential for the emergence of a new educational formation within an organizational context is the formation of a neighborhood of faculty who have a commitment for innovative education. The new ways of education seem to emerge in sustained, serendipitous, and long-term communicative interactions among the inhabitants of a neighborhood.

  15. Socialization Experiences Resulting from Doctoral Engineering Teaching Assistantships

    ERIC Educational Resources Information Center

    Mena, Irene B.; Diefes-Dux, Heidi A.; Capobianco, Brenda M.

    2013-01-01

    The purpose of this study was to explore and characterize the types of socialization experiences that result from engineering teaching assistantships. Using situated learning and communities of practice as the theoretical framework, this study highlights the experiences of 28 engineering doctoral students who worked as engineering teaching…

  16. CELSS experiment model and design concept of gas recycle system

    NASA Technical Reports Server (NTRS)

    Nitta, K.; Oguchi, M.; Kanda, S.

    1986-01-01

    In order to prolong the duration of manned missions around the Earth and to expand the human existing region from the Earth to other planets such as a Lunar Base or a manned Mars flight mission, the controlled ecological life support system (CELSS) becomes an essential factor of the future technology to be developed through utilization of space station. The preliminary system engineering and integration efforts regarding CELSS have been carried out by the Japanese CELSS concept study group for clarifying the feasibility of hardware development for Space station experiments and for getting the time phased mission sets after FY 1992. The results of these studies are briefly summarized and the design and utilization methods of a Gas Recycle System for CELSS experiments are discussed.

  17. Satellite-instrument system engineering best practices and lessons

    NASA Astrophysics Data System (ADS)

    Schueler, Carl F.

    2009-08-01

    This paper focuses on system engineering development issues driving satellite remote sensing instrumentation cost and schedule. A key best practice is early assessment of mission and instrumentation requirements priorities driving performance trades among major instrumentation measurements: Radiometry, spatial field of view and image quality, and spectral performance. Key lessons include attention to technology availability and applicability to prioritized requirements, care in applying heritage, approaching fixed-price and cost-plus contracts with appropriate attention to risk, and assessing design options with attention to customer preference as well as design performance, and development cost and schedule. A key element of success either in contract competition or execution is team experience. Perhaps the most crucial aspect of success, however, is thorough requirements analysis and flowdown to specifications driving design performance with sufficient parameter margin to allow for mistakes or oversights - the province of system engineering from design inception to development, test and delivery.

  18. X-ray spectroscopy of the SSME plume

    NASA Technical Reports Server (NTRS)

    Olive, Dan F.

    1988-01-01

    In order to examine the potential of using SSME exhaust plume radiation in the soft X-ray spectrum as an early warning system of imminent engine failure, a low cost, low risk experiment was devised. An approach was established, equipment was leased, the system was installed and checked out, and data were successfully acquired demonstrating the proof-of-concept. One spectrum measurement of the SSME plume was acquired during a 300 second burn on the A-1 Test Stand. This spectrum showed a prominent, line emission feature at about 34.5 KeV, a result which was not expected, nor can it be explained at this time. If X-ray spectra are to be useful as a means of monitoring nominal engine operation, it will be necessary to explore this region of the EM spectrum in greater detail. The presence of structure in the spectrum indicates that this technology may prove to be useful as an engine health monitoring system.

  19. Organizational Knowledge Transfer Using Ontologies and a Rule-Based System

    NASA Astrophysics Data System (ADS)

    Okabe, Masao; Yoshioka, Akiko; Kobayashi, Keido; Yamaguchi, Takahira

    In recent automated and integrated manufacturing, so-called intelligence skill is becoming more and more important and its efficient transfer to next-generation engineers is one of the urgent issues. In this paper, we propose a new approach without costly OJT (on-the-job training), that is, combinational usage of a domain ontology, a rule ontology and a rule-based system. Intelligence skill can be decomposed into pieces of simple engineering rules. A rule ontology consists of these engineering rules as primitives and the semantic relations among them. A domain ontology consists of technical terms in the engineering rules and the semantic relations among them. A rule ontology helps novices get the total picture of the intelligence skill and a domain ontology helps them understand the exact meanings of the engineering rules. A rule-based system helps domain experts externalize their tacit intelligence skill to ontologies and also helps novices internalize them. As a case study, we applied our proposal to some actual job at a remote control and maintenance office of hydroelectric power stations in Tokyo Electric Power Co., Inc. We also did an evaluation experiment for this case study and the result supports our proposal.

  20. CanSat Competition: Contributing to the Development of NASA's Vision for Robotic Space Exploration

    NASA Technical Reports Server (NTRS)

    Berman, Joshua; Berman, Timothy; Billheimer, Thomas; Biclmer. Elizabeth; Hood, Stuart; Neas, Charles

    2007-01-01

    CanSat is an international student design-build-launch competition organized by the American Astronautical Society (AAS) and American Institute of Aeronautics and Astronautics (AIAA). The competition is also sponsored by the Naval Research Laboratory (NRL) and the National Aeronautics and Space Administration (NASA). The CanSat competition is designed for college, university and high school students wanting to participate in an applicable space-related competition. The objective of the CanSat competition is to complete space exploration missions by designing a specific system for a small sounding rocket payload which will follow and perform to a specific set of rules and guidelines for each year's competition. The competition encompasses a complete life-cycle of one year which includes all phases of design, integration, testing, judging and competition. The mission guidelines are based from space exploration missions and include bonus requirement options which teams may choose to participate in. The fundamental goal of the competition is to educate future engineers and scientists. This is accomplished by students applying systems engineering practices to a development project that incorporates an end-to-end life cycle, from requirements analysis, through preliminary design, integration and testing, an actual flight of the CanSat, and concluding with a post-mission debrief. This is done specifically with space related missions to bring a unique aspect of engineering and design to the competition. The competition has been progressing since its creation in 2005. The competition was originally meant to purely convey the engineering and design process to its participants, but through many experiences the competition has also undergone a learning experience with respect to systems engineering process and design. According

  1. A surface treatment management system.

    DOT National Transportation Integrated Search

    1988-01-01

    A brief survey presented in this report illustrates the variability in management practices for the surface treatment of secondary roads across the country. In Virginia, an informal process that uses the experience of field engineers working within b...

  2. Using hub technology to facilitate information system integration in a health-care enterprise.

    PubMed

    Gendler, S M; Friedman, B A; Henricks, W H

    1996-04-01

    The deployment and maintenance of multiple point-to-point interfaces between a clinical information system, such as a laboratory information system, and other systems within a healthcare enterprise is expensive and time consuming. Moreover, the demand for such interfaces is increasing as hospitals consolidate and clinical laboratories participate in the development of regional laboratory networks and create host-to-host links with laboratory outreach clients. An interface engine, also called a hub, is an evolving technology that could replace multiple point-to-point interfaces from a laboratory information system with a single interface to the hub, preferably HL7 based. The hub then routes and translates laboratory information to other systems within the enterprise. Changes in application systems in an enterprise where a centralized interface engine has been implemented then amount to thorough analysis, an update of the enterprise's data dictionary, purchase of a single new vendor-supported interface, and table-based parameter changes on the hub. Two other features of an interface engine, support for structured query language and information store-and-forward, will facilitate the development of clinical data repositories and provide flexibility when interacting with other host systems. This article describes the advantages and disadvantages of an interface engine and lists some problems not solved by the technology. Finally, early developmental experience with an interface engine at the University of Michigan Medical Center and the benefits of the project on system integration efforts are described, not the least of which has been the enthusiastic adoption of the HL7 standard for all future interface projects.

  3. From Paper to Production to Test: An Update on NASA's J-2X Engine for Exploration

    NASA Technical Reports Server (NTRS)

    Kynard, Michael

    2011-01-01

    The NASA/industry team responsible for developing the J-2X upper stage engine for the Space Launch System (SLS) Program has made significant progress toward moving beyond the design phase and into production, assembly, and test of development hardware. The J-2X engine exemplifies the SLS Program goal of using proven technology and experience from more than 50 years of United States spaceflight experience combined with modern manufacturing processes and approaches. It will power the second stage of the fully evolved SLS Program launch vehicle that will enable a return to human exploration of space beyond low earth orbit. Pratt & Whitney Rocketdyne (PWR) is under contract to develop and produce the engine, leveraging its flight-proven LH2/LOX, gas generator cycle J-2 and RS-68 engine capabilities, recent experience with the X-33 aerospike XRS-2200 engine, and development knowledge of the J-2S tap-off cycle engine. The J- 2X employs a gas generator operating cycle designed to produce 294,000 pounds of vacuum thrust in primary operating mode with its full nozzle extension. With a truncated nozzle extension suitable to support engine clustering on the stage, the nominal vacuum thrust level in primary mode is 285,000 pounds. It also has a secondary mode, during which it operates at 80 percent thrust by altering its mixture ratio. The J-2X development philosophy is based on proven hardware, an aggressive development schedule, and early risk reduction. NASA Marshall Space Flight Center (MSFC) and PWR began development of the J-2X in June 2006. The government/industry team of more than 600 people within NASA and PWR successfully completed the Critical Design Review (CDR) in November 2008, following extensive risk mitigation testing. Assembly of the first development engine was completed in May 2011 and the first engine test was conducted at the NASA Stennis Space Center (SSC), test stand A2, on 14 July 2011. Testing of the first development engine will continue through the autumn of 2011, be paused for test stand modifications to the passive diffuser, and then restart in the spring of 2012. This testing will be followed by specialized powerpack testing intended to examine the design and operating margins of the engine turbomachinery. The development plan beyond this point leads through more system-level, engine testing of several samples, analytical model validation activities, functional and performance verification, and then ultimate certification to support human spaceflight. This paper will discuss the J-2X development background, provide top-level information on design and development planning, and will explore some of the development challenges and mitigation activities pursued to date.

  4. Performance Evaluation of the NASA GTX RBCC Flowpath

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Palac, Donald T.; Trefny, Charles J.; Roche, Joseph M.

    2001-01-01

    The NASA Glenn Research Center serves as NASAs lead center for aeropropulsion. Several programs are underway to explore revolutionary airbreathing propulsion systems in response to the challenge of reducing the cost of space transportation. Concepts being investigated include rocket-based combined cycle (RBCC), pulse detonation wave, and turbine-based combined cycle (TBCC) engines. The GTX concept is a vertical launched, horizontal landing, single stage to orbit (SSTO) vehicle utilizing RBCC engines. The propulsion pod has a nearly half-axisymmetric flowpath that incorporates a rocket and ram-scramjet. The engine system operates from lift-off up to above Mach 10, at which point the airbreathing engine flowpath is closed off, and the rocket alone powers the vehicle to orbit. The paper presents an overview of the research efforts supporting the development of this RBCC propulsion system. The experimental efforts of this program consist of a series of test rigs. Each rig is focused on development and optimization of the flowpath over a specific operating mode of the engine. These rigs collectively establish propulsion system performance over all modes of operation, therefore, covering the entire speed range. Computational Fluid Mechanics (CFD) analysis is an important element of the GTX propulsion system development and validation. These efforts guide experiments and flowpath design, provide insight into experimental data, and extend results to conditions and scales not achievable in ground test facilities. Some examples of important CFD results are presented.

  5. Investigation of students' experiences of gendered cultures in engineering workplaces

    NASA Astrophysics Data System (ADS)

    Male, Sally A.; Gardner, Anne; Figueroa, Eugenia; Bennett, Dawn

    2018-05-01

    Women remain severely under-represented in engineering in Australia as in all Western countries. This limits the pool of talent, standpoints and approaches within the profession. Furthermore, this under-representation equates to restriction of the benefits of being an engineer mainly to men. Gendered workplace experiences have been found to contribute to women leaving the profession. In this study we explore students' experiences of gendered cultures in engineering workplaces, using interviews with a purposive sample of 13 students (4 male) recruited following a previous survey. Although the overall experience of workplace learning is positive for many students, male and female engineering students reported experiences consistent with masculine cultures. Educators and employers must proactively lead improvements to the culture in engineering workplaces, prepare students for gendered workplaces and support students to reflect during and after workplace experiences. The experiences presented here could be adapted to enhance inclusivity training.

  6. IEMIS (Integrated Emergency Management Information System) Floodplain Mapping Based on a Lidar Derived Data Set.

    DTIC Science & Technology

    1988-02-05

    0-A193 971 IEMIS (INTEGRATED EMERGENCY MANAGEMENT INFORMATION SYSTEM ) FLOODPLRIN MAP.. (U) ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG HS J...illustrate the application of the automated mapping capabilities of the Integrated Emergency Management Information System (IEMIS) to FISs. Unclassified...mapping capabilities of the Integrated Emergency Management Information System (IEMIS) to FISs. II. BACKGROUND The concept of mounting laser ranging

  7. Learning from Fellow Engineering Students Who Have Current Professional Experience

    ERIC Educational Resources Information Center

    Davies, John W.; Rutherford, Ursula

    2012-01-01

    This paper presents an investigation of how experience-led content in an engineering degree can be strengthened by creating opportunities for engineering students to benefit from the knowledge, skills and resources of students with current professional experience. Students who study civil engineering part-time at Coventry University (while also…

  8. Cockpit integration from a pilot's point of view

    NASA Technical Reports Server (NTRS)

    Green, D. L.

    1982-01-01

    Extensive experience in both operational and engineering test flight was used to suggest straightforward changes to helicopter cockpit and control system design that would improve pilot performance in marginal and instrument flight conditions. Needed control system improvements considered include: (1) separation of yaw from cyclic force trim; (2) pedal force proportional to displacement rate; and (3) integration of engine controls in collective stick. Display improvements needed include: (1) natural cuing of yaw rate in attitude indicator; (2) collective position indication and radar altimeter placed within primary scan; and (3) omnidirectional display of full range airspeed data.

  9. Solar thermal power systems point-focusing thermal and electric applications projects. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Marriott, A.

    1980-01-01

    The activities of the Point-Focusing Thermal and Electric Applications (PETEA) project for the fiscal year 1979 are summarized. The main thrust of the PFTEA Project, the small community solar thermal power experiment, was completed. Concept definition studies included a small central receiver approach, a point-focusing distributed receiver system with central power generation, and a point-focusing distributed receiver concept with distributed power generation. The first experiment in the Isolated Application Series was initiated. Planning for the third engineering experiment series, which addresses the industrial market sector, was also initiated. In addition to the experiment-related activities, several contracts to industry were let and studies were conducted to explore the market potential for point-focusing distributed receiver (PFDR) systems. System analysis studies were completed that looked at PFDR technology relative to other small power system technology candidates for the utility market sector.

  10. Research Proposal for the Design and Engineering Phase of a Solar Heating and Cooling System Experiment at the Warner Robins Public Library, Warner Robins, Georgia. Submitted to the United States Energy Research and Development Administration.

    ERIC Educational Resources Information Center

    Phillips, Warren H.; And Others

    A number of reasons are advanced to include a solar heating and cooling experiment in a library building. The unique aspects of the experiment are to be a seasonally adjustable collector tilt and testing of a new generation of absorption air conditioners. After a brief description of the proposed experiment, the proposal contains forms filed by…

  11. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigel N. Clark

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, amore » percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions, with added EGR to prevent preignition. It was observed that the relative air/fuel ratio, injected NO quantity, added EGR fraction, and engine operating points affected the NO decomposition rates. While operating under these modified conditions, the highest NO decomposition rate of 92% was observed. In-cylinder pressure data gathered during the experiments showed minimum deviation from peak pressure as a result of NO injections into the engine. A NOx adsorption system, from Sorbent Technologies, Inc., was integrated with the Cummins engine, comprised a NOx adsorbent chamber, heat exchanger, demister, and a hot air blower. Data were gathered to show the possibility of NOx adsorption from the engine exhaust, and desorption of NOx from the sorbent material. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a benchtop adsorption system was constructed. The temperature of this apparatus was controlled while data were gathered on the characteristics of the sorbent material for development of a system model. A simplified linear driving force model was developed to predict NOx adsorption into the sorbent material as cooled exhaust passed over fresh sorbent material. A mass heat transfer analysis was conducted to analyze the possibility of using hot exhaust gas for the desorption process. It was found in the adsorption studies, and through literature review, that NO adsorption was poor when the carrier gas was nitrogen, but that NO in the presence of oxygen was adsorbed at levels exceeding 1% by mass of the sorbent. From the three experimental campaigns, chemical kinetic modeling analysis, and the scaled benchtop NOx adsorption system, an overall SNR system model was developed. An economic analysis was completed, and showed that the system was impractical in cost for small engines, but that economies of scale favored the technology.« less

  12. Auralization of Hybrid Wing Body Aircraft Flyover Noise from System Noise Predictions

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Aumann, Aric R.; Lopes, Leonvard V.; Burley, Casey L.

    2013-01-01

    System noise assessments of a state-of-the-art reference aircraft (similar to a Boeing 777-200ER with GE90-like turbofan engines) and several hybrid wing body (HWB) aircraft configurations were recently performed using NASA engine and aircraft system analysis tools. The HWB aircraft were sized to an equivalent mission as the reference aircraft and assessments were performed using measurements of airframe shielding from a series of propulsion airframe aeroacoustic experiments. The focus of this work is to auralize flyover noise from the reference aircraft and the best HWB configuration using source noise predictions and shielding data based largely on the earlier assessments. For each aircraft, three flyover conditions are auralized. These correspond to approach, sideline, and cutback operating states, but flown in straight and level flight trajectories. The auralizations are performed using synthesis and simulation tools developed at NASA. Audio and visual presentations are provided to allow the reader to experience the flyover from the perspective of a listener in the simulated environment.

  13. OAO-3 end of mission tests report

    NASA Technical Reports Server (NTRS)

    Kalil, F.; Kull, F. J.; Mcintosh, R.; Ollendorf, S.; Margolies, D. L.; Gemmell, J.; Tasevoli, C. M.; Polidan, R. S.; Kochevar, H.; Chapman, C.

    1981-01-01

    Twelve engineering type tests were performed on several subsystems and experiment(s) of the OAO 3 spacecraft near its end of mission. The systems tested include: Princeton experiment package (PEP), fine error system guidance, inertial reference unit, star trackers, heat pipes, thermal control coatings, command and data handling, solar array; batteries, and onboard processor/power boost regulator. Generally, the systems performed well for the 8 1/2 years life of OAO 3, although some degradation was noted in the sensitivity of PEP and in the absorptivity of the skin coatings. Battery life was prolonged during the life of the mission in large part by carefully monitoring the charge-discharge cycle with careful attention not to overcharge.

  14. It's Indisputable: Five Facts About Planning and Operating Modern Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, Aaron; Helman, Udi; Holttinen, Hannele

    An indisputable fact cannot be rebutted. It is supported by theory and experience. Over the past 25 years, wind and solar generation has undergone dramatic growth, resulting in a variety of experiences that model the integration of wind and solar into the planning and operation of modern electric power systems. In this article, we bring together examples from Europe, North America, and Australia to identify five indisputable facts about planning and operating modern power systems. Taken together, we hope these experiences can help build consensus among the engineering and public policy communities about the current state of wind and solarmore » integration and also facilitate conversations about evolving future challenges.« less

  15. Neuromorphic sensory systems.

    PubMed

    Liu, Shih-Chii; Delbruck, Tobi

    2010-06-01

    Biology provides examples of efficient machines which greatly outperform conventional technology. Designers in neuromorphic engineering aim to construct electronic systems with the same efficient style of computation. This task requires a melding of novel engineering principles with knowledge gleaned from neuroscience. We discuss recent progress in realizing neuromorphic sensory systems which mimic the biological retina and cochlea, and subsequent sensor processing. The main trends are the increasing number of sensors and sensory systems that communicate through asynchronous digital signals analogous to neural spikes; the improved performance and usability of these sensors; and novel sensory processing methods which capitalize on the timing of spikes from these sensors. Experiments using these sensors can impact how we think the brain processes sensory information. 2010 Elsevier Ltd. All rights reserved.

  16. A Low-Cost Modular Platform for Heterogeneous Data Acquisition with Accurate Interchannel Synchronization

    PubMed Central

    Blanco-Claraco, José Luis; López-Martínez, Javier; Torres-Moreno, José Luis; Giménez-Fernández, Antonio

    2015-01-01

    Most experimental fields of science and engineering require the use of data acquisition systems (DAQ), devices in charge of sampling and converting electrical signals into digital data and, typically, performing all of the required signal preconditioning. Since commercial DAQ systems are normally focused on specific types of sensors and actuators, systems engineers may need to employ mutually-incompatible hardware from different manufacturers in applications demanding heterogeneous inputs and outputs, such as small-signal analog inputs, differential quadrature rotatory encoders or variable current outputs. A common undesirable side effect of heterogeneous DAQ hardware is the lack of an accurate synchronization between samples captured by each device. To solve such a problem with low-cost hardware, we present a novel modular DAQ architecture comprising a base board and a set of interchangeable modules. Our main design goal is the ability to sample all sources at predictable, fixed sampling frequencies, with a reduced synchronization mismatch (<1 μs) between heterogeneous signal sources. We present experiments in the field of mechanical engineering, illustrating vibration spectrum analyses from piezoelectric accelerometers and, as a novelty in these kinds of experiments, the spectrum of quadrature encoder signals. Part of the design and software will be publicly released online. PMID:26516865

  17. IMP: Using microsat technology to support engineering research inside of the International Space Station

    NASA Astrophysics Data System (ADS)

    Carroll, Kieran A.

    2000-01-01

    This paper describes an International Space Station (ISS) experiment-support facility being developed by Dynacon for the Canadian Space Agency (CSA), based on microsatellite technology. The facility is called the ``Intravehicular Maneuverable Platform,'' or IMP. The core of IMP is a small, free-floating platform (or ``bus'') deployed inside one of the pressurized crew modules of ISS. Exchangeable experimental payloads can then be mounted to the IMP bus, in order to carry out engineering development or demonstration tests, or microgravity science experiments: the bus provides these payloads with services typical of a standard satellite bus (power, attitude control, etc.). The IMP facility takes advantage of unique features of the ISS, such as the Shuttle-based logistics system and the continuous availability of crew members, to greatly reduce the expense of carrying out space engineering experiments. Further cost reduction has been made possible by incorporating technology that Dynacon has developed for use in a current microsatellite mission. Numerous potential payloads for IMP have been identified, and the first of these (a flexible satellite control experiment) is under development by Dynacon and the University of Toronto's Institute for Aerospace Studies, for the CSA. .

  18. Fundamental study of subharmonic vibration of order 1/2 in automatic transmissions for cars

    NASA Astrophysics Data System (ADS)

    Ryu, T.; Nakae, T.; Matsuzaki, K.; Nanba, A.; Takikawa, Y.; Ooi, Y.; Sueoka, A.

    2016-09-01

    A torque converter is an element that transfers torque from the engine to the gear train in the automatic transmission of an automobile. The damper spring of the lock-up clutch in the torque converter is used to effectively absorb the torsional vibration caused by engine combustion. A damper with low stiffness reduces fluctuations in rotational speed but is difficult to use because of space limitations. In order to address this problem, the damper is designed using a piecewise-linear spring with three stiffness stages. However, the damper causes a nonlinear vibration referred to as a subharmonic vibration of order 1/2. In the subharmonic vibration, the frequency is half that of the vibrations from the engine. In order to clarify the mechanism of the subharmonic vibration, in the present study, experiments are conducted using the fundamental experimental apparatus of a single-degree-of-freedom system with two stiffness stages. In the experiments, countermeasures to reduce the subharmonic vibration by varying the conditions of the experiments are also performed. The results of the experiments are evaluated through numerical analysis using the shooting method. The experimental and analytical results were found to be in close agreement.

  19. Capillary Flow Experiment

    NASA Image and Video Library

    2014-06-19

    ISS040-E-015539 (19 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.

  20. Summary of investigations of engine response to distorted inlet conditions

    NASA Technical Reports Server (NTRS)

    Biesiadny, T. J.; Braithwaite, W. M.; Soeder, R. H.; Abdelwahab, M.

    1986-01-01

    A survey is presented of experimental and analytical experience of the NASA Lewis Research Center in engine response to inlet temperature and pressure distortions. This includes a description of the hardware and techniques employed, and a summary of the highlights of experimental investigations and analytical modeling. Distortion devices successfully simulated inlet distortion, and knowledge was gained about compression system response to different types of distortion. A list of NASA research references is included.

  1. Extending Team Software Process (TSP) to Systems Engineering: A NAVAIR Experience Report

    DTIC Science & Technology

    2010-03-01

    instrumental in formulating the concepts and approaches presented in this report: Dan Burton, Anita Carleton, Timothy Chick, Mike Fehring, Watts Humphrey ...Senate,” GAO-04-393, Defense Acquisitions, 2004. http://www.gao.gov/new.items/d04393.pdf [ Humphrey 06] W. S . Humphrey , TSP: Leading a Development... Humphrey 08] W. S . Humphrey , “The Process Revolution,” CrossTalk The Journal of Defense Software Engineering, August 2008, Volume 28 Number 8

  2. An Introduction to Thermodynamic Performance Analysis of Aircraft Gas Turbine Engine Cycles Using the Numerical Propulsion System Simulation Code

    NASA Technical Reports Server (NTRS)

    Jones, Scott M.

    2007-01-01

    This document is intended as an introduction to the analysis of gas turbine engine cycles using the Numerical Propulsion System Simulation (NPSS) code. It is assumed that the analyst has a firm understanding of fluid flow, gas dynamics, thermodynamics, and turbomachinery theory. The purpose of this paper is to provide for the novice the information necessary to begin cycle analysis using NPSS. This paper and the annotated example serve as a starting point and by no means cover the entire range of information and experience necessary for engine performance simulation. NPSS syntax is presented but for a more detailed explanation of the code the user is referred to the NPSS User Guide and Reference document (ref. 1).

  3. SPIRE Data-Base Management System

    NASA Technical Reports Server (NTRS)

    Fuechsel, C. F.

    1984-01-01

    Spacelab Payload Integration and Rocket Experiment (SPIRE) data-base management system (DBMS) based on relational model of data bases. Data bases typically used for engineering and mission analysis tasks and, unlike most commercially available systems, allow data items and data structures stored in forms suitable for direct analytical computation. SPIRE DBMS designed to support data requests from interactive users as well as applications programs.

  4. Impact of methanol-gasoline fuel blend on the fuel consumption and exhaust emission of a SI engine

    NASA Astrophysics Data System (ADS)

    Rifal, Mohamad; Sinaga, Nazaruddin

    2016-04-01

    In this study, the effect of methanol-gasoline fuel blend (M15, M30 and M50) on the fuel consumption and exhaust emission of a spark ignition engine (SI) were investigated. In the experiment, an engine four-cylinder, four stroke injection system (engine of Toyota Kijang Innova 1TR-FE) was used. Test were did to know the relation of fuel consumption and exhaust emission (CO, CO2, HC) were analyzed under the idle throttle operating condition and variable engine speed ranging from 1000 to 4000 rpm. The experimental result showed that the fuel consumption decrease with the use of methanol. It was also shown that the CO and HC emission were reduced with the increase methanol content while CO2 were increased.

  5. Solar array experiments on the Sphinx satellite

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.

    1973-01-01

    The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations; the edge illuminated-multijunction cells, the Teflon encased cells and the violet cells.

  6. Allegany Ballistics Lab: sensor test target system

    NASA Astrophysics Data System (ADS)

    Eaton, Deran S.

    2011-06-01

    Leveraging the Naval Surface Warfare Center, Indian Head Division's historical experience in weapon simulation, Naval Sea Systems Command commissioned development of a remote-controlled, digitally programmable Sensor Test Target as part of a modern, outdoor hardware-in-the-loop test system for ordnance-related guidance, navigation and control systems. The overall Target system design invokes a sciences-based, "design of automated experiments" approach meant to close the logistical distance between sensor engineering and developmental T&E in outdoor conditions over useful real world distances. This enables operating modes that employ broad spectrum electromagnetic energy in many a desired combination, variably generated using a Jet Engine Simulator, a multispectral infrared emitter array, optically enhanced incandescent Flare Simulators, Emitter/Detector mounts, and an RF corner reflector kit. As assembled, the recently tested Sensor Test Target prototype being presented can capably provide a full array of useful RF and infrared target source simulations for RDT&E use with developmental and existing sensors. Certain Target technologies are patent pending, with potential spinoffs in aviation, metallurgy and biofuels processing, while others are variations on well-established technology. The Sensor Test Target System is planned for extended installation at Allegany Ballistics Laboratory (Rocket Center, WV).

  7. Case Studies in Application of System Engineering Practices to Capstone Projects

    NASA Technical Reports Server (NTRS)

    Murphy, Gloria; vanSusante, Paul; Carmen, Christina; Morris, Tommy; Schmidt, Peter; Zalewski, Janusz

    2011-01-01

    The Exploration Systems Mission Directorate (ESMD) of the National Aeronautics and Space Administration (NASA) sponsors a faculty fellowship program that engages researchers with interests aligned with current ESMD development programs. The faculty-members are committed to run a capstone senior design project based- on the materials and experience gained during the fellowship. For the 2010 - 2011 academic year, 5 projects were approved. These projects are in the areas of mechanical and electrical hardware design and optimization, fault prediction and extra planetary civil site preparation. This work summarizes the projects, describes the student teams performing the work, and comments on the integration of Systems Engineering principles into the projects, as well as the affected course curriculums.

  8. Harnessing recombination to speed adaptive evolution in Escherichia coli.

    PubMed

    Winkler, James; Kao, Katy C

    2012-09-01

    Evolutionary engineering typically involves asexual propagation of a strain to improve a desired phenotype. However, asexual populations suffer from extensive clonal interference, a phenomenon where distinct lineages of beneficial clones compete and are often lost from the population given sufficient time. Improved adaptive mutants can likely be generated by genetic exchange between lineages, thereby reducing clonal interference. We present a system that allows continuous in situ recombination by using an Esherichia coli F-based conjugation system lacking surface exclusion. Evolution experiments revealed that Hfr-mediated recombination significantly speeds adaptation in certain circumstances. These results show that our system is stable, effective, and suitable for use in evolutionary engineering applications. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Update on the NASA Glenn Propulsion Systems Lab Ice Crystal Cloud Characterization (2015, 2016)

    NASA Technical Reports Server (NTRS)

    Van Zante, Judith; Bencic, Timothy; Ratvasky, Thomas

    2016-01-01

    NASA Glenn's Propulsion Systems Lab, an altitude engine test facility, was outfitted with a spray system to generate ice crystals in 2011. Turbine engines and driven rigs can experience ice crystal icing at flight altitudes, temperatures and Mach numbers. To support these tests, four ice crystal characterizations have been conducted in two different facility configurations. In addition, super-cooled liquid and mixed phase clouds have also been generated. This paper represents a work in progress. It will describe some of the 11-parameter calibration space, and how those parameters interact with each other, the instrumentation used to characterize the cloud and present a sample of the cloud characterization results.

  10. Understanding First Generation College Student Experiences and Interaction with Belongingness, Identity, and Social Capital: An Explanatory Mixed Method Study

    NASA Astrophysics Data System (ADS)

    Boone, Hank Joseph Reyes

    This master's thesis is a mixed method explanatory study focusing on First Generation College student's (FGS) engineering degree experiences. Constructs used to understand their experiences were future time perspective, belongingness, engineering identity, social capital, and social identity complexity. An upper level engineering students' communications class was surveyed at a western land grant institution. Analysis showed FGS had more engineering belongingness than peers having at least one parent graduate college. The qualitative population was then upper level engineering FGS who reported high belongingness. Data showed the five interview participants communicated belongingness in terms of engineering identity. They became an engineer when they had experiences using engineering knowledge. Participants often accessed parents and family to make academic and career decisions, but some accessed more individuals (i.e. professors, engineers, peers). Lastly, participants appeared to compartmentalize their FGS identity to outside the engineering classroom while they formed their engineering identity through the degree program.

  11. Electric Propulsion Options for 10 kW Class Earth-Space Missions

    NASA Technical Reports Server (NTRS)

    Patterson, M. J.; Curran, Francis M.

    1989-01-01

    Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment were evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA 2 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10 (exp 7) to 2.1x10 (exp 7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA 2 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10 (exp 6) to 3.6x10 (exp 6) N-s, and approximately 662 to 1072 m/s, respectively.

  12. Requirements for Real-Time Laboratory Experimentation over the Internet.

    ERIC Educational Resources Information Center

    Salzmann, C.; Latchman, H. A.; Gillet, D.; Crisalle, O. D.

    A prototype system based on an inverted pendulum is used to study the Quality of Service and discuss requirements of remote-experimentation systems utilized for carrying out control engineering experiments over the Internet. This class of applications involves the transmission over the network of a variety of data types with their own peculiar…

  13. DEMONSTRATION BULLETIN: SITE CHARACTERIZATION ANALYSIS PENETROMETER SYSTEM (SCAPS) LIF SENSOR - U.S. ARMY, NAVY, AND AIR FORCE (TRI-SERVICES)

    EPA Science Inventory

    The Tri-Services Site Characterization Analysis Penetrometer System (SCAPS) was developed by the U.S. Army (U.S. Army Corps of Engineers, Waterways Experiment Station [WES] and the Army Environmental Center [AEC]), Navy (Naval Command, Control and Ocean Surveillance Center), and ...

  14. The use of LANDSAT DCS and imagery in reservoir management and operation

    NASA Technical Reports Server (NTRS)

    Cooper, S.; Bock, P.; Horowitz, J.; Foran, D.

    1975-01-01

    Experiments by the New England Division (NED), Corps of Engineers with LANDSAT-1 data collection and imaging systems are reported. Data cover the future usefulness of data products received from satellites such as LANDSAT in the day to day operation of NED water resources systems used to control floods.

  15. The 18th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Topics concerning aerospace mechanisms, their functional performance, and design specifications are presented. Discussed subjects include the design and development of release mechanisms, actuators, linear driver/rate controllers, antenna and appendage deployment systems, position control systems, and tracking mechanisms for antennas and solar arrays. Engine design, spaceborne experiments, and large space structure technology are also examined.

  16. Problematising the "Career Academic" in UK Construction and Engineering Education: Does the System Want What the System Gets?

    ERIC Educational Resources Information Center

    Pilcher, Nick; Forster, Alan; Tennant, Stuart; Murray, Mike; Craig, Nigel

    2017-01-01

    "Career Academics" are principally research-led, entering academia with limited or no industrial or practical experience. UK Higher Education Institutions welcome them for their potential to attain research grant funding and publish world-leading journal papers, ultimately enhancing institutional reputation. This polemical paper…

  17. An Experience of CACSD for Networked Control Systems: From Mechatronic Platform Identification to Control Implementation

    ERIC Educational Resources Information Center

    Losada, Cristina; Espinosa, Felipe; Santos, Carlos; Gálvez, Manuel; Bueno, Emilio J.; Marrón, Marta; Rodríguez, Francisco J.

    2016-01-01

    Continual advances in information and communication technologies (ICT) are revolutionizing virtual education and bringing new tools on the market that provide virtual solutions to a range of problems. Nevertheless, nonvirtual experimentation using computer-aided control system design tools is still fundamental for future engineers. This paper…

  18. Creating Hybrid Learning Experiences in Robotics: Implications for Supporting Teaching and Learning

    ERIC Educational Resources Information Center

    Frerichs, Saundra Wever; Barker, Bradley; Morgan, Kathy; Patent-Nygren, Megan; Rezac, Micaela

    2012-01-01

    Geospatial and Robotics Technologies for the 21st Century (GEAR-Tech-21), teaches science, technology, engineering and mathematics (STEM) through robotics, global positioning systems (GPS), and geographic information systems (GIS) activities for youth in grades 5-8. Participants use a robotics kit, handheld GPS devices, and GIS technology to…

  19. Cell biology and biotechnology research for exploration of the Moon and Mars

    NASA Astrophysics Data System (ADS)

    Pellis, N.; North, R.

    Health risks generated by human long exposure to radiation, microgravity, and unknown factors in the planetary environment are the major unresolved issues for human space exploration. A complete characterization of human and other biological systems adaptation processes to long-duration space missions is necessary for the development of countermeasures. The utilization of cell and engineered tissue cultures in space research and exploration complements research in human, animal, and plant subjects. We can bring a small number of humans, animals, or plants to the ISS, Moon, and Mars. However, we can investigate millions of their cells during these missions. Furthermore, many experiments can not be performed on humans, e.g. radiation exposure, cardiac muscle. Cells from critical tissues and tissue constructs per se are excellent subjects for experiments that address underlying mechanisms important to countermeasures. The development of cell tissue engineered for replacement, implantation of biomaterial to induce tissue regeneration (e.g. absorbable collagen matrix for guiding tissue regeneration in periodontal surgery), and immunoisolation (e.g. biopolymer coating on transplanted tissues to ward off immunological rejection) are good examples of cell research and biotechnology applications. NASA Cell Biology and Biotechnology research include Bone/Muscle and Cardiovascular cell culture and tissue engineering; Environmental Health and Life Support Systems; Immune System; Radiation; Gravity Thresholds ; and Advanced Biotechnology Development to increase the understanding of animal and plant cell adaptive behavior when exposed to space, and to advance technologies that facilitates exploration. Cell systems can be used to investigate processes related to food, microbial proliferation, waste management, biofilms and biomaterials. The NASA Cell Science Program has the advantage of conducting research in microgravity based on significantly small resources, and the ability to conduct experiments in the early phase of the development of requirements for exploration. Supporting the NASA concept of stepping stones, we believe that ground based, International Space Station, robotic and satellite missions offer the ideal environment to perform experiments and secure answers necessary for human exploration.

  20. Linear Aerospike SR-71 Experiment (LASRE) ground cold flow test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph shows a ground cold flow test of the linear aerospike rocket engine mounted on the rear fuselage of an SR-71. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program.

Top