Sample records for system fault detection

  1. Parameter Transient Behavior Analysis on Fault Tolerant Control System

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine (Technical Monitor); Shin, Jong-Yeob

    2003-01-01

    In a fault tolerant control (FTC) system, a parameter varying FTC law is reconfigured based on fault parameters estimated by fault detection and isolation (FDI) modules. FDI modules require some time to detect fault occurrences in aero-vehicle dynamics. This paper illustrates analysis of a FTC system based on estimated fault parameter transient behavior which may include false fault detections during a short time interval. Using Lyapunov function analysis, the upper bound of an induced-L2 norm of the FTC system performance is calculated as a function of a fault detection time and the exponential decay rate of the Lyapunov function.

  2. A distributed fault-detection and diagnosis system using on-line parameter estimation

    NASA Technical Reports Server (NTRS)

    Guo, T.-H.; Merrill, W.; Duyar, A.

    1991-01-01

    The development of a model-based fault-detection and diagnosis system (FDD) is reviewed. The system can be used as an integral part of an intelligent control system. It determines the faults of a system from comparison of the measurements of the system with a priori information represented by the model of the system. The method of modeling a complex system is described and a description of diagnosis models which include process faults is presented. There are three distinct classes of fault modes covered by the system performance model equation: actuator faults, sensor faults, and performance degradation. A system equation for a complete model that describes all three classes of faults is given. The strategy for detecting the fault and estimating the fault parameters using a distributed on-line parameter identification scheme is presented. A two-step approach is proposed. The first step is composed of a group of hypothesis testing modules, (HTM) in parallel processing to test each class of faults. The second step is the fault diagnosis module which checks all the information obtained from the HTM level, isolates the fault, and determines its magnitude. The proposed FDD system was demonstrated by applying it to detect actuator and sensor faults added to a simulation of the Space Shuttle Main Engine. The simulation results show that the proposed FDD system can adequately detect the faults and estimate their magnitudes.

  3. Flight elements: Fault detection and fault management

    NASA Technical Reports Server (NTRS)

    Lum, H.; Patterson-Hine, A.; Edge, J. T.; Lawler, D.

    1990-01-01

    Fault management for an intelligent computational system must be developed using a top down integrated engineering approach. An approach proposed includes integrating the overall environment involving sensors and their associated data; design knowledge capture; operations; fault detection, identification, and reconfiguration; testability; causal models including digraph matrix analysis; and overall performance impacts on the hardware and software architecture. Implementation of the concept to achieve a real time intelligent fault detection and management system will be accomplished via the implementation of several objectives, which are: Development of fault tolerant/FDIR requirement and specification from a systems level which will carry through from conceptual design through implementation and mission operations; Implementation of monitoring, diagnosis, and reconfiguration at all system levels providing fault isolation and system integration; Optimize system operations to manage degraded system performance through system integration; and Lower development and operations costs through the implementation of an intelligent real time fault detection and fault management system and an information management system.

  4. Software-implemented fault insertion: An FTMP example

    NASA Technical Reports Server (NTRS)

    Czeck, Edward W.; Siewiorek, Daniel P.; Segall, Zary Z.

    1987-01-01

    This report presents a model for fault insertion through software; describes its implementation on a fault-tolerant computer, FTMP; presents a summary of fault detection, identification, and reconfiguration data collected with software-implemented fault insertion; and compares the results to hardware fault insertion data. Experimental results show detection time to be a function of time of insertion and system workload. For the fault detection time, there is no correlation between software-inserted faults and hardware-inserted faults; this is because hardware-inserted faults must manifest as errors before detection, whereas software-inserted faults immediately exercise the error detection mechanisms. In summary, the software-implemented fault insertion is able to be used as an evaluation technique for the fault-handling capabilities of a system in fault detection, identification and recovery. Although the software-inserted faults do not map directly to hardware-inserted faults, experiments show software-implemented fault insertion is capable of emulating hardware fault insertion, with greater ease and automation.

  5. Robust Fault Detection and Isolation for Stochastic Systems

    NASA Technical Reports Server (NTRS)

    George, Jemin; Gregory, Irene M.

    2010-01-01

    This paper outlines the formulation of a robust fault detection and isolation scheme that can precisely detect and isolate simultaneous actuator and sensor faults for uncertain linear stochastic systems. The given robust fault detection scheme based on the discontinuous robust observer approach would be able to distinguish between model uncertainties and actuator failures and therefore eliminate the problem of false alarms. Since the proposed approach involves precise reconstruction of sensor faults, it can also be used for sensor fault identification and the reconstruction of true outputs from faulty sensor outputs. Simulation results presented here validate the effectiveness of the robust fault detection and isolation system.

  6. Fault recovery for real-time, multi-tasking computer system

    NASA Technical Reports Server (NTRS)

    Hess, Richard (Inventor); Kelly, Gerald B. (Inventor); Rogers, Randy (Inventor); Stange, Kent A. (Inventor)

    2011-01-01

    System and methods for providing a recoverable real time multi-tasking computer system are disclosed. In one embodiment, a system comprises a real time computing environment, wherein the real time computing environment is adapted to execute one or more applications and wherein each application is time and space partitioned. The system further comprises a fault detection system adapted to detect one or more faults affecting the real time computing environment and a fault recovery system, wherein upon the detection of a fault the fault recovery system is adapted to restore a backup set of state variables.

  7. Fault detection and isolation for complex system

    NASA Astrophysics Data System (ADS)

    Jing, Chan Shi; Bayuaji, Luhur; Samad, R.; Mustafa, M.; Abdullah, N. R. H.; Zain, Z. M.; Pebrianti, Dwi

    2017-07-01

    Fault Detection and Isolation (FDI) is a method to monitor, identify, and pinpoint the type and location of system fault in a complex multiple input multiple output (MIMO) non-linear system. A two wheel robot is used as a complex system in this study. The aim of the research is to construct and design a Fault Detection and Isolation algorithm. The proposed method for the fault identification is using hybrid technique that combines Kalman filter and Artificial Neural Network (ANN). The Kalman filter is able to recognize the data from the sensors of the system and indicate the fault of the system in the sensor reading. Error prediction is based on the fault magnitude and the time occurrence of fault. Additionally, Artificial Neural Network (ANN) is another algorithm used to determine the type of fault and isolate the fault in the system.

  8. Expert System Detects Power-Distribution Faults

    NASA Technical Reports Server (NTRS)

    Walters, Jerry L.; Quinn, Todd M.

    1994-01-01

    Autonomous Power Expert (APEX) computer program is prototype expert-system program detecting faults in electrical-power-distribution system. Assists human operators in diagnosing faults and deciding what adjustments or repairs needed for immediate recovery from faults or for maintenance to correct initially nonthreatening conditions that could develop into faults. Written in Lisp.

  9. Advanced power system protection and incipient fault detection and protection of spaceborne power systems

    NASA Technical Reports Server (NTRS)

    Russell, B. Don

    1989-01-01

    This research concentrated on the application of advanced signal processing, expert system, and digital technologies for the detection and control of low grade, incipient faults on spaceborne power systems. The researchers have considerable experience in the application of advanced digital technologies and the protection of terrestrial power systems. This experience was used in the current contracts to develop new approaches for protecting the electrical distribution system in spaceborne applications. The project was divided into three distinct areas: (1) investigate the applicability of fault detection algorithms developed for terrestrial power systems to the detection of faults in spaceborne systems; (2) investigate the digital hardware and architectures required to monitor and control spaceborne power systems with full capability to implement new detection and diagnostic algorithms; and (3) develop a real-time expert operating system for implementing diagnostic and protection algorithms. Significant progress has been made in each of the above areas. Several terrestrial fault detection algorithms were modified to better adapt to spaceborne power system environments. Several digital architectures were developed and evaluated in light of the fault detection algorithms.

  10. A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults.

    PubMed

    Sun, Rui; Cheng, Qi; Wang, Guanyu; Ochieng, Washington Yotto

    2017-09-29

    The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs' flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate.

  11. Functional requirements for an intelligent RPC. [remote power controller for spaceborne electrical distribution system

    NASA Technical Reports Server (NTRS)

    Aucoin, B. M.; Heller, R. P.

    1990-01-01

    An intelligent remote power controller (RPC) based on microcomputer technology can implement advanced functions for the accurate and secure detection of all types of faults on a spaceborne electrical distribution system. The intelligent RPC will implement conventional protection functions such as overcurrent, under-voltage, and ground fault protection. Advanced functions for the detection of soft faults, which cannot presently be detected, can also be implemented. Adaptive overcurrent protection changes overcurrent settings based on connected load. Incipient and high-impedance fault detection provides early detection of arcing conditions to prevent fires, and to clear and reconfigure circuits before soft faults progress to a hard-fault condition. Power electronics techniques can be used to implement fault current limiting to prevent voltage dips during hard faults. It is concluded that these techniques will enhance the overall safety and reliability of the distribution system.

  12. Fault tolerant filtering and fault detection for quantum systems driven by fields in single photon states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Qing, E-mail: qing.gao.chance@gmail.com; Dong, Daoyi, E-mail: daoyidong@gmail.com; Petersen, Ian R., E-mail: i.r.petersen@gmai.com

    The purpose of this paper is to solve the fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.

  13. Solar system fault detection

    DOEpatents

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  14. Solar system fault detection

    DOEpatents

    Farrington, Robert B.; Pruett, Jr., James C.

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  15. Neural adaptive observer-based sensor and actuator fault detection in nonlinear systems: Application in UAV.

    PubMed

    Abbaspour, Alireza; Aboutalebi, Payam; Yen, Kang K; Sargolzaei, Arman

    2017-03-01

    A new online detection strategy is developed to detect faults in sensors and actuators of unmanned aerial vehicle (UAV) systems. In this design, the weighting parameters of the Neural Network (NN) are updated by using the Extended Kalman Filter (EKF). Online adaptation of these weighting parameters helps to detect abrupt, intermittent, and incipient faults accurately. We apply the proposed fault detection system to a nonlinear dynamic model of the WVU YF-22 unmanned aircraft for its evaluation. The simulation results show that the new method has better performance in comparison with conventional recurrent neural network-based fault detection strategies. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  16. A Game Theoretic Fault Detection Filter

    NASA Technical Reports Server (NTRS)

    Chung, Walter H.; Speyer, Jason L.

    1995-01-01

    The fault detection process is modelled as a disturbance attenuation problem. The solution to this problem is found via differential game theory, leading to an H(sub infinity) filter which bounds the transmission of all exogenous signals save the fault to be detected. For a general class of linear systems which includes some time-varying systems, it is shown that this transmission bound can be taken to zero by simultaneously bringing the sensor noise weighting to zero. Thus, in the limit, a complete transmission block can he achieved, making the game filter into a fault detection filter. When we specialize this result to time-invariant system, it is found that the detection filter attained in the limit is identical to the well known Beard-Jones Fault Detection Filter. That is, all fault inputs other than the one to be detected (the "nuisance faults") are restricted to an invariant subspace which is unobservable to a projection on the output. For time-invariant systems, it is also shown that in the limit, the order of the state-space and the game filter can be reduced by factoring out the invariant subspace. The result is a lower dimensional filter which can observe only the fault to be detected. A reduced-order filter can also he generated for time-varying systems, though the computational overhead may be intensive. An example given at the end of the paper demonstrates the effectiveness of the filter as a tool for fault detection and identification.

  17. Simultaneous Event-Triggered Fault Detection and Estimation for Stochastic Systems Subject to Deception Attacks.

    PubMed

    Li, Yunji; Wu, QingE; Peng, Li

    2018-01-23

    In this paper, a synthesized design of fault-detection filter and fault estimator is considered for a class of discrete-time stochastic systems in the framework of event-triggered transmission scheme subject to unknown disturbances and deception attacks. A random variable obeying the Bernoulli distribution is employed to characterize the phenomena of the randomly occurring deception attacks. To achieve a fault-detection residual is only sensitive to faults while robust to disturbances, a coordinate transformation approach is exploited. This approach can transform the considered system into two subsystems and the unknown disturbances are removed from one of the subsystems. The gain of fault-detection filter is derived by minimizing an upper bound of filter error covariance. Meanwhile, system faults can be reconstructed by the remote fault estimator. An recursive approach is developed to obtain fault estimator gains as well as guarantee the fault estimator performance. Furthermore, the corresponding event-triggered sensor data transmission scheme is also presented for improving working-life of the wireless sensor node when measurement information are aperiodically transmitted. Finally, a scaled version of an industrial system consisting of local PC, remote estimator and wireless sensor node is used to experimentally evaluate the proposed theoretical results. In particular, a novel fault-alarming strategy is proposed so that the real-time capacity of fault-detection is guaranteed when the event condition is triggered.

  18. Implementation of a model based fault detection and diagnosis for actuation faults of the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.

    1992-01-01

    In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the space shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the space shuttle main engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.

  19. Automatic Fault Characterization via Abnormality-Enhanced Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronevetsky, G; Laguna, I; de Supinski, B R

    Enterprise and high-performance computing systems are growing extremely large and complex, employing hundreds to hundreds of thousands of processors and software/hardware stacks built by many people across many organizations. As the growing scale of these machines increases the frequency of faults, system complexity makes these faults difficult to detect and to diagnose. Current system management techniques, which focus primarily on efficient data access and query mechanisms, require system administrators to examine the behavior of various system services manually. Growing system complexity is making this manual process unmanageable: administrators require more effective management tools that can detect faults and help tomore » identify their root causes. System administrators need timely notification when a fault is manifested that includes the type of fault, the time period in which it occurred and the processor on which it originated. Statistical modeling approaches can accurately characterize system behavior. However, the complex effects of system faults make these tools difficult to apply effectively. This paper investigates the application of classification and clustering algorithms to fault detection and characterization. We show experimentally that naively applying these methods achieves poor accuracy. Further, we design novel techniques that combine classification algorithms with information on the abnormality of application behavior to improve detection and characterization accuracy. Our experiments demonstrate that these techniques can detect and characterize faults with 65% accuracy, compared to just 5% accuracy for naive approaches.« less

  20. Potential fault region detection in TFDS images based on convolutional neural network

    NASA Astrophysics Data System (ADS)

    Sun, Junhua; Xiao, Zhongwen

    2016-10-01

    In recent years, more than 300 sets of Trouble of Running Freight Train Detection System (TFDS) have been installed on railway to monitor the safety of running freight trains in China. However, TFDS is simply responsible for capturing, transmitting, and storing images, and fails to recognize faults automatically due to some difficulties such as such as the diversity and complexity of faults and some low quality images. To improve the performance of automatic fault recognition, it is of great importance to locate the potential fault areas. In this paper, we first introduce a convolutional neural network (CNN) model to TFDS and propose a potential fault region detection system (PFRDS) for simultaneously detecting four typical types of potential fault regions (PFRs). The experimental results show that this system has a higher performance of image detection to PFRs in TFDS. An average detection recall of 98.95% and precision of 100% are obtained, demonstrating the high detection ability and robustness against various poor imaging situations.

  1. Event-Triggered Fault Detection of Nonlinear Networked Systems.

    PubMed

    Li, Hongyi; Chen, Ziran; Wu, Ligang; Lam, Hak-Keung; Du, Haiping

    2017-04-01

    This paper investigates the problem of fault detection for nonlinear discrete-time networked systems under an event-triggered scheme. A polynomial fuzzy fault detection filter is designed to generate a residual signal and detect faults in the system. A novel polynomial event-triggered scheme is proposed to determine the transmission of the signal. A fault detection filter is designed to guarantee that the residual system is asymptotically stable and satisfies the desired performance. Polynomial approximated membership functions obtained by Taylor series are employed for filtering analysis. Furthermore, sufficient conditions are represented in terms of sum of squares (SOSs) and can be solved by SOS tools in MATLAB environment. A numerical example is provided to demonstrate the effectiveness of the proposed results.

  2. Fault detection and isolation

    NASA Technical Reports Server (NTRS)

    Bernath, Greg

    1994-01-01

    In order for a current satellite-based navigation system (such as the Global Positioning System, GPS) to meet integrity requirements, there must be a way of detecting erroneous measurements, without help from outside the system. This process is called Fault Detection and Isolation (FDI). Fault detection requires at least one redundant measurement, and can be done with a parity space algorithm. The best way around the fault isolation problem is not necessarily isolating the bad measurement, but finding a new combination of measurements which excludes it.

  3. Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices.

    PubMed

    Wu, Yunkai; Jiang, Bin; Lu, Ningyun; Yang, Hao; Zhou, Yang

    2017-03-01

    This paper deals with the problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems with sensor biases and explores further results of total measurable fault information residual (ToMFIR). Firstly, state and output transformations are introduced to transform the original system into two subsystems. The first subsystem is subject to system disturbances and free from sensor faults, while the second subsystem contains sensor faults but without any system disturbances. Sensor faults in the second subsystem are then formed as actuator faults by using a pseudo-actuator based approach. Since the effects of system disturbances on the residual are completely decoupled, multiple incipient sensor faults can be detected by constructing ToMFIR, and the fault detectability condition is then derived for discriminating the detectable incipient sensor faults. Further, a sliding-mode observers (SMOs) based fault isolation scheme is designed to guarantee accurate isolation of multiple sensor faults. Finally, simulation results conducted on a CRH2 high-speed railway traction device are given to demonstrate the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Aircraft Fault Detection and Classification Using Multi-Level Immune Learning Detection

    NASA Technical Reports Server (NTRS)

    Wong, Derek; Poll, Scott; KrishnaKumar, Kalmanje

    2005-01-01

    This work is an extension of a recently developed software tool called MILD (Multi-level Immune Learning Detection), which implements a negative selection algorithm for anomaly and fault detection that is inspired by the human immune system. The immunity-based approach can detect a broad spectrum of known and unforeseen faults. We extend MILD by applying a neural network classifier to identify the pattern of fault detectors that are activated during fault detection. Consequently, MILD now performs fault detection and identification of the system under investigation. This paper describes the application of MILD to detect and classify faults of a generic transport aircraft augmented with an intelligent flight controller. The intelligent control architecture is designed to accommodate faults without the need to explicitly identify them. Adding knowledge about the existence and type of a fault will improve the handling qualities of a degraded aircraft and impact tactical and strategic maneuvering decisions. In addition, providing fault information to the pilot is important for maintaining situational awareness so that he can avoid performing an action that might lead to unexpected behavior - e.g., an action that exceeds the remaining control authority of the damaged aircraft. We discuss the detection and classification results of simulated failures of the aircraft's control system and show that MILD is effective at determining the problem with low false alarm and misclassification rates.

  5. Robust fault detection of wind energy conversion systems based on dynamic neural networks.

    PubMed

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.

  6. Robust Fault Detection of Wind Energy Conversion Systems Based on Dynamic Neural Networks

    PubMed Central

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate. PMID:24744774

  7. Robust fault detection of turbofan engines subject to adaptive controllers via a Total Measurable Fault Information Residual (ToMFIR) technique.

    PubMed

    Chen, Wen; Chowdhury, Fahmida N; Djuric, Ana; Yeh, Chih-Ping

    2014-09-01

    This paper provides a new design of robust fault detection for turbofan engines with adaptive controllers. The critical issue is that the adaptive controllers can depress the faulty effects such that the actual system outputs remain the pre-specified values, making it difficult to detect faults/failures. To solve this problem, a Total Measurable Fault Information Residual (ToMFIR) technique with the aid of system transformation is adopted to detect faults in turbofan engines with adaptive controllers. This design is a ToMFIR-redundancy-based robust fault detection. The ToMFIR is first introduced and existing results are also summarized. The Detailed design process of the ToMFIRs is presented and a turbofan engine model is simulated to verify the effectiveness of the proposed ToMFIR-based fault-detection strategy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Robust Fault Detection for Switched Fuzzy Systems With Unknown Input.

    PubMed

    Han, Jian; Zhang, Huaguang; Wang, Yingchun; Sun, Xun

    2017-10-03

    This paper investigates the fault detection problem for a class of switched nonlinear systems in the T-S fuzzy framework. The unknown input is considered in the systems. A novel fault detection unknown input observer design method is proposed. Based on the proposed observer, the unknown input can be removed from the fault detection residual. The weighted H∞ performance level is considered to ensure the robustness. In addition, the weighted H₋ performance level is introduced, which can increase the sensibility of the proposed detection method. To verify the proposed scheme, a numerical simulation example and an electromechanical system simulation example are provided at the end of this paper.

  9. A distributed fault-tolerant signal processor /FTSP/

    NASA Astrophysics Data System (ADS)

    Bonneau, R. J.; Evett, R. C.; Young, M. J.

    1980-01-01

    A digital fault-tolerant signal processor (FTSP), an example of a self-repairing programmable system is analyzed. The design configuration is discussed in terms of fault tolerance, system-level fault detection, isolation and common memory. Special attention is given to the FDIR (fault detection isolation and reconfiguration) logic, noting that the reconfiguration decisions are based on configuration, summary status, end-around tests, and north marker/synchro data. Several mechanisms of fault detection are described which initiate reconfiguration at different levels. It is concluded that the reliability of a signal processor can be significantly enhanced by the use of fault-tolerant techniques.

  10. Maneuver Classification for Aircraft Fault Detection

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.

    2003-01-01

    Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data provide a reasonable match to known examples of proper operation. In the domain of fault detection in aircraft, identifying all possible faulty and proper operating modes is clearly impossible. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. To develop such a system, we use flight data collected under a controlled test environment, subject to many sources of variability. We explain where our classifier fits into the envisioned fault detection system as well as experiments showing the promise of this classification subsystem.

  11. Classification of Aircraft Maneuvers for Fault Detection

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.; Koga, Dennis (Technical Monitor)

    2002-01-01

    Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data provide a reasonable match to known examples of proper operation. In the domain of fault detection in aircraft, the first assumption is unreasonable and the second is difficult to determine. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. To develop such a system, we use flight data collected under a controlled test environment, subject to many sources of variability. We explain where our classifier fits into the envisioned fault detection system as well as experiments showing the promise of this classification subsystem.

  12. From experiment to design -- Fault characterization and detection in parallel computer systems using computational accelerators

    NASA Astrophysics Data System (ADS)

    Yim, Keun Soo

    This dissertation summarizes experimental validation and co-design studies conducted to optimize the fault detection capabilities and overheads in hybrid computer systems (e.g., using CPUs and Graphics Processing Units, or GPUs), and consequently to improve the scalability of parallel computer systems using computational accelerators. The experimental validation studies were conducted to help us understand the failure characteristics of CPU-GPU hybrid computer systems under various types of hardware faults. The main characterization targets were faults that are difficult to detect and/or recover from, e.g., faults that cause long latency failures (Ch. 3), faults in dynamically allocated resources (Ch. 4), faults in GPUs (Ch. 5), faults in MPI programs (Ch. 6), and microarchitecture-level faults with specific timing features (Ch. 7). The co-design studies were based on the characterization results. One of the co-designed systems has a set of source-to-source translators that customize and strategically place error detectors in the source code of target GPU programs (Ch. 5). Another co-designed system uses an extension card to learn the normal behavioral and semantic execution patterns of message-passing processes executing on CPUs, and to detect abnormal behaviors of those parallel processes (Ch. 6). The third co-designed system is a co-processor that has a set of new instructions in order to support software-implemented fault detection techniques (Ch. 7). The work described in this dissertation gains more importance because heterogeneous processors have become an essential component of state-of-the-art supercomputers. GPUs were used in three of the five fastest supercomputers that were operating in 2011. Our work included comprehensive fault characterization studies in CPU-GPU hybrid computers. In CPUs, we monitored the target systems for a long period of time after injecting faults (a temporally comprehensive experiment), and injected faults into various types of program states that included dynamically allocated memory (to be spatially comprehensive). In GPUs, we used fault injection studies to demonstrate the importance of detecting silent data corruption (SDC) errors that are mainly due to the lack of fine-grained protections and the massive use of fault-insensitive data. This dissertation also presents transparent fault tolerance frameworks and techniques that are directly applicable to hybrid computers built using only commercial off-the-shelf hardware components. This dissertation shows that by developing understanding of the failure characteristics and error propagation paths of target programs, we were able to create fault tolerance frameworks and techniques that can quickly detect and recover from hardware faults with low performance and hardware overheads.

  13. Solar Photovoltaic (PV) Distributed Generation Systems - Control and Protection

    NASA Astrophysics Data System (ADS)

    Yi, Zhehan

    This dissertation proposes a comprehensive control, power management, and fault detection strategy for solar photovoltaic (PV) distribution generations. Battery storages are typically employed in PV systems to mitigate the power fluctuation caused by unstable solar irradiance. With AC and DC loads, a PV-battery system can be treated as a hybrid microgrid which contains both DC and AC power resources and buses. In this thesis, a control power and management system (CAPMS) for PV-battery hybrid microgrid is proposed, which provides 1) the DC and AC bus voltage and AC frequency regulating scheme and controllers designed to track set points; 2) a power flow management strategy in the hybrid microgrid to achieve system generation and demand balance in both grid-connected and islanded modes; 3) smooth transition control during grid reconnection by frequency and phase synchronization control between the main grid and microgrid. Due to the increasing demands for PV power, scales of PV systems are getting larger and fault detection in PV arrays becomes challenging. High-impedance faults, low-mismatch faults, and faults occurred in low irradiance conditions tend to be hidden due to low fault currents, particularly, when a PV maximum power point tracking (MPPT) algorithm is in-service. If remain undetected, these faults can considerably lower the output energy of solar systems, damage the panels, and potentially cause fire hazards. In this dissertation, fault detection challenges in PV arrays are analyzed in depth, considering the crossing relations among the characteristics of PV, interactions with MPPT algorithms, and the nature of solar irradiance. Two fault detection schemes are then designed as attempts to address these technical issues, which detect faults inside PV arrays accurately even under challenging circumstances, e.g., faults in low irradiance conditions or high-impedance faults. Taking advantage of multi-resolution signal decomposition (MSD), a powerful signal processing technique based on discrete wavelet transformation (DWT), the first attempt is devised, which extracts the features of both line-to-line (L-L) and line-to-ground (L-G) faults and employs a fuzzy inference system (FIS) for the decision-making stage of fault detection. This scheme is then improved as the second attempt by further studying the system's behaviors during L-L faults, extracting more efficient fault features, and devising a more advanced decision-making stage: the two-stage support vector machine (SVM). For the first time, the two-stage SVM method is proposed in this dissertation to detect L-L faults in PV system with satisfactory accuracies. Numerous simulation and experimental case studies are carried out to verify the proposed control and protection strategies. Simulation environment is set up using the PSCAD/EMTDC and Matlab/Simulink software packages. Experimental case studies are conducted in a PV-battery hybrid microgrid using the dSPACE real-time controller to demonstrate the ease of hardware implementation and the controller performance. Another small-scale grid-connected PV system is set up to verify both fault detection algorithms which demonstrate promising performances and fault detecting accuracies.

  14. Fiber Bragg grating sensor for fault detection in high voltage overhead transmission lines

    NASA Astrophysics Data System (ADS)

    Moghadas, Amin

    2011-12-01

    A fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by fiber Bragg grating (FBG) sensors. The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signals. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG sensors and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system.

  15. Fiber Bragg Grating Sensor for Fault Detection in Radial and Network Transmission Lines

    PubMed Central

    Moghadas, Amin A.; Shadaram, Mehdi

    2010-01-01

    In this paper, a fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by Fiber Bragg Grating (FBG). The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signal. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system. PMID:22163416

  16. Classification of Aircraft Maneuvers for Fault Detection

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data is a reasonable match to known examples of proper operation. In our domain of fault detection in aircraft, the first assumption is unreasonable and the second is difficult to determine. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. We explain where this subsystem fits into our envisioned fault detection system as well its experiments showing the promise of this classification subsystem.

  17. Generic, scalable and decentralized fault detection for robot swarms.

    PubMed

    Tarapore, Danesh; Christensen, Anders Lyhne; Timmis, Jon

    2017-01-01

    Robot swarms are large-scale multirobot systems with decentralized control which means that each robot acts based only on local perception and on local coordination with neighboring robots. The decentralized approach to control confers number of potential benefits. In particular, inherent scalability and robustness are often highlighted as key distinguishing features of robot swarms compared with systems that rely on traditional approaches to multirobot coordination. It has, however, been shown that swarm robotics systems are not always fault tolerant. To realize the robustness potential of robot swarms, it is thus essential to give systems the capacity to actively detect and accommodate faults. In this paper, we present a generic fault-detection system for robot swarms. We show how robots with limited and imperfect sensing capabilities are able to observe and classify the behavior of one another. In order to achieve this, the underlying classifier is an immune system-inspired algorithm that learns to distinguish between normal behavior and abnormal behavior online. Through a series of experiments, we systematically assess the performance of our approach in a detailed simulation environment. In particular, we analyze our system's capacity to correctly detect robots with faults, false positive rates, performance in a foraging task in which each robot exhibits a composite behavior, and performance under perturbations of the task environment. Results show that our generic fault-detection system is robust, that it is able to detect faults in a timely manner, and that it achieves a low false positive rate. The developed fault-detection system has the potential to enable long-term autonomy for robust multirobot systems, thus increasing the usefulness of robots for a diverse repertoire of upcoming applications in the area of distributed intelligent automation.

  18. Fault detection of helicopter gearboxes using the multi-valued influence matrix method

    NASA Technical Reports Server (NTRS)

    Chin, Hsinyung; Danai, Kourosh; Lewicki, David G.

    1993-01-01

    In this paper we investigate the effectiveness of a pattern classifying fault detection system that is designed to cope with the variability of fault signatures inherent in helicopter gearboxes. For detection, the measurements are monitored on-line and flagged upon the detection of abnormalities, so that they can be attributed to a faulty or normal case. As such, the detection system is composed of two components, a quantization matrix to flag the measurements, and a multi-valued influence matrix (MVIM) that represents the behavior of measurements during normal operation and at fault instances. Both the quantization matrix and influence matrix are tuned during a training session so as to minimize the error in detection. To demonstrate the effectiveness of this detection system, it was applied to vibration measurements collected from a helicopter gearbox during normal operation and at various fault instances. The results indicate that the MVIM method provides excellent results when the full range of faults effects on the measurements are included in the training set.

  19. Modeling of a latent fault detector in a digital system

    NASA Technical Reports Server (NTRS)

    Nagel, P. M.

    1978-01-01

    Methods of modeling the detection time or latency period of a hardware fault in a digital system are proposed that explain how a computer detects faults in a computational mode. The objectives were to study how software reacts to a fault, to account for as many variables as possible affecting detection and to forecast a given program's detecting ability prior to computation. A series of experiments were conducted on a small emulated microprocessor with fault injection capability. Results indicate that the detecting capability of a program largely depends on the instruction subset used during computation and the frequency of its use and has little direct dependence on such variables as fault mode, number set, degree of branching and program length. A model is discussed which employs an analog with balls in an urn to explain the rate of which subsequent repetitions of an instruction or instruction set detect a given fault.

  20. Fault recovery characteristics of the fault tolerant multi-processor

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1990-01-01

    The fault handling performance of the fault tolerant multiprocessor (FTMP) was investigated. Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles byzantine or lying faults. It is pointed out that these weak areas in the FTMP's design increase the probability that, for any hardware fault, a good LRU (line replaceable unit) is mistakenly disabled by the fault management software. It is concluded that fault injection can help detect and analyze the behavior of a system in the ultra-reliable regime. Although fault injection testing cannot be exhaustive, it has been demonstrated that it provides a unique capability to unmask problems and to characterize the behavior of a fault-tolerant system.

  1. Fault detection of Tennessee Eastman process based on topological features and SVM

    NASA Astrophysics Data System (ADS)

    Zhao, Huiyang; Hu, Yanzhu; Ai, Xinbo; Hu, Yu; Meng, Zhen

    2018-03-01

    Fault detection in industrial process is a popular research topic. Although the distributed control system(DCS) has been introduced to monitor the state of industrial process, it still cannot satisfy all the requirements for fault detection of all the industrial systems. In this paper, we proposed a novel method based on topological features and support vector machine(SVM), for fault detection of industrial process. The proposed method takes global information of measured variables into account by complex network model and predicts whether a system has generated some faults or not by SVM. The proposed method can be divided into four steps, i.e. network construction, network analysis, model training and model testing respectively. Finally, we apply the model to Tennessee Eastman process(TEP). The results show that this method works well and can be a useful supplement for fault detection of industrial process.

  2. Generic, scalable and decentralized fault detection for robot swarms

    PubMed Central

    Christensen, Anders Lyhne; Timmis, Jon

    2017-01-01

    Robot swarms are large-scale multirobot systems with decentralized control which means that each robot acts based only on local perception and on local coordination with neighboring robots. The decentralized approach to control confers number of potential benefits. In particular, inherent scalability and robustness are often highlighted as key distinguishing features of robot swarms compared with systems that rely on traditional approaches to multirobot coordination. It has, however, been shown that swarm robotics systems are not always fault tolerant. To realize the robustness potential of robot swarms, it is thus essential to give systems the capacity to actively detect and accommodate faults. In this paper, we present a generic fault-detection system for robot swarms. We show how robots with limited and imperfect sensing capabilities are able to observe and classify the behavior of one another. In order to achieve this, the underlying classifier is an immune system-inspired algorithm that learns to distinguish between normal behavior and abnormal behavior online. Through a series of experiments, we systematically assess the performance of our approach in a detailed simulation environment. In particular, we analyze our system’s capacity to correctly detect robots with faults, false positive rates, performance in a foraging task in which each robot exhibits a composite behavior, and performance under perturbations of the task environment. Results show that our generic fault-detection system is robust, that it is able to detect faults in a timely manner, and that it achieves a low false positive rate. The developed fault-detection system has the potential to enable long-term autonomy for robust multirobot systems, thus increasing the usefulness of robots for a diverse repertoire of upcoming applications in the area of distributed intelligent automation. PMID:28806756

  3. Arc Fault Detection & Localization by Electromagnetic-Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Vasile, C.; Ioana, C.

    2017-05-01

    Electrical arc faults that occur in photovoltaic systems represent a danger due to their economic impact on production and distribution. In this paper we propose a complete system, with focus on the methodology, that enables the detection and localization of the arc fault, by the use of an electromagnetic-acoustic sensing system. By exploiting the multiple emissions of the arc fault, in conjunction with a real-time detection signal processing method, we ensure accurate detection and localization. In its final form, this present work will present in greater detail the complete system, the methods employed, results and performance, alongside further works that will be carried on.

  4. Verification of an IGBT Fusing Switch for Over-current Protection of the SNS HVCM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benwell, Andrew; Kemp, Mark; Burkhart, Craig

    2010-06-11

    An IGBT based over-current protection system has been developed to detect faults and limit the damage caused by faults in high voltage converter modulators. During normal operation, an IGBT enables energy to be transferred from storage capacitors to a H-bridge. When a fault occurs, the over-current protection system detects the fault, limits the fault current and opens the IGBT to isolate the remaining stored energy from the fault. This paper presents an experimental verification of the over-current protection system under applicable conditions.

  5. Multi-fault clustering and diagnosis of gear system mined by spectrum entropy clustering based on higher order cumulants

    NASA Astrophysics Data System (ADS)

    Shao, Renping; Li, Jing; Hu, Wentao; Dong, Feifei

    2013-02-01

    Higher order cumulants (HOC) is a new kind of modern signal analysis of theory and technology. Spectrum entropy clustering (SEC) is a data mining method of statistics, extracting useful characteristics from a mass of nonlinear and non-stationary data. Following a discussion on the characteristics of HOC theory and SEC method in this paper, the study of signal processing techniques and the unique merits of nonlinear coupling characteristic analysis in processing random and non-stationary signals are introduced. Also, a new clustering analysis and diagnosis method is proposed for detecting multi-damage on gear by introducing the combination of HOC and SEC into the damage-detection and diagnosis of the gear system. The noise is restrained by HOC and by extracting coupling features and separating the characteristic signal at different speeds and frequency bands. Under such circumstances, the weak signal characteristics in the system are emphasized and the characteristic of multi-fault is extracted. Adopting a data-mining method of SEC conducts an analysis and diagnosis at various running states, such as the speed of 300 r/min, 900 r/min, 1200 r/min, and 1500 r/min of the following six signals: no-fault, short crack-fault in tooth root, long crack-fault in tooth root, short crack-fault in pitch circle, long crack-fault in pitch circle, and wear-fault on tooth. Research shows that this combined method of detection and diagnosis can also identify the degree of damage of some faults. On this basis, the virtual instrument of the gear system which detects damage and diagnoses faults is developed by combining with advantages of MATLAB and VC++, employing component object module technology, adopting mixed programming methods, and calling the program transformed from an *.m file under VC++. This software system possesses functions of collecting and introducing vibration signals of gear, analyzing and processing signals, extracting features, visualizing graphics, detecting and diagnosing faults, detecting and monitoring, etc. Finally, the results of testing and verifying show that the developed system can effectively be used to detect and diagnose faults in an actual operating gear transmission system.

  6. Multi-fault clustering and diagnosis of gear system mined by spectrum entropy clustering based on higher order cumulants.

    PubMed

    Shao, Renping; Li, Jing; Hu, Wentao; Dong, Feifei

    2013-02-01

    Higher order cumulants (HOC) is a new kind of modern signal analysis of theory and technology. Spectrum entropy clustering (SEC) is a data mining method of statistics, extracting useful characteristics from a mass of nonlinear and non-stationary data. Following a discussion on the characteristics of HOC theory and SEC method in this paper, the study of signal processing techniques and the unique merits of nonlinear coupling characteristic analysis in processing random and non-stationary signals are introduced. Also, a new clustering analysis and diagnosis method is proposed for detecting multi-damage on gear by introducing the combination of HOC and SEC into the damage-detection and diagnosis of the gear system. The noise is restrained by HOC and by extracting coupling features and separating the characteristic signal at different speeds and frequency bands. Under such circumstances, the weak signal characteristics in the system are emphasized and the characteristic of multi-fault is extracted. Adopting a data-mining method of SEC conducts an analysis and diagnosis at various running states, such as the speed of 300 r/min, 900 r/min, 1200 r/min, and 1500 r/min of the following six signals: no-fault, short crack-fault in tooth root, long crack-fault in tooth root, short crack-fault in pitch circle, long crack-fault in pitch circle, and wear-fault on tooth. Research shows that this combined method of detection and diagnosis can also identify the degree of damage of some faults. On this basis, the virtual instrument of the gear system which detects damage and diagnoses faults is developed by combining with advantages of MATLAB and VC++, employing component object module technology, adopting mixed programming methods, and calling the program transformed from an *.m file under VC++. This software system possesses functions of collecting and introducing vibration signals of gear, analyzing and processing signals, extracting features, visualizing graphics, detecting and diagnosing faults, detecting and monitoring, etc. Finally, the results of testing and verifying show that the developed system can effectively be used to detect and diagnose faults in an actual operating gear transmission system.

  7. Fault Detection for Nonlinear Process With Deterministic Disturbances: A Just-In-Time Learning Based Data Driven Method.

    PubMed

    Yin, Shen; Gao, Huijun; Qiu, Jianbin; Kaynak, Okyay

    2017-11-01

    Data-driven fault detection plays an important role in industrial systems due to its applicability in case of unknown physical models. In fault detection, disturbances must be taken into account as an inherent characteristic of processes. Nevertheless, fault detection for nonlinear processes with deterministic disturbances still receive little attention, especially in data-driven field. To solve this problem, a just-in-time learning-based data-driven (JITL-DD) fault detection method for nonlinear processes with deterministic disturbances is proposed in this paper. JITL-DD employs JITL scheme for process description with local model structures to cope with processes dynamics and nonlinearity. The proposed method provides a data-driven fault detection solution for nonlinear processes with deterministic disturbances, and owns inherent online adaptation and high accuracy of fault detection. Two nonlinear systems, i.e., a numerical example and a sewage treatment process benchmark, are employed to show the effectiveness of the proposed method.

  8. Sensor Fault Detection and Diagnosis Simulation of a Helicopter Engine in an Intelligent Control Framework

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Kurtkaya, Mehmet; Duyar, Ahmet

    1994-01-01

    This paper presents an application of a fault detection and diagnosis scheme for the sensor faults of a helicopter engine. The scheme utilizes a model-based approach with real time identification and hypothesis testing which can provide early detection, isolation, and diagnosis of failures. It is an integral part of a proposed intelligent control system with health monitoring capabilities. The intelligent control system will allow for accommodation of faults, reduce maintenance cost, and increase system availability. The scheme compares the measured outputs of the engine with the expected outputs of an engine whose sensor suite is functioning normally. If the differences between the real and expected outputs exceed threshold values, a fault is detected. The isolation of sensor failures is accomplished through a fault parameter isolation technique where parameters which model the faulty process are calculated on-line with a real-time multivariable parameter estimation algorithm. The fault parameters and their patterns can then be analyzed for diagnostic and accommodation purposes. The scheme is applied to the detection and diagnosis of sensor faults of a T700 turboshaft engine. Sensor failures are induced in a T700 nonlinear performance simulation and data obtained are used with the scheme to detect, isolate, and estimate the magnitude of the faults.

  9. Autonomous power expert system advanced development

    NASA Technical Reports Server (NTRS)

    Quinn, Todd M.; Walters, Jerry L.

    1991-01-01

    The autonomous power expert (APEX) system is being developed at Lewis Research Center to function as a fault diagnosis advisor for a space power distribution test bed. APEX is a rule-based system capable of detecting faults and isolating the probable causes. APEX also has a justification facility to provide natural language explanations about conclusions reached during fault isolation. To help maintain the health of the power distribution system, additional capabilities were added to APEX. These capabilities allow detection and isolation of incipient faults and enable the expert system to recommend actions/procedure to correct the suspected fault conditions. New capabilities for incipient fault detection consist of storage and analysis of historical data and new user interface displays. After the cause of a fault is determined, appropriate recommended actions are selected by rule-based inferencing which provides corrective/extended test procedures. Color graphics displays and improved mouse-selectable menus were also added to provide a friendlier user interface. A discussion of APEX in general and a more detailed description of the incipient detection, recommended actions, and user interface developments during the last year are presented.

  10. Automatic Detection of Electric Power Troubles (ADEPT)

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie

    1988-01-01

    Automatic Detection of Electric Power Troubles (A DEPT) is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system. It is designed for two modes of operation: real time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a laser printer. This system consists of a simulated space station power module using direct-current power supplies for solar arrays on three power buses. For tests of the system's ablilty to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three buses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modeling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base.

  11. Automatic Detection of Electric Power Troubles (ADEPT)

    NASA Astrophysics Data System (ADS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie

    1988-11-01

    Automatic Detection of Electric Power Troubles (A DEPT) is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system. It is designed for two modes of operation: real time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a laser printer. This system consists of a simulated space station power module using direct-current power supplies for solar arrays on three power buses. For tests of the system's ablilty to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three buses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modeling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base.

  12. An autonomous fault detection, isolation, and recovery system for a 20-kHz electric power distribution test bed

    NASA Technical Reports Server (NTRS)

    Quinn, Todd M.; Walters, Jerry L.

    1991-01-01

    Future space explorations will require long term human presence in space. Space environments that provide working and living quarters for manned missions are becoming increasingly larger and more sophisticated. Monitor and control of the space environment subsystems by expert system software, which emulate human reasoning processes, could maintain the health of the subsystems and help reduce the human workload. The autonomous power expert (APEX) system was developed to emulate a human expert's reasoning processes used to diagnose fault conditions in the domain of space power distribution. APEX is a fault detection, isolation, and recovery (FDIR) system, capable of autonomous monitoring and control of the power distribution system. APEX consists of a knowledge base, a data base, an inference engine, and various support and interface software. APEX provides the user with an easy-to-use interactive interface. When a fault is detected, APEX will inform the user of the detection. The user can direct APEX to isolate the probable cause of the fault. Once a fault has been isolated, the user can ask APEX to justify its fault isolation and to recommend actions to correct the fault. APEX implementation and capabilities are discussed.

  13. A signal-based fault detection and classification method for heavy haul wagons

    NASA Astrophysics Data System (ADS)

    Li, Chunsheng; Luo, Shihui; Cole, Colin; Spiryagin, Maksym; Sun, Yanquan

    2017-12-01

    This paper proposes a signal-based fault detection and isolation (FDI) system for heavy haul wagons considering the special requirements of low cost and robustness. The sensor network of the proposed system consists of just two accelerometers mounted on the front left and rear right of the carbody. Seven fault indicators (FIs) are proposed based on the cross-correlation analyses of the sensor-collected acceleration signals. Bolster spring fault conditions are focused on in this paper, including two different levels (small faults and moderate faults) and two locations (faults in the left and right bolster springs of the first bogie). A fully detailed dynamic model of a typical 40t axle load heavy haul wagon is developed to evaluate the deterioration of dynamic behaviour under proposed fault conditions and demonstrate the detectability of the proposed FDI method. Even though the fault conditions considered in this paper did not deteriorate the wagon dynamic behaviour dramatically, the proposed FIs show great sensitivity to the bolster spring faults. The most effective and efficient FIs are chosen for fault detection and classification. Analysis results indicate that it is possible to detect changes in bolster stiffness of ±25% and identify the fault location.

  14. Induction machine bearing faults detection based on a multi-dimensional MUSIC algorithm and maximum likelihood estimation.

    PubMed

    Elbouchikhi, Elhoussin; Choqueuse, Vincent; Benbouzid, Mohamed

    2016-07-01

    Condition monitoring of electric drives is of paramount importance since it contributes to enhance the system reliability and availability. Moreover, the knowledge about the fault mode behavior is extremely important in order to improve system protection and fault-tolerant control. Fault detection and diagnosis in squirrel cage induction machines based on motor current signature analysis (MCSA) has been widely investigated. Several high resolution spectral estimation techniques have been developed and used to detect induction machine abnormal operating conditions. This paper focuses on the application of MCSA for the detection of abnormal mechanical conditions that may lead to induction machines failure. In fact, this paper is devoted to the detection of single-point defects in bearings based on parametric spectral estimation. A multi-dimensional MUSIC (MD MUSIC) algorithm has been developed for bearing faults detection based on bearing faults characteristic frequencies. This method has been used to estimate the fundamental frequency and the fault related frequency. Then, an amplitude estimator of the fault characteristic frequencies has been proposed and fault indicator has been derived for fault severity measurement. The proposed bearing faults detection approach is assessed using simulated stator currents data, issued from a coupled electromagnetic circuits approach for air-gap eccentricity emulating bearing faults. Then, experimental data are used for validation purposes. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. PV Systems Reliability Final Technical Report: Ground Fault Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavrova, Olga; Flicker, Jack David; Johnson, Jay

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  16. An intelligent control system for failure detection and controller reconfiguration

    NASA Technical Reports Server (NTRS)

    Biswas, Saroj K.

    1994-01-01

    We present an architecture of an intelligent restructurable control system to automatically detect failure of system components, assess its impact on system performance and safety, and reconfigure the controller for performance recovery. Fault detection is based on neural network associative memories and pattern classifiers, and is implemented using a multilayer feedforward network. Details of the fault detection network along with simulation results on health monitoring of a dc motor have been presented. Conceptual developments for fault assessment using an expert system and controller reconfiguration using a neural network are outlined.

  17. A Unified Nonlinear Adaptive Approach for Detection and Isolation of Engine Faults

    NASA Technical Reports Server (NTRS)

    Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong; Farfan-Ramos, Luis; Simon, Donald L.

    2010-01-01

    A challenging problem in aircraft engine health management (EHM) system development is to detect and isolate faults in system components (i.e., compressor, turbine), actuators, and sensors. Existing nonlinear EHM methods often deal with component faults, actuator faults, and sensor faults separately, which may potentially lead to incorrect diagnostic decisions and unnecessary maintenance. Therefore, it would be ideal to address sensor faults, actuator faults, and component faults under one unified framework. This paper presents a systematic and unified nonlinear adaptive framework for detecting and isolating sensor faults, actuator faults, and component faults for aircraft engines. The fault detection and isolation (FDI) architecture consists of a parallel bank of nonlinear adaptive estimators. Adaptive thresholds are appropriately designed such that, in the presence of a particular fault, all components of the residual generated by the adaptive estimator corresponding to the actual fault type remain below their thresholds. If the faults are sufficiently different, then at least one component of the residual generated by each remaining adaptive estimator should exceed its threshold. Therefore, based on the specific response of the residuals, sensor faults, actuator faults, and component faults can be isolated. The effectiveness of the approach was evaluated using the NASA C-MAPSS turbofan engine model, and simulation results are presented.

  18. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  19. Fault detection in mechanical systems with friction phenomena: an online neural approximation approach.

    PubMed

    Papadimitropoulos, Adam; Rovithakis, George A; Parisini, Thomas

    2007-07-01

    In this paper, the problem of fault detection in mechanical systems performing linear motion, under the action of friction phenomena is addressed. The friction effects are modeled through the dynamic LuGre model. The proposed architecture is built upon an online neural network (NN) approximator, which requires only system's position and velocity. The friction internal state is not assumed to be available for measurement. The neural fault detection methodology is analyzed with respect to its robustness and sensitivity properties. Rigorous fault detectability conditions and upper bounds for the detection time are also derived. Extensive simulation results showing the effectiveness of the proposed methodology are provided, including a real case study on an industrial actuator.

  20. Discrete Wavelet Transform for Fault Locations in Underground Distribution System

    NASA Astrophysics Data System (ADS)

    Apisit, C.; Ngaopitakkul, A.

    2010-10-01

    In this paper, a technique for detecting faults in underground distribution system is presented. Discrete Wavelet Transform (DWT) based on traveling wave is employed in order to detect the high frequency components and to identify fault locations in the underground distribution system. The first peak time obtained from the faulty bus is employed for calculating the distance of fault from sending end. The validity of the proposed technique is tested with various fault inception angles, fault locations and faulty phases. The result is found that the proposed technique provides satisfactory result and will be very useful in the development of power systems protection scheme.

  1. Robust Fault Detection for Aircraft Using Mixed Structured Singular Value Theory and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G.

    2000-01-01

    The purpose of fault detection is to identify when a fault or failure has occurred in a system such as an aircraft or expendable launch vehicle. The faults may occur in sensors, actuators, structural components, etc. One of the primary approaches to model-based fault detection relies on analytical redundancy. That is the output of a computer-based model (actually a state estimator) is compared with the sensor measurements of the actual system to determine when a fault has occurred. Unfortunately, the state estimator is based on an idealized mathematical description of the underlying plant that is never totally accurate. As a result of these modeling errors, false alarms can occur. This research uses mixed structured singular value theory, a relatively recent and powerful robustness analysis tool, to develop robust estimators and demonstrates the use of these estimators in fault detection. To allow qualitative human experience to be effectively incorporated into the detection process fuzzy logic is used to predict the seriousness of the fault that has occurred.

  2. Intermittent/transient fault phenomena in digital systems

    NASA Technical Reports Server (NTRS)

    Masson, G. M.

    1977-01-01

    An overview of the intermittent/transient (IT) fault study is presented. An interval survivability evaluation of digital systems for IT faults is discussed along with a method for detecting and diagnosing IT faults in digital systems.

  3. Aircraft Engine On-Line Diagnostics Through Dual-Channel Sensor Measurements: Development of a Baseline System

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2008-01-01

    In this paper, a baseline system which utilizes dual-channel sensor measurements for aircraft engine on-line diagnostics is developed. This system is composed of a linear on-board engine model (LOBEM) and fault detection and isolation (FDI) logic. The LOBEM provides the analytical third channel against which the dual-channel measurements are compared. When the discrepancy among the triplex channels exceeds a tolerance level, the FDI logic determines the cause of the discrepancy. Through this approach, the baseline system achieves the following objectives: (1) anomaly detection, (2) component fault detection, and (3) sensor fault detection and isolation. The performance of the baseline system is evaluated in a simulation environment using faults in sensors and components.

  4. Evaluation of an Enhanced Bank of Kalman Filters for In-Flight Aircraft Engine Sensor Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2004-01-01

    In this paper, an approach for in-flight fault detection and isolation (FDI) of aircraft engine sensors based on a bank of Kalman filters is developed. This approach utilizes multiple Kalman filters, each of which is designed based on a specific fault hypothesis. When the propulsion system experiences a fault, only one Kalman filter with the correct hypothesis is able to maintain the nominal estimation performance. Based on this knowledge, the isolation of faults is achieved. Since the propulsion system may experience component and actuator faults as well, a sensor FDI system must be robust in terms of avoiding misclassifications of any anomalies. The proposed approach utilizes a bank of (m+1) Kalman filters where m is the number of sensors being monitored. One Kalman filter is used for the detection of component and actuator faults while each of the other m filters detects a fault in a specific sensor. With this setup, the overall robustness of the sensor FDI system to anomalies is enhanced. Moreover, numerous component fault events can be accounted for by the FDI system. The sensor FDI system is applied to a commercial aircraft engine simulation, and its performance is evaluated at multiple power settings at a cruise operating point using various fault scenarios.

  5. Automatic Detection of Electric Power Troubles (ADEPT)

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie

    1988-01-01

    ADEPT is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system, and is designed for two modes of operation: real-time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a Laser printer. This system consists of a simulated Space Station power module using direct-current power supplies for Solar arrays on three power busses. For tests of the system's ability to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three busses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modelling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base. A load scheduler and a fault recovery system are currently under development to support both modes of operation.

  6. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yumin; Lum, Kai-Yew; Wang Qingguo

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus,more » the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.« less

  7. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin; Wang, Qing-Guo; Lum, Kai-Yew

    2009-03-01

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus, the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.

  8. System and method for bearing fault detection using stator current noise cancellation

    DOEpatents

    Zhou, Wei; Lu, Bin; Habetler, Thomas G.; Harley, Ronald G.; Theisen, Peter J.

    2010-08-17

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to repeatedly receive real-time operating current data from the operating motor and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  9. Fault detection and diagnosis of diesel engine valve trains

    NASA Astrophysics Data System (ADS)

    Flett, Justin; Bone, Gary M.

    2016-05-01

    This paper presents the development of a fault detection and diagnosis (FDD) system for use with a diesel internal combustion engine (ICE) valve train. A novel feature is generated for each of the valve closing and combustion impacts. Deformed valve spring faults and abnormal valve clearance faults were seeded on a diesel engine instrumented with one accelerometer. Five classification methods were implemented experimentally and compared. The FDD system using the Naïve-Bayes classification method produced the best overall performance, with a lowest detection accuracy (DA) of 99.95% and a lowest classification accuracy (CA) of 99.95% for the spring faults occurring on individual valves. The lowest DA and CA values for multiple faults occurring simultaneously were 99.95% and 92.45%, respectively. The DA and CA results demonstrate the accuracy of our FDD system for diesel ICE valve train fault scenarios not previously addressed in the literature.

  10. Error Mitigation of Point-to-Point Communication for Fault-Tolerant Computing

    NASA Technical Reports Server (NTRS)

    Akamine, Robert L.; Hodson, Robert F.; LaMeres, Brock J.; Ray, Robert E.

    2011-01-01

    Fault tolerant systems require the ability to detect and recover from physical damage caused by the hardware s environment, faulty connectors, and system degradation over time. This ability applies to military, space, and industrial computing applications. The integrity of Point-to-Point (P2P) communication, between two microcontrollers for example, is an essential part of fault tolerant computing systems. In this paper, different methods of fault detection and recovery are presented and analyzed.

  11. Arc burst pattern analysis fault detection system

    NASA Technical Reports Server (NTRS)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1997-01-01

    A method and apparatus are provided for detecting an arcing fault on a power line carrying a load current. Parameters indicative of power flow and possible fault events on the line, such as voltage and load current, are monitored and analyzed for an arc burst pattern exhibited by arcing faults in a power system. These arcing faults are detected by identifying bursts of each half-cycle of the fundamental current. Bursts occurring at or near a voltage peak indicate arcing on that phase. Once a faulted phase line is identified, a comparison of the current and voltage reveals whether the fault is located in a downstream direction of power flow toward customers, or upstream toward a generation station. If the fault is located downstream, the line is de-energized, and if located upstream, the line may remain energized to prevent unnecessary power outages.

  12. Avionic Air Data Sensors Fault Detection and Isolation by means of Singular Perturbation and Geometric Approach

    PubMed Central

    2017-01-01

    Singular Perturbations represent an advantageous theory to deal with systems characterized by a two-time scale separation, such as the longitudinal dynamics of aircraft which are called phugoid and short period. In this work, the combination of the NonLinear Geometric Approach and the Singular Perturbations leads to an innovative Fault Detection and Isolation system dedicated to the isolation of faults affecting the air data system of a general aviation aircraft. The isolation capabilities, obtained by means of the approach proposed in this work, allow for the solution of a fault isolation problem otherwise not solvable by means of standard geometric techniques. Extensive Monte-Carlo simulations, exploiting a high fidelity aircraft simulator, show the effectiveness of the proposed Fault Detection and Isolation system. PMID:28946673

  13. All-to-all sequenced fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-11-02

    An apparatus, program product and method enable nodal fault detection by sequencing communications between all system nodes. A master node may coordinate communications between two slave nodes before sequencing to and initiating communications between a new pair of slave nodes. The communications may be analyzed to determine the nodal fault.

  14. Methods and apparatus using commutative error detection values for fault isolation in multiple node computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almasi, Gheorghe; Blumrich, Matthias Augustin; Chen, Dong

    Methods and apparatus perform fault isolation in multiple node computing systems using commutative error detection values for--example, checksums--to identify and to isolate faulty nodes. When information associated with a reproducible portion of a computer program is injected into a network by a node, a commutative error detection value is calculated. At intervals, node fault detection apparatus associated with the multiple node computer system retrieve commutative error detection values associated with the node and stores them in memory. When the computer program is executed again by the multiple node computer system, new commutative error detection values are created and stored inmore » memory. The node fault detection apparatus identifies faulty nodes by comparing commutative error detection values associated with reproducible portions of the application program generated by a particular node from different runs of the application program. Differences in values indicate a possible faulty node.« less

  15. Probabilistic evaluation of on-line checks in fault-tolerant multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Nair, V. S. S.; Hoskote, Yatin V.; Abraham, Jacob A.

    1992-01-01

    The analysis of fault-tolerant multiprocessor systems that use concurrent error detection (CED) schemes is much more difficult than the analysis of conventional fault-tolerant architectures. Various analytical techniques have been proposed to evaluate CED schemes deterministically. However, these approaches are based on worst-case assumptions related to the failure of system components. Often, the evaluation results do not reflect the actual fault tolerance capabilities of the system. A probabilistic approach to evaluate the fault detecting and locating capabilities of on-line checks in a system is developed. The various probabilities associated with the checking schemes are identified and used in the framework of the matrix-based model. Based on these probabilistic matrices, estimates for the fault tolerance capabilities of various systems are derived analytically.

  16. In-flight Fault Detection and Isolation in Aircraft Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann

    2005-01-01

    In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.

  17. Onboard Nonlinear Engine Sensor and Component Fault Diagnosis and Isolation Scheme

    NASA Technical Reports Server (NTRS)

    Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong

    2011-01-01

    A method detects and isolates in-flight sensor, actuator, and component faults for advanced propulsion systems. In sharp contrast to many conventional methods, which deal with either sensor fault or component fault, but not both, this method considers sensor fault, actuator fault, and component fault under one systemic and unified framework. The proposed solution consists of two main components: a bank of real-time, nonlinear adaptive fault diagnostic estimators for residual generation, and a residual evaluation module that includes adaptive thresholds and a Transferable Belief Model (TBM)-based residual evaluation scheme. By employing a nonlinear adaptive learning architecture, the developed approach is capable of directly dealing with nonlinear engine models and nonlinear faults without the need of linearization. Software modules have been developed and evaluated with the NASA C-MAPSS engine model. Several typical engine-fault modes, including a subset of sensor/actuator/components faults, were tested with a mild transient operation scenario. The simulation results demonstrated that the algorithm was able to successfully detect and isolate all simulated faults as long as the fault magnitudes were larger than the minimum detectable/isolable sizes, and no misdiagnosis occurred

  18. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults.

    PubMed

    Chen, Gang; Song, Yongduan; Lewis, Frank L

    2016-05-03

    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

  19. Improved Sensor Fault Detection, Isolation, and Mitigation Using Multiple Observers Approach

    PubMed Central

    Wang, Zheng; Anand, D. M.; Moyne, J.; Tilbury, D. M.

    2017-01-01

    Traditional Fault Detection and Isolation (FDI) methods analyze a residual signal to detect and isolate sensor faults. The residual signal is the difference between the sensor measurements and the estimated outputs of the system based on an observer. The traditional residual-based FDI methods, however, have some limitations. First, they require that the observer has reached its steady state. In addition, residual-based methods may not detect some sensor faults, such as faults on critical sensors that result in an unobservable system. Furthermore, the system may be in jeopardy if actions required for mitigating the impact of the faulty sensors are not taken before the faulty sensors are identified. The contribution of this paper is to propose three new methods to address these limitations. Faults that occur during the observers' transient state can be detected by analyzing the convergence rate of the estimation error. Open-loop observers, which do not rely on sensor information, are used to detect faults on critical sensors. By switching among different observers, we can potentially mitigate the impact of the faulty sensor during the FDI process. These three methods are systematically integrated with a previously developed residual-based method to provide an improved FDI and mitigation capability framework. The overall approach is validated mathematically, and the effectiveness of the overall approach is demonstrated through simulation on a 5-state suspension system. PMID:28924303

  20. Sliding mode based fault detection, reconstruction and fault tolerant control scheme for motor systems.

    PubMed

    Mekki, Hemza; Benzineb, Omar; Boukhetala, Djamel; Tadjine, Mohamed; Benbouzid, Mohamed

    2015-07-01

    The fault-tolerant control problem belongs to the domain of complex control systems in which inter-control-disciplinary information and expertise are required. This paper proposes an improved faults detection, reconstruction and fault-tolerant control (FTC) scheme for motor systems (MS) with typical faults. For this purpose, a sliding mode controller (SMC) with an integral sliding surface is adopted. This controller can make the output of system to track the desired position reference signal in finite-time and obtain a better dynamic response and anti-disturbance performance. But this controller cannot deal directly with total system failures. However an appropriate combination of the adopted SMC and sliding mode observer (SMO), later it is designed to on-line detect and reconstruct the faults and also to give a sensorless control strategy which can achieve tolerance to a wide class of total additive failures. The closed-loop stability is proved, using the Lyapunov stability theory. Simulation results in healthy and faulty conditions confirm the reliability of the suggested framework. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Optimization of Second Fault Detection Thresholds to Maximize Mission POS

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan

    2018-01-01

    In order to support manned spaceflight safety requirements, the Space Launch System (SLS) has defined program-level requirements for key systems to ensure successful operation under single fault conditions. To accommodate this with regards to Navigation, the SLS utilizes an internally redundant Inertial Navigation System (INS) with built-in capability to detect, isolate, and recover from first failure conditions and still maintain adherence to performance requirements. The unit utilizes multiple hardware- and software-level techniques to enable detection, isolation, and recovery from these events in terms of its built-in Fault Detection, Isolation, and Recovery (FDIR) algorithms. Successful operation is defined in terms of sufficient navigation accuracy at insertion while operating under worst case single sensor outages (gyroscope and accelerometer faults at launch). In addition to first fault detection and recovery, the SLS program has also levied requirements relating to the capability of the INS to detect a second fault, tracking any unacceptable uncertainty in knowledge of the vehicle's state. This detection functionality is required in order to feed abort analysis and ensure crew safety. Increases in navigation state error and sensor faults can drive the vehicle outside of its operational as-designed environments and outside of its performance envelope causing loss of mission, or worse, loss of crew. The criteria for operation under second faults allows for a larger set of achievable missions in terms of potential fault conditions, due to the INS operating at the edge of its capability. As this performance is defined and controlled at the vehicle level, it allows for the use of system level margins to increase probability of mission success on the operational edges of the design space. Due to the implications of the vehicle response to abort conditions (such as a potentially failed INS), it is important to consider a wide range of failure scenarios in terms of both magnitude and time. As such, the Navigation team is taking advantage of the INS's capability to schedule and change fault detection thresholds in flight. These values are optimized along a nominal trajectory in order to maximize probability of mission success, and reducing the probability of false positives (defined as when the INS would report a second fault condition resulting in loss of mission, but the vehicle would still meet insertion requirements within system-level margins). This paper will describe an optimization approach using Genetic Algorithms to tune the threshold parameters to maximize vehicle resilience to second fault events as a function of potential fault magnitude and time of fault over an ascent mission profile. The analysis approach, and performance assessment of the results will be presented to demonstrate the applicability of this process to second fault detection to maximize mission probability of success.

  2. Health Monitoring of a Satellite System

    NASA Technical Reports Server (NTRS)

    Chen, Robert H.; Ng, Hok K.; Speyer, Jason L.; Guntur, Lokeshkumar S.; Carpenter, Russell

    2004-01-01

    A health monitoring system based on analytical redundancy is developed for satellites on elliptical orbits. First, the dynamics of the satellite including orbital mechanics and attitude dynamics is modelled as a periodic system. Then, periodic fault detection filters are designed to detect and identify the satellite's actuator and sensor faults. In addition, parity equations are constructed using the algebraic redundant relationship among the actuators and sensors. Furthermore, a residual processor is designed to generate the probability of each of the actuator and sensor faults by using a sequential probability test. Finally, the health monitoring system, consisting of periodic fault detection lters, parity equations and residual processor, is evaluated in the simulation in the presence of disturbances and uncertainty.

  3. Distributed fault detection over sensor networks with Markovian switching topologies

    NASA Astrophysics Data System (ADS)

    Ge, Xiaohua; Han, Qing-Long

    2014-05-01

    This paper deals with the distributed fault detection for discrete-time Markov jump linear systems over sensor networks with Markovian switching topologies. The sensors are scatteredly deployed in the sensor field and the fault detectors are physically distributed via a communication network. The system dynamics changes and sensing topology variations are modeled by a discrete-time Markov chain with incomplete mode transition probabilities. Each of these sensor nodes firstly collects measurement outputs from its all underlying neighboring nodes, processes these data in accordance with the Markovian switching topologies, and then transmits the processed data to the remote fault detector node. Network-induced delays and accumulated data packet dropouts are incorporated in the data transmission between the sensor nodes and the distributed fault detector nodes through the communication network. To generate localized residual signals, mode-independent distributed fault detection filters are proposed. By means of the stochastic Lyapunov functional approach, the residual system performance analysis is carried out such that the overall residual system is stochastically stable and the error between each residual signal and the fault signal is made as small as possible. Furthermore, a sufficient condition on the existence of the mode-independent distributed fault detection filters is derived in the simultaneous presence of incomplete mode transition probabilities, Markovian switching topologies, network-induced delays, and accumulated data packed dropouts. Finally, a stirred-tank reactor system is given to show the effectiveness of the developed theoretical results.

  4. Model-based fault detection and isolation for intermittently active faults with application to motion-based thruster fault detection and isolation for spacecraft

    NASA Technical Reports Server (NTRS)

    Wilson, Edward (Inventor)

    2008-01-01

    The present invention is a method for detecting and isolating fault modes in a system having a model describing its behavior and regularly sampled measurements. The models are used to calculate past and present deviations from measurements that would result with no faults present, as well as with one or more potential fault modes present. Algorithms that calculate and store these deviations, along with memory of when said faults, if present, would have an effect on the said actual measurements, are used to detect when a fault is present. Related algorithms are used to exonerate false fault modes and finally to isolate the true fault mode. This invention is presented with application to detection and isolation of thruster faults for a thruster-controlled spacecraft. As a supporting aspect of the invention, a novel, effective, and efficient filtering method for estimating the derivative of a noisy signal is presented.

  5. Abnormal fault-recovery characteristics of the fault-tolerant multiprocessor uncovered using a new fault-injection methodology

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1991-01-01

    An investigation was made in AIRLAB of the fault handling performance of the Fault Tolerant MultiProcessor (FTMP). Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once in every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles Byzantine or lying faults. Byzantine faults behave such that the faulted unit points to a working unit as the source of errors. The design's problems involve: (1) the design and interface between the simplex error detection hardware and the error processing software, (2) the functional capabilities of the FTMP system bus, and (3) the communication requirements of a multiprocessor architecture. These weak areas in the FTMP's design increase the probability that, for any hardware fault, a good line replacement unit (LRU) is mistakenly disabled by the fault management software.

  6. System and method for motor fault detection using stator current noise cancellation

    DOEpatents

    Zhou, Wei; Lu, Bin; Nowak, Michael P.; Dimino, Steven A.

    2010-12-07

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  7. Characterization of System Status Signals for Multivariate Time Series Discretization Based on Frequency and Amplitude Variation

    PubMed Central

    2018-01-01

    Many fault detection methods have been proposed for monitoring the health of various industrial systems. Characterizing the monitored signals is a prerequisite for selecting an appropriate detection method. However, fault detection methods tend to be decided with user’s subjective knowledge or their familiarity with the method, rather than following a predefined selection rule. This study investigates the performance sensitivity of two detection methods, with respect to status signal characteristics of given systems: abrupt variance, characteristic indicator, discernable frequency, and discernable index. Relation between key characteristics indicators from four different real-world systems and the performance of two fault detection methods using pattern recognition are evaluated. PMID:29316731

  8. Verifying Digital Components of Physical Systems: Experimental Evaluation of Test Quality

    NASA Astrophysics Data System (ADS)

    Laputenko, A. V.; López, J. E.; Yevtushenko, N. V.

    2018-03-01

    This paper continues the study of high quality test derivation for verifying digital components which are used in various physical systems; those are sensors, data transfer components, etc. We have used logic circuits b01-b010 of the package of ITC'99 benchmarks (Second Release) for experimental evaluation which as stated before, describe digital components of physical systems designed for various applications. Test sequences are derived for detecting the most known faults of the reference logic circuit using three different approaches to test derivation. Three widely used fault types such as stuck-at-faults, bridges, and faults which slightly modify the behavior of one gate are considered as possible faults of the reference behavior. The most interesting test sequences are short test sequences that can provide appropriate guarantees after testing, and thus, we experimentally study various approaches to the derivation of the so-called complete test suites which detect all fault types. In the first series of experiments, we compare two approaches for deriving complete test suites. In the first approach, a shortest test sequence is derived for testing each fault. In the second approach, a test sequence is pseudo-randomly generated by the use of an appropriate software for logic synthesis and verification (ABC system in our study) and thus, can be longer. However, after deleting sequences detecting the same set of faults, a test suite returned by the second approach is shorter. The latter underlines the fact that in many cases it is useless to spend `time and efforts' for deriving a shortest distinguishing sequence; it is better to use the test minimization afterwards. The performed experiments also show that the use of only randomly generated test sequences is not very efficient since such sequences do not detect all the faults of any type. After reaching the fault coverage around 70%, saturation is observed, and the fault coverage cannot be increased anymore. For deriving high quality short test suites, the approach that is the combination of randomly generated sequences together with sequences which are aimed to detect faults not detected by random tests, allows to reach the good fault coverage using shortest test sequences.

  9. A comparative study of sensor fault diagnosis methods based on observer for ECAS system

    NASA Astrophysics Data System (ADS)

    Xu, Xing; Wang, Wei; Zou, Nannan; Chen, Long; Cui, Xiaoli

    2017-03-01

    The performance and practicality of electronically controlled air suspension (ECAS) system are highly dependent on the state information supplied by kinds of sensors, but faults of sensors occur frequently. Based on a non-linearized 3-DOF 1/4 vehicle model, different methods of fault detection and isolation (FDI) are used to diagnose the sensor faults for ECAS system. The considered approaches include an extended Kalman filter (EKF) with concise algorithm, a strong tracking filter (STF) with robust tracking ability, and the cubature Kalman filter (CKF) with numerical precision. We propose three filters of EKF, STF, and CKF to design a state observer of ECAS system under typical sensor faults and noise. Results show that three approaches can successfully detect and isolate faults respectively despite of the existence of environmental noise, FDI time delay and fault sensitivity of different algorithms are different, meanwhile, compared with EKF and STF, CKF method has best performing FDI of sensor faults for ECAS system.

  10. Fault detection for piecewise affine systems with application to ship propulsion systems.

    PubMed

    Yang, Ying; Linlin, Li; Ding, Steven X; Qiu, Jianbin; Peng, Kaixiang

    2017-09-09

    In this paper, the design approach of non-synchronized diagnostic observer-based fault detection (FD) systems is investigated for piecewise affine processes via continuous piecewise Lyapunov functions. Considering that the dynamics of piecewise affine systems in different regions can be considerably different, the weighting matrices are used to weight the residual of each region, so as to optimize the fault detectability. A numerical example and a case study on a ship propulsion system are presented in the end to demonstrate the effectiveness of the proposed results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Hybrid Model-Based and Data-Driven Fault Detection and Diagnostics for Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Stephen; Heaney, Michael; Jin, Xin

    Commercial buildings often experience faults that produce undesirable behavior in building systems. Building faults waste energy, decrease occupants' comfort, and increase operating costs. Automated fault detection and diagnosis (FDD) tools for buildings help building owners discover and identify the root causes of faults in building systems, equipment, and controls. Proper implementation of FDD has the potential to simultaneously improve comfort, reduce energy use, and narrow the gap between actual and optimal building performance. However, conventional rule-based FDD requires expensive instrumentation and valuable engineering labor, which limit deployment opportunities. This paper presents a hybrid, automated FDD approach that combines building energymore » models and statistical learning tools to detect and diagnose faults noninvasively, using minimal sensors, with little customization. We compare and contrast the performance of several hybrid FDD algorithms for a small security building. Our results indicate that the algorithms can detect and diagnose several common faults, but more work is required to reduce false positive rates and improve diagnosis accuracy.« less

  12. Hybrid Model-Based and Data-Driven Fault Detection and Diagnostics for Commercial Buildings: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Stephen; Heaney, Michael; Jin, Xin

    Commercial buildings often experience faults that produce undesirable behavior in building systems. Building faults waste energy, decrease occupants' comfort, and increase operating costs. Automated fault detection and diagnosis (FDD) tools for buildings help building owners discover and identify the root causes of faults in building systems, equipment, and controls. Proper implementation of FDD has the potential to simultaneously improve comfort, reduce energy use, and narrow the gap between actual and optimal building performance. However, conventional rule-based FDD requires expensive instrumentation and valuable engineering labor, which limit deployment opportunities. This paper presents a hybrid, automated FDD approach that combines building energymore » models and statistical learning tools to detect and diagnose faults noninvasively, using minimal sensors, with little customization. We compare and contrast the performance of several hybrid FDD algorithms for a small security building. Our results indicate that the algorithms can detect and diagnose several common faults, but more work is required to reduce false positive rates and improve diagnosis accuracy.« less

  13. The design and implementation of on-line monitoring system for UHV compact shunt capacitors

    NASA Astrophysics Data System (ADS)

    Tao, Weiliang; Ni, Xuefeng; Lin, Hao; Jiang, Shengbao

    2017-08-01

    Because of the large capacity and compact structure of the UHV compact shunt capacitor, it is difficult to take effective measures to detect and prevent the faults. If the fault capacitor fails to take timely maintenance, it will pose a threat to the safe operation of the system and the life safety of the maintenance personnel. The development of UHV compact shunt capacitor on-line monitoring system can detect and record the on-line operation information of UHV compact shunt capacitors, analyze and evaluate the early fault warning signs, find out the fault capacitor or the capacitor with fault symptom, to ensure safe and reliable operation of the system.

  14. Aircraft Engine Sensor/Actuator/Component Fault Diagnosis Using a Bank of Kalman Filters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L. (Technical Monitor)

    2003-01-01

    In this report, a fault detection and isolation (FDI) system which utilizes a bank of Kalman filters is developed for aircraft engine sensor and actuator FDI in conjunction with the detection of component faults. This FDI approach uses multiple Kalman filters, each of which is designed based on a specific hypothesis for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, from which a specific fault is isolated. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The performance of the FDI system is evaluated against a nonlinear engine simulation for various engine faults at cruise operating conditions. In order to mimic the real engine environment, the nonlinear simulation is executed not only at the nominal, or healthy, condition but also at aged conditions. When the FDI system designed at the healthy condition is applied to an aged engine, the effectiveness of the FDI system is impacted by the mismatch in the engine health condition. Depending on its severity, this mismatch can cause the FDI system to generate incorrect diagnostic results, such as false alarms and missed detections. To partially recover the nominal performance, two approaches, which incorporate information regarding the engine s aging condition in the FDI system, will be discussed and evaluated. The results indicate that the proposed FDI system is promising for reliable diagnostics of aircraft engines.

  15. Immunity-Based Aircraft Fault Detection System

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    In the study reported in this paper, we have developed and applied an Artificial Immune System (AIS) algorithm for aircraft fault detection, as an extension to a previous work on intelligent flight control (IFC). Though the prior studies had established the benefits of IFC, one area of weakness that needed to be strengthened was the control dead band induced by commanding a failed surface. Since the IFC approach uses fault accommodation with no detection, the dead band, although it reduces over time due to learning, is present and causes degradation in handling qualities. If the failure can be identified, this dead band can be further A ed to ensure rapid fault accommodation and better handling qualities. The paper describes the application of an immunity-based approach that can detect a broad spectrum of known and unforeseen failures. The approach incorporates the knowledge of the normal operational behavior of the aircraft from sensory data, and probabilistically generates a set of pattern detectors that can detect any abnormalities (including faults) in the behavior pattern indicating unsafe in-flight operation. We developed a tool called MILD (Multi-level Immune Learning Detection) based on a real-valued negative selection algorithm that can generate a small number of specialized detectors (as signatures of known failure conditions) and a larger set of generalized detectors for unknown (or possible) fault conditions. Once the fault is detected and identified, an adaptive control system would use this detection information to stabilize the aircraft by utilizing available resources (control surfaces). We experimented with data sets collected under normal and various simulated failure conditions using a piloted motion-base simulation facility. The reported results are from a collection of test cases that reflect the performance of the proposed immunity-based fault detection algorithm.

  16. FAULT PROPAGATION AND EFFECTS ANALYSIS FOR DESIGNING AN ONLINE MONITORING SYSTEM FOR THE SECONDARY LOOP OF A NUCLEAR POWER PLANT PART OF A HYBRID ENERGY SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huijuan; Diao, Xiaoxu; Li, Boyuan

    This paper studies the propagation and effects of faults of critical components that pertain to the secondary loop of a nuclear power plant found in Nuclear Hybrid Energy Systems (NHES). This information is used to design an on-line monitoring (OLM) system which is capable of detecting and forecasting faults that are likely to occur during NHES operation. In this research, the causes, features, and effects of possible faults are investigated by simulating the propagation of faults in the secondary loop. The simulation is accomplished by using the Integrated System Failure Analysis (ISFA). ISFA is used for analyzing hardware and softwaremore » faults during the conceptual design phase. In this paper, the models of system components required by ISFA are initially constructed. Then, the fault propagation analysis is implemented, which is conducted under the bounds set by acceptance criteria derived from the design of an OLM system. The result of the fault simulation is utilized to build a database for fault detection and diagnosis, provide preventive measures, and propose an optimization plan for the OLM system.« less

  17. Planetary Gearbox Fault Detection Using Vibration Separation Techniques

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.

  18. Real-time diagnostics for a reusable rocket engine

    NASA Technical Reports Server (NTRS)

    Guo, T. H.; Merrill, W.; Duyar, A.

    1992-01-01

    A hierarchical, decentralized diagnostic system is proposed for the Real-Time Diagnostic System component of the Intelligent Control System (ICS) for reusable rocket engines. The proposed diagnostic system has three layers of information processing: condition monitoring, fault mode detection, and expert system diagnostics. The condition monitoring layer is the first level of signal processing. Here, important features of the sensor data are extracted. These processed data are then used by the higher level fault mode detection layer to do preliminary diagnosis on potential faults at the component level. Because of the closely coupled nature of the rocket engine propulsion system components, it is expected that a given engine condition may trigger more than one fault mode detector. Expert knowledge is needed to resolve the conflicting reports from the various failure mode detectors. This is the function of the diagnostic expert layer. Here, the heuristic nature of this decision process makes it desirable to use an expert system approach. Implementation of the real-time diagnostic system described above requires a wide spectrum of information processing capability. Generally, in the condition monitoring layer, fast data processing is often needed for feature extraction and signal conditioning. This is usually followed by some detection logic to determine the selected faults on the component level. Three different techniques are used to attack different fault detection problems in the NASA LeRC ICS testbed simulation. The first technique employed is the neural network application for real-time sensor validation which includes failure detection, isolation, and accommodation. The second approach demonstrated is the model-based fault diagnosis system using on-line parameter identification. Besides these model based diagnostic schemes, there are still many failure modes which need to be diagnosed by the heuristic expert knowledge. The heuristic expert knowledge is implemented using a real-time expert system tool called G2 by Gensym Corp. Finally, the distributed diagnostic system requires another level of intelligence to oversee the fault mode reports generated by component fault detectors. The decision making at this level can best be done using a rule-based expert system. This level of expert knowledge is also implemented using G2.

  19. Real-time fault diagnosis for propulsion systems

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Guo, Ten-Huei; Delaat, John C.; Duyar, Ahmet

    1991-01-01

    Current research toward real time fault diagnosis for propulsion systems at NASA-Lewis is described. The research is being applied to both air breathing and rocket propulsion systems. Topics include fault detection methods including neural networks, system modeling, and real time implementations.

  20. Gyro-based Maximum-Likelihood Thruster Fault Detection and Identification

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Lages, Chris; Mah, Robert; Clancy, Daniel (Technical Monitor)

    2002-01-01

    When building smaller, less expensive spacecraft, there is a need for intelligent fault tolerance vs. increased hardware redundancy. If fault tolerance can be achieved using existing navigation sensors, cost and vehicle complexity can be reduced. A maximum likelihood-based approach to thruster fault detection and identification (FDI) for spacecraft is developed here and applied in simulation to the X-38 space vehicle. The system uses only gyro signals to detect and identify hard, abrupt, single and multiple jet on- and off-failures. Faults are detected within one second and identified within one to five accords,

  1. Advanced Information Processing System - Fault detection and error handling

    NASA Technical Reports Server (NTRS)

    Lala, J. H.

    1985-01-01

    The Advanced Information Processing System (AIPS) is designed to provide a fault tolerant and damage tolerant data processing architecture for a broad range of aerospace vehicles, including tactical and transport aircraft, and manned and autonomous spacecraft. A proof-of-concept (POC) system is now in the detailed design and fabrication phase. This paper gives an overview of a preliminary fault detection and error handling philosophy in AIPS.

  2. Integrated analysis of error detection and recovery

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Lee, Y. H.

    1985-01-01

    An integrated modeling and analysis of error detection and recovery is presented. When fault latency and/or error latency exist, the system may suffer from multiple faults or error propagations which seriously deteriorate the fault-tolerant capability. Several detection models that enable analysis of the effect of detection mechanisms on the subsequent error handling operations and the overall system reliability were developed. Following detection of the faulty unit and reconfiguration of the system, the contaminated processes or tasks have to be recovered. The strategies of error recovery employed depend on the detection mechanisms and the available redundancy. Several recovery methods including the rollback recovery are considered. The recovery overhead is evaluated as an index of the capabilities of the detection and reconfiguration mechanisms.

  3. Critical fault patterns determination in fault-tolerant computer systems

    NASA Technical Reports Server (NTRS)

    Mccluskey, E. J.; Losq, J.

    1978-01-01

    The method proposed tries to enumerate all the critical fault-patterns (successive occurrences of failures) without analyzing every single possible fault. The conditions for the system to be operating in a given mode can be expressed in terms of the static states. Thus, one can find all the system states that correspond to a given critical mode of operation. The next step consists in analyzing the fault-detection mechanisms, the diagnosis algorithm and the process of switch control. From them, one can find all the possible system configurations that can result from a failure occurrence. Thus, one can list all the characteristics, with respect to detection, diagnosis, and switch control, that failures must have to constitute critical fault-patterns. Such an enumeration of the critical fault-patterns can be directly used to evaluate the overall system tolerance to failures. Present research is focused on how to efficiently make use of these system-level characteristics to enumerate all the failures that verify these characteristics.

  4. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles.

    PubMed

    Jeon, Namju; Lee, Hyeongcheol

    2016-12-12

    An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed.

  5. Usage of Fault Detection Isolation & Recovery (FDIR) in Constellation (CxP) Launch Operations

    NASA Technical Reports Server (NTRS)

    Ferrell, Rob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Spirkovska, Lilly; Hall, David; Brown, Barbara

    2010-01-01

    This paper will explore the usage of Fault Detection Isolation & Recovery (FDIR) in the Constellation Exploration Program (CxP), in particular Launch Operations at Kennedy Space Center (KSC). NASA's Exploration Technology Development Program (ETDP) is currently funding a project that is developing a prototype FDIR to demonstrate the feasibility of incorporating FDIR into the CxP Ground Operations Launch Control System (LCS). An architecture that supports multiple FDIR tools has been formulated that will support integration into the CxP Ground Operation's Launch Control System (LCS). In addition, tools have been selected that provide fault detection, fault isolation, and anomaly detection along with integration between Flight and Ground elements.

  6. Wavelet Based Protection Scheme for Multi Terminal Transmission System with PV and Wind Generation

    NASA Astrophysics Data System (ADS)

    Manju Sree, Y.; Goli, Ravi kumar; Ramaiah, V.

    2017-08-01

    A hybrid generation is a part of large power system in which number of sources usually attached to a power electronic converter and loads are clustered can operate independent of the main power system. The protection scheme is crucial against faults based on traditional over current protection since there are adequate problems due to fault currents in the mode of operation. This paper adopts a new approach for detection, discrimination of the faults for multi terminal transmission line protection in presence of hybrid generation. Transient current based protection scheme is developed with discrete wavelet transform. Fault indices of all phase currents at all terminals are obtained by analyzing the detail coefficients of current signals using bior 1.5 mother wavelet. This scheme is tested for different types of faults and is found effective for detection and discrimination of fault with various fault inception angle and fault impedance.

  7. System for detecting and limiting electrical ground faults within electrical devices

    DOEpatents

    Gaubatz, Donald C.

    1990-01-01

    An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.

  8. Fault detection in rotor bearing systems using time frequency techniques

    NASA Astrophysics Data System (ADS)

    Chandra, N. Harish; Sekhar, A. S.

    2016-05-01

    Faults such as misalignment, rotor cracks and rotor to stator rub can exist collectively in rotor bearing systems. It is an important task for rotor dynamic personnel to monitor and detect faults in rotating machinery. In this paper, the rotor startup vibrations are utilized to solve the fault identification problem using time frequency techniques. Numerical simulations are performed through finite element analysis of the rotor bearing system with individual and collective combinations of faults as mentioned above. Three signal processing tools namely Short Time Fourier Transform (STFT), Continuous Wavelet Transform (CWT) and Hilbert Huang Transform (HHT) are compared to evaluate their detection performance. The effect of addition of Signal to Noise ratio (SNR) on three time frequency techniques is presented. The comparative study is focused towards detecting the least possible level of the fault induced and the computational time consumed. The computation time consumed by HHT is very less when compared to CWT based diagnosis. However, for noisy data CWT is more preferred over HHT. To identify fault characteristics using wavelets a procedure to adjust resolution of the mother wavelet is presented in detail. Experiments are conducted to obtain the run-up data of a rotor bearing setup for diagnosis of shaft misalignment and rotor stator rubbing faults.

  9. A Three-Dimensional Receiver Operator Characteristic Surface Diagnostic Metric

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2011-01-01

    Receiver Operator Characteristic (ROC) curves are commonly applied as metrics for quantifying the performance of binary fault detection systems. An ROC curve provides a visual representation of a detection system s True Positive Rate versus False Positive Rate sensitivity as the detection threshold is varied. The area under the curve provides a measure of fault detection performance independent of the applied detection threshold. While the standard ROC curve is well suited for quantifying binary fault detection performance, it is not suitable for quantifying the classification performance of multi-fault classification problems. Furthermore, it does not provide a measure of diagnostic latency. To address these shortcomings, a novel three-dimensional receiver operator characteristic (3D ROC) surface metric has been developed. This is done by generating and applying two separate curves: the standard ROC curve reflecting fault detection performance, and a second curve reflecting fault classification performance. A third dimension, diagnostic latency, is added giving rise to 3D ROC surfaces. Applying numerical integration techniques, the volumes under and between the surfaces are calculated to produce metrics of the diagnostic system s detection and classification performance. This paper will describe the 3D ROC surface metric in detail, and present an example of its application for quantifying the performance of aircraft engine gas path diagnostic methods. Metric limitations and potential enhancements are also discussed

  10. On-board fault management for autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Fesq, Lorraine M.; Stephan, Amy; Doyle, Susan C.; Martin, Eric; Sellers, Suzanne

    1991-01-01

    The dynamic nature of the Cargo Transfer Vehicle's (CTV) mission and the high level of autonomy required mandate a complete fault management system capable of operating under uncertain conditions. Such a fault management system must take into account the current mission phase and the environment (including the target vehicle), as well as the CTV's state of health. This level of capability is beyond the scope of current on-board fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems that can meet the needs of spacecraft that have long-range autonomy requirements. We have implemented a model-based approach to fault detection and isolation that does not require explicit characterization of failures prior to launch. It is thus able to detect failures that were not considered in the failure and effects analysis. We have applied this technique to several different subsystems and tested our approach against both simulations and an electrical power system hardware testbed. We present findings from simulation and hardware tests which demonstrate the ability of our model-based system to detect and isolate failures, and describe our work in porting the Ada version of this system to a flight-qualified processor. We also discuss current research aimed at expanding our system to monitor the entire spacecraft.

  11. Fault detection and diagnosis for non-Gaussian stochastic distribution systems with time delays via RBF neural networks.

    PubMed

    Yi, Qu; Zhan-ming, Li; Er-chao, Li

    2012-11-01

    A new fault detection and diagnosis (FDD) problem via the output probability density functions (PDFs) for non-gausian stochastic distribution systems (SDSs) is investigated. The PDFs can be approximated by radial basis functions (RBFs) neural networks. Different from conventional FDD problems, the measured information for FDD is the output stochastic distributions and the stochastic variables involved are not confined to Gaussian ones. A (RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network. In this work, a nonlinear adaptive observer-based fault detection and diagnosis algorithm is presented by introducing the tuning parameter so that the residual is as sensitive as possible to the fault. Stability and Convergency analysis is performed in fault detection and fault diagnosis analysis for the error dynamic system. At last, an illustrated example is given to demonstrate the efficiency of the proposed algorithm, and satisfactory results have been obtained. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  12. An online outlier identification and removal scheme for improving fault detection performance.

    PubMed

    Ferdowsi, Hasan; Jagannathan, Sarangapani; Zawodniok, Maciej

    2014-05-01

    Measured data or states for a nonlinear dynamic system is usually contaminated by outliers. Identifying and removing outliers will make the data (or system states) more trustworthy and reliable since outliers in the measured data (or states) can cause missed or false alarms during fault diagnosis. In addition, faults can make the system states nonstationary needing a novel analytical model-based fault detection (FD) framework. In this paper, an online outlier identification and removal (OIR) scheme is proposed for a nonlinear dynamic system. Since the dynamics of the system can experience unknown changes due to faults, traditional observer-based techniques cannot be used to remove the outliers. The OIR scheme uses a neural network (NN) to estimate the actual system states from measured system states involving outliers. With this method, the outlier detection is performed online at each time instant by finding the difference between the estimated and the measured states and comparing its median with its standard deviation over a moving time window. The NN weight update law in OIR is designed such that the detected outliers will have no effect on the state estimation, which is subsequently used for model-based fault diagnosis. In addition, since the OIR estimator cannot distinguish between the faulty or healthy operating conditions, a separate model-based observer is designed for fault diagnosis, which uses the OIR scheme as a preprocessing unit to improve the FD performance. The stability analysis of both OIR and fault diagnosis schemes are introduced. Finally, a three-tank benchmarking system and a simple linear system are used to verify the proposed scheme in simulations, and then the scheme is applied on an axial piston pump testbed. The scheme can be applied to nonlinear systems whose dynamics and underlying distribution of states are subjected to change due to both unknown faults and operating conditions.

  13. Measurement of fault latency in a digital avionic miniprocessor

    NASA Technical Reports Server (NTRS)

    Mcgough, J. G.; Swern, F. L.

    1981-01-01

    The results of fault injection experiments utilizing a gate-level emulation of the central processor unit of the Bendix BDX-930 digital computer are presented. The failure detection coverage of comparison-monitoring and a typical avionics CPU self-test program was determined. The specific tasks and experiments included: (1) inject randomly selected gate-level and pin-level faults and emulate six software programs using comparison-monitoring to detect the faults; (2) based upon the derived empirical data develop and validate a model of fault latency that will forecast a software program's detecting ability; (3) given a typical avionics self-test program, inject randomly selected faults at both the gate-level and pin-level and determine the proportion of faults detected; (4) determine why faults were undetected; (5) recommend how the emulation can be extended to multiprocessor systems such as SIFT; and (6) determine the proportion of faults detected by a uniprocessor BIT (built-in-test) irrespective of self-test.

  14. Simultaneous fault detection and control design for switched systems with two quantized signals.

    PubMed

    Li, Jian; Park, Ju H; Ye, Dan

    2017-01-01

    The problem of simultaneous fault detection and control design for switched systems with two quantized signals is presented in this paper. Dynamic quantizers are employed, respectively, before the output is passed to fault detector, and before the control input is transmitted to the switched system. Taking the quantized errors into account, the robust performance for this kind of system is given. Furthermore, sufficient conditions for the existence of fault detector/controller are presented in the framework of linear matrix inequalities, and fault detector/controller gains and the supremum of quantizer range are derived by a convex optimized method. Finally, two illustrative examples demonstrate the effectiveness of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Infrared thermography based diagnosis of inter-turn fault and cooling system failure in three phase induction motor

    NASA Astrophysics Data System (ADS)

    Singh, Gurmeet; Naikan, V. N. A.

    2017-12-01

    Thermography has been widely used as a technique for anomaly detection in induction motors. International Electrical Testing Association (NETA) proposed guidelines for thermographic inspection of electrical systems and rotating equipment. These guidelines help in anomaly detection and estimating its severity. However, it focus only on location of hotspot rather than diagnosing the fault. This paper addresses two such faults i.e. inter-turn fault and failure of cooling system, where both results in increase of stator temperature. Present paper proposes two thermal profile indicators using thermal analysis of IRT images. These indicators are in compliance with NETA standard. These indicators help in correctly diagnosing inter-turn fault and failure of cooling system. The work has been experimentally validated for healthy and with seeded faults scenarios of induction motors.

  16. Health management and controls for Earth-to-orbit propulsion systems

    NASA Astrophysics Data System (ADS)

    Bickford, R. L.

    1995-03-01

    Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.

  17. Aircraft Engine On-Line Diagnostics Through Dual-Channel Sensor Measurements: Development of an Enhanced System

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2008-01-01

    In this paper, an enhanced on-line diagnostic system which utilizes dual-channel sensor measurements is developed for the aircraft engine application. The enhanced system is composed of a nonlinear on-board engine model (NOBEM), the hybrid Kalman filter (HKF) algorithm, and fault detection and isolation (FDI) logic. The NOBEM provides the analytical third channel against which the dual-channel measurements are compared. The NOBEM is further utilized as part of the HKF algorithm which estimates measured engine parameters. Engine parameters obtained from the dual-channel measurements, the NOBEM, and the HKF are compared against each other. When the discrepancy among the signals exceeds a tolerance level, the FDI logic determines the cause of discrepancy. Through this approach, the enhanced system achieves the following objectives: 1) anomaly detection, 2) component fault detection, and 3) sensor fault detection and isolation. The performance of the enhanced system is evaluated in a simulation environment using faults in sensors and components, and it is compared to an existing baseline system.

  18. Detection of High-impedance Arcing Faults in Radial Distribution DC Systems

    NASA Technical Reports Server (NTRS)

    Gonzalez, Marcelo C.; Button, Robert M.

    2003-01-01

    High voltage, low current arcing faults in DC power systems have been researched at the NASA Glenn Research Center in order to develop a method for detecting these 'hidden faults', in-situ, before damage to cables and components from localized heating can occur. A simple arc generator was built and high-speed and low-speed monitoring of the voltage and current waveforms, respectively, has shown that these high impedance faults produce a significant increase in high frequency content in the DC bus voltage and low frequency content in the DC system current. Based on these observations, an algorithm was developed using a high-speed data acquisition system that was able to accurately detect high impedance arcing events induced in a single-line system based on the frequency content of the DC bus voltage or the system current. Next, a multi-line, radial distribution system was researched to see if the arc location could be determined through the voltage information when multiple 'detectors' are present in the system. It was shown that a small, passive LC filter was sufficient to reliably isolate the fault to a single line in a multi-line distribution system. Of course, no modification is necessary if only the current information is used to locate the arc. However, data shows that it might be necessary to monitor both the system current and bus voltage to improve the chances of detecting and locating high impedance arcing faults

  19. Flight experience with a fail-operational digital fly-by-wire control system

    NASA Technical Reports Server (NTRS)

    Brown, S. R.; Szalai, K. J.

    1977-01-01

    The NASA Dryden Flight Research Center is flight testing a triply redundant digital fly-by-wire (DFBW) control system installed in an F-8 aircraft. The full-time, full-authority system performs three-axis flight control computations, including stability and command augmentation, autopilot functions, failure detection and isolation, and self-test functions. Advanced control law experiments include an active flap mode for ride smoothing and maneuver drag reduction. This paper discusses research being conducted on computer synchronization, fault detection, fault isolation, and recovery from transient faults. The F-8 DFBW system has demonstrated immunity from nuisance fault declarations while quickly identifying truly faulty components.

  20. Adaptively Adjusted Event-Triggering Mechanism on Fault Detection for Networked Control Systems.

    PubMed

    Wang, Yu-Long; Lim, Cheng-Chew; Shi, Peng

    2016-12-08

    This paper studies the problem of adaptively adjusted event-triggering mechanism-based fault detection for a class of discrete-time networked control system (NCS) with applications to aircraft dynamics. By taking into account the fault occurrence detection progress and the fault occurrence probability, and introducing an adaptively adjusted event-triggering parameter, a novel event-triggering mechanism is proposed to achieve the efficient utilization of the communication network bandwidth. Both the sensor-to-control station and the control station-to-actuator network-induced delays are taken into account. The event-triggered sensor and the event-triggered control station are utilized simultaneously to establish new network-based closed-loop models for the NCS subject to faults. Based on the established models, the event-triggered simultaneous design of fault detection filter (FDF) and controller is presented. A new algorithm for handling the adaptively adjusted event-triggering parameter is proposed. Performance analysis verifies the effectiveness of the adaptively adjusted event-triggering mechanism, and the simultaneous design of FDF and controller.

  1. Detecting Faults in Southern California using Computer-Vision Techniques and Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Interferometry

    NASA Astrophysics Data System (ADS)

    Barba, M.; Rains, C.; von Dassow, W.; Parker, J. W.; Glasscoe, M. T.

    2013-12-01

    Knowing the location and behavior of active faults is essential for earthquake hazard assessment and disaster response. In Interferometric Synthetic Aperture Radar (InSAR) images, faults are revealed as linear discontinuities. Currently, interferograms are manually inspected to locate faults. During the summer of 2013, the NASA-JPL DEVELOP California Disasters team contributed to the development of a method to expedite fault detection in California using remote-sensing technology. The team utilized InSAR images created from polarimetric L-band data from NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) project. A computer-vision technique known as 'edge-detection' was used to automate the fault-identification process. We tested and refined an edge-detection algorithm under development through NASA's Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) project. To optimize the algorithm we used both UAVSAR interferograms and synthetic interferograms generated through Disloc, a web-based modeling program available through NASA's QuakeSim project. The edge-detection algorithm detected seismic, aseismic, and co-seismic slip along faults that were identified and compared with databases of known fault systems. Our optimization process was the first step toward integration of the edge-detection code into E-DECIDER to provide decision support for earthquake preparation and disaster management. E-DECIDER partners that will use the edge-detection code include the California Earthquake Clearinghouse and the US Department of Homeland Security through delivery of products using the Unified Incident Command and Decision Support (UICDS) service. Through these partnerships, researchers, earthquake disaster response teams, and policy-makers will be able to use this new methodology to examine the details of ground and fault motions for moderate to large earthquakes. Following an earthquake, the newly discovered faults can be paired with infrastructure overlays, allowing emergency response teams to identify sites that may have been exposed to damage. The faults will also be incorporated into a database for future integration into fault models and earthquake simulations, improving future earthquake hazard assessment. As new faults are mapped, they will further understanding of the complex fault systems and earthquake hazards within the seismically dynamic state of California.

  2. A probabilistic method to diagnose faults of air handling units

    NASA Astrophysics Data System (ADS)

    Dey, Debashis

    Air handling unit (AHU) is one of the most extensively used equipment in large commercial buildings. This device is typically customized and lacks quality system integration which can result in hardwire failures and controller errors. Air handling unit Performance Assessment Rules (APAR) is a fault detection tool that uses a set of expert rules derived from mass and energy balances to detect faults in air handling units. APAR is computationally simple enough that it can be embedded in commercial building automation and control systems and relies only upon sensor data and control signals that are commonly available in these systems. Although APAR has many advantages over other methods, for example no training data required and easy to implement commercially, most of the time it is unable to provide the diagnosis of the faults. For instance, a fault on temperature sensor could be fixed bias, drifting bias, inappropriate location, complete failure. Also a fault in mixing box can be return and outdoor damper leak or stuck. In addition, when multiple rules are satisfied the list of faults increases. There is no proper way to have the correct diagnosis for rule based fault detection system. To overcome this limitation we proposed Bayesian Belief Network (BBN) as a diagnostic tool. BBN can be used to simulate diagnostic thinking of FDD experts through a probabilistic way. In this study we developed a new way to detect and diagnose faults in AHU through combining APAR rules and Bayesian Belief network. Bayesian Belief Network is used as a decision support tool for rule based expert system. BBN is highly capable to prioritize faults when multiple rules are satisfied simultaneously. Also it can get information from previous AHU operating conditions and maintenance records to provide proper diagnosis. The proposed model is validated with real time measured data of a campus building at University of Texas at San Antonio (UTSA).The results show that BBN is correctly able to prioritize faults which can be verified by manual investigation.

  3. Simultaneous Sensor and Process Fault Diagnostics for Propellant Feed System

    NASA Technical Reports Server (NTRS)

    Cao, J.; Kwan, C.; Figueroa, F.; Xu, R.

    2006-01-01

    The main objective of this research is to extract fault features from sensor faults and process faults by using advanced fault detection and isolation (FDI) algorithms. A tank system that has some common characteristics to a NASA testbed at Stennis Space Center was used to verify our proposed algorithms. First, a generic tank system was modeled. Second, a mathematical model suitable for FDI has been derived for the tank system. Third, a new and general FDI procedure has been designed to distinguish process faults and sensor faults. Extensive simulations clearly demonstrated the advantages of the new design.

  4. A Review of Transmission Diagnostics Research at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Zakajsek, James J.

    1994-01-01

    This paper presents a summary of the transmission diagnostics research work conducted at NASA Lewis Research Center over the last four years. In 1990, the Transmission Health and Usage Monitoring Research Team at NASA Lewis conducted a survey to determine the critical needs of the diagnostics community. Survey results indicated that experimental verification of gear and bearing fault detection methods, improved fault detection in planetary systems, and damage magnitude assessment and prognostics research were all critical to a highly reliable health and usage monitoring system. In response to this, a variety of transmission fault detection methods were applied to experimentally obtained fatigue data. Failure modes of the fatigue data include a variety of gear pitting failures, tooth wear, tooth fracture, and bearing spalling failures. Overall results indicate that, of the gear fault detection techniques, no one method can successfully detect all possible failure modes. The more successful methods need to be integrated into a single more reliable detection technique. A recently developed method, NA4, in addition to being one of the more successful gear fault detection methods, was also found to exhibit damage magnitude estimation capabilities.

  5. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles

    PubMed Central

    Jeon, Namju; Lee, Hyeongcheol

    2016-01-01

    An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed. PMID:27973431

  6. Optimal Sensor Allocation for Fault Detection and Isolation

    NASA Technical Reports Server (NTRS)

    Azam, Mohammad; Pattipati, Krishna; Patterson-Hine, Ann

    2004-01-01

    Automatic fault diagnostic schemes rely on various types of sensors (e.g., temperature, pressure, vibration, etc) to measure the system parameters. Efficacy of a diagnostic scheme is largely dependent on the amount and quality of information available from these sensors. The reliability of sensors, as well as the weight, volume, power, and cost constraints, often makes it impractical to monitor a large number of system parameters. An optimized sensor allocation that maximizes the fault diagnosibility, subject to specified weight, volume, power, and cost constraints is required. Use of optimal sensor allocation strategies during the design phase can ensure better diagnostics at a reduced cost for a system incorporating a high degree of built-in testing. In this paper, we propose an approach that employs multiple fault diagnosis (MFD) and optimization techniques for optimal sensor placement for fault detection and isolation (FDI) in complex systems. Keywords: sensor allocation, multiple fault diagnosis, Lagrangian relaxation, approximate belief revision, multidimensional knapsack problem.

  7. Functional Fault Modeling of a Cryogenic System for Real-Time Fault Detection and Isolation

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Brown, Barbara

    2010-01-01

    The purpose of this paper is to present the model development process used to create a Functional Fault Model (FFM) of a liquid hydrogen (L H2) system that will be used for realtime fault isolation in a Fault Detection, Isolation and Recover (FDIR) system. The paper explains th e steps in the model development process and the data products required at each step, including examples of how the steps were performed fo r the LH2 system. It also shows the relationship between the FDIR req uirements and steps in the model development process. The paper concl udes with a description of a demonstration of the LH2 model developed using the process and future steps for integrating the model in a live operational environment.

  8. Sliding Mode Fault Tolerant Control with Adaptive Diagnosis for Aircraft Engines

    NASA Astrophysics Data System (ADS)

    Xiao, Lingfei; Du, Yanbin; Hu, Jixiang; Jiang, Bin

    2018-03-01

    In this paper, a novel sliding mode fault tolerant control method is presented for aircraft engine systems with uncertainties and disturbances on the basis of adaptive diagnostic observer. By taking both sensors faults and actuators faults into account, the general model of aircraft engine control systems which is subjected to uncertainties and disturbances, is considered. Then, the corresponding augmented dynamic model is established in order to facilitate the fault diagnosis and fault tolerant controller design. Next, a suitable detection observer is designed to detect the faults effectively. Through creating an adaptive diagnostic observer and based on sliding mode strategy, the sliding mode fault tolerant controller is constructed. Robust stabilization is discussed and the closed-loop system can be stabilized robustly. It is also proven that the adaptive diagnostic observer output errors and the estimations of faults converge to a set exponentially, and the converge rate greater than some value which can be adjusted by choosing designable parameters properly. The simulation on a twin-shaft aircraft engine verifies the applicability of the proposed fault tolerant control method.

  9. Fast and accurate spectral estimation for online detection of partial broken bar in induction motors

    NASA Astrophysics Data System (ADS)

    Samanta, Anik Kumar; Naha, Arunava; Routray, Aurobinda; Deb, Alok Kanti

    2018-01-01

    In this paper, an online and real-time system is presented for detecting partial broken rotor bar (BRB) of inverter-fed squirrel cage induction motors under light load condition. This system with minor modifications can detect any fault that affects the stator current. A fast and accurate spectral estimator based on the theory of Rayleigh quotient is proposed for detecting the spectral signature of BRB. The proposed spectral estimator can precisely determine the relative amplitude of fault sidebands and has low complexity compared to available high-resolution subspace-based spectral estimators. Detection of low-amplitude fault components has been improved by removing the high-amplitude fundamental frequency using an extended-Kalman based signal conditioner. Slip is estimated from the stator current spectrum for accurate localization of the fault component. Complexity and cost of sensors are minimal as only a single-phase stator current is required. The hardware implementation has been carried out on an Intel i7 based embedded target ported through the Simulink Real-Time. Evaluation of threshold and detectability of faults with different conditions of load and fault severity are carried out with empirical cumulative distribution function.

  10. Real-Time Diagnosis of Faults Using a Bank of Kalman Filters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2006-01-01

    A new robust method of automated real-time diagnosis of faults in an aircraft engine or a similar complex system involves the use of a bank of Kalman filters. In order to be highly reliable, a diagnostic system must be designed to account for the numerous failure conditions that an aircraft engine may encounter in operation. The method achieves this objective though the utilization of multiple Kalman filters, each of which is uniquely designed based on a specific failure hypothesis. A fault-detection-and-isolation (FDI) system, developed based on this method, is able to isolate faults in sensors and actuators while detecting component faults (abrupt degradation in engine component performance). By affording a capability for real-time identification of minor faults before they grow into major ones, the method promises to enhance safety and reduce operating costs. The robustness of this method is further enhanced by incorporating information regarding the aging condition of an engine. In general, real-time fault diagnostic methods use the nominal performance of a "healthy" new engine as a reference condition in the diagnostic process. Such an approach does not account for gradual changes in performance associated with aging of an otherwise healthy engine. By incorporating information on gradual, aging-related changes, the new method makes it possible to retain at least some of the sensitivity and accuracy needed to detect incipient faults while preventing false alarms that could result from erroneous interpretation of symptoms of aging as symptoms of failures. The figure schematically depicts an FDI system according to the new method. The FDI system is integrated with an engine, from which it accepts two sets of input signals: sensor readings and actuator commands. Two main parts of the FDI system are a bank of Kalman filters and a subsystem that implements FDI decision rules. Each Kalman filter is designed to detect a specific sensor or actuator fault. When a sensor or actuator fault occurs, large estimation errors are generated by all filters except the one using the correct hypothesis. By monitoring the residual output of each filter, the specific fault that has occurred can be detected and isolated on the basis of the decision rules. A set of parameters that indicate the performance of the engine components is estimated by the "correct" Kalman filter for use in detecting component faults. To reduce the loss of diagnostic accuracy and sensitivity in the face of aging, the FDI system accepts information from a steady-state-condition-monitoring system. This information is used to update the Kalman filters and a data bank of trim values representative of the current aging condition.

  11. Experimental Fault Diagnosis in Systems Containing Finite Elements of Plate of Kirchoff by Using State Observers Methodology

    NASA Astrophysics Data System (ADS)

    Alegre, D. M.; Koroishi, E. H.; Melo, G. P.

    2015-07-01

    This paper presents a methodology for detection and localization of faults by using state observers. State Observers can rebuild the states not measured or values from points of difficult access in the system. So faults can be detected in these points without the knowledge of its measures, and can be track by the reconstructions of their states. In this paper this methodology will be applied in a system which represents a simplified model of a vehicle. In this model the chassis of the car was represented by a flat plate, which was divided in finite elements of plate (plate of Kirchoff), in addition, was considered the car suspension (springs and dampers). A test rig was built and the developed methodology was used to detect and locate faults on this system. In analyses done, the idea is to use a system with a specific fault, and then use the state observers to locate it, checking on a quantitative variation of the parameter of the system which caused this crash. For the computational simulations the software MATLAB was used.

  12. An Intelligent Harmonic Synthesis Technique for Air-Gap Eccentricity Fault Diagnosis in Induction Motors

    NASA Astrophysics Data System (ADS)

    Li, De Z.; Wang, Wilson; Ismail, Fathy

    2017-11-01

    Induction motors (IMs) are commonly used in various industrial applications. To improve energy consumption efficiency, a reliable IM health condition monitoring system is very useful to detect IM fault at its earliest stage to prevent operation degradation, and malfunction of IMs. An intelligent harmonic synthesis technique is proposed in this work to conduct incipient air-gap eccentricity fault detection in IMs. The fault harmonic series are synthesized to enhance fault features. Fault related local spectra are processed to derive fault indicators for IM air-gap eccentricity diagnosis. The effectiveness of the proposed harmonic synthesis technique is examined experimentally by IMs with static air-gap eccentricity and dynamic air-gap eccentricity states under different load conditions. Test results show that the developed harmonic synthesis technique can extract fault features effectively for initial IM air-gap eccentricity fault detection.

  13. Built-in-test by signature inspection (bitsi)

    DOEpatents

    Bergeson, Gary C.; Morneau, Richard A.

    1991-01-01

    A system and method for fault detection for electronic circuits. A stimulus generator sends a signal to the input of the circuit under test. Signature inspection logic compares the resultant signal from test nodes on the circuit to an expected signal. If the signals do not match, the signature inspection logic sends a signal to the control logic for indication of fault detection in the circuit. A data input multiplexer between the test nodes of the circuit under test and the signature inspection logic can provide for identification of the specific node at fault by the signature inspection logic. Control logic responsive to the signature inspection logic conveys information about fault detection for use in determining the condition of the circuit. When used in conjunction with a system test controller, the built-in test by signature inspection system and method can be used to poll a plurality of circuits automatically and continuous for faults and record the results of such polling in the system test controller.

  14. Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter.

    PubMed

    Yang, Chun; Mohammadi, Arash; Chen, Qing-Wei

    2016-11-02

    Motivated by the key importance of multi-sensor information fusion algorithms in the state-of-the-art integrated navigation systems due to recent advancements in sensor technologies, telecommunication, and navigation systems, the paper proposes an improved and innovative fault-tolerant fusion framework. An integrated navigation system is considered consisting of four sensory sub-systems, i.e., Strap-down Inertial Navigation System (SINS), Global Navigation System (GPS), the Bei-Dou2 (BD2) and Celestial Navigation System (CNS) navigation sensors. In such multi-sensor applications, on the one hand, the design of an efficient fusion methodology is extremely constrained specially when no information regarding the system's error characteristics is available. On the other hand, the development of an accurate fault detection and integrity monitoring solution is both challenging and critical. The paper addresses the sensitivity issues of conventional fault detection solutions and the unavailability of a precisely known system model by jointly designing fault detection and information fusion algorithms. In particular, by using ideas from Interacting Multiple Model (IMM) filters, the uncertainty of the system will be adjusted adaptively by model probabilities and using the proposed fuzzy-based fusion framework. The paper also addresses the problem of using corrupted measurements for fault detection purposes by designing a two state propagator chi-square test jointly with the fusion algorithm. Two IMM predictors, running in parallel, are used and alternatively reactivated based on the received information form the fusion filter to increase the reliability and accuracy of the proposed detection solution. With the combination of the IMM and the proposed fusion method, we increase the failure sensitivity of the detection system and, thereby, significantly increase the overall reliability and accuracy of the integrated navigation system. Simulation results indicate that the proposed fault tolerant fusion framework provides superior performance over its traditional counterparts.

  15. Robust Fault Detection Using Robust Z1 Estimation and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Curry, Tramone; Collins, Emmanuel G., Jr.; Selekwa, Majura; Guo, Ten-Huei (Technical Monitor)

    2001-01-01

    This research considers the application of robust Z(sub 1), estimation in conjunction with fuzzy logic to robust fault detection for an aircraft fight control system. It begins with the development of robust Z(sub 1) estimators based on multiplier theory and then develops a fixed threshold approach to fault detection (FD). It then considers the use of fuzzy logic for robust residual evaluation and FD. Due to modeling errors and unmeasurable disturbances, it is difficult to distinguish between the effects of an actual fault and those caused by uncertainty and disturbance. Hence, it is the aim of a robust FD system to be sensitive to faults while remaining insensitive to uncertainty and disturbances. While fixed thresholds only allow a decision on whether a fault has or has not occurred, it is more valuable to have the residual evaluation lead to a conclusion related to the degree of, or probability of, a fault. Fuzzy logic is a viable means of determining the degree of a fault and allows the introduction of human observations that may not be incorporated in the rigorous threshold theory. Hence, fuzzy logic can provide a more reliable and informative fault detection process. Using an aircraft flight control system, the results of FD using robust Z(sub 1) estimation with a fixed threshold are demonstrated. FD that combines robust Z(sub 1) estimation and fuzzy logic is also demonstrated. It is seen that combining the robust estimator with fuzzy logic proves to be advantageous in increasing the sensitivity to smaller faults while remaining insensitive to uncertainty and disturbances.

  16. Orion GN&C Fault Management System Verification: Scope And Methodology

    NASA Technical Reports Server (NTRS)

    Brown, Denise; Weiler, David; Flanary, Ronald

    2016-01-01

    In order to ensure long-term ability to meet mission goals and to provide for the safety of the public, ground personnel, and any crew members, nearly all spacecraft include a fault management (FM) system. For a manned vehicle such as Orion, the safety of the crew is of paramount importance. The goal of the Orion Guidance, Navigation and Control (GN&C) fault management system is to detect, isolate, and respond to faults before they can result in harm to the human crew or loss of the spacecraft. Verification of fault management/fault protection capability is challenging due to the large number of possible faults in a complex spacecraft, the inherent unpredictability of faults, the complexity of interactions among the various spacecraft components, and the inability to easily quantify human reactions to failure scenarios. The Orion GN&C Fault Detection, Isolation, and Recovery (FDIR) team has developed a methodology for bounding the scope of FM system verification while ensuring sufficient coverage of the failure space and providing high confidence that the fault management system meets all safety requirements. The methodology utilizes a swarm search algorithm to identify failure cases that can result in catastrophic loss of the crew or the vehicle and rare event sequential Monte Carlo to verify safety and FDIR performance requirements.

  17. Preliminary photovoltaic arc-fault prognostic tests using sacrificial fiber optic cabling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay Dean; Blemel, Kenneth D.; Peter, Francis

    2013-02-01

    Through the New Mexico Small Business Assistance Program, Sandia National Laboratories worked with Sentient Business Systems, Inc. to develop and test a novel photovoltaic (PV) arc-fault detection system. The system operates by pairing translucent polymeric fiber optic sensors with electrical circuitry so that any external abrasion to the system or internal heating causes the fiber optic connection to fail or detectably degrade. A periodic pulse of light is sent through the optical path using a transmitter-receiver pair. If the receiver does not detect the pulse, an alarm is sounded and the PV system can be de-energized. This technology has themore » unique ability to prognostically determine impending failures to the electrical system in two ways: (a) the optical connection is severed prior to physical abrasion or cutting of PV DC electrical conductors, and (b) the polymeric fiber optic cable melts via Joule heating before an arc-fault is established through corrosion. Three arc-faults were created in different configurations found in PV systems with the integrated fiber optic system to determine the feasibility of the technology. In each case, the fiber optic cable was broken and the system annunciated the fault.« less

  18. Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter

    PubMed Central

    Yang, Chun; Mohammadi, Arash; Chen, Qing-Wei

    2016-01-01

    Motivated by the key importance of multi-sensor information fusion algorithms in the state-of-the-art integrated navigation systems due to recent advancements in sensor technologies, telecommunication, and navigation systems, the paper proposes an improved and innovative fault-tolerant fusion framework. An integrated navigation system is considered consisting of four sensory sub-systems, i.e., Strap-down Inertial Navigation System (SINS), Global Navigation System (GPS), the Bei-Dou2 (BD2) and Celestial Navigation System (CNS) navigation sensors. In such multi-sensor applications, on the one hand, the design of an efficient fusion methodology is extremely constrained specially when no information regarding the system’s error characteristics is available. On the other hand, the development of an accurate fault detection and integrity monitoring solution is both challenging and critical. The paper addresses the sensitivity issues of conventional fault detection solutions and the unavailability of a precisely known system model by jointly designing fault detection and information fusion algorithms. In particular, by using ideas from Interacting Multiple Model (IMM) filters, the uncertainty of the system will be adjusted adaptively by model probabilities and using the proposed fuzzy-based fusion framework. The paper also addresses the problem of using corrupted measurements for fault detection purposes by designing a two state propagator chi-square test jointly with the fusion algorithm. Two IMM predictors, running in parallel, are used and alternatively reactivated based on the received information form the fusion filter to increase the reliability and accuracy of the proposed detection solution. With the combination of the IMM and the proposed fusion method, we increase the failure sensitivity of the detection system and, thereby, significantly increase the overall reliability and accuracy of the integrated navigation system. Simulation results indicate that the proposed fault tolerant fusion framework provides superior performance over its traditional counterparts. PMID:27827832

  19. Fault Management Metrics

    NASA Technical Reports Server (NTRS)

    Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig

    2017-01-01

    This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.

  20. Model-Based Diagnostics for Propellant Loading Systems

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Foygel, Michael; Smelyanskiy, Vadim N.

    2011-01-01

    The loading of spacecraft propellants is a complex, risky operation. Therefore, diagnostic solutions are necessary to quickly identify when a fault occurs, so that recovery actions can be taken or an abort procedure can be initiated. Model-based diagnosis solutions, established using an in-depth analysis and understanding of the underlying physical processes, offer the advanced capability to quickly detect and isolate faults, identify their severity, and predict their effects on system performance. We develop a physics-based model of a cryogenic propellant loading system, which describes the complex dynamics of liquid hydrogen filling from a storage tank to an external vehicle tank, as well as the influence of different faults on this process. The model takes into account the main physical processes such as highly nonequilibrium condensation and evaporation of the hydrogen vapor, pressurization, and also the dynamics of liquid hydrogen and vapor flows inside the system in the presence of helium gas. Since the model incorporates multiple faults in the system, it provides a suitable framework for model-based diagnostics and prognostics algorithms. Using this model, we analyze the effects of faults on the system, derive symbolic fault signatures for the purposes of fault isolation, and perform fault identification using a particle filter approach. We demonstrate the detection, isolation, and identification of a number of faults using simulation-based experiments.

  1. Enhanced Bank of Kalman Filters Developed and Demonstrated for In-Flight Aircraft Engine Sensor Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2005-01-01

    In-flight sensor fault detection and isolation (FDI) is critical to maintaining reliable engine operation during flight. The aircraft engine control system, which computes control commands on the basis of sensor measurements, operates the propulsion systems at the demanded conditions. Any undetected sensor faults, therefore, may cause the control system to drive the engine into an undesirable operating condition. It is critical to detect and isolate failed sensors as soon as possible so that such scenarios can be avoided. A challenging issue in developing reliable sensor FDI systems is to make them robust to changes in engine operating characteristics due to degradation with usage and other faults that can occur during flight. A sensor FDI system that cannot appropriately account for such scenarios may result in false alarms, missed detections, or misclassifications when such faults do occur. To address this issue, an enhanced bank of Kalman filters was developed, and its performance and robustness were demonstrated in a simulation environment. The bank of filters is composed of m + 1 Kalman filters, where m is the number of sensors being used by the control system and, thus, in need of monitoring. Each Kalman filter is designed on the basis of a unique fault hypothesis so that it will be able to maintain its performance if a particular fault scenario, hypothesized by that particular filter, takes place.

  2. Periodic Application of Concurrent Error Detection in Processor Array Architectures. PhD. Thesis -

    NASA Technical Reports Server (NTRS)

    Chen, Paul Peichuan

    1993-01-01

    Processor arrays can provide an attractive architecture for some applications. Featuring modularity, regular interconnection and high parallelism, such arrays are well-suited for VLSI/WSI implementations, and applications with high computational requirements, such as real-time signal processing. Preserving the integrity of results can be of paramount importance for certain applications. In these cases, fault tolerance should be used to ensure reliable delivery of a system's service. One aspect of fault tolerance is the detection of errors caused by faults. Concurrent error detection (CED) techniques offer the advantage that transient and intermittent faults may be detected with greater probability than with off-line diagnostic tests. Applying time-redundant CED techniques can reduce hardware redundancy costs. However, most time-redundant CED techniques degrade a system's performance.

  3. Failure detection and fault management techniques for flush airdata sensing systems

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.; Leondes, Cornelius T.

    1992-01-01

    Methods based on chi-squared analysis are presented for detecting system and individual-port failures in the high-angle-of-attack flush airdata sensing system on the NASA F-18 High Alpha Research Vehicle. The HI-FADS hardware is introduced, and the aerodynamic model describes measured pressure in terms of dynamic pressure, angle of attack, angle of sideslip, and static pressure. Chi-squared analysis is described in the presentation of the concept for failure detection and fault management which includes nominal, iteration, and fault-management modes. A matrix of pressure orifices arranged in concentric circles on the nose of the aircraft indicate the parameters which are applied to the regression algorithms. The sensing techniques are applied to the F-18 flight data, and two examples are given of the computed angle-of-attack time histories. The failure-detection and fault-management techniques permit the matrix to be multiply redundant, and the chi-squared analysis is shown to be useful in the detection of failures.

  4. A fault-tolerant control architecture for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Drozeski, Graham R.

    Research has presented several approaches to achieve varying degrees of fault-tolerance in unmanned aircraft. Approaches in reconfigurable flight control are generally divided into two categories: those which incorporate multiple non-adaptive controllers and switch between them based on the output of a fault detection and identification element, and those that employ a single adaptive controller capable of compensating for a variety of fault modes. Regardless of the approach for reconfigurable flight control, certain fault modes dictate system restructuring in order to prevent a catastrophic failure. System restructuring enables active control of actuation not employed by the nominal system to recover controllability of the aircraft. After system restructuring, continued operation requires the generation of flight paths that adhere to an altered flight envelope. The control architecture developed in this research employs a multi-tiered hierarchy to allow unmanned aircraft to generate and track safe flight paths despite the occurrence of potentially catastrophic faults. The hierarchical architecture increases the level of autonomy of the system by integrating five functionalities with the baseline system: fault detection and identification, active system restructuring, reconfigurable flight control; reconfigurable path planning, and mission adaptation. Fault detection and identification algorithms continually monitor aircraft performance and issue fault declarations. When the severity of a fault exceeds the capability of the baseline flight controller, active system restructuring expands the controllability of the aircraft using unconventional control strategies not exploited by the baseline controller. Each of the reconfigurable flight controllers and the baseline controller employ a proven adaptive neural network control strategy. A reconfigurable path planner employs an adaptive model of the vehicle to re-shape the desired flight path. Generation of the revised flight path is posed as a linear program constrained by the response of the degraded system. Finally, a mission adaptation component estimates limitations on the closed-loop performance of the aircraft and adjusts the aircraft mission accordingly. A combination of simulation and flight test results using two unmanned helicopters validates the utility of the hierarchical architecture.

  5. Model-based design and experimental verification of a monitoring concept for an active-active electromechanical aileron actuation system

    NASA Astrophysics Data System (ADS)

    Arriola, David; Thielecke, Frank

    2017-09-01

    Electromechanical actuators have become a key technology for the onset of power-by-wire flight control systems in the next generation of commercial aircraft. The design of robust control and monitoring functions for these devices capable to mitigate the effects of safety-critical faults is essential in order to achieve the required level of fault tolerance. A primary flight control system comprising two electromechanical actuators nominally operating in active-active mode is considered. A set of five signal-based monitoring functions are designed using a detailed model of the system under consideration which includes non-linear parasitic effects, measurement and data acquisition effects, and actuator faults. Robust detection thresholds are determined based on the analysis of parametric and input uncertainties. The designed monitoring functions are verified experimentally and by simulation through the injection of faults in the validated model and in a test-rig suited to the actuation system under consideration, respectively. They guarantee a robust and efficient fault detection and isolation with a low risk of false alarms, additionally enabling the correct reconfiguration of the system for an enhanced operational availability. In 98% of the performed experiments and simulations, the correct faults were detected and confirmed within the time objectives set.

  6. A Design of Finite Memory Residual Generation Filter for Sensor Fault Detection

    NASA Astrophysics Data System (ADS)

    Kim, Pyung Soo

    2017-04-01

    In the current paper, a residual generation filter with finite memory structure is proposed for sensor fault detection. The proposed finite memory residual generation filter provides the residual by real-time filtering of fault vector using only the most recent finite measurements and inputs on the window. It is shown that the residual given by the proposed residual generation filter provides the exact fault for noisefree systems. The proposed residual generation filter is specified to the digital filter structure for the amenability to hardware implementation. Finally, to illustrate the capability of the proposed residual generation filter, extensive simulations are performed for the discretized DC motor system with two types of sensor faults, incipient soft bias-type fault and abrupt bias-type fault. In particular, according to diverse noise levels and windows lengths, meaningful simulation results are given for the abrupt bias-type fault.

  7. Predeployment validation of fault-tolerant systems through software-implemented fault insertion

    NASA Technical Reports Server (NTRS)

    Czeck, Edward W.; Siewiorek, Daniel P.; Segall, Zary Z.

    1989-01-01

    Fault injection-based automated testing (FIAT) environment, which can be used to experimentally characterize and evaluate distributed realtime systems under fault-free and faulted conditions is described. A survey is presented of validation methodologies. The need for fault insertion based on validation methodologies is demonstrated. The origins and models of faults, and motivation for the FIAT concept are reviewed. FIAT employs a validation methodology which builds confidence in the system through first providing a baseline of fault-free performance data and then characterizing the behavior of the system with faults present. Fault insertion is accomplished through software and allows faults or the manifestation of faults to be inserted by either seeding faults into memory or triggering error detection mechanisms. FIAT is capable of emulating a variety of fault-tolerant strategies and architectures, can monitor system activity, and can automatically orchestrate experiments involving insertion of faults. There is a common system interface which allows ease of use to decrease experiment development and run time. Fault models chosen for experiments on FIAT have generated system responses which parallel those observed in real systems under faulty conditions. These capabilities are shown by two example experiments each using a different fault-tolerance strategy.

  8. Insulation detection of electric vehicle batteries

    NASA Astrophysics Data System (ADS)

    Dai, Qiqi; Zhu, Zhongwen; Huang, Denggao; Du, Mingxing; Wei, Kexin

    2018-06-01

    In this paper, an electric vehicle insulation detection method with single side switching fixed resistance is designed, and the hardware and software design of the system are given. The experiment proves that the insulation detection system can detect the insulation resistance in a wide range of resistance values, and accurately report the fault level. This system can effectively monitor the insulation fault between the car body and the high voltage line and avoid the passengers from being injured.

  9. Evaluating the performance of a fault detection and diagnostic system for vapor compression equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breuker, M.S.; Braun, J.E.

    This paper presents a detailed evaluation of the performance of a statistical, rule-based fault detection and diagnostic (FDD) technique presented by Rossi and Braun (1997). Steady-state and transient tests were performed on a simple rooftop air conditioner over a range of conditions and fault levels. The steady-state data without faults were used to train models that predict outputs for normal operation. The transient data with faults were used to evaluate FDD performance. The effect of a number of design variables on FDD sensitivity for different faults was evaluated and two prototype systems were specified for more complete evaluation. Good performancemore » was achieved in detecting and diagnosing five faults using only six temperatures (2 input and 4 output) and linear models. The performance improved by about a factor of two when ten measurements (three input and seven output) and higher order models were used. This approach for evaluating and optimizing the performance of the statistical, rule-based FDD technique could be used as a design and evaluation tool when applying this FDD method to other packaged air-conditioning systems. Furthermore, the approach could also be modified to evaluate the performance of other FDD methods.« less

  10. Hideen Markov Models and Neural Networks for Fault Detection in Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic

    1994-01-01

    None given. (From conclusion): Neural networks plus Hidden Markov Models(HMM)can provide excellene detection and false alarm rate performance in fault detection applications. Modified models allow for novelty detection. Also covers some key contributions of neural network model, and application status.

  11. Fault Detection and Severity Analysis of Servo Valves Using Recurrence Quantification Analysis

    DTIC Science & Technology

    2014-10-02

    Fault Detection and Severity Analysis of Servo Valves Using Recurrence Quantification Analysis M. Samadani1, C. A. Kitio Kwuimy2, and C. Nataraj3...diagnostics of nonlinear systems. A detailed nonlinear math- ematical model of a servo electro-hydraulic system has been used to demonstrate the procedure...Two faults have been considered associated with the servo valve including the in- creased friction between spool and sleeve and the degradation of the

  12. Combination of process and vibration data for improved condition monitoring of industrial systems working under variable operating conditions

    NASA Astrophysics Data System (ADS)

    Ruiz-Cárcel, C.; Jaramillo, V. H.; Mba, D.; Ottewill, J. R.; Cao, Y.

    2016-01-01

    The detection and diagnosis of faults in industrial processes is a very active field of research due to the reduction in maintenance costs achieved by the implementation of process monitoring algorithms such as Principal Component Analysis, Partial Least Squares or more recently Canonical Variate Analysis (CVA). Typically the condition of rotating machinery is monitored separately using vibration analysis or other specific techniques. Conventional vibration-based condition monitoring techniques are based on the tracking of key features observed in the measured signal. Typically steady-state loading conditions are required to ensure consistency between measurements. In this paper, a technique based on merging process and vibration data is proposed with the objective of improving the detection of mechanical faults in industrial systems working under variable operating conditions. The capabilities of CVA for detection and diagnosis of faults were tested using experimental data acquired from a compressor test rig where different process faults were introduced. Results suggest that the combination of process and vibration data can effectively improve the detectability of mechanical faults in systems working under variable operating conditions.

  13. A method based on multi-sensor data fusion for fault detection of planetary gearboxes.

    PubMed

    Lei, Yaguo; Lin, Jing; He, Zhengjia; Kong, Detong

    2012-01-01

    Studies on fault detection and diagnosis of planetary gearboxes are quite limited compared with those of fixed-axis gearboxes. Different from fixed-axis gearboxes, planetary gearboxes exhibit unique behaviors, which invalidate fault diagnosis methods that work well for fixed-axis gearboxes. It is a fact that for systems as complex as planetary gearboxes, multiple sensors mounted on different locations provide complementary information on the health condition of the systems. On this basis, a fault detection method based on multi-sensor data fusion is introduced in this paper. In this method, two features developed for planetary gearboxes are used to characterize the gear health conditions, and an adaptive neuro-fuzzy inference system (ANFIS) is utilized to fuse all features from different sensors. In order to demonstrate the effectiveness of the proposed method, experiments are carried out on a planetary gearbox test rig, on which multiple accelerometers are mounted for data collection. The comparisons between the proposed method and the methods based on individual sensors show that the former achieves much higher accuracies in detecting planetary gearbox faults.

  14. Development of an accurate transmission line fault locator using the global positioning system satellites

    NASA Technical Reports Server (NTRS)

    Lee, Harry

    1994-01-01

    A highly accurate transmission line fault locator based on the traveling-wave principle was developed and successfully operated within B.C. Hydro. A transmission line fault produces a fast-risetime traveling wave at the fault point which propagates along the transmission line. This fault locator system consists of traveling wave detectors located at key substations which detect and time tag the leading edge of the fault-generated traveling wave as if passes through. A master station gathers the time-tagged information from the remote detectors and determines the location of the fault. Precise time is a key element to the success of this system. This fault locator system derives its timing from the Global Positioning System (GPS) satellites. System tests confirmed the accuracy of locating faults to within the design objective of +/-300 meters.

  15. Modeling, Detection, and Disambiguation of Sensor Faults for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Balaban, Edward; Saxena, Abhinav; Bansal, Prasun; Goebel, Kai F.; Curran, Simon

    2009-01-01

    Sensor faults continue to be a major hurdle for systems health management to reach its full potential. At the same time, few recorded instances of sensor faults exist. It is equally difficult to seed particular sensor faults. Therefore, research is underway to better understand the different fault modes seen in sensors and to model the faults. The fault models can then be used in simulated sensor fault scenarios to ensure that algorithms can distinguish between sensor faults and system faults. The paper illustrates the work with data collected from an electro-mechanical actuator in an aerospace setting, equipped with temperature, vibration, current, and position sensors. The most common sensor faults, such as bias, drift, scaling, and dropout were simulated and injected into the experimental data, with the goal of making these simulations as realistic as feasible. A neural network based classifier was then created and tested on both experimental data and the more challenging randomized data sequences. Additional studies were also conducted to determine sensitivity of detection and disambiguation efficacy to severity of fault conditions.

  16. Failure Detecting Method of Fault Current Limiter System with Rectifier

    NASA Astrophysics Data System (ADS)

    Tokuda, Noriaki; Matsubara, Yoshio; Asano, Masakuni; Ohkuma, Takeshi; Sato, Yoshibumi; Takahashi, Yoshihisa

    A fault current limiter (FCL) is extensively needed to suppress fault current, particularly required for trunk power systems connecting high-voltage transmission lines, such as 500kV class power system which constitutes the nucleus of the electric power system. We proposed a new type FCL system (rectifier type FCL), consisting of solid-state diodes, DC reactor and bypass AC reactor, and demonstrated the excellent performances of this FCL by developing the small 6.6kV and 66kV model. It is important to detect the failure of power devices used in the rectifier under the normal operating condition, for keeping the excellent reliability of the power system. In this paper, we have proposed a new failure detecting method of power devices most suitable for the rectifier type FCL. This failure detecting system is simple and compact. We have adapted the proposed system to the 66kV prototype single-phase model and successfully demonstrated to detect the failure of power devices.

  17. System and method of detecting cavitation in pumps

    DOEpatents

    Lu, Bin; Sharma, Santosh Kumar; Yan, Ting; Dimino, Steven A.

    2017-10-03

    A system and method for detecting cavitation in pumps for fixed and variable supply frequency applications is disclosed. The system includes a controller having a processor programmed to repeatedly receive real-time operating current data from a motor driving a pump, generate a current frequency spectrum from the current data, and analyze current data within a pair of signature frequency bands of the current frequency spectrum. The processor is further programmed to repeatedly determine fault signatures as a function of the current data within the pair of signature frequency bands, repeatedly determine fault indices based on the fault signatures and a dynamic reference signature, compare the fault indices to a reference index, and identify a cavitation condition in a pump based on a comparison between the reference index and a current fault index.

  18. Fault detection and classification in electrical power transmission system using artificial neural network.

    PubMed

    Jamil, Majid; Sharma, Sanjeev Kumar; Singh, Rajveer

    2015-01-01

    This paper focuses on the detection and classification of the faults on electrical power transmission line using artificial neural networks. The three phase currents and voltages of one end are taken as inputs in the proposed scheme. The feed forward neural network along with back propagation algorithm has been employed for detection and classification of the fault for analysis of each of the three phases involved in the process. A detailed analysis with varying number of hidden layers has been performed to validate the choice of the neural network. The simulation results concluded that the present method based on the neural network is efficient in detecting and classifying the faults on transmission lines with satisfactory performances. The different faults are simulated with different parameters to check the versatility of the method. The proposed method can be extended to the Distribution network of the Power System. The various simulations and analysis of signals is done in the MATLAB(®) environment.

  19. 76 FR 58424 - Transmission Relay Loadability Reliability Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... Protection Systems 2. Protective relays are devices that detect and initiate the removal of faults [[Page... protective relay detects a fault on an element of the system under its protection, it sends a signal to an... distribution providers to set load-responsive phase protection relays according to specific criteria to ensure...

  20. Dynamic Fault Detection Chassis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mize, Jeffery J

    2007-01-01

    Abstract The high frequency switching megawatt-class High Voltage Converter Modulator (HVCM) developed by Los Alamos National Laboratory for the Oak Ridge National Laboratory's Spallation Neutron Source (SNS) is now in operation. One of the major problems with the modulator systems is shoot-thru conditions that can occur in a IGBTs H-bridge topology resulting in large fault currents and device failure in a few microseconds. The Dynamic Fault Detection Chassis (DFDC) is a fault monitoring system; it monitors transformer flux saturation using a window comparator and dV/dt events on the cathode voltage caused by any abnormality such as capacitor breakdown, transformer primarymore » turns shorts, or dielectric breakdown between the transformer primary and secondary. If faults are detected, the DFDC will inhibit the IGBT gate drives and shut the system down, significantly reducing the possibility of a shoot-thru condition or other equipment damaging events. In this paper, we will present system integration considerations, performance characteristics of the DFDC, and discuss its ability to significantly reduce costly down time for the entire facility.« less

  1. PLAT: An Automated Fault and Behavioural Anomaly Detection Tool for PLC Controlled Manufacturing Systems.

    PubMed

    Ghosh, Arup; Qin, Shiming; Lee, Jooyeoun; Wang, Gi-Nam

    2016-01-01

    Operational faults and behavioural anomalies associated with PLC control processes take place often in a manufacturing system. Real time identification of these operational faults and behavioural anomalies is necessary in the manufacturing industry. In this paper, we present an automated tool, called PLC Log-Data Analysis Tool (PLAT) that can detect them by using log-data records of the PLC signals. PLAT automatically creates a nominal model of the PLC control process and employs a novel hash table based indexing and searching scheme to satisfy those purposes. Our experiments show that PLAT is significantly fast, provides real time identification of operational faults and behavioural anomalies, and can execute within a small memory footprint. In addition, PLAT can easily handle a large manufacturing system with a reasonable computing configuration and can be installed in parallel to the data logging system to identify operational faults and behavioural anomalies effectively.

  2. PLAT: An Automated Fault and Behavioural Anomaly Detection Tool for PLC Controlled Manufacturing Systems

    PubMed Central

    Ghosh, Arup; Qin, Shiming; Lee, Jooyeoun

    2016-01-01

    Operational faults and behavioural anomalies associated with PLC control processes take place often in a manufacturing system. Real time identification of these operational faults and behavioural anomalies is necessary in the manufacturing industry. In this paper, we present an automated tool, called PLC Log-Data Analysis Tool (PLAT) that can detect them by using log-data records of the PLC signals. PLAT automatically creates a nominal model of the PLC control process and employs a novel hash table based indexing and searching scheme to satisfy those purposes. Our experiments show that PLAT is significantly fast, provides real time identification of operational faults and behavioural anomalies, and can execute within a small memory footprint. In addition, PLAT can easily handle a large manufacturing system with a reasonable computing configuration and can be installed in parallel to the data logging system to identify operational faults and behavioural anomalies effectively. PMID:27974882

  3. Fault detection for singular switched linear systems with multiple time-varying delay in finite frequency domain

    NASA Astrophysics Data System (ADS)

    Zhai, Ding; Lu, Anyang; Li, Jinghao; Zhang, Qingling

    2016-10-01

    This paper deals with the problem of the fault detection (FD) for continuous-time singular switched linear systems with multiple time-varying delay. In this paper, the actuator fault is considered. Besides, the systems faults and unknown disturbances are assumed in known frequency domains. Some finite frequency performance indices are initially introduced to design the switched FD filters which ensure that the filtering augmented systems under switching signal with average dwell time are exponentially admissible and guarantee the fault input sensitivity and disturbance robustness. By developing generalised Kalman-Yakubovic-Popov lemma and using Parseval's theorem and Fourier transform, finite frequency delay-dependent sufficient conditions for the existence of such a filter which can guarantee the finite-frequency H- and H∞ performance are derived and formulated in terms of linear matrix inequalities. Four examples are provided to illustrate the effectiveness of the proposed finite frequency method.

  4. Improved Statistical Fault Detection Technique and Application to Biological Phenomena Modeled by S-Systems.

    PubMed

    Mansouri, Majdi; Nounou, Mohamed N; Nounou, Hazem N

    2017-09-01

    In our previous work, we have demonstrated the effectiveness of the linear multiscale principal component analysis (PCA)-based moving window (MW)-generalized likelihood ratio test (GLRT) technique over the classical PCA and multiscale principal component analysis (MSPCA)-based GLRT methods. The developed fault detection algorithm provided optimal properties by maximizing the detection probability for a particular false alarm rate (FAR) with different values of windows, and however, most real systems are nonlinear, which make the linear PCA method not able to tackle the issue of non-linearity to a great extent. Thus, in this paper, first, we apply a nonlinear PCA to obtain an accurate principal component of a set of data and handle a wide range of nonlinearities using the kernel principal component analysis (KPCA) model. The KPCA is among the most popular nonlinear statistical methods. Second, we extend the MW-GLRT technique to one that utilizes exponential weights to residuals in the moving window (instead of equal weightage) as it might be able to further improve fault detection performance by reducing the FAR using exponentially weighed moving average (EWMA). The developed detection method, which is called EWMA-GLRT, provides improved properties, such as smaller missed detection and FARs and smaller average run length. The idea behind the developed EWMA-GLRT is to compute a new GLRT statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data. This provides a more accurate estimation of the GLRT statistic and provides a stronger memory that will enable better decision making with respect to fault detection. Therefore, in this paper, a KPCA-based EWMA-GLRT method is developed and utilized in practice to improve fault detection in biological phenomena modeled by S-systems and to enhance monitoring process mean. The idea behind a KPCA-based EWMA-GLRT fault detection algorithm is to combine the advantages brought forward by the proposed EWMA-GLRT fault detection chart with the KPCA model. Thus, it is used to enhance fault detection of the Cad System in E. coli model through monitoring some of the key variables involved in this model such as enzymes, transport proteins, regulatory proteins, lysine, and cadaverine. The results demonstrate the effectiveness of the proposed KPCA-based EWMA-GLRT method over Q , GLRT, EWMA, Shewhart, and moving window-GLRT methods. The detection performance is assessed and evaluated in terms of FAR, missed detection rates, and average run length (ARL 1 ) values.

  5. Advanced diagnostic system for piston slap faults in IC engines, based on the non-stationary characteristics of the vibration signals

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Randall, Robert Bond; Peeters, Bart

    2016-06-01

    Artificial Neural Networks (ANNs) have the potential to solve the problem of automated diagnostics of piston slap faults, but the critical issue for the successful application of ANN is the training of the network by a large amount of data in various engine conditions (different speed/load conditions in normal condition, and with different locations/levels of faults). On the other hand, the latest simulation technology provides a useful alternative in that the effect of clearance changes may readily be explored without recourse to cutting metal, in order to create enough training data for the ANNs. In this paper, based on some existing simplified models of piston slap, an advanced multi-body dynamic simulation software was used to simulate piston slap faults with different speeds/loads and clearance conditions. Meanwhile, the simulation models were validated and updated by a series of experiments. Three-stage network systems are proposed to diagnose piston faults: fault detection, fault localisation and fault severity identification. Multi Layer Perceptron (MLP) networks were used in the detection stage and severity/prognosis stage and a Probabilistic Neural Network (PNN) was used to identify which cylinder has faults. Finally, it was demonstrated that the networks trained purely on simulated data can efficiently detect piston slap faults in real tests and identify the location and severity of the faults as well.

  6. Fault Detection and Diagnosis of Railway Point Machines by Sound Analysis

    PubMed Central

    Lee, Jonguk; Choi, Heesu; Park, Daihee; Chung, Yongwha; Kim, Hee-Young; Yoon, Sukhan

    2016-01-01

    Railway point devices act as actuators that provide different routes to trains by driving switchblades from the current position to the opposite one. Point failure can significantly affect railway operations, with potentially disastrous consequences. Therefore, early detection of anomalies is critical for monitoring and managing the condition of rail infrastructure. We present a data mining solution that utilizes audio data to efficiently detect and diagnose faults in railway condition monitoring systems. The system enables extracting mel-frequency cepstrum coefficients (MFCCs) from audio data with reduced feature dimensions using attribute subset selection, and employs support vector machines (SVMs) for early detection and classification of anomalies. Experimental results show that the system enables cost-effective detection and diagnosis of faults using a cheap microphone, with accuracy exceeding 94.1% whether used alone or in combination with other known methods. PMID:27092509

  7. Detecting and isolating abrupt changes in linear switching systems

    NASA Astrophysics Data System (ADS)

    Nazari, Sohail; Zhao, Qing; Huang, Biao

    2015-04-01

    In this paper, a novel fault detection and isolation (FDI) method for switching linear systems is developed. All input and output signals are assumed to be corrupted with measurement noises. In the proposed method, a 'lifted' linear model named as stochastic hybrid decoupling polynomial (SHDP) is introduced. The SHDP model governs the dynamics of the switching linear system with all different modes, and is independent of the switching sequence. The error-in-variable (EIV) representation of SHDP is derived, and is used for the fault residual generation and isolation following the well-adopted local approach. The proposed FDI method can detect and isolate the fault-induced abrupt changes in switching models' parameters without estimating the switching modes. Furthermore, in this paper, the analytical expressions of the gradient vector and Hessian matrix are obtained based on the EIV SHDP formulation, so that they can be used to implement the online fault detection scheme. The performance of the proposed method is then illustrated by simulation examples.

  8. Fuzzy logic based on-line fault detection and classification in transmission line.

    PubMed

    Adhikari, Shuma; Sinha, Nidul; Dorendrajit, Thingam

    2016-01-01

    This study presents fuzzy logic based online fault detection and classification of transmission line using Programmable Automation and Control technology based National Instrument Compact Reconfigurable i/o (CRIO) devices. The LabVIEW software combined with CRIO can perform real time data acquisition of transmission line. When fault occurs in the system current waveforms are distorted due to transients and their pattern changes according to the type of fault in the system. The three phase alternating current, zero sequence and positive sequence current data generated by LabVIEW through CRIO-9067 are processed directly for relaying. The result shows that proposed technique is capable of right tripping action and classification of type of fault at high speed therefore can be employed in practical application.

  9. Surveillance system and method having an operating mode partitioned fault classification model

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L. (Inventor)

    2005-01-01

    A system and method which partitions a parameter estimation model, a fault detection model, and a fault classification model for a process surveillance scheme into two or more coordinated submodels together providing improved diagnostic decision making for at least one determined operating mode of an asset.

  10. Detection of faults and software reliability analysis

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1987-01-01

    Specific topics briefly addressed include: the consistent comparison problem in N-version system; analytic models of comparison testing; fault tolerance through data diversity; and the relationship between failures caused by automatically seeded faults.

  11. Fuzzy model-based fault detection and diagnosis for a pilot heat exchanger

    NASA Astrophysics Data System (ADS)

    Habbi, Hacene; Kidouche, Madjid; Kinnaert, Michel; Zelmat, Mimoun

    2011-04-01

    This article addresses the design and real-time implementation of a fuzzy model-based fault detection and diagnosis (FDD) system for a pilot co-current heat exchanger. The design method is based on a three-step procedure which involves the identification of data-driven fuzzy rule-based models, the design of a fuzzy residual generator and the evaluation of the residuals for fault diagnosis using statistical tests. The fuzzy FDD mechanism has been implemented and validated on the real co-current heat exchanger, and has been proven to be efficient in detecting and isolating process, sensor and actuator faults.

  12. Transient Faults in Computer Systems

    NASA Technical Reports Server (NTRS)

    Masson, Gerald M.

    1993-01-01

    A powerful technique particularly appropriate for the detection of errors caused by transient faults in computer systems was developed. The technique can be implemented in either software or hardware; the research conducted thus far primarily considered software implementations. The error detection technique developed has the distinct advantage of having provably complete coverage of all errors caused by transient faults that affect the output produced by the execution of a program. In other words, the technique does not have to be tuned to a particular error model to enhance error coverage. Also, the correctness of the technique can be formally verified. The technique uses time and software redundancy. The foundation for an effective, low-overhead, software-based certification trail approach to real-time error detection resulting from transient fault phenomena was developed.

  13. Experience of automation failures in training: effects on trust, automation bias, complacency and performance.

    PubMed

    Sauer, Juergen; Chavaillaz, Alain; Wastell, David

    2016-06-01

    This work examined the effects of operators' exposure to various types of automation failures in training. Forty-five participants were trained for 3.5 h on a simulated process control environment. During training, participants either experienced a fully reliable, automatic fault repair facility (i.e. faults detected and correctly diagnosed), a misdiagnosis-prone one (i.e. faults detected but not correctly diagnosed) or a miss-prone one (i.e. faults not detected). One week after training, participants were tested for 3 h, experiencing two types of automation failures (misdiagnosis, miss). The results showed that automation bias was very high when operators trained on miss-prone automation encountered a failure of the diagnostic system. Operator errors resulting from automation bias were much higher when automation misdiagnosed a fault than when it missed one. Differences in trust levels that were instilled by the different training experiences disappeared during the testing session. Practitioner Summary: The experience of automation failures during training has some consequences. A greater potential for operator errors may be expected when an automatic system failed to diagnose a fault than when it failed to detect one.

  14. Coordinated Fault-Tolerance for High-Performance Computing Final Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Dhabaleswar Kumar; Beckman, Pete

    2011-07-28

    With the Coordinated Infrastructure for Fault Tolerance Systems (CIFTS, as the original project came to be called) project, our aim has been to understand and tackle the following broad research questions, the answers to which will help the HEC community analyze and shape the direction of research in the field of fault tolerance and resiliency on future high-end leadership systems. Will availability of global fault information, obtained by fault information exchange between the different HEC software on a system, allow individual system software to better detect, diagnose, and adaptively respond to faults? If fault-awareness is raised throughout the system throughmore » fault information exchange, is it possible to get all system software working together to provide a more comprehensive end-to-end fault management on the system? What are the missing fault-tolerance features that widely used HEC system software lacks today that would inhibit such software from taking advantage of systemwide global fault information? What are the practical limitations of a systemwide approach for end-to-end fault management based on fault awareness and coordination? What mechanisms, tools, and technologies are needed to bring about fault awareness and coordination of responses on a leadership-class system? What standards, outreach, and community interaction are needed for adoption of the concept of fault awareness and coordination for fault management on future systems? Keeping our overall objectives in mind, the CIFTS team has taken a parallel fourfold approach. Our central goal was to design and implement a light-weight, scalable infrastructure with a simple, standardized interface to allow communication of fault-related information through the system and facilitate coordinated responses. This work led to the development of the Fault Tolerance Backplane (FTB) publish-subscribe API specification, together with a reference implementation and several experimental implementations on top of existing publish-subscribe tools. We enhanced the intrinsic fault tolerance capabilities representative implementations of a variety of key HPC software subsystems and integrated them with the FTB. Targeting software subsystems included: MPI communication libraries, checkpoint/restart libraries, resource managers and job schedulers, and system monitoring tools. Leveraging the aforementioned infrastructure, as well as developing and utilizing additional tools, we have examined issues associated with expanded, end-to-end fault response from both system and application viewpoints. From the standpoint of system operations, we have investigated log and root cause analysis, anomaly detection and fault prediction, and generalized notification mechanisms. Our applications work has included libraries for fault-tolerance linear algebra, application frameworks for coupled multiphysics applications, and external frameworks to support the monitoring and response for general applications. Our final goal was to engage the high-end computing community to increase awareness of tools and issues around coordinated end-to-end fault management.« less

  15. Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, G. H.; Smith, K.; Ireland, J.

    2012-07-15

    A fault leading to a thermal runaway in a lithium-ion battery is believed to grow over time from a latent defect. Significant efforts have been made to detect lithium-ion battery safety faults to proactively facilitate actions minimizing subsequent losses. Scaling up a battery greatly changes the thermal and electrical signals of a system developing a defect and its consequent behaviors during fault evolution. In a large-capacity system such as a battery for an electric vehicle, detecting a fault signal and confining the fault locally in the system are extremely challenging. This paper introduces a fail-safe design methodology for large-capacity lithium-ionmore » battery systems. Analysis using an internal short circuit response model for multi-cell packs is presented that demonstrates the viability of the proposed concept for various design parameters and operating conditions. Locating a faulty cell in a multiple-cell module and determining the status of the fault's evolution can be achieved using signals easily measured from the electric terminals of the module. A methodology is introduced for electrical isolation of a faulty cell from the healthy cells in a system to prevent further electrical energy feed into the fault. Experimental demonstration is presented supporting the model results.« less

  16. Detection of faults and software reliability analysis

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1986-01-01

    Multiversion or N-version programming was proposed as a method of providing fault tolerance in software. The approach requires the separate, independent preparation of multiple versions of a piece of software for some application. Specific topics addressed are: failure probabilities in N-version systems, consistent comparison in N-version systems, descriptions of the faults found in the Knight and Leveson experiment, analytic models of comparison testing, characteristics of the input regions that trigger faults, fault tolerance through data diversity, and the relationship between failures caused by automatically seeded faults.

  17. Operations management system advanced automation: Fault detection isolation and recovery prototyping

    NASA Technical Reports Server (NTRS)

    Hanson, Matt

    1990-01-01

    The purpose of this project is to address the global fault detection, isolation and recovery (FDIR) requirements for Operation's Management System (OMS) automation within the Space Station Freedom program. This shall be accomplished by developing a selected FDIR prototype for the Space Station Freedom distributed processing systems. The prototype shall be based on advanced automation methodologies in addition to traditional software methods to meet the requirements for automation. A secondary objective is to expand the scope of the prototyping to encompass multiple aspects of station-wide fault management (SWFM) as discussed in OMS requirements documentation.

  18. The detection error of thermal test low-frequency cable based on M sequence correlation algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Dongliang; Ge, Zheyang; Tong, Xin; Du, Chunlin

    2018-04-01

    The problem of low accuracy and low efficiency of off-line detecting on thermal test low-frequency cable faults could be solved by designing a cable fault detection system, based on FPGA export M sequence code(Linear feedback shift register sequence) as pulse signal source. The design principle of SSTDR (Spread spectrum time-domain reflectometry) reflection method and hardware on-line monitoring setup figure is discussed in this paper. Testing data show that, this detection error increases with fault location of thermal test low-frequency cable.

  19. Health management and controls for earth to orbit propulsion systems

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.

    1992-01-01

    Fault detection and isolation for advanced rocket engine controllers are discussed focusing on advanced sensing systems and software which significantly improve component failure detection for engine safety and health management. Aerojet's Space Transportation Main Engine controller for the National Launch System is the state of the art in fault tolerant engine avionics. Health management systems provide high levels of automated fault coverage and significantly improve vehicle delivered reliability and lower preflight operations costs. Key technologies, including the sensor data validation algorithms and flight capable spectrometers, have been demonstrated in ground applications and are found to be suitable for bridging programs into flight applications.

  20. Gear-box fault detection using time-frequency based methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2015-01-01

    Gear-box fault monitoring and detection is important for optimization of power generation and availability of wind turbines. The current industrial approach is to use condition monitoring systems, which runs in parallel with the wind turbine control system, using expensive additional sensors. An alternative would be to use the existing measurements which are normally available for the wind turbine control system. The usage of these sensors instead would cut down the cost of the wind turbine by not using additional sensors. One of these available measurements is the generator speed, in which changes in the gear-box resonance frequency can be detected.more » Two different time-frequency based approaches are presented in this paper. One is a filter based approach and the other is based on a Karhunen-Loeve basis. Both of them detects the gear-box fault with an acceptable detection delay.« less

  1. Optimal Sensor Location Design for Reliable Fault Detection in Presence of False Alarms

    PubMed Central

    Yang, Fan; Xiao, Deyun; Shah, Sirish L.

    2009-01-01

    To improve fault detection reliability, sensor location should be designed according to an optimization criterion with constraints imposed by issues of detectability and identifiability. Reliability requires the minimization of undetectability and false alarm probability due to random factors on sensor readings, which is not only related with sensor readings but also affected by fault propagation. This paper introduces the reliability criteria expression based on the missed/false alarm probability of each sensor and system topology or connectivity derived from the directed graph. The algorithm for the optimization problem is presented as a heuristic procedure. Finally, a boiler system is illustrated using the proposed method. PMID:22291524

  2. Fault Management Technology Maturation for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Waterman, Robert D.

    2010-01-01

    This slide presentation reviews the maturation of fault management technology in preparation for the Constellation Program. There is a review of the Space Shuttle Main Engine (SSME) and a discussion of a couple of incidents with the shuttle main engine and tanking that indicated the necessity for predictive maintenance. Included is a review of the planned Ares I-X Ground Diagnostic Prototype (GDP) and further information about detection and isolation of faults using Testability Engineering and Maintenance System (TEAMS). Another system that being readied for use that detects anomalies, the Inductive Monitoring System (IMS). The IMS automatically learns how the system behaves and alerts operations it the current behavior is anomalous. The comparison of STS-83 and STS-107 (i.e., the Columbia accident) is shown as an example of the anomaly detection capabilities.

  3. Detection and diagnosis of bearing and cutting tool faults using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Boutros, Tony; Liang, Ming

    2011-08-01

    Over the last few decades, the research for new fault detection and diagnosis techniques in machining processes and rotating machinery has attracted increasing interest worldwide. This development was mainly stimulated by the rapid advance in industrial technologies and the increase in complexity of machining and machinery systems. In this study, the discrete hidden Markov model (HMM) is applied to detect and diagnose mechanical faults. The technique is tested and validated successfully using two scenarios: tool wear/fracture and bearing faults. In the first case the model correctly detected the state of the tool (i.e., sharp, worn, or broken) whereas in the second application, the model classified the severity of the fault seeded in two different engine bearings. The success rate obtained in our tests for fault severity classification was above 95%. In addition to the fault severity, a location index was developed to determine the fault location. This index has been applied to determine the location (inner race, ball, or outer race) of a bearing fault with an average success rate of 96%. The training time required to develop the HMMs was less than 5 s in both the monitoring cases.

  4. Study of fault tolerant software technology for dynamic systems

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Zacharias, G. L.

    1985-01-01

    The major aim of this study is to investigate the feasibility of using systems-based failure detection isolation and compensation (FDIC) techniques in building fault-tolerant software and extending them, whenever possible, to the domain of software fault tolerance. First, it is shown that systems-based FDIC methods can be extended to develop software error detection techniques by using system models for software modules. In particular, it is demonstrated that systems-based FDIC techniques can yield consistency checks that are easier to implement than acceptance tests based on software specifications. Next, it is shown that systems-based failure compensation techniques can be generalized to the domain of software fault tolerance in developing software error recovery procedures. Finally, the feasibility of using fault-tolerant software in flight software is investigated. In particular, possible system and version instabilities, and functional performance degradation that may occur in N-Version programming applications to flight software are illustrated. Finally, a comparative analysis of N-Version and recovery block techniques in the context of generic blocks in flight software is presented.

  5. Modeling the Fault Tolerant Capability of a Flight Control System: An Exercise in SCR Specification

    NASA Technical Reports Server (NTRS)

    Alexander, Chris; Cortellessa, Vittorio; DelGobbo, Diego; Mili, Ali; Napolitano, Marcello

    2000-01-01

    In life-critical and mission-critical applications, it is important to make provisions for a wide range of contingencies, by providing means for fault tolerance. In this paper, we discuss the specification of a flight control system that is fault tolerant with respect to sensor faults. Redundancy is provided by analytical relations that hold between sensor readings; depending on the conditions, this redundancy can be used to detect, identify and accommodate sensor faults.

  6. Mechatronics technology in predictive maintenance method

    NASA Astrophysics Data System (ADS)

    Majid, Nurul Afiqah A.; Muthalif, Asan G. A.

    2017-11-01

    This paper presents recent mechatronics technology that can help to implement predictive maintenance by combining intelligent and predictive maintenance instrument. Vibration Fault Simulation System (VFSS) is an example of mechatronics system. The focus of this study is the prediction on the use of critical machines to detect vibration. Vibration measurement is often used as the key indicator of the state of the machine. This paper shows the choice of the appropriate strategy in the vibration of diagnostic process of the mechanical system, especially rotating machines, in recognition of the failure during the working process. In this paper, the vibration signature analysis is implemented to detect faults in rotary machining that includes imbalance, mechanical looseness, bent shaft, misalignment, missing blade bearing fault, balancing mass and critical speed. In order to perform vibration signature analysis for rotating machinery faults, studies have been made on how mechatronics technology is used as predictive maintenance methods. Vibration Faults Simulation Rig (VFSR) is designed to simulate and understand faults signatures. These techniques are based on the processing of vibrational data in frequency-domain. The LabVIEW-based spectrum analyzer software is developed to acquire and extract frequency contents of faults signals. This system is successfully tested based on the unique vibration fault signatures that always occur in a rotating machinery.

  7. Model-based diagnosis through Structural Analysis and Causal Computation for automotive Polymer Electrolyte Membrane Fuel Cell systems

    NASA Astrophysics Data System (ADS)

    Polverino, Pierpaolo; Frisk, Erik; Jung, Daniel; Krysander, Mattias; Pianese, Cesare

    2017-07-01

    The present paper proposes an advanced approach for Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems fault detection and isolation through a model-based diagnostic algorithm. The considered algorithm is developed upon a lumped parameter model simulating a whole PEMFC system oriented towards automotive applications. This model is inspired by other models available in the literature, with further attention to stack thermal dynamics and water management. The developed model is analysed by means of Structural Analysis, to identify the correlations among involved physical variables, defined equations and a set of faults which may occur in the system (related to both auxiliary components malfunctions and stack degradation phenomena). Residual generators are designed by means of Causal Computation analysis and the maximum theoretical fault isolability, achievable with a minimal number of installed sensors, is investigated. The achieved results proved the capability of the algorithm to theoretically detect and isolate almost all faults with the only use of stack voltage and temperature sensors, with significant advantages from an industrial point of view. The effective fault isolability is proved through fault simulations at a specific fault magnitude with an advanced residual evaluation technique, to consider quantitative residual deviations from normal conditions and achieve univocal fault isolation.

  8. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning.

    PubMed

    Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego

    2016-06-17

    Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults.

  9. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning

    PubMed Central

    Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego

    2016-01-01

    Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults. PMID:27322273

  10. Power System Transient Diagnostics Based on Novel Traveling Wave Detection

    NASA Astrophysics Data System (ADS)

    Hamidi, Reza Jalilzadeh

    Modern electrical power systems demand novel diagnostic approaches to enhancing the system resiliency by improving the state-of-the-art algorithms. The proliferation of high-voltage optical transducers and high time-resolution measurements provide opportunities to develop novel diagnostic methods of very fast transients in power systems. At the same time, emerging complex configuration, such as multi-terminal hybrid transmission systems, limits the applications of the traditional diagnostic methods, especially in fault location and health monitoring. The impedance-based fault-location methods are inefficient for cross-bounded cables, which are widely used for connection of offshore wind farms to the main grid. Thus, this dissertation first presents a novel traveling wave-based fault-location method for hybrid multi-terminal transmission systems. The proposed method utilizes time-synchronized high-sampling voltage measurements. The traveling wave arrival times (ATs) are detected by observation of the squares of wavelet transformation coefficients. Using the ATs, an over-determined set of linear equations are developed for noise reduction, and consequently, the faulty segment is determined based on the characteristics of the provided equation set. Then, the fault location is estimated. The accuracy and capabilities of the proposed fault location method are evaluated and also compared to the existing traveling-wave-based method for a wide range of fault parameters. In order to improve power systems stability, auto-reclosing (AR), single-phase auto-reclosing (SPAR), and adaptive single-phase auto-reclosing (ASPAR) methods have been developed with the final objectives of distinguishing between the transient and permanent faults to clear the transient faults without de-energization of the solid phases. However, the features of the electrical arcs (transient faults) are severely influenced by a number of random parameters, including the convection of the air and plasma, wind speed, air pressure, and humidity. Therefore, the dead-time (the de-energization duration of the faulty phase) is unpredictable. Accordingly, conservatively long dead-times are usually considered by protection engineers. However, if the exact arc distinction time is determined, the power system stability and quality will enhance. Therefore, a new method for detection of arc extinction times leading to a new ASPAR method utilizing power line carrier (PLC) signals is presented. The efficiency of the proposed ASPAR method is verified through simulations and compared with the existing ASPAR methods. High-sampling measurements are prone to be skewed by the environmental noises and analog-to-digital (A/D) converters quantization errors. Therefore noise-contaminated measurements are the major source of uncertainties and errors in the outcomes of traveling wave-based diagnostic applications. The existing AT-detection methods do not provide enough sensitivity and selectivity at the same time. Therefore, a new AT-detection method based on short-time matrix pencil (STMPM) is developed to accurately detect ATs of the traveling waves with low signal-to-noise (SNR) ratios. As STMPM is based on matrix algebra, it is a challenging to implement this new technique in microprocessor-based fault locators. Hence, a fully recursive and computationally efficient method based on adaptive discrete Kalman filter (ADKF) is introduced for AT-detection, which is proper for microprocessors and able to accomplish accurate AT-detection for online applications such as ultra-high-speed protection. Both proposed AT-detection methods are evaluated based on extensive simulation studies, and the superior outcomes are compared to the existing methods.

  11. Power plant fault detection using artificial neural network

    NASA Astrophysics Data System (ADS)

    Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Joini, Nur Fazriana; Hidzir, Hidzrin Dayana Mohd; Awira, Mohammad Zulfikar Khairul

    2018-02-01

    The fault that commonly occurs in power plants is due to various factors that affect the system outage. There are many types of faults in power plants such as single line to ground fault, double line to ground fault, and line to line fault. The primary aim of this paper is to diagnose the fault in 14 buses power plants by using an Artificial Neural Network (ANN). The Multilayered Perceptron Network (MLP) that detection trained utilized the offline training methods such as Gradient Descent Backpropagation (GDBP), Levenberg-Marquardt (LM), and Bayesian Regularization (BR). The best method is used to build the Graphical User Interface (GUI). The modelling of 14 buses power plant, network training, and GUI used the MATLAB software.

  12. Software Fault Tolerance: A Tutorial

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2000-01-01

    Because of our present inability to produce error-free software, software fault tolerance is and will continue to be an important consideration in software systems. The root cause of software design errors is the complexity of the systems. Compounding the problems in building correct software is the difficulty in assessing the correctness of software for highly complex systems. After a brief overview of the software development processes, we note how hard-to-detect design faults are likely to be introduced during development and how software faults tend to be state-dependent and activated by particular input sequences. Although component reliability is an important quality measure for system level analysis, software reliability is hard to characterize and the use of post-verification reliability estimates remains a controversial issue. For some applications software safety is more important than reliability, and fault tolerance techniques used in those applications are aimed at preventing catastrophes. Single version software fault tolerance techniques discussed include system structuring and closure, atomic actions, inline fault detection, exception handling, and others. Multiversion techniques are based on the assumption that software built differently should fail differently and thus, if one of the redundant versions fails, it is expected that at least one of the other versions will provide an acceptable output. Recovery blocks, N-version programming, and other multiversion techniques are reviewed.

  13. GTEX: An expert system for diagnosing faults in satellite ground stations

    NASA Technical Reports Server (NTRS)

    Schlegelmilch, Richard F.; Durkin, John; Petrik, Edward J.

    1991-01-01

    A proof of concept expert system called Ground Terminal Expert (GTEX) was developed at The University of Akron in collaboration with NASA Lewis Research Center. The objective of GTEX is to aid in diagnosing data faults occurring with a digital ground terminal. This strategy can also be applied to the Very Small Aperture Terminal (VSAT) technology. An expert system which detects and diagnoses faults would enhance the performance of the VSAT by improving reliability and reducing maintenance time. GTEX is capable of detecting faults, isolating the cause and recommending appropriate actions. Isolation of faults is completed to board-level modules. A graphical user interface provides control and a medium where data can be requested and cryptic information logically displayed. Interaction with GTEX consists of user responses and input from data files. The use of data files provides a method of simulating dynamic interaction between the digital ground terminal and the expert system. GTEX as described is capable of both improving reliability and reducing the time required for necessary maintenance.

  14. GTEX: An expert system for diagnosing faults in satellite ground stations

    NASA Astrophysics Data System (ADS)

    Schlegelmilch, Richard F.; Durkin, John; Petrik, Edward J.

    1991-11-01

    A proof of concept expert system called Ground Terminal Expert (GTEX) was developed at The University of Akron in collaboration with NASA Lewis Research Center. The objective of GTEX is to aid in diagnosing data faults occurring with a digital ground terminal. This strategy can also be applied to the Very Small Aperture Terminal (VSAT) technology. An expert system which detects and diagnoses faults would enhance the performance of the VSAT by improving reliability and reducing maintenance time. GTEX is capable of detecting faults, isolating the cause and recommending appropriate actions. Isolation of faults is completed to board-level modules. A graphical user interface provides control and a medium where data can be requested and cryptic information logically displayed. Interaction with GTEX consists of user responses and input from data files. The use of data files provides a method of simulating dynamic interaction between the digital ground terminal and the expert system. GTEX as described is capable of both improving reliability and reducing the time required for necessary maintenance.

  15. Sensor fault detection and recovery in satellite attitude control

    NASA Astrophysics Data System (ADS)

    Nasrolahi, Seiied Saeed; Abdollahi, Farzaneh

    2018-04-01

    This paper proposes an integrated sensor fault detection and recovery for the satellite attitude control system. By introducing a nonlinear observer, the healthy sensor measurements are provided. Considering attitude dynamics and kinematic, a novel observer is developed to detect the fault in angular rate as well as attitude sensors individually or simultaneously. There is no limit on type and configuration of attitude sensors. By designing a state feedback based control signal and Lyapunov stability criterion, the uniformly ultimately boundedness of tracking errors in the presence of sensor faults is guaranteed. Finally, simulation results are presented to illustrate the performance of the integrated scheme.

  16. An improved PCA method with application to boiler leak detection.

    PubMed

    Sun, Xi; Marquez, Horacio J; Chen, Tongwen; Riaz, Muhammad

    2005-07-01

    Principal component analysis (PCA) is a popular fault detection technique. It has been widely used in process industries, especially in the chemical industry. In industrial applications, achieving a sensitive system capable of detecting incipient faults, which maintains the false alarm rate to a minimum, is a crucial issue. Although a lot of research has been focused on these issues for PCA-based fault detection and diagnosis methods, sensitivity of the fault detection scheme versus false alarm rate continues to be an important issue. In this paper, an improved PCA method is proposed to address this problem. In this method, a new data preprocessing scheme and a new fault detection scheme designed for Hotelling's T2 as well as the squared prediction error are developed. A dynamic PCA model is also developed for boiler leak detection. This new method is applied to boiler water/steam leak detection with real data from Syncrude Canada's utility plant in Fort McMurray, Canada. Our results demonstrate that the proposed method can effectively reduce false alarm rate, provide effective and correct leak alarms, and give early warning to operators.

  17. An Indirect Adaptive Control Scheme in the Presence of Actuator and Sensor Failures

    NASA Technical Reports Server (NTRS)

    Sun, Joy Z.; Josh, Suresh M.

    2009-01-01

    The problem of controlling a system in the presence of unknown actuator and sensor faults is addressed. The system is assumed to have groups of actuators, and groups of sensors, with each group consisting of multiple redundant similar actuators or sensors. The types of actuator faults considered consist of unknown actuators stuck in unknown positions, as well as reduced actuator effectiveness. The sensor faults considered include unknown biases and outages. The approach employed for fault detection and estimation consists of a bank of Kalman filters based on multiple models, and subsequent control reconfiguration to mitigate the effect of biases caused by failed components as well as to obtain stability and satisfactory performance using the remaining actuators and sensors. Conditions for fault identifiability are presented, and the adaptive scheme is applied to an aircraft flight control example in the presence of actuator failures. Simulation results demonstrate that the method can rapidly and accurately detect faults and estimate the fault values, thus enabling safe operation and acceptable performance in spite of failures.

  18. Fault detection and accommodation testing on an F100 engine in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Baer-Riedhart, J. L.; Maxwell, M. D.

    1985-01-01

    The fault detection and accommodation (FDA) methodology for digital engine-control systems may range from simple comparisons of redundant parameters to the more complex and sophisticated observer models of the entire engine system. Evaluations of the various FDA schemes are done using analytical methods, simulation, and limited-altitude-facility testing. Flight testing of the FDA logic has been minimal because of the difficulty of inducing realistic faults in flight. A flight program was conducted to evaluate the fault detection and accommodation capability of a digital electronic engine control in an F-15 aircraft. The objective of the flight program was to induce selected faults and evaluate the resulting actions of the digital engine controller. Comparisons were made between the flight results and predictions. Several anomalies were found in flight and during the ground test. Simulation results showed that the inducement of dual pressure failures was not feasible since the FDA logic was not designed to accommodate these types of failures.

  19. BEAT: A Web-Based Boolean Expression Fault-Based Test Case Generation Tool

    ERIC Educational Resources Information Center

    Chen, T. Y.; Grant, D. D.; Lau, M. F.; Ng, S. P.; Vasa, V. R.

    2006-01-01

    BEAT is a Web-based system that generates fault-based test cases from Boolean expressions. It is based on the integration of our several fault-based test case selection strategies. The generated test cases are considered to be fault-based, because they are aiming at the detection of particular faults. For example, when the Boolean expression is in…

  20. Advanced information processing system: Fault injection study and results

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura F.; Masotto, Thomas K.; Lala, Jaynarayan H.

    1992-01-01

    The objective of the AIPS program is to achieve a validated fault tolerant distributed computer system. The goals of the AIPS fault injection study were: (1) to present the fault injection study components addressing the AIPS validation objective; (2) to obtain feedback for fault removal from the design implementation; (3) to obtain statistical data regarding fault detection, isolation, and reconfiguration responses; and (4) to obtain data regarding the effects of faults on system performance. The parameters are described that must be varied to create a comprehensive set of fault injection tests, the subset of test cases selected, the test case measurements, and the test case execution. Both pin level hardware faults using a hardware fault injector and software injected memory mutations were used to test the system. An overview is provided of the hardware fault injector and the associated software used to carry out the experiments. Detailed specifications are given of fault and test results for the I/O Network and the AIPS Fault Tolerant Processor, respectively. The results are summarized and conclusions are given.

  1. An Investigation of Network Enterprise Risk Management Techniques to Support Military Net-Centric Operations

    DTIC Science & Technology

    2009-09-01

    this information supports the decison - making process as it is applied to the management of risk. 2. Operational Risk Operational risk is the threat... reasonability . However, to make a software system fault tolerant, the system needs to recognize and fix a system state condition. To detect a fault, a fault...Tracking ..........................................51 C. DECISION- MAKING PROCESS................................................................51 1. Risk

  2. Fault tolerant operation of switched reluctance machine

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    The energy crisis and environmental challenges have driven industry towards more energy efficient solutions. With nearly 60% of electricity consumed by various electric machines in industry sector, advancement in the efficiency of the electric drive system is of vital importance. Adjustable speed drive system (ASDS) provides excellent speed regulation and dynamic performance as well as dramatically improved system efficiency compared with conventional motors without electronics drives. Industry has witnessed tremendous grow in ASDS applications not only as a driving force but also as an electric auxiliary system for replacing bulky and low efficiency auxiliary hydraulic and mechanical systems. With the vast penetration of ASDS, its fault tolerant operation capability is more widely recognized as an important feature of drive performance especially for aerospace, automotive applications and other industrial drive applications demanding high reliability. The Switched Reluctance Machine (SRM), a low cost, highly reliable electric machine with fault tolerant operation capability, has drawn substantial attention in the past three decades. Nevertheless, SRM is not free of fault. Certain faults such as converter faults, sensor faults, winding shorts, eccentricity and position sensor faults are commonly shared among all ASDS. In this dissertation, a thorough understanding of various faults and their influence on transient and steady state performance of SRM is developed via simulation and experimental study, providing necessary knowledge for fault detection and post fault management. Lumped parameter models are established for fast real time simulation and drive control. Based on the behavior of the faults, a fault detection scheme is developed for the purpose of fast and reliable fault diagnosis. In order to improve the SRM power and torque capacity under faults, the maximum torque per ampere excitation are conceptualized and validated through theoretical analysis and experiments. With the proposed optimal waveform, torque production is greatly improved under the same Root Mean Square (RMS) current constraint. Additionally, position sensorless operation methods under phase faults are investigated to account for the combination of physical position sensor and phase winding faults. A comprehensive solution for position sensorless operation under single and multiple phases fault are proposed and validated through experiments. Continuous position sensorless operation with seamless transition between various numbers of phase fault is achieved.

  3. Integral Sensor Fault Detection and Isolation for Railway Traction Drive.

    PubMed

    Garramiola, Fernando; Del Olmo, Jon; Poza, Javier; Madina, Patxi; Almandoz, Gaizka

    2018-05-13

    Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive.

  4. Integral Sensor Fault Detection and Isolation for Railway Traction Drive

    PubMed Central

    del Olmo, Jon; Poza, Javier; Madina, Patxi; Almandoz, Gaizka

    2018-01-01

    Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive. PMID:29757251

  5. On damage detection in wind turbine gearboxes using outlier analysis

    NASA Astrophysics Data System (ADS)

    Antoniadou, Ifigeneia; Manson, Graeme; Dervilis, Nikolaos; Staszewski, Wieslaw J.; Worden, Keith

    2012-04-01

    The proportion of worldwide installed wind power in power systems increases over the years as a result of the steadily growing interest in renewable energy sources. Still, the advantages offered by the use of wind power are overshadowed by the high operational and maintenance costs, resulting in the low competitiveness of wind power in the energy market. In order to reduce the costs of corrective maintenance, the application of condition monitoring to gearboxes becomes highly important, since gearboxes are among the wind turbine components with the most frequent failure observations. While condition monitoring of gearboxes in general is common practice, with various methods having been developed over the last few decades, wind turbine gearbox condition monitoring faces a major challenge: the detection of faults under the time-varying load conditions prevailing in wind turbine systems. Classical time and frequency domain methods fail to detect faults under variable load conditions, due to the temporary effect that these faults have on vibration signals. This paper uses the statistical discipline of outlier analysis for the damage detection of gearbox tooth faults. A simplified two-degree-of-freedom gearbox model considering nonlinear backlash, time-periodic mesh stiffness and static transmission error, simulates the vibration signals to be analysed. Local stiffness reduction is used for the simulation of tooth faults and statistical processes determine the existence of intermittencies. The lowest level of fault detection, the threshold value, is considered and the Mahalanobis squared-distance is calculated for the novelty detection problem.

  6. Fault detection and diagnosis in asymmetric multilevel inverter using artificial neural network

    NASA Astrophysics Data System (ADS)

    Raj, Nithin; Jagadanand, G.; George, Saly

    2018-04-01

    The increased component requirement to realise multilevel inverter (MLI) fallout in a higher fault prospect due to power semiconductors. In this scenario, efficient fault detection and diagnosis (FDD) strategies to detect and locate the power semiconductor faults have to be incorporated in addition to the conventional protection systems. Even though a number of FDD methods have been introduced in the symmetrical cascaded H-bridge (CHB) MLIs, very few methods address the FDD in asymmetric CHB-MLIs. In this paper, the gate-open circuit FDD strategy in asymmetric CHB-MLI is presented. Here, a single artificial neural network (ANN) is used to detect and diagnose the fault in both binary and trinary configurations of the asymmetric CHB-MLIs. In this method, features of the output voltage of the MLIs are used as to train the ANN for FDD method. The results prove the validity of the proposed method in detecting and locating the fault in both asymmetric MLI configurations. Finally, the ANN response to the input parameter variation is also analysed to access the performance of the proposed ANN-based FDD strategy.

  7. Sensor fault detection and isolation system for a condensation process.

    PubMed

    Castro, M A López; Escobar, R F; Torres, L; Aguilar, J F Gómez; Hernández, J A; Olivares-Peregrino, V H

    2016-11-01

    This article presents the design of a sensor Fault Detection and Isolation (FDI) system for a condensation process based on a nonlinear model. The condenser is modeled by dynamic and thermodynamic equations. For this work, the dynamic equations are described by three pairs of differential equations which represent the energy balance between the fluids. The thermodynamic equations consist in algebraic heat transfer equations and empirical equations, that allow for the estimation of heat transfer coefficients. The FDI system consists of a bank of two nonlinear high-gain observers, in order to detect, estimate and to isolate the fault in any of both outlet temperature sensors. The main contributions of this work were the experimental validation of the condenser nonlinear model and the FDI system. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Automatic Channel Fault Detection on a Small Animal APD-Based Digital PET Scanner

    NASA Astrophysics Data System (ADS)

    Charest, Jonathan; Beaudoin, Jean-François; Cadorette, Jules; Lecomte, Roger; Brunet, Charles-Antoine; Fontaine, Réjean

    2014-10-01

    Avalanche photodiode (APD) based positron emission tomography (PET) scanners show enhanced imaging capabilities in terms of spatial resolution and contrast due to the one to one coupling and size of individual crystal-APD detectors. However, to ensure the maximal performance, these PET scanners require proper calibration by qualified scanner operators, which can become a cumbersome task because of the huge number of channels they are made of. An intelligent system (IS) intends to alleviate this workload by enabling a diagnosis of the observational errors of the scanner. The IS can be broken down into four hierarchical blocks: parameter extraction, channel fault detection, prioritization and diagnosis. One of the main activities of the IS consists in analyzing available channel data such as: normalization coincidence counts and single count rates, crystal identification classification data, energy histograms, APD bias and noise thresholds to establish the channel health status that will be used to detect channel faults. This paper focuses on the first two blocks of the IS: parameter extraction and channel fault detection. The purpose of the parameter extraction block is to process available data on individual channels into parameters that are subsequently used by the fault detection block to generate the channel health status. To ensure extensibility, the channel fault detection block is divided into indicators representing different aspects of PET scanner performance: sensitivity, timing, crystal identification and energy. Some experiments on a 8 cm axial length LabPET scanner located at the Sherbrooke Molecular Imaging Center demonstrated an erroneous channel fault detection rate of 10% (with a 95% confidence interval (CI) of [9, 11]) which is considered tolerable. Globally, the IS achieves a channel fault detection efficiency of 96% (CI: [95, 97]), which proves that many faults can be detected automatically. Increased fault detection efficiency would be advantageous but, the achieved results would already benefit scanner operators in their maintenance task.

  9. Implementation of an experimental fault-tolerant memory system

    NASA Technical Reports Server (NTRS)

    Carter, W. C.; Mccarthy, C. E.

    1976-01-01

    The experimental fault-tolerant memory system described in this paper has been designed to enable the modular addition of spares, to validate the theoretical fault-secure and self-testing properties of the translator/corrector, to provide a basis for experiments using the new testing and correction processes for recovery, and to determine the practicality of such systems. The hardware design and implementation are described, together with methods of fault insertion. The hardware/software interface, including a restricted single error correction/double error detection (SEC/DED) code, is specified. Procedures are carefully described which, (1) test for specified physical faults, (2) ensure that single error corrections are not miscorrections due to triple faults, and (3) enable recovery from double errors.

  10. Hardware fault insertion and instrumentation system: Mechanization and validation

    NASA Technical Reports Server (NTRS)

    Benson, J. W.

    1987-01-01

    Automated test capability for extensive low-level hardware fault insertion testing is developed. The test capability is used to calibrate fault detection coverage and associated latency times as relevant to projecting overall system reliability. Described are modifications made to the NASA Ames Reconfigurable Flight Control System (RDFCS) Facility to fully automate the total test loop involving the Draper Laboratories' Fault Injector Unit. The automated capability provided included the application of sequences of simulated low-level hardware faults, the precise measurement of fault latency times, the identification of fault symptoms, and bulk storage of test case results. A PDP-11/60 served as a test coordinator, and a PDP-11/04 as an instrumentation device. The fault injector was controlled by applications test software in the PDP-11/60, rather than by manual commands from a terminal keyboard. The time base was especially developed for this application to use a variety of signal sources in the system simulator.

  11. Fault detection, isolation, and diagnosis of self-validating multifunctional sensors.

    PubMed

    Yang, Jing-Li; Chen, Yin-Sheng; Zhang, Li-Li; Sun, Zhen

    2016-06-01

    A novel fault detection, isolation, and diagnosis (FDID) strategy for self-validating multifunctional sensors is presented in this paper. The sparse non-negative matrix factorization-based method can effectively detect faults by using the squared prediction error (SPE) statistic, and the variables contribution plots based on SPE statistic can help to locate and isolate the faulty sensitive units. The complete ensemble empirical mode decomposition is employed to decompose the fault signals to a series of intrinsic mode functions (IMFs) and a residual. The sample entropy (SampEn)-weighted energy values of each IMFs and the residual are estimated to represent the characteristics of the fault signals. Multi-class support vector machine is introduced to identify the fault mode with the purpose of diagnosing status of the faulty sensitive units. The performance of the proposed strategy is compared with other fault detection strategies such as principal component analysis, independent component analysis, and fault diagnosis strategies such as empirical mode decomposition coupled with support vector machine. The proposed strategy is fully evaluated in a real self-validating multifunctional sensors experimental system, and the experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID research topic of self-validating multifunctional sensors.

  12. An Extension to the Kalman Filter for an Improved Detection of Unknown Behavior

    NASA Technical Reports Server (NTRS)

    Benazera, Emmanuel; Narasimhan, Sriram

    2005-01-01

    The use of Kalman filter (KF) interferes with fault detection algorithms based on the residual between estimated and measured variables, since the measured values are used to update the estimates. This feedback results in the estimates being pulled closer to the measured values, influencing the residuals in the process. Here we present a fault detection scheme for systems that are being tracked by a KF. Our approach combines an open-loop prediction over an adaptive window and an information-based measure of the deviation of the Kalman estimate from the prediction to improve fault detection.

  13. Thermal Expert System (TEXSYS): Systems autonomy demonstration project, volume 2. Results

    NASA Technical Reports Server (NTRS)

    Glass, B. J. (Editor)

    1992-01-01

    The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS testbed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.

  14. Thermal Expert System (TEXSYS): Systems automony demonstration project, volume 1. Overview

    NASA Technical Reports Server (NTRS)

    Glass, B. J. (Editor)

    1992-01-01

    The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS test bed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.

  15. Thermal Expert System (TEXSYS): Systems autonomy demonstration project, volume 2. Results

    NASA Astrophysics Data System (ADS)

    Glass, B. J.

    1992-10-01

    The Systems Autonomy Demonstration Project (SADP) produced a knowledge-based real-time control system for control and fault detection, isolation, and recovery (FDIR) of a prototype two-phase Space Station Freedom external active thermal control system (EATCS). The Thermal Expert System (TEXSYS) was demonstrated in recent tests to be capable of reliable fault anticipation and detection, as well as ordinary control of the thermal bus. Performance requirements were addressed by adopting a hierarchical symbolic control approach-layering model-based expert system software on a conventional, numerical data acquisition and control system. The model-based reasoning capabilities of TEXSYS were shown to be advantageous over typical rule-based expert systems, particularly for detection of unforeseen faults and sensor failures. Volume 1 gives a project overview and testing highlights. Volume 2 provides detail on the EATCS testbed, test operations, and online test results. Appendix A is a test archive, while Appendix B is a compendium of design and user manuals for the TEXSYS software.

  16. CPSGrader: Auto-Grading and Feedback Generation for Cyber-Physical Systems Education

    DTIC Science & Technology

    2014-12-21

    to refer to ⋃ C∈C+ Ω(C,Γ(p)) (and⋃ C∈C− Ω(C,Γ(p))). The rationale behind this choice of ρ is two-fold: 1. To increase coverage of fault detection ... fault mentioned in Section 2.3. The purpose of the test is to detect that at some time instant t0, the robot bumps into the obstacle, then turns about...sampling. 5.6 Investigating Unknown Faults Using Clustering CPSGrader works with a fixed pre-defined library of faults and associated test benches

  17. Development of Monitoring and Diagnostic Methods for Robots Used In Remediation of Waste Sites - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, M.

    2000-04-01

    This project is the first evaluation of model-based diagnostics to hydraulic robot systems. A greater understanding of fault detection for hydraulic robots has been gained, and a new theoretical fault detection model developed and evaluated.

  18. FINDS: A fault inferring nonlinear detection system programmers manual, version 3.0

    NASA Technical Reports Server (NTRS)

    Lancraft, R. E.

    1985-01-01

    Detailed software documentation of the digital computer program FINDS (Fault Inferring Nonlinear Detection System) Version 3.0 is provided. FINDS is a highly modular and extensible computer program designed to monitor and detect sensor failures, while at the same time providing reliable state estimates. In this version of the program the FINDS methodology is used to detect, isolate, and compensate for failures in simulated avionics sensors used by the Advanced Transport Operating Systems (ATOPS) Transport System Research Vehicle (TSRV) in a Microwave Landing System (MLS) environment. It is intended that this report serve as a programmers guide to aid in the maintenance, modification, and revision of the FINDS software.

  19. Failure detection and identification for a reconfigurable flight control system

    NASA Technical Reports Server (NTRS)

    Dallery, Francois

    1987-01-01

    Failure detection and identification logic for a fault-tolerant longitudinal control system were investigated. Aircraft dynamics were based upon the cruise condition for a hypothetical transonic business jet transport configuration. The fault-tolerant control system consists of conventional control and estimation plus a new outer loop containing failure detection, identification, and reconfiguration (FDIR) logic. It is assumed that the additional logic has access to all measurements, as well as to the outputs of the control and estimation logic. The pilot may also command the FDIR logic to perform special tests.

  20. Voltage Based Detection Method for High Impedance Fault in a Distribution System

    NASA Astrophysics Data System (ADS)

    Thomas, Mini Shaji; Bhaskar, Namrata; Prakash, Anupama

    2016-09-01

    High-impedance faults (HIFs) on distribution feeders cannot be detected by conventional protection schemes, as HIFs are characterized by their low fault current level and waveform distortion due to the nonlinearity of the ground return path. This paper proposes a method to identify the HIFs in distribution system and isolate the faulty section, to reduce downtime. This method is based on voltage measurements along the distribution feeder and utilizes the sequence components of the voltages. Three models of high impedance faults have been considered and source side and load side breaking of the conductor have been studied in this work to capture a wide range of scenarios. The effect of neutral grounding of the source side transformer is also accounted in this study. The results show that the algorithm detects the HIFs accurately and rapidly. Thus, the faulty section can be isolated and service can be restored to the rest of the consumers.

  1. An evaluation of a real-time fault diagnosis expert system for aircraft applications

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Abbott, Kathy H.; Palmer, Michael T.; Ricks, Wendell R.

    1987-01-01

    A fault monitoring and diagnosis expert system called Faultfinder was conceived and developed to detect and diagnose in-flight failures in an aircraft. Faultfinder is an automated intelligent aid whose purpose is to assist the flight crew in fault monitoring, fault diagnosis, and recovery planning. The present implementation of this concept performs monitoring and diagnosis for a generic aircraft's propulsion and hydraulic subsystems. This implementation is capable of detecting and diagnosing failures of known and unknown (i.e., unforseeable) type in a real-time environment. Faultfinder uses both rule-based and model-based reasoning strategies which operate on causal, temporal, and qualitative information. A preliminary evaluation is made of the diagnostic concepts implemented in Faultfinder. The evaluation used actual aircraft accident and incident cases which were simulated to assess the effectiveness of Faultfinder in detecting and diagnosing failures. Results of this evaluation, together with the description of the current Faultfinder implementation, are presented.

  2. Development and evaluation of a fault-tolerant multiprocessor (FTMP) computer. Volume 1: FTMP principles of operation

    NASA Technical Reports Server (NTRS)

    Smith, T. B., Jr.; Lala, J. H.

    1983-01-01

    The basic organization of the fault tolerant multiprocessor, (FTMP) is that of a general purpose homogeneous multiprocessor. Three processors operate on a shared system (memory and I/O) bus. Replication and tight synchronization of all elements and hardware voting is employed to detect and correct any single fault. Reconfiguration is then employed to repair a fault. Multiple faults may be tolerated as a sequence of single faults with repair between fault occurrences.

  3. FIESTA: An operational decision aid for space network fault isolation

    NASA Technical Reports Server (NTRS)

    Lowe, Dawn; Quillin, Bob; Matteson, Nadine; Wilkinson, Bill; Miksell, Steve

    1987-01-01

    The Fault Tolerance Expert System for Tracking and Data Relay Satellite System (TDRSS) Applications (FIESTA) is a fault detection and fault diagnosis expert system being developed as a decision aid to support operations in the Network Control Center (NCC) for NASA's Space Network. The operational objectives which influenced FIESTA development are presented and an overview of the architecture used to achieve these goals are provided. The approach to the knowledge engineering effort and the methodology employed are also presented and illustrated with examples drawn from the FIESTA domain.

  4. Fault-tolerant cooperative output regulation for multi-vehicle systems with sensor faults

    NASA Astrophysics Data System (ADS)

    Qin, Liguo; He, Xiao; Zhou, D. H.

    2017-10-01

    This paper presents a unified framework of fault diagnosis and fault-tolerant cooperative output regulation (FTCOR) for a linear discrete-time multi-vehicle system with sensor faults. The FTCOR control law is designed through three steps. A cooperative output regulation (COR) controller is designed based on the internal mode principle when there are no sensor faults. A sufficient condition on the existence of the COR controller is given based on the discrete-time algebraic Riccati equation (DARE). Then, a decentralised fault diagnosis scheme is designed to cope with sensor faults occurring in followers. A residual generator is developed to detect sensor faults of each follower, and a bank of fault-matching estimators are proposed to isolate and estimate sensor faults of each follower. Unlike the current distributed fault diagnosis for multi-vehicle systems, the presented decentralised fault diagnosis scheme in each vehicle reduces the communication and computation load by only using the information of the vehicle. By combing the sensor fault estimation and the COR control law, an FTCOR controller is proposed. Finally, the simulation results demonstrate the effectiveness of the FTCOR controller.

  5. ARGES: an Expert System for Fault Diagnosis Within Space-Based ECLS Systems

    NASA Technical Reports Server (NTRS)

    Pachura, David W.; Suleiman, Salem A.; Mendler, Andrew P.

    1988-01-01

    ARGES (Atmospheric Revitalization Group Expert System) is a demonstration prototype expert system for fault management for the Solid Amine, Water Desorbed (SAWD) CO2 removal assembly, associated with the Environmental Control and Life Support (ECLS) System. ARGES monitors and reduces data in real time from either the SAWD controller or a simulation of the SAWD assembly. It can detect gradual degradations or predict failures. This allows graceful shutdown and scheduled maintenance, which reduces crew maintenance overhead. Status and fault information is presented in a user interface that simulates what would be seen by a crewperson. The user interface employs animated color graphics and an object oriented approach to provide detailed status information, fault identification, and explanation of reasoning in a rapidly assimulated manner. In addition, ARGES recommends possible courses of action for predicted and actual faults. ARGES is seen as a forerunner of AI-based fault management systems for manned space systems.

  6. Efficient fault diagnosis of helicopter gearboxes

    NASA Technical Reports Server (NTRS)

    Chin, H.; Danai, K.; Lewicki, D. G.

    1993-01-01

    Application of a diagnostic system to a helicopter gearbox is presented. The diagnostic system is a nonparametric pattern classifier that uses a multi-valued influence matrix (MVIM) as its diagnostic model and benefits from a fast learning algorithm that enables it to estimate its diagnostic model from a small number of measurement-fault data. To test this diagnostic system, vibration measurements were collected from a helicopter gearbox test stand during accelerated fatigue tests and at various fault instances. The diagnostic results indicate that the MVIM system can accurately detect and diagnose various gearbox faults so long as they are included in training.

  7. Automatic detection of electric power troubles (AI application)

    NASA Technical Reports Server (NTRS)

    Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint

    1987-01-01

    The design goals for the Automatic Detection of Electric Power Troubles (ADEPT) were to enhance Fault Diagnosis Techniques in a very efficient way. ADEPT system was designed in two modes of operation: (1) Real time fault isolation, and (2) a local simulator which simulates the models theoretically.

  8. Incipient fault detection and power system protection for spaceborne systems

    NASA Technical Reports Server (NTRS)

    Russell, B. Don; Hackler, Irene M.

    1987-01-01

    A program was initiated to study the feasibility of using advanced terrestrial power system protection techniques for spacecraft power systems. It was designed to enhance and automate spacecraft power distribution systems in the areas of safety, reliability and maintenance. The proposed power management/distribution system is described as well as security assessment and control, incipient and low current fault detection, and the proposed spaceborne protection system. It is noted that the intelligent remote power controller permits the implementation of digital relaying algorithms with both adaptive and programmable characteristics.

  9. A hybrid robust fault tolerant control based on adaptive joint unscented Kalman filter.

    PubMed

    Shabbouei Hagh, Yashar; Mohammadi Asl, Reza; Cocquempot, Vincent

    2017-01-01

    In this paper, a new hybrid robust fault tolerant control scheme is proposed. A robust H ∞ control law is used in non-faulty situation, while a Non-Singular Terminal Sliding Mode (NTSM) controller is activated as soon as an actuator fault is detected. Since a linear robust controller is designed, the system is first linearized through the feedback linearization method. To switch from one controller to the other, a fuzzy based switching system is used. An Adaptive Joint Unscented Kalman Filter (AJUKF) is used for fault detection and diagnosis. The proposed method is based on the simultaneous estimation of the system states and parameters. In order to show the efficiency of the proposed scheme, a simulated 3-DOF robotic manipulator is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. A Model-Based Probabilistic Inversion Framework for Wire Fault Detection Using TDR

    NASA Technical Reports Server (NTRS)

    Schuet, Stefan R.; Timucin, Dogan A.; Wheeler, Kevin R.

    2010-01-01

    Time-domain reflectometry (TDR) is one of the standard methods for diagnosing faults in electrical wiring and interconnect systems, with a long-standing history focused mainly on hardware development of both high-fidelity systems for laboratory use and portable hand-held devices for field deployment. While these devices can easily assess distance to hard faults such as sustained opens or shorts, their ability to assess subtle but important degradation such as chafing remains an open question. This paper presents a unified framework for TDR-based chafing fault detection in lossy coaxial cables by combining an S-parameter based forward modeling approach with a probabilistic (Bayesian) inference algorithm. Results are presented for the estimation of nominal and faulty cable parameters from laboratory data.

  11. Fuzzy Inference System Approach for Locating Series, Shunt, and Simultaneous Series-Shunt Faults in Double Circuit Transmission Lines

    PubMed Central

    Swetapadma, Aleena; Yadav, Anamika

    2015-01-01

    Many schemes are reported for shunt fault location estimation, but fault location estimation of series or open conductor faults has not been dealt with so far. The existing numerical relays only detect the open conductor (series) fault and give the indication of the faulty phase(s), but they are unable to locate the series fault. The repair crew needs to patrol the complete line to find the location of series fault. In this paper fuzzy based fault detection/classification and location schemes in time domain are proposed for both series faults, shunt faults, and simultaneous series and shunt faults. The fault simulation studies and fault location algorithm have been developed using Matlab/Simulink. Synchronized phasors of voltage and current signals of both the ends of the line have been used as input to the proposed fuzzy based fault location scheme. Percentage of error in location of series fault is within 1% and shunt fault is 5% for all the tested fault cases. Validation of percentage of error in location estimation is done using Chi square test with both 1% and 5% level of significance. PMID:26413088

  12. Fault detection and accommodation testing on an F100 engine in an F-15 airplane. [digital engine control system

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Baer-Riedhart, J. L.; Maxwell, M. D.

    1985-01-01

    The fault detection and accommodation (FDA) methods that can be used for digital engine control systems are presently subjected to a flight test program in the case of the F-15 fighter's F100 engine electronic controls, inducing selected faults and then evaluating the resulting digital engine control responses. In general, flight test results were found to compare well with both ground tests and predictions. It is noted that the inducement of dual-pressure failures was not feasible, since FDA logic was not designed to accommodate them.

  13. Study on nondestructive detection system based on x-ray for wire ropes conveyer belt

    NASA Astrophysics Data System (ADS)

    Miao, Changyun; Shi, Boya; Wan, Peng; Li, Jie

    2008-03-01

    A nondestructive detection system based on X-ray for wire ropes conveyer belt is designed by X-ray detection technology. In this paper X-ray detection principle is analyzed, a design scheme of the system is presented; image processing of conveyer belt is researched and image processing algorithms are given; X-ray acquisition receiving board is designed with the use of FPGA and DSP; the software of the system is programmed by C#.NET on WINXP/WIN2000 platform. The experiment indicates the system can implement remote real-time detection of wire ropes conveyer belt images, find faults and give an alarm in time. The system is direct perceived, strong real-time and high accurate. It can be used for fault detection of wire ropes conveyer belts in mines, ports, terminals and other fields.

  14. Quality monitored distributed voting system

    DOEpatents

    Skogmo, David

    1997-01-01

    A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system.

  15. Real World Experience With Ion Implant Fault Detection at Freescale Semiconductor

    NASA Astrophysics Data System (ADS)

    Sing, David C.; Breeden, Terry; Fakhreddine, Hassan; Gladwin, Steven; Locke, Jason; McHugh, Jim; Rendon, Michael

    2006-11-01

    The Freescale automatic fault detection and classification (FDC) system has logged data from over 3.5 million implants in the past two years. The Freescale FDC system is a low cost system which collects summary implant statistics at the conclusion of each implant run. The data is collected by either downloading implant data log files from the implant tool workstation, or by exporting summary implant statistics through the tool's automation interface. Compared to the traditional FDC systems which gather trace data from sensors on the tool as the implant proceeds, the Freescale FDC system cannot prevent scrap when a fault initially occurs, since the data is collected after the implant concludes. However, the system can prevent catastrophic scrap events due to faults which are not detected for days or weeks, leading to the loss of hundreds or thousands of wafers. At the Freescale ATMC facility, the practical applications of the FD system fall into two categories: PM trigger rules which monitor tool signals such as ion gauges and charge control signals, and scrap prevention rules which are designed to detect specific failure modes that have been correlated to yield loss and scrap. PM trigger rules are designed to detect shifts in tool signals which indicate normal aging of tool systems. For example, charging parameters gradually shift as flood gun assemblies age, and when charge control rules start to fail a flood gun PM is performed. Scrap prevention rules are deployed to detect events such as particle bursts and excessive beam noise, events which have been correlated to yield loss. The FDC system does have tool log-down capability, and scrap prevention rules often use this capability to automatically log the tool into a maintenance state while simultaneously paging the sustaining technician for data review and disposition of the affected product.

  16. Development and evaluation of a Fault-Tolerant Multiprocessor (FTMP) computer. Volume 3: FTMP test and evaluation

    NASA Technical Reports Server (NTRS)

    Lala, J. H.; Smith, T. B., III

    1983-01-01

    The experimental test and evaluation of the Fault-Tolerant Multiprocessor (FTMP) is described. Major objectives of this exercise include expanding validation envelope, building confidence in the system, revealing any weaknesses in the architectural concepts and in their execution in hardware and software, and in general, stressing the hardware and software. To this end, pin-level faults were injected into one LRU of the FTMP and the FTMP response was measured in terms of fault detection, isolation, and recovery times. A total of 21,055 stuck-at-0, stuck-at-1 and invert-signal faults were injected in the CPU, memory, bus interface circuits, Bus Guardian Units, and voters and error latches. Of these, 17,418 were detected. At least 80 percent of undetected faults are estimated to be on unused pins. The multiprocessor identified all detected faults correctly and recovered successfully in each case. Total recovery time for all faults averaged a little over one second. This can be reduced to half a second by including appropriate self-tests.

  17. An integrated knowledge system for the Space Shuttle hazardous gas detection system

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Shi, George Z.; Bangasser, Carl; Fensky, Connie; Cegielski, Eric; Overbey, Glenn

    1993-01-01

    A computer-based integrated Knowledge-Based System, the Intelligent Hypertext Manual (IHM), was developed for the Space Shuttle Hazardous Gas Detection System (HGDS) at NASA Marshall Space Flight Center (MSFC). The IHM stores HGDS related knowledge and presents it in an interactive and intuitive manner. This manual is a combination of hypertext and an expert system which store experts' knowledge and experience in hazardous gas detection and analysis. The IHM's purpose is to provide HGDS personnel with the capabilities of: locating applicable documentation related to procedures, constraints, and previous fault histories; assisting in the training of personnel; enhancing the interpretation of real time data; and recognizing and identifying possible faults in the Space Shuttle sub-systems related to hazardous gas detection.

  18. Experiments in fault tolerant software reliability

    NASA Technical Reports Server (NTRS)

    Mcallister, David F.; Vouk, Mladen A.

    1989-01-01

    Twenty functionally equivalent programs were built and tested in a multiversion software experiment. Following unit testing, all programs were subjected to an extensive system test. In the process sixty-one distinct faults were identified among the versions. Less than 12 percent of the faults exhibited varying degrees of positive correlation. The common-cause (or similar) faults spanned as many as 14 components. However, a majority of these faults were trivial, and easily detected by proper unit and/or system testing. Only two of the seven similar faults were difficult faults, and both were caused by specification ambiguities. One of these faults exhibited variable identical-and-wrong response span, i.e. response span which varied with the testing conditions and input data. Techniques that could have been used to avoid the faults are discussed. For example, it was determined that back-to-back testing of 2-tuples could have been used to eliminate about 90 percent of the faults. In addition, four of the seven similar faults could have been detected by using back-to-back testing of 5-tuples. It is believed that most, if not all, similar faults could have been avoided had the specifications been written using more formal notation, the unit testing phase was subject to more stringent standards and controls, and better tools for measuring the quality and adequacy of the test data (e.g. coverage) were used.

  19. Fault detection and diagnosis of photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Wu, Xing

    The rapid growth of the solar industry over the past several years has expanded the significance of photovoltaic (PV) systems. One of the primary aims of research in building-integrated PV systems is to improve the performance of the system's efficiency, availability, and reliability. Although much work has been done on technological design to increase a photovoltaic module's efficiency, there is little research so far on fault diagnosis for PV systems. Faults in a PV system, if not detected, may not only reduce power generation, but also threaten the availability and reliability, effectively the "security" of the whole system. In this paper, first a circuit-based simulation baseline model of a PV system with maximum power point tracking (MPPT) is developed using MATLAB software. MATLAB is one of the most popular tools for integrating computation, visualization and programming in an easy-to-use modeling environment. Second, data collection of a PV system at variable surface temperatures and insolation levels under normal operation is acquired. The developed simulation model of PV system is then calibrated and improved by comparing modeled I-V and P-V characteristics with measured I--V and P--V characteristics to make sure the simulated curves are close to those measured values from the experiments. Finally, based on the circuit-based simulation model, a PV model of various types of faults will be developed by changing conditions or inputs in the MATLAB model, and the I--V and P--V characteristic curves, and the time-dependent voltage and current characteristics of the fault modalities will be characterized for each type of fault. These will be developed as benchmark I-V or P-V, or prototype transient curves. If a fault occurs in a PV system, polling and comparing actual measured I--V and P--V characteristic curves with both normal operational curves and these baseline fault curves will aid in fault diagnosis.

  20. Communications and tracking expert systems study

    NASA Technical Reports Server (NTRS)

    Leibfried, T. F.; Feagin, Terry; Overland, David

    1987-01-01

    The original objectives of the study consisted of five broad areas of investigation: criteria and issues for explanation of communication and tracking system anomaly detection, isolation, and recovery; data storage simplification issues for fault detection expert systems; data selection procedures for decision tree pruning and optimization to enhance the abstraction of pertinent information for clear explanation; criteria for establishing levels of explanation suited to needs; and analysis of expert system interaction and modularization. Progress was made in all areas, but to a lesser extent in the criteria for establishing levels of explanation suited to needs. Among the types of expert systems studied were those related to anomaly or fault detection, isolation, and recovery.

  1. Neural networks and fault probability evaluation for diagnosis issues.

    PubMed

    Kourd, Yahia; Lefebvre, Dimitri; Guersi, Noureddine

    2014-01-01

    This paper presents a new FDI technique for fault detection and isolation in unknown nonlinear systems. The objective of the research is to construct and analyze residuals by means of artificial intelligence and probabilistic methods. Artificial neural networks are first used for modeling issues. Neural networks models are designed for learning the fault-free and the faulty behaviors of the considered systems. Once the residuals generated, an evaluation using probabilistic criteria is applied to them to determine what is the most likely fault among a set of candidate faults. The study also includes a comparison between the contributions of these tools and their limitations, particularly through the establishment of quantitative indicators to assess their performance. According to the computation of a confidence factor, the proposed method is suitable to evaluate the reliability of the FDI decision. The approach is applied to detect and isolate 19 fault candidates in the DAMADICS benchmark. The results obtained with the proposed scheme are compared with the results obtained according to a usual thresholding method.

  2. Real-Time Condition Monitoring and Fault Diagnosis of Gear Train Systems Using Instantaneous Angular Speed (IAS) Analysis

    NASA Astrophysics Data System (ADS)

    Sait, Abdulrahman S.

    This dissertation presents a reliable technique for monitoring the condition of rotating machinery by applying instantaneous angular speed (IAS) analysis. A new analysis of the effects of changes in the orientation of the line of action and the pressure angle of the resultant force acting on gear tooth profile of spur gear under different levels of tooth damage is utilized. The analysis and experimental work discussed in this dissertation provide a clear understating of the effects of damage on the IAS by analyzing the digital signals output of rotary incremental optical encoder. A comprehensive literature review of state of the knowledge in condition monitoring and fault diagnostics of rotating machinery, including gearbox system is presented. Progress and new developments over the past 30 years in failure detection techniques of rotating machinery including engines, bearings and gearboxes are thoroughly reviewed. This work is limited to the analysis of a gear train system with gear tooth surface faults utilizing angular motion analysis technique. Angular motion data were acquired using an incremental optical encoder. Results are compared to a vibration-based technique. The vibration data were acquired using an accelerometer. The signals were obtained and analyzed in the phase domains using signal averaging to determine the existence and position of faults on the gear train system. Forces between the mating teeth surfaces are analyzed and simulated to validate the influence of the presence of damage on the pressure angle and the IAS. National Instruments hardware is used and NI LabVIEW software code is developed for real-time, online condition monitoring systems and fault detection techniques. The sensitivity of optical encoders to gear fault detection techniques is experimentally investigated by applying IAS analysis under different gear damage levels and different operating conditions. A reliable methodology is developed for selecting appropriate testing/operating conditions of a rotating system to generate an alarm system for damage detection.

  3. Graph-based real-time fault diagnostics

    NASA Technical Reports Server (NTRS)

    Padalkar, S.; Karsai, G.; Sztipanovits, J.

    1988-01-01

    A real-time fault detection and diagnosis capability is absolutely crucial in the design of large-scale space systems. Some of the existing AI-based fault diagnostic techniques like expert systems and qualitative modelling are frequently ill-suited for this purpose. Expert systems are often inadequately structured, difficult to validate and suffer from knowledge acquisition bottlenecks. Qualitative modelling techniques sometimes generate a large number of failure source alternatives, thus hampering speedy diagnosis. In this paper we present a graph-based technique which is well suited for real-time fault diagnosis, structured knowledge representation and acquisition and testing and validation. A Hierarchical Fault Model of the system to be diagnosed is developed. At each level of hierarchy, there exist fault propagation digraphs denoting causal relations between failure modes of subsystems. The edges of such a digraph are weighted with fault propagation time intervals. Efficient and restartable graph algorithms are used for on-line speedy identification of failure source components.

  4. Fault Analysis of Space Station DC Power Systems-Using Neural Network Adaptive Wavelets to Detect Faults

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Wang, Yanchun; Dolce, James L.

    1997-01-01

    This paper describes the application of neural network adaptive wavelets for fault diagnosis of space station power system. The method combines wavelet transform with neural network by incorporating daughter wavelets into weights. Therefore, the wavelet transform and neural network training procedure become one stage, which avoids the complex computation of wavelet parameters and makes the procedure more straightforward. The simulation results show that the proposed method is very efficient for the identification of fault locations.

  5. Method and system for early detection of incipient faults in electric motors

    DOEpatents

    Parlos, Alexander G; Kim, Kyusung

    2003-07-08

    A method and system for early detection of incipient faults in an electric motor are disclosed. First, current and voltage values for one or more phases of the electric motor are measured during motor operations. A set of current predictions is then determined via a neural network-based current predictor based on the measured voltage values and an estimate of motor speed values of the electric motor. Next, a set of residuals is generated by combining the set of current predictions with the measured current values. A set of fault indicators is subsequently computed from the set of residuals and the measured current values. Finally, a determination is made as to whether or not there is an incipient electrical, mechanical, and/or electromechanical fault occurring based on the comparison result of the set of fault indicators and a set of predetermined baseline values.

  6. Analytic Confusion Matrix Bounds for Fault Detection and Isolation Using a Sum-of-Squared- Residuals Approach

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2009-01-01

    Given a system which can fail in 1 or n different ways, a fault detection and isolation (FDI) algorithm uses sensor data in order to determine which fault is the most likely to have occurred. The effectiveness of an FDI algorithm can be quantified by a confusion matrix, which i ndicates the probability that each fault is isolated given that each fault has occurred. Confusion matrices are often generated with simulation data, particularly for complex systems. In this paper we perform FDI using sums of squares of sensor residuals (SSRs). We assume that the sensor residuals are Gaussian, which gives the SSRs a chi-squared distribution. We then generate analytic lower and upper bounds on the confusion matrix elements. This allows for the generation of optimal sensor sets without numerical simulations. The confusion matrix bound s are verified with simulated aircraft engine data.

  7. A structural model decomposition framework for systems health management

    NASA Astrophysics Data System (ADS)

    Roychoudhury, I.; Daigle, M.; Bregon, A.; Pulido, B.

    Systems health management (SHM) is an important set of technologies aimed at increasing system safety and reliability by detecting, isolating, and identifying faults; and predicting when the system reaches end of life (EOL), so that appropriate fault mitigation and recovery actions can be taken. Model-based SHM approaches typically make use of global, monolithic system models for online analysis, which results in a loss of scalability and efficiency for large-scale systems. Improvement in scalability and efficiency can be achieved by decomposing the system model into smaller local submodels and operating on these submodels instead. In this paper, the global system model is analyzed offline and structurally decomposed into local submodels. We define a common model decomposition framework for extracting submodels from the global model. This framework is then used to develop algorithms for solving model decomposition problems for the design of three separate SHM technologies, namely, estimation (which is useful for fault detection and identification), fault isolation, and EOL prediction. We solve these model decomposition problems using a three-tank system as a case study.

  8. A Structural Model Decomposition Framework for Systems Health Management

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Indranil; Daigle, Matthew J.; Bregon, Anibal; Pulido, Belamino

    2013-01-01

    Systems health management (SHM) is an important set of technologies aimed at increasing system safety and reliability by detecting, isolating, and identifying faults; and predicting when the system reaches end of life (EOL), so that appropriate fault mitigation and recovery actions can be taken. Model-based SHM approaches typically make use of global, monolithic system models for online analysis, which results in a loss of scalability and efficiency for large-scale systems. Improvement in scalability and efficiency can be achieved by decomposing the system model into smaller local submodels and operating on these submodels instead. In this paper, the global system model is analyzed offline and structurally decomposed into local submodels. We define a common model decomposition framework for extracting submodels from the global model. This framework is then used to develop algorithms for solving model decomposition problems for the design of three separate SHM technologies, namely, estimation (which is useful for fault detection and identification), fault isolation, and EOL prediction. We solve these model decomposition problems using a three-tank system as a case study.

  9. Model-Based Diagnosis and Prognosis of a Water Recycling System

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Indranil; Hafiychuk, Vasyl; Goebel, Kai Frank

    2013-01-01

    A water recycling system (WRS) deployed at NASA Ames Research Center s Sustainability Base (an energy efficient office building that integrates some novel technologies developed for space applications) will serve as a testbed for long duration testing of next generation spacecraft water recycling systems for future human spaceflight missions. This system cleans graywater (waste water collected from sinks and showers) and recycles it into clean water. Like all engineered systems, the WRS is prone to standard degradation due to regular use, as well as other faults. Diagnostic and prognostic applications will be deployed on the WRS to ensure its safe, efficient, and correct operation. The diagnostic and prognostic results can be used to enable condition-based maintenance to avoid unplanned outages, and perhaps extend the useful life of the WRS. Diagnosis involves detecting when a fault occurs, isolating the root cause of the fault, and identifying the extent of damage. Prognosis involves predicting when the system will reach its end of life irrespective of whether an abnormal condition is present or not. In this paper, first, we develop a physics model of both nominal and faulty system behavior of the WRS. Then, we apply an integrated model-based diagnosis and prognosis framework to the simulation model of the WRS for several different fault scenarios to detect, isolate, and identify faults, and predict the end of life in each fault scenario, and present the experimental results.

  10. Simulation-driven machine learning: Bearing fault classification

    NASA Astrophysics Data System (ADS)

    Sobie, Cameron; Freitas, Carina; Nicolai, Mike

    2018-01-01

    Increasing the accuracy of mechanical fault detection has the potential to improve system safety and economic performance by minimizing scheduled maintenance and the probability of unexpected system failure. Advances in computational performance have enabled the application of machine learning algorithms across numerous applications including condition monitoring and failure detection. Past applications of machine learning to physical failure have relied explicitly on historical data, which limits the feasibility of this approach to in-service components with extended service histories. Furthermore, recorded failure data is often only valid for the specific circumstances and components for which it was collected. This work directly addresses these challenges for roller bearings with race faults by generating training data using information gained from high resolution simulations of roller bearing dynamics, which is used to train machine learning algorithms that are then validated against four experimental datasets. Several different machine learning methodologies are compared starting from well-established statistical feature-based methods to convolutional neural networks, and a novel application of dynamic time warping (DTW) to bearing fault classification is proposed as a robust, parameter free method for race fault detection.

  11. Combining Particle Filters and Consistency-Based Approaches for Monitoring and Diagnosis of Stochastic Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Narasimhan, Sriram; Dearden, Richard; Benazera, Emmanuel

    2004-01-01

    Fault detection and isolation are critical tasks to ensure correct operation of systems. When we consider stochastic hybrid systems, diagnosis algorithms need to track both the discrete mode and the continuous state of the system in the presence of noise. Deterministic techniques like Livingstone cannot deal with the stochasticity in the system and models. Conversely Bayesian belief update techniques such as particle filters may require many computational resources to get a good approximation of the true belief state. In this paper we propose a fault detection and isolation architecture for stochastic hybrid systems that combines look-ahead Rao-Blackwellized Particle Filters (RBPF) with the Livingstone 3 (L3) diagnosis engine. In this approach RBPF is used to track the nominal behavior, a novel n-step prediction scheme is used for fault detection and L3 is used to generate a set of candidates that are consistent with the discrepant observations which then continue to be tracked by the RBPF scheme.

  12. Fault Detection and Diagnosis System for the Air-conditioning

    NASA Astrophysics Data System (ADS)

    Nakahara, Nobuo

    The fault detection and diagnosis system, the FDD system, for the HVAC was initiated around the middle of 1970s in Japan but it still remains at the elementary stage. The HVAC is really one of the most complicated and large scaled system for the FDD system. Besides, the maintenance engineering was never focussed as the target of the academic study since after the war, but the FDD system for some kinds of the components and subsystems has been developed for the sake of the practical industrial needs. Recently, international cooperative study in the IEA Annex 25 on the energy conservation for the building and community targetted on the BOFD, the building optimization, fault detection and diagnosis. Not a few academic peaple from various engineering field got interested and, moreover, some national projects seem to start in the European countries. The author has reviewed the state of the art of the FDD and BO as well based on the references and the experience at the IEA study.

  13. A Fault Tolerant System for an Integrated Avionics Sensor Configuration

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Lancraft, R. E.

    1984-01-01

    An aircraft sensor fault tolerant system methodology for the Transport Systems Research Vehicle in a Microwave Landing System (MLS) environment is described. The fault tolerant system provides reliable estimates in the presence of possible failures both in ground-based navigation aids, and in on-board flight control and inertial sensors. Sensor failures are identified by utilizing the analytic relationships between the various sensors arising from the aircraft point mass equations of motion. The estimation and failure detection performance of the software implementation (called FINDS) of the developed system was analyzed on a nonlinear digital simulation of the research aircraft. Simulation results showing the detection performance of FINDS, using a dual redundant sensor compliment, are presented for bias, hardover, null, ramp, increased noise and scale factor failures. In general, the results show that FINDS can distinguish between normal operating sensor errors and failures while providing an excellent detection speed for bias failures in the MLS, indicated airspeed, attitude and radar altimeter sensors.

  14. Incipient fault detection study for advanced spacecraft systems

    NASA Technical Reports Server (NTRS)

    Milner, G. Martin; Black, Michael C.; Hovenga, J. Mike; Mcclure, Paul F.

    1986-01-01

    A feasibility study to investigate the application of vibration monitoring to the rotating machinery of planned NASA advanced spacecraft components is described. Factors investigated include: (1) special problems associated with small, high RPM machines; (2) application across multiple component types; (3) microgravity; (4) multiple fault types; (5) eight different analysis techniques including signature analysis, high frequency demodulation, cepstrum, clustering, amplitude analysis, and pattern recognition are compared; and (6) small sample statistical analysis is used to compare performance by computation of probability of detection and false alarm for an ensemble of repeated baseline and faulted tests. Both detection and classification performance are quantified. Vibration monitoring is shown to be an effective means of detecting the most important problem types for small, high RPM fans and pumps typical of those planned for the advanced spacecraft. A preliminary monitoring system design and implementation plan is presented.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    X. Zhao, S. Ramakrishnan, J. Lawson, C.Neumeyer, R. Marsala, H. Schneider, Engineering Operations

    NSTX at Princeton Plasma Physics Laboratory (PPPL) requires sophisticated plasma positioning control system for stable plasma operation. TF magnetic coils and PF magnetic coils provide electromagnetic fields to position and shape the plasma vertically and horizontally respectively. NSTX utilizes twenty six coil power supplies to establish and initiate electromagnetic fields through the coil system for plasma control. A power protection and interlock system is utilized to detect power system faults and protect the TF coils and PF coils against excessive electromechanical forces, overheating, and over current. Upon detecting any fault condition the power system is restricted, and it is eithermore » prevented from initializing or suppressed to de-energize coil power during pulsing. Power fault status is immediately reported to the computer system. This paper describes the design and operation of NSTX's protection and interlocking system and possible future expansion.« less

  16. Data-driven fault detection, isolation and estimation of aircraft gas turbine engine actuator and sensors

    NASA Astrophysics Data System (ADS)

    Naderi, E.; Khorasani, K.

    2018-02-01

    In this work, a data-driven fault detection, isolation, and estimation (FDI&E) methodology is proposed and developed specifically for monitoring the aircraft gas turbine engine actuator and sensors. The proposed FDI&E filters are directly constructed by using only the available system I/O data at each operating point of the engine. The healthy gas turbine engine is stimulated by a sinusoidal input containing a limited number of frequencies. First, the associated system Markov parameters are estimated by using the FFT of the input and output signals to obtain the frequency response of the gas turbine engine. These data are then used for direct design and realization of the fault detection, isolation and estimation filters. Our proposed scheme therefore does not require any a priori knowledge of the system linear model or its number of poles and zeros at each operating point. We have investigated the effects of the size of the frequency response data on the performance of our proposed schemes. We have shown through comprehensive case studies simulations that desirable fault detection, isolation and estimation performance metrics defined in terms of the confusion matrix criterion can be achieved by having access to only the frequency response of the system at only a limited number of frequencies.

  17. Ares I-X Ground Diagnostic Prototype

    NASA Technical Reports Server (NTRS)

    Schwabacher, Mark A.; Martin, Rodney Alexander; Waterman, Robert D.; Oostdyk, Rebecca Lynn; Ossenfort, John P.; Matthews, Bryan

    2010-01-01

    The automation of pre-launch diagnostics for launch vehicles offers three potential benefits: improving safety, reducing cost, and reducing launch delays. The Ares I-X Ground Diagnostic Prototype demonstrated anomaly detection, fault detection, fault isolation, and diagnostics for the Ares I-X first-stage Thrust Vector Control and for the associated ground hydraulics while the vehicle was in the Vehicle Assembly Building at Kennedy Space Center (KSC) and while it was on the launch pad. The prototype combines three existing tools. The first tool, TEAMS (Testability Engineering and Maintenance System), is a model-based tool from Qualtech Systems Inc. for fault isolation and diagnostics. The second tool, SHINE (Spacecraft Health Inference Engine), is a rule-based expert system that was developed at the NASA Jet Propulsion Laboratory. We developed SHINE rules for fault detection and mode identification, and used the outputs of SHINE as inputs to TEAMS. The third tool, IMS (Inductive Monitoring System), is an anomaly detection tool that was developed at NASA Ames Research Center. The three tools were integrated and deployed to KSC, where they were interfaced with live data. This paper describes how the prototype performed during the period of time before the launch, including accuracy and computer resource usage. The paper concludes with some of the lessons that we learned from the experience of developing and deploying the prototype.

  18. Real-Time Model-Based Leak-Through Detection within Cryogenic Flow Systems

    NASA Technical Reports Server (NTRS)

    Walker, M.; Figueroa, F.

    2015-01-01

    The timely detection of leaks within cryogenic fuel replenishment systems is of significant importance to operators on account of the safety and economic impacts associated with material loss and operational inefficiencies. Associated loss in control of pressure also effects the stability and ability to control the phase of cryogenic fluids during replenishment operations. Current research dedicated to providing Prognostics and Health Management (PHM) coverage of such cryogenic replenishment systems has focused on the detection of leaks to atmosphere involving relatively simple model-based diagnostic approaches that, while effective, are unable to isolate the fault to specific piping system components. The authors have extended this research to focus on the detection of leaks through closed valves that are intended to isolate sections of the piping system from the flow and pressurization of cryogenic fluids. The described approach employs model-based detection of leak-through conditions based on correlations of pressure changes across isolation valves and attempts to isolate the faults to specific valves. Implementation of this capability is enabled by knowledge and information embedded in the domain model of the system. The approach has been used effectively to detect such leak-through faults during cryogenic operational testing at the Cryogenic Testbed at NASA's Kennedy Space Center.

  19. Quality monitored distributed voting system

    DOEpatents

    Skogmo, D.

    1997-03-18

    A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system. 6 figs.

  20. Advanced microprocessor based power protection system using artificial neural network techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Kalam, A.; Zayegh, A.

    This paper describes an intelligent embedded microprocessor based system for fault classification in power system protection system using advanced 32-bit microprocessor technology. The paper demonstrates the development of protective relay to provide overcurrent protection schemes for fault detection. It also describes a method for power fault classification in three-phase system based on the use of neural network technology. The proposed design is implemented and tested on a single line three phase power system in power laboratory. Both the hardware and software development are described in detail.

  1. Investigation of the applicability of a functional programming model to fault-tolerant parallel processing for knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Harper, Richard

    1989-01-01

    In a fault-tolerant parallel computer, a functional programming model can facilitate distributed checkpointing, error recovery, load balancing, and graceful degradation. Such a model has been implemented on the Draper Fault-Tolerant Parallel Processor (FTPP). When used in conjunction with the FTPP's fault detection and masking capabilities, this implementation results in a graceful degradation of system performance after faults. Three graceful degradation algorithms have been implemented and are presented. A user interface has been implemented which requires minimal cognitive overhead by the application programmer, masking such complexities as the system's redundancy, distributed nature, variable complement of processing resources, load balancing, fault occurrence and recovery. This user interface is described and its use demonstrated. The applicability of the functional programming style to the Activation Framework, a paradigm for intelligent systems, is then briefly described.

  2. Practical Issues in Implementing Software Reliability Measurement

    NASA Technical Reports Server (NTRS)

    Nikora, Allen P.; Schneidewind, Norman F.; Everett, William W.; Munson, John C.; Vouk, Mladen A.; Musa, John D.

    1999-01-01

    Many ways of estimating software systems' reliability, or reliability-related quantities, have been developed over the past several years. Of particular interest are methods that can be used to estimate a software system's fault content prior to test, or to discriminate between components that are fault-prone and those that are not. The results of these methods can be used to: 1) More accurately focus scarce fault identification resources on those portions of a software system most in need of it. 2) Estimate and forecast the risk of exposure to residual faults in a software system during operation, and develop risk and safety criteria to guide the release of a software system to fielded use. 3) Estimate the efficiency of test suites in detecting residual faults. 4) Estimate the stability of the software maintenance process.

  3. Fault detection and identification in missile system guidance and control: a filtering approach

    NASA Astrophysics Data System (ADS)

    Padgett, Mary Lou; Evers, Johnny; Karplus, Walter J.

    1996-03-01

    Real-world applications of computational intelligence can enhance the fault detection and identification capabilities of a missile guidance and control system. A simulation of a bank-to- turn missile demonstrates that actuator failure may cause the missile to roll and miss the target. Failure of one fin actuator can be detected using a filter and depicting the filter output as fuzzy numbers. The properties and limitations of artificial neural networks fed by these fuzzy numbers are explored. A suite of networks is constructed to (1) detect a fault and (2) determine which fin (if any) failed. Both the zero order moment term and the fin rate term show changes during actuator failure. Simulations address the following questions: (1) How bad does the actuator failure have to be for detection to occur, (2) How bad does the actuator failure have to be for fault detection and isolation to occur, (3) are both zero order moment and fine rate terms needed. A suite of target trajectories are simulated, and properties and limitations of the approach reported. In some cases, detection of the failed actuator occurs within 0.1 second, and isolation of the failure occurs 0.1 after that. Suggestions for further research are offered.

  4. Partial Discharge Monitoring on Metal-Enclosed Switchgear with Distributed Non-Contact Sensors.

    PubMed

    Zhang, Chongxing; Dong, Ming; Ren, Ming; Huang, Wenguang; Zhou, Jierui; Gao, Xuze; Albarracín, Ricardo

    2018-02-11

    Metal-enclosed switchgear, which are widely used in the distribution of electrical energy, play an important role in power distribution networks. Their safe operation is directly related to the reliability of power system as well as the power quality on the consumer side. Partial discharge detection is an effective way to identify potential faults and can be utilized for insulation diagnosis of metal-enclosed switchgear. The transient earth voltage method, an effective non-intrusive method, has substantial engineering application value for estimating the insulation condition of switchgear. However, the practical application effectiveness of TEV detection is not satisfactory because of the lack of a TEV detection application method, i.e., a method with sufficient technical cognition and analysis. This paper proposes an innovative online PD detection system and a corresponding application strategy based on an intelligent feedback distributed TEV wireless sensor network, consisting of sensing, communication, and diagnosis layers. In the proposed system, the TEV signal or status data are wirelessly transmitted to the terminal following low-energy signal preprocessing and acquisition by TEV sensors. Then, a central server analyzes the correlation of the uploaded data and gives a fault warning level according to the quantity, trend, parallel analysis, and phase resolved partial discharge pattern recognition. In this way, a TEV detection system and strategy with distributed acquisition, unitized fault warning, and centralized diagnosis is realized. The proposed system has positive significance for reducing the fault rate of medium voltage switchgear and improving its operation and maintenance level.

  5. Fault detection and isolation in the challenging Tennessee Eastman process by using image processing techniques.

    PubMed

    Hajihosseini, Payman; Anzehaee, Mohammad Mousavi; Behnam, Behzad

    2018-05-22

    The early fault detection and isolation in industrial systems is a critical factor in preventing equipment damage. In the proposed method, instead of using the time signals of sensors, the 2D image obtained by placing these signals next to each other in a matrix has been used; and then a novel fault detection and isolation procedure has been carried out based on image processing techniques. Different features including texture, wavelet transform, mean and standard deviation of the image accompanied with MLP and RBF neural networks based classifiers have been used for this purpose. Obtained results indicate the notable efficacy and success of the proposed method in detecting and isolating faults of the Tennessee Eastman benchmark process and its superiority over previous techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Real-Time Curvature Defect Detection on Outer Surfaces Using Best-Fit Polynomial Interpolation

    PubMed Central

    Golkar, Ehsan; Prabuwono, Anton Satria; Patel, Ahmed

    2012-01-01

    This paper presents a novel, real-time defect detection system, based on a best-fit polynomial interpolation, that inspects the conditions of outer surfaces. The defect detection system is an enhanced feature extraction method that employs this technique to inspect the flatness, waviness, blob, and curvature faults of these surfaces. The proposed method has been performed, tested, and validated on numerous pipes and ceramic tiles. The results illustrate that the physical defects such as abnormal, popped-up blobs are recognized completely, and that flames, waviness, and curvature faults are detected simultaneously. PMID:23202186

  7. Real time health monitoring and control system methodology for flexible space structures

    NASA Astrophysics Data System (ADS)

    Jayaram, Sanjay

    This dissertation is concerned with the Near Real-time Autonomous Health Monitoring of Flexible Space Structures. The dynamics of multi-body flexible systems is uncertain due to factors such as high non-linearity, consideration of higher modal frequencies, high dimensionality, multiple inputs and outputs, operational constraints, as well as unexpected failures of sensors and/or actuators. Hence a systematic framework of developing a high fidelity, dynamic model of a flexible structural system needs to be understood. The fault detection mechanism that will be an integrated part of an autonomous health monitoring system comprises the detection of abnormalities in the sensors and/or actuators and correcting these detected faults (if possible). Applying the robust control law and the robust measures that are capable of detecting and recovering/replacing the actuators rectifies the actuator faults. The fault tolerant concept applied to the sensors will be in the form of an Extended Kalman Filter (EKF). The EKF is going to weigh the information coming from multiple sensors (redundant sensors used to measure the same information) and automatically identify the faulty sensors and weigh the best estimate from the remaining sensors. The mechanization is comprised of instrumenting flexible deployable panels (solar array) with multiple angular position and rate sensors connected to the data acquisition system. The sensors will give position and rate information of the solar panel in all three axes (i.e. roll, pitch and yaw). The position data corresponds to the steady state response and the rate data will give better insight on the transient response of the system. This is a critical factor for real-time autonomous health monitoring. MATLAB (and/or C++) software will be used for high fidelity modeling and fault tolerant mechanism.

  8. Bearing Fault Detection Based on Empirical Wavelet Transform and Correlated Kurtosis by Acoustic Emission.

    PubMed

    Gao, Zheyu; Lin, Jing; Wang, Xiufeng; Xu, Xiaoqiang

    2017-05-24

    Rolling bearings are widely used in rotating equipment. Detection of bearing faults is of great importance to guarantee safe operation of mechanical systems. Acoustic emission (AE), as one of the bearing monitoring technologies, is sensitive to weak signals and performs well in detecting incipient faults. Therefore, AE is widely used in monitoring the operating status of rolling bearing. This paper utilizes Empirical Wavelet Transform (EWT) to decompose AE signals into mono-components adaptively followed by calculation of the correlated kurtosis (CK) at certain time intervals of these components. By comparing these CK values, the resonant frequency of the rolling bearing can be determined. Then the fault characteristic frequencies are found by spectrum envelope. Both simulation signal and rolling bearing AE signals are used to verify the effectiveness of the proposed method. The results show that the new method performs well in identifying bearing fault frequency under strong background noise.

  9. Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems

    PubMed Central

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; Huang, Yi-Shan; Zhao, Kai-Hui

    2015-01-01

    This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method. PMID:25970258

  10. Process fault detection and nonlinear time series analysis for anomaly detection in safeguards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, T.L.; Mullen, M.F.; Wangen, L.E.

    In this paper we discuss two advanced techniques, process fault detection and nonlinear time series analysis, and apply them to the analysis of vector-valued and single-valued time-series data. We investigate model-based process fault detection methods for analyzing simulated, multivariate, time-series data from a three-tank system. The model-predictions are compared with simulated measurements of the same variables to form residual vectors that are tested for the presence of faults (possible diversions in safeguards terminology). We evaluate two methods, testing all individual residuals with a univariate z-score and testing all variables simultaneously with the Mahalanobis distance, for their ability to detect lossmore » of material from two different leak scenarios from the three-tank system: a leak without and with replacement of the lost volume. Nonlinear time-series analysis tools were compared with the linear methods popularized by Box and Jenkins. We compare prediction results using three nonlinear and two linear modeling methods on each of six simulated time series: two nonlinear and four linear. The nonlinear methods performed better at predicting the nonlinear time series and did as well as the linear methods at predicting the linear values.« less

  11. A SVM framework for fault detection of the braking system in a high speed train

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Li, Yan-Fu; Zio, Enrico

    2017-03-01

    In April 2015, the number of operating High Speed Trains (HSTs) in the world has reached 3603. An efficient, effective and very reliable braking system is evidently very critical for trains running at a speed around 300 km/h. Failure of a highly reliable braking system is a rare event and, consequently, informative recorded data on fault conditions are scarce. This renders the fault detection problem a classification problem with highly unbalanced data. In this paper, a Support Vector Machine (SVM) framework, including feature selection, feature vector selection, model construction and decision boundary optimization, is proposed for tackling this problem. Feature vector selection can largely reduce the data size and, thus, the computational burden. The constructed model is a modified version of the least square SVM, in which a higher cost is assigned to the error of classification of faulty conditions than the error of classification of normal conditions. The proposed framework is successfully validated on a number of public unbalanced datasets. Then, it is applied for the fault detection of braking systems in HST: in comparison with several SVM approaches for unbalanced datasets, the proposed framework gives better results.

  12. Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Najafi, Massieh; Auslander, David M.; Bartlett, Peter L.

    2010-05-30

    Many studies have shown that energy savings of five to fifteen percent are achievable in commercial buildings by detecting and correcting building faults, and optimizing building control systems. However, in spite of good progress in developing tools for determining HVAC diagnostics, methods to detect faults in HVAC systems are still generally undeveloped. Most approaches use numerical filtering or parameter estimation methods to compare data from energy meters and building sensors to predictions from mathematical or statistical models. They are effective when models are relatively accurate and data contain few errors. In this paper, we address the case where models aremore » imperfect and data are variable, uncertain, and can contain error. We apply a Bayesian updating approach that is systematic in managing and accounting for most forms of model and data errors. The proposed method uses both knowledge of first principle modeling and empirical results to analyze the system performance within the boundaries defined by practical constraints. We demonstrate the approach by detecting faults in commercial building air handling units. We find that the limitations that exist in air handling unit diagnostics due to practical constraints can generally be effectively addressed through the proposed approach.« less

  13. A recurrent neural-network-based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite's attitude control subsystem.

    PubMed

    Talebi, H A; Khorasani, K; Tafazoli, S

    2009-01-01

    This paper presents a robust fault detection and isolation (FDI) scheme for a general class of nonlinear systems using a neural-network-based observer strategy. Both actuator and sensor faults are considered. The nonlinear system considered is subject to both state and sensor uncertainties and disturbances. Two recurrent neural networks are employed to identify general unknown actuator and sensor faults, respectively. The neural network weights are updated according to a modified backpropagation scheme. Unlike many previous methods developed in the literature, our proposed FDI scheme does not rely on availability of full state measurements. The stability of the overall FDI scheme in presence of unknown sensor and actuator faults as well as plant and sensor noise and uncertainties is shown by using the Lyapunov's direct method. The stability analysis developed requires no restrictive assumptions on the system and/or the FDI algorithm. Magnetorquer-type actuators and magnetometer-type sensors that are commonly employed in the attitude control subsystem (ACS) of low-Earth orbit (LEO) satellites for attitude determination and control are considered in our case studies. The effectiveness and capabilities of our proposed fault diagnosis strategy are demonstrated and validated through extensive simulation studies.

  14. Orbital maneuvering subsystem functional path analysis for performance monitoring fault detection and annunciation

    NASA Technical Reports Server (NTRS)

    Keesler, E. L.

    1974-01-01

    The functional paths of the Orbital Maneuver Subsystem (OMS) is defined. The operational flight instrumentation required for performance monitoring, fault detection, and annunciation is described. The OMS is a pressure fed rocket engine propulsion subsystem. One complete OMS shares each of the two auxiliary propulsion subsystem pods with a reaction control subsystem. Each OMS is composed of a pressurization system, a propellant tanking system, and a gimbaled rocket engine. The design, development, and operation of the system are explained. Diagrams of the system are provided.

  15. Digital electronic engine control fault detection and accommodation flight evaluation

    NASA Technical Reports Server (NTRS)

    Baer-Ruedhart, J. L.

    1984-01-01

    The capabilities and performance of various fault detection and accommodation (FDA) schemes in existing and projected engine control systems were investigated. Flight tests of the digital electronic engine control (DEEC) in an F-15 aircraft show discrepancies between flight results and predictions based on simulation and altitude testing. The FDA methodology and logic in the DEEC system, and the results of the flight failures which occurred to date are described.

  16. Transmission line relay mis-operation detection based on time-synchronized field data

    DOE PAGES

    Esmaeilian, Ahad; Popovic, Tomo; Kezunovic, Mladen

    2015-05-04

    In this paper, a real-time tool to detect transmission line relay mis-operation is implemented. The tool uses time-synchronized measurements obtained from both ends of the line during disturbances. The proposed fault analysis tool comes into the picture only after the protective device has operated and tripped the line. The proposed methodology is able not only to detect, classify, and locate transmission line faults, but also to accurately confirm whether the line was tripped due to a mis-operation of protective relays. The analysis report includes either detailed description of the fault type and location or detection of relay mis-operation. As such,more » it can be a source of very useful information to support the system restoration. The focus of the paper is on the implementation requirements that allow practical application of the methodology, which is illustrated using the field data obtained the real power system. Testing and validation is done using the field data recorded by digital fault recorders and protective relays. The test data included several hundreds of event records corresponding to both relay mis-operations and actual faults. The discussion of results addresses various challenges encountered during the implementation and validation of the presented methodology.« less

  17. Integrating physically based simulators with Event Detection Systems: Multi-site detection approach.

    PubMed

    Housh, Mashor; Ohar, Ziv

    2017-03-01

    The Fault Detection (FD) Problem in control theory concerns of monitoring a system to identify when a fault has occurred. Two approaches can be distinguished for the FD: Signal processing based FD and Model-based FD. The former concerns of developing algorithms to directly infer faults from sensors' readings, while the latter uses a simulation model of the real-system to analyze the discrepancy between sensors' readings and expected values from the simulation model. Most contamination Event Detection Systems (EDSs) for water distribution systems have followed the signal processing based FD, which relies on analyzing the signals from monitoring stations independently of each other, rather than evaluating all stations simultaneously within an integrated network. In this study, we show that a model-based EDS which utilizes a physically based water quality and hydraulics simulation models, can outperform the signal processing based EDS. We also show that the model-based EDS can facilitate the development of a Multi-Site EDS (MSEDS), which analyzes the data from all the monitoring stations simultaneously within an integrated network. The advantage of the joint analysis in the MSEDS is expressed by increased detection accuracy (higher true positive alarms and fewer false alarms) and shorter detection time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Development of a variable structure-based fault detection and diagnosis strategy applied to an electromechanical system

    NASA Astrophysics Data System (ADS)

    Gadsden, S. Andrew; Kirubarajan, T.

    2017-05-01

    Signal processing techniques are prevalent in a wide range of fields: control, target tracking, telecommunications, robotics, fault detection and diagnosis, and even stock market analysis, to name a few. Although first introduced in the 1950s, the most popular method used for signal processing and state estimation remains the Kalman filter (KF). The KF offers an optimal solution to the estimation problem under strict assumptions. Since this time, a number of other estimation strategies and filters were introduced to overcome robustness issues, such as the smooth variable structure filter (SVSF). In this paper, properties of the SVSF are explored in an effort to detect and diagnosis faults in an electromechanical system. The results are compared with the KF method, and future work is discussed.

  19. PDSS/IMC requirements and functional specifications

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The system (software and hardware) requirements for the Payload Development Support System (PDSS)/Image Motion Compensator (IMC) are provided. The PDSS/IMC system provides the capability for performing Image Motion Compensator Electronics (IMCE) flight software test, checkout, and verification and provides the capability for monitoring the IMC flight computer system during qualification testing for fault detection and fault isolation.

  20. FERMILAB CRYOMODULE TEST STAND RF INTERLOCK SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, Troy; Diamond, J. S.; McDowell, D.

    2016-10-12

    An interlock system has been designed for the Fermilab Cryo-module Test Stand (CMTS), a test bed for the cryo- modules to be used in the upcoming Linac Coherent Light Source 2 (LCLS-II) project at SLAC. The interlock system features 8 independent subsystems, one per superconducting RF cavity and solid state amplifier (SSA) pair. Each system monitors several devices to detect fault conditions such as arcing in the waveguides or quenching of the SRF system. Additionally each system can detect fault conditions by monitoring the RF power seen at the cavity coupler through a directional coupler. In the event of amore » fault condition, each system is capable of removing RF signal to the amplifier (via a fast RF switch) as well as turning off the SSA. Additionally, each input signal is available for re- mote viewing and recording via a Fermilab designed digitizer board and MVME 5500 processor.« less

  1. ASCS online fault detection and isolation based on an improved MPCA

    NASA Astrophysics Data System (ADS)

    Peng, Jianxin; Liu, Haiou; Hu, Yuhui; Xi, Junqiang; Chen, Huiyan

    2014-09-01

    Multi-way principal component analysis (MPCA) has received considerable attention and been widely used in process monitoring. A traditional MPCA algorithm unfolds multiple batches of historical data into a two-dimensional matrix and cut the matrix along the time axis to form subspaces. However, low efficiency of subspaces and difficult fault isolation are the common disadvantages for the principal component model. This paper presents a new subspace construction method based on kernel density estimation function that can effectively reduce the storage amount of the subspace information. The MPCA model and the knowledge base are built based on the new subspace. Then, fault detection and isolation with the squared prediction error (SPE) statistic and the Hotelling ( T 2) statistic are also realized in process monitoring. When a fault occurs, fault isolation based on the SPE statistic is achieved by residual contribution analysis of different variables. For fault isolation of subspace based on the T 2 statistic, the relationship between the statistic indicator and state variables is constructed, and the constraint conditions are presented to check the validity of fault isolation. Then, to improve the robustness of fault isolation to unexpected disturbances, the statistic method is adopted to set the relation between single subspace and multiple subspaces to increase the corrective rate of fault isolation. Finally fault detection and isolation based on the improved MPCA is used to monitor the automatic shift control system (ASCS) to prove the correctness and effectiveness of the algorithm. The research proposes a new subspace construction method to reduce the required storage capacity and to prove the robustness of the principal component model, and sets the relationship between the state variables and fault detection indicators for fault isolation.

  2. Regional investigations of tectonic and igneous geology, Iran, Pakistan, and Turkey

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The author has identified the following significant results. An extension of the trace of the Chaman-Nushki fault was detected and delineated for 42 km, as was the Ornach-Nal fault for 170 km. Two structural intersections responsible for restricted movements in particular segments of the Chaman-Nushki fault were detected and interpreted. The newest and youngest fault named the Quetta-Mustung-Surab system was delineated for 580 km. The igneous complex of the Lasbela area was interpreted and differentiation was made between ultramafic complex, mafic complex, and basaltic lava flows. One oblong feature was also found which was interpreted as a porphyritic basalt plug.

  3. Intelligent fault-tolerant controllers

    NASA Technical Reports Server (NTRS)

    Huang, Chien Y.

    1987-01-01

    A system with fault tolerant controls is one that can detect, isolate, and estimate failures and perform necessary control reconfiguration based on this new information. Artificial intelligence (AI) is concerned with semantic processing, and it has evolved to include the topics of expert systems and machine learning. This research represents an attempt to apply AI to fault tolerant controls, hence, the name intelligent fault tolerant control (IFTC). A generic solution to the problem is sought, providing a system based on logic in addition to analytical tools, and offering machine learning capabilities. The advantages are that redundant system specific algorithms are no longer needed, that reasonableness is used to quickly choose the correct control strategy, and that the system can adapt to new situations by learning about its effects on system dynamics.

  4. An Integrated Fault Tolerant Robotic Controller System for High Reliability and Safety

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Tso, Kam S.; Hecht, Myron

    1994-01-01

    This paper describes the concepts and features of a fault-tolerant intelligent robotic control system being developed for applications that require high dependability (reliability, availability, and safety). The system consists of two major elements: a fault-tolerant controller and an operator workstation. The fault-tolerant controller uses a strategy which allows for detection and recovery of hardware, operating system, and application software failures.The fault-tolerant controller can be used by itself in a wide variety of applications in industry, process control, and communications. The controller in combination with the operator workstation can be applied to robotic applications such as spaceborne extravehicular activities, hazardous materials handling, inspection and maintenance of high value items (e.g., space vehicles, reactor internals, or aircraft), medicine, and other tasks where a robot system failure poses a significant risk to life or property.

  5. Testability analysis on a hydraulic system in a certain equipment based on simulation model

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Cong, Hua; Liu, Yuanhong; Feng, Fuzhou

    2018-03-01

    Aiming at the problem that the complicated structure and the shortage of fault statistics information in hydraulic systems, a multi value testability analysis method based on simulation model is proposed. Based on the simulation model of AMESim, this method injects the simulated faults and records variation of test parameters ,such as pressure, flow rate, at each test point compared with those under normal conditions .Thus a multi-value fault-test dependency matrix is established. Then the fault detection rate (FDR) and fault isolation rate (FIR) are calculated based on the dependency matrix. Finally the system of testability and fault diagnosis capability are analyzed and evaluated, which can only reach a lower 54%(FDR) and 23%(FIR). In order to improve testability performance of the system,. number and position of the test points are optimized on the system. Results show the proposed test placement scheme can be used to solve the problems that difficulty, inefficiency and high cost in the system maintenance.

  6. Multiple sensor fault diagnosis for dynamic processes.

    PubMed

    Li, Cheng-Chih; Jeng, Jyh-Cheng

    2010-10-01

    Modern industrial plants are usually large scaled and contain a great amount of sensors. Sensor fault diagnosis is crucial and necessary to process safety and optimal operation. This paper proposes a systematic approach to detect, isolate and identify multiple sensor faults for multivariate dynamic systems. The current work first defines deviation vectors for sensor observations, and further defines and derives the basic sensor fault matrix (BSFM), consisting of the normalized basic fault vectors, by several different methods. By projecting a process deviation vector to the space spanned by BSFM, this research uses a vector with the resulted weights on each direction for multiple sensor fault diagnosis. This study also proposes a novel monitoring index and derives corresponding sensor fault detectability. The study also utilizes that vector to isolate and identify multiple sensor faults, and discusses the isolatability and identifiability. Simulation examples and comparison with two conventional PCA-based contribution plots are presented to demonstrate the effectiveness of the proposed methodology. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Galileo spacecraft power distribution and autonomous fault recovery

    NASA Technical Reports Server (NTRS)

    Detwiler, R. C.

    1982-01-01

    There is a trend in current spacecraft design to achieve greater fault tolerance through the implemenation of on-board software dedicated to detecting and isolating failures. A combination of hardware and software is utilized in the Galileo power system for autonomous fault recovery. Galileo is a dual-spun spacecraft designed to carry a number of scientific instruments into a series of orbits around the planet Jupiter. In addition to its self-contained scientific payload, it will also carry a probe system which will be separated from the spacecraft some 150 days prior to Jupiter encounter. The Galileo spacecraft is scheduled to be launched in 1985. Attention is given to the power system, the fault protection requirements, and the power fault recovery implementation.

  8. Analytical and experimental vibration analysis of a faulty gear system

    NASA Astrophysics Data System (ADS)

    Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.

    1994-10-01

    A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structures. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville Distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  9. Analytical and experimental vibration analysis of a faulty gear system

    NASA Astrophysics Data System (ADS)

    Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.

    1994-10-01

    A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structure. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  10. Analytical and Experimental Vibration Analysis of a Faulty Gear System

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.

    1994-01-01

    A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structure. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  11. A Negative Selection Immune System Inspired Methodology for Fault Diagnosis of Wind Turbines.

    PubMed

    Alizadeh, Esmaeil; Meskin, Nader; Khorasani, Khashayar

    2017-11-01

    High operational and maintenance costs represent as major economic constraints in the wind turbine (WT) industry. These concerns have made investigation into fault diagnosis of WT systems an extremely important and active area of research. In this paper, an immune system (IS) inspired methodology for performing fault detection and isolation (FDI) of a WT system is proposed and developed. The proposed scheme is based on a self nonself discrimination paradigm of a biological IS. Specifically, the negative selection mechanism [negative selection algorithm (NSA)] of the human body is utilized. In this paper, a hierarchical bank of NSAs are designed to detect and isolate both individual as well as simultaneously occurring faults common to the WTs. A smoothing moving window filter is then utilized to further improve the reliability and performance of the FDI scheme. Moreover, the performance of our proposed scheme is compared with another state-of-the-art data-driven technique, namely the support vector machines (SVMs) to demonstrate and illustrate the superiority and advantages of our proposed NSA-based FDI scheme. Finally, a nonparametric statistical comparison test is implemented to evaluate our proposed methodology with that of the SVM under various fault severities.

  12. Evaluation of passenger health risk assessment of sustainable indoor air quality monitoring in metro systems based on a non-Gaussian dynamic sensor validation method.

    PubMed

    Kim, MinJeong; Liu, Hongbin; Kim, Jeong Tai; Yoo, ChangKyoo

    2014-08-15

    Sensor faults in metro systems provide incorrect information to indoor air quality (IAQ) ventilation systems, resulting in the miss-operation of ventilation systems and adverse effects on passenger health. In this study, a new sensor validation method is proposed to (1) detect, identify and repair sensor faults and (2) evaluate the influence of sensor reliability on passenger health risk. To address the dynamic non-Gaussianity problem of IAQ data, dynamic independent component analysis (DICA) is used. To detect and identify sensor faults, the DICA-based squared prediction error and sensor validity index are used, respectively. To restore the faults to normal measurements, a DICA-based iterative reconstruction algorithm is proposed. The comprehensive indoor air-quality index (CIAI) that evaluates the influence of the current IAQ on passenger health is then compared using the faulty and reconstructed IAQ data sets. Experimental results from a metro station showed that the DICA-based method can produce an improved IAQ level in the metro station and reduce passenger health risk since it more accurately validates sensor faults than do conventional methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Methodologies for Adaptive Flight Envelope Estimation and Protection

    NASA Technical Reports Server (NTRS)

    Tang, Liang; Roemer, Michael; Ge, Jianhua; Crassidis, Agamemnon; Prasad, J. V. R.; Belcastro, Christine

    2009-01-01

    This paper reports the latest development of several techniques for adaptive flight envelope estimation and protection system for aircraft under damage upset conditions. Through the integration of advanced fault detection algorithms, real-time system identification of the damage/faulted aircraft and flight envelop estimation, real-time decision support can be executed autonomously for improving damage tolerance and flight recoverability. Particularly, a bank of adaptive nonlinear fault detection and isolation estimators were developed for flight control actuator faults; a real-time system identification method was developed for assessing the dynamics and performance limitation of impaired aircraft; online learning neural networks were used to approximate selected aircraft dynamics which were then inverted to estimate command margins. As off-line training of network weights is not required, the method has the advantage of adapting to varying flight conditions and different vehicle configurations. The key benefit of the envelope estimation and protection system is that it allows the aircraft to fly close to its limit boundary by constantly updating the controller command limits during flight. The developed techniques were demonstrated on NASA s Generic Transport Model (GTM) simulation environments with simulated actuator faults. Simulation results and remarks on future work are presented.

  14. Autonomous power expert fault diagnostic system for Space Station Freedom electrical power system testbed

    NASA Technical Reports Server (NTRS)

    Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.

  15. Evaluation of MEMS-Based Wireless Accelerometer Sensors in Detecting Gear Tooth Faults in Helicopter Transmissions

    NASA Technical Reports Server (NTRS)

    Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.

    2015-01-01

    The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.

  16. Extended Testability Analysis Tool

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin; Maul, William A.; Fulton, Christopher

    2012-01-01

    The Extended Testability Analysis (ETA) Tool is a software application that supports fault management (FM) by performing testability analyses on the fault propagation model of a given system. Fault management includes the prevention of faults through robust design margins and quality assurance methods, or the mitigation of system failures. Fault management requires an understanding of the system design and operation, potential failure mechanisms within the system, and the propagation of those potential failures through the system. The purpose of the ETA Tool software is to process the testability analysis results from a commercial software program called TEAMS Designer in order to provide a detailed set of diagnostic assessment reports. The ETA Tool is a command-line process with several user-selectable report output options. The ETA Tool also extends the COTS testability analysis and enables variation studies with sensor sensitivity impacts on system diagnostics and component isolation using a single testability output. The ETA Tool can also provide extended analyses from a single set of testability output files. The following analysis reports are available to the user: (1) the Detectability Report provides a breakdown of how each tested failure mode was detected, (2) the Test Utilization Report identifies all the failure modes that each test detects, (3) the Failure Mode Isolation Report demonstrates the system s ability to discriminate between failure modes, (4) the Component Isolation Report demonstrates the system s ability to discriminate between failure modes relative to the components containing the failure modes, (5) the Sensor Sensor Sensitivity Analysis Report shows the diagnostic impact due to loss of sensor information, and (6) the Effect Mapping Report identifies failure modes that result in specified system-level effects.

  17. Model-Based Fault Diagnosis: Performing Root Cause and Impact Analyses in Real Time

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge F.; Walker, Mark G.; Kapadia, Ravi; Morris, Jonathan

    2012-01-01

    Generic, object-oriented fault models, built according to causal-directed graph theory, have been integrated into an overall software architecture dedicated to monitoring and predicting the health of mission- critical systems. Processing over the generic fault models is triggered by event detection logic that is defined according to the specific functional requirements of the system and its components. Once triggered, the fault models provide an automated way for performing both upstream root cause analysis (RCA), and for predicting downstream effects or impact analysis. The methodology has been applied to integrated system health management (ISHM) implementations at NASA SSC's Rocket Engine Test Stands (RETS).

  18. Cost-effective and monitoring-active technique for TDM-passive optical networks

    NASA Astrophysics Data System (ADS)

    Chi, Chang-Chia; Lin, Hong-Mao; Tarn, Chen-Wen; Lin, Huang-Liang

    2014-08-01

    A reliable, detection-active and cost-effective method which employs the hello and heartbeat signals for branched node distinguishing to monitor fiber fault in any branch of distribution fibers of a time division multiplexing passive optical network (TDM-PON) is proposed. With this method, the material cost of building an optical network monitor system for a TDM-PON with 168 ONUs and the time of identifying a multiple branch faults is significantly reduced in a TDM-PON system of any scale. A fault location in a 1 × 32 TDM-PON system using this method to identify the fault branch is demonstrated.

  19. Identification and detection of anomalies through SSME data analysis

    NASA Technical Reports Server (NTRS)

    Pereira, Lisa; Ali, Moonis

    1990-01-01

    The goal of the ongoing research described in this paper is to analyze real-time ground test data in order to identify patterns associated with the anomalous engine behavior, and on the basis of this analysis to develop an expert system which detects anomalous engine behavior in the early stages of fault development. A prototype of the expert system has been developed and tested on the high frequency data of two SSME tests, namely Test #901-0516 and Test #904-044. The comparison of our results with the post-test analyses indicates that the expert system detected the presence of the anomalies in a significantly early stage of fault development.

  20. Framework for a space shuttle main engine health monitoring system

    NASA Technical Reports Server (NTRS)

    Hawman, Michael W.; Galinaitis, William S.; Tulpule, Sharayu; Mattedi, Anita K.; Kamenetz, Jeffrey

    1990-01-01

    A framework developed for a health management system (HMS) which is directed at improving the safety of operation of the Space Shuttle Main Engine (SSME) is summarized. An emphasis was placed on near term technology through requirements to use existing SSME instrumentation and to demonstrate the HMS during SSME ground tests within five years. The HMS framework was developed through an analysis of SSME failure modes, fault detection algorithms, sensor technologies, and hardware architectures. A key feature of the HMS framework design is that a clear path from the ground test system to a flight HMS was maintained. Fault detection techniques based on time series, nonlinear regression, and clustering algorithms were developed and demonstrated on data from SSME ground test failures. The fault detection algorithms exhibited 100 percent detection of faults, had an extremely low false alarm rate, and were robust to sensor loss. These algorithms were incorporated into a hierarchical decision making strategy for overall assessment of SSME health. A preliminary design for a hardware architecture capable of supporting real time operation of the HMS functions was developed. Utilizing modular, commercial off-the-shelf components produced a reliable low cost design with the flexibility to incorporate advances in algorithm and sensor technology as they become available.

  1. Fault Management Techniques in Human Spaceflight Operations

    NASA Technical Reports Server (NTRS)

    O'Hagan, Brian; Crocker, Alan

    2006-01-01

    This paper discusses human spaceflight fault management operations. Fault detection and response capabilities available in current US human spaceflight programs Space Shuttle and International Space Station are described while emphasizing system design impacts on operational techniques and constraints. Preflight and inflight processes along with products used to anticipate, mitigate and respond to failures are introduced. Examples of operational products used to support failure responses are presented. Possible improvements in the state of the art, as well as prioritization and success criteria for their implementation are proposed. This paper describes how the architecture of a command and control system impacts operations in areas such as the required fault response times, automated vs. manual fault responses, use of workarounds, etc. The architecture includes the use of redundancy at the system and software function level, software capabilities, use of intelligent or autonomous systems, number and severity of software defects, etc. This in turn drives which Caution and Warning (C&W) events should be annunciated, C&W event classification, operator display designs, crew training, flight control team training, and procedure development. Other factors impacting operations are the complexity of a system, skills needed to understand and operate a system, and the use of commonality vs. optimized solutions for software and responses. Fault detection, annunciation, safing responses, and recovery capabilities are explored using real examples to uncover underlying philosophies and constraints. These factors directly impact operations in that the crew and flight control team need to understand what happened, why it happened, what the system is doing, and what, if any, corrective actions they need to perform. If a fault results in multiple C&W events, or if several faults occur simultaneously, the root cause(s) of the fault(s), as well as their vehicle-wide impacts, must be determined in order to maintain situational awareness. This allows both automated and manual recovery operations to focus on the real cause of the fault(s). An appropriate balance must be struck between correcting the root cause failure and addressing the impacts of that fault on other vehicle components. Lastly, this paper presents a strategy for using lessons learned to improve the software, displays, and procedures in addition to determining what is a candidate for automation. Enabling technologies and techniques are identified to promote system evolution from one that requires manual fault responses to one that uses automation and autonomy where they are most effective. These considerations include the value in correcting software defects in a timely manner, automation of repetitive tasks, making time critical responses autonomous, etc. The paper recommends the appropriate use of intelligent systems to determine the root causes of faults and correctly identify separate unrelated faults.

  2. An information transfer based novel framework for fault root cause tracing of complex electromechanical systems in the processing industry

    NASA Astrophysics Data System (ADS)

    Wang, Rongxi; Gao, Xu; Gao, Jianmin; Gao, Zhiyong; Kang, Jiani

    2018-02-01

    As one of the most important approaches for analyzing the mechanism of fault pervasion, fault root cause tracing is a powerful and useful tool for detecting the fundamental causes of faults so as to prevent any further propagation and amplification. Focused on the problems arising from the lack of systematic and comprehensive integration, an information transfer-based novel data-driven framework for fault root cause tracing of complex electromechanical systems in the processing industry was proposed, taking into consideration the experience and qualitative analysis of conventional fault root cause tracing methods. Firstly, an improved symbolic transfer entropy method was presented to construct a directed-weighted information model for a specific complex electromechanical system based on the information flow. Secondly, considering the feedback mechanisms in the complex electromechanical systems, a method for determining the threshold values of weights was developed to explore the disciplines of fault propagation. Lastly, an iterative method was introduced to identify the fault development process. The fault root cause was traced by analyzing the changes in information transfer between the nodes along with the fault propagation pathway. An actual fault root cause tracing application of a complex electromechanical system is used to verify the effectiveness of the proposed framework. A unique fault root cause is obtained regardless of the choice of the initial variable. Thus, the proposed framework can be flexibly and effectively used in fault root cause tracing for complex electromechanical systems in the processing industry, and formulate the foundation of system vulnerability analysis and condition prediction, as well as other engineering applications.

  3. Detection, isolation and diagnosability analysis of intermittent faults in stochastic systems

    NASA Astrophysics Data System (ADS)

    Yan, Rongyi; He, Xiao; Wang, Zidong; Zhou, D. H.

    2018-02-01

    Intermittent faults (IFs) have the properties of unpredictability, non-determinacy, inconsistency and repeatability, switching systems between faulty and healthy status. In this paper, the fault detection and isolation (FDI) problem of IFs in a class of linear stochastic systems is investigated. For the detection and isolation of IFs, it includes: (1) to detect all the appearing time and the disappearing time of an IF; (2) to detect each appearing (disappearing) time of the IF before the subsequent disappearing (appearing) time; (3) to determine where the IFs happen. Based on the outputs of the observers we designed, a novel set of residuals is constructed by using the sliding-time window technique, and two hypothesis tests are proposed to detect all the appearing time and disappearing time of IFs. The isolation problem of IFs is also considered. Furthermore, within a statistical framework, the definition of the diagnosability of IFs is proposed, and a sufficient condition is brought forward for the diagnosability of IFs. Quantitative performance analysis results for the false alarm rate and missing detection rate are discussed, and the influences of some key parameters of the proposed scheme on performance indices such as the false alarm rate and missing detection rate are analysed rigorously. The effectiveness of the proposed scheme is illustrated via a simulation example of an unmanned helicopter longitudinal control system.

  4. Detection of arcing location on photovoltaic systems using filters

    DOEpatents

    Johnson, Jay

    2018-02-20

    The present invention relates to photovoltaic systems capable of identifying the location of an arc-fault. In particular, such systems include a unique filter connected to each photovoltaic (PV) string, thereby providing a unique filtered noise profile associated with a particular PV string. Also described herein are methods for identifying and isolating such arc-faults.

  5. A soft computing scheme incorporating ANN and MOV energy in fault detection, classification and distance estimation of EHV transmission line with FSC.

    PubMed

    Khadke, Piyush; Patne, Nita; Singh, Arvind; Shinde, Gulab

    2016-01-01

    In this article, a novel and accurate scheme for fault detection, classification and fault distance estimation for a fixed series compensated transmission line is proposed. The proposed scheme is based on artificial neural network (ANN) and metal oxide varistor (MOV) energy, employing Levenberg-Marquardt training algorithm. The novelty of this scheme is the use of MOV energy signals of fixed series capacitors (FSC) as input to train the ANN. Such approach has never been used in any earlier fault analysis algorithms in the last few decades. Proposed scheme uses only single end measurement energy signals of MOV in all the 3 phases over one cycle duration from the occurrence of a fault. Thereafter, these MOV energy signals are fed as input to ANN for fault distance estimation. Feasibility and reliability of the proposed scheme have been evaluated for all ten types of fault in test power system model at different fault inception angles over numerous fault locations. Real transmission system parameters of 3-phase 400 kV Wardha-Aurangabad transmission line (400 km) with 40 % FSC at Power Grid Wardha Substation, India is considered for this research. Extensive simulation experiments show that the proposed scheme provides quite accurate results which demonstrate complete protection scheme with high accuracy, simplicity and robustness.

  6. Cell boundary fault detection system

    DOEpatents

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  7. Common faults and their impacts for rooftop air conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breuker, M.S.; Braun, J.E.

    This paper identifies important faults and their performance impacts for rooftop air conditioners. The frequencies of occurrence and the relative costs of service for different faults were estimated through analysis of service records. Several of the important and difficult to diagnose refrigeration cycle faults were simulated in the laboratory. Also, the impacts on several performance indices were quantified through transient testing for a range of conditions and fault levels. The transient test results indicated that fault detection and diagnostics could be performed using methods that incorporate steady-state assumptions and models. Furthermore, the fault testing led to a set of genericmore » rules for the impacts of faults on measurements that could be used for fault diagnoses. The average impacts of the faults on cooling capacity and coefficient of performance (COP) were also evaluated. Based upon the results, all of the faults are significant at the levels introduced, and should be detected and diagnosed by an FDD system. The data set obtained during this work was very comprehensive, and was used to design and evaluate the performance of an FDD method that will be reported in a future paper.« less

  8. Multi-Unmanned Aerial Vehicle (UAV) Cooperative Fault Detection Employing Differential Global Positioning (DGPS), Inertial and Vision Sensors.

    PubMed

    Heredia, Guillermo; Caballero, Fernando; Maza, Iván; Merino, Luis; Viguria, Antidio; Ollero, Aníbal

    2009-01-01

    This paper presents a method to increase the reliability of Unmanned Aerial Vehicle (UAV) sensor Fault Detection and Identification (FDI) in a multi-UAV context. Differential Global Positioning System (DGPS) and inertial sensors are used for sensor FDI in each UAV. The method uses additional position estimations that augment individual UAV FDI system. These additional estimations are obtained using images from the same planar scene taken from two different UAVs. Since accuracy and noise level of the estimation depends on several factors, dynamic replanning of the multi-UAV team can be used to obtain a better estimation in case of faults caused by slow growing errors of absolute position estimation that cannot be detected by using local FDI in the UAVs. Experimental results with data from two real UAVs are also presented.

  9. Functional Fault Modeling Conventions and Practices for Real-Time Fault Isolation

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Brown, Barbara

    2010-01-01

    The purpose of this paper is to present the conventions, best practices, and processes that were established based on the prototype development of a Functional Fault Model (FFM) for a Cryogenic System that would be used for real-time Fault Isolation in a Fault Detection, Isolation, and Recovery (FDIR) system. The FDIR system is envisioned to perform health management functions for both a launch vehicle and the ground systems that support the vehicle during checkout and launch countdown by using a suite of complimentary software tools that alert operators to anomalies and failures in real-time. The FFMs were created offline but would eventually be used by a real-time reasoner to isolate faults in a Cryogenic System. Through their development and review, a set of modeling conventions and best practices were established. The prototype FFM development also provided a pathfinder for future FFM development processes. This paper documents the rationale and considerations for robust FFMs that can easily be transitioned to a real-time operating environment.

  10. Health Monitoring Survey of Bell 412EP Transmissions

    NASA Technical Reports Server (NTRS)

    Tucker, Brian E.; Dempsey, Paula J.

    2016-01-01

    Health and usage monitoring systems (HUMS) use vibration-based Condition Indicators (CI) to assess the health of helicopter powertrain components. A fault is detected when a CI exceeds its threshold value. The effectiveness of fault detection can be judged on the basis of assessing the condition of actual components from fleet aircraft. The Bell 412 HUMS-equipped helicopter is chosen for such an evaluation. A sample of 20 aircraft included 12 aircraft with confirmed transmission and gearbox faults (detected by CIs) and eight aircraft with no known faults. The associated CI data is classified into "healthy" and "faulted" populations based on actual condition and these populations are compared against their CI thresholds to quantify the probability of false alarm and the probability of missed detection. Receiver Operator Characteristic analysis is used to optimize thresholds. Based on the results of the analysis, shortcomings in the classification method are identified for slow-moving CI trends. Recommendations for improving classification using time-dependent receiver-operator characteristic methods are put forth. Finally, lessons learned regarding OEM-operator communication are presented.

  11. An adaptive confidence limit for periodic non-steady conditions fault detection

    NASA Astrophysics Data System (ADS)

    Wang, Tianzhen; Wu, Hao; Ni, Mengqi; Zhang, Milu; Dong, Jingjing; Benbouzid, Mohamed El Hachemi; Hu, Xiong

    2016-05-01

    System monitoring has become a major concern in batch process due to the fact that failure rate in non-steady conditions is much higher than in steady ones. A series of approaches based on PCA have already solved problems such as data dimensionality reduction, multivariable decorrelation, and processing non-changing signal. However, if the data follows non-Gaussian distribution or the variables contain some signal changes, the above approaches are not applicable. To deal with these concerns and to enhance performance in multiperiod data processing, this paper proposes a fault detection method using adaptive confidence limit (ACL) in periodic non-steady conditions. The proposed ACL method achieves four main enhancements: Longitudinal-Standardization could convert non-Gaussian sampling data to Gaussian ones; the multiperiod PCA algorithm could reduce dimensionality, remove correlation, and improve the monitoring accuracy; the adaptive confidence limit could detect faults under non-steady conditions; the fault sections determination procedure could select the appropriate parameter of the adaptive confidence limit. The achieved result analysis clearly shows that the proposed ACL method is superior to other fault detection approaches under periodic non-steady conditions.

  12. Final Technical Report: PV Fault Detection Tool.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Bruce Hardison; Jones, Christian Birk

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  13. SSME fault monitoring and diagnosis expert system

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Norman, Arnold M.; Gupta, U. K.

    1989-01-01

    An expert system, called LEADER, has been designed and implemented for automatic learning, detection, identification, verification, and correction of anomalous propulsion system operations in real time. LEADER employs a set of sensors to monitor engine component performance and to detect, identify, and validate abnormalities with respect to varying engine dynamics and behavior. Two diagnostic approaches are adopted in the architecture of LEADER. In the first approach fault diagnosis is performed through learning and identifying engine behavior patterns. LEADER, utilizing this approach, generates few hypotheses about the possible abnormalities. These hypotheses are then validated based on the SSME design and functional knowledge. The second approach directs the processing of engine sensory data and performs reasoning based on the SSME design, functional knowledge, and the deep-level knowledge, i.e., the first principles (physics and mechanics) of SSME subsystems and components. This paper describes LEADER's architecture which integrates a design based reasoning approach with neural network-based fault pattern matching techniques. The fault diagnosis results obtained through the analyses of SSME ground test data are presented and discussed.

  14. A PC based time domain reflectometer for space station cable fault isolation

    NASA Technical Reports Server (NTRS)

    Pham, Michael; McClean, Marty; Hossain, Sabbir; Vo, Peter; Kouns, Ken

    1994-01-01

    Significant problems are faced by astronauts on orbit in the Space Station when trying to locate electrical faults in multi-segment avionics and communication cables. These problems necessitate the development of an automated portable device that will detect and locate cable faults using the pulse-echo technique known as Time Domain Reflectometry. A breadboard time domain reflectometer (TDR) circuit board was designed and developed at the NASA-JSC. The TDR board works in conjunction with a GRiD lap-top computer to automate the fault detection and isolation process. A software program was written to automatically display the nature and location of any possible faults. The breadboard system can isolate open circuit and short circuit faults within two feet in a typical space station cable configuration. Follow-on efforts planned for 1994 will produce a compact, portable prototype Space Station TDR capable of automated switching in multi-conductor cables for high fidelity evaluation. This device has many possible commercial applications, including commercial and military aircraft avionics, cable TV, telephone, communication, information and computer network systems. This paper describes the principle of time domain reflectometry and the methodology for on-orbit avionics utility distribution system repair, utilizing the newly developed device called the Space Station Time Domain Reflectometer (SSTDR).

  15. All row, planar fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D; Smith, Brian Edward

    2013-07-23

    An apparatus, program product and method for detecting nodal faults may simultaneously cause designated nodes of a cell to communicate with all nodes adjacent to each of the designated nodes. Furthermore, all nodes along the axes of the designated nodes are made to communicate with their adjacent nodes, and the communications are analyzed to determine if a node or connection is faulty.

  16. Fault-Tolerant Computing: An Overview

    DTIC Science & Technology

    1991-06-01

    Addison Wesley:, Reading, MA) 1984. [8] J. Wakerly , Error Detecting Codes, Self-Checking Circuits and Applications , (Elsevier North Holland, Inc.- New York... applicable to bit-sliced organi- zations of hardware. In the first time step, the normal computation is performed on the operands and the results...for error detection and fault tolerance in parallel processor systems while perform- ing specific computation-intensive applications [111. Contrary to

  17. Model-based development of a fault signature matrix to improve solid oxide fuel cell systems on-site diagnosis

    NASA Astrophysics Data System (ADS)

    Polverino, Pierpaolo; Pianese, Cesare; Sorrentino, Marco; Marra, Dario

    2015-04-01

    The paper focuses on the design of a procedure for the development of an on-field diagnostic algorithm for solid oxide fuel cell (SOFC) systems. The diagnosis design phase relies on an in-deep analysis of the mutual interactions among all system components by exploiting the physical knowledge of the SOFC system as a whole. This phase consists of the Fault Tree Analysis (FTA), which identifies the correlations among possible faults and their corresponding symptoms at system components level. The main outcome of the FTA is an inferential isolation tool (Fault Signature Matrix - FSM), which univocally links the faults to the symptoms detected during the system monitoring. In this work the FTA is considered as a starting point to develop an improved FSM. Making use of a model-based investigation, a fault-to-symptoms dependency study is performed. To this purpose a dynamic model, previously developed by the authors, is exploited to simulate the system under faulty conditions. Five faults are simulated, one for the stack and four occurring at BOP level. Moreover, the robustness of the FSM design is increased by exploiting symptom thresholds defined for the investigation of the quantitative effects of the simulated faults on the affected variables.

  18. Architecture Specification for PAVE PILLAR Avionics

    DTIC Science & Technology

    1987-01-01

    PAVE PILLAR system is 99% fault detection. The percent fault detection is determined by the following computation. The number of verified failures de ...reconfiguration or reparameterization requi’red to support manual operations rests w’ith the Mission Supervi’sor. 3.3.8 corm~utr _ De in 3.3.8.1 Hither...1Order Ti.rie Su ’, .S.yStem The Operational Flight Program (OFP) will be de - veloped in accordance with the requirements of the Ada (ANSI/ MIL-STD

  19. Unbalance detection in rotor systems with active bearings using self-sensing piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Ambur, Ramakrishnan; Rinderknecht, Stephan

    2018-03-01

    Machines which are developed today are highly automated due to increased use of mechatronic systems. To ensure their reliable operation, fault detection and isolation (FDI) is an important feature along with a better control. This research work aims to achieve and integrate both these functions with minimum number of components in a mechatronic system. This article investigates a rotating machine with active bearings equipped with piezoelectric actuators. There is an inherent coupling between their electrical and mechanical properties because of which they can also be used as sensors. Mechanical deflection can be reconstructed from these self-sensing actuators from measured voltage and current signals. These virtual sensor signals are utilised to detect unbalance in a rotor system. Parameters of unbalance such as its magnitude and phase are detected by parametric estimation method in frequency domain. Unbalance location has been identified using hypothesis of localization of faults. Robustness of the estimates against outliers in measurements is improved using weighted least squares method. Unbalances are detected in a real test bench apart from simulation using its model. Experiments are performed in stationary as well as in transient case. As a further step unbalances are estimated during simultaneous actuation of actuators in closed loop with an adaptive algorithm for vibration minimisation. This strategy could be used in systems which aim for both fault detection and control action.

  20. Fault Detection, Isolation and Recovery (FDIR) Portable Liquid Oxygen Hardware Demonstrator

    NASA Technical Reports Server (NTRS)

    Oostdyk, Rebecca L.; Perotti, Jose M.

    2011-01-01

    The Fault Detection, Isolation and Recovery (FDIR) hardware demonstration will highlight the effort being conducted by Constellation's Ground Operations (GO) to provide the Launch Control System (LCS) with system-level health management during vehicle processing and countdown activities. A proof-of-concept demonstration of the FDIR prototype established the capability of the software to provide real-time fault detection and isolation using generated Liquid Hydrogen data. The FDIR portable testbed unit (presented here) aims to enhance FDIR by providing a dynamic simulation of Constellation subsystems that feed the FDIR software live data based on Liquid Oxygen system properties. The LO2 cryogenic ground system has key properties that are analogous to the properties of an electronic circuit. The LO2 system is modeled using electrical components and an equivalent circuit is designed on a printed circuit board to simulate the live data. The portable testbed is also be equipped with data acquisition and communication hardware to relay the measurements to the FDIR application running on a PC. This portable testbed is an ideal capability to perform FDIR software testing, troubleshooting, training among others.

  1. Fault detection and diagnosis for refrigerator from compressor sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keres, Stephen L.; Gomes, Alberto Regio; Litch, Andrew D.

    A refrigerator, a sealed refrigerant system, and method are provided where the refrigerator includes at least a refrigerated compartment and a sealed refrigerant system including an evaporator, a compressor, a condenser, a controller, an evaporator fan, and a condenser fan. The method includes monitoring a frequency of the compressor, and identifying a fault condition in the at least one component of the refrigerant sealed system in response to the compressor frequency. The method may further comprise calculating a compressor frequency rate based upon the rate of change of the compressor frequency, wherein a fault in the condenser fan is identifiedmore » if the compressor frequency rate is positive and exceeds a condenser fan fault threshold rate, and wherein a fault in the evaporator fan is identified if the compressor frequency rate is negative and exceeds an evaporator fan fault threshold rate.« less

  2. Intelligent classifier for dynamic fault patterns based on hidden Markov model

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Feng, Yuguang; Yu, Jinsong

    2006-11-01

    It's difficult to build precise mathematical models for complex engineering systems because of the complexity of the structure and dynamics characteristics. Intelligent fault diagnosis introduces artificial intelligence and works in a different way without building the analytical mathematical model of a diagnostic object, so it's a practical approach to solve diagnostic problems of complex systems. This paper presents an intelligent fault diagnosis method, an integrated fault-pattern classifier based on Hidden Markov Model (HMM). This classifier consists of dynamic time warping (DTW) algorithm, self-organizing feature mapping (SOFM) network and Hidden Markov Model. First, after dynamic observation vector in measuring space is processed by DTW, the error vector including the fault feature of being tested system is obtained. Then a SOFM network is used as a feature extractor and vector quantization processor. Finally, fault diagnosis is realized by fault patterns classifying with the Hidden Markov Model classifier. The importing of dynamic time warping solves the problem of feature extracting from dynamic process vectors of complex system such as aeroengine, and makes it come true to diagnose complex system by utilizing dynamic process information. Simulating experiments show that the diagnosis model is easy to extend, and the fault pattern classifier is efficient and is convenient to the detecting and diagnosing of new faults.

  3. Batch process fault detection and identification based on discriminant global preserving kernel slow feature analysis.

    PubMed

    Zhang, Hanyuan; Tian, Xuemin; Deng, Xiaogang; Cao, Yuping

    2018-05-16

    As an attractive nonlinear dynamic data analysis tool, global preserving kernel slow feature analysis (GKSFA) has achieved great success in extracting the high nonlinearity and inherently time-varying dynamics of batch process. However, GKSFA is an unsupervised feature extraction method and lacks the ability to utilize batch process class label information, which may not offer the most effective means for dealing with batch process monitoring. To overcome this problem, we propose a novel batch process monitoring method based on the modified GKSFA, referred to as discriminant global preserving kernel slow feature analysis (DGKSFA), by closely integrating discriminant analysis and GKSFA. The proposed DGKSFA method can extract discriminant feature of batch process as well as preserve global and local geometrical structure information of observed data. For the purpose of fault detection, a monitoring statistic is constructed based on the distance between the optimal kernel feature vectors of test data and normal data. To tackle the challenging issue of nonlinear fault variable identification, a new nonlinear contribution plot method is also developed to help identifying the fault variable after a fault is detected, which is derived from the idea of variable pseudo-sample trajectory projection in DGKSFA nonlinear biplot. Simulation results conducted on a numerical nonlinear dynamic system and the benchmark fed-batch penicillin fermentation process demonstrate that the proposed process monitoring and fault diagnosis approach can effectively detect fault and distinguish fault variables from normal variables. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  4. An Integrated Framework for Model-Based Distributed Diagnosis and Prognosis

    NASA Technical Reports Server (NTRS)

    Bregon, Anibal; Daigle, Matthew J.; Roychoudhury, Indranil

    2012-01-01

    Diagnosis and prognosis are necessary tasks for system reconfiguration and fault-adaptive control in complex systems. Diagnosis consists of detection, isolation and identification of faults, while prognosis consists of prediction of the remaining useful life of systems. This paper presents a novel integrated framework for model-based distributed diagnosis and prognosis, where system decomposition is used to enable the diagnosis and prognosis tasks to be performed in a distributed way. We show how different submodels can be automatically constructed to solve the local diagnosis and prognosis problems. We illustrate our approach using a simulated four-wheeled rover for different fault scenarios. Our experiments show that our approach correctly performs distributed fault diagnosis and prognosis in an efficient and robust manner.

  5. Advanced instrumentation concepts for environmental control subsystems

    NASA Technical Reports Server (NTRS)

    Yang, P. Y.; Schubert, F. H.; Gyorki, J. R.; Wynveen, R. A.

    1978-01-01

    Design, evaluation and demonstration of advanced instrumentation concepts for improving performance of manned spacecraft environmental control and life support systems were successfully completed. Concepts to aid maintenance following fault detection and isolation were defined. A computer-guided fault correction instruction program was developed and demonstrated in a packaged unit which also contains the operator/system interface.

  6. Fault Diagnostics for Turbo-Shaft Engine Sensors Based on a Simplified On-Board Model

    PubMed Central

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient. PMID:23112645

  7. Fault diagnostics for turbo-shaft engine sensors based on a simplified on-board model.

    PubMed

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.

  8. Reliability Assessment for Low-cost Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Freeman, Paul Michael

    Existing low-cost unmanned aerospace systems are unreliable, and engineers must blend reliability analysis with fault-tolerant control in novel ways. This dissertation introduces the University of Minnesota unmanned aerial vehicle flight research platform, a comprehensive simulation and flight test facility for reliability and fault-tolerance research. An industry-standard reliability assessment technique, the failure modes and effects analysis, is performed for an unmanned aircraft. Particular attention is afforded to the control surface and servo-actuation subsystem. Maintaining effector health is essential for safe flight; failures may lead to loss of control incidents. Failure likelihood, severity, and risk are qualitatively assessed for several effector failure modes. Design changes are recommended to improve aircraft reliability based on this analysis. Most notably, the control surfaces are split, providing independent actuation and dual-redundancy. The simulation models for control surface aerodynamic effects are updated to reflect the split surfaces using a first-principles geometric analysis. The failure modes and effects analysis is extended by using a high-fidelity nonlinear aircraft simulation. A trim state discovery is performed to identify the achievable steady, wings-level flight envelope of the healthy and damaged vehicle. Tolerance of elevator actuator failures is studied using familiar tools from linear systems analysis. This analysis reveals significant inherent performance limitations for candidate adaptive/reconfigurable control algorithms used for the vehicle. Moreover, it demonstrates how these tools can be applied in a design feedback loop to make safety-critical unmanned systems more reliable. Control surface impairments that do occur must be quickly and accurately detected. This dissertation also considers fault detection and identification for an unmanned aerial vehicle using model-based and model-free approaches and applies those algorithms to experimental faulted and unfaulted flight test data. Flight tests are conducted with actuator faults that affect the plant input and sensor faults that affect the vehicle state measurements. A model-based detection strategy is designed and uses robust linear filtering methods to reject exogenous disturbances, e.g. wind, while providing robustness to model variation. A data-driven algorithm is developed to operate exclusively on raw flight test data without physical model knowledge. The fault detection and identification performance of these complementary but different methods is compared. Together, enhanced reliability assessment and multi-pronged fault detection and identification techniques can help to bring about the next generation of reliable low-cost unmanned aircraft.

  9. Latest Progress of Fault Detection and Localization in Complex Electrical Engineering

    NASA Astrophysics Data System (ADS)

    Zhao, Zheng; Wang, Can; Zhang, Yagang; Sun, Yi

    2014-01-01

    In the researches of complex electrical engineering, efficient fault detection and localization schemes are essential to quickly detect and locate faults so that appropriate and timely corrective mitigating and maintenance actions can be taken. In this paper, under the current measurement precision of PMU, we will put forward a new type of fault detection and localization technology based on fault factor feature extraction. Lots of simulating experiments indicate that, although there are disturbances of white Gaussian stochastic noise, based on fault factor feature extraction principal, the fault detection and localization results are still accurate and reliable, which also identifies that the fault detection and localization technology has strong anti-interference ability and great redundancy.

  10. A Wireless Sensor System for Real-Time Monitoring and Fault Detection of Motor Arrays

    PubMed Central

    Medina-García, Jonathan; Sánchez-Rodríguez, Trinidad; Galán, Juan Antonio Gómez; Delgado, Aránzazu; Gómez-Bravo, Fernando; Jiménez, Raúl

    2017-01-01

    This paper presents a wireless fault detection system for industrial motors that combines vibration, motor current and temperature analysis, thus improving the detection of mechanical faults. The design also considers the time of detection and further possible actions, which are also important for the early detection of possible malfunctions, and thus for avoiding irreversible damage to the motor. The remote motor condition monitoring is implemented through a wireless sensor network (WSN) based on the IEEE 802.15.4 standard. The deployed network uses the beacon-enabled mode to synchronize several sensor nodes with the coordinator node, and the guaranteed time slot mechanism provides data monitoring with a predetermined latency. A graphic user interface offers remote access to motor conditions and real-time monitoring of several parameters. The developed wireless sensor node exhibits very low power consumption since it has been optimized both in terms of hardware and software. The result is a low cost, highly reliable and compact design, achieving a high degree of autonomy of more than two years with just one 3.3 V/2600 mAh battery. Laboratory and field tests confirm the feasibility of the wireless system. PMID:28245623

  11. A Wireless Sensor System for Real-Time Monitoring and Fault Detection of Motor Arrays.

    PubMed

    Medina-García, Jonathan; Sánchez-Rodríguez, Trinidad; Galán, Juan Antonio Gómez; Delgado, Aránzazu; Gómez-Bravo, Fernando; Jiménez, Raúl

    2017-02-25

    This paper presents a wireless fault detection system for industrial motors that combines vibration, motor current and temperature analysis, thus improving the detection of mechanical faults. The design also considers the time of detection and further possible actions, which are also important for the early detection of possible malfunctions, and thus for avoiding irreversible damage to the motor. The remote motor condition monitoring is implemented through a wireless sensor network (WSN) based on the IEEE 802.15.4 standard. The deployed network uses the beacon-enabled mode to synchronize several sensor nodes with the coordinator node, and the guaranteed time slot mechanism provides data monitoring with a predetermined latency. A graphic user interface offers remote access to motor conditions and real-time monitoring of several parameters. The developed wireless sensor node exhibits very low power consumption since it has been optimized both in terms of hardware and software. The result is a low cost, highly reliable and compact design, achieving a high degree of autonomy of more than two years with just one 3.3 V/2600 mAh battery. Laboratory and field tests confirm the feasibility of the wireless system.

  12. Cell boundary fault detection system

    DOEpatents

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2011-04-19

    An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  13. A new fault diagnosis algorithm for AUV cooperative localization system

    NASA Astrophysics Data System (ADS)

    Shi, Hongyang; Miao, Zhiyong; Zhang, Yi

    2017-10-01

    Multiple AUVs cooperative localization as a new kind of underwater positioning technology, not only can improve the positioning accuracy, but also has many advantages the single AUV does not have. It is necessary to detect and isolate the fault to increase the reliability and availability of the AUVs cooperative localization system. In this paper, the Extended Multiple Model Adaptive Cubature Kalmam Filter (EMMACKF) method is presented to detect the fault. The sensor failures are simulated based on the off-line experimental data. Experimental results have shown that the faulty apparatus can be diagnosed effectively using the proposed method. Compared with Multiple Model Adaptive Extended Kalman Filter and Multi-Model Adaptive Unscented Kalman Filter, both accuracy and timelines have been improved to some extent.

  14. Fault detection for discrete-time LPV systems using interval observers

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Hui; Yang, Guang-Hong

    2017-10-01

    This paper is concerned with the fault detection (FD) problem for discrete-time linear parameter-varying systems subject to bounded disturbances. A parameter-dependent FD interval observer is designed based on parameter-dependent Lyapunov and slack matrices. The design method is presented by translating the parameter-dependent linear matrix inequalities (LMIs) into finite ones. In contrast to the existing results based on parameter-independent and diagonal Lyapunov matrices, the derived disturbance attenuation, fault sensitivity and nonnegative conditions lead to less conservative LMI characterisations. Furthermore, without the need to design the residual evaluation functions and thresholds, the residual intervals generated by the interval observers are used directly for FD decision. Finally, simulation results are presented for showing the effectiveness and superiority of the proposed method.

  15. Meeting the Challenges of Exploration Systems: Health Management Technologies for Aerospace Systems With Emphasis on Propulsion

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Sowers, T. Shane; Maul, William A.

    2005-01-01

    The constraints of future Exploration Missions will require unique Integrated System Health Management (ISHM) capabilities throughout the mission. An ambitious launch schedule, human-rating requirements, long quiescent periods, limited human access for repair or replacement, and long communication delays all require an ISHM system that can span distinct yet interdependent vehicle subsystems, anticipate failure states, provide autonomous remediation, and support the Exploration Mission from beginning to end. NASA Glenn Research Center has developed and applied health management system technologies to aerospace propulsion systems for almost two decades. Lessons learned from past activities help define the approach to proper ISHM development: sensor selection- identifies sensor sets required for accurate health assessment; data qualification and validation-ensures the integrity of measurement data from sensor to data system; fault detection and isolation-uses measurements in a component/subsystem context to detect faults and identify their point of origin; information fusion and diagnostic decision criteria-aligns data from similar and disparate sources in time and use that data to perform higher-level system diagnosis; and verification and validation-uses data, real or simulated, to provide variable exposure to the diagnostic system for faults that may only manifest themselves in actual implementation, as well as faults that are detectable via hardware testing. This presentation describes a framework for developing health management systems and highlights the health management research activities performed by the Controls and Dynamics Branch at the NASA Glenn Research Center. It illustrates how those activities contribute to the development of solutions for Integrated System Health Management.

  16. Automated Monitoring with a BSP Fault-Detection Test

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L.; Herzog, James P.

    2003-01-01

    The figure schematically illustrates a method and procedure for automated monitoring of an asset, as well as a hardware- and-software system that implements the method and procedure. As used here, asset could signify an industrial process, power plant, medical instrument, aircraft, or any of a variety of other systems that generate electronic signals (e.g., sensor outputs). In automated monitoring, the signals are digitized and then processed in order to detect faults and otherwise monitor operational status and integrity of the monitored asset. The major distinguishing feature of the present method is that the fault-detection function is implemented by use of a Bayesian sequential probability (BSP) technique. This technique is superior to other techniques for automated monitoring because it affords sensitivity, not only to disturbances in the mean values, but also to very subtle changes in the statistical characteristics (variance, skewness, and bias) of the monitored signals.

  17. Diagnostics Tools Identify Faults Prior to Failure

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Through the SBIR program, Rochester, New York-based Impact Technologies LLC collaborated with Ames Research Center to commercialize the Center s Hybrid Diagnostic Engine, or HyDE, software. The fault detecting program is now incorporated into a software suite that identifies potential faults early in the design phase of systems ranging from printers to vehicles and robots, saving time and money.

  18. Development and Evaluation of Fault-Tolerant Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Song, Yong D.; Gupta, Kajal (Technical Monitor)

    2004-01-01

    The research is concerned with developing a new approach to enhancing fault tolerance of flight control systems. The original motivation for fault-tolerant control comes from the need for safe operation of control elements (e.g. actuators) in the event of hardware failures in high reliability systems. One such example is modem space vehicle subjected to actuator/sensor impairments. A major task in flight control is to revise the control policy to balance impairment detectability and to achieve sufficient robustness. This involves careful selection of types and parameters of the controllers and the impairment detecting filters used. It also involves a decision, upon the identification of some failures, on whether and how a control reconfiguration should take place in order to maintain a certain system performance level. In this project new flight dynamic model under uncertain flight conditions is considered, in which the effects of both ramp and jump faults are reflected. Stabilization algorithms based on neural network and adaptive method are derived. The control algorithms are shown to be effective in dealing with uncertain dynamics due to external disturbances and unpredictable faults. The overall strategy is easy to set up and the computation involved is much less as compared with other strategies. Computer simulation software is developed. A serious of simulation studies have been conducted with varying flight conditions.

  19. Investigating Crustal Scale Fault Systems Controlling Volcanic and Hydrothermal Fluid Processes in the South-Central Andes, First Results from a Magnetotelluric Survey

    NASA Astrophysics Data System (ADS)

    Pearce, R.; Mitchell, T. M.; Moorkamp, M.; Araya, J.; Cembrano, J. M.; Yanez, G. A.; Hammond, J. O. S.

    2017-12-01

    At convergent plate boundaries, volcanic orogeny is largely controlled by major thrust fault systems that act as magmatic and hydrothermal fluid conduits through the crust. In the south-central Andes, the volcanically and seismically active Tinguiririca and Planchon-Peteroa volcanoes are considered to be tectonically related to the major El Fierro thrust fault system. These large scale reverse faults are characterized by 500 - 1000m wide hydrothermally altered fault cores, which possess a distinct conductive signature relative to surrounding lithology. In order to establish the subsurface architecture of these fault systems, such conductivity contrasts can be detected using the magnetotelluric method. In this study, LEMI fluxgate-magnetometer long-period and Metronix broadband MT data were collected at 21 sites in a 40km2 survey grid that surrounds this fault system and associated volcanic complexes. Multi-remote referencing techniques is used together with robust processing to obtain reliable impedance estimates between 100 Hz and 1,000s. Our preliminary inversion results provide evidence of structures within the 10 - 20 km depth range that are attributed to this fault system. Further inversions will be conducted to determine the approximate depth extent of these features, and ultimately provide constraints for future geophysical studies aimed to deduce the role of these faults in volcanic orogeny and hydrothermal fluid migration processes in this region of the Andes.

  20. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang

    2016-02-01

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses hidden in vibration signals and performs well for bearing fault diagnosis.

  1. Protection of Renewable-dominated Microgrids: Challenges and Potential Solutions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkhatib, Mohamed; Ellis, Abraham; Milan Biswal

    keywords : Microgrid Protection, Impedance Relay, Signal Processing-based Fault Detec- tion, Networked Microgrids, Communication-Assisted Protection In this report we address the challenge of designing efficient protection system for inverter- dominated microgrids. These microgrids are characterised with limited fault current capacity as a result of current-limiting protection functions of inverters. Typically, inverters limit their fault contribution in sub-cycle time frame to as low as 1.1 per unit. As a result, overcurrent protection could fail completely to detect faults in inverter-dominated microgrids. As part of this project a detailed literature survey of existing and proposed microgrid protection schemes were conducted. The surveymore » concluded that there is a gap in the available microgrid protection methods. The only credible protection solution available in literature for low- fault inverter-dominated microgrids is the differential protection scheme which represents a robust transmission-grade protection solution but at a very high cost. Two non-overcurrent protection schemes were investigated as part of this project; impedance-based protection and transient-based protection. Impedance-based protection depends on monitoring impedance trajectories at feeder relays to detect faults. Two communication-based impedance-based protection schemes were developed. the first scheme utilizes directional elements and pilot signals to locate the fault. The second scheme depends on a Central Protection Unit that communicates with all feeder relays to locate the fault based on directional flags received from feeder relays. The later approach could potentially be adapted to protect networked microgrids and dynamic topology microgrids. Transient-based protection relies on analyzing high frequency transients to detect and locate faults. This approach is very promising but its implementation in the filed faces several challenges. For example, high frequency transients due to faults can be confused with transients due to other events such as capacitor switching. Additionally, while detecting faults by analyzing transients could be doable, locating faults based on analyzing transients is still an open question.« less

  2. The Design of a Fault-Tolerant COTS-Based Bus Architecture for Space Applications

    NASA Technical Reports Server (NTRS)

    Chau, Savio N.; Alkalai, Leon; Tai, Ann T.

    2000-01-01

    The high-performance, scalability and miniaturization requirements together with the power, mass and cost constraints mandate the use of commercial-off-the-shelf (COTS) components and standards in the X2000 avionics system architecture for deep-space missions. In this paper, we report our experiences and findings on the design of an IEEE 1394 compliant fault-tolerant COTS-based bus architecture. While the COTS standard IEEE 1394 adequately supports power management, high performance and scalability, its topological criteria impose restrictions on fault tolerance realization. To circumvent the difficulties, we derive a "stack-tree" topology that not only complies with the IEEE 1394 standard but also facilitates fault tolerance realization in a spaceborne system with limited dedicated resource redundancies. Moreover, by exploiting pertinent standard features of the 1394 interface which are not purposely designed for fault tolerance, we devise a comprehensive set of fault detection mechanisms to support the fault-tolerant bus architecture.

  3. Previously unrecognized now-inactive strand of the North Anatolian fault in the Thrace basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perincek, D.

    1988-08-01

    The North Anatolian fault is a major 1,200 km-long transform fault bounding the Anatolian plate to the north. It formed in late middle Miocene time as a broad shear zone with a number of strands splaying westward in a horsetail fashion. Later, movement became localized along the stem, and the southerly and northerly splays became inactive. One such right-lateral, now-inactive splay is the west-northwest-striking Thrace strike-slip fault system, consisting of three subparallel strike-slip faults. From north to south these are the Kirklareli, Lueleburgaz, and Babaeski fault zones, extending {plus minus} 130 km along the strike. The Thrace fault zone probablymore » connected with the presently active northern strand of the North Anatolian fault in the Sea of Marmara in the southeast and may have joined the Plovdiv graben zone in Bulgaria in the northwest. The Thrace basin in which the Thrace fault system is located, is Cenozoic with a sedimentary basin fill from middle Eocene to Pliocene. The Thrace fault system formed in pre-Pliocene time and had become inactive by the Pliocene. Strike-slip fault zones with normal and reverse separation are detected by seismic reflection profiles and subsurface data. Releasing bend extensional structures (e.g., near the town of Lueleburgaz) and restraining bend compressional structures (near Vakiflar-1 well) are abundant on the fault zones. Umurca and Hamitabad fields are en echelon structures on the Lueleburgaz fault zone. The Thrace strike-slip fault system has itself a horsetail shape, the various strands of which become younger southward. The entire system died before the Pliocene, and motion on the North Anatolian fault zone began to be accommodated in the Sea of Marmara region. Thus the Thrace fault system represents the oldest strand of the North Anatolian fault in the west.« less

  4. A robust data fusion scheme for integrated navigation systems employing fault detection methodology augmented with fuzzy adaptive filtering

    NASA Astrophysics Data System (ADS)

    Ushaq, Muhammad; Fang, Jiancheng

    2013-10-01

    Integrated navigation systems for various applications, generally employs the centralized Kalman filter (CKF) wherein all measured sensor data are communicated to a single central Kalman filter. The advantage of CKF is that there is a minimal loss of information and high precision under benign conditions. But CKF may suffer computational overloading, and poor fault tolerance. The alternative is the federated Kalman filter (FKF) wherein the local estimates can deliver optimal or suboptimal state estimate as per certain information fusion criterion. FKF has enhanced throughput and multiple level fault detection capability. The Standard CKF or FKF require that the system noise and the measurement noise are zero-mean and Gaussian. Moreover it is assumed that covariance of system and measurement noises remain constant. But if the theoretical and actual statistical features employed in Kalman filter are not compatible, the Kalman filter does not render satisfactory solutions and divergence problems also occur. To resolve such problems, in this paper, an adaptive Kalman filter scheme strengthened with fuzzy inference system (FIS) is employed to adapt the statistical features of contributing sensors, online, in the light of real system dynamics and varying measurement noises. The excessive faults are detected and isolated by employing Chi Square test method. As a case study, the presented scheme has been implemented on Strapdown Inertial Navigation System (SINS) integrated with the Celestial Navigation System (CNS), GPS and Doppler radar using FKF. Collectively the overall system can be termed as SINS/CNS/GPS/Doppler integrated navigation system. The simulation results have validated the effectiveness of the presented scheme with significantly enhanced precision, reliability and fault tolerance. Effectiveness of the scheme has been tested against simulated abnormal errors/noises during different time segments of flight. It is believed that the presented scheme can be applied to the navigation system of aircraft or unmanned aerial vehicle (UAV).

  5. Flight test results of the Strapdown hexad Inertial Reference Unit (SIRU). Volume 1: Flight test summary

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Bjorkman, W. S.

    1977-01-01

    Flight test results of the strapdown inertial reference unit (SIRU) navigation system are presented. The fault-tolerant SIRU navigation system features a redundant inertial sensor unit and dual computers. System software provides for detection and isolation of inertial sensor failures and continued operation in the event of failures. Flight test results include assessments of the system's navigational performance and fault tolerance.

  6. Fault detection and isolation in motion monitoring system.

    PubMed

    Kim, Duk-Jin; Suk, Myoung Hoon; Prabhakaran, B

    2012-01-01

    Pervasive computing becomes very active research field these days. A watch that can trace human movement to record motion boundary as well as to study of finding social life pattern by one's localized visiting area. Pervasive computing also helps patient monitoring. A daily monitoring system helps longitudinal study of patient monitoring such as Alzheimer's and Parkinson's or obesity monitoring. Due to the nature of monitoring sensor (on-body wireless sensor), however, signal noise or faulty sensors errors can be present at any time. Many research works have addressed these problems any with a large amount of sensor deployment. In this paper, we present the faulty sensor detection and isolation using only two on-body sensors. We have been investigating three different types of sensor errors: the SHORT error, the CONSTANT error, and the NOISY SENSOR error (see more details on section V). Our experimental results show that the success rate of isolating faulty signals are an average of over 91.5% on fault type 1, over 92% on fault type 2, and over 99% on fault type 3 with the fault prior of 30% sensor errors.

  7. Spacecraft fault tolerance: The Magellan experience

    NASA Technical Reports Server (NTRS)

    Kasuda, Rick; Packard, Donna Sexton

    1993-01-01

    Interplanetary and earth orbiting missions are now imposing unique fault tolerant requirements upon spacecraft design. Mission success is the prime motivator for building spacecraft with fault tolerant systems. The Magellan spacecraft had many such requirements imposed upon its design. Magellan met these requirements by building redundancy into all the major subsystem components and designing the onboard hardware and software with the capability to detect a fault, isolate it to a component, and issue commands to achieve a back-up configuration. This discussion is limited to fault protection, which is the autonomous capability to respond to a fault. The Magellan fault protection design is discussed, as well as the developmental and flight experiences and a summary of the lessons learned.

  8. Eigenstructure Assignment for Fault Tolerant Flight Control Design

    NASA Technical Reports Server (NTRS)

    Sobel, Kenneth; Joshi, Suresh (Technical Monitor)

    2002-01-01

    In recent years, fault tolerant flight control systems have gained an increased interest for high performance military aircraft as well as civil aircraft. Fault tolerant control systems can be described as either active or passive. An active fault tolerant control system has to either reconfigure or adapt the controller in response to a failure. One approach is to reconfigure the controller based upon detection and identification of the failure. Another approach is to use direct adaptive control to adjust the controller without explicitly identifying the failure. In contrast, a passive fault tolerant control system uses a fixed controller which achieves acceptable performance for a presumed set of failures. We have obtained a passive fault tolerant flight control law for the F/A-18 aircraft which achieves acceptable handling qualities for a class of control surface failures. The class of failures includes the symmetric failure of any one control surface being stuck at its trim value. A comparison was made of an eigenstructure assignment gain designed for the unfailed aircraft with a fault tolerant multiobjective optimization gain. We have shown that time responses for the unfailed aircraft using the eigenstructure assignment gain and the fault tolerant gain are identical. Furthermore, the fault tolerant gain achieves MIL-F-8785C specifications for all failure conditions.

  9. A single dynamic observer-based module for design of simultaneous fault detection, isolation and tracking control scheme

    NASA Astrophysics Data System (ADS)

    Davoodi, M.; Meskin, N.; Khorasani, K.

    2018-03-01

    The problem of simultaneous fault detection, isolation and tracking (SFDIT) control design for linear systems subject to both bounded energy and bounded peak disturbances is considered in this work. A dynamic observer is proposed and implemented by using the H∞/H-/L1 formulation of the SFDIT problem. A single dynamic observer module is designed that generates the residuals as well as the control signals. The objective of the SFDIT module is to ensure that simultaneously the effects of disturbances and control signals on the residual signals are minimised (in order to accomplish the fault detection goal) subject to the constraint that the transfer matrix from the faults to the residuals is equal to a pre-assigned diagonal transfer matrix (in order to accomplish the fault isolation goal), while the effects of disturbances, reference inputs and faults on the specified control outputs are minimised (in order to accomplish the fault-tolerant and tracking control goals). A set of linear matrix inequality (LMI) feasibility conditions are derived to ensure solvability of the problem. In order to illustrate and demonstrate the effectiveness of our proposed design methodology, the developed and proposed schemes are applied to an autonomous unmanned underwater vehicle (AUV).

  10. GUI Type Fault Diagnostic Program for a Turboshaft Engine Using Fuzzy and Neural Networks

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Koo, Youngju

    2011-04-01

    The helicopter to be operated in a severe flight environmental condition must have a very reliable propulsion system. On-line condition monitoring and fault detection of the engine can promote reliability and availability of the helicopter propulsion system. A hybrid health monitoring program using Fuzzy Logic and Neural Network Algorithms can be proposed. In this hybrid method, the Fuzzy Logic identifies easily the faulted components from engine measuring parameter changes, and the Neural Networks can quantify accurately its identified faults. In order to use effectively the fault diagnostic system, a GUI (Graphical User Interface) type program is newly proposed. This program is composed of the real time monitoring part, the engine condition monitoring part and the fault diagnostic part. The real time monitoring part can display measuring parameters of the study turboshaft engine such as power turbine inlet temperature, exhaust gas temperature, fuel flow, torque and gas generator speed. The engine condition monitoring part can evaluate the engine condition through comparison between monitoring performance parameters the base performance parameters analyzed by the base performance analysis program using look-up tables. The fault diagnostic part can identify and quantify the single faults the multiple faults from the monitoring parameters using hybrid method.

  11. A residual based adaptive unscented Kalman filter for fault recovery in attitude determination system of microsatellites

    NASA Astrophysics Data System (ADS)

    Le, Huy Xuan; Matunaga, Saburo

    2014-12-01

    This paper presents an adaptive unscented Kalman filter (AUKF) to recover the satellite attitude in a fault detection and diagnosis (FDD) subsystem of microsatellites. The FDD subsystem includes a filter and an estimator with residual generators, hypothesis tests for fault detections and a reference logic table for fault isolations and fault recovery. The recovery process is based on the monitoring of mean and variance values of each attitude sensor behaviors from residual vectors. In the case of normal work, the residual vectors should be in the form of Gaussian white noise with zero mean and fixed variance. When the hypothesis tests for the residual vectors detect something unusual by comparing the mean and variance values with dynamic thresholds, the AUKF with real-time updated measurement noise covariance matrix will be used to recover the sensor faults. The scheme developed in this paper resolves the problem of the heavy and complex calculations during residual generations and therefore the delay in the isolation process is reduced. The numerical simulations for TSUBAME, a demonstration microsatellite of Tokyo Institute of Technology, are conducted and analyzed to demonstrate the working of the AUKF and FDD subsystem.

  12. Geophysical Characterization of the Hilton Creek Fault System

    NASA Astrophysics Data System (ADS)

    Lacy, A. K.; Macy, K. P.; De Cristofaro, J. L.; Polet, J.

    2016-12-01

    The Long Valley Caldera straddles the eastern edge of the Sierra Nevada Batholith and the western edge of the Basin and Range Province, and represents one of the largest caldera complexes on Earth. The caldera is intersected by numerous fault systems, including the Hartley Springs Fault System, the Round Valley Fault System, the Long Valley Ring Fault System, and the Hilton Creek Fault System, which is our main region of interest. The Hilton Creek Fault System appears as a single NW-striking fault, dipping to the NE, from Davis Lake in the south to the southern rim of the Long Valley Caldera. Inside the caldera, it splays into numerous parallel faults that extend toward the resurgent dome. Seismicity in the area increased significantly in May 1980, following a series of large earthquakes in the vicinity of the caldera and a subsequent large earthquake swarm which has been suggested to be the result of magma migration. A large portion of the earthquake swarms in the Long Valley Caldera occurs on or around the Hilton Creek Fault splays. We are conducting an interdisciplinary geophysical study of the Hilton Creek Fault System from just south of the onset of splay faulting, to its extension into the dome of the caldera. Our investigation includes ground-based magnetic field measurements, high-resolution total station elevation profiles, Structure-From-Motion derived topography and an analysis of earthquake focal mechanisms and statistics. Preliminary analysis of topographic profiles, of approximately 1 km in length, reveals the presence of at least three distinct fault splays within the caldera with vertical offsets of 0.5 to 1.0 meters. More detailed topographic mapping is expected to highlight smaller structures. We are also generating maps of the variation in b-value along different portions of the Hilton Creek system to determine whether we can detect any transition to more swarm-like behavior towards the North. We will show maps of magnetic anomalies, topography, various models of the Hilton Creek Fault System and cross-sections through focal mechanism and earthquake catalogs, and will attempt to integrate these observations into a single fault geometry model.

  13. Care 3 phase 2 report, maintenance manual

    NASA Technical Reports Server (NTRS)

    Bryant, L. A.; Stiffler, J. J.

    1982-01-01

    CARE 3 (Computer-Aided Reliability Estimation, version three) is a computer program designed to help estimate the reliability of complex, redundant systems. Although the program can model a wide variety of redundant structures, it was developed specifically for fault-tolerant avionics systems--systems distinguished by the need for extremely reliable performance since a system failure could well result in the loss of human life. It substantially generalizes the class of redundant configurations that could be accommodated, and includes a coverage model to determine the various coverage probabilities as a function of the applicable fault recovery mechanisms (detection delay, diagnostic scheduling interval, isolation and recovery delay, etc.). CARE 3 further generalizes the class of system structures that can be modeled and greatly expands the coverage model to take into account such effects as intermittent and transient faults, latent faults, error propagation, etc.

  14. Structural Health and Prognostics Management for Offshore Wind Turbines: Sensitivity Analysis of Rotor Fault and Blade Damage with O&M Cost Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myrent, Noah J.; Barrett, Natalie C.; Adams, Douglas E.

    2014-07-01

    Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling and simulation approach developed in prior work is used to identify how the underlying physics of the system are affected by themore » presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Sensitivity analyses were carried out for the detection strategies of rotor imbalance and shear web disbond developed in prior work by evaluating the robustness of key measurement parameters in the presence of varying wind speeds, horizontal shear, and turbulence. Detection strategies were refined for these fault mechanisms and probabilities of detection were calculated. For all three fault mechanisms, the probability of detection was 96% or higher for the optimized wind speed ranges of the laminar, 30% horizontal shear, and 60% horizontal shear wind profiles. The revised cost model provided insight into the estimated savings in operations and maintenance costs as they relate to the characteristics of the SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability, revenue, and overall profit.« less

  15. Row fault detection system

    DOEpatents

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2008-10-14

    An apparatus, program product and method checks for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  16. Row fault detection system

    DOEpatents

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2012-02-07

    An apparatus, program product and method check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  17. Row fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-02-23

    An apparatus and program product check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  18. Methods for Fault Detection, Diagnostics and Prognostics for Building Systems - A Review Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katipamula, Srinivas; Brambley, Michael R.

    This paper provides an overview of fault detection, diagnostics, and prognostics (FDD&P) starting with descriptions of the fundamental processes and some important definitions. This is followed by a review of FDD&P research in the HVAC&R field, and the paper concludes with discussions of the current state of applications in buildings and likely contributions to operating and maintaining buildings in the future.

  19. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits

    PubMed Central

    Córcoles, A.D.; Magesan, Easwar; Srinivasan, Srikanth J.; Cross, Andrew W.; Steffen, M.; Gambetta, Jay M.; Chow, Jerry M.

    2015-01-01

    The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code. PMID:25923200

  20. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits.

    PubMed

    Córcoles, A D; Magesan, Easwar; Srinivasan, Srikanth J; Cross, Andrew W; Steffen, M; Gambetta, Jay M; Chow, Jerry M

    2015-04-29

    The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code.

  1. Software Health Management with Bayesian Networks

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole; Schumann, JOhann

    2011-01-01

    Most modern aircraft as well as other complex machinery is equipped with diagnostics systems for its major subsystems. During operation, sensors provide important information about the subsystem (e.g., the engine) and that information is used to detect and diagnose faults. Most of these systems focus on the monitoring of a mechanical, hydraulic, or electromechanical subsystem of the vehicle or machinery. Only recently, health management systems that monitor software have been developed. In this paper, we will discuss our approach of using Bayesian networks for Software Health Management (SWHM). We will discuss SWHM requirements, which make advanced reasoning capabilities for the detection and diagnosis important. Then we will present our approach to using Bayesian networks for the construction of health models that dynamically monitor a software system and is capable of detecting and diagnosing faults.

  2. Protection of Renewable-dominated Microgrids: Challenges and Potential Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkhatib, Mohamed; Ellis, Abraham; Biswal, Milan

    In this report we address the challenge of designing efficient protection system for inverter- dominated microgrids. These microgrids are characterised with limited fault current capacity as a result of current-limiting protection functions of inverters. Typically, inverters limit their fault contribution in sub-cycle time frame to as low as 1.1 per unit. As a result, overcurrent protection could fail completely to detect faults in inverter-dominated microgrids. As part of this project a detailed literature survey of existing and proposed microgrid protection schemes were conducted. The survey concluded that there is a gap in the available microgrid protection methods. The only crediblemore » protection solution available in literature for low- fault inverter-dominated microgrids is the differential protection scheme which represents a robust transmission-grade protection solution but at a very high cost. Two non-overcurrent protection schemes were investigated as part of this project; impedance-based protection and transient-based protection. Impedance-based protection depends on monitoring impedance trajectories at feeder relays to detect faults. Two communication-based impedance-based protection schemes were developed. the first scheme utilizes directional elements and pilot signals to locate the fault. The second scheme depends on a Central Protection Unit that communicates with all feeder relays to locate the fault based on directional flags received from feeder relays. The later approach could potentially be adapted to protect networked microgrids and dynamic topology microgrids. Transient-based protection relies on analyzing high frequency transients to detect and locate faults. This approach is very promising but its implementation in the filed faces several challenges. For example, high frequency transients due to faults can be confused with transients due to other events such as capacitor switching. Additionally, while detecting faults by analyzing transients could be doable, locating faults based on analyzing transients is still an open question.« less

  3. SPANNER: A Self-Repairing Spiking Neural Network Hardware Architecture.

    PubMed

    Liu, Junxiu; Harkin, Jim; Maguire, Liam P; McDaid, Liam J; Wade, John J

    2018-04-01

    Recent research has shown that a glial cell of astrocyte underpins a self-repair mechanism in the human brain, where spiking neurons provide direct and indirect feedbacks to presynaptic terminals. These feedbacks modulate the synaptic transmission probability of release (PR). When synaptic faults occur, the neuron becomes silent or near silent due to the low PR of synapses; whereby the PRs of remaining healthy synapses are then increased by the indirect feedback from the astrocyte cell. In this paper, a novel hardware architecture of Self-rePAiring spiking Neural NEtwoRk (SPANNER) is proposed, which mimics this self-repairing capability in the human brain. This paper demonstrates that the hardware can self-detect and self-repair synaptic faults without the conventional components for the fault detection and fault repairing. Experimental results show that SPANNER can maintain the system performance with fault densities of up to 40%, and more importantly SPANNER has only a 20% performance degradation when the self-repairing architecture is significantly damaged at a fault density of 80%.

  4. Multi-sensor information fusion method for vibration fault diagnosis of rolling bearing

    NASA Astrophysics Data System (ADS)

    Jiao, Jing; Yue, Jianhai; Pei, Di

    2017-10-01

    Bearing is a key element in high-speed electric multiple unit (EMU) and any defect of it can cause huge malfunctioning of EMU under high operation speed. This paper presents a new method for bearing fault diagnosis based on least square support vector machine (LS-SVM) in feature-level fusion and Dempster-Shafer (D-S) evidence theory in decision-level fusion which were used to solve the problems about low detection accuracy, difficulty in extracting sensitive characteristics and unstable diagnosis system of single-sensor in rolling bearing fault diagnosis. Wavelet de-nosing technique was used for removing the signal noises. LS-SVM was used to make pattern recognition of the bearing vibration signal, and then fusion process was made according to the D-S evidence theory, so as to realize recognition of bearing fault. The results indicated that the data fusion method improved the performance of the intelligent approach in rolling bearing fault detection significantly. Moreover, the results showed that this method can efficiently improve the accuracy of fault diagnosis.

  5. The use of automatic programming techniques for fault tolerant computing systems

    NASA Technical Reports Server (NTRS)

    Wild, C.

    1985-01-01

    It is conjectured that the production of software for ultra-reliable computing systems such as required by Space Station, aircraft, nuclear power plants and the like will require a high degree of automation as well as fault tolerance. In this paper, the relationship between automatic programming techniques and fault tolerant computing systems is explored. Initial efforts in the automatic synthesis of code from assertions to be used for error detection as well as the automatic generation of assertions and test cases from abstract data type specifications is outlined. Speculation on the ability to generate truly diverse designs capable of recovery from errors by exploring alternate paths in the program synthesis tree is discussed. Some initial thoughts on the use of knowledge based systems for the global detection of abnormal behavior using expectations and the goal-directed reconfiguration of resources to meet critical mission objectives are given. One of the sources of information for these systems would be the knowledge captured during the automatic programming process.

  6. Guest Editor's Introduction: Special section on dependable distributed systems

    NASA Astrophysics Data System (ADS)

    Fetzer, Christof

    1999-09-01

    We rely more and more on computers. For example, the Internet reshapes the way we do business. A `computer outage' can cost a company a substantial amount of money. Not only with respect to the business lost during an outage, but also with respect to the negative publicity the company receives. This is especially true for Internet companies. After recent computer outages of Internet companies, we have seen a drastic fall of the shares of the affected companies. There are multiple causes for computer outages. Although computer hardware becomes more reliable, hardware related outages remain an important issue. For example, some of the recent computer outages of companies were caused by failed memory and system boards, and even by crashed disks - a failure type which can easily be masked using disk mirroring. Transient hardware failures might also look like software failures and, hence, might be incorrectly classified as such. However, many outages are software related. Faulty system software, middleware, and application software can crash a system. Dependable computing systems are systems we can rely on. Dependable systems are, by definition, reliable, available, safe and secure [3]. This special section focuses on issues related to dependable distributed systems. Distributed systems have the potential to be more dependable than a single computer because the probability that all computers in a distributed system fail is smaller than the probability that a single computer fails. However, if a distributed system is not built well, it is potentially less dependable than a single computer since the probability that at least one computer in a distributed system fails is higher than the probability that one computer fails. For example, if the crash of any computer in a distributed system can bring the complete system to a halt, the system is less dependable than a single-computer system. Building dependable distributed systems is an extremely difficult task. There is no silver bullet solution. Instead one has to apply a variety of engineering techniques [2]: fault-avoidance (minimize the occurrence of faults, e.g. by using a proper design process), fault-removal (remove faults before they occur, e.g. by testing), fault-evasion (predict faults by monitoring and reconfigure the system before failures occur), and fault-tolerance (mask and/or contain failures). Building a system from scratch is an expensive and time consuming effort. To reduce the cost of building dependable distributed systems, one would choose to use commercial off-the-shelf (COTS) components whenever possible. The usage of COTS components has several potential advantages beyond minimizing costs. For example, through the widespread usage of a COTS component, design failures might be detected and fixed before the component is used in a dependable system. Custom-designed components have to mature without the widespread in-field testing of COTS components. COTS components have various potential disadvantages when used in dependable systems. For example, minimizing the time to market might lead to the release of components with inherent design faults (e.g. use of `shortcuts' that only work most of the time). In addition, the components might be more complex than needed and, hence, potentially have more design faults than simpler components. However, given economic constraints and the ability to cope with some of the problems using fault-evasion and fault-tolerance, only for a small percentage of systems can one justify not using COTS components. Distributed systems built from current COTS components are asynchronous systems in the sense that there exists no a priori known bound on the transmission delay of messages or the execution time of processes. When designing a distributed algorithm, one would like to make sure (e.g. by testing or verification) that it is correct, i.e. satisfies its specification. Many distributed algorithms make use of consensus (eventually all non-crashed processes have to agree on a value), leader election (a crashed leader is eventually replaced by a new leader, but at any time there is at most one leader) or a group membership detection service (a crashed process is eventually suspected to have crashed but only crashed processes are suspected). From a theoretical point of view, the service specifications given for such services are not implementable in asynchronous systems. In particular, for each implementation one can derive a counter example in which the service violates its specification. From a practical point of view, the consensus, the leader election, and the membership detection problem are solvable in asynchronous distributed systems. In this special section, Raynal and Tronel show how to bridge this difference by showing how to implement the group membership detection problem with a negligible probability [1] to fail in an asynchronous system. The group membership detection problem is specified by a liveness condition (L) and a safety property (S): (L) if a process p crashes, then eventually every non-crashed process q has to suspect that p has crashed; and (S) if a process q suspects p, then p has indeed crashed. One can show that either (L) or (S) is implementable, but one cannot implement both (L) and (S) at the same time in an asynchronous system. In practice, one only needs to implement (L) and (S) such that the probability that (L) or (S) is violated becomes negligible. Raynal and Tronel propose and analyse a protocol that implements (L) with certainty and that can be tuned such that the probability that (S) is violated becomes negligible. Designing and implementing distributed fault-tolerant protocols for asynchronous systems is a difficult but not an impossible task. A fault-tolerant protocol has to detect and mask certain failure classes, e.g. crash failures and message omission failures. There is a trade-off between the performance of a fault-tolerant protocol and the failure classes the protocol can tolerate. One wants to tolerate as many failure classes as needed to satisfy the stochastic requirements of the protocol [1] while still maintaining a sufficient performance. Since clients of a protocol have different requirements with respect to the performance/fault-tolerance trade-off, one would like to be able to customize protocols such that one can select an appropriate performance/fault-tolerance trade-off. In this special section Hiltunen et al describe how one can compose protocols from micro-protocols in their Cactus system. They show how a group RPC system can be tailored to the needs of a client. In particular, they show how considering additional failure classes affects the performance of a group RPC system. References [1] Cristian F 1991 Understanding fault-tolerant distributed systems Communications of ACM 34 (2) 56-78 [2] Heimerdinger W L and Weinstock C B 1992 A conceptual framework for system fault tolerance Technical Report 92-TR-33, CMU/SEI [3] Laprie J C (ed) 1992 Dependability: Basic Concepts and Terminology (Vienna: Springer)

  7. State Tracking and Fault Diagnosis for Dynamic Systems Using Labeled Uncertainty Graph.

    PubMed

    Zhou, Gan; Feng, Wenquan; Zhao, Qi; Zhao, Hongbo

    2015-11-05

    Cyber-physical systems such as autonomous spacecraft, power plants and automotive systems become more vulnerable to unanticipated failures as their complexity increases. Accurate tracking of system dynamics and fault diagnosis are essential. This paper presents an efficient state estimation method for dynamic systems modeled as concurrent probabilistic automata. First, the Labeled Uncertainty Graph (LUG) method in the planning domain is introduced to describe the state tracking and fault diagnosis processes. Because the system model is probabilistic, the Monte Carlo technique is employed to sample the probability distribution of belief states. In addition, to address the sample impoverishment problem, an innovative look-ahead technique is proposed to recursively generate most likely belief states without exhaustively checking all possible successor modes. The overall algorithms incorporate two major steps: a roll-forward process that estimates system state and identifies faults, and a roll-backward process that analyzes possible system trajectories once the faults have been detected. We demonstrate the effectiveness of this approach by applying it to a real world domain: the power supply control unit of a spacecraft.

  8. Intelligent on-line fault tolerant control for unanticipated catastrophic failures.

    PubMed

    Yen, Gary G; Ho, Liang-Wei

    2004-10-01

    As dynamic systems become increasingly complex, experience rapidly changing environments, and encounter a greater variety of unexpected component failures, solving the control problems of such systems is a grand challenge for control engineers. Traditional control design techniques are not adequate to cope with these systems, which may suffer from unanticipated dynamic failures. In this research work, we investigate the on-line fault tolerant control problem and propose an intelligent on-line control strategy to handle the desired trajectories tracking problem for systems suffering from various unanticipated catastrophic faults. Through theoretical analysis, the sufficient condition of system stability has been derived and two different on-line control laws have been developed. The approach of the proposed intelligent control strategy is to continuously monitor the system performance and identify what the system's current state is by using a fault detection method based upon our best knowledge of the nominal system and nominal controller. Once a fault is detected, the proposed intelligent controller will adjust its control signal to compensate for the unknown system failure dynamics by using an artificial neural network as an on-line estimator to approximate the unexpected and unknown failure dynamics. The first control law is derived directly from the Lyapunov stability theory, while the second control law is derived based upon the discrete-time sliding mode control technique. Both control laws have been implemented in a variety of failure scenarios to validate the proposed intelligent control scheme. The simulation results, including a three-tank benchmark problem, comply with theoretical analysis and demonstrate a significant improvement in trajectory following performance based upon the proposed intelligent control strategy.

  9. Flight test results of the strapdown hexad inertial reference unit (SIRU). Volume 2: Test report

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Bjorkman, W. S.

    1977-01-01

    Results of flight tests of the Strapdown Inertial Reference Unit (SIRU) navigation system are presented. The fault tolerant SIRU navigation system features a redundant inertial sensor unit and dual computers. System software provides for detection and isolation of inertial sensor failures and continued operation in the event of failures. Flight test results include assessments of the system's navigational performance and fault tolerance. Performance shortcomings are analyzed.

  10. TES: A modular systems approach to expert system development for real time space applications

    NASA Technical Reports Server (NTRS)

    England, Brenda; Cacace, Ralph

    1987-01-01

    A major goal of the space station era is to reduce reliance on support from ground based experts. The TIMES Expert System (TES) is an application that monitors and evaluates real time data to perform fault detection and fault isolation as it would otherwise be carried out by a knowledgeable designer. The development process and primary features of the TES, the modular system and the lessons learned are discussed.

  11. An architecture for object-oriented intelligent control of power systems in space

    NASA Technical Reports Server (NTRS)

    Holmquist, Sven G.; Jayaram, Prakash; Jansen, Ben H.

    1993-01-01

    A control system for autonomous distribution and control of electrical power during space missions is being developed. This system should free the astronauts from localizing faults and reconfiguring loads if problems with the power distribution and generation components occur. The control system uses an object-oriented simulation model of the power system and first principle knowledge to detect, identify, and isolate faults. Each power system component is represented as a separate object with knowledge of its normal behavior. The reasoning process takes place at three different levels of abstraction: the Physical Component Model (PCM) level, the Electrical Equivalent Model (EEM) level, and the Functional System Model (FSM) level, with the PCM the lowest level of abstraction and the FSM the highest. At the EEM level the power system components are reasoned about as their electrical equivalents, e.g, a resistive load is thought of as a resistor. However, at the PCM level detailed knowledge about the component's specific characteristics is taken into account. The FSM level models the system at the subsystem level, a level appropriate for reconfiguration and scheduling. The control system operates in two modes, a reactive and a proactive mode, simultaneously. In the reactive mode the control system receives measurement data from the power system and compares these values with values determined through simulation to detect the existence of a fault. The nature of the fault is then identified through a model-based reasoning process using mainly the EEM. Compound component models are constructed at the EEM level and used in the fault identification process. In the proactive mode the reasoning takes place at the PCM level. Individual components determine their future health status using a physical model and measured historical data. In case changes in the health status seem imminent the component warns the control system about its impending failure. The fault isolation process uses the FSM level for its reasoning base.

  12. Auto-Calibration and Fault Detection and Isolation of Skewed Redundant Accelerometers in Measurement While Drilling Systems.

    PubMed

    Seyed Moosavi, Seyed Mohsen; Moaveni, Bijan; Moshiri, Behzad; Arvan, Mohammad Reza

    2018-02-27

    The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors.

  13. Auto-Calibration and Fault Detection and Isolation of Skewed Redundant Accelerometers in Measurement While Drilling Systems

    PubMed Central

    Seyed Moosavi, Seyed Mohsen; Moshiri, Behzad; Arvan, Mohammad Reza

    2018-01-01

    The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors. PMID:29495434

  14. SABRE: a bio-inspired fault-tolerant electronic architecture.

    PubMed

    Bremner, P; Liu, Y; Samie, M; Dragffy, G; Pipe, A G; Tempesti, G; Timmis, J; Tyrrell, A M

    2013-03-01

    As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance.

  15. Analysis on Behaviour of Wavelet Coefficient during Fault Occurrence in Transformer

    NASA Astrophysics Data System (ADS)

    Sreewirote, Bancha; Ngaopitakkul, Atthapol

    2018-03-01

    The protection system for transformer has play significant role in avoiding severe damage to equipment when disturbance occur and ensure overall system reliability. One of the methodology that widely used in protection scheme and algorithm is discrete wavelet transform. However, characteristic of coefficient under fault condition must be analyzed to ensure its effectiveness. So, this paper proposed study and analysis on wavelet coefficient characteristic when fault occur in transformer in both high- and low-frequency component from discrete wavelet transform. The effect of internal and external fault on wavelet coefficient of both fault and normal phase has been taken into consideration. The fault signal has been simulate using transmission connected to transformer experimental setup on laboratory level that modelled after actual system. The result in term of wavelet coefficient shown a clearly differentiate between wavelet characteristic in both high and low frequency component that can be used to further design and improve detection and classification algorithm that based on discrete wavelet transform methodology in the future.

  16. On Identifiability of Bias-Type Actuator-Sensor Faults in Multiple-Model-Based Fault Detection and Identification

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.

    2012-01-01

    This paper explores a class of multiple-model-based fault detection and identification (FDI) methods for bias-type faults in actuators and sensors. These methods employ banks of Kalman-Bucy filters to detect the faults, determine the fault pattern, and estimate the fault values, wherein each Kalman-Bucy filter is tuned to a different failure pattern. Necessary and sufficient conditions are presented for identifiability of actuator faults, sensor faults, and simultaneous actuator and sensor faults. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have biases.

  17. Fault Detection and Correction for the Solar Dynamics Observatory Attitude Control System

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Vess, Melissa F.; Kenney, Thomas M.; Maldonado, Manuel D.; Morgenstern, Wendy M.

    2007-01-01

    The Solar Dynamics Observatory is an Explorer-class mission that will launch in early 2009. The spacecraft will operate in a geosynchronous orbit, sending data 24 hours a day to a devoted ground station in White Sands, New Mexico. It will carry a suite of instruments designed to observe the Sun in multiple wavelengths at unprecedented resolution. The Atmospheric Imaging Assembly includes four telescopes with focal plane CCDs that can image the full solar disk in four different visible wavelengths. The Extreme-ultraviolet Variability Experiment will collect time-correlated data on the activity of the Sun's corona. The Helioseismic and Magnetic Imager will enable study of pressure waves moving through the body of the Sun. The attitude control system on Solar Dynamics Observatory is responsible for four main phases of activity. The physical safety of the spacecraft after separation must be guaranteed. Fine attitude determination and control must be sufficient for instrument calibration maneuvers. The mission science mode requires 2-arcsecond control according to error signals provided by guide telescopes on the Atmospheric Imaging Assembly, one of the three instruments to be carried. Lastly, accurate execution of linear and angular momentum changes to the spacecraft must be provided for momentum management and orbit maintenance. In thsp aper, single-fault tolerant fault detection and correction of the Solar Dynamics Observatory attitude control system is described. The attitude control hardware suite for the mission is catalogued, with special attention to redundancy at the hardware level. Four reaction wheels are used where any three are satisfactory. Four pairs of redundant thrusters are employed for orbit change maneuvers and momentum management. Three two-axis gyroscopes provide full redundancy for rate sensing. A digital Sun sensor and two autonomous star trackers provide two-out-of-three redundancy for fine attitude determination. The use of software to maximize chances of recovery from any hardware or software fault is detailed. A generic fault detection and correction software structure is used, allowing additions, deletions, and adjustments to fault detection and correction rules. This software structure is fed by in-line fault tests that are also able to take appropriate actions to avoid corruption of the data stream.

  18. Award ER25750: Coordinated Infrastructure for Fault Tolerance Systems Indiana University Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumsdaine, Andrew

    2013-03-08

    The main purpose of the Coordinated Infrastructure for Fault Tolerance in Systems initiative has been to conduct research with a goal of providing end-to-end fault tolerance on a systemwide basis for applications and other system software. While fault tolerance has been an integral part of most high-performance computing (HPC) system software developed over the past decade, it has been treated mostly as a collection of isolated stovepipes. Visibility and response to faults has typically been limited to the particular hardware and software subsystems in which they are initially observed. Little fault information is shared across subsystems, allowing little flexibility ormore » control on a system-wide basis, making it practically impossible to provide cohesive end-to-end fault tolerance in support of scientific applications. As an example, consider faults such as communication link failures that can be seen by a network library but are not directly visible to the job scheduler, or consider faults related to node failures that can be detected by system monitoring software but are not inherently visible to the resource manager. If information about such faults could be shared by the network libraries or monitoring software, then other system software, such as a resource manager or job scheduler, could ensure that failed nodes or failed network links were excluded from further job allocations and that further diagnosis could be performed. As a founding member and one of the lead developers of the Open MPI project, our efforts over the course of this project have been focused on making Open MPI more robust to failures by supporting various fault tolerance techniques, and using fault information exchange and coordination between MPI and the HPC system software stack from the application, numeric libraries, and programming language runtime to other common system components such as jobs schedulers, resource managers, and monitoring tools.« less

  19. The buried active faults in southeastern China as revealed by the relocated background seismicity and fault plane solutions

    NASA Astrophysics Data System (ADS)

    Zhu, A.; Wang, P.; Liu, F.

    2017-12-01

    The southeastern China in the mainland corresponds to the south China block, which is characterized by moderate historical seismicity and low stain rate. Most faults are buried under thick Quaternary deposits, so it is difficult to detect and locate them using the routine geological methods. Only a few have been identified to be active in late Quaternary, which leads to relatively high potentially seismic risk to this region due to the unexpected locations of the earthquakes. We performed both hypoDD and tomoDD for the background seismicity from 2000 to 2016 to investigate the buried faults. Some buried active faults are revealed by the relocated seismicity and the velocity structure, no geologically known faults corresponding to them and no surface active evidence ever observed. The geometries of the faults are obtained by analyzing the hypocentral distribution pattern and focal mechanism. The focal mechanism solutions indicate that all the revealed faults are dominated in strike-slip mechanisms, or with some thrust components. While the previous fault investigation and detection results show that most of the Quaternary faults in southeastern China are dominated by normal movement. It suggests that there may exist two fault systems in deep and shallow tectonic regimes. The revealed faults may construct the deep one that act as the seismogenic faults, and the normal faults at shallow cannot generate the destructive earthquakes. The variation in the Curie-point depths agrees well with the structure plane of the revealed active faults, suggesting that the faults may have changed the deep structure.

  20. Fault diagnosis for the heat exchanger of the aircraft environmental control system based on the strong tracking filter.

    PubMed

    Ma, Jian; Lu, Chen; Liu, Hongmei

    2015-01-01

    The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system's efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger.

  1. Fault Tolerance for VLSI Multicomputers

    DTIC Science & Technology

    1985-08-01

    that consists of hundreds or thousands of VLSI computation nodes interconnected by dedicated links. Some important applications of high-end computers...technology, and intended applications . A proposed fault tolerance scheme combines hardware that performs error detection and system-level protocols for...order to recover from the error and resume correct operation, a valid system state must be restored. A low-overhead, application -transparent error

  2. Mobile Robot Lab Project to Introduce Engineering Students to Fault Diagnosis in Mechatronic Systems

    ERIC Educational Resources Information Center

    Gómez-de-Gabriel, Jesús Manuel; Mandow, Anthony; Fernández-Lozano, Jesús; García-Cerezo, Alfonso

    2015-01-01

    This paper proposes lab work for learning fault detection and diagnosis (FDD) in mechatronic systems. These skills are important for engineering education because FDD is a key capability of competitive processes and products. The intended outcome of the lab work is that students become aware of the importance of faulty conditions and learn to…

  3. A System for Fault Management and Fault Consequences Analysis for NASA's Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano; Spirkovska, Liljana; Baskaran, Vijaykumar; Aaseng, Gordon; McCann, Robert S.; Ossenfort, John; Smith, Irene; Iverson, David L.; Schwabacher, Mark

    2013-01-01

    NASA's exploration program envisions the utilization of a Deep Space Habitat (DSH) for human exploration of the space environment in the vicinity of Mars and/or asteroids. Communication latencies with ground control of as long as 20+ minutes make it imperative that DSH operations be highly autonomous, as any telemetry-based detection of a systems problem on Earth could well occur too late to assist the crew with the problem. A DSH-based development program has been initiated to develop and test the automation technologies necessary to support highly autonomous DSH operations. One such technology is a fault management tool to support performance monitoring of vehicle systems operations and to assist with real-time decision making in connection with operational anomalies and failures. Toward that end, we are developing Advanced Caution and Warning System (ACAWS), a tool that combines dynamic and interactive graphical representations of spacecraft systems, systems modeling, automated diagnostic analysis and root cause identification, system and mission impact assessment, and mitigation procedure identification to help spacecraft operators (both flight controllers and crew) understand and respond to anomalies more effectively. In this paper, we describe four major architecture elements of ACAWS: Anomaly Detection, Fault Isolation, System Effects Analysis, and Graphic User Interface (GUI), and how these elements work in concert with each other and with other tools to provide fault management support to both the controllers and crew. We then describe recent evaluations and tests of ACAWS on the DSH testbed. The results of these tests support the feasibility and strength of our approach to failure management automation and enhanced operational autonomy

  4. Automatic recloser circuit breaker integrated with GSM technology for power system notification

    NASA Astrophysics Data System (ADS)

    Lada, M. Y.; Khiar, M. S. A.; Ghani, S. A.; Nawawi, M. R. M.; Rahim, N. H.; Sinar, L. O. M.

    2015-05-01

    Lightning is one type of transient faults that usually cause the circuit breaker in the distribution board trip due to overload current detection. The instant tripping condition in the circuit breakers clears the fault in the system. Unfortunately most circuit breakers system is manually operated. The power line will be effectively re-energized after the clearing fault process is finished. Auto-reclose circuit is used on the transmission line to carry out the duty of supplying quality electrical power to customers. In this project, an automatic reclose circuit breaker for low voltage usage is designed. The product description is the Auto Reclose Circuit Breaker (ARCB) will trip if the current sensor detects high current which exceeds the rated current for the miniature circuit breaker (MCB) used. Then the fault condition will be cleared automatically and return the power line to normal condition. The Global System for Mobile Communication (GSM) system will send SMS to the person in charge if the tripping occurs. If the over current occurs in three times, the system will fully trip (open circuit) and at the same time will send an SMS to the person in charge. In this project a 1 A is set as the rated current and any current exceeding a 1 A will cause the system to trip or interrupted. This system also provides an additional notification for user such as the emergency light and warning system.

  5. Ares I-X Ground Diagnostic Prototype

    NASA Technical Reports Server (NTRS)

    Schwabacher, Mark; Martin, Rodney; Waterman, Robert; Oostdyk, Rebecca; Ossenfort, John; Matthews, Bryan

    2010-01-01

    Automating prelaunch diagnostics for launch vehicles offers three potential benefits. First, it potentially improves safety by detecting faults that might otherwise have been missed so that they can be corrected before launch. Second, it potentially reduces launch delays by more quickly diagnosing the cause of anomalies that occur during prelaunch processing. Reducing launch delays will be critical to the success of NASA's planned future missions that require in-orbit rendezvous. Third, it potentially reduces costs by reducing both launch delays and the number of people needed to monitor the prelaunch process. NASA is currently developing the Ares I launch vehicle to bring the Orion capsule and its crew of four astronauts to low-earth orbit on their way to the moon. Ares I-X will be the first unmanned test flight of Ares I. It is scheduled to launch on October 27, 2009. The Ares I-X Ground Diagnostic Prototype is a prototype ground diagnostic system that will provide anomaly detection, fault detection, fault isolation, and diagnostics for the Ares I-X first-stage thrust vector control (TVC) and for the associated ground hydraulics while it is in the Vehicle Assembly Building (VAB) at John F. Kennedy Space Center (KSC) and on the launch pad. It will serve as a prototype for a future operational ground diagnostic system for Ares I. The prototype combines three existing diagnostic tools. The first tool, TEAMS (Testability Engineering and Maintenance System), is a model-based tool that is commercially produced by Qualtech Systems, Inc. It uses a qualitative model of failure propagation to perform fault isolation and diagnostics. We adapted an existing TEAMS model of the TVC to use for diagnostics and developed a TEAMS model of the ground hydraulics. The second tool, Spacecraft Health Inference Engine (SHINE), is a rule-based expert system developed at the NASA Jet Propulsion Laboratory. We developed SHINE rules for fault detection and mode identification. The prototype uses the outputs of SHINE as inputs to TEAMS. The third tool, the Inductive Monitoring System (IMS), is an anomaly detection tool developed at NASA Ames Research Center and is currently used to monitor the International Space Station Control Moment Gyroscopes. IMS automatically "learns" a model of historical nominal data in the form of a set of clusters and signals an alarm when new data fails to match this model. IMS offers the potential to detect faults that have not been modeled. The three tools have been integrated and deployed to Hangar AE at KSC where they interface with live data from the Ares I-X vehicle and from the ground hydraulics. The outputs of the tools are displayed on a console in Hangar AE, one of the locations from which the Ares I-X launch will be monitored. The full paper will describe how the prototype performed before the launch. It will include an analysis of the prototype's accuracy, including false-positive rates, false-negative rates, and receiver operating characteristics (ROC) curves. It will also include a description of the prototype's computational requirements, including CPU usage, main memory usage, and disk usage. If the prototype detects any faults during the prelaunch period then the paper will include a description of those faults. Similarly, if the prototype has any false alarms then the paper will describe them and will attempt to explain their causes.

  6. Fault-tolerant building-block computer study

    NASA Technical Reports Server (NTRS)

    Rennels, D. A.

    1978-01-01

    Ultra-reliable core computers are required for improving the reliability of complex military systems. Such computers can provide reliable fault diagnosis, failure circumvention, and, in some cases serve as an automated repairman for their host systems. A small set of building-block circuits which can be implemented as single very large integration devices, and which can be used with off-the-shelf microprocessors and memories to build self checking computer modules (SCCM) is described. Each SCCM is a microcomputer which is capable of detecting its own faults during normal operation and is described to communicate with other identical modules over one or more Mil Standard 1553A buses. Several SCCMs can be connected into a network with backup spares to provide fault-tolerant operation, i.e. automated recovery from faults. Alternative fault-tolerant SCCM configurations are discussed along with the cost and reliability associated with their implementation.

  7. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Test act system validation

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The primary objective of the Test Active Control Technology (ACT) System laboratory tests was to verify and validate the system concept, hardware, and software. The initial lab tests were open loop hardware tests of the Test ACT System as designed and built. During the course of the testing, minor problems were uncovered and corrected. Major software tests were run. The initial software testing was also open loop. These tests examined pitch control laws, wing load alleviation, signal selection/fault detection (SSFD), and output management. The Test ACT System was modified to interface with the direct drive valve (DDV) modules. The initial testing identified problem areas with DDV nonlinearities, valve friction induced limit cycling, DDV control loop instability, and channel command mismatch. The other DDV issue investigated was the ability to detect and isolate failures. Some simple schemes for failure detection were tested but were not completely satisfactory. The Test ACT System architecture continues to appear promising for ACT/FBW applications in systems that must be immune to worst case generic digital faults, and be able to tolerate two sequential nongeneric faults with no reduction in performance. The challenge in such an implementation would be to keep the analog element sufficiently simple to achieve the necessary reliability.

  8. Set-membership fault detection under noisy environment with application to the detection of abnormal aircraft control surface positions

    NASA Astrophysics Data System (ADS)

    El Houda Thabet, Rihab; Combastel, Christophe; Raïssi, Tarek; Zolghadri, Ali

    2015-09-01

    The paper develops a set membership detection methodology which is applied to the detection of abnormal positions of aircraft control surfaces. Robust and early detection of such abnormal positions is an important issue for early system reconfiguration and overall optimisation of aircraft design. In order to improve fault sensitivity while ensuring a high level of robustness, the method combines a data-driven characterisation of noise and a model-driven approach based on interval prediction. The efficiency of the proposed methodology is illustrated through simulation results obtained based on data recorded in several flight scenarios of a highly representative aircraft benchmark.

  9. Haul truck tire dynamics due to tire condition

    NASA Astrophysics Data System (ADS)

    Vaghar Anzabi, R.; Nobes, D. S.; Lipsett, M. G.

    2012-05-01

    Pneumatic tires are costly components on large off-road haul trucks used in surface mining operations. Tires are prone to damage during operation, and these events can lead to injuries to personnel, loss of equipment, and reduced productivity. Damage rates have significant variability, due to operating conditions and a range of tire fault modes. Currently, monitoring of tire condition is done by physical inspection; and the mean time between inspections is often longer than the mean time between incipient failure and functional failure of the tire. Options for new condition monitoring methods include off-board thermal imaging and camera-based optical methods for detecting abnormal deformation and surface features, as well as on-board sensors to detect tire faults during vehicle operation. Physics-based modeling of tire dynamics can provide a good understanding of the tire behavior, and give insight into observability requirements for improved monitoring systems. This paper describes a model to simulate the dynamics of haul truck tires when a fault is present to determine the effects of physical parameter changes that relate to faults. To simulate the dynamics, a lumped mass 'quarter-vehicle' model has been used to determine the response of the system to a road profile when a failure changes the original properties of the tire. The result is a model of tire vertical displacement that can be used to detect a fault, which will be tested under field conditions in time-varying conditions.

  10. Main propulsion functional path analysis for performance monitoring fault detection and annunciation

    NASA Technical Reports Server (NTRS)

    Keesler, E. L.

    1974-01-01

    A total of 48 operational flight instrumentation measurements were identified for use in performance monitoring and fault detection. The Operational Flight Instrumentation List contains all measurements identified for fault detection and annunciation. Some 16 controller data words were identified for use in fault detection and annunciation.

  11. Methods for Fault Detection, Diagnostics and Prognostics for Building Systems - A Review Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katipamula, Srinivas; Brambley, Michael R.

    This paper provides the second part of an overview of fault detection, diagnostics, and prognostics (FDD&P) starting with descriptions of the fundamental processes and some important definitions. This is followed by a review of FDD&P research in the HVAC&R field, and the paper concludes with discussions of the current state of applications in buildings and likely contributions to operating and maintaining buildings in the future.

  12. Analysis of variation in oil pressure in lubricating system

    NASA Astrophysics Data System (ADS)

    Sharma, Sumit; Upreti, Mritunjay; Sharma, Bharat; Poddar, Keshav

    2018-05-01

    Automotive Maintenance for an engine contributes to its reliability, energy efficiency and repair cost reduction. Modeling of engine performance and fault detection require large amount of data, which are usually obtained on test benches. This report presents a methodical study on analysis of variation in lubrication system of various medium speed engines. Further this study is limited to the influence of Engine Oil Pressure on frictional losses, Torque analysis for various Oil Pressures and an analytical analysis of engine Lubrication System. The data collected from various Engines under diagnostics is represented graphically. Finally the illustrated results were used as a viable source for detection and troubleshooting of faults in Lubrication System of regular passenger vehicle.

  13. Arc fault detection system

    DOEpatents

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  14. Statistical fault diagnosis of wind turbine drivetrain applied to a 5MW floating wind turbine

    NASA Astrophysics Data System (ADS)

    Ghane, Mahdi; Nejad, Amir R.; Blanke, Mogens; Gao, Zhen; Moan, Torgeir

    2016-09-01

    Deployment of large scale wind turbine parks, in particular offshore, requires well organized operation and maintenance strategies to make it as competitive as the classical electric power stations. It is important to ensure systems are safe, profitable, and cost-effective. In this regards, the ability to detect, isolate, estimate, and prognose faults plays an important role. One of the critical wind turbine components is the gearbox. Failures in the gearbox are costly both due to the cost of the gearbox itself and also due to high repair downtime. In order to detect faults as fast as possible to prevent them to develop into failure, statistical change detection is used in this paper. The Cumulative Sum Method (CUSUM) is employed to detect possible defects in the downwind main bearing. A high fidelity gearbox model on a 5-MW spar-type wind turbine is used to generate data for fault-free and faulty conditions of the bearing at the rated wind speed and the associated wave condition. Acceleration measurements are utilized to find residuals used to indirectly detect damages in the bearing. Residuals are found to be nonGaussian, following a t-distribution with multivariable characteristic parameters. The results in this paper show how the diagnostic scheme can detect change with desired false alarm and detection probabilities.

  15. Sensor Data Qualification System (SDQS) Implementation Study

    NASA Technical Reports Server (NTRS)

    Wong, Edmond; Melcher, Kevin; Fulton, Christopher; Maul, William

    2009-01-01

    The Sensor Data Qualification System (SDQS) is being developed to provide a sensor fault detection capability for NASA s next-generation launch vehicles. In addition to traditional data qualification techniques (such as limit checks, rate-of-change checks and hardware redundancy checks), SDQS can provide augmented capability through additional techniques that exploit analytical redundancy relationships to enable faster and more sensitive sensor fault detection. This paper documents the results of a study that was conducted to determine the best approach for implementing a SDQS network configuration that spans multiple subsystems, similar to those that may be implemented on future vehicles. The best approach is defined as one that most minimizes computational resource requirements without impacting the detection of sensor failures.

  16. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Walters, Jerry L.; Petrik, Edward J.; Roth, Mary Ellen; Truong, Long Van; Quinn, Todd; Krawczonek, Walter M.

    1990-01-01

    The Autonomous Power Expert (APEX) system was designed to monitor and diagnose fault conditions that occur within the Space Station Freedom Electrical Power System (SSF/EPS) Testbed. APEX is designed to interface with SSF/EPS testbed power management controllers to provide enhanced autonomous operation and control capability. The APEX architecture consists of three components: (1) a rule-based expert system, (2) a testbed data acquisition interface, and (3) a power scheduler interface. Fault detection, fault isolation, justification of probable causes, recommended actions, and incipient fault analysis are the main functions of the expert system component. The data acquisition component requests and receives pertinent parametric values from the EPS testbed and asserts the values into a knowledge base. Power load profile information is obtained from a remote scheduler through the power scheduler interface component. The current APEX design and development work is discussed. Operation and use of APEX by way of the user interface screens is also covered.

  17. Joint Seismic-Geodetic Algorithm for Finite-Fault Detection and Slip Inversion in the West Coast ShakeAlert System

    NASA Astrophysics Data System (ADS)

    Smith, D. E.; Felizardo, C.; Minson, S. E.; Boese, M.; Langbein, J. O.; Murray, J. R.

    2016-12-01

    Finite-fault source algorithms can greatly benefit earthquake early warning (EEW) systems. Estimates of finite-fault parameters provide spatial information, which can significantly improve real-time shaking calculations and help with disaster response. In this project, we have focused on integrating a finite-fault seismic-geodetic algorithm into the West Coast ShakeAlert framework. The seismic part is FinDer 2, a C++ version of the algorithm developed by Böse et al. (2012). It interpolates peak ground accelerations and calculates the best fault length and strike from template matching. The geodetic part is a C++ version of BEFORES, the algorithm developed by Minson et al. (2014) that uses a Bayesian methodology to search for the most probable slip distribution on a fault of unknown orientation. Ultimately, these two will be used together where FinDer generates a Bayesian prior for BEFORES via the methodology of Minson et al. (2015), and the joint solution will generate estimates of finite-fault extent, strike, dip, best slip distribution, and magnitude. We have created C++ versions of both FinDer and BEFORES using open source libraries and have developed a C++ Application Protocol Interface (API) for them both. Their APIs allow FinDer and BEFORES to contribute to the ShakeAlert system via an open source messaging system, ActiveMQ. FinDer has been receiving real-time data, detecting earthquakes, and reporting messages on the development system for several months. We are also testing FinDer extensively with Earthworm tankplayer files. BEFORES has been tested with ActiveMQ messaging in the ShakeAlert framework, and works off a FinDer trigger. We are finishing the FinDer-BEFORES connections in this framework, and testing this system via seismic-geodetic tankplayer files. This will include actual and simulated data.

  18. Multi-directional fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-11-23

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  19. Multi-directional fault detection system

    DOEpatents

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2009-03-17

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  20. Development and validation of techniques for improving software dependability

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    1992-01-01

    A collection of document abstracts are presented on the topic of improving software dependability through NASA grant NAG-1-1123. Specific topics include: modeling of error detection; software inspection; test cases; Magnetic Stereotaxis System safety specifications and fault trees; and injection of synthetic faults into software.

  1. Multi-directional fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-06-29

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  2. A satellite-based digital data system for low-frequency geophysical data

    USGS Publications Warehouse

    Silverman, S.; Mortensen, C.; Johnston, M.

    1989-01-01

    A reliable method for collection, display, and analysis of low-frequency geophysical data from isolated sites, which can be throughout North and South America and the Pacific Rim, has been developed for use with the Geostationary Operational Environmental Satellite (GEOS) system. This system provides real-time monitoring of crustal deformation parameters such as tilt, strain, fault displacement, local magnetic field, crustal geochemistry, and water levels, as well as meteorological and other parameters, along faults in California and Alsaka, and in volcanic regions in the western United States, Rabaul, and other locations in the New Britain region of the South pacific. Various mathematical, statistical, and graphical algorithms process the incoming data to detect changes in crustal deformation and fault slip that may indicate the first stages of catastrophic fault failure. -from Authors

  3. A Voyager attitude control perspective on fault tolerant systems

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. D.; Litty, E. C.

    1981-01-01

    In current spacecraft design, a trend can be observed to achieve greater fault tolerance through the application of on-board software dedicated to detecting and isolating failures. Whether fault tolerance through software can meet the desired objectives depends on very careful consideration and control of the system in which the software is imbedded. The considered investigation has the objective to provide some of the insight needed for the required analysis of the system. A description is given of the techniques which have been developed in this connection during the development of the Voyager spacecraft. The Voyager Galileo Attitude and Articulation Control Subsystem (AACS) fault tolerant design is discussed to emphasize basic lessons learned from this experience. The central driver of hardware redundancy implementation on Voyager was known as the 'single point failure criterion'.

  4. Distributed Fault Detection Based on Credibility and Cooperation for WSNs in Smart Grids.

    PubMed

    Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong

    2017-04-28

    Due to the increasingly important role in monitoring and data collection that sensors play, accurate and timely fault detection is a key issue for wireless sensor networks (WSNs) in smart grids. This paper presents a novel distributed fault detection mechanism for WSNs based on credibility and cooperation. Firstly, a reasonable credibility model of a sensor is established to identify any suspicious status of the sensor according to its own temporal data correlation. Based on the credibility model, the suspicious sensor is then chosen to launch fault diagnosis requests. Secondly, the sending time of fault diagnosis request is discussed to avoid the transmission overhead brought about by unnecessary diagnosis requests and improve the efficiency of fault detection based on neighbor cooperation. The diagnosis reply of a neighbor sensor is analyzed according to its own status. Finally, to further improve the accuracy of fault detection, the diagnosis results of neighbors are divided into several classifications to judge the fault status of the sensors which launch the fault diagnosis requests. Simulation results show that this novel mechanism can achieve high fault detection ratio with a small number of fault diagnoses and low data congestion probability.

  5. Distributed Fault Detection Based on Credibility and Cooperation for WSNs in Smart Grids

    PubMed Central

    Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong

    2017-01-01

    Due to the increasingly important role in monitoring and data collection that sensors play, accurate and timely fault detection is a key issue for wireless sensor networks (WSNs) in smart grids. This paper presents a novel distributed fault detection mechanism for WSNs based on credibility and cooperation. Firstly, a reasonable credibility model of a sensor is established to identify any suspicious status of the sensor according to its own temporal data correlation. Based on the credibility model, the suspicious sensor is then chosen to launch fault diagnosis requests. Secondly, the sending time of fault diagnosis request is discussed to avoid the transmission overhead brought about by unnecessary diagnosis requests and improve the efficiency of fault detection based on neighbor cooperation. The diagnosis reply of a neighbor sensor is analyzed according to its own status. Finally, to further improve the accuracy of fault detection, the diagnosis results of neighbors are divided into several classifications to judge the fault status of the sensors which launch the fault diagnosis requests. Simulation results show that this novel mechanism can achieve high fault detection ratio with a small number of fault diagnoses and low data congestion probability. PMID:28452925

  6. A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles

    PubMed Central

    Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang

    2016-01-01

    Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists. PMID:27548183

  7. A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles.

    PubMed

    Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang

    2016-08-19

    Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists.

  8. Propulsion Health Monitoring for Enhanced Safety

    NASA Technical Reports Server (NTRS)

    Butz, Mark G.; Rodriguez, Hector M.

    2003-01-01

    This report presents the results of the NASA contract Propulsion System Health Management for Enhanced Safety performed by General Electric Aircraft Engines (GE AE), General Electric Global Research (GE GR), and Pennsylvania State University Applied Research Laboratory (PSU ARL) under the NASA Aviation Safety Program. This activity supports the overall goal of enhanced civil aviation safety through a reduction in the occurrence of safety-significant propulsion system malfunctions. Specific objectives are to develop and demonstrate vibration diagnostics techniques for the on-line detection of turbine rotor disk cracks, and model-based fault tolerant control techniques for the prevention and mitigation of in-flight engine shutdown, surge/stall, and flameout events. The disk crack detection work was performed by GE GR which focused on a radial-mode vibration monitoring technique, and PSU ARL which focused on a torsional-mode vibration monitoring technique. GE AE performed the Model-Based Fault Tolerant Control work which focused on the development of analytical techniques for detecting, isolating, and accommodating gas-path faults.

  9. Evaluation of a fault tolerant system for an integrated avionics sensor configuration with TSRV flight data

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Godiwala, P. M.

    1985-01-01

    The performance analysis results of a fault inferring nonlinear detection system (FINDS) using sensor flight data for the NASA ATOPS B-737 aircraft in a Microwave Landing System (MLS) environment is presented. First, a statistical analysis of the flight recorded sensor data was made in order to determine the characteristics of sensor inaccuracies. Next, modifications were made to the detection and decision functions in the FINDS algorithm in order to improve false alarm and failure detection performance under real modelling errors present in the flight data. Finally, the failure detection and false alarm performance of the FINDS algorithm were analyzed by injecting bias failures into fourteen sensor outputs over six repetitive runs of the five minute flight data. In general, the detection speed, failure level estimation, and false alarm performance showed a marked improvement over the previously reported simulation runs. In agreement with earlier results, detection speed was faster for filter measurement sensors soon as MLS than for filter input sensors such as flight control accelerometers.

  10. Distributed reconfigurable control strategies for switching topology networked multi-agent systems.

    PubMed

    Gallehdari, Z; Meskin, N; Khorasani, K

    2017-11-01

    In this paper, distributed control reconfiguration strategies for directed switching topology networked multi-agent systems are developed and investigated. The proposed control strategies are invoked when the agents are subject to actuator faults and while the available fault detection and isolation (FDI) modules provide inaccurate and unreliable information on the estimation of faults severities. Our proposed strategies will ensure that the agents reach a consensus while an upper bound on the team performance index is ensured and satisfied. Three types of actuator faults are considered, namely: the loss of effectiveness fault, the outage fault, and the stuck fault. By utilizing quadratic and convex hull (composite) Lyapunov functions, two cooperative and distributed recovery strategies are designed and provided to select the gains of the proposed control laws such that the team objectives are guaranteed. Our proposed reconfigurable control laws are applied to a team of autonomous underwater vehicles (AUVs) under directed switching topologies and subject to simultaneous actuator faults. Simulation results demonstrate the effectiveness of our proposed distributed reconfiguration control laws in compensating for the effects of sudden actuator faults and subject to fault diagnosis module uncertainties and unreliabilities. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. A Hybrid Stochastic-Neuro-Fuzzy Model-Based System for In-Flight Gas Turbine Engine Diagnostics

    DTIC Science & Technology

    2001-04-05

    Margin (ADM) and (ii) Fault Detection Margin (FDM). Key Words: ANFIS, Engine Health Monitoring , Gas Path Analysis, and Stochastic Analysis Adaptive Network...The paper illustrates the application of a hybrid Stochastic- Fuzzy -Inference Model-Based System (StoFIS) to fault diagnostics and prognostics for both...operational history monitored on-line by the engine health management (EHM) system. To capture the complex functional relationships between different

  12. An Overview of ANN Application in the Power Industry

    NASA Technical Reports Server (NTRS)

    Niebur, D.

    1995-01-01

    The paper presents a survey on the development and experience with artificial neural net (ANN) applications for electric power systems, with emphasis on operational systems. The organization and constraints of electric utilities are reviewed, motivations for investigating ANN are identified, and a current assessment is given from the experience of 2400 projects using ANN for load forecasting, alarm processing, fault detection, component fault diagnosis, static and dynamic security analysis, system planning, and operation planning.

  13. Automated visual inspection of brake shoe wear

    NASA Astrophysics Data System (ADS)

    Lu, Shengfang; Liu, Zhen; Nan, Guo; Zhang, Guangjun

    2015-10-01

    With the rapid development of high-speed railway, the automated fault inspection is necessary to ensure train's operation safety. Visual technology is paid more attention in trouble detection and maintenance. For a linear CCD camera, Image alignment is the first step in fault detection. To increase the speed of image processing, an improved scale invariant feature transform (SIFT) method is presented. The image is divided into multiple levels of different resolution. Then, we do not stop to extract the feature from the lowest resolution to the highest level until we get sufficient SIFT key points. At that level, the image is registered and aligned quickly. In the stage of inspection, we devote our efforts to finding the trouble of brake shoe, which is one of the key components in brake system on electrical multiple units train (EMU). Its pre-warning on wear limitation is very important in fault detection. In this paper, we propose an automatic inspection approach to detect the fault of brake shoe. Firstly, we use multi-resolution pyramid template matching technology to fast locate the brake shoe. Then, we employ Hough transform to detect the circles of bolts in brake region. Due to the rigid characteristic of structure, we can identify whether the brake shoe has a fault. The experiments demonstrate that the way we propose has a good performance, and can meet the need of practical applications.

  14. Sideband Algorithm for Automatic Wind Turbine Gearbox Fault Detection and Diagnosis: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zappala, D.; Tavner, P.; Crabtree, C.

    2013-01-01

    Improving the availability of wind turbines (WT) is critical to minimize the cost of wind energy, especially for offshore installations. As gearbox downtime has a significant impact on WT availabilities, the development of reliable and cost-effective gearbox condition monitoring systems (CMS) is of great concern to the wind industry. Timely detection and diagnosis of developing gear defects within a gearbox is an essential part of minimizing unplanned downtime of wind turbines. Monitoring signals from WT gearboxes are highly non-stationary as turbine load and speed vary continuously with time. Time-consuming and costly manual handling of large amounts of monitoring data representmore » one of the main limitations of most current CMSs, so automated algorithms are required. This paper presents a fault detection algorithm for incorporation into a commercial CMS for automatic gear fault detection and diagnosis. The algorithm allowed the assessment of gear fault severity by tracking progressive tooth gear damage during variable speed and load operating conditions of the test rig. Results show that the proposed technique proves efficient and reliable for detecting gear damage. Once implemented into WT CMSs, this algorithm can automate data interpretation reducing the quantity of information that WT operators must handle.« less

  15. A high-fidelity airbus benchmark for system fault detection and isolation and flight control law clearance

    NASA Astrophysics Data System (ADS)

    Goupil, Ph.; Puyou, G.

    2013-12-01

    This paper presents a high-fidelity generic twin engine civil aircraft model developed by Airbus for advanced flight control system research. The main features of this benchmark are described to make the reader aware of the model complexity and representativeness. It is a complete representation including the nonlinear rigid-body aircraft model with a full set of control surfaces, actuator models, sensor models, flight control laws (FCL), and pilot inputs. Two applications of this benchmark in the framework of European projects are presented: FCL clearance using optimization and advanced fault detection and diagnosis (FDD).

  16. Towards Certification of a Space System Application of Fault Detection and Isolation

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Markosian, Lawrence Z.

    2008-01-01

    Advanced fault detection, isolation and recovery (FDIR) software is being investigated at NASA as a means to the improve reliability and availability of its space systems. Certification is a critical step in the acceptance of such software. Its attainment hinges on performing the necessary verification and validation to show that the software will fulfill its requirements in the intended setting. Presented herein is our ongoing work to plan for the certification of a pilot application of advanced FDIR software in a NASA setting. We describe the application, and the key challenges and opportunities it offers for certification.

  17. A Novel Arc Fault Detector for Early Detection of Electrical Fires

    PubMed Central

    Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang

    2016-01-01

    Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires. PMID:27070618

  18. Analysis of Space Shuttle Ground Support System Fault Detection, Isolation, and Recovery Processes and Resources

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Gerald-Yamasaki, Michael; Trent, Robert P.

    2009-01-01

    As part of the FDIR (Fault Detection, Isolation, and Recovery) Project for the Constellation Program, a task was designed within the context of the Constellation Program FDIR project called the Legacy Benchmarking Task to document as accurately as possible the FDIR processes and resources that were used by the Space Shuttle ground support equipment (GSE) during the Shuttle flight program. These results served as a comparison with results obtained from the new FDIR capability. The task team assessed Shuttle and EELV (Evolved Expendable Launch Vehicle) historical data for GSE-related launch delays to identify expected benefits and impact. This analysis included a study of complex fault isolation situations that required a lengthy troubleshooting process. Specifically, four elements of that system were considered: LH2 (liquid hydrogen), LO2 (liquid oxygen), hydraulic test, and ground special power.

  19. Monitoring Wind Turbine Loading Using Power Converter Signals

    NASA Astrophysics Data System (ADS)

    Rieg, C. A.; Smith, C. J.; Crabtree, C. J.

    2016-09-01

    The ability to detect faults and predict loads on a wind turbine drivetrain's mechanical components cost-effectively is critical to making the cost of wind energy competitive. In order to investigate whether this is possible using the readily available power converter current signals, an existing permanent magnet synchronous generator based wind energy conversion system computer model was modified to include a grid-side converter (GSC) for an improved converter model and a gearbox. The GSC maintains a constant DC link voltage via vector control. The gearbox was modelled as a 3-mass model to allow faults to be included. Gusts and gearbox faults were introduced to investigate the ability of the machine side converter (MSC) current (I q) to detect and quantify loads on the mechanical components. In this model, gearbox faults were not detectable in the I q signal due to shaft stiffness and damping interaction. However, a model that predicts the load change on mechanical wind turbine components using I q was developed and verified using synthetic and real wind data.

  20. Real-Time Simulation for Verification and Validation of Diagnostic and Prognostic Algorithms

    NASA Technical Reports Server (NTRS)

    Aguilar, Robet; Luu, Chuong; Santi, Louis M.; Sowers, T. Shane

    2005-01-01

    To verify that a health management system (HMS) performs as expected, a virtual system simulation capability, including interaction with the associated platform or vehicle, very likely will need to be developed. The rationale for developing this capability is discussed and includes the limited capability to seed faults into the actual target system due to the risk of potential damage to high value hardware. The capability envisioned would accurately reproduce the propagation of a fault or failure as observed by sensors located at strategic locations on and around the target system and would also accurately reproduce the control system and vehicle response. In this way, HMS operation can be exercised over a broad range of conditions to verify that it meets requirements for accurate, timely response to actual faults with adequate margin against false and missed detections. An overview is also presented of a real-time rocket propulsion health management system laboratory which is available for future rocket engine programs. The health management elements and approaches of this lab are directly applicable for future space systems. In this paper the various components are discussed and the general fault detection, diagnosis, isolation and the response (FDIR) concept is presented. Additionally, the complexities of V&V (Verification and Validation) for advanced algorithms and the simulation capabilities required to meet the changing state-of-the-art in HMS are discussed.

  1. Self-Checking Pairs Of Microprocessors

    NASA Technical Reports Server (NTRS)

    Smith, Brian S.

    1995-01-01

    Method of imparting fault tolerance to computer system provides for immediate detection of faults at microprocessor level. Shadow microprocessor provides nominal duplicate outputs to verify functioning of main microprocessor. When output signal on any pin of one microprocessor differs from that on corresponding pin of other microprocessor, comparator puts out alarm signal.

  2. Fault detection on a sewer network by a combination of a Kalman filter and a binary sequential probability ratio test

    NASA Astrophysics Data System (ADS)

    Piatyszek, E.; Voignier, P.; Graillot, D.

    2000-05-01

    One of the aims of sewer networks is the protection of population against floods and the reduction of pollution rejected to the receiving water during rainy events. To meet these goals, managers have to equip the sewer networks with and to set up real-time control systems. Unfortunately, a component fault (leading to intolerable behaviour of the system) or sensor fault (deteriorating the process view and disturbing the local automatism) makes the sewer network supervision delicate. In order to ensure an adequate flow management during rainy events it is essential to set up procedures capable of detecting and diagnosing these anomalies. This article introduces a real-time fault detection method, applicable to sewer networks, for the follow-up of rainy events. This method consists in comparing the sensor response with a forecast of this response. This forecast is provided by a model and more precisely by a state estimator: a Kalman filter. This Kalman filter provides not only a flow estimate but also an entity called 'innovation'. In order to detect abnormal operations within the network, this innovation is analysed with the binary sequential probability ratio test of Wald. Moreover, by crossing available information on several nodes of the network, a diagnosis of the detected anomalies is carried out. This method provided encouraging results during the analysis of several rains, on the sewer network of Seine-Saint-Denis County, France.

  3. Engine Data Interpretation System (EDIS), phase 2

    NASA Technical Reports Server (NTRS)

    Cost, Thomas L.; Hofmann, Martin O.

    1991-01-01

    A prototype of an expert system was developed which applies qualitative constraint-based reasoning to the task of post-test analysis of data resulting from a rocket engine firing. Data anomalies are detected and corresponding faults are diagnosed. Engine behavior is reconstructed using measured data and knowledge about engine behavior. Knowledge about common faults guides but does not restrict the search for the best explanation in terms of hypothesized faults. The system contains domain knowledge about the behavior of common rocket engine components and was configured for use with the Space Shuttle Main Engine (SSME). A graphical user interface allows an expert user to intimately interact with the system during diagnosis. The system was applied to data taken during actual SSME tests where data anomalies were observed.

  4. AF-DHNN: Fuzzy Clustering and Inference-Based Node Fault Diagnosis Method for Fire Detection

    PubMed Central

    Jin, Shan; Cui, Wen; Jin, Zhigang; Wang, Ying

    2015-01-01

    Wireless Sensor Networks (WSNs) have been utilized for node fault diagnosis in the fire detection field since the 1990s. However, the traditional methods have some problems, including complicated system structures, intensive computation needs, unsteady data detection and local minimum values. In this paper, a new diagnosis mechanism for WSN nodes is proposed, which is based on fuzzy theory and an Adaptive Fuzzy Discrete Hopfield Neural Network (AF-DHNN). First, the original status of each sensor over time is obtained with two features. One is the root mean square of the filtered signal (FRMS), the other is the normalized summation of the positive amplitudes of the difference spectrum between the measured signal and the healthy one (NSDS). Secondly, distributed fuzzy inference is introduced. The evident abnormal nodes’ status is pre-alarmed to save time. Thirdly, according to the dimensions of the diagnostic data, an adaptive diagnostic status system is established with a Fuzzy C-Means Algorithm (FCMA) and Sorting and Classification Algorithm to reducing the complexity of the fault determination. Fourthly, a Discrete Hopfield Neural Network (DHNN) with iterations is improved with the optimization of the sensors’ detected status information and standard diagnostic levels, with which the associative memory is achieved, and the search efficiency is improved. The experimental results show that the AF-DHNN method can diagnose abnormal WSN node faults promptly and effectively, which improves the WSN reliability. PMID:26193280

  5. Applications of Fault Detection in Vibrating Structures

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Hogge, Edward; Quach, Cuong C.; Vazquez, Sixto L.; Russell, Andrew; Hill, Boyd L.

    2012-01-01

    Structural fault detection and identification remains an area of active research. Solutions to fault detection and identification may be based on subtle changes in the time series history of vibration signals originating from various sensor locations throughout the structure. The purpose of this paper is to document the application of vibration based fault detection methods applied to several structures. Overall, this paper demonstrates the utility of vibration based methods for fault detection in a controlled laboratory setting and limitations of applying the same methods to a similar structure during flight on an experimental subscale aircraft.

  6. Application of a Bank of Kalman Filters for Aircraft Engine Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2003-01-01

    In this paper, a bank of Kalman filters is applied to aircraft gas turbine engine sensor and actuator fault detection and isolation (FDI) in conjunction with the detection of component faults. This approach uses multiple Kalman filters, each of which is designed for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, thereby isolating the specific fault. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The proposed FDI approach is applied to a nonlinear engine simulation at nominal and aged conditions, and the evaluation results for various engine faults at cruise operating conditions are given. The ability of the proposed approach to reliably detect and isolate sensor and actuator faults is demonstrated.

  7. Redundant and fault-tolerant algorithms for real-time measurement and control systems for weapon equipment.

    PubMed

    Li, Dan; Hu, Xiaoguang

    2017-03-01

    Because of the high availability requirements from weapon equipment, an in-depth study has been conducted on the real-time fault-tolerance of the widely applied Compact PCI (CPCI) bus measurement and control system. A redundancy design method that uses heartbeat detection to connect the primary and alternate devices has been developed. To address the low successful execution rate and relatively large waste of time slices in the primary version of the task software, an improved algorithm for real-time fault-tolerant scheduling is proposed based on the Basic Checking available time Elimination idle time (BCE) algorithm, applying a single-neuron self-adaptive proportion sum differential (PSD) controller. The experimental validation results indicate that this system has excellent redundancy and fault-tolerance, and the newly developed method can effectively improve the system availability. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Enhanced fault-tolerant quantum computing in d-level systems.

    PubMed

    Campbell, Earl T

    2014-12-05

    Error-correcting codes protect quantum information and form the basis of fault-tolerant quantum computing. Leading proposals for fault-tolerant quantum computation require codes with an exceedingly rare property, a transversal non-Clifford gate. Codes with the desired property are presented for d-level qudit systems with prime d. The codes use n=d-1 qudits and can detect up to ∼d/3 errors. We quantify the performance of these codes for one approach to quantum computation known as magic-state distillation. Unlike prior work, we find performance is always enhanced by increasing d.

  9. Scientific Research Program for Power, Energy, and Thermal Technologies. Task Order 0002: Power, Thermal and Control Technologies and Processes Experimental Research. Subtask: Laboratory Test Set-up to Evaluate Electromechanical Actuation Systems for Aircraft Flight Control

    DTIC Science & Technology

    2015-08-01

    faults are incorporated into the system in order to better understand the EMA reliability, and to aid in designing fault detection software for real...to a fixed angle repeatedly and accurately [16]. The motor in the EHA is used to drive a reversible pump tied to a hydraulic cylinder which moves...24] [25] [26]. These test stands are used for the prognostic testing of EMAS that have had mechanical or electrical faults injected into them. The

  10. Pattern classifier for health monitoring of helicopter gearboxes

    NASA Technical Reports Server (NTRS)

    Chin, Hsinyung; Danai, Kourosh; Lewicki, David G.

    1993-01-01

    The application of a newly developed diagnostic method to a helicopter gearbox is demonstrated. This method is a pattern classifier which uses a multi-valued influence matrix (MVIM) as its diagnostic model. The method benefits from a fast learning algorithm, based on error feedback, that enables it to estimate gearbox health from a small set of measurement-fault data. The MVIM method can also assess the diagnosability of the system and variability of the fault signatures as the basis to improve fault signatures. This method was tested on vibration signals reflecting various faults in an OH-58A main rotor transmission gearbox. The vibration signals were then digitized and processed by a vibration signal analyzer to enhance and extract various features of the vibration data. The parameters obtained from this analyzer were utilized to train and test the performance of the MVIM method in both detection and diagnosis. The results indicate that the MVIM method provided excellent detection results when the full range of faults effects on the measurements were included in training, and it had a correct diagnostic rate of 95 percent when the faults were included in training.

  11. Analysis and design of algorithm-based fault-tolerant systems

    NASA Technical Reports Server (NTRS)

    Nair, V. S. Sukumaran

    1990-01-01

    An important consideration in the design of high performance multiprocessor systems is to ensure the correctness of the results computed in the presence of transient and intermittent failures. Concurrent error detection and correction have been applied to such systems in order to achieve reliability. Algorithm Based Fault Tolerance (ABFT) was suggested as a cost-effective concurrent error detection scheme. The research was motivated by the complexity involved in the analysis and design of ABFT systems. To that end, a matrix-based model was developed and, based on that, algorithms for both the design and analysis of ABFT systems are formulated. These algorithms are less complex than the existing ones. In order to reduce the complexity further, a hierarchical approach is developed for the analysis of large systems.

  12. Fault Diagnosis for the Heat Exchanger of the Aircraft Environmental Control System Based on the Strong Tracking Filter

    PubMed Central

    Ma, Jian; Lu, Chen; Liu, Hongmei

    2015-01-01

    The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system’s efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger. PMID:25823010

  13. Improvement in operational characteristics of KEPCO’s line-commutation-type superconducting hybrid fault current limiter

    NASA Astrophysics Data System (ADS)

    Yim, S.-W.; Park, B.-C.; Jeong, Y.-T.; Kim, Y.-J.; Yang, S.-E.; Kim, W.-S.; Kim, H.-R.; Du, H.-I.

    2013-01-01

    A 22.9 kV class hybrid fault current limiter (FCL) developed by Korea Electric Power Corporation and LS Industrial Systems in 2006 operates using the line commutation mechanism and begins to limit the fault current after the first half-cycle. The first peak of the fault current is available for protective coordination in the power system. However, it also produces a large electromagnetic force and imposes a huge stress on power facilities such as the main transformer and gas-insulated switchgear. In this study, we improved the operational characteristics of the hybrid FCL in order to reduce the first peak of the fault current. While maintaining the structure of the hybrid FCL system, we developed a superconducting module that detects and limits the fault current during the first half-cycle. To maintain the protective coordination capacity, the hybrid FCL was designed to reduce the first peak value of the fault current by up to approximately 30%. The superconducting module was also designed to produce a minimum AC loss, generating a small, uniform magnetic field distribution during normal operation. Performance tests confirmed that when applied to the hybrid FCL, the superconducting module showed successful current limiting operation without any damage.

  14. Detection and localization of building insulation faults using optical-fiber DTS system

    NASA Astrophysics Data System (ADS)

    Papes, Martin; Liner, Andrej; Koudelka, Petr; Siska, Petr; Cubik, Jakub; Kepak, Stanislav; Jaros, Jakub; Vasinek, Vladimir

    2013-05-01

    Nowadays the trends in the construction industry are changing at an incredible speed. The new technologies are still emerging on the market. Sphere of building insulation is not an exception as well. One of the major problems in building insulation is usually its failure, whether caused by unwanted mechanical intervention or improper installation. The localization of these faults is quite difficult, often impossible without large intervention into the construction. As a proper solution for this problem might be utilization of Optical-Fiber DTS system based on stimulated Raman scattering. Used DTS system is primary designed for continuous measurement of the temperature along the optical fiber. This system is using standard optical fiber as a sensor, which brings several advantages in its application. First, the optical fiber is relatively inexpensive, which allows to cover a quite large area for a small cost. The other main advantages of the optical fiber are electromagnetic resistance, small size, safety operation in inflammable or explosive area, easy installation, etc. This article is dealing with the detection and localization of building insulation faults using mentioned system.

  15. Arc fault detection system

    DOEpatents

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  16. New methods for the condition monitoring of level crossings

    NASA Astrophysics Data System (ADS)

    García Márquez, Fausto Pedro; Pedregal, Diego J.; Roberts, Clive

    2015-04-01

    Level crossings represent a high risk for railway systems. This paper demonstrates the potential to improve maintenance management through the use of intelligent condition monitoring coupled with reliability centred maintenance (RCM). RCM combines advanced electronics, control, computing and communication technologies to address the multiple objectives of cost effectiveness, improved quality, reliability and services. RCM collects digital and analogue signals utilising distributed transducers connected to either point-to-point or digital bus communication links. Assets in many industries use data logging capable of providing post-failure diagnostic support, but to date little use has been made of combined qualitative and quantitative fault detection techniques. The research takes the hydraulic railway level crossing barrier (LCB) system as a case study and develops a generic strategy for failure analysis, data acquisition and incipient fault detection. For each barrier the hydraulic characteristics, the motor's current and voltage, hydraulic pressure and the barrier's position are acquired. In order to acquire the data at a central point efficiently, without errors, a distributed single-cable Fieldbus is utilised. This allows the connection of all sensors through the project's proprietary communication nodes to a high-speed bus. The system developed in this paper for the condition monitoring described above detects faults by means of comparing what can be considered a 'normal' or 'expected' shape of a signal with respect to the actual shape observed as new data become available. ARIMA (autoregressive integrated moving average) models were employed for detecting faults. The statistical tests known as Jarque-Bera and Ljung-Box have been considered for testing the model.

  17. Performance analysis of a fault inferring nonlinear detection system algorithm with integrated avionics flight data

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Godiwala, P. M.; Morrell, F. R.

    1985-01-01

    This paper presents the performance analysis results of a fault inferring nonlinear detection system (FINDS) using integrated avionics sensor flight data for the NASA ATOPS B-737 aircraft in a Microwave Landing System (MLS) environment. First, an overview of the FINDS algorithm structure is given. Then, aircraft state estimate time histories and statistics for the flight data sensors are discussed. This is followed by an explanation of modifications made to the detection and decision functions in FINDS to improve false alarm and failure detection performance. Next, the failure detection and false alarm performance of the FINDS algorithm are analyzed by injecting bias failures into fourteen sensor outputs over six repetitive runs of the five minutes of flight data. Results indicate that the detection speed, failure level estimation, and false alarm performance show a marked improvement over the previously reported simulation runs. In agreement with earlier results, detection speed is faster for filter measurement sensors such as MLS than for filter input sensors such as flight control accelerometers. Finally, the progress in modifications of the FINDS algorithm design to accommodate flight computer constraints is discussed.

  18. Fuzzy-Wavelet Based Double Line Transmission System Protection Scheme in the Presence of SVC

    NASA Astrophysics Data System (ADS)

    Goli, Ravikumar; Shaik, Abdul Gafoor; Tulasi Ram, Sankara S.

    2015-06-01

    Increasing the power transfer capability and efficient utilization of available transmission lines, improving the power system controllability and stability, power oscillation damping and voltage compensation have made strides and created Flexible AC Transmission (FACTS) devices in recent decades. Shunt FACTS devices can have adverse effects on distance protection both in steady state and transient periods. Severe under reaching is the most important problem of relay which is caused by current injection at the point of connection to the system. Current absorption of compensator leads to overreach of relay. This work presents an efficient method based on wavelet transforms, fault detection, classification and location using Fuzzy logic technique which is almost independent of fault impedance, fault distance and fault inception angle. The proposed protection scheme is found to be fast, reliable and accurate for various types of faults on transmission lines with and without Static Var compensator at different locations and with various incidence angles.

  19. Fault tolerant system based on IDDQ testing

    NASA Astrophysics Data System (ADS)

    Guibane, Badi; Hamdi, Belgacem; Mtibaa, Abdellatif; Bensalem, Brahim

    2018-06-01

    Offline test is essential to ensure good manufacturing quality. However, for permanent or transient faults that occur during the use of the integrated circuit in an application, an online integrated test is needed as well. This procedure should ensure the detection and possibly the correction or the masking of these faults. This requirement of self-correction is sometimes necessary, especially in critical applications that require high security such as automotive, space or biomedical applications. We propose a fault-tolerant design for analogue and mixed-signal design complementary metal oxide (CMOS) circuits based on the quiescent current supply (IDDQ) testing. A defect can cause an increase in current consumption. IDDQ testing technique is based on the measurement of power supply current to distinguish between functional and failed circuits. The technique has been an effective testing method for detecting physical defects such as gate-oxide shorts, floating gates (open) and bridging defects in CMOS integrated circuits. An architecture called BICS (Built In Current Sensor) is used for monitoring the supply current (IDDQ) of the connected integrated circuit. If the measured current is not within the normal range, a defect is signalled and the system switches connection from the defective to a functional integrated circuit. The fault-tolerant technique is composed essentially by a double mirror built-in current sensor, allowing the detection of abnormal current consumption and blocks allowing the connection to redundant circuits, if a defect occurs. Spices simulations are performed to valid the proposed design.

  20. Fault Detection of Aircraft System with Random Forest Algorithm and Similarity Measure

    PubMed Central

    Park, Wookje; Jung, Sikhang

    2014-01-01

    Research on fault detection algorithm was developed with the similarity measure and random forest algorithm. The organized algorithm was applied to unmanned aircraft vehicle (UAV) that was readied by us. Similarity measure was designed by the help of distance information, and its usefulness was also verified by proof. Fault decision was carried out by calculation of weighted similarity measure. Twelve available coefficients among healthy and faulty status data group were used to determine the decision. Similarity measure weighting was done and obtained through random forest algorithm (RFA); RF provides data priority. In order to get a fast response of decision, a limited number of coefficients was also considered. Relation of detection rate and amount of feature data were analyzed and illustrated. By repeated trial of similarity calculation, useful data amount was obtained. PMID:25057508

  1. Pressure Monitoring to Detect Fault Rupture Due to CO 2 Injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keating, Elizabeth; Dempsey, David; Pawar, Rajesh

    The capacity for fault systems to be reactivated by fluid injection is well-known. In the context of CO 2 sequestration, however, the consequence of reactivated faults with respect to leakage and monitoring is poorly understood. Using multi-phase fluid flow simulations, this study addresses key questions concerning the likelihood of ruptures, the timing of consequent upward leakage of CO 2, and the effectiveness of pressure monitoring in the reservoir and overlying zones for rupture detection. A range of injection scenarios was simulated using random sampling of uncertain parameters. These include the assumed distance between the injector and the vulnerable fault zone,more » the critical overpressure required for the fault to rupture, reservoir permeability, and the CO 2 injection rate. We assumed a conservative scenario, in which if at any time during the five-year simulations the critical fault overpressure is exceeded, the fault permeability is assumed to instantaneously increase. For the purposes of conservatism we assume that CO 2 injection continues ‘blindly’ after fault rupture. We show that, despite this assumption, in most cases the CO 2 plume does not reach the base of the ruptured fault after 5 years. As a result, one possible implication of this result is that leak mitigation strategies such as pressure management have a reasonable chance of preventing a CO 2 leak.« less

  2. Pressure Monitoring to Detect Fault Rupture Due to CO 2 Injection

    DOE PAGES

    Keating, Elizabeth; Dempsey, David; Pawar, Rajesh

    2017-08-18

    The capacity for fault systems to be reactivated by fluid injection is well-known. In the context of CO 2 sequestration, however, the consequence of reactivated faults with respect to leakage and monitoring is poorly understood. Using multi-phase fluid flow simulations, this study addresses key questions concerning the likelihood of ruptures, the timing of consequent upward leakage of CO 2, and the effectiveness of pressure monitoring in the reservoir and overlying zones for rupture detection. A range of injection scenarios was simulated using random sampling of uncertain parameters. These include the assumed distance between the injector and the vulnerable fault zone,more » the critical overpressure required for the fault to rupture, reservoir permeability, and the CO 2 injection rate. We assumed a conservative scenario, in which if at any time during the five-year simulations the critical fault overpressure is exceeded, the fault permeability is assumed to instantaneously increase. For the purposes of conservatism we assume that CO 2 injection continues ‘blindly’ after fault rupture. We show that, despite this assumption, in most cases the CO 2 plume does not reach the base of the ruptured fault after 5 years. As a result, one possible implication of this result is that leak mitigation strategies such as pressure management have a reasonable chance of preventing a CO 2 leak.« less

  3. Algorithm-Based Fault Tolerance Integrated with Replication

    NASA Technical Reports Server (NTRS)

    Some, Raphael; Rennels, David

    2008-01-01

    In a proposed approach to programming and utilization of commercial off-the-shelf computing equipment, a combination of algorithm-based fault tolerance (ABFT) and replication would be utilized to obtain high degrees of fault tolerance without incurring excessive costs. The basic idea of the proposed approach is to integrate ABFT with replication such that the algorithmic portions of computations would be protected by ABFT, and the logical portions by replication. ABFT is an extremely efficient, inexpensive, high-coverage technique for detecting and mitigating faults in computer systems used for algorithmic computations, but does not protect against errors in logical operations surrounding algorithms.

  4. Development of a spectrofluorimetry-based device for determining the acetylene content in the oils of power transformers.

    PubMed

    Quintella, Cristina M; Meira, Marilena; Silva, Weidson Leal; Filho, Rogério G D; Araújo, André L C; Júnior, Elias T S; Sales, Lindolfo J O

    2013-12-15

    Power transformers are essential for a functioning electrical system and therefore require special attention by maintenance programs because a fault can harm both the company and society. The temperature inside a power transformer and the dissolved gases, which are primarily composed of acetylene, are the two main parameters monitored when detecting faults. This paper describes the development of a device for analyzing the acetylene content in insulating oil using spectrofluorimetry. Using this device introduces a new methodology for the maintaining and operating power transformers. The prototype is currently operating in a substation. The results presented by this system were satisfactory; when compared to chromatographic data, the errors did not exceed 15%. This prototype may be used to confirm the quality of an insulating oil sample to detect faults in power transformers. © 2013 Elsevier B.V. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katti, Amogh; Di Fatta, Giuseppe; Naughton III, Thomas J

    Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum's User Level Failure Mitigation proposal has introduced an operation, MPI_Comm_shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI_Comm_shrink operation requires a fault tolerant failure detection and consensus algorithm. This paper presents and compares two novel failure detection and consensus algorithms. The proposed algorithms are based on Gossip protocols and are inherently fault-tolerant and scalable. The proposed algorithms were implementedmore » and tested using the Extreme-scale Simulator. The results show that in both algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus.« less

  6. Along-strike variations of the partitioning of convergence across the Haiyuan fault system detected by InSAR

    NASA Astrophysics Data System (ADS)

    Daout, S.; Jolivet, R.; Lasserre, C.; Doin, M.-P.; Barbot, S.; Tapponnier, P.; Peltzer, G.; Socquet, A.; Sun, J.

    2016-04-01

    Oblique convergence across Tibet leads to slip partitioning with the coexistence of strike-slip, normal and thrust motion on major fault systems. A key point is to understand and model how faults interact and accumulate strain at depth. Here, we extract ground deformation across the Haiyuan Fault restraining bend, at the northeastern boundary of the Tibetan plateau, from Envisat radar data spanning the 2001-2011 period. We show that the complexity of the surface displacement field can be explained by the partitioning of a uniform deep-seated convergence. Mountains and sand dunes in the study area make the radar data processing challenging and require the latest developments in processing procedures for Synthetic Aperture Radar interferometry. The processing strategy is based on a small baseline approach. Before unwrapping, we correct for atmospheric phase delays from global atmospheric models and digital elevation model errors. A series of filtering steps is applied to improve the signal-to-noise ratio across high ranges of the Tibetan plateau and the phase unwrapping capability across the fault, required for reliable estimate of fault movement. We then jointly invert our InSAR time-series together with published GPS displacements to test a proposed long-term slip-partitioning model between the Haiyuan and Gulang left-lateral Faults and the Qilian Shan thrusts. We explore the geometry of the fault system at depth and associated slip rates using a Bayesian approach and test the consistency of present-day geodetic surface displacements with a long-term tectonic model. We determine a uniform convergence rate of 10 [8.6-11.5] mm yr-1 with an N89 [81-97]°E across the whole fault system, with a variable partitioning west and east of a major extensional fault-jog (the Tianzhu pull-apart basin). Our 2-D model of two profiles perpendicular to the fault system gives a quantitative understanding of how crustal deformation is accommodated by the various branches of this thrust/strike-slip fault system and demonstrates how the geometry of the Haiyuan fault system controls the partitioning of the deep secular motion.

  7. Sequoia: A fault-tolerant tightly coupled multiprocessor for transaction processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, P.A.

    1988-02-01

    The Sequoia computer is a tightly coupled multiprocessor, and thus attains the performance advantages of this style of architecture. It avoids most of the fault-tolerance disadvantages of tight coupling by using a new fault-tolerance design. The Sequoia architecture is similar to other multimicroprocessor architectures, such as those of Encore and Sequent, in that it gives dozens of microprocessors shared access to a large main memory. It resembles the Stratus architecture in its extensive use of hardware fault-detection techniques. It resembles Stratus and Auragen in its ability to quickly recover all processes after a single point failure, transparently to the user.more » However, Sequoia is unique in its combination of a large-scale tightly coupled architecture with a hardware approach to fault tolerance. This article gives an overview of how the hardware architecture and operating systems (OS) work together to provide a high degree of fault tolerance with good system performance.« less

  8. Development and evaluation of a fault-tolerant multiprocessor (FTMP) computer. Volume 4: FTMP executive summary

    NASA Technical Reports Server (NTRS)

    Smith, T. B., III; Lala, J. H.

    1984-01-01

    The FTMP architecture is a high reliability computer concept modeled after a homogeneous multiprocessor architecture. Elements of the FTMP are operated in tight synchronism with one another and hardware fault-detection and fault-masking is provided which is transparent to the software. Operating system design and user software design is thus greatly simplified. Performance of the FTMP is also comparable to that of a simplex equivalent due to the efficiency of fault handling hardware. The FTMP project constructed an engineering module of the FTMP, programmed the machine and extensively tested the architecture through fault injection and other stress testing. This testing confirmed the soundness of the FTMP concepts.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.; Peng, L.; Bronevetsky, G.

    As HPC systems approach Exascale, their circuit feature will shrink, while their overall size will grow, all at a fixed power limit. These trends imply that soft faults in electronic circuits will become an increasingly significant problem for applications that run on these systems, causing them to occasionally crash or worse, silently return incorrect results. This is motivating extensive work on application resilience to such faults, ranging from generic techniques such as replication or checkpoint/restart to algorithm-specific error detection and resilience techniques. Effective use of such techniques requires a detailed understanding of (1) which vulnerable parts of the application aremore » most worth protecting (2) the performance and resilience impact of fault resilience mechanisms on the application. This paper presents FaultTelescope, a tool that combines these two and generates actionable insights by presenting in an intuitive way application vulnerabilities and impact of fault resilience mechanisms on applications.« less

  10. Spatial-Temporal Synchrophasor Data Characterization and Analytics in Smart Grid Fault Detection, Identification, and Impact Causal Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Dai, Xiaoxiao; Gao, David Wenzhong

    An approach of big data characterization for smart grids (SGs) and its applications in fault detection, identification, and causal impact analysis is proposed in this paper, which aims to provide substantial data volume reduction while keeping comprehensive information from synchrophasor measurements in spatial and temporal domains. Especially, based on secondary voltage control (SVC) and local SG observation algorithm, a two-layer dynamic optimal synchrophasor measurement devices selection algorithm (OSMDSA) is proposed to determine SVC zones, their corresponding pilot buses, and the optimal synchrophasor measurement devices. Combining the two-layer dynamic OSMDSA and matching pursuit decomposition, the synchrophasor data is completely characterized inmore » the spatial-temporal domain. To demonstrate the effectiveness of the proposed characterization approach, SG situational awareness is investigated based on hidden Markov model based fault detection and identification using the spatial-temporal characteristics generated from the reduced data. To identify the major impact buses, the weighted Granger causality for SGs is proposed to investigate the causal relationship of buses during system disturbance. The IEEE 39-bus system and IEEE 118-bus system are employed to validate and evaluate the proposed approach.« less

  11. Fault detection and diagnosis in a spacecraft attitude determination system

    NASA Astrophysics Data System (ADS)

    Pirmoradi, F. N.; Sassani, F.; de Silva, C. W.

    2009-09-01

    This paper presents a new scheme for fault detection and diagnosis (FDD) in spacecraft attitude determination (AD) sensors. An integrated attitude determination system, which includes measurements of rate and angular position using rate gyros and vector sensors, is developed. Measurement data from all sensors are fused by a linearized Kalman filter, which is designed based on the system kinematics, to provide attitude estimation and the values of the gyro bias. Using this information the erroneous sensor measurements are corrected, and unbounded sensor measurement errors are avoided. The resulting bias-free data are used in the FDD scheme. The FDD algorithm uses model-based state estimation, combining the information from the rotational dynamics and kinematics of a spacecraft with the sensor measurements to predict the future sensor outputs. Fault isolation is performed through extended Kalman filters (EKFs). The innovation sequences of EKFs are monitored by several statistical tests to detect the presence of a failure and to localize the failures in all AD sensors. The isolation procedure is developed in two phases. In the first phase, two EKFs are designed, which use subsets of measurements to provide state estimates and form residuals, which are used to verify the source of the fault. In the second phase of isolation, testing of multiple hypotheses is performed. The generalized likelihood ratio test is utilized to identify the faulty components. In the scheme developed in this paper a relatively small number of hypotheses is used, which results in faster isolation and highly distinguishable fault signatures. An important feature of the developed FDD scheme is that it can provide attitude estimations even if only one type of sensors is functioning properly.

  12. A Kalman Filter Based Technique for Stator Turn-Fault Detection of the Induction Motors

    NASA Astrophysics Data System (ADS)

    Ghanbari, Teymoor; Samet, Haidar

    2017-11-01

    Monitoring of the Induction Motors (IMs) through stator current for different faults diagnosis has considerable economic and technical advantages in comparison with the other techniques in this content. Among different faults of an IM, stator and bearing faults are more probable types, which can be detected by analyzing signatures of the stator currents. One of the most reliable indicators for fault detection of IMs is lower sidebands of power frequency in the stator currents. This paper deals with a novel simple technique for detecting stator turn-fault of the IMs. Frequencies of the lower sidebands are determined using the motor specifications and their amplitudes are estimated by a Kalman Filter (KF). Instantaneous Total Harmonic Distortion (ITHD) of these harmonics is calculated. Since variation of the ITHD for the three-phase currents is considerable in case of stator turn-fault, the fault can be detected using this criterion, confidently. Different simulation results verify high performance of the proposed method. The performance of the method is also confirmed using some experiments.

  13. An uncertainty-based distributed fault detection mechanism for wireless sensor networks.

    PubMed

    Yang, Yang; Gao, Zhipeng; Zhou, Hang; Qiu, Xuesong

    2014-04-25

    Exchanging too many messages for fault detection will cause not only a degradation of the network quality of service, but also represents a huge burden on the limited energy of sensors. Therefore, we propose an uncertainty-based distributed fault detection through aided judgment of neighbors for wireless sensor networks. The algorithm considers the serious influence of sensing measurement loss and therefore uses Markov decision processes for filling in missing data. Most important of all, fault misjudgments caused by uncertainty conditions are the main drawbacks of traditional distributed fault detection mechanisms. We draw on the experience of evidence fusion rules based on information entropy theory and the degree of disagreement function to increase the accuracy of fault detection. Simulation results demonstrate our algorithm can effectively reduce communication energy overhead due to message exchanges and provide a higher detection accuracy ratio.

  14. Enhanced data validation strategy of air quality monitoring network.

    PubMed

    Harkat, Mohamed-Faouzi; Mansouri, Majdi; Nounou, Mohamed; Nounou, Hazem

    2018-01-01

    Quick validation and detection of faults in measured air quality data is a crucial step towards achieving the objectives of air quality networks. Therefore, the objectives of this paper are threefold: (i) to develop a modeling technique that can be used to predict the normal behavior of air quality variables and help provide accurate reference for monitoring purposes; (ii) to develop fault detection method that can effectively and quickly detect any anomalies in measured air quality data. For this purpose, a new fault detection method that is based on the combination of generalized likelihood ratio test (GLRT) and exponentially weighted moving average (EWMA) will be developed. GLRT is a well-known statistical fault detection method that relies on maximizing the detection probability for a given false alarm rate. In this paper, we propose to develop GLRT-based EWMA fault detection method that will be able to detect the changes in the values of certain air quality variables; (iii) to develop fault isolation and identification method that allows defining the fault source(s) in order to properly apply appropriate corrective actions. In this paper, reconstruction approach that is based on Midpoint-Radii Principal Component Analysis (MRPCA) model will be developed to handle the types of data and models associated with air quality monitoring networks. All air quality modeling, fault detection, fault isolation and reconstruction methods developed in this paper will be validated using real air quality data (such as particulate matter, ozone, nitrogen and carbon oxides measurement). Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A Testbed for Data Fusion for Engine Diagnostics and Prognostics1

    DTIC Science & Technology

    2002-03-01

    detected ; too late to be useful for prognostics development. Table 1. Table of acronyms ACRONYM MEANING AD Anomaly detector...strictly defined points. Determining where we are on the engine health curve is the first step in prognostics . Fault detection / diagnostic reasoning... Detection As described above the ability of the monitoring system to detect an anomaly is especially important for knowledge-based systems, i.e.,

  16. Distributed intrusion monitoring system with fiber link backup and on-line fault diagnosis functions

    NASA Astrophysics Data System (ADS)

    Xu, Jiwei; Wu, Huijuan; Xiao, Shunkun

    2014-12-01

    A novel multi-channel distributed optical fiber intrusion monitoring system with smart fiber link backup and on-line fault diagnosis functions was proposed. A 1× N optical switch was intelligently controlled by a peripheral interface controller (PIC) to expand the fiber link from one channel to several ones to lower the cost of the long or ultra-long distance intrusion monitoring system and also to strengthen the intelligent monitoring link backup function. At the same time, a sliding window auto-correlation method was presented to identify and locate the broken or fault point of the cable. The experimental results showed that the proposed multi-channel system performed well especially whenever any a broken cable was detected. It could locate the broken or fault point by itself accurately and switch to its backup sensing link immediately to ensure the security system to operate stably without a minute idling. And it was successfully applied in a field test for security monitoring of the 220-km-length national borderline in China.

  17. Detection of CMOS bridging faults using minimal stuck-at fault test sets

    NASA Technical Reports Server (NTRS)

    Ijaz, Nabeel; Frenzel, James F.

    1993-01-01

    The performance of minimal stuck-at fault test sets at detecting bridging faults are evaluated. New functional models of circuit primitives are presented which allow accurate representation of bridging faults under switch-level simulation. The effectiveness of the patterns is evaluated using both voltage and current testing.

  18. The Corinth Rift Laboratory, Greece (CRL) : A Multidisciplinary Near Fault Observatory (NFO) on a Fast Rifting System

    NASA Astrophysics Data System (ADS)

    Bernard, P.; Lyon-Caen, H.; Deschamps, A.; Briole, P.; Lambotte, S.; Ford, M.; Scotti, O.; Beck, C.; Hubert-Ferrari, A.; Boiselet, A.; Godano, M.; Matrullo, E.; Meyer, N.; Albini, P.; Elias, P.; Nercessian, A.; Katsonopoulou, D.; Papadimitriou, P.; Voulgaris, N.; Kapetanidis, V.; Sokos, E.; Serpetsidaki, A.; el Arem, S.; Dublanchet, P.; Duverger, C.; Makropoulos, K.; Tselentis, A.

    2014-12-01

    The western rift of Corinth (Greece) is one of the most active tectonic structures of the euro-mediterranean area. Its NS opening rate is 1.5 cm/yr ( strain rate of 10-6/yr) results into a high microseismicity level and a few destructive, M>6 earthquakes per century, activating a system of mostly north dipping normal faults. Since 2001, monitoring arrays of the European Corinth Rift Laboratory (CRL, www.crlab.eu) allowed to better track the mechanical processes at work, with short period and broad band seismometers, cGPS, borehole strainmeters, EM stations, …). The recent (300 kyr) tectonic history has been revealed by onland (uplifted fan deltas and terraces) and offshore geological studies (mapping, shallow seismic, coring), showing a fast evolution of the normal fault system. The microseismicity, dominated by swarms lasting from days to months, mostly clusters in a layer 1 to 3 km thick, between 6 and 9 km in depth, dipping towards north, on which most faults are rooting. The diffusion of the microseismicity suggests its triggering by pore pressure transients, with no or barely detected strain. Despite a large proportion of multiplets, true repeaters seem seldom, suggesting a minor contribution of creep in their triggering, although transient or steady creep is clearly detected on the shallow part of some majors faults. The microseismic layer may thus be an immature, downward growing detachment, and the dominant rifting mechanism might be a mode I, anelastic strain beneath the rift axis , for which a mechanical model is under development. Paleoseismological (trenching, paleoshorelines, turbidites), archeological and historical studies completed the catalogues of instrumental seismicity, motivating attempts of time dependent hazard assessment. The Near Fault Observatory of CRL is thus a multidisciplinary research infrastructure aiming at a better understanding and modeling of multiscale, coupled seismic/aseismic processes on fault systems.

  19. Shallow Faulting in Morelia, Mexico, Based on Seismic Tomography and Geodetically Detected Land Subsidence

    NASA Astrophysics Data System (ADS)

    Cabral-Cano, E.; Arciniega-Ceballos, A.; Vergara-Huerta, F.; Chaussard, E.; Wdowinski, S.; DeMets, C.; Salazar-Tlaczani, L.

    2013-12-01

    Subsidence has been a common occurrence in several cities in central Mexico for the past three decades. This process causes substantial damage to the urban infrastructure and housing in several cities and it is a major factor to be considered when planning urban development, land-use zoning and hazard mitigation strategies. Since the early 1980's the city of Morelia in Central Mexico has experienced subsidence associated with groundwater extraction in excess of natural recharge from rainfall. Previous works have focused on the detection and temporal evolution of the subsidence spatial distribution. The most recent InSAR analysis confirms the permanence of previously detected rapidly subsiding areas such as the Rio Grande Meander area and also defines 2 subsidence patches previously undetected in the newly developed suburban sectors west of Morelia at the Fraccionamiento Del Bosque along, south of Hwy. 15 and another patch located north of Morelia along Gabino Castañeda del Rio Ave. Because subsidence-induced, shallow faulting develops at high horizontal strain localization, newly developed a subsidence areas are particularly prone to faulting and fissuring. Shallow faulting increases groundwater vulnerability because it disrupts discharge hydraulic infrastructure and creates a direct path for transport of surface pollutants into the underlying aquifer. Other sectors in Morelia that have been experiencing subsidence for longer time have already developed well defined faults such as La Colina, Central Camionera, Torremolinos and La Paloma faults. Local construction codes in the vicinity of these faults define a very narrow swath along which housing construction is not allowed. In order to better characterize these fault systems and provide better criteria for future municipal construction codes we have surveyed the La Colina and Torremolinos fault systems in the western sector of Morelia using seismic tomographic techniques. Our results indicate that La Colina Fault include secondary faults at depths up to 4-8m below the surface and located up to 24m away from the main fault trace. The Torremolinos fault system includes secondary faults, which are present up to 8m deep and 12-18m away from the main fault trace. Even though the InSAR analysis provides an unsurpassed synoptic view, a higher temporal resolution observation of fault movement has been pursued using the MOIT continuously operating GPS station, which is located within 100 m from the La Colina main fault trace. GPS data is also particularly useful to decompose horizontal and vertical motion in the absence of both ascending and descending SAR data acquisitions. Observations since July 2009 show a total general displacement trend of -39mm/yr and a total horizontal differential motion of 41.8 mm/yr and -4.7mm/yr in its latitudinal and Longitudinal components respectively in respect to the motion observed at the MOGA GPS station located 5.0 km to the SSE within an area which is not affected by subsidence. In addition to the overall trend, high amplitude excursions at the MOIT station with individual residual amplitudes up to 20mm, 25mm, and 60mm in its latitudinal, longitudinal and vertical components respectively vertical are observed. The correlation of fault motion excursions in relationship to the rainfall records will be analyzed.

  20. Havens: Explicit Reliable Memory Regions for HPC Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hukerikar, Saurabh; Engelmann, Christian

    2016-01-01

    Supporting error resilience in future exascale-class supercomputing systems is a critical challenge. Due to transistor scaling trends and increasing memory density, scientific simulations are expected to experience more interruptions caused by transient errors in the system memory. Existing hardware-based detection and recovery techniques will be inadequate to manage the presence of high memory fault rates. In this paper we propose a partial memory protection scheme based on region-based memory management. We define the concept of regions called havens that provide fault protection for program objects. We provide reliability for the regions through a software-based parity protection mechanism. Our approach enablesmore » critical program objects to be placed in these havens. The fault coverage provided by our approach is application agnostic, unlike algorithm-based fault tolerance techniques.« less

  1. A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System.

    PubMed

    Yuan, Xianfeng; Song, Mumin; Zhou, Fengyu; Chen, Zhumin; Li, Yan

    2015-01-01

    The wheeled robots have been successfully applied in many aspects, such as industrial handling vehicles, and wheeled service robots. To improve the safety and reliability of wheeled robots, this paper presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel) support vector machine (SVM) and Dempster-Shafer (D-S) fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA) models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM) classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs) are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods.

  2. A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System

    PubMed Central

    Yuan, Xianfeng; Song, Mumin; Chen, Zhumin; Li, Yan

    2015-01-01

    The wheeled robots have been successfully applied in many aspects, such as industrial handling vehicles, and wheeled service robots. To improve the safety and reliability of wheeled robots, this paper presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel) support vector machine (SVM) and Dempster-Shafer (D-S) fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA) models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM) classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs) are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods. PMID:26229526

  3. Partial and total actuator faults accommodation for input-affine nonlinear process plants.

    PubMed

    Mihankhah, Amin; Salmasi, Farzad R; Salahshoor, Karim

    2013-05-01

    In this paper, a new fault-tolerant control system is proposed for input-affine nonlinear plants based on Model Reference Adaptive System (MRAS) structure. The proposed method has the capability to accommodate both partial and total actuator failures along with bounded external disturbances. In this methodology, the conventional MRAS control law is modified by augmenting two compensating terms. One of these terms is added to eliminate the nonlinear dynamic, while the other is reinforced to compensate the distractive effects of the total actuator faults and external disturbances. In addition, no Fault Detection and Diagnosis (FDD) unit is needed in the proposed method. Moreover, the control structure has good robustness capability against the parameter variation. The performance of this scheme is evaluated using a CSTR system and the results were satisfactory. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Fault Analysis and Detection in Microgrids with High PV Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Khatib, Mohamed; Hernandez Alvidrez, Javier; Ellis, Abraham

    In this report we focus on analyzing current-controlled PV inverters behaviour under faults in order to develop fault detection schemes for microgrids with high PV penetration. Inverter model suitable for steady state fault studies is presented and the impact of PV inverters on two protection elements is analyzed. The studied protection elements are superimposed quantities based directional element and negative sequence directional element. Additionally, several non-overcurrent fault detection schemes are discussed in this report for microgrids with high PV penetration. A detailed time-domain simulation study is presented to assess the performance of the presented fault detection schemes under different microgridmore » modes of operation.« less

  5. Foundations for Protecting Renewable-Rich Distribution Systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, Abraham; Brahma, Sukumar; Ranade, Satish

    High proliferation of Inverter Interfaced Distributed Energy Resources (IIDERs) into the electric distribution grid introduces new challenges to protection of such systems. This is because the existing protection systems are designed with two assumptions: 1) system is single-sourced, resulting in unidirectional fault current, and (2) fault currents are easily detectable due to much higher magnitudes compared to load currents. Due to the fact that most renewables interface with the grid though inverters, and inverters restrict their current output to levels close to the full load currents, both these assumptions are no longer valid - the system becomes multi-sourced, and overcurrent-basedmore » protection does not work. The primary scope of this study is to analyze the response of a grid-tied inverter to different faults in the grid, leading to new guidelines on protecting renewable-rich distribution systems.« less

  6. Hidden Markov models and neural networks for fault detection in dynamic systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic

    1994-01-01

    Neural networks plus hidden Markov models (HMM) can provide excellent detection and false alarm rate performance in fault detection applications, as shown in this viewgraph presentation. Modified models allow for novelty detection. Key contributions of neural network models are: (1) excellent nonparametric discrimination capability; (2) a good estimator of posterior state probabilities, even in high dimensions, and thus can be embedded within overall probabilistic model (HMM); and (3) simple to implement compared to other nonparametric models. Neural network/HMM monitoring model is currently being integrated with the new Deep Space Network (DSN) antenna controller software and will be on-line monitoring a new DSN 34-m antenna (DSS-24) by July, 1994.

  7. Fault detection and multiclassifier fusion for unmanned aerial vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    Yan, Weizhong

    2001-03-01

    UAVs demand more accurate fault accommodation for their mission manager and vehicle control system in order to achieve a reliability level that is comparable to that of a pilot aircraft. This paper attempts to apply multi-classifier fusion techniques to achieve the necessary performance of the fault detection function for the Lockheed Martin Skunk Works (LMSW) UAV Mission Manager. Three different classifiers that meet the design requirements of the fault detection of the UAAV are employed. The binary decision outputs from the classifiers are then aggregated using three different classifier fusion schemes, namely, majority vote, weighted majority vote, and Naieve Bayes combination. All of the three schemes are simple and need no retraining. The three fusion schemes (except the majority vote that gives an average performance of the three classifiers) show the classification performance that is better than or equal to that of the best individual. The unavoidable correlation between the classifiers with binary outputs is observed in this study. We conclude that it is the correlation between the classifiers that limits the fusion schemes to achieve an even better performance.

  8. Fault detection method for railway wheel flat using an adaptive multiscale morphological filter

    NASA Astrophysics Data System (ADS)

    Li, Yifan; Zuo, Ming J.; Lin, Jianhui; Liu, Jianxin

    2017-02-01

    This study explores the capacity of the morphology analysis for railway wheel flat fault detection. A dynamic model of vehicle systems with 56 degrees of freedom was set up along with a wheel flat model to calculate the dynamic responses of axle box. The vehicle axle box vibration signal is complicated because it not only contains the information of wheel defect, but also includes track condition information. Thus, how to extract the influential features of wheels from strong background noise effectively is a typical key issue for railway wheel fault detection. In this paper, an algorithm for adaptive multiscale morphological filtering (AMMF) was proposed, and its effect was evaluated by a simulated signal. And then this algorithm was employed to study the axle box vibration caused by wheel flats, as well as the influence of track irregularity and vehicle running speed on diagnosis results. Finally, the effectiveness of the proposed method was verified by bench testing. Research results demonstrate that the AMMF extracts the influential characteristic of axle box vibration signals effectively and can diagnose wheel flat faults in real time.

  9. Dynamic modeling of gearbox faults: A review

    NASA Astrophysics Data System (ADS)

    Liang, Xihui; Zuo, Ming J.; Feng, Zhipeng

    2018-01-01

    Gearbox is widely used in industrial and military applications. Due to high service load, harsh operating conditions or inevitable fatigue, faults may develop in gears. If the gear faults cannot be detected early, the health will continue to degrade, perhaps causing heavy economic loss or even catastrophe. Early fault detection and diagnosis allows properly scheduled shutdowns to prevent catastrophic failure and consequently result in a safer operation and higher cost reduction. Recently, many studies have been done to develop gearbox dynamic models with faults aiming to understand gear fault generation mechanism and then develop effective fault detection and diagnosis methods. This paper focuses on dynamics based gearbox fault modeling, detection and diagnosis. State-of-art and challenges are reviewed and discussed. This detailed literature review limits research results to the following fundamental yet key aspects: gear mesh stiffness evaluation, gearbox damage modeling and fault diagnosis techniques, gearbox transmission path modeling and method validation. In the end, a summary and some research prospects are presented.

  10. Two Trees: Migrating Fault Trees to Decision Trees for Real Time Fault Detection on International Space Station

    NASA Technical Reports Server (NTRS)

    Lee, Charles; Alena, Richard L.; Robinson, Peter

    2004-01-01

    We started from ISS fault trees example to migrate to decision trees, presented a method to convert fault trees to decision trees. The method shows that the visualizations of root cause of fault are easier and the tree manipulating becomes more programmatic via available decision tree programs. The visualization of decision trees for the diagnostic shows a format of straight forward and easy understands. For ISS real time fault diagnostic, the status of the systems could be shown by mining the signals through the trees and see where it stops at. The other advantage to use decision trees is that the trees can learn the fault patterns and predict the future fault from the historic data. The learning is not only on the static data sets but also can be online, through accumulating the real time data sets, the decision trees can gain and store faults patterns in the trees and recognize them when they come.

  11. An Uncertainty-Based Distributed Fault Detection Mechanism for Wireless Sensor Networks

    PubMed Central

    Yang, Yang; Gao, Zhipeng; Zhou, Hang; Qiu, Xuesong

    2014-01-01

    Exchanging too many messages for fault detection will cause not only a degradation of the network quality of service, but also represents a huge burden on the limited energy of sensors. Therefore, we propose an uncertainty-based distributed fault detection through aided judgment of neighbors for wireless sensor networks. The algorithm considers the serious influence of sensing measurement loss and therefore uses Markov decision processes for filling in missing data. Most important of all, fault misjudgments caused by uncertainty conditions are the main drawbacks of traditional distributed fault detection mechanisms. We draw on the experience of evidence fusion rules based on information entropy theory and the degree of disagreement function to increase the accuracy of fault detection. Simulation results demonstrate our algorithm can effectively reduce communication energy overhead due to message exchanges and provide a higher detection accuracy ratio. PMID:24776937

  12. Feasibility analysis of a novel hybrid-type superconducting circuit breaker in multi-terminal HVDC networks

    NASA Astrophysics Data System (ADS)

    Khan, Umer Amir; Lee, Jong-Geon; Seo, In-Jin; Amir, Faisal; Lee, Bang-Wook

    2015-11-01

    Voltage source converter-based HVDC systems (VSC-HVDC) are a better alternative than conventional thyristor-based HVDC systems, especially for developing multi-terminal HVDC systems (MTDC). However, one of the key obstacles in developing MTDC is the absence of an adequate protection system that can quickly detect faults, locate the faulty line and trip the HVDC circuit breakers (DCCBs) to interrupt the DC fault current. In this paper, a novel hybrid-type superconducting circuit breaker (SDCCB) is proposed and feasibility analyses of its application in MTDC are presented. The SDCCB has a superconducting fault current limiter (SFCL) located in the main current path to limit fault currents until the final trip signal is received. After the trip signal the IGBT located in the main line commutates the current into a parallel line where DC current is forced to zero by the combination of IGBTs and surge arresters. Fault simulations for three-, four- and five-terminal MTDC were performed and SDCCB performance was evaluated in these MTDC. Passive current limitation by SFCL caused a significant reduction of fault current interruption stress in the SDCCB. It was observed that the DC current could change direction in MTDC after a fault and the SDCCB was modified to break the DC current in both the forward and reverse directions. The simulation results suggest that the proposed SDCCB could successfully suppress the DC fault current, cause a timely interruption, and isolate the faulty HVDC line in MTDC.

  13. On the design of fault-tolerant robotic manipulator systems

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert

    1993-01-01

    Robotic systems are finding increasing use in space applications. Many of these devices are going to be operational on board the Space Station Freedom. Fault tolerance has been deemed necessary because of the criticality of the tasks and the inaccessibility of the systems to maintenance and repair. Design for fault tolerance in manipulator systems is an area within robotics that is without precedence in the literature. In this paper, we will attempt to lay down the foundations for such a technology. Design for fault tolerance demands new and special approaches to design, often at considerable variance from established design practices. These design aspects, together with reliability evaluation and modeling tools, are presented. Mechanical architectures that employ protective redundancies at many levels and have a modular architecture are then studied in detail. Once a mechanical architecture for fault tolerance has been derived, the chronological stages of operational fault tolerance are investigated. Failure detection, isolation, and estimation methods are surveyed, and such methods for robot sensors and actuators are derived. Failure recovery methods are also presented for each of the protective layers of redundancy. Failure recovery tactics often span all of the layers of a control hierarchy. Thus, a unified framework for decision-making and control, which orchestrates both the nominal redundancy management tasks and the failure management tasks, has been derived. The well-developed field of fault-tolerant computers is studied next, and some design principles relevant to the design of fault-tolerant robot controllers are abstracted. Conclusions are drawn, and a road map for the design of fault-tolerant manipulator systems is laid out with recommendations for a 10 DOF arm with dual actuators at each joint.

  14. Machine fault feature extraction based on intrinsic mode functions

    NASA Astrophysics Data System (ADS)

    Fan, Xianfeng; Zuo, Ming J.

    2008-04-01

    This work employs empirical mode decomposition (EMD) to decompose raw vibration signals into intrinsic mode functions (IMFs) that represent the oscillatory modes generated by the components that make up the mechanical systems generating the vibration signals. The motivation here is to develop vibration signal analysis programs that are self-adaptive and that can detect machine faults at the earliest onset of deterioration. The change in velocity of the amplitude of some IMFs over a particular unit time will increase when the vibration is stimulated by a component fault. Therefore, the amplitude acceleration energy in the intrinsic mode functions is proposed as an indicator of the impulsive features that are often associated with mechanical component faults. The periodicity of the amplitude acceleration energy for each IMF is extracted by spectrum analysis. A spectrum amplitude index is introduced as a method to select the optimal result. A comparison study of the method proposed here and some well-established techniques for detecting machinery faults is conducted through the analysis of both gear and bearing vibration signals. The results indicate that the proposed method has superior capability to extract machine fault features from vibration signals.

  15. A testing-coverage software reliability model considering fault removal efficiency and error generation.

    PubMed

    Li, Qiuying; Pham, Hoang

    2017-01-01

    In this paper, we propose a software reliability model that considers not only error generation but also fault removal efficiency combined with testing coverage information based on a nonhomogeneous Poisson process (NHPP). During the past four decades, many software reliability growth models (SRGMs) based on NHPP have been proposed to estimate the software reliability measures, most of which have the same following agreements: 1) it is a common phenomenon that during the testing phase, the fault detection rate always changes; 2) as a result of imperfect debugging, fault removal has been related to a fault re-introduction rate. But there are few SRGMs in the literature that differentiate between fault detection and fault removal, i.e. they seldom consider the imperfect fault removal efficiency. But in practical software developing process, fault removal efficiency cannot always be perfect, i.e. the failures detected might not be removed completely and the original faults might still exist and new faults might be introduced meanwhile, which is referred to as imperfect debugging phenomenon. In this study, a model aiming to incorporate fault introduction rate, fault removal efficiency and testing coverage into software reliability evaluation is developed, using testing coverage to express the fault detection rate and using fault removal efficiency to consider the fault repair. We compare the performance of the proposed model with several existing NHPP SRGMs using three sets of real failure data based on five criteria. The results exhibit that the model can give a better fitting and predictive performance.

  16. An improved fault detection classification and location scheme based on wavelet transform and artificial neural network for six phase transmission line using single end data only.

    PubMed

    Koley, Ebha; Verma, Khushaboo; Ghosh, Subhojit

    2015-01-01

    Restrictions on right of way and increasing power demand has boosted development of six phase transmission. It offers a viable alternative for transmitting more power, without major modification in existing structure of three phase double circuit transmission system. Inspite of the advantages, low acceptance of six phase system is attributed to the unavailability of a proper protection scheme. The complexity arising from large number of possible faults in six phase lines makes the protection quite challenging. The proposed work presents a hybrid wavelet transform and modular artificial neural network based fault detector, classifier and locator for six phase lines using single end data only. The standard deviation of the approximate coefficients of voltage and current signals obtained using discrete wavelet transform are applied as input to the modular artificial neural network for fault classification and location. The proposed scheme has been tested for all 120 types of shunt faults with variation in location, fault resistance, fault inception angles. The variation in power system parameters viz. short circuit capacity of the source and its X/R ratio, voltage, frequency and CT saturation has also been investigated. The result confirms the effectiveness and reliability of the proposed protection scheme which makes it ideal for real time implementation.

  17. [Early warning for various internal faults of GIS based on ultraviolet spectroscopy].

    PubMed

    Zhao, Yu; Wang, Xian-pei; Hu, Hong-hong; Dai, Dang-dang; Long, Jia-chuan; Tian, Meng; Zhu, Guo-wei; Huang, Yun-guang

    2015-02-01

    As the basis of accurate diagnosis, fault early-warning of gas insulation switchgear (GIS) focuses on the time-effectiveness and the applicability. It would be significant to research the method of unified early-warning for partial discharge (PD) and overheated faults in GIS. In the present paper, SO2 is proposed as the common and typical by-product. The unified monitoring could be achieved through ultraviolet spectroscopy (UV) detection of SO2. The derivative method and Savitzky-Golay filtering are employed for baseline correction and smoothing. The wavelength range of 290-310 nm is selected for quantitative detection of SO2. Through UV method, the spectral interference of SF6 and other complex by-products, e.g., SOF2 and SOF2, can be avoided and the features of trace SO2 in GIS can be extracted. The detection system is featured by compacted structure, low maintenance and satisfactory suitability in filed surveillance. By conducting SF6 decomposition experiments, including two types of PD faults and the overheated faults between 200-400 degrees C, the feasibility of proposed UV method has been verified. Fourier transform infrared spectroscopy and gas chromatography methods can be used for subsequent fault diagnosis. The different decomposition features in two kinds of faults are confirmed and the diagnosis strategy has been briefly analyzed. The main by-products under PD are SOF2 and SO2F2. The generated SO2 is significantly less than SOF2. More carbonous by-products will be generated when PD involves epoxy. By contrast, when the material of heater is stainless steel, SF6 decomposes at about 300 "C and the main by-products in overheated faults are SO2 and SO2F2. When heated over 350 degrees C, SO2 is generated much faster. SOz content stably increases when the GIS fault lasts. The faults types could be preliminarily identified based on the generation features of SO2.

  18. Big Data Analysis of Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Windmann, Stefan; Maier, Alexander; Niggemann, Oliver; Frey, Christian; Bernardi, Ansgar; Gu, Ying; Pfrommer, Holger; Steckel, Thilo; Krüger, Michael; Kraus, Robert

    2015-11-01

    The high complexity of manufacturing processes and the continuously growing amount of data lead to excessive demands on the users with respect to process monitoring, data analysis and fault detection. For these reasons, problems and faults are often detected too late, maintenance intervals are chosen too short and optimization potential for higher output and increased energy efficiency is not sufficiently used. A possibility to cope with these challenges is the development of self-learning assistance systems, which identify relevant relationships by observation of complex manufacturing processes so that failures, anomalies and need for optimization are automatically detected. The assistance system developed in the present work accomplishes data acquisition, process monitoring and anomaly detection in industrial and agricultural processes. The assistance system is evaluated in three application cases: Large distillation columns, agricultural harvesting processes and large-scale sorting plants. In this paper, the developed infrastructures for data acquisition in these application cases are described as well as the developed algorithms and initial evaluation results.

  19. Online Condition Monitoring of Bearings to Support Total Productive Maintenance in the Packaging Materials Industry.

    PubMed

    Gligorijevic, Jovan; Gajic, Dragoljub; Brkovic, Aleksandar; Savic-Gajic, Ivana; Georgieva, Olga; Di Gennaro, Stefano

    2016-03-01

    The packaging materials industry has already recognized the importance of Total Productive Maintenance as a system of proactive techniques for improving equipment reliability. Bearing faults, which often occur gradually, represent one of the foremost causes of failures in the industry. Therefore, detection of their faults in an early stage is quite important to assure reliable and efficient operation. We present a new automated technique for early fault detection and diagnosis in rolling-element bearings based on vibration signal analysis. Following the wavelet decomposition of vibration signals into a few sub-bands of interest, the standard deviation of obtained wavelet coefficients is extracted as a representative feature. Then, the feature space dimension is optimally reduced to two using scatter matrices. In the reduced two-dimensional feature space the fault detection and diagnosis is carried out by quadratic classifiers. Accuracy of the technique has been tested on four classes of the recorded vibrations signals, i.e., normal, with the fault of inner race, outer race, and ball operation. The overall accuracy of 98.9% has been achieved. The new technique can be used to support maintenance decision-making processes and, thus, to increase reliability and efficiency in the industry by preventing unexpected faulty operation of bearings.

  20. Online Condition Monitoring of Bearings to Support Total Productive Maintenance in the Packaging Materials Industry

    PubMed Central

    Gligorijevic, Jovan; Gajic, Dragoljub; Brkovic, Aleksandar; Savic-Gajic, Ivana; Georgieva, Olga; Di Gennaro, Stefano

    2016-01-01

    The packaging materials industry has already recognized the importance of Total Productive Maintenance as a system of proactive techniques for improving equipment reliability. Bearing faults, which often occur gradually, represent one of the foremost causes of failures in the industry. Therefore, detection of their faults in an early stage is quite important to assure reliable and efficient operation. We present a new automated technique for early fault detection and diagnosis in rolling-element bearings based on vibration signal analysis. Following the wavelet decomposition of vibration signals into a few sub-bands of interest, the standard deviation of obtained wavelet coefficients is extracted as a representative feature. Then, the feature space dimension is optimally reduced to two using scatter matrices. In the reduced two-dimensional feature space the fault detection and diagnosis is carried out by quadratic classifiers. Accuracy of the technique has been tested on four classes of the recorded vibrations signals, i.e., normal, with the fault of inner race, outer race, and ball operation. The overall accuracy of 98.9% has been achieved. The new technique can be used to support maintenance decision-making processes and, thus, to increase reliability and efficiency in the industry by preventing unexpected faulty operation of bearings. PMID:26938541

  1. Aircraft applications of fault detection and isolation techniques

    NASA Astrophysics Data System (ADS)

    Marcos Esteban, Andres

    In this thesis the problems of fault detection & isolation and fault tolerant systems are studied from the perspective of LTI frequency-domain, model-based techniques. Emphasis is placed on the applicability of these LTI techniques to nonlinear models, especially to aerospace systems. Two applications of Hinfinity LTI fault diagnosis are given using an open-loop (no controller) design approach: one for the longitudinal motion of a Boeing 747-100/200 aircraft, the other for a turbofan jet engine. An algorithm formalizing a robust identification approach based on model validation ideas is also given and applied to the previous jet engine. A general linear fractional transformation formulation is given in terms of the Youla and Dual Youla parameterizations for the integrated (control and diagnosis filter) approach. This formulation provides better insight into the trade-off between the control and the diagnosis objectives. It also provides the basic groundwork towards the development of nested schemes for the integrated approach. These nested structures allow iterative improvements on the control/filter Youla parameters based on successive identification of the system uncertainty (as given by the Dual Youla parameter). The thesis concludes with an application of Hinfinity LTI techniques to the integrated design for the longitudinal motion of the previous Boeing 747-100/200 model.

  2. Neural network application to comprehensive engine diagnostics

    NASA Technical Reports Server (NTRS)

    Marko, Kenneth A.

    1994-01-01

    We have previously reported on the use of neural networks for detection and identification of faults in complex microprocessor controlled powertrain systems. The data analyzed in those studies consisted of the full spectrum of signals passing between the engine and the real-time microprocessor controller. The specific task of the classification system was to classify system operation as nominal or abnormal and to identify the fault present. The primary concern in earlier work was the identification of faults, in sensors or actuators in the powertrain system as it was exercised over its full operating range. The use of data from a variety of sources, each contributing some potentially useful information to the classification task, is commonly referred to as sensor fusion and typifies the type of problems successfully addressed using neural networks. In this work we explore the application of neural networks to a different diagnostic problem, the diagnosis of faults in newly manufactured engines and the utility of neural networks for process control.

  3. Using graphics and expert system technologies to support satellite monitoring at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.; Shirah, Gregory W.; Luczak, Edward C.

    1994-01-01

    At NASA's Goddard Space Flight Center, fault-isolation expert systems have been developed to support data monitoring and fault detection tasks in satellite control centers. Based on the lessons learned during these efforts in expert system automation, a new domain-specific expert system development tool named the Generic Spacecraft Analysts Assistant (GenSAA), was developed to facilitate the rapid development and reuse of real-time expert systems to serve as fault-isolation assistants for spacecraft analysts. This paper describes GenSAA's capabilities and how it is supporting monitoring functions of current and future NASA missions for a variety of satellite monitoring applications ranging from subsystem health and safety to spacecraft attitude. Finally, this paper addresses efforts to generalize GenSAA's data interface for more widespread usage throughout the space and commercial industry.

  4. Fault tolerant computing: A preamble for assuring viability of large computer systems

    NASA Technical Reports Server (NTRS)

    Lim, R. S.

    1977-01-01

    The need for fault-tolerant computing is addressed from the viewpoints of (1) why it is needed, (2) how to apply it in the current state of technology, and (3) what it means in the context of the Phoenix computer system and other related systems. To this end, the value of concurrent error detection and correction is described. User protection, program retry, and repair are among the factors considered. The technology of algebraic codes to protect memory systems and arithmetic codes to protect memory systems and arithmetic codes to protect arithmetic operations is discussed.

  5. A fault-tolerant information processing concept for space vehicles.

    NASA Technical Reports Server (NTRS)

    Hopkins, A. L., Jr.

    1971-01-01

    A distributed fault-tolerant information processing system is proposed, comprising a central multiprocessor, dedicated local processors, and multiplexed input-output buses connecting them together. The processors in the multiprocessor are duplicated for error detection, which is felt to be less expensive than using coded redundancy of comparable effectiveness. Error recovery is made possible by a triplicated scratchpad memory in each processor. The main multiprocessor memory uses replicated memory for error detection and correction. Local processors use any of three conventional redundancy techniques: voting, duplex pairs with backup, and duplex pairs in independent subsystems.

  6. An imbalance fault detection method based on data normalization and EMD for marine current turbines.

    PubMed

    Zhang, Milu; Wang, Tianzhen; Tang, Tianhao; Benbouzid, Mohamed; Diallo, Demba

    2017-05-01

    This paper proposes an imbalance fault detection method based on data normalization and Empirical Mode Decomposition (EMD) for variable speed direct-drive Marine Current Turbine (MCT) system. The method is based on the MCT stator current under the condition of wave and turbulence. The goal of this method is to extract blade imbalance fault feature, which is concealed by the supply frequency and the environment noise. First, a Generalized Likelihood Ratio Test (GLRT) detector is developed and the monitoring variable is selected by analyzing the relationship between the variables. Then, the selected monitoring variable is converted into a time series through data normalization, which makes the imbalance fault characteristic frequency into a constant. At the end, the monitoring variable is filtered out by EMD method to eliminate the effect of turbulence. The experiments show that the proposed method is robust against turbulence through comparing the different fault severities and the different turbulence intensities. Comparison with other methods, the experimental results indicate the feasibility and efficacy of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. PWM-switching pattern-based diagnosis scheme for single and multiple open-switch damages in VSI-fed induction motor drives.

    PubMed

    Trabelsi, Mohamed; Boussak, Mohamed; Gossa, Moncef

    2012-03-01

    This paper deals with a fault detection technique for insulated-gate bipolar transistors (IGBTs) open-circuit faults in voltage source inverter (VSI)-fed induction motor drives. The novelty of this idea consists in analyzing the pulse-width modulation (PWM) switching signals and the line-to-line voltage levels during the switching times, under both healthy and faulty operating conditions. The proposed method requires line-to-line voltage measurement, which provides information about switching states and is not affected by the load. The fault diagnosis scheme is achieved using simple hardware and can be included in the existing inverter system without any difficulty. In addition, it allows not only accurate single and multiple faults diagnosis but also minimization of the fault detection time to a maximum of one switching period (T(c)). Simulated and experimental results on a 3-kW squirrel-cage induction motor drive are displayed to validate the feasibility and the effectiveness of the proposed strategy. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  8. A System for Fault Management for NASA's Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano P.; Spirkovska, Liljana; Aaseng, Gordon B.; Mccann, Robert S.; Baskaran, Vijayakumar; Ossenfort, John P.; Smith, Irene Skupniewicz; Iverson, David L.; Schwabacher, Mark A.

    2013-01-01

    NASA's exploration program envisions the utilization of a Deep Space Habitat (DSH) for human exploration of the space environment in the vicinity of Mars and/or asteroids. Communication latencies with ground control of as long as 20+ minutes make it imperative that DSH operations be highly autonomous, as any telemetry-based detection of a systems problem on Earth could well occur too late to assist the crew with the problem. A DSH-based development program has been initiated to develop and test the automation technologies necessary to support highly autonomous DSH operations. One such technology is a fault management tool to support performance monitoring of vehicle systems operations and to assist with real-time decision making in connection with operational anomalies and failures. Toward that end, we are developing Advanced Caution and Warning System (ACAWS), a tool that combines dynamic and interactive graphical representations of spacecraft systems, systems modeling, automated diagnostic analysis and root cause identification, system and mission impact assessment, and mitigation procedure identification to help spacecraft operators (both flight controllers and crew) understand and respond to anomalies more effectively. In this paper, we describe four major architecture elements of ACAWS: Anomaly Detection, Fault Isolation, System Effects Analysis, and Graphic User Interface (GUI), and how these elements work in concert with each other and with other tools to provide fault management support to both the controllers and crew. We then describe recent evaluations and tests of ACAWS on the DSH testbed. The results of these tests support the feasibility and strength of our approach to failure management automation and enhanced operational autonomy.

  9. Identifiability of Additive Actuator and Sensor Faults by State Augmentation

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh; Gonzalez, Oscar R.; Upchurch, Jason M.

    2014-01-01

    A class of fault detection and identification (FDI) methods for bias-type actuator and sensor faults is explored in detail from the point of view of fault identifiability. The methods use state augmentation along with banks of Kalman-Bucy filters for fault detection, fault pattern determination, and fault value estimation. A complete characterization of conditions for identifiability of bias-type actuator faults, sensor faults, and simultaneous actuator and sensor faults is presented. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have unknown biases. The fault identifiability conditions are demonstrated via numerical examples. The analytical and numerical results indicate that caution must be exercised to ensure fault identifiability for different fault patterns when using such methods.

  10. Closed-Loop Evaluation of an Integrated Failure Identification and Fault Tolerant Control System for a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Belcastro, Christine; Khong, thuan

    2006-01-01

    Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. Such systems developed for failure detection, identification, and reconfiguration, as well as upset recovery, need to be evaluated over broad regions of the flight envelope or under extreme flight conditions, and should include various sources of uncertainty. To apply formal robustness analysis, formulation of linear fractional transformation (LFT) models of complex parameter-dependent systems is required, which represent system uncertainty due to parameter uncertainty and actuator faults. This paper describes a detailed LFT model formulation procedure from the nonlinear model of a transport aircraft by using a preliminary LFT modeling software tool developed at the NASA Langley Research Center, which utilizes a matrix-based computational approach. The closed-loop system is evaluated over the entire flight envelope based on the generated LFT model which can cover nonlinear dynamics. The robustness analysis results of the closed-loop fault tolerant control system of a transport aircraft are presented. A reliable flight envelope (safe flight regime) is also calculated from the robust performance analysis results, over which the closed-loop system can achieve the desired performance of command tracking and failure detection.

  11. A phase angle based diagnostic scheme to planetary gear faults diagnostics under non-stationary operational conditions

    NASA Astrophysics Data System (ADS)

    Feng, Ke; Wang, Kesheng; Ni, Qing; Zuo, Ming J.; Wei, Dongdong

    2017-11-01

    Planetary gearbox is a critical component for rotating machinery. It is widely used in wind turbines, aerospace and transmission systems in heavy industry. Thus, it is important to monitor planetary gearboxes, especially for fault diagnostics, during its operational conditions. However, in practice, operational conditions of planetary gearbox are often characterized by variations of rotational speeds and loads, which may bring difficulties for fault diagnosis through the measured vibrations. In this paper, phase angle data extracted from measured planetary gearbox vibrations is used for fault detection under non-stationary operational conditions. Together with sample entropy, fault diagnosis on planetary gearbox is implemented. The proposed scheme is explained and demonstrated in both simulation and experimental studies. The scheme proves to be effective and features advantages on fault diagnosis of planetary gearboxes under non-stationary operational conditions.

  12. Fault Injection Campaign for a Fault Tolerant Duplex Framework

    NASA Technical Reports Server (NTRS)

    Sacco, Gian Franco; Ferraro, Robert D.; von llmen, Paul; Rennels, Dave A.

    2007-01-01

    Fault tolerance is an efficient approach adopted to avoid or reduce the damage of a system failure. In this work we present the results of a fault injection campaign we conducted on the Duplex Framework (DF). The DF is a software developed by the UCLA group [1, 2] that uses a fault tolerant approach and allows to run two replicas of the same process on two different nodes of a commercial off-the-shelf (COTS) computer cluster. A third process running on a different node, constantly monitors the results computed by the two replicas, and eventually restarts the two replica processes if an inconsistency in their computation is detected. This approach is very cost efficient and can be adopted to control processes on spacecrafts where the fault rate produced by cosmic rays is not very high.

  13. Rolex: Resilience-oriented language extensions for extreme-scale systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, Robert F.; Hukerikar, Saurabh

    Future exascale high-performance computing (HPC) systems will be constructed from VLSI devices that will be less reliable than those used today, and faults will become the norm, not the exception. This will pose significant problems for system designers and programmers, who for half-a-century have enjoyed an execution model that assumed correct behavior by the underlying computing system. The mean time to failure (MTTF) of the system scales inversely to the number of components in the system and therefore faults and resultant system level failures will increase, as systems scale in terms of the number of processor cores and memory modulesmore » used. However every error detected need not cause catastrophic failure. Many HPC applications are inherently fault resilient. Yet it is the application programmers who have this knowledge but lack mechanisms to convey it to the system. In this paper, we present new Resilience Oriented Language Extensions (Rolex) which facilitate the incorporation of fault resilience as an intrinsic property of the application code. We describe the syntax and semantics of the language extensions as well as the implementation of the supporting compiler infrastructure and runtime system. Furthermore, our experiments show that an approach that leverages the programmer's insight to reason about the context and significance of faults to the application outcome significantly improves the probability that an application runs to a successful conclusion.« less

  14. A modified NARMAX model-based self-tuner with fault tolerance for unknown nonlinear stochastic hybrid systems with an input-output direct feed-through term.

    PubMed

    Tsai, Jason S-H; Hsu, Wen-Teng; Lin, Long-Guei; Guo, Shu-Mei; Tann, Joseph W

    2014-01-01

    A modified nonlinear autoregressive moving average with exogenous inputs (NARMAX) model-based state-space self-tuner with fault tolerance is proposed in this paper for the unknown nonlinear stochastic hybrid system with a direct transmission matrix from input to output. Through the off-line observer/Kalman filter identification method, one has a good initial guess of modified NARMAX model to reduce the on-line system identification process time. Then, based on the modified NARMAX-based system identification, a corresponding adaptive digital control scheme is presented for the unknown continuous-time nonlinear system, with an input-output direct transmission term, which also has measurement and system noises and inaccessible system states. Besides, an effective state space self-turner with fault tolerance scheme is presented for the unknown multivariable stochastic system. A quantitative criterion is suggested by comparing the innovation process error estimated by the Kalman filter estimation algorithm, so that a weighting matrix resetting technique by adjusting and resetting the covariance matrices of parameter estimate obtained by the Kalman filter estimation algorithm is utilized to achieve the parameter estimation for faulty system recovery. Consequently, the proposed method can effectively cope with partially abrupt and/or gradual system faults and input failures by the fault detection. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Rolex: Resilience-oriented language extensions for extreme-scale systems

    DOE PAGES

    Lucas, Robert F.; Hukerikar, Saurabh

    2016-05-26

    Future exascale high-performance computing (HPC) systems will be constructed from VLSI devices that will be less reliable than those used today, and faults will become the norm, not the exception. This will pose significant problems for system designers and programmers, who for half-a-century have enjoyed an execution model that assumed correct behavior by the underlying computing system. The mean time to failure (MTTF) of the system scales inversely to the number of components in the system and therefore faults and resultant system level failures will increase, as systems scale in terms of the number of processor cores and memory modulesmore » used. However every error detected need not cause catastrophic failure. Many HPC applications are inherently fault resilient. Yet it is the application programmers who have this knowledge but lack mechanisms to convey it to the system. In this paper, we present new Resilience Oriented Language Extensions (Rolex) which facilitate the incorporation of fault resilience as an intrinsic property of the application code. We describe the syntax and semantics of the language extensions as well as the implementation of the supporting compiler infrastructure and runtime system. Furthermore, our experiments show that an approach that leverages the programmer's insight to reason about the context and significance of faults to the application outcome significantly improves the probability that an application runs to a successful conclusion.« less

  16. Lessons Learned on Implementing Fault Detection, Isolation, and Recovery (FDIR) in a Ground Launch Environment

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob A.; Lewis, Mark E.; Perotti, Jose M.; Brown, Barbara L.; Oostdyk, Rebecca L.; Goetz, Jesse W.

    2010-01-01

    This paper's main purpose is to detail issues and lessons learned regarding designing, integrating, and implementing Fault Detection Isolation and Recovery (FDIR) for Constellation Exploration Program (CxP) Ground Operations at Kennedy Space Center (KSC). Part of the0 overall implementation of National Aeronautics and Space Administration's (NASA's) CxP, FDIR is being implemented in three main components of the program (Ares, Orion, and Ground Operations/Processing). While not initially part of the design baseline for the CxP Ground Operations, NASA felt that FDIR is important enough to develop, that NASA's Exploration Systems Mission Directorate's (ESMD's) Exploration Technology Development Program (ETDP) initiated a task for it under their Integrated System Health Management (ISHM) research area. This task, referred to as the FDIIR project, is a multi-year multi-center effort. The primary purpose of the FDIR project is to develop a prototype and pathway upon which Fault Detection and Isolation (FDI) may be transitioned into the Ground Operations baseline. Currently, Qualtech Systems Inc (QSI) Commercial Off The Shelf (COTS) software products Testability Engineering and Maintenance System (TEAMS) Designer and TEAMS RDS/RT are being utilized in the implementation of FDI within the FDIR project. The TEAMS Designer COTS software product is being utilized to model the system with Functional Fault Models (FFMs). A limited set of systems in Ground Operations are being modeled by the FDIR project, and the entire Ares Launch Vehicle is being modeled under the Functional Fault Analysis (FFA) project at Marshall Space Flight Center (MSFC). Integration of the Ares FFMs and the Ground Processing FFMs is being done under the FDIR project also utilizing the TEAMS Designer COTS software product. One of the most significant challenges related to integration is to ensure that FFMs developed by different organizations can be integrated easily and without errors. Software Interface Control Documents (ICDs) for the FFMs and their usage will be addressed as the solution to this issue. In particular, the advantages and disadvantages of these ICDs across physically separate development groups will be delineated.

  17. Performance monitor system functional simulator, environmental data, orbiter 101(HFT)

    NASA Technical Reports Server (NTRS)

    Parker, F. W.

    1974-01-01

    Information concerning the environment component of the space shuttle performance monitor system simulator (PMSS) and those subsystems operational on the shuttle orbiter 101 used for horizontal flight test (HFT) is provided, along with detailed data for the shuttle performance monitor system (PMS) whose software requirements evolve from three basic PMS functions: (1) fault detection and annunciation; (2) subsystem measurement management; and (3) subsystem configuration management. Information relative to the design and operation of Orbiter systems for HFT is also presented, and the functional paths are identified to the lowest level at which the crew can control the system functions. Measurement requirements are given which are necessary to adequately monitor the health status of the system. PMS process requirements, relative to the measurements which are necessary for fault detection and annunciation of a failed functional path, consist of measurement characteristics, tolerance limits, precondition tests, and correlation measurements.

  18. Nuclear Power Plant Thermocouple Sensor-Fault Detection and Classification Using Deep Learning and Generalized Likelihood Ratio Test

    NASA Astrophysics Data System (ADS)

    Mandal, Shyamapada; Santhi, B.; Sridhar, S.; Vinolia, K.; Swaminathan, P.

    2017-06-01

    In this paper, an online fault detection and classification method is proposed for thermocouples used in nuclear power plants. In the proposed method, the fault data are detected by the classification method, which classifies the fault data from the normal data. Deep belief network (DBN), a technique for deep learning, is applied to classify the fault data. The DBN has a multilayer feature extraction scheme, which is highly sensitive to a small variation of data. Since the classification method is unable to detect the faulty sensor; therefore, a technique is proposed to identify the faulty sensor from the fault data. Finally, the composite statistical hypothesis test, namely generalized likelihood ratio test, is applied to compute the fault pattern of the faulty sensor signal based on the magnitude of the fault. The performance of the proposed method is validated by field data obtained from thermocouple sensors of the fast breeder test reactor.

  19. Gravity interpretation to image the geologic structures of the coastal zone in Al Qunfudhah area, southwest Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Sulaiman, Aseem; Elawadi, Eslam; Mogren, Saad

    2018-06-01

    This study provides interpretation and modeling of gravity survey data to map the subsurface basement relief and controlling structures of a coastal area in the southwestern part of Saudi Arabia as an aid to groundwater potential assessment. The gravity survey data were filtered and analyzed using different edge detection and depth estimation techniques and concluded by 2-D modeling conducted along representative profiles to obtain the topography and depth variations of the basement surface in the area. The basement rocks are exposed in the eastern part of the area but dip westward beneath a sedimentary cover to depths of up to 2200 m in the west, while showing repeated topographic expressions related to a tilted fault-block structure that is dominant in the Red Sea rift zone. Two fault systems were recognized in the area. The first is a normal fault system trending in the NNW-SSE direction that is related to the Red Sea rift, and the second is a cross-cutting oblique fault system trending in the NE-SW direction. The interaction between these two fault systems resulted in the formation of a set of closed basins elongated in the NNW-SSE direction and terminated by the NE-SW fault system. The geomorphology and sedimentary sequences of these basins qualify them as potential regions of groundwater accumulation.

  20. A testing-coverage software reliability model considering fault removal efficiency and error generation

    PubMed Central

    Li, Qiuying; Pham, Hoang

    2017-01-01

    In this paper, we propose a software reliability model that considers not only error generation but also fault removal efficiency combined with testing coverage information based on a nonhomogeneous Poisson process (NHPP). During the past four decades, many software reliability growth models (SRGMs) based on NHPP have been proposed to estimate the software reliability measures, most of which have the same following agreements: 1) it is a common phenomenon that during the testing phase, the fault detection rate always changes; 2) as a result of imperfect debugging, fault removal has been related to a fault re-introduction rate. But there are few SRGMs in the literature that differentiate between fault detection and fault removal, i.e. they seldom consider the imperfect fault removal efficiency. But in practical software developing process, fault removal efficiency cannot always be perfect, i.e. the failures detected might not be removed completely and the original faults might still exist and new faults might be introduced meanwhile, which is referred to as imperfect debugging phenomenon. In this study, a model aiming to incorporate fault introduction rate, fault removal efficiency and testing coverage into software reliability evaluation is developed, using testing coverage to express the fault detection rate and using fault removal efficiency to consider the fault repair. We compare the performance of the proposed model with several existing NHPP SRGMs using three sets of real failure data based on five criteria. The results exhibit that the model can give a better fitting and predictive performance. PMID:28750091

Top