Sample records for system gps total

  1. RNAV (GPS) total system error models for use in wake encounter risk analysis of candidate CSPR pairs for inclusion in FAA Order 7110.308

    DOT National Transportation Integrated Search

    2013-08-01

    The purpose of this memorandum is to provide recommended Total System Error (TSE) models for : aircraft using RNAV (GPS) guidance when analyzing the wake encounter risk of proposed simultaneous : dependent (paired) approaches, with 1.5 Nautical...

  2. RNAV (GPS) total system error models for use in wake encounter risk analysis of dependent paired approaches to closely-spaced parallel runways : Project memorandum - February 2014

    DOT National Transportation Integrated Search

    2014-02-01

    The purpose of this memorandum is to provide recommended Total System Error (TSE) models : for aircraft using RNAV (GPS) guidance when analyzing the wake encounter risk of proposed : simultaneous dependent (paired) approach operations to Closel...

  3. A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations

    NASA Technical Reports Server (NTRS)

    Lanyi, Gabor E.; Roth, Titus

    1988-01-01

    Total ionospheric electron contents (TEC) were measured by global positioning system (GPS) dual-frequency receivers developed by the Jet Propulsion Laboratory. The measurements included P-code (precise ranging code) and carrier phase data for six GPS satellites during multiple five-hour observing sessions. A set of these GPS TEC measurements were mapped from the GPS lines of sight to the line of sight of a Faraday beacon satellite by statistically fitting the TEC data to a simple model of the ionosphere. The mapped GPS TEC values were compared with the Faraday rotation measurements. Because GPS transmitter offsets are different for each satellite and because some GPS receiver offsets were uncalibrated, the sums of the satellite and receiver offsets were estimated simultaneously with the TEC in a least squares procedure. The accuracy of this estimation procedure is evaluated indicating that the error of the GPS-determined line of sight TEC can be at or below 1 x 10 to the 16th el/sq cm. Consequently, the current level of accuracy is comparable to the Faraday rotation technique; however, GPS provides superior sky coverage.

  4. Processing Satellite Data for Slant Total Electron Content Measurements

    NASA Technical Reports Server (NTRS)

    Stephens, Philip John (Inventor); Komjathy, Attila (Inventor); Wilson, Brian D. (Inventor); Mannucci, Anthony J. (Inventor)

    2016-01-01

    A method, system, and apparatus provide the ability to estimate ionospheric observables using space-borne observations. Space-borne global positioning system (GPS) data of ionospheric delay are obtained from a satellite. The space-borne GPS data are combined with ground-based GPS observations. The combination is utilized in a model to estimate a global three-dimensional (3D) electron density field.

  5. Comparison with IRI-PLUS and IRI-2012-TEC values of GPS-TEC values

    NASA Astrophysics Data System (ADS)

    Atıcı, Ramazan; Saǧır, Selçuk

    2016-07-01

    This study presents a comparison with IRI-PLUS and IRI-2012 Total Electron Content (TEC) values of Total Electron Content (TEC) values obtained from Ankara station (39,7 N; 32,76 E) of Global Position System (GPS) of Turkey on equinox and solstice days of 2009 year. For all days, it is observed that GPS-TEC values are greater than IRI-2012-TEC values, while IRI-PLUS-TEC values are very close to GPS-TEC values. When GPS-TEC values for both equinoxes are compared, it is seen that TEC values on September equinox are greater than one on March equinox. However, it is observed that GPS-TEC values on June solstice are greater than one on December solstice. Also, the relationship between GPS-TEC values and geomagnetic indexes is investigated.

  6. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle

    NASA Technical Reports Server (NTRS)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. W.

    1993-01-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  7. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle (STV)

    NASA Technical Reports Server (NTRS)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. Wayne

    1991-01-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  8. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle

    NASA Astrophysics Data System (ADS)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. W.

    1993-07-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  9. High accuracy autonomous navigation using the global positioning system (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  10. Ionospheric earthquake effects detection based on Total Electron Content (TEC) GPS Correlation

    NASA Astrophysics Data System (ADS)

    Sunardi, Bambang; Muslim, Buldan; Eka Sakya, Andi; Rohadi, Supriyanto; Sulastri; Murjaya, Jaya

    2018-03-01

    Advances in science and technology showed that ground-based GPS receiver was able to detect ionospheric Total Electron Content (TEC) disturbances caused by various natural phenomena such as earthquakes. One study of Tohoku (Japan) earthquake, March 11, 2011, magnitude M 9.0 showed TEC fluctuations observed from GPS observation network spread around the disaster area. This paper discussed the ionospheric earthquake effects detection using TEC GPS data. The case studies taken were Kebumen earthquake, January 25, 2014, magnitude M 6.2, Sumba earthquake, February 12, 2016, M 6.2 and Halmahera earthquake, February 17, 2016, M 6.1. TEC-GIM (Global Ionosphere Map) correlation methods for 31 days were used to monitor TEC anomaly in ionosphere. To ensure the geomagnetic disturbances due to solar activity, we also compare with Dst index in the same time window. The results showed anomalous ratio of correlation coefficient deviation to its standard deviation upon occurrences of Kebumen and Sumba earthquake, but not detected a similar anomaly for the Halmahera earthquake. It was needed a continous monitoring of TEC GPS data to detect the earthquake effects in ionosphere. This study giving hope in strengthening the earthquake effect early warning system using TEC GPS data. The method development of continuous TEC GPS observation derived from GPS observation network that already exists in Indonesia is needed to support earthquake effects early warning systems.

  11. Investigation of the Effects of Solar and Geomagnetic Changes on the Total Electron Content: Mid-Latitude Region

    NASA Astrophysics Data System (ADS)

    Ulukavak, Mustafa; Yalcinkaya, Mualla

    2016-04-01

    The Global Positioning System (GPS) is used as an important tool for ionosphere monitoring and obtaining the Total Electron Content (TEC). GPS satellites, positioned in the Earth's orbit, are used as sensors to investigate the space weather conditions. In this study, solar and geomagnetic activity variations were investigated between the dates 1 March-30 June 2015 for the mid-latitude region. GPS-TEC variations were calculated for each selected International GNSS Service (IGS) station in Europe. GNSS data was obtained from Crustal Dynamics Data and Information System (CDDIS) archive. Solar and geomagnetic activity indices (Kp, F10.7 ve Dst) were obtained from the Oceanic and Atmospheric Administration (NOAA), the Canadian Space Weather Forecast Centre (CSWFC) and Data Analysis Center for geomagnetism and Space Magnetism Graduate School of Science, Kyoto University (WDC) archives. GPS-TEC variations were determined for the quiet periods of the solar and geomagnetic activities. GPS-TEC changes were then compared with respect to the quiet periods of the solar and geomagnetic activities. Global Ionosphere Maps (GIM) IONEX files, obtained from the IGS analysis center, was used to check the robustness of the GPS-TEC variations. The investigations revealed that it is possible to use the GPS-TEC data for monitoring the ionospheric disturbances.

  12. Secular variation and fluctuation of GPS Total Electron Content over Antarctica

    NASA Astrophysics Data System (ADS)

    Jin, Rui; Jin, Shuanggen

    2013-01-01

    The total electron content (TEC) is an important parameters in the Earth's ionosphere, related to various space weather and solar activities. However, understanding of the complex ionospheric environments is still a challenge due to the lack of direct observations, particularly in the polar areas, e.g., Antarctica. Now the Global Positioning System (GPS) can be used to retrieve total electron content (TEC) from dual-frequency observations. The continuous GPS observations in Antarctica provide a good opportunity to investigate ionospheric climatology. In this paper, the long-term variations and fluctuations of TEC over Antarctica are investigated from CODE global ionospheric maps (GIM) with a resolution of 2.5°×5° every two hours since 1998. The analysis shows significant seasonal and secular variations in the GPS TEC. Furthermore, the effects of TEC fluctuations are discussed.

  13. In-Flight Pitot-Static Calibration

    NASA Technical Reports Server (NTRS)

    Foster, John V. (Inventor); Cunningham, Kevin (Inventor)

    2016-01-01

    A GPS-based pitot-static calibration system uses global output-error optimization. High data rate measurements of static and total pressure, ambient air conditions, and GPS-based ground speed measurements are used to compute pitot-static pressure errors over a range of airspeed. System identification methods rapidly compute optimal pressure error models with defined confidence intervals.

  14. Robust Real-Time Wide-Area Differential GPS Navigation

    NASA Technical Reports Server (NTRS)

    Yunck, Thomas P. (Inventor); Bertiger, William I. (Inventor); Lichten, Stephen M. (Inventor); Mannucci, Anthony J. (Inventor); Muellerschoen, Ronald J. (Inventor); Wu, Sien-Chong (Inventor)

    1998-01-01

    The present invention provides a method and a device for providing superior differential GPS positioning data. The system includes a group of GPS receiving ground stations covering a wide area of the Earth's surface. Unlike other differential GPS systems wherein the known position of each ground station is used to geometrically compute an ephemeris for each GPS satellite. the present system utilizes real-time computation of satellite orbits based on GPS data received from fixed ground stations through a Kalman-type filter/smoother whose output adjusts a real-time orbital model. ne orbital model produces and outputs orbital corrections allowing satellite ephemerides to be known with considerable greater accuracy than from die GPS system broadcasts. The modeled orbits are propagated ahead in time and differenced with actual pseudorange data to compute clock offsets at rapid intervals to compensate for SA clock dither. The orbital and dock calculations are based on dual frequency GPS data which allow computation of estimated signal delay at each ionospheric point. These delay data are used in real-time to construct and update an ionospheric shell map of total electron content which is output as part of the orbital correction data. thereby allowing single frequency users to estimate ionospheric delay with an accuracy approaching that of dual frequency users.

  15. A Comparative Study of the Ionospheric TEC Measurements Using Global Ionospheric Maps of GPS, TOPEX Radar and the Bent Model

    NASA Technical Reports Server (NTRS)

    Ho, C.; Wilson, B.; Mannucci, A.; Lindqwister, U.; Yuan, D.

    1997-01-01

    Global ionospheric mapping (GIM) is a new, emerging technique for determining global ionospheric TEC (total electron content) based on measurements from a worldwide network of Global Positioning System (GPS) receivers.

  16. Comparing Global Positioning System (GPS) and Global Navigation Satellite System (GNSS) Measures of Team Sport Movements.

    PubMed

    Jackson, Benjamin M; Polglaze, Ted; Dawson, Brian; King, Trish; Peeling, Peter

    2018-02-21

    To compare data from conventional GPS and new GNSS-enabled tracking devices, and to examine the inter-unit reliability of GNSS devices. Inter-device differences between 10 Hz GPS and GNSS devices were examined during laps (n=40) of a simulated game circuit (SGC) and during elite hockey matches (n=21); GNSS inter-unit reliability was also examined during the SGC laps. Differences in distance values and measures in three velocity categories (low <3 m.s -1 ; moderate 3-5 m.s -1 ; high >5 m.s -1 ) and acceleration/deceleration counts (>1.46 m.s -2 and < -1.46 m.s -2 ) were examined using one-way ANOVA. Inter-unit GNSS reliability was examined using the coefficient of variation (CV) and intra-class correlation coefficient (ICC). Inter-device differences (P <0.05) were found for measures of peak deceleration, low-speed distance, % total distance at low speed, and deceleration count during the SGC, and for all measures except total distance and low-speed distance during hockey matches. Inter-unit (GNSS) differences (P <0.05) were not found. The CV was below 5% for total distance, average and peak speeds and distance and % total distance of low-speed running. The GNSS devices had a lower HDoP score than GPS devices in all conditions. These findings suggest that GNSS devices may be more sensitive than GPS in quantifying the physical demands of team sport movements, but further study into the accuracy of GNSS devices is required.

  17. Lessons Learned from Two Years of On-Orbit Global Positioning System Experience on International Space Station

    NASA Technical Reports Server (NTRS)

    Gomez, Susan F.; Lammers, Michael L.

    2004-01-01

    The Global Positioning System Subsystem (GPS) for International Space Station (ISS) was activated April 12,2002 following the installation of the SO truss segment that included the GPS antennas on Shuttle mission STS-110. The ISS GPS receiver became the primary source for position, velocity, and attitude information for ISS two days after activation. The GPS receiver also provides a time reference for manual control of ISS time, and will be used for automatic time updates after problems are resolved with the output from the receiver. After two years of on-orbit experience, the GPS continues to be used as the primary navigation source for ISS; however, enough problems have surfaced that the firmware in the GPS attitude code has had to be totally rewritten and new algorithms developed, the firmware that processed the time output from the GPS receiver had to be rewritten, while the GPS navigation code has had minor revisions. The factors contributing to the delivery of a GPS receiver for use on ISS that requires extensive operator intervention to function are discussed. Observations from two years worth of GPS solutions will also be discussed. The technical solutions to the anomalous GPS receiver behavior will be discussed.

  18. The interchangeability of global positioning system and semiautomated video-based performance data during elite soccer match play.

    PubMed

    Harley, Jamie A; Lovell, Ric J; Barnes, Christopher A; Portas, Matthew D; Weston, Matthew

    2011-08-01

    In elite-level soccer, player motion characteristics are commonly generated from match play and training situations using semiautomated video analysis systems and global positioning system (GPS) technology, respectively. Before such data are used collectively to quantify global player load, it is necessary to understand both the level of agreement and direction of bias between the systems so that specific interventions can be made based on the reported results. The aim of this report was to compare data derived from both systems for physical match performances. Six elite-level soccer players were analyzed during a competitive match using semiautomated video analysis (ProZone® [PZ]) and GPS (MinimaxX) simultaneously. Total distances (TDs), high speed running (HSR), very high speed running (VHSR), sprinting distance (SPR), and high-intensity running distance (HIR; >4.0 m·s(-1)) were reported in 15-minute match periods. The GPS reported higher values than PZ did for TD (GPS: 1,755.4 ± 245.4 m; PZ: 1,631.3 ± 239.5 m; p < 0.05); PZ reported higher values for SPR and HIR than GPS did (SPR: PZ, 34.1 ± 24.0 m; GPS: 20.3 ± 15.8 m; HIR: PZ, 368.1 ± 129.8 m; GPS: 317.0 ± 92.5 m; p < 0.05). Caution should be exercised when using match-load (PZ) and training-load (GPS) data interchangeably.

  19. Autonomous Navigation of the SSTI/Lewis Spacecraft Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Hart, R. C.; Long, A. C.; Lee, T.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) is pursuing the application of Global Positioning System (GPS) technology to improve the accuracy and economy of spacecraft navigation. High-accuracy autonomous navigation algorithms are being flight qualified in conjunction with GSFC's GPS Attitude Determination Flyer (GADFLY) experiment on the Small Satellite Technology Initiative (SSTI) Lewis spacecraft, which is scheduled for launch in 1997. Preflight performance assessments indicate that these algorithms can provide a real-time total position accuracy of better than 10 meters (1 sigma) and velocity accuracy of better than 0.01 meter per second (1 sigma), with selective availability at typical levels. This accuracy is projected to improve to the 2-meter level if corrections to be provided by the GPS Wide Area Augmentation System (WAAS) are included.

  20. Building resilience of the Global Positioning System to space weather

    NASA Astrophysics Data System (ADS)

    Fisher, Genene; Kunches, Joseph

    2011-12-01

    Almost every aspect of the global economy now depends on GPS. Worldwide, nations are working to create a robust Global Navigation Satellite System (GNSS), which will provide global positioning, navigation, and timing (PNT) services for applications such as aviation, electric power distribution, financial exchange, maritime navigation, and emergency management. The U.S. government is examining the vulnerabilities of GPS, and it is well known that space weather events, such as geomagnetic storms, contribute to errors in single-frequency GPS and are a significant factor for differential GPS. The GPS industry has lately begun to recognize that total electron content (TEC) signal delays, ionospheric scintillation, and solar radio bursts can also interfere with daily operations and that these threats grow with the approach of the next solar maximum, expected to occur in 2013. The key challenges raised by these circumstances are, first, to better understand the vulnerability of GPS technologies and services to space weather and, second, to develop policies that will build resilience and mitigate risk.

  1. Combining global positioning system and accelerometer data to determine the locations of physical activity in children.

    PubMed

    Oreskovic, Nicolas M; Blossom, Jeff; Field, Alison E; Chiang, Sylvia R; Winickoff, Jonathan P; Kleinman, Ronald E

    2012-05-01

    National trends indicate that children and adolescents are not achieving sufficient levels of physical activity. Combining global positioning system (GPS) technology with accelerometers has the potential to provide an objective determination in locations where youth engage in physical activity. The aim of this study was to identify the optimal methods for collecting combined accelerometer and GPS data in youth, to best locate where children spend time and are physically active. A convenience sample of 24 mid-school children in Massachusetts was included. Accelerometers and GPS units were used to quantify and locate childhood physical activity over 5 weekdays and 2 weekend days. Accelerometer and GPS data were joined by time and mapped with a geographical information system (GIS) using ArcGIS software. Data were collected in winter, spring, summer in 2009-2010, collecting a total of 26,406 matched datapoints overall. Matched data yield was low (19.1% total), regardless of season (winter, 12.8%; spring, 30.1%; summer, 14.3%). Teacher-provided, pre-charged equipment yielded the most matched (30.1%; range: 10.1-52.3%) and greatest average days (6.1 days) of data. Across all seasons, children spent most of their time at home. Outdoor use patterns appeared to vary by season, with street use increasing in spring, and park and playground use increasing in summer. Children spent equal amounts of physical activity time at home and walking in the streets. Overall, the various methods for combining GPS and accelerometer data provided similarly low amounts of combined data. No combined GPS and accelerometer data collection method proved superior in every data return category, but use of GIS to map joined accelerometer and GPS data can demarcate childhood physical activity locations.

  2. Real-time ultrasound-guided PCNL using a novel SonixGPS needle tracking system.

    PubMed

    Li, Xiang; Long, Qingzhi; Chen, Xingfa; He, Dalin; Dalin, He; He, Hui

    2014-08-01

    SonixGPS is a successful ultrasound guidance position system. It helps to improve accuracy in performing complex puncture operations. This study firstly used SonixGPS to perform kidney calyx access in PCNL to investigate its effectiveness and safety. This was a prospectively randomized controlled study performed from September 2011 to October 2012. A total of 97 patients were prospectively randomized into two groups using random number generated from SAS software. 47 Patients were enrolled in conventional ultrasound-guided (US-guided) group and 50 patients were classified into SonixGPS-guided group. Nine patients were lost during follow-up. Hence, a total of 88 patients were qualified and analyzed. Preoperative examinations included urine analysis, urine culture, kidney function, coagulation profile and routine analysis of blood. Ultrasonography was used to evaluate the degree of hydronephrosis. The intraoperative findings, including blood loss, operating time, time to successful puncture, the number of attempts for successful puncture and hospital stay were recorded. The stone clearance rate and complications were analyzed. The present study showed no significant difference between the two groups in terms of demographic data, preoperative markers, stone clearance rate and the stone composition. However, the time to successful puncture, the number of trials for successful puncture, operating time and hospital length of stay were significantly decreased in the SonixGPS-guided group. Furthermore, the hemoglobin decrease was also obviously lower in the SonixGPS group than that in conventional US-guided group. SonixGPS needle tacking system guided PCNL is safe and effective in treating upper urinary tract stones. This novel technology makes puncturing more accuracy and can significantly decrease the incidence of relative hemorrhage and accelerate recovery.

  3. Applications of GPS technologies to field sports.

    PubMed

    Aughey, Robert J

    2011-09-01

    Global positioning system (GPS) technology was made possible after the invention of the atomic clock. The first suggestion that GPS could be used to assess the physical activity of humans followed some 40 y later. There was a rapid uptake of GPS technology, with the literature concentrating on validation studies and the measurement of steady-state movement. The first attempts were made to validate GPS for field sport applications in 2006. While GPS has been validated for applications for team sports, some doubts continue to exist on the appropriateness of GPS for measuring short high-velocity movements. Thus, GPS has been applied extensively in Australian football, cricket, hockey, rugby union and league, and soccer. There is extensive information on the activity profile of athletes from field sports in the literature stemming from GPS, and this includes total distance covered by players and distance in velocity bands. Global positioning systems have also been applied to detect fatigue in matches, identify periods of most intense play, different activity profiles by position, competition level, and sport. More recent research has integrated GPS data with the physical capacity or fitness test score of athletes, game-specific tasks, or tactical or strategic information. The future of GPS analysis will involve further miniaturization of devices, longer battery life, and integration of other inertial sensor data to more effectively quantify the effort of athletes.

  4. Operational aspects of CASA UNO '88-The first large scale international GPS geodetic network

    NASA Technical Reports Server (NTRS)

    Neilan, Ruth E.; Dixon, T. H.; Meehan, Thomas K.; Melbourne, William G.; Scheid, John A.; Kellogg, J. N.; Stowell, J. L.

    1989-01-01

    For three weeks, from January 18 to February 5, 1988, scientists and engineers from 13 countries and 30 international agencies and institutions cooperated in the most extensive GPS (Global Positioning System) field campaign, and the largest geodynamics experiment, in the world to date. This collaborative eperiment concentrated GPS receivers in Central and South America. The predicted rates of motions are on the order of 5-10 cm/yr. Global coverage of GPS observations spanned 220 deg of longitude and 125 deg of latitude using a total of 43 GPS receivers. The experiment was the first civilian effort at implementing an extended international GPS satellite tracking network. Covariance analyses incorporating the extended tracking network predicted significant improvement in precise orbit determination, allowing accurate long-baseline geodesy in the science areas.

  5. Variations of TEC near the Indian Equatorial Ionospheric anomaly (EIA) stations by GPS measurements during descending phase of solar activity (2005 -2009)

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Singh, Abhay Kumar

    The dual frequency Global Positioning System (GPS) data recorded at Varanasi (geographic latitude 250, 16 N longitude 820, 59 E) and Kanpur (geographic latitude 260, 30 N longitude 800, 12 E) stations, near the equatorial ionosphere anomaly (EIA) in India, have been analyzed to retrieve total electron content (TEC). The daily peak value of vertical total electron content (VTEC) has been utilized to study the variability of EIA. Present paper studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on EIA. It has been found that EIA yield their maximum values during the equinox months and minimum during summer and winter. The correlations of EIA with solar as well as geomagnetic indices have been also discussed. Key words: Total electron contents (TECs), EIA, GPS.

  6. A Comparison of Systemic Inflammation-Based Prognostic Scores in Patients on Regular Hemodialysis

    PubMed Central

    Kato, Akihiko; Tsuji, Takayuki; Sakao, Yukitoshi; Ohashi, Naro; Yasuda, Hideo; Fujimoto, Taiki; Takita, Takako; Furuhashi, Mitsuyoshi; Kumagai, Hiromichi

    2013-01-01

    Background/Aims Systemic inflammation-based prognostic scores have prognostic power in patients with cancer, independently of tumor stage and site. Although inflammatory status is associated with mortality in hemodialysis (HD) patients, it remains to be determined as to whether these composite scores are useful in predicting clinical outcomes. Methods We calculated the 6 prognostic scores [Glasgow prognostic score (GPS), modified GPS (mGPS), neutrophil-lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), prognostic index (PI) and prognostic nutritional index (PNI), which have been established as a useful scoring system in cancer patients. We enrolled 339 patients on regular HD (age: 64 ± 13 years; time on HD: 129 ± 114 months; males/females = 253/85) and followed them for 42 months. The area under the receiver-operating characteristics curve was used to determine which scoring system was more predictive of mortality. Results Elevated GPS, mGPS, NLR, PLR, PI and PNI were all associated with total mortality, independent of covariates. If GPS was raised, mGPS, NLR, PLR and PI were also predictive of all-cause mortality and/or hospitalization. GPS and PNI were associated with poor nutritional status. Using overall mortality as an endpoint, the area under the curve (AUC) was significant for a GPS of 0.701 (95% CI: 0.637-0.765; p < 0.01) and for a PNI of 0.616 (95% CI: 0.553-0.768; p = 0.01). However, AUC for hypoalbuminemia (<3.5 g/dl) was comparable to that of GPS (0.695, 95% CI: 0.632-0.759; p < 0.01). Conclusion GPS, based on serum albumin and highly sensitive C-reactive protein, has the most prognostic power for mortality prediction among the prognostic scores in HD patients. However, as the determination of serum albumin reflects mortality similarly to GPS, other composite combinations are needed to provide additional clinical utility beyond that of albumin alone in HD patients. PMID:24403910

  7. Totally laparoscopic gallbladder-preserving surgery: A minimally invasive and favorable approach for cholelithiasis.

    PubMed

    Gao, DE-Kang; Wei, Shao-Hua; Li, Wei; Ren, Jie; Ma, Xiao-Ming; Gu, Chun-Wei; Wu, Hao-Rong

    2015-02-01

    The aim of the present study was to investigate the effectiveness of laparoscopic gallbladder-preserving surgery (L-GPS) for cholelithiasis and the feasibility and value of totally laparoscopic GPS (TL-GPS). A total of 517 patients underwent L-GPS, including 365 cases of laparoscopy-assisted GPS (LA-GPS), 143 cases of TL-GPS (preservation rate, 98.3%) and nine conversions to laparoscopic cholecystectomy. The surgeries were all performed by one medical team and the mean operating time was 72 min. All macroscopic calculi were removed through endoscopy. The number of calculi observed in the patients was between one and several dozen; diameters ranged between 0.1 and 2.5 cm. Only three cases of incisional infection were noted in the LA-GPS group and long-term follow-up showed a low recurrence rate of 1.2%. L-GPS is, therefore, an excellent approach to cure cholelithiasis and TL-GPS is a feasible and effective option that could avoid incisional complications.

  8. Ionospheric responses during equinox and solstice periods over Turkey

    NASA Astrophysics Data System (ADS)

    Karatay, Secil; Cinar, Ali; Arikan, Feza

    2017-11-01

    Ionospheric electron density is the determining variable for investigation of the spatial and temporal variations in the ionosphere. Total Electron Content (TEC) is the integral of the electron density along a ray path that indicates the total variability through the ionosphere. Global Positioning System (GPS) recordings can be utilized to estimate the TEC, thus GPS proves itself as a useful tool in monitoring the total variability of electron distribution within the ionosphere. This study focuses on the analysis of the variations of ionosphere over Turkey that can be grouped into anomalies during equinox and solstice periods using TEC estimates obtained by a regional GPS network. It is observed that noon time depletions in TEC distributions predominantly occur in winter for minimum Sun Spots Numbers (SSN) in the central regions of Turkey which also exhibit high variability due to midlatitude winter anomaly. TEC values and ionospheric variations at solstice periods demonstrate significant enhancements compared to those at equinox periods.

  9. Investigating Atmospheric Rivers using GPS TPW during CalWater 2015

    NASA Astrophysics Data System (ADS)

    Almanza, V.; Foster, J. H.; Businger, S.

    2015-12-01

    Ship-based Global Positioning System (GPS) receivers have been successful in obtaining millimeter accuracy total precipitable water (TPW). We apply this technique with a field experiment using a GPS meteorology system installed on board the R/V Ronald Brown during the CalWater 2015 project. The goal of CalWater is to monitor atmospheric river (AR) events over the Eastern Pacific Ocean and improve forecasting of the extreme precipitation events they can produce. During the 30-day cruise, TPW derived from radiosonde balloons released from the Ron Brown are used to verify the accuracy of shipboard GPS TPW. The results suggest that ship-based GPS TPW offers a cost-effective approach for acquiring accurate real-time meteorological observations of TPW in AR's over remote oceans, as well as near the coastlines where satellites algorithms have limited accuracy. The results have implications for augmenting operational observing networks to improve weather prediction and nowcasting of ARs, thereby supporting hazard response and mitigation efforts associated with coastal flooding events.

  10. Application of global positioning system methods for the study of obesity and hypertension risk among low-income housing residents in New York City: a spatial feasibility study

    PubMed Central

    Duncan, Dustin T.; Regan, Seann D.; Shelley, Donna; Day, Kristen; Ruff, Ryan R.; Al-Bayan, Maliyhah; Elbel, Brian

    2016-01-01

    The purpose of this study was to evaluate the feasibility of using global positioning system (GPS) methods to understand the spatial context of obesity and hypertension risk among a sample of low-income housing residents in New York City (n = 120). GPS feasibility among participants was measured with a pre- and post-survey as well as adherence to a protocol which included returning the GPS device as well as objective data analysed from the GPS devices. We also conducted qualitative interviews with 21 of the participants. Most of the sample was overweight (26.7%) or obese (40.0%). Almost one-third (30.8%) was pre-hypertensive and 39.2% was hypertensive. Participants reported high ratings of GPS acceptability, ease of use and low levels of wear-related concerns in addition to few concerns related to safety, loss or appearance, which were maintained after the baseline GPS feasibility data collection. Results show that GPS feasibility increased over time. The overall GPS return rate was 95.6%. Out of the total of 114 participants with GPS, 112 (98.2%) delivered at least one hour of GPS data for one day and 84 (73.7%) delivered at least one hour on 7 or more days. The qualitative interviews indicated that overall, participants enjoyed wearing the GPS devices, that they were easy to use and charge and that they generally forgot about the GPS device when wearing it daily. Findings demonstrate that GPS devices may be used in spatial epidemiology research in low-income and potentially other key vulnerable populations to understand geospatial determinants of obesity, hypertension and other diseases that these populations disproportionately experience. PMID:25545926

  11. The influence of grounding on GPS receiver differential code biases

    NASA Astrophysics Data System (ADS)

    Choi, Byung-Kyu; Lee, Sang Jeong

    2018-07-01

    The Global Positioning System (GPS) has become an effective tool for estimating ionospheric total electron content (TEC). One of the critical factors affecting ionospheric TEC estimation from GPS data is the differential code biases (DCBs) inherent in both GPS receivers and satellites. To investigate the factor that affects the receiver DCB, we consider the relationship between the receiver DCB and the grounding of an antenna. GPS data from 9 stations in South Korea from three periods (the years 2009, 2014, and 2017) were used in the analysis. It was found that a significant jump (∼8-13 ns, or ∼ 23-37 TECU) in hourly DCB time series occurred simultaneously at the two different sites when an antenna is changed from a grounded to the non-grounded state. Thus, our study clearly identifies that the grounding of GPS equipment is a factor of the receiver DCB changes.

  12. Monitoring Shuttle Burns and Rocket Launches with GPS

    NASA Astrophysics Data System (ADS)

    Coster, A. J.; Bhatt, A.; O'Hanlon, B.; Rideout, W.

    2009-12-01

    We report on different GPS analysis techniques that can be used to examine the effects of rocket exhaust on the upper atmosphere. GPS observations of artificially produced electron density holes created by chemical releases from Space Shuttle Orbital Maneuvering System (OMS) engine burns will be discussed. The percentage drop in total electron content (TEC) and the temporal and spatial scales observed in the electron density hole for different Shuttle burn experiments will be compared. We will also report on observations of TEC depletions associated with Titan rocket launches on 8 April 2003 and on 19 October 2005. Finally we will discuss the use of GPS measurements of precipitable water vapor from time periods before, during, and after Shuttle burns.

  13. Strengths and Weaknesses of Global Positioning System (GPS) Data-Loggers and Semi-structured Interviews for Capturing Fine-scale Human Mobility: Findings from Iquitos, Peru

    PubMed Central

    Paz-Soldan, Valerie A.; Reiner, Robert C.; Morrison, Amy C.; Stoddard, Steven T.; Kitron, Uriel; Scott, Thomas W.; Elder, John P.; Halsey, Eric S.; Kochel, Tadeusz J.; Astete, Helvio; Vazquez-Prokopec, Gonzalo M.

    2014-01-01

    Quantifying human mobility has significant consequences for studying physical activity, exposure to pathogens, and generating more realistic infectious disease models. Location-aware technologies such as Global Positioning System (GPS)-enabled devices are used increasingly as a gold standard for mobility research. The main goal of this observational study was to compare and contrast the information obtained through GPS and semi-structured interviews (SSI) to assess issues affecting data quality and, ultimately, our ability to measure fine-scale human mobility. A total of 160 individuals, ages 7 to 74, from Iquitos, Peru, were tracked using GPS data-loggers for 14 days and later interviewed using the SSI about places they visited while tracked. A total of 2,047 and 886 places were reported in the SSI and identified by GPS, respectively. Differences in the concordance between methods occurred by location type, distance threshold (within a given radius to be considered a match) selected, GPS data collection frequency (i.e., 30, 90 or 150 seconds) and number of GPS points near the SSI place considered to define a match. Both methods had perfect concordance identifying each participant's house, followed by 80–100% concordance for identifying schools and lodgings, and 50–80% concordance for residences and commercial and religious locations. As the distance threshold selected increased, the concordance between SSI and raw GPS data increased (beyond 20 meters most locations reached their maximum concordance). Processing raw GPS data using a signal-clustering algorithm decreased overall concordance to 14.3%. The most common causes of discordance as described by a sub-sample (n = 101) with whom we followed-up were GPS units being accidentally off (30%), forgetting or purposely not taking the units when leaving home (24.8%), possible barriers to the signal (4.7%) and leaving units home to recharge (4.6%). We provide a quantitative assessment of the strengths and weaknesses of both methods for capturing fine-scale human mobility. PMID:24922530

  14. Medium-scale traveling ionospheric disturbances by three-dimensional ionospheric GPS tomography

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Saito, A.; Lin, C. H.; Yamamoto, M.; Suzuki, S.; Seemala, G. K.

    2016-02-01

    In this study, we develop a three-dimensional ionospheric tomography with the ground-based global position system (GPS) total electron content observations. Because of the geometric limitation of GPS observation path, it is difficult to solve the ill-posed inverse problem for the ionospheric electron density. Different from methods given by pervious studies, we consider an algorithm combining the least-square method with a constraint condition, in which the gradient of electron density tends to be smooth in the horizontal direction and steep in the vicinity of the ionospheric F2 peak. This algorithm is designed to be independent of any ionospheric or plasmaspheric electron density models as the initial condition. An observation system simulation experiment method is applied to evaluate the performance of the GPS ionospheric tomography in detecting ionospheric electron density perturbation at the scale size of around 200 km in wavelength, such as the medium-scale traveling ionospheric disturbances.

  15. Performance Analysis on Carrier Phase-Based Tightly-Coupled GPS/BDS/INS Integration in GNSS Degraded and Denied Environments

    PubMed Central

    Han, Houzeng; Wang, Jian; Wang, Jinling; Tan, Xinglong

    2015-01-01

    The integration of Global Navigation Satellite Systems (GNSS) carrier phases with Inertial Navigation System (INS) measurements is essential to provide accurate and continuous position, velocity and attitude information, however it is necessary to fix ambiguities rapidly and reliably to obtain high accuracy navigation solutions. In this paper, we present the notion of combining the Global Positioning System (GPS), the BeiDou Navigation Satellite System (BDS) and low-cost micro-electro-mechanical sensors (MEMS) inertial systems for reliable navigation. An adaptive multipath factor-based tightly-coupled (TC) GPS/BDS/INS integration algorithm is presented and the overall performance of the integrated system is illustrated. A twenty seven states TC GPS/BDS/INS model is adopted with an extended Kalman filter (EKF), which is carried out by directly fusing ambiguity fixed double-difference (DD) carrier phase measurements with the INS predicted pseudoranges to estimate the error states. The INS-aided integer ambiguity resolution (AR) strategy is developed by using a dynamic model, a two-step estimation procedure is applied with adaptively estimated covariance matrix to further improve the AR performance. A field vehicular test was carried out to demonstrate the positioning performance of the combined system. The results show the TC GPS/BDS/INS system significantly improves the single-epoch AR reliability as compared to that of GPS/BDS-only or single satellite navigation system integrated strategy, especially for high cut-off elevations. The AR performance is also significantly improved for the combined system with adaptive covariance matrix in the presence of low elevation multipath related to the GNSS-only case. A total of fifteen simulated outage tests also show that the time to relock of the GPS/BDS signals is shortened, which improves the system availability. The results also indicate that TC integration system achieves a few centimeters accuracy in positioning based on the comparison analysis and covariance analysis, even in harsh environments (e.g., in urban canyons), thus we can see the advantage of positioning at high cut-off elevations that the combined GPS/BDS brings. PMID:25875191

  16. Performance analysis on carrier phase-based tightly-coupled GPS/BDS/INS integration in GNSS degraded and denied environments.

    PubMed

    Han, Houzeng; Wang, Jian; Wang, Jinling; Tan, Xinglong

    2015-04-14

    The integration of Global Navigation Satellite Systems (GNSS) carrier phases with Inertial Navigation System (INS) measurements is essential to provide accurate and continuous position, velocity and attitude information, however it is necessary to fix ambiguities rapidly and reliably to obtain high accuracy navigation solutions. In this paper, we present the notion of combining the Global Positioning System (GPS), the BeiDou Navigation Satellite System (BDS) and low-cost micro-electro-mechanical sensors (MEMS) inertial systems for reliable navigation. An adaptive multipath factor-based tightly-coupled (TC) GPS/BDS/INS integration algorithm is presented and the overall performance of the integrated system is illustrated. A twenty seven states TC GPS/BDS/INS model is adopted with an extended Kalman filter (EKF), which is carried out by directly fusing ambiguity fixed double-difference (DD) carrier phase measurements with the INS predicted pseudoranges to estimate the error states. The INS-aided integer ambiguity resolution (AR) strategy is developed by using a dynamic model, a two-step estimation procedure is applied with adaptively estimated covariance matrix to further improve the AR performance. A field vehicular test was carried out to demonstrate the positioning performance of the combined system. The results show the TC GPS/BDS/INS system significantly improves the single-epoch AR reliability as compared to that of GPS/BDS-only or single satellite navigation system integrated strategy, especially for high cut-off elevations. The AR performance is also significantly improved for the combined system with adaptive covariance matrix in the presence of low elevation multipath related to the GNSS-only case. A total of fifteen simulated outage tests also show that the time to relock of the GPS/BDS signals is shortened, which improves the system availability. The results also indicate that TC integration system achieves a few centimeters accuracy in positioning based on the comparison analysis and covariance analysis, even in harsh environments (e.g., in urban canyons), thus we can see the advantage of positioning at high cut-off elevations that the combined GPS/BDS brings.

  17. Simultaneous total electron content and all-sky camera measurements of an auroral arc

    NASA Astrophysics Data System (ADS)

    Kintner, P. M.; Kil, H.; Deehr, C.; Schuck, P.

    2002-07-01

    We present an example of Global Positioning System (GPS) derived total electron content (TEC) and all-sky camera (ASC) images that show increases of TEC by ~10 × 1016 electrons m-2 (10 TEC units) occurring simultaneously with auroral light in ASC images. The TEC example appears to be an E region density enhancement produced by two discrete auroral arcs occurring in the late morning auroral oval at 1000 LT. This suggests that GPS signal TEC measurements can be used to detect individual auroral arcs and that individual discrete auroral arcs are responsible for some high-latitude phase scintillations. The specific auroral feature detected was a poleward moving auroral form believed to occur in the polar cap where the ionosphere is convecting antisunward. The magnitude of the rate of change of TEC (dTEC/dt) is comparable to that previously reported. However, the timescales associated with the event, the order of 1 min, suggest that the data sampling technique commonly used by chain GPS TEC receivers (averaging and time decimation) will undersample E region TEC perturbations produced by active auroral displays. The localized nature of this example implies that L1 ranging errors of at least 1.6 m will be introduced by auroral arcs into systems relying on differential GPS for navigation or augmentation. Although the TEC and auroral arcs presented herein occurred in the late morning auroral oval, we expect that the effects of discrete auroral arcs on GPS TEC and subsequent ranging errors should occur at all local times. Furthermore, GPS receivers can be used to detect individual discrete arcs.

  18. Effect of the X5.4 Class Solar Flare Event of Solar Cycle 24 ON the GPS Signal Reception in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Ismail, S.; Musa, T. A.; Aris, W. A. W.; Gopir, G.

    2016-09-01

    In this paper, we examine the effect of solar flare event on the Global Positioning System (GPS) signal reception in Peninsular Malaysia during the X5.4 class solar flare on 7th March 2012, 00:24 UT at active region AR1429. GPS data from six MyRTKnet stations that cover the northern, southern, western and eastern regions of Peninsular Malaysia were used, namely Langkawi (Kedah), Bandar Baharu (Pulau Pinang), Pekan (Pahang), Mersing (Johor), Tanjung Pengelih (Johor) and Malacca (Malacca). The total electron content (TEC) was estimated based on the single layer ionospheric model. Next, the ionospheric delay for each GPS frequency of L1 (1575.42 MHz), L2 (1227.60 MHz) and L5 (1176.45 MHz) was then calculated. The results show that solar flare event can influence the GPS signal reception in Peninsular Malaysia where the X5.4 class solar flare shows significant effect of the ionospheric delay within the range of 9 m - 20 m. These research findings will significantly contribute to space weather study and its effects on space-based positioning system such as the GPS.

  19. Match-play demands of elite youth Gaelic football using global positioning system tracking.

    PubMed

    Reilly, Brian; Akubat, Ibrahim; Lyons, Mark; Collins, D Kieran

    2015-04-01

    Global positioning systems (GPS) technology has made athlete-tracking a convenient and accepted technique to specify movement patterns and physical demands in sport. The purpose of this study was to examine positional demands of elite youth Gaelic football match-play using portable GPS technology to examine movement patterns and heart rates across match periods. Fifty-six elite youth male Gaelic footballers (age, 15 ± 0.66 years) fitted with portable 4-Hz GPS units were observed during 6 competitive matches (60 minutes). Data provided from the GPS unit included total distance, high-intensity (≥17·km·h(-1)) distance, sprint (≥22 km·h(-1)) distance, and total number of sprints. Heart rate was monitored continuously throughout the games. Players covered a mean distance of 5732 ± 1047 m, and the mean intensity of match-play was 85% of the peak heart rate. There was a significant (p = 0.028) drop in the total distance covered in the second half (2783 ± 599 m) compared with the first half (2948 ± 580 m). In particular, there is a noticeable drop in the distance covered in the third quarter of the game (after half-time), which has implications for re-warming up at the end of the half-time interval. There was a highly significant (p < .001) difference in the distance traveled across the 5 positional groups with midfielders covering the greatest total distance (6740 ± 384 m). The significant differences found with respect to positional groups support the implementation of individual, position-specific strength and conditioning programs.

  20. GPS-Squitter capacity analysis

    NASA Astrophysics Data System (ADS)

    Orlando, Vincent A.; Harman, William H.

    1994-05-01

    GPS-Squitter is a system concept that merges the capabilities of Automatic Dependent Surveillance (ADS) and the Mode S beacon radar. The result is an integrated concept for seamless surveillance and data link that permits equipped aircraft to participate in ADS and/or beacon ground environments. This concept offers many possibilities for transition from a beacon to an ADS-based environment. This report provides the details of the techniques used to estimate GPS-Squitter surveillance and data link capacity. Surveillance capacity of airborne aircraft is calculated for the omni and six-sector ground stations. Next, the capacity of GPS-Squitter for surface traffic is estimated. The interaction between airborne and surface operations is addressed to show the independence of these systems. Air ground data link capacity for GPS-Squitter is estimated, together with an estimate of the use of the Mode S link to support other ground surveillance and data link activities as well as TCAS operation. The analysis indicates the low transponder occupancy resulting from the total effect of these activities. Low occupancy is a key requirement in avoiding interference with the operation of the current ATCRBS and future Mode S interrogators.

  1. Feasibility and Acceptability of Global Positioning System (GPS) Methods to Study the Spatial Contexts of Substance Use and Sexual Risk Behaviors among Young Men Who Have Sex with Men in New York City: A P18 Cohort Sub-Study

    PubMed Central

    Duncan, Dustin T.; Kapadia, Farzana; Regan, Seann D.; Goedel, William C.; Levy, Michael D.; Barton, Staci C.; Friedman, Samuel R.; Halkitis, Perry N.

    2016-01-01

    Background No global positioning system (GPS) technology study has been conducted among a sample of young gay, bisexual, and other men who have sex with men (YMSM). As such, the purpose of this study was to evaluate the feasibility and acceptability of using GPS methods to understand the spatial context of substance use and sexual risk behaviors among a sample of YMSM in New York City, a high-risk population. Methods Data came from a subsample of the ongoing P18 Cohort Study (n = 75). GPS feasibility and acceptability among participants was measured with: 1) a pre- and post-survey and 2) adherence to the GPS protocol which included returning the GPS device, self-report of charging and carrying the GPS device as well as objective data analyzed from the GPS devices. Analyses of the feasibility surveys were treated as repeated measures as each participant had a pre- and post-feasibility survey. When comparing the similar GPS survey items asked at baseline and at follow-up, we present percentages and associated p-values based on chi-square statistics. Results Participants reported high ratings of pre-GPS acceptability, ease of use, and low levels of wear-related concerns in addition to few concerns related to safety, loss, or appearance, which were maintained after baseline GPS feasibility data collection. The GPS return rate was 100%. Most participants charged and carried the GPS device on most days. Of the total of 75 participants with GPS data, 75 (100%) have at least one hour of GPS data for one day and 63 (84%) had at least one hour on all 7 days. Conclusions Results from this pilot study demonstrate that utilizing GPS methods among YMSM is feasible and acceptable. GPS devices may be used in spatial epidemiology research in YMSM populations to understand place-based determinants of health such as substance use and sexual risk behaviors. PMID:26918766

  2. Positioning System Accuracy Assessment for the Runway Incursion Prevention System Flight Test at the Dallas/Ft. Worth International Airport

    NASA Technical Reports Server (NTRS)

    Quach, Cuong C.

    2004-01-01

    NASA/Langley Research Center collaborated with the Federal Aviation Administration (FAA) to test a Runway Incursion Prevention System (RIPS) at the Dallas Fort Worth International Airport (DFW) in October 2000. The RIPS combines airborne and ground sensor data with various cockpit displays to improve pilots' awareness of traffic conditions on the airport surface. The systems tested at DFW involved surface radar and data systems that gather and send surface traffic information to a research aircraft outfitted with the RIPS software, cockpit displays, and data link transceivers. The data sent to the airborne systems contained identification and GPS location of traffic. This information was compared with the own-ship location from airborne GPS receivers to generate incursion alerts. A total of 93 test tracks were flown while operating RIPS. This report compares the accuracy of the airborne GPS systems that gave the own-ship position of the research aircraft for the 93 test tracks.

  3. Evaluation of an inflammation-based prognostic score (GPS) in patients with metastatic breast cancer.

    PubMed

    Al Murri, A M; Bartlett, J M S; Canney, P A; Doughty, J C; Wilson, C; McMillan, D C

    2006-01-30

    Prediction of outcome in patients with metastatic breast cancer remains problematical. The present study evaluated the value of an inflammation-based score (Glasgow Prognostic Score, GPS) in patients with metastatic breast cancer. The GPS was constructed as follows: patients with both an elevated C-reactive protein (>10 mg l(-1)) and hypoalbuminaemia (<35 g l(-1)) were allocated a score of 2. Patients in whom only one or none of these biochemical abnormalities was present were allocated a score of 1 or 0, respectively. In total, 96 patients were studied. During follow-up 51 patients died of their cancer. On multivariate analysis of the GPS and treatment received, only the GPS (HR 2.26, 95% CI 1.45-3.52, P<0.001) remained significantly associated with cancer-specific survival. The presence of a systemic inflammatory response (the GPS) appears to be a useful indicator of poor outcome independent of treatment in patients with metastatic breast cancer.

  4. Rationale for the new GP deprivation payment scheme in England: effects of moving from electoral ward to enumeration district underprivileged area scores.

    PubMed Central

    Bajekal, M; Alves, B; Jarman, B; Hurwitz, B

    2001-01-01

    BACKGROUND: The Department of Health introduced a new deprivation payments system for general practitioners (GPs) on 1 April 1999. Following a three-year phasing-in process, registered patients will attract deprivation payments based on the underprivileged area (UPA) score of their enumeration district (ED) of residence, rather than their electoral ward, changing the pattern and distribution of payments throughout England. AIM: To assess the rationale behind the changed deprivation payments system for GPs in England and to examine its impact on GP and practice payments. DESIGN OF STUDY: A quantitative study modelling practice-based deprivation payments. SETTING: A total of 25,450 unrestricted principal GPs in 8919 practices in England. METHOD: The effect of three new components in the system were examined: changes in the ED score ranges attracting payment, the percentage increase in the size of successive payment bands, and the total budget. The relationship between consultation rates (used as a proxy for workload) and UPA score was examined, together with changes in GP payments calculated nationally and by geographical area. RESULTS: A total of 11.6% of the population of England live in wards with a UPA score of 30 or more, qualifying for deprivation payments, and a similar proportion (11.4%) live in EDs with a UPA score of 20 or more. The larger percentage increases in the size of payments in successive ED UPA bands is supported by the modelled relationship between consultation rate and UPA score. Financially, under the new deprivations payment system, entitlement widens with 88% of practices receiving a payment. Overall, 74% of GPs gain and 13% lose (3% losing more than 1500 Pounds), with 13% receiving no payment. CONCLUSION: The new ED system maps onto the previous system well. Moreover, it more finely discriminates between smaller areas of different relative deprivation and, thereby, targets payments more accurately. PMID:11407049

  5. Rationale for the new GP deprivation payment scheme in England: effects of moving from electoral ward to enumeration district underprivileged area scores.

    PubMed

    Bajekal, M; Alves, B; Jarman, B; Hurwitz, B

    2001-06-01

    The Department of Health introduced a new deprivation payments system for general practitioners (GPs) on 1 April 1999. Following a three-year phasing-in process, registered patients will attract deprivation payments based on the underprivileged area (UPA) score of their enumeration district (ED) of residence, rather than their electoral ward, changing the pattern and distribution of payments throughout England. To assess the rationale behind the changed deprivation payments system for GPs in England and to examine its impact on GP and practice payments. A quantitative study modelling practice-based deprivation payments. A total of 25,450 unrestricted principal GPs in 8919 practices in England. The effect of three new components in the system were examined: changes in the ED score ranges attracting payment, the percentage increase in the size of successive payment bands, and the total budget. The relationship between consultation rates (used as a proxy for workload) and UPA score was examined, together with changes in GP payments calculated nationally and by geographical area. A total of 11.6% of the population of England live in wards with a UPA score of 30 or more, qualifying for deprivation payments, and a similar proportion (11.4%) live in EDs with a UPA score of 20 or more. The larger percentage increases in the size of payments in successive ED UPA bands is supported by the modelled relationship between consultation rate and UPA score. Financially, under the new deprivations payment system, entitlement widens with 88% of practices receiving a payment. Overall, 74% of GPs gain and 13% lose (3% losing more than 1500 Pounds), with 13% receiving no payment. The new ED system maps onto the previous system well. Moreover, it more finely discriminates between smaller areas of different relative deprivation and, thereby, targets payments more accurately.

  6. Simultaneous Global Positioning System observations of equatorial scintillations and total electron content fluctuations

    NASA Astrophysics Data System (ADS)

    Beach, Theodore L.; Kintner, Paul M.

    1999-10-01

    One aspect of the Global Positioning System (GPS) is the potential to conduct geophysical research, and worldwide networks of GPS receivers have been established to exploit this potential. Several research groups have begun using this global GPS data to study ionospheric total electron content (TEC) variations, also referred to as GPS phase fluctuations, as surrogates for ionospheric scintillations. This paper investigates the relationship between GPS amplitude scintillations and TEC variations for the same line of sight using observations from Ancón, Peru. These observations were taken under equatorial spread F conditions for three nights in April 1997. As expected, only when the spectrum of TEC fluctuations includes significant power at the Fresnel scale do scintillations appear. We also find that when the TEC fluctuation spectrum includes the Fresnel scale, the S4 scintillation index is roughly proportional to measures of TEC fluctuation for the weak scintillations observed. The proportionality constant varies from night to night, however, casting doubt on the ability to predict GPS S4 successfully from TEC fluctuation data alone. We also present a simple theoretical phase screen model and show that if a relationship between TEC fluctuation measures and S4 exists, that relationship depends on the power spectrum of phase variations at the screen. Unfortunately, the available TEC data, at 30 s per sample (with some aliasing apparently permitted), offer limited spectral information. A preliminary comparison of 1 s/sample data with the same data decimated to a 30 s/sample interval suggests, however, that the level of successful S4 prediction, based on TEC fluctuation measures alone, is comparable at either sample rate.

  7. [Child protection system: Knowledge and role of the general practitioners in Ille-et-Vilaine].

    PubMed

    Balençon, M; Arrieta, A; You, C A; Brun, J-F; Federico-Desgranges, M; Roussey, M

    2016-01-01

    On 5 March 2007 the law concerning the child protection system was reformed. Since this date, child protection services are responsible for child abuse and neglect. Child protection services are now attempting to determine the rightful place for parents. Asking for child protection is now easier for the general practitioner (GP), who can submit a "preoccupying information (PI)" form. The aim of this study was to review GPs' knowledge on this issue 6 years after the passage of this new law. Prospective postal investigation between 04/01/2013 and 06/01/2013. A total of 298 (113 women) of the 899 GPs of the Ille-et-Vilaine area in Brittany answered a few questions about their activity and their knowledge on child abuse and neglect. The sample's mean age, sex, and practice was representative of the GPs in this area. Only 25.5% of the GPs had any knowledge of this new law. The term "preoccupying information" was unfamiliar to 70.1% of the GPs and what to do with the PI was unknown to 77.2%. The GPs did not know which type of letter to send nor where to send it between legal child protection and social protection services. Only 5% of the GPs had child protection training on PI. The main problem informing the child protection services was the lack of training. Consequently, 91.9% of the GPs would like training. The GPs in the Ille-et-Vilaine area in Brittany are unfamiliar with the child protection updates and need special training. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Comparison of a novel real-time SonixGPS needle-tracking ultrasound technique with traditional ultrasound for vascular access in a phantom gel model.

    PubMed

    Kopac, Daniel S; Chen, Jerry; Tang, Raymond; Sawka, Andrew; Vaghadia, Himat

    2013-09-01

    Ultrasound-guided percutaneous vascular access for endovascular procedures is well established in surgical practice. Despite this, rates of complications from venous and arterial access procedures remain a significant cause of morbidity. We hypothesized that the use of a new technique of vascular access using an ultrasound with a novel needle-guidance positioning system (GPS) would lead to improved success rates of vascular puncture for both in-plane and out-of-plane techniques compared with traditional ultrasound. A prospective, randomized crossover study of medical students from all years of medical school was conducted using a phantom gel model. Each medical student performed three ultrasound-guided punctures with each of the four modalities (in-plane no GPS, in-plane with GPS, out-of-plane no GPS, out-of-plane with GPS) for a total of 12 attempts. The success or failure was judged by the ability to aspirate a simulated blood solution from the model. The time to successful puncture was also recorded. A poststudy validated NASA Task Load Index workload questionnaire was conducted to assess the student's perceptions of the two different techniques. A total of 30 students completed the study. There was no significant difference seen in the mean times of vascular access for each of the modalities. Higher success rates for vascular access using the GPS for both the in-plane (94% vs 91%) and the out-of-plane (86% vs 70%) views were observed; however, this was not statistically significant. The students perceived the mental demand (median 12.0 vs 14.00; P = .035) and effort to be lower (mean 11.25 vs 14.00; P = .044) as well as the performance to be higher (mean 15.50 vs 14.00; P = .041) for the GPS vs the traditional ultrasound-guided technique. Students also perceived their ability to access vessels increased with the aid of the GPS (7.00 vs 6.50; P = .007). The majority of students expressed a preference for GPS (26/30, 87%) as opposed to the traditional counterpart. Use of the novel SonixGPS needle-tracking ultrasound system (UltraSonix, Richmond, BC, Canada) was not associated with a higher success rate of vascular puncture compared with the traditional ultrasound-guided technique. Assessment of mental task load significantly favored the use of the ultrasound GPS over the traditional ultrasound technique. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  9. Estimation of total electron content (TEC) using spaceborne GPS measurements

    NASA Astrophysics Data System (ADS)

    Choi, Key-Rok; Lightsey, E. Glenn

    2008-09-01

    TerraSAR-X (TSX), a high-resolution interferometric Synthetic Aperture Radar (SAR) mission from DLR (German Aerospace Center, Deutsches Zentrum für Luft-und Raumfahrt), was successfully launched into orbit on June 15, 2007. It includes a dual-frequency GPS receiver called IGOR (Integrated GPS Occultation Receiver), which is a heritage NASA/JPL BlackJack receiver. The software for the TSX IGOR receiver was specially-modified software developed at UT/CSR. This software was upgraded to provide enhanced occultation capabilities. This paper describes total electron content (TEC) estimation using simulation data and onboard GPS data of TerraSAR-X. The simulated GPS data were collected using the IGOR Engineering Model (EM) in the laboratory and the onboard GPS data were collected from the IGOR Flight Model (FM) on TSX. To estimate vertical total electron content (vTEC) for the simulation data, inter-frequency biases (IFB) were estimated using the "carrier to code leveling process." For the onboard GPS data, IFBs of GPS satellites were retrieved from the navigation message and applied to the measurements.

  10. Matrix metalloproteinase content and activity in low-platelet, low-leukocyte and high-platelet, high-leukocyte platelet rich plasma (PRP) and the biologic response to PRP by human ligament fibroblasts.

    PubMed

    Pifer, Matthew A; Maerz, Tristan; Baker, Kevin C; Anderson, Kyle

    2014-05-01

    Recent work has shown the presence of catabolic cytokines in platelet-rich plasma (PRP), but little is known about endogenous catabolic proteases such as matrix metalloproteinases (MMPs). Hypothesis/ To quantify MMP content in 2 commercially available PRP preparation systems: Arthrex Double Syringe System autologous conditioned plasma (ACP) and Biomet GPS (GPS). The hypothesis was that MMPs are actively secreted from PRP immediately after preparation. Controlled laboratory study. PRP was prepared using either ACP (low platelet, low leukocyte) or GPS (high platelet, high leukocyte). MMP-2, MMP-3, and MMP-9 concentrations were measured using multiplex enzyme-linked immunosorbent assays for up to 6 days in 2 donors, and MMP activity was measured in 3 donors using kinetic activity kits able to detect the enzymatic cleavage of a fluorogenic peptide. Human ligament fibroblasts were cultured and exposed to both ACP and GPS from 1 donor each. MMP-2, -3, and -9 concentrations were assayed in culture media at 24 and 48 hours after exposure. GPS exhibited higher total MMP-2, -3, and -9 concentrations for up to 144 hours of release, while ACP had higher platelet-normalized MMP-2 and MMP-3 concentrations. GPS had significantly higher total and endogenous MMP-2 activity (P = .004 and .014, respectively), MMP-3 activity (P = .020 and .015, respectively), and MMP-9 activity (P = .004 and .002, respectively) compared with ACP. Once normalized to platelet count, differences in MMP activity were not significant between ACP and GPS. Compared with controls, cells stimulated with interleukin-1 beta (IL-1β) and treated with ACP showed significantly higher fold changes of MMP-2 (P = .001) and MMP-3 (P = .003) concentrations at 24 hours than did cells treated with GPS. Total MMP-9 content was higher in the media of GPS-treated, IL-1β-stimulated cells compared with ACP-treated cells (P = .001). At 48 hours, IL-1β-stimulated cells treated with GPS exhibited higher fold changes of MMP-2 concentration (P = .002) compared with controls, but no difference in MMP-3 concentration was found. At 48 hours, there was a significantly higher concentration of MMP-9 in the cell culture media of ACP-treated cells compared with GPS-treated cells (P = .003). PRP prepared as both ACP and GPS contains MMP-2, -3, and -9, which is released over a period of at least 6 days. Furthermore, a large proportion of these MMPs are in their active form, and MMP activity is dependent on platelet count within the PRP preparation. Once exposed to ligament fibroblasts, both ACP and GPS cause the fibroblasts to release MMPs, most notably 24 hours after PRP exposure, and this release is dependent on prior IL-1β stimulation. The results of this study demonstrate that PRP therapy delivers ng/mL-range concentrations of catabolic proteases, which could perpetuate inflammation and inhibit tissue healing.

  11. Validation of GOME-2/Metop total column water vapour with ground-based and in situ measurements

    NASA Astrophysics Data System (ADS)

    Kalakoski, Niilo; Kujanpää, Jukka; Sofieva, Viktoria; Tamminen, Johanna; Grossi, Margherita; Valks, Pieter

    2016-04-01

    The total column water vapour product from the Global Ozone Monitoring Experiment-2 on board Metop-A and Metop-B satellites (GOME-2/Metop-A and GOME-2/Metop-B) produced by the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) is compared with co-located radiosonde observations and global positioning system (GPS) retrievals. The validation is performed using recently reprocessed data by the GOME Data Processor (GDP) version 4.7. The time periods for the validation are January 2007-July 2013 (GOME-2A) and December 2012-July 2013 (GOME-2B). The radiosonde data are from the Integrated Global Radiosonde Archive (IGRA) maintained by the National Climatic Data Center (NCDC). The ground-based GPS observations from the COSMIC/SuomiNet network are used as the second independent data source. We find a good general agreement between the GOME-2 and the radiosonde/GPS data. The median relative difference of GOME-2 to the radiosonde observations is -2.7 % for GOME-2A and -0.3 % for GOME-2B. Against the GPS, the median relative differences are 4.9 % and 3.2 % for GOME-2A and B, respectively. For water vapour total columns below 10 kg m-2, large wet biases are observed, especially against the GPS retrievals. Conversely, at values above 50 kg m-2, GOME-2 generally underestimates both ground-based observations.

  12. Identifying walking trips from GPS and accelerometer data in adolescent females

    PubMed Central

    Rodriguez, Daniel; Cho, GH; Elder, John; Conway, Terry; Evenson, Kelly R; Ghosh-Dastidar, Bonnie; Shay, Elizabeth; Cohen, Deborah A; Veblen-Mortenson, Sarah; Pickrell, Julie; Lytle, Leslie

    2013-01-01

    Background Studies that have combined accelerometers and global positioning systems (GPS) to identify walking have done so in carefully controlled conditions. This study tested algorithms for identifying walking trips from accelerometer and GPS data in free-living conditions. The study also assessed the accuracy of the locations where walking occurred compared to what participants reported in a diary. Methods A convenience sample of high school females was recruited (N=42) in 2007. Participants wore a GPS unit and an accelerometer, and recorded their out-of-school travel for six days. Split-sample validation was used to examine agreement in the daily and total number of walking trips with Kappa statistics and count regression models, while agreement in locations visited by walking was examined with geographic information systems. Results Agreement varied based on the parameters of the algorithm, with algorithms exhibiting moderate to substantial agreement with self-reported daily (Kappa = 0.33–0.48) and weekly (Kappa = 0.41–0.64) walking trips. Comparison of reported locations reached by walking and GPS data suggest that reported locations are accurate. Conclusions The use of GPS and accelerometers is promising for assessing the number of walking trips and the walking locations of adolescent females. PMID:21934163

  13. Comparison of global positioning system (GPS) tracking and parent-report diaries to characterize children's time-location patterns.

    PubMed

    Elgethun, Kai; Yost, Michael G; Fitzpatrick, Cole T E; Nyerges, Timothy L; Fenske, Richard A

    2007-03-01

    Respondent error, low resolution, and study participant burden are known limitations of diary timelines used in exposure studies such as the National Human Exposure Assessment Survey (NHEXAS). Recent advances in global positioning system (GPS) technology have produced tracking devices sufficiently portable, functional and affordable to utilize in exposure assessment science. In this study, a differentially corrected GPS (dGPS) tracking device was compared to the NHEXAS diary timeline. The study also explored how GPS can be used to evaluate and improve such diary timelines by determining which location categories and which respondents are least likely to record "correct" time-location responses. A total of 31 children ages 3-5 years old wore a dGPS device for all waking hours on a weekend day while their parents completed the NHEXAS diary timeline to document the child's time-location pattern. Parents misclassified child time-location approximately 48% of the time using the NHEXAS timeline in comparison to dGPS. Overall concordance between methods was marginal (kappa=0.33-0.35). The dGPS device found that on average, children spent 76% of the 24-h study period in the home. The diary underestimated time the child spent in the home by 17%, while overestimating time spent inside other locations, outside at home, outside in other locations, and time spent in transit. Diary data for time spent outside at home and time in transit had the lowest response concordance with dGPS. The diaries of stay-at-home mothers and mothers working unskilled labor jobs had lower concordance with dGPS than did those of the other participants. The ability of dGPS tracking to collect continuous rather than categorical (ordinal) data was also demonstrated. It is concluded that automated GPS tracking measurements can improve the quality and collection efficiency of time-location data in exposure assessment studies, albeit for small cohorts.

  14. Development of a Real-Time GPS/Seismic Displacement Meter: Applications to Civilian Infrastructure in Orange and Western Riverside Counties, California

    NASA Technical Reports Server (NTRS)

    Bock, Yehuda

    2005-01-01

    We propose a three-year applications project that will develop an Integrated Real-Time GPS/Seismic System and deploy it in Orange and Western Riverside Counties, spanning three major strike-slip faults in southern California (San Andreas, San Jacinto, and Elsinore) and significant populations and civilian infrastructure. The system relying on existing GPS and seismic networks will collect and analyze GPS and seismic data for the purpose of estimating and disseminating real-time positions and total ground displacements (dynamic, as well as static) during all phases of the seismic cycle, from fractions of seconds to years. Besides its intrinsic scientific use as a real-time displacement meter (transducer), the GPS/Seismic System will be a powerful tool for local and state decision makers for risk mitigation, disaster management, and structural monitoring (dams, bridges, and buildings). Furthermore, the GPS/Seismic System will become an integral part of California's spatial referencing and positioning infrastructure, which is complicated by tectonic motion, seismic displacements, and land subsidence. Finally, the GPS/Seismic system will also be applicable to navigation in any environment (land, sea, or air) by combining precise real-time instantaneous GPS positioning with inertial navigation systems. This development will take place under the umbrella of the California Spatial Reference Center, in partnership with local (Counties, Riverside County Flood and Water Conservation District, Metropolitan Water District), state (Caltrans), and Federal agencies (NGS, NASA, USGS), the geophysics community (SCIGN/SCEC2), and the private sector (RBF Consulting). The project will leverage considerable funding, resources, and R&D from SCIGN, CSRC and two NSF-funded IT projects at UCSD and SDSU: RoadNet (Real-Time Observatories, Applications and Data Management Network) and the High Performance Wireless Research and Education Network (HPWREN). These two projects are funded to develop both the wireless networks and the integrated, seamless, and transparent information management system that will deliver seismic, geodetic, oceanographic, hydrological, ecological, and physical data to a variety of end users in real-time in the San Diego region. CSRC is interested in providing users access to real-time, accurate GPS data for a wide variety of applications including RTK surveying/GIS and positioning of moving platforms such as aircraft and emergency vehicles. SCIGN is interested in upgrading sites to high-frequency real-time operations for rapid earthquake response and GPS seismology. The successful outcome of the project will allow the implementation of similar systems elsewhere, particularly in plate boundary zones with significant populations and civilian infrastructure. CSRC would like to deploy the GPS/Seismic System in other parts of California, in particular San Diego, Los Angeles County and the San Francisco Bay Area.

  15. Global Ionospheric Perturbations Monitored by the Worldwide GPS Network

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Mannucci, A. T.; Lindqwister, U. J.; Pi, X. Q.

    1996-01-01

    Based on the delays of these (Global Positioning System-GPS)signals, we have generated high resolution global ionospheric TEC (Total Electronic Changes) maps at 15-minute intervals. Using a differential method comparing storm time maps with quiet time maps, we find that the ionopshere during this time storm has increased significantly (the percentage change relative to quiet times is greater than 150 percent) ...These preliminary results (those mentioned above plus other in the paper)indicate that the differential maping method, which is based on GPS network measurements appears to be a useful tool for studying the global pattern and evolution process of the entire ionospheric perturbation.

  16. Simulation of Triple Oxidation Ditch Wastewater Treatment Process

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Zhang, Jinsong; Liu, Lixiang; Hu, Yongfeng; Xu, Ziming

    2010-11-01

    This paper presented the modeling mechanism and method of a sewage treatment system. A triple oxidation ditch process of a WWTP was simulated based on activated sludge model ASM2D with GPS-X software. In order to identify the adequate model structure to be implemented into the GPS-X environment, the oxidation ditch was divided into several completely stirred tank reactors depended on the distribution of aeration devices and dissolved oxygen concentration. The removal efficiency of COD, ammonia nitrogen, total nitrogen, total phosphorus and SS were simulated by GPS-X software with influent quality data of this WWTP from June to August 2009, to investigate the differences between the simulated results and the actual results. The results showed that, the simulated values could well reflect the actual condition of the triple oxidation ditch process. Mathematical modeling method was appropriate in effluent quality predicting and process optimizing.

  17. Linking the global positioning system (GPS) to a personal digital assistant (PDA) to support tuberculosis control in South Africa: a pilot study

    PubMed Central

    Dwolatzky, Barry; Trengove, Estelle; Struthers, Helen; McIntyre, James A; Martinson, Neil A

    2006-01-01

    Background Tuberculosis (TB) is the leading clinical manifestation of HIV infection and caseloads continue to increase in high HIV prevalence settings. TB treatment is prolonged and treatment interruption has serious individual and public health consequences. We assessed the feasibility of using a handheld computing device programmed with customised software and linked to a GPS receiver, to assist TB control programmes to trace patients who interrupt treatment in areas without useful street maps. In this proof of concept study, we compared the time taken to re-find a home comparing given residential addresses with a customised personalised digital assistant linked to a global positioning system (PDA/GPS) device. Additionally, we assessed the feasibility of using aerial photographs to locate homes. Results The study took place in two communities in Greater Johannesburg, South Africa: Wheillers Farm, a relatively sparsely populated informal settlement, and a portion of Alexandra, an urban township with densely populated informal settlements. Ten participants in each community were asked to locate their homes on aerial photographs. Nine from Wheillers Farm and six from Alexandra were able to identify their homes. The total time taken by a research assistant, unfamiliar with the area, to locate 10 homes in each community using the given addresses was compared with the total time taken by a community volunteer with half an hour of training to locate the same homes using the device. Time taken to locate the ten households was reduced by 20% and 50% in each community respectively using the PDA/GPS device. Conclusion In this pilot study we show that it is feasible to use a simple PDA/GPS device to locate the homes of patients. We found that in densely populated informal settlements, GPS technology is more accurate than aerial photos in identifying homes and more efficient than addresses provided by participants. Research assessing issues of, confidentiality and cost effectiveness would have to be undertaken before implementing PDA/GPS – based technology for this application. However, this PDA/GPS device could be used to reduce part of the burden on TB control programs. PMID:16911806

  18. Present-Day Strain and Rotation in the Lebanese Restraining Bend of the Dead Sea Fault System Based on Analysis of GPS Velocities

    NASA Astrophysics Data System (ADS)

    Gomez, F.; Jaafar, R.; Abdallah, C.; Karam, G.

    2012-12-01

    The Lebanese Restraining Bend (LRB) is a ~200-km-long bend in the central part of the Dead Sea Fault system (DSFS). As with other large restraining bends, this part of the transform is characterized by more complicated structure than other parts. Additionally, results from recent GPS studies have documented slower velocities north of the LRB than are observed along the southern DSFS to the south. In an effort to understand how strain is transferred through the LRB, this study analyzes improved GPS velocities within the central DSFS based on new data and additional stations. Despite relatively modest rates of seismicity, the Dead Sea Fault system (DSFS) has a historically documented record of producing large and devastating earthquakes. Hence, geodetic measurements of crustal deformation may provide key constraints on processes of strain accumulation that may not be evident in instrumentally recorded seismicity. Within the LRB, the transform splays into two prominent strike-slip faults: The through-going Yammouneh fault and the Serghaya fault. The latter appears to terminate in the Anti-Lebanon Mountains. Additionally, some oblique plate motion is accommodated by thrusting along the coast of Lebanon. This study used GPS observations from survey-mode GPS sites, as well as continuous GPS stations in the region. In total, 22 GPS survey sites have been measured in Lebanon between 2002 and 2010, along with GPS data from the adjacent area. Elastic models are used for initial assessment of fault slip rates. Incorporating two major strike-slip faults, as well as an offshore thrust fault, this modeling suggests left-lateral slip rates of 3.8 mm/yr and 1.1 mm/yr for the Yammouneh and Serghaya faults, respectively. The GPS survey network has sufficient density for analyzing velocity gradients in an effort to quantify tectonic strains and rotations. The velocity gradients suggest that differential rotations play a role in accommodating some plate motion.

  19. Reconstructing Regional Ionospheric Electron Density: A Combined Spherical Slepian Function and Empirical Orthogonal Function Approach

    NASA Astrophysics Data System (ADS)

    Farzaneh, Saeed; Forootan, Ehsan

    2018-03-01

    The computerized ionospheric tomography is a method for imaging the Earth's ionosphere using a sounding technique and computing the slant total electron content (STEC) values from data of the global positioning system (GPS). The most common approach for ionospheric tomography is the voxel-based model, in which (1) the ionosphere is divided into voxels, (2) the STEC is then measured along (many) satellite signal paths, and finally (3) an inversion procedure is applied to reconstruct the electron density distribution of the ionosphere. In this study, a computationally efficient approach is introduced, which improves the inversion procedure of step 3. Our proposed method combines the empirical orthogonal function and the spherical Slepian base functions to describe the vertical and horizontal distribution of electron density, respectively. Thus, it can be applied on regional and global case studies. Numerical application is demonstrated using the ground-based GPS data over South America. Our results are validated against ionospheric tomography obtained from the constellation observing system for meteorology, ionosphere, and climate (COSMIC) observations and the global ionosphere map estimated by international centers, as well as by comparison with STEC derived from independent GPS stations. Using the proposed approach, we find that while using 30 GPS measurements in South America, one can achieve comparable accuracy with those from COSMIC data within the reported accuracy (1 × 1011 el/cm3) of the product. Comparisons with real observations of two GPS stations indicate an absolute difference is less than 2 TECU (where 1 total electron content unit, TECU, is 1016 electrons/m2).

  20. A Forward GPS Multipath Simulator Based on the Vegetation Radiative Transfer Equation Model

    PubMed Central

    Wu, Xuerui; Jin, Shuanggen; Xia, Junming

    2017-01-01

    Global Navigation Satellite Systems (GNSS) have been widely used in navigation, positioning and timing. Nowadays, the multipath errors may be re-utilized for the remote sensing of geophysical parameters (soil moisture, vegetation and snow depth), i.e., GPS-Multipath Reflectometry (GPS-MR). However, bistatic scattering properties and the relation between GPS observables and geophysical parameters are not clear, e.g., vegetation. In this paper, a new element on bistatic scattering properties of vegetation is incorporated into the traditional GPS-MR model. This new element is the first-order radiative transfer equation model. The new forward GPS multipath simulator is able to explicitly link the vegetation parameters with GPS multipath observables (signal-to-noise-ratio (SNR), code pseudorange and carrier phase observables). The trunk layer and its corresponding scattering mechanisms are ignored since GPS-MR is not suitable for high forest monitoring due to the coherence of direct and reflected signals. Based on this new model, the developed simulator can present how the GPS signals (L1 and L2 carrier frequencies, C/A, P(Y) and L2C modulations) are transmitted (scattered and absorbed) through vegetation medium and received by GPS receivers. Simulation results show that the wheat will decrease the amplitudes of GPS multipath observables (SNR, phase and code), if we increase the vegetation moisture contents or the scatters sizes (stem or leaf). Although the Specular-Ground component dominates the total specular scattering, vegetation covered ground soil moisture has almost no effects on the final multipath signatures. Our simulated results are consistent with previous results for environmental parameter detections by GPS-MR. PMID:28587255

  1. Assessment of the SonixGPS system for its application in real-time ultrasonography navigation-guided percutaneous nephrolithotomy for the treatment of complex kidney stones.

    PubMed

    Li, Xiang; Long, Qingzhi; Chen, Xingfa; He, Dalin; He, Hui

    2017-04-01

    SonixGPS is a novel real-time ultrasonography navigation technology, which has been demonstrated to promote accuracy of puncture in surgical operations. The aim of this study is to evaluate its application in guiding the puncture during percutaneous nephrolithotomy (PCNL). We retrospectively reviewed our experience in treating a total of 74 patients with complex kidney stones with PCNL, in which puncture in 37 cases were guided by SonixGPS system, while the other 37 by conventional ultrasound. The effectiveness of operation was evaluated in terms of stone clearance rate, operation time, time to successful puncture, number of attempts for successful puncture and hospital stay. The safety of operation was examined by evaluating postoperative complications. Our retrospective review showed that although there were no significant differences in stone clearance rates between the groups, SonixGPS guidance resulted in more puncture accuracy with shorter puncture time and higher successful puncture rate. Under the help of SonixGPS, most patients (92 %) had no or just mild complications, compared to that (73 %) in conventional ultrasound group. Post-operative decrease of hemoglobin in SonixGPS group was 13.79 (7-33) mg/dl, significantly lower than that 20.97 (8-41) mg/dl in conventional ultrasound group. Our experience demonstrates that SonixGPS is superior to conventional ultrasound in guiding the puncture in PCNL for the treatment of complex kidney stone.

  2. GPS receiver CODE bias estimation: A comparison of two methods

    NASA Astrophysics Data System (ADS)

    McCaffrey, Anthony M.; Jayachandran, P. T.; Themens, D. R.; Langley, R. B.

    2017-04-01

    The Global Positioning System (GPS) is a valuable tool in the measurement and monitoring of ionospheric total electron content (TEC). To obtain accurate GPS-derived TEC, satellite and receiver hardware biases, known as differential code biases (DCBs), must be estimated and removed. The Center for Orbit Determination in Europe (CODE) provides monthly averages of receiver DCBs for a significant number of stations in the International Global Navigation Satellite Systems Service (IGS) network. A comparison of the monthly receiver DCBs provided by CODE with DCBs estimated using the minimization of standard deviations (MSD) method on both daily and monthly time intervals, is presented. Calibrated TEC obtained using CODE-derived DCBs, is accurate to within 0.74 TEC units (TECU) in differenced slant TEC (sTEC), while calibrated sTEC using MSD-derived DCBs results in an accuracy of 1.48 TECU.

  3. Precise Point Positioning Using Triple GNSS Constellations in Various Modes

    PubMed Central

    Afifi, Akram; El-Rabbany, Ahmed

    2016-01-01

    This paper introduces a new dual-frequency precise point positioning (PPP) model, which combines the observations from three different global navigation satellite system (GNSS) constellations, namely GPS, Galileo, and BeiDou. Combining measurements from different GNSS systems introduces additional biases, including inter-system bias and hardware delays, which require rigorous modelling. Our model is based on the un-differenced and between-satellite single-difference (BSSD) linear combinations. BSSD linear combination cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator. Forming the BSSD linear combination requires a reference satellite, which can be selected from any of the GPS, Galileo, and BeiDou systems. In this paper three BSSD scenarios are tested; each considers a reference satellite from a different GNSS constellation. Natural Resources Canada’s GPSPace PPP software is modified to enable a combined GPS, Galileo, and BeiDou PPP solution and to handle the newly introduced biases. A total of four data sets collected at four different IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the International GNSS Service Multi-GNSS Experiment (IGS-MGEX) network are used to correct the GPS, Galileo, and BeiDou measurements in the post-processing PPP mode. A real-time PPP solution is also obtained, which is referred to as RT-PPP in the sequel, through the use of the IGS real-time service (RTS) for satellite orbit and clock corrections. However, only GPS and Galileo observations are used for the RT-PPP solution, as the RTS-IGS satellite products are not presently available for BeiDou system. All post-processed and real-time PPP solutions are compared with the traditional un-differenced GPS-only counterparts. It is shown that combining the GPS, Galileo, and BeiDou observations in the post-processing mode improves the PPP convergence time by 25% compared with the GPS-only counterpart, regardless of the linear combination used. The use of BSSD linear combination improves the precision of the estimated positioning parameters by about 25% in comparison with the GPS-only PPP solution. Additionally, the solution convergence time is reduced to 10 minutes for the BSSD model, which represents about 50% reduction, in comparison with the GPS-only PPP solution. The GNSS RT-PPP solution, on the other hand, shows a similar convergence time and precision to the GPS-only counterpart. PMID:27240376

  4. Precise Point Positioning Using Triple GNSS Constellations in Various Modes.

    PubMed

    Afifi, Akram; El-Rabbany, Ahmed

    2016-05-28

    This paper introduces a new dual-frequency precise point positioning (PPP) model, which combines the observations from three different global navigation satellite system (GNSS) constellations, namely GPS, Galileo, and BeiDou. Combining measurements from different GNSS systems introduces additional biases, including inter-system bias and hardware delays, which require rigorous modelling. Our model is based on the un-differenced and between-satellite single-difference (BSSD) linear combinations. BSSD linear combination cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator. Forming the BSSD linear combination requires a reference satellite, which can be selected from any of the GPS, Galileo, and BeiDou systems. In this paper three BSSD scenarios are tested; each considers a reference satellite from a different GNSS constellation. Natural Resources Canada's GPSPace PPP software is modified to enable a combined GPS, Galileo, and BeiDou PPP solution and to handle the newly introduced biases. A total of four data sets collected at four different IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the International GNSS Service Multi-GNSS Experiment (IGS-MGEX) network are used to correct the GPS, Galileo, and BeiDou measurements in the post-processing PPP mode. A real-time PPP solution is also obtained, which is referred to as RT-PPP in the sequel, through the use of the IGS real-time service (RTS) for satellite orbit and clock corrections. However, only GPS and Galileo observations are used for the RT-PPP solution, as the RTS-IGS satellite products are not presently available for BeiDou system. All post-processed and real-time PPP solutions are compared with the traditional un-differenced GPS-only counterparts. It is shown that combining the GPS, Galileo, and BeiDou observations in the post-processing mode improves the PPP convergence time by 25% compared with the GPS-only counterpart, regardless of the linear combination used. The use of BSSD linear combination improves the precision of the estimated positioning parameters by about 25% in comparison with the GPS-only PPP solution. Additionally, the solution convergence time is reduced to 10 minutes for the BSSD model, which represents about 50% reduction, in comparison with the GPS-only PPP solution. The GNSS RT-PPP solution, on the other hand, shows a similar convergence time and precision to the GPS-only counterpart.

  5. Comparison of Two IRI plasmasphere Extensions with GPS-TEC Observations

    NASA Technical Reports Server (NTRS)

    Gulyaeva, T. L.; Gallagher, Dennis L.

    2006-01-01

    Comparisons of two model results with Global Positioning System GPS-TEC measurements have been carried out for different latitudinal, solar activity, magnetic activity, diurnal and seasonal conditions. The models evaluated are the Global Core Plasma Model (GCPM-2000) and the IRI extension with Russian plasmasphere model (IRI*).Data of 23 observatories providing GPS-TEC and ionosonde data have been used. It is shown that IRI* plasmasphere electron density is greater than GCPM results by an order of magnitude at 6370 km altitude (one Earth's radius) with this excess growing to 2-3 orders of magnitude towards the GPS satellite altitude of 20000 km. Another source of model and GPS-TEC differences is a way of selection of the F2 layer peak parameters driving the models either with ITU-R (former CCIR) maps or ionosonde observations. Plasmasphere amendment to IRI improves accuracy of TEC model predictions because the plasmasphere contribution to the total TEC varies from 10% by daytime under quiet magnetic conditions to more than 50% by night under stormy conditions.

  6. Recent Advances in Remote Sensing of Natural Hazards-Induced Atmospheric and Ionospheric Perturbations

    NASA Astrophysics Data System (ADS)

    Yang, Y. M.; Komjathy, A.; Meng, X.; Verkhoglyadova, O. P.; Langley, R. B.; Mannucci, A. J.

    2015-12-01

    Traveling ionospheric disturbances (TIDs) induced by acoustic-gravity waves in the neutral atmosphere have significant impact on trans-ionospheric radio waves such as Global Navigation Satellite System (GNSS, including Global Position System (GPS)) measurements. Natural hazards and solid Earth events, such as earthquakes, tsunamis and volcanic eruptions are actual sources that may trigger acoustic and gravity waves resulting in traveling ionospheric disturbances (TIDs) in the upper atmosphere. Trans-ionospheric radio wave measurements sense the total electron content (TEC) along the signal propagation path. In this research, we introduce a novel GPS-based detection and estimation technique for remote sensing of atmospheric wave-induced TIDs including space weather phenomena induced by major natural hazard events, using TEC time series collected from worldwide ground-based dual-frequency GNSS (including GPS) receiver networks. We demonstrate the ability of using ground- and space-based dual-frequency GPS measurements to detect and monitor tsunami wave propagation from the 2011 Tohoku-Oki earthquake and tsunami. Major wave trains with different propagation speeds and wavelengths were identified through analysis of the GPS remote sensing observations. Dominant physical characteristics of atmospheric wave-induced TIDs are found to be associated with specific tsunami propagations and oceanic Rayleigh waves. In this research, we compared GPS-based observations, corresponding model simulations and tsunami wave propagation. Results are shown to lead to a better understanding of the tsunami-induced ionosphere responses. Based on current distribution of Plate Boundary Observatory GPS stations, the results indicate that tsunami-induced TIDs may be detected about 60 minutes prior to tsunamis arriving at the U.S. west coast. It is expected that this GNSS-based technology will become an integral part of future early-warning systems.

  7. Variations of total electron content during geomagnetic disturbances: A model/observation comparison

    NASA Technical Reports Server (NTRS)

    Roble, G. Lu X. Pi A. D. Richmond R. G.

    1997-01-01

    This paper studies the ionospheric response to major geomagnetic storm of October 18-19, 1995, using the thermosphere-ionosphere electrodynamic general circulation model (TIE-GCM) simulations and the global ionospheric maps (GIM) of total electron content (TEC) observations from the Global Positioning System (GPS) worldwide network.

  8. Global Ionosphere Perturbations Monitored by the Worldwide GPS Network

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Manucci, A. T.; Lindqwister, U. J.; Pi, X.

    1996-01-01

    For the first time, measurements from the Global Positioning System (GPS) worldwide network are employed to study the global ionospheric total electron content(TEC) changes during a magnetic storm (November 26, 1994). These measurements are obtained from more than 60 world-wide GPS stations which continuously receive dual-frequency signals. Based on the delays of the signals, we have generated high resolution global ionospheric maps (GIM) of TEC at 15 minute intervals. Using a differential method comparing storm time maps with quiet time maps, we find that significant TEC increases (the positive effect ) are the major feature in the winter hemisphere during this storm (the maximum percent change relative to quiet times is about 150 percent).

  9. A GIANT SAMPLE OF GIANT PULSES FROM THE CRAB PULSAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickaliger, M. B.; McLaughlin, M. A.; Lorimer, D. R.

    2012-11-20

    We observed the Crab pulsar with the 43 m telescope in Green Bank, WV over a timespan of 15 months. In total we obtained 100 hr of data at 1.2 GHz and seven hours at 330 MHz, resulting in a sample of about 95,000 giant pulses (GPs). This is the largest sample, to date, of GPs from the Crab pulsar taken with the same telescope and backend and analyzed as one data set. We calculated power-law fits to amplitude distributions for main pulse (MP) and interpulse (IP) GPs, resulting in indices in the range of 2.1-3.1 for MP GPs atmore » 1.2 GHz and in the range of 2.5-3.0 and 2.4-3.1 for MP and IP GPs at 330 MHz. We also correlated the GPs at 1.2 GHz with GPs from the Robert C. Byrd Green Bank Telescope (GBT), which were obtained simultaneously at a higher frequency (8.9 GHz) over a span of 26 hr. In total, 7933 GPs from the 43 m telescope at 1.2 GHz and 39,900 GPs from the GBT were recorded during these contemporaneous observations. At 1.2 GHz, 236 (3%) MP GPs and 23 (5%) IP GPs were detected at 8.9 GHz, both with zero chance probability. Another 15 (4%) low-frequency IP GPs were detected within one spin period of high-frequency IP GPs, with a chance probability of 9%. This indicates that the emission processes at high and low radio frequencies are related, despite significant pulse profile shape differences. The 43 m GPs were also correlated with Fermi {gamma}-ray photons to see if increased pair production in the magnetosphere is the mechanism responsible for GP emission. A total of 92,022 GPs and 393 {gamma}-ray photons were used in this correlation analysis. No significant correlations were found between GPs and {gamma}-ray photons. This indicates that increased pair production in the magnetosphere is likely not the dominant cause of GPs. Possible methods of GP production may be increased coherence of synchrotron emission or changes in beaming direction.« less

  10. Investigations of the Nature and Behavior of Plasma-Density Disturbances That May Impact GPS and Other Transionospheric Systems

    DTIC Science & Technology

    2002-10-31

    association with the High-frequency Active Auroral Research Program ( HAARP ). In addition to a classic riometer and a GPS Total Electron Content (TEC...sensor previously operating at the HAARP site, NWRA also operates a set of Transit receivers for measurements of TEC and scintillation at VHF and UHF...supplementing the receiver at HAARP with a receiver north of the site and an additional receiver installed south of the HAARP site.

  11. Detection of Natural Hazards Generated TEC Perturbations and Related New Applications

    NASA Astrophysics Data System (ADS)

    Komjathy, A.; Yang, Y.; Langley, R. B.

    2013-12-01

    Natural hazards, including earthquakes, volcanic eruptions, and tsunamis, have been significant threats to humans throughout recorded history. The Global Positioning System satellites have become primary sensors to measure signatures associated with such natural hazards. These signatures typically include GPS-derived seismic deformation measurements, co-seismic vertical displacements, and real-time GPS-derived ocean buoy positioning estimates. Another way to use GPS observables is to compute the ionospheric total electron content (TEC) to measure and monitor post-seismic ionospheric disturbances caused by earthquakes, volcanic eruptions, and tsunamis. Research at the University of New Brunswick (UNB) laid the foundations to model the three-dimensional ionosphere at NASA's Jet Propulsion Laboratory by ingesting ground- and space-based GPS measurements into the state-of-the-art Global Assimilative Ionosphere Modeling (GAIM) software. As an outcome of the UNB and NASA research, new and innovative GPS applications have been invented including the use of ionospheric measurements to detect tiny fluctuations in the GPS signals between the spacecraft and GPS receivers caused by natural hazards occurring on or near the Earth's surface. This continuing research is expected to provide early warning for tsunamis, earthquakes, volcanic eruptions, and meteor impacts, for example, using GPS and other global navigation satellite systems. We will demonstrate new and upcoming applications including recent natural hazards and artificial explosions that generated TEC perturbations to perform state-of-the-art imaging and modeling of earthquakes, tsunamis and meteor impacts. By studying the propagation properties of ionospheric perturbations generated by natural hazards along with applying sophisticated first-principles physics-based modeling, we are on track to develop new technologies that can potentially save human lives and minimize property damage.

  12. Recent Progress in Understanding Natural-Hazards-Generated TEC Perturbations: Measurements and Modeling Results

    NASA Astrophysics Data System (ADS)

    Komjathy, A.; Yang, Y. M.; Meng, X.; Verkhoglyadova, O. P.; Mannucci, A. J.; Langley, R. B.

    2015-12-01

    Natural hazards, including earthquakes, volcanic eruptions, and tsunamis, have been significant threats to humans throughout recorded history. The Global Positioning System satellites have become primary sensors to measure signatures associated with such natural hazards. These signatures typically include GPS-derived seismic deformation measurements, co-seismic vertical displacements, and real-time GPS-derived ocean buoy positioning estimates. Another way to use GPS observables is to compute the ionospheric total electron content (TEC) to measure and monitor post-seismic ionospheric disturbances caused by earthquakes, volcanic eruptions, and tsunamis. Research at the University of New Brunswick (UNB) laid the foundations to model the three-dimensional ionosphere at NASA's Jet Propulsion Laboratory by ingesting ground- and space-based GPS measurements into the state-of-the-art Global Assimilative Ionosphere Modeling (GAIM) software. As an outcome of the UNB and NASA research, new and innovative GPS applications have been invented including the use of ionospheric measurements to detect tiny fluctuations in the GPS signals between the spacecraft and GPS receivers caused by natural hazards occurring on or near the Earth's surface.We will show examples for early detection of natural hazards generated ionospheric signatures using ground-based and space-borne GPS receivers. We will also discuss recent results from the U.S. Real-time Earthquake Analysis for Disaster Mitigation Network (READI) exercises utilizing our algorithms. By studying the propagation properties of ionospheric perturbations generated by natural hazards along with applying sophisticated first-principles physics-based modeling, we are on track to develop new technologies that can potentially save human lives and minimize property damage. It is also expected that ionospheric monitoring of TEC perturbations might become an integral part of existing natural hazards warning systems.

  13. Assimilative modeling of low latitude ionosphere

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Wang, Chunining; Hajj, George A.; Rosen, I. Gary; Wilson, Brian D.; Mannucci, Anthony J.

    2004-01-01

    In this paper we present an observation system simulation experiment for modeling low-latitude ionosphere using a 3-dimensional (3-D) global assimilative ionospheric model (GAIM). The experiment is conducted to test the effectiveness of GAIM with a 4-D variational approach (4DVAR) in estimation of the ExB drift and thermospheric wind in the magnetic meridional planes simultaneously for all longitude or local time sectors. The operational Global Positioning System (GPS) satellites and the ground-based global GPS receiver network of the International GPS Service are used in the experiment as the data assimilation source. 'The optimization of the ionospheric state (electron density) modeling is performed through a nonlinear least-squares minimization process that adjusts the dynamical forces to reduce the difference between the modeled and observed slant total electron content in the entire modeled region. The present experiment for multiple force estimations reinforces our previous assessment made through single driver estimations conducted for the ExB drift only.

  14. Time determination for spacecraft users of the Navstar Global Positioning System /GPS/

    NASA Technical Reports Server (NTRS)

    Grenchik, T. J.; Fang, B. T.

    1977-01-01

    Global Positioning System (GPS) navigation is performed by time measurements. A description is presented of a two body model of spacecraft motion. Orbit determination is the process of inferring the position, velocity, and clock offset of the user from measurements made of the user motion in the Newtonian coordinate system. To illustrate the effect of clock errors and the accuracy with which the user spacecraft time and orbit may be determined, a low-earth-orbit spacecraft (Seasat) as tracked by six Phase I GPS space vehicles is considered. The obtained results indicate that in the absence of unmodeled dynamic parameter errors clock biases may be determined to the nanosecond level. There is, however, a high correlation between the clock bias and the uncertainty in the gravitational parameter GM, i.e., the product of the universal gravitational constant and the total mass of the earth. It is, therefore, not possible to determine clock bias to better than 25 nanosecond accuracy in the presence of a gravitational error of one part per million.

  15. The provision of out-of-hours care and associated costs in an urban area of Switzerland: a cost description study

    PubMed Central

    2010-01-01

    Background In Switzerland, General Practitioners (GPs) play an important role for out-of-hours emergency care as one service option beside freely accessible and costly emergency departments of hospitals. The aim of this study was to evaluate the services provided and the economic consequences of a Swiss GP out-of-hours service. Methods GPs participating in the out-of-hours service in the city of Zurich collected data on medical problems (ICPC coding), mode of contact, mode of resource use and services provided (time units; diagnostics; treatments). From a health care insurance perspective, we assessed the association between total costs and its two components (basic costs: charges for time units and emergency surcharge; individual costs: charges for clinical examination, diagnostics and treatment in the discretion of the GP). Results 125 GPs collected data on 685 patient contacts. The most prevalent health problems were of respiratory (24%), musculoskeletal (13%) and digestive origin (12%). Home visits (61%) were the most common contact mode, followed by practice (25%) and telephone contacts (14%). 82% of patients could be treated by ambulatory care. In 20% of patients additional technical diagnostics, most often laboratory tests, were used. The mean total costs for one emergency patient contact were €144 (95%-CI: 137-151). The mode of contact was an important determinant of total costs (mean total costs for home visits: €176 [95%-CI: 168-184]; practice contact: €90 [95%-CI: 84-98]; telephone contact: €48 [95%-CI: 40-55]). Basic costs contributed 83% of total costs for home visits and 70% of total costs for practice contacts. Individual mean costs were similarly low for home visits (€30) and practice contacts (€27). Medical problems had no relevant influence on this cost pattern. Conclusions GPs managed most emergency demand in their out-of-hours service by ambulatory care. They applied little diagnostic testing and basic care. Our findings are of relevance for policy makers even from other countries with different pricing policies. Policy makers should be interested in a reimbursement system promoting out-of-hours care run by GPs as one valuable service option. PMID:21171989

  16. 22 July 2009 total solar eclipse induced gravity waves in ionosphere as inferred from GPS observations over EIA

    NASA Astrophysics Data System (ADS)

    Kumar, K. Vijay; Maurya, Ajeet K.; Kumar, Sanjay; Singh, Rajesh

    2016-11-01

    In the present contribution we investigate the variation in the Global Positioning System (GPS) derived ionospheric Total Electron Content (TEC) over Equatorial Ionization Anomaly (EIA) region on the rare occasional astronomical phenomenon of total solar eclipse of 22 July 2009. The aim is to study and identify the wave like structure enumerated due to solar eclipse induced gravity waves in the F-region ionosphere altitude. The work is aimed to understand features of horizontal and vertical variation of atmospheric gravity waves (AGWs) properties over the Equatorial Ionization Anomaly (EIA) region in Indian low latitude region. The ionospheric observations is from the site of Allahabad (lat 25.4° N; lon. 81.9° E; dip 38.6° N) located at the fringe of eclipse totality path. The estimated vertical electron density profile from FORMOSAT-3/COSMIC GPS-RO satellite, considering all the satellite line of sight around the time of eclipse totality shows maximum depletion of 43%. The fast fourier transform and wavelet transform of GPS DTEC data from Allahabad station (Allahabad: lat 25.4 N; lon. 81.9 E) shows the presence of periodic waves of ∼20 to 45 min and ∼70 to 90 min period at F-region altitude. The shorter period correspond to the sunrise time morning terminator and longer period can be associated with solar eclipse generated AGWs. The most important result obtained is that our results along with previous result for wave like signatures in D-region ionosphere from Allahabad station show that AGWs generated by sunrise time terminator have similarity in the D and F region of the ionosphere but solar eclipse induced AGWs show higher period in the F-region compared to D-region ionosphere.

  17. Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms

    NASA Astrophysics Data System (ADS)

    Komjathy, Attila; Sparks, Lawrence; Wilson, Brian D.; Mannucci, Anthony J.

    2005-12-01

    As the number of ground-based and space-based receivers tracking the Global Positioning System (GPS) satellites steadily increases, it is becoming possible to monitor changes in the ionosphere continuously and on a global scale with unprecedented accuracy and reliability. As of August 2005, there are more than 1000 globally distributed dual-frequency GPS receivers available using publicly accessible networks including, for example, the International GPS Service and the continuously operating reference stations. To take advantage of the vast amount of GPS data, researchers use a number of techniques to estimate satellite and receiver interfrequency biases and the total electron content (TEC) of the ionosphere. Most techniques estimate vertical ionospheric structure and, simultaneously, hardware-related biases treated as nuisance parameters. These methods often are limited to 200 GPS receivers and use a sequential least squares or Kalman filter approach. The biases are later removed from the measurements to obtain unbiased TEC. In our approach to calibrating GPS receiver and transmitter interfrequency biases we take advantage of all available GPS receivers using a new processing algorithm based on the Global Ionospheric Mapping (GIM) software developed at the Jet Propulsion Laboratory. This new capability is designed to estimate receiver biases for all stations. We solve for the instrumental biases by modeling the ionospheric delay and removing it from the observation equation using precomputed GIM maps. The precomputed GIM maps rely on 200 globally distributed GPS receivers to establish the "background" used to model the ionosphere at the remaining 800 GPS sites.

  18. Shuttle Global Positioning System (GPS) system design study

    NASA Technical Reports Server (NTRS)

    Nilsen, P. W.

    1979-01-01

    The various integration problems in the Shuttle GPS system were investigated. The analysis of the Shuttle GPS link was studied. A preamplifier was designed since the Shuttle GPS antennas must be located remotely from the receiver. Several GPS receiver architecture trade-offs were discussed. The Shuttle RF harmonics and intermode that fall within the GPS receiver bandwidth were analyzed. The GPS PN code acquisition was examined. Since the receiver clock strongly affects both GPS carrier and code acquisition performance, a clock model was developed.

  19. Assimilation of COST 716 Near-Real Time GPS data in the nonhydrostatic limited area model used at MeteoSwiss

    NASA Astrophysics Data System (ADS)

    Guerova, G.; Bettems, J.-M.; Brockmann, E.; Matzler, Ch.

    2006-01-01

    Application of the GPS derived water vapor into Numerical Weather Prediction (NWP) models is one of the focuses of the COST Action 716 “Exploitation of Ground based GPS for climate and numerical weather prediction applications”. For this purpose the GPS data covering Europe have been collected within the Near-Real Time (NRT) demonstration project and provided for Observing System Experiments (OSE). For the experiments presented in this manuscript the operational NWP system of MeteoSwiss is used. The limited area nonhydrostatic aLpine Model (aLMo) of MeteoSwiss covers most of western Europe, has a horizontal resolution of 7 km, 45 layers in the vertical, and uses a data assimilation scheme based on the Newtonian relaxation (nudging) method. In total 17 days analyses and two 30 hours daily forecasts have been computed, with 100 GPS sites assimilated for three selected periods in autumn 2001, winter and summer 2002. It is to be noted that only in the last period data from 10 french sites, i.e. west of Switzerland are assimilated. The GPS NRT data quality has been compared with the Post-Processed data. Agreement within 3 mm level Zenith Total Delay bias and 8 mm standard deviation was found, corresponding to an Integrated Water Vapor (IWV) bias below 0.5 kg/m2. Most of the NRT data over aLMo domain are available within a prescribed time window of 1 h 45 min. In the nudging process the NRT data are successfully used by the model to correct the IWV deficiencies present in the reference analysis; stronger forcing with a shorter time scale could be however recommended. Comparing the GPS derived IWV with radiosonde observations, a dry radiosonde bias has been found over northern Italy. Through GPS data assimilation the aLMo analysis bias and standard deviation in the diurnal cycle has been reduced. The negative bias of 0.64 kg/m2 in the reference analysis has been reduced to 0.34 kg/m2 in GPS analysis. However, the diurnal cycle statistic from the forecast does show the characteristic negative bias only slightly reduced starting with the GPS analysis. The GPS IWV impact on aLMo is large in June 2002 and moderate in September 2001 OSE. January OSE is inconclusive due to inconsistent use of humidity data below the freezing point. In June 2002 OSE, a substantial IWV impact is seen up to the end of the forecast. Over Switzerland the dry bias in the reference analysis has been successfully corrected and the 2 m temperature and dew point have been slightly improved over the whole aLMo domain. The subjective verification of precipitation against radar data in autumn 2001 and summer 2002 gives mixed results. In the forecast the impact is limited to the first six hours and to strong precipitation events. A missing precipitation pattern has been recovered via GPS assimilation in June 20 2002 forecast. A negative impact on precipitation analysis on June 23 has been observed. The future operational use of GPS will depend on data availability; European GPS networks belong mainly to the geodetic community. A further increase of GPS network density in southern Europe is welcome. The GPS derived gradient and Slant Path estimates could possibly improve efficiency of IWV assimilation via the nudging technique.

  20. Code and codeless ionospheric measurements with NASA's Rogue GPS Receiver

    NASA Technical Reports Server (NTRS)

    Srinivasan, Jeff M.; Meehan, Tom K.; Young, Lawrence E.

    1989-01-01

    The NASA/JPL Rogue Receiver is an 8-satellite, non-multiplexed, highly digital global positioning system (GPS) receiver that can obtain dual frequency data either with or without knowledge of the P-code. In addition to its applications for high accuracy geodesy and orbit determination, the Rogue uses GPS satellite signals to measure the total electron content (TEC) of the ionosphere along the lines of sight from the receiver to the satellites. These measurements are used by JPL's Deep Space Network (DSN) for calibrating radiometric data. This paper will discuss Rogue TEC measurements, emphasizing the advantages of a receiver that can use the P-code, when available, but can also obtain reliable dual frequency data when the code is encrypted.

  1. Application of GPS Measurements for Ionospheric and Tropospheric Modelling

    NASA Astrophysics Data System (ADS)

    Rajendra Prasad, P.; Abdu, M. A.; Furlan, Benedito. M. P.; Koiti Kuga, Hélio

    military navigation. The DOD's primary purposes were to use the system in precision weapon delivery and providing a capability that would help reverse the proliferation of navigation systems in military. Subsequently, it was very quickly realized that civil use and scientific utility would far outstrip military use. A variety of scientific applications are uniquely suited to precise positioning capabilities. The relatively high precision, low cost, mobility and convenience of GPS receivers make positioning attractive. The other applications being precise time measurement, surveying and geodesy purposes apart from orbit and attitude determination along with many user services. The system operates by transmitting radio waves from satellites to receivers on the ground, aircraft, or other satellites. These signals are used to calculate location very accurately. Standard Positioning Services (SPS) which restricts access to Coarse/Access (C/A) code and carrier signals on the L1 frequency only. The accuracy thus provided by SPS fall short of most of the accuracy requirements of users. The upper atmosphere is ionized by the ultra violet radiation from the sun. The significant errors in positioning can result when the signals are refracted and slowed by ionospheric conditions, the parameter of the ionosphere that produces most effects on GPS signals is the total number of electrons in the ionospheric propagation path. This integrated number of electrons, called Total Electron Content (TEC) varies, not only from day to night, time of the year and solar flux cycle, but also with geomagnetic latitude and longitude. Being plasma the ionosphere affects the radio waves propagating through it. Effects of scintillation on GPS satellite navigation systems operating at L1 (1.5754 GHz), L2 (1.2276 GHz) frequencies have not been estimated accurately. It is generally recognized that GPS navigation systems are vulnerable in the polar and especially in the equatorial region during the solar maximum period. In the equatorial region the irregularity structures are highly elongated in the north-south direction and are discrete in the east-west direction with dimensions of several hundred km. With such spatial distribution of irregularities needs to determine how often the GPS receivers fails to provide navigation aid with the available constellation. The effects of scintillation on the performance of GPS navigation systems in the equatorial region can be analyzed through commissioning few ground receivers. Incidentally there are few GPS receivers near these latitudes. Despite the recent advances in the ionosphere and tropospheric delay modeling for geodetic applications of GPS, the models currently used are not very precise. The conventional and operational ionosphere models viz. Klobuchar, Bent, and IRI models have certain limitations in providing very precise accuracies at all latitudes. The troposphere delay modeling also suffers in accuracy. The advances made in both computing power and knowledge of the atmosphere leads to make an effort to upgrade some of these models for improving delay corrections in GPS navigation. The ionospheric group delay corrections for orbit determination can be minimized using duel frequency. However in single frequency measurements the group delay correction is an involved task. In this paper an investigation is carried out to estimate the model coefficients of ionosphere along with precise orbit determination modeling using GPS measurements. The locations of the ground-based receivers near equator are known very exactly. Measurements from these ground stations to a precisely known satellite carrying duel receiver is used for orbit determination. The ionosphere model parameters can be refined corresponding to spatially distributed GPS receivers spread over Brazil. The tropospheric delay effects are not significant for the satellites by choosing appropriate elevation angle. However it needs to be analyzed for user like aircraft for an effective use. In this paper brief description of GPS data utilization, Navigational message, orbit computation and precise orbit determination and Ionosphere and troposphere models are summarized. The methodology towards refining ionosphere model coefficients is presented. Some of the plots and results related to orbit determination are presented. The study demonstrated the feasibility of estimating ionosphere group delay at specific latitudes and could be improved through refining some of the model coefficients using GPS measurements. It is possible to accurately determine the tropospheric delay, which may be used for an aircraft in flight without access to real time meteorological information.

  2. Modified Glasgow Prognostic Score is Associated With Risk of Recurrence in Bladder Cancer Patients After Radical Cystectomy: A Multicenter Experience.

    PubMed

    Ferro, Matteo; De Cobelli, Ottavio; Buonerba, Carlo; Di Lorenzo, Giuseppe; Capece, Marco; Bruzzese, Dario; Autorino, Riccardo; Bottero, Danilo; Cioffi, Antonio; Matei, Deliu Victor; Caraglia, Michele; Borghesi, Marco; De Berardinis, Ettore; Busetto, Gian Maria; Giovannone, Riccardo; Lucarelli, Giuseppe; Ditonno, Pasquale; Perdonà, Sisto; Bove, Pierluigi; Castaldo, Luigi; Hurle, Rodolfo; Musi, Gennaro; Brescia, Antonio; Olivieri, Michele; Cimmino, Amelia; Altieri, Vincenzo; Damiano, Rocco; Cantiello, Francesco; Serretta, Vincenzo; De Placido, Sabino; Mirone, Vincenzo; Sonpavde, Guru; Terracciano, Daniela

    2015-10-01

    Recently, many studies explored the role of inflammation parameters in the prognosis of urinary cancers, but the results were not consistent. The modified Glasgow Prognostic Score (mGPS), a systemic inflammation marker, is a prognostic marker in various types of cancers. The aim of the present study was to investigate the usefulness of the preoperative mGPS as predictor of recurrence-free (RFS), overall (OS), and cancer-specific (CSS) survivals in a large cohort of urothelial bladder cancer (UBC) patients.A total of 1037 patients with UBC were included in this study with a median follow-up of 22 months (range 3-60 months). An mGPS = 0 was observed in 646 patients (62.3%), mGPS = 1 in 297 patients (28.6 %), and mGPS = 2 in 94 patients (9.1%).In our study cohort, subjects with an mGPS equal to 2 had a significantly shorter median RFS compared with subjects with mGPS equal to 1 (16 vs 19 months, hazard ratio [HR] 1.54, 95% CI 1.31-1.81, P < 0.001) or with subjects with mGPS equal to 0 (16 vs 29 months, HR 2.38, 95% CI 1.86-3.05, P < 0.001). The association between mGPS and RFS was confirmed by weighted multivariate Cox model. Although in univariate analysis higher mGPS was associated with lower OS and CSS, this association disappeared in multivariate analysis where only the presence of lymph node-positive bladder cancer and T4 stage were predictors of worse prognosis for OS and CSS.In conclusion, the mGPS is an easily measured and inexpensive prognostic marker that was significantly associated with RFS in UBC patients.

  3. The Plate Boundary Observatory Cascadia Network: Development and Installation of a Large Scale Real-time GPS Network

    NASA Astrophysics Data System (ADS)

    Austin, K. E.; Blume, F.; Berglund, H. T.; Feaux, K.; Gallaher, W. W.; Hodgkinson, K. M.; Mattioli, G. S.; Mencin, D.

    2014-12-01

    The EarthScope Plate Boundary Observatory (PBO), through a NSF-ARRA supplement, has enhanced the geophysical infrastructure in in the Pacific Northwest by upgrading a total of 282 Plate Boundary Observatory GPS stations to allow the collection and distribution of high-rate (1 Hz), low-latency (<1 s) data streams (RT-GPS). These upgraded stations supplemented the original 100 RT-GPS stations in the PBO GPS network. The addition of the new RT-GPS sites in Cascadia should spur new volcano and earthquake research opportunities in an area of great scientific interest and high geophysical hazard. Streaming RT-GPS data will enable researchers to detect and investigate strong ground motion during large geophysical events, including a possible plate-interface earthquake, which has implications for earthquake hazard mitigation. A Mw 6.9 earthquake occurred on March 10, 2014, off the coast of northern California. As a response, UNAVCO downloaded high-rate GPS data from Plate Boundary Observatory stations within 500 km of the epicenter of the event, providing a good test of network performance.In addition to the 282 stations upgraded to real-time, 22 new meteorological instruments were added to existing PBO stations. Extensive testing of BGAN satellite communications systems has been conducted to support the Cascadia RT-GPS upgrades and the installation of three BGAN satellite fail over systems along the Cascadia margin will allow for the continuation of data flow in the event of a loss of primary communications during in a large geophysical event or other interruptions in commercial cellular networks. In summary, with these additional upgrades in the Cascadia region, the PBO RT-GPS network will increase to 420 stations. Upgrades to the UNAVCO data infrastructure included evaluation and purchase of the Trimble Pivot Platform, servers, and additional hardware for archiving the high rate data, as well as testing and implementation of GLONASS and Trimble RTX positioning on the receivers. UNAVCO staff is working closely with the UNAVCO community to develop data standards, protocols, and a science plan for the use of RT-GPS data.

  4. High-resolution station-based diurnal ionospheric total electron content (TEC) from dual-frequency GPS observations

    NASA Astrophysics Data System (ADS)

    ćepni, Murat S.; Potts, Laramie V.; Miima, John B.

    2013-09-01

    electron content (TEC) estimates derived from Global Navigation Satellite System (GNSS) signal delays provide a rich source of information about the Earth's ionosphere. Networks of Global Positioning System (GPS) receivers data can be used to represent the ionosphere by a Global Ionospheric Map (GIM). Data input for GIMs is dual-frequency GNSS-only or a mixture of GNSS and altimetry observations. Parameterization of GNSS-only GIMs approaches the ionosphere as a single-layer model (SLM) to determine GPS TEC models over a region. Limitations in GNSS-only GIM TEC are due largely to the nonhomogenous global distribution of GPS tracking stations with large data gaps over the oceans. The utility of slant GPS ionospheric-induced path delays for high temporal resolution from a single-station data rate offers better representation of TEC over a small region. A station-based vertical TEC (TECV) approach modifies the traditional single-layer model (SLM) GPS TEC method by introducing a zenith angle weighting (ZAW) filter to capture signal delays from mostly near-zenith satellite passes. Comparison with GIMs shows the station-dependent TEC (SD-TEC) model exhibits robust performance under variable space weather conditions. The SD-TEC model was applied to investigate ionospheric TEC variability during the geomagnetic storm event of 9 March 2012 at midlatitude station NJJJ located in New Jersey, USA. The high temporal resolution TEC results suggest TEC production and loss rate differences before, during, and after the storm.

  5. Turnover intention and related factors among general practitioners in Hubei, China: a cross-sectional study.

    PubMed

    Gan, Yong; Gong, Yanhong; Chen, Yawen; Cao, Shiyi; Li, Liqing; Zhou, Yanfeng; Herath, Chulani; Li, Wenzhen; Song, Xingyue; Li, Jing; Yang, Tingting; Yin, Xiaoxv; Lu, Zuxun

    2018-05-24

    High turnover among general practitioners (GPs) is a significant challenge in China's efforts to build a sustainable, effective primary care system, but little data is available to help understand and address this issue. The study was aiming at assessing the intention to leave their posts among a sample of GPs and investigating associated factors. A cross-sectional survey was conducted between December 12, 2014 and March 10, 2015 in Hubei Province, Central China. A total of 1016 GPs (response rate, 85.67%) were investigated by using a structured self-administered questionnaire. A generalized linear regression model was used to identify the associated factors with turnover intention among GPs. Based on a full score of 24, the average score for GPs' turnover intention was 15.40 (SD = 3.43). 78.35% of the GPs had a moderate or higher level of turnover intention. Six hundred and thirty one (62.37%) GPs had ever been exposed to abuse of any kind (physical assault, 18.92%; verbal abuse, 54.38%; threat, 33.79%; verbal sexual harassment, 22.66%; and physical sexual harassment, 7.59%). Generalized linear regression analysis indicated that GPs who were male; who had a vocational school or higher; who had a temporary work contract; who were with lower level of job satisfaction; who reported higher scores on emotional exhaustion; who had been exposed to higher frequency of workplace violence were expressed higher intention to leave their present positions. This study shows that GP's intention to leave general practices is high in Hubei, China. In addition, the prevalence of workplace violence is high among GPs, particularly in the verbal abuse and threat. Measures such as offering permanent contract status, increasing overall job satisfaction, and improving doctor-patient relationship, are needed to moderate GP's turnover intention in order to maintain the foundation of China's three-tier health system.

  6. Use of text messaging in general practice: a mixed methods investigation on GPs' and patients' views.

    PubMed

    Leahy, Dorothy; Lyons, Aoife; Dahm, Matthias; Quinlan, Diarmuid; Bradley, Colin

    2017-11-01

    Text messaging has become more prevalent in general practice as a tool with which to communicate with patients. The main objectives were to assess the extent, growth, and perceived risks and benefits of text messaging by GPs to communicate with patients, and assess patients' attitudes towards receiving text messages from their GP. A mixed methods study, using surveys, a review, and a focus group, was conducted in both urban and rural practices in the south-west of Ireland. A telephone survey of 389 GPs was conducted to ascertain the prevalence of text messaging. Subsequently, the following were also carried out: additional telephone surveys with 25 GPs who use text messaging and 26 GPs who do not, a written satisfaction survey given to 78 patients, a review of the electronic information systems of five practices, and a focus group with six GPs to ascertain attitudes towards text messaging. In total, 38% ( n = 148) of the surveyed GPs used text messaging to communicate with patients and 62% ( n = 241) did not. Time management was identified as the key advantage of text messaging among GPs who used it (80%; n = 20) and those who did not (50%; n = 13). Confidentiality was reported as the principal concern among both groups, at 32% ( n = 8) and 69% ( n = 18) respectively. Most patients (99%; n = 77) were happy to receive text messages from their GP. The GP focus group identified similar issues and benefits in terms of confidentiality and time management. Data were extracted from the IT systems of five consenting practices and the number of text messages sent during the period from January 2013 to March 2016 was generated. This increased by 40% per annum. Collaborative efforts are required from relevant policymakers to address data protection and text messaging issues so that GPs can be provided with clear guidelines to protect patient confidentiality. © British Journal of General Practice 2017.

  7. An Integrated Field-Based Approach to Building Teachers' Geoscience Skills

    ERIC Educational Resources Information Center

    Almquist, Heather; Stanley, George; Blank, Lisa; Hendrix, Marc; Rosenblatt, Megan; Hanfling, Seymour; Crews, Jeffrey

    2011-01-01

    The Paleo Exploration Project was a professional development program for K-12 teachers from rural eastern Montana. The curriculum was designed to incorporate geospatial technologies, including Global Positioning Systems (GPS), Geographic Information Systems (GIS), and total station laser surveying, with authentic field experiences in geology and…

  8. Comparison of GOME-2/Metop total column water vapour with ground-based and in situ measurements

    NASA Astrophysics Data System (ADS)

    Kalakoski, N.; Kujanpää, J.; Sofieva, V.; Tamminen, J.; Grossi, M.; Valks, P.

    2014-12-01

    Total column water vapour product from the Global Ozone Monitoring Experiment-2 on board Metop-A and Metop-B satellites (GOME-2/Metop-A and GOME-2/Metop-B) produced by the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) is compared with co-located radiosonde and Global Positioning System (GPS) observations. The comparisons are performed using recently reprocessed data by the GOME Data Processor (GDP) version 4.7. The comparisons are performed for the period of January 2007-July 2013 (GOME-2A) and from December 2012 to July 2013 (GOME-2B). Radiosonde data are from the Integrated Global Radiosonde Archive (IGRA) maintained by National Climatic Data Center (NCDC) and screened for soundings with incomplete tropospheric column. Ground-based GPS observations from COSMIC/SuomiNet network are used as the second independent data source. Good general agreement between GOME-2 and the ground-based observations is found. The median relative difference of GOME-2 to radiosonde observations is -2.7% for GOME-2A and -0.3% for GOME-2B. Against GPS observations, the median relative differences are 4.9 and 3.2% for GOME-2A and B, respectively. For water vapour total columns below 10 kg m-2, large wet biases are observed, especially against GPS observations. Conversely, at values above 50 kg m-2, GOME-2 generally underestimates both ground-based observations.

  9. Empirical Orthogonal Function (EOF) Analysis of Storm-Time GPS Total Electron Content Variations

    NASA Astrophysics Data System (ADS)

    Thomas, E. G.; Coster, A. J.; Zhang, S.; McGranaghan, R. M.; Shepherd, S. G.; Baker, J. B.; Ruohoniemi, J. M.

    2016-12-01

    Large perturbations in ionospheric density are known to occur during geomagnetic storms triggered by dynamic structures in the solar wind. These ionospheric storm effects have long attracted interest due to their impact on the propagation characteristics of radio wave communications. Over the last two decades, maps of vertically-integrated total electron content (TEC) based on data collected by worldwide networks of Global Positioning System (GPS) receivers have dramatically improved our ability to monitor the spatiotemporal dynamics of prominent storm-time features such as polar cap patches and storm enhanced density (SED) plumes. In this study, we use an empirical orthogonal function (EOF) decomposition technique to identify the primary modes of spatial and temporal variability in the storm-time GPS TEC response at midlatitudes over North America during more than 100 moderate geomagnetic storms from 2001-2013. We next examine the resulting time-varying principal components and their correlation with various geophysical indices and parameters in order to derive an analytical representation. Finally, we use a truncated reconstruction of the EOF basis functions and parameterization of the principal components to produce an empirical representation of the geomagnetic storm-time response of GPS TEC for all magnetic local times local times and seasons at midlatitudes in the North American sector.

  10. Comparison of IRI-Plas and IONOLAB Slant Total Electron Content for Disturbed Days of Ionosphere

    NASA Astrophysics Data System (ADS)

    Shukurov, Seymur; Gulyaeva, Tamara; Arikan, Feza; Necat Deviren, M.; Tuna, Hakan; Arikan, Orhan

    Variabilities due to geomagnetic, and seismic activities in ionosphere can be observed by using Total Electron Content (TEC). TEC estimated on a path between a dual-frequency Global Positioning System (GPS) receiver and a GPS satellite at a given date and time is called Slant TEC (STEC). STEC contains the variability of ionosphere on a given path, therefore it is a useful variable to identify the anisotropicity. IONOLAB group has developed a novel method for STEC estimation (IONOLAB-STEC) from GPS phase delay recordings resolving the phase ambiguity and calculating IONOLAB-BIAS as receiver interfrequency bias. International Reference Ionosphere Extended to Plasmasphere (IRI-Plas) is the standard climatic model of ionosphere. IONOLAB group automatized the computation of STEC between a GPS satellite and receiver for a given date. In this study, IRI-Plas-STEC and IONOLAB-STEC are compared for geomagnetically active storm days and for the days prior to earthquakes over Turkey using Symmetric Kullback-Liebler Distance (SKLD). It is observed that IRI-Plas-STEC and IONOLAB-STEC are very similar for magnetically quiet days, and IRI-Plas-STEC provides a background ionosphere. This study is supported by the joint grant of TUBITAK 112E568 and RFBR 13-02-91370-CT_a.

  11. Recent Developments in Balloon Support Instrumentation at TIFR Balloon Facility, Hyderabad.

    NASA Astrophysics Data System (ADS)

    Vasudevan, Rajagopalan

    2012-07-01

    The Balloon Facility of Tata Institute of Fundamental Research has been conducting stratospheric balloon flights regularly for various experiments in Space Astronomy and Atmospheric Sciences. A continuous improvement in Balloon flight Support instrumentation by the Control Instrumentation Group to keep in space with the growing complexities of the scientific payloads have contributed to the total success of balloon flights conducted recently. Recent improvements in display of Balloon position during balloon flight by showing on real time the balloon GPS position against Google TM maps is of immense help in selecting the right spot for payload landing and safe recovery . For further speeding up the payload recovery process, a new GPS-GSM payload system has been developed which gives SMS of the payload position information to the recovery team on their cell phones. On parallel footing, a new GPS- VHF system has been developed using GPS and Radio Modems for Balloon Tracking and also for obtaining the payload impact point. On the Telecommand side, a single board Telecommand/ Timer weighing less than 2 Kg has been specially developed for use in the mesosphere balloon test flight. The interference on the existing Short Range Telemetry System has been eliminated by introducing a Band Pass Filter and LNA in the Receiving system of the modules, thereby enhancing its reliability. In this paper , we present the details of the above mentioned developments.

  12. Primary care practitioner perceptions and attitudes of complementary medicine: a content analysis of free-text responses from a survey of non-metropolitan Australian general practitioners.

    PubMed

    Wardle, Jon L; Sibbritt, David W; Adams, Jon

    2018-05-01

    AimThis study examines GP perceptions, attitudes and knowledge of complementary medicine (CM), and to understand contextual factors that influence these perceptions, attitudes and knowledge. CM use is increasing, and its influence on primary care becoming increasingly significant. Although general practitioners (GPs) often have central primary care gate-keeper roles within health systems, few studies have looked specifically at GPs' perceptions, attitudes and knowledge of CM. A questionnaire was mailed to all 1486 GPs registered as practicing in non-metropolitan areas of New South Wales. The survey included one free-text qualitative question, where respondents were invited to highlight issues associated with CM in their own words. Free-text responses were analyzed qualitatively using thematic analysis.FindingsIn total, 585 GPs responded to the survey (adjusted response rate 40.1%), with 152 (26.0%) filling in the free-text question. Central themes which emerged were risk as a primary concern; opposition to, resistance to and the inappropriateness of complementary therapies; struggles with complexity and ambivalent tolerance. GPs in Australia have a wide variety of perceptions toward CM. A minority of GPs have absolute views on CM, with most GPs having numerous caveats and qualifications of individual CM. Efficacy is only one aspect of CM critically evaluated by GPs when gauging support for individual therapies - risk, alignment with medical principles and an openness to exploring new avenues of treatment where others have failed, all appear to be equally important considerations when GPs form their views around CM.

  13. Water vapor over Europe obtained from remote sensors and compared with a hydrostatic NWP model

    NASA Astrophysics Data System (ADS)

    Johnsen, K.-P.; Kidder, S. Q.

    Due to its high-variability water vapor is a crucial parameter in short-term numerical weather prediction. Integrated water vapor (IWV) data obtained from a network of groundbased Global Positioning System (GPS) receivers mainly over Germany and passive microwave measurements of the Advanced Microwave Sounding Unit (AMSU-A) are compared with the high-resolution regional weather forecast model HRM of the Deutscher Wetterdienst (DWD). Time series of the IWV at 74 GPS stations obtained during the first complete year of the GFZ/GPS network between May 2000 and April 2001 are applied together with colocated forecasts of the HRM model. The low bias (0.08 kg/m 2) between the HRM model and the GPS data can mainly be explained by the bias between the ECMWF analysis data used to initilize the HRM model and the GPS data. The IWV standard deviation between the HRM model and the GPS data during that time is about 2.47 kg/ m2. GPS stations equipped with surface pressure sensors show about 0.29 kg/ m2 lower standard deviation compared with GPS stations with interpolated surface pressure from synoptic stations. The NOAA/NESDIS Total Precipitable Water algorithm is applied to obtain the IWV and to validate the model above the sea. While the mean IWV obtained from the HRM model is about 2.1 kg/ m2 larger than from the AMSU-A data, the standard deviations are 2.46 kg/ m2 (NOAA-15) and 2.29 kg/ m2 (NOAA-16) similar to the IWV standard deviation between HRM and GPS data.

  14. Mapping the Coastline Limits of the Mexican State Sinaloa Using GPS

    NASA Astrophysics Data System (ADS)

    Vazquez, G. E.

    2007-12-01

    This research work presents the delimitation of the coastline limits of Sinaloa (one of the richest states of northwestern Mexico). In order to achieve this big task, it was required to use GPS (Global Positioning System) together with leveling spirit measurements. Based on the appropriate selection of the cited measurement techniques, the objective was to map the Sinaloa's state coastline to have the cartography of approximate 1600 km of littoral. The GPS measurements were performed and referred with respect to a GPS network located across the state. This GPS network consists of at least one first-order-site at each of the sixteen counties that constitute the state, and three to four second-order-sites of the ten counties of the state surrounded by sea. The leveling spirit measurements were referred to local benchmarks pre-established by the Mexican agency SEMARNAT (SEcretaría Del Medio Ambiente y Recursos NATurales). Within the main specifications of the GPS measurements and equipment, we used geodetic-dual-frequency GPS receivers in kinematic mode for both base stations (first and second order sites of the GPS state network) and rover stations (points forming the state littoral) with 5-sec log-rate interval and 10 deg cut-off angle. The GPS data processing was performed using the commercial software Trimble Geomatics Office (TGO) with Double Differences (DD) in post-processing mode. To this point, the field measurements had been totally covered including the cartography (scale 1:1000) and this includes the specifications and appropriate labeling according to the Mexican norm NOM-146-SEMARNAT-2005.

  15. The application of NAVSTAR Differential GPS to civil helicopter operations

    NASA Technical Reports Server (NTRS)

    Beser, J.; Parkinson, B. W.

    1981-01-01

    Principles concerning the operation of the NAVSTAR Global Positioning Systems (GPS) are discussed. Selective availability issues concerning NAVSTAR GPS and differential GPS concepts are analyzed. Civil support and market potential for differential GPS are outlined. It is concluded that differential GPS provides a variation on the baseline GPS system, and gives an assured, uninterrupted level of accuracy for the civilian community.

  16. First evidence of anisotropy of GPS phase slips caused by the mid-latitude field-aligned ionospheric irregularities

    NASA Astrophysics Data System (ADS)

    Afraimovich, E. L.; Ishin, A. B.; Tinin, M. V.; Yasyukevich, Yu. V.; Jin, S. G.

    2011-05-01

    The mid-latitude field-aligned irregularity (FAI) along the magnetic field line is a common phenomenon in the ionosphere. However, few data reveal the field-aligned ionospheric irregularities. They are insufficient to identify FAIs effects so far, particularly effect on global positioning system (GPS) signals. In this paper, the mid-latitude FAIs by line-of-sight angular scanning relative to the local magnetic field vector are investigated using the denser GPS network observations in Japan. It has been the first found that total GPS L2 phase slips over Japan, during the recovery phase of the 12 Feb 2000 geomagnetic storm were caused by GPS signal scattering on FAIs both for the lines-of-sight aligned to the magnetic field line (the field of aligned scattering, FALS) and across the magnetic field line (the field of across scattering, FACS). The FALS results are also in a good agreement with the data of the magnetic field orientation control of GPS occultation observations of equatorial scintillation during thorough low earth orbit (LEO) satellites measurements, e.g. Challenging Minisatellite Payload (CHAMP) and Satellite de Aplicaciones Cientificas-C (SAC-C). The role of large-angle scattering almost along the normal to the magnetic field line in GPS scintillation is determined by attenuation of the irregularity anisotropy factor as compared with the other factors.

  17. What happens when doctors are patients? Qualitative study of GPs.

    PubMed

    Fox, Fiona; Harris, Michael; Taylor, Gordon; Rodham, Karen; Sutton, Jane; Robinson, Brian; Scott, Jenny

    2009-11-01

    Current evidence about the experiences of doctors who are unwell is limited to poor quality data. To investigate GPs' experiences of significant illness, and how this affects their own subsequent practice. Qualitative study using interpretative phenomenological analysis to conduct and analyse semi-structured interviews with GPs who have experienced significant illness. Two primary care trusts in the West of England. A total of 17 GPs were recruited to take part in semi-structured interviews which were conducted and analysed using interpretative phenomenological analysis Results: Four main categories emerged from the data. The category, 'Who cares when doctors are ill?' embodies the tension between perceptions of medicine as a 'caring profession' and as a 'system'. 'Being a doctor-patient' covers the role ambiguity experienced by doctors who experience significant illness. The category 'Treating doctor-patients' reveals the fragility of negotiating shared medical care. 'Impact on practice' highlights ways in which personal illness can inform GPs' understanding of being a patient and their own consultation style. Challenging the culture of immunity to illness among GPs may require interventions at both individual and organisational levels. Training and development of doctors should include opportunities to consider personal health issues as well as how to cope with role ambiguity when being a patient and when treating doctor-patients. Guidelines about being and treating doctor-patients need to be developed, and GPs need easy access to an occupational health service.

  18. Regional model-based computerized ionospheric tomography using GPS measurements: IONOLAB-CIT

    NASA Astrophysics Data System (ADS)

    Tuna, Hakan; Arikan, Orhan; Arikan, Feza

    2015-10-01

    Three-dimensional imaging of the electron density distribution in the ionosphere is a crucial task for investigating the ionospheric effects. Dual-frequency Global Positioning System (GPS) satellite signals can be used to estimate the slant total electron content (STEC) along the propagation path between a GPS satellite and ground-based receiver station. However, the estimated GPS-STEC is very sparse and highly nonuniformly distributed for obtaining reliable 3-D electron density distributions derived from the measurements alone. Standard tomographic reconstruction techniques are not accurate or reliable enough to represent the full complexity of variable ionosphere. On the other hand, model-based electron density distributions are produced according to the general trends of ionosphere, and these distributions do not agree with measurements, especially for geomagnetically active hours. In this study, a regional 3-D electron density distribution reconstruction method, namely, IONOLAB-CIT, is proposed to assimilate GPS-STEC into physical ionospheric models. The proposed method is based on an iterative optimization framework that tracks the deviations from the ionospheric model in terms of F2 layer critical frequency and maximum ionization height resulting from the comparison of International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model-generated STEC and GPS-STEC. The suggested tomography algorithm is applied successfully for the reconstruction of electron density profiles over Turkey, during quiet and disturbed hours of ionosphere using Turkish National Permanent GPS Network.

  19. The ionospheric eclipse factor method (IEFM) and its application to determining the ionospheric delay for GPS

    NASA Astrophysics Data System (ADS)

    Yuan, Y.; Tscherning, C. C.; Knudsen, P.; Xu, G.; Ou, J.

    2008-01-01

    A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) λ of the ionospheric pierce point (IPP) and the IEF’s influence factor (IFF) bar{λ}. The IEF can be used to make a relatively precise distinction between ionospheric daytime and nighttime, whereas the IFF is advantageous for describing the IEF’s variations with day, month, season and year, associated with seasonal variations of total electron content (TEC) of the ionosphere. By combining λ and bar{λ} with the local time t of IPP, the IEFM has the ability to precisely distinguish between ionospheric daytime and nighttime, as well as efficiently combine them during different seasons or months over a year at the IPP. The IEFM-based ionospheric delay estimates are validated by combining an absolute positioning mode with several ionospheric delay correction models or algorithms, using GPS data at an international Global Navigation Satellite System (GNSS) service (IGS) station (WTZR). Our results indicate that the IEFM may further improve ionospheric delay modeling using GPS data.

  20. Immunization-based scores as independent prognostic predictors in soft tissue sarcoma patients

    PubMed Central

    Jiang, Shan-Shan; Jiang, Long; Weng, De-Sheng; Li, Yuan-fang; Pan, Qiu-Zhong; Zhao, Jing-Jing; Tang, Yan; Zhou, Zhi-Wei; Xia, Jian-Chuan

    2017-01-01

    Background: The purpose of this study was to examine and compare the prognostic value of different immunization-based scoring systems in patients with soft tissue sarcoma (STS). Methods: We conducted a retrospective study evaluating a cohort of 165 patients diagnosed with STS between July 2007 and July 2014. The relative Glasgow prognostic score (GPS) of these patients was calculated using 3 different systems: the traditional GPS system (tGPS), the modified GPS system 1 (m1GPS), and the modified GPS system 2 (m2GPS). Then, we evaluated the relationships between each GPS system and clinicopathological characteristics. The mean follow-up for survivors in the cohort was 73.7 months as of March 2015. Results: The most favorable overall survival (OS) rate was associated with the score 0 groups, and the poorest progression-free survival (PFS) rate was associated with the score 2 groups, regardless of which system was used to calculate the score. Specifically, the m1GPS provided the greatest accuracy in predicting OS and PFS. Moreover, the same effect was observed in a separate analysis restricted to patients with metastases. Remarkably, in patients with a score of 2 as measured by all 3 systems, local treatment resulted in a poorer prognosis compared to patients with a score of 2 who did not receive local treatment. Conclusion: The GPS is a valuable prognostic marker and has the capability to predict the appropriate treatment strategy for STS patients with metastases. The modified GPS systems demonstrated superior prognostic and predictive value compared with the traditional GPS system. PMID:28367240

  1. The Glasgow Prognostic Score, an inflammation based prognostic score, predicts survival in patients with hepatocellular carcinoma

    PubMed Central

    2013-01-01

    Background Elevated Glasgow Prognostic Score (GPS) has been related to poor prognosis in patients with hepatocellular carcinoma (HCC) undergoing surgical resection or receiving sorafenib. The aim of this study was to investigate the prognostic value of GPS in patients with various stages of the disease and with different liver functional status. Methods One hundred and fifty patients with newly diagnosed HCC were prospectively evaluated. Patients were divided according to their GPS scores. Univariate and multivariate analyses were performed to identify clinicopathological variables associated with overall survival; the identified variables were then compared with those of other validated staging systems. Results Elevated GPS were associated with increased asparate aminotransferase (P<0.0001), total bilirubin (P<0.0001), decreased albumin (P<0.0001), α-fetoprotein (P=0.008), larger tumor diameter (P=0.003), tumor number (P=0.041), vascular invasion (P=0.0002), extra hepatic metastasis (P=0.02), higher Child-Pugh scores (P<0.0001), and higher Cancer Liver Italian Program scores (P<0.0001). On multivariate analysis, the elevated GPS was independently associated with worse overall survival. Conclusions Our results demonstrate that the GPS can serve as an independent marker of poor prognosis in patients with HCC in various stages of disease and different liver functional status. PMID:23374755

  2. A Student-Centered Field Project Comparing NEXRAD and Rain Gauge Precipitation Values in Mountainous Terrain.

    ERIC Educational Resources Information Center

    Woltemade, Christopher J.; Stanitski-Martin, Diane

    2002-01-01

    Undergraduate students compared Next Generation Weather Radar (NEXRAD) estimates of storm total precipitation to measurements from a network of 20 rain gauges. Student researchers gained valuable experience in field data collection, global positioning systems (GPS), geographic information systems (GIS), Internet data access and downloading,…

  3. Investigation of TEC Variations over Mid-Latitude during Quit and Disturbed Days of March 2015

    NASA Astrophysics Data System (ADS)

    Atıcı, Ramazan; Saǧır, Selçuk; Güzel, Esat

    2016-07-01

    The variations during 09-14-March-2015 quit days and 15-20 March 2015 disturbed days of Total Electron Content (TEC) values (provided by IONOLAB group) obtained by analysis the data from Ankara Global Position System (GPS) station of Turkey located at mid-latitude, IRI -2012 model the and IRI-PLUS model are investigated. Also, the variations of the geomagnetic, interplanetary and solar wind parameters are examined. As a result of investigations, TEC values from all three models are not change too much at quit days. Unlike, at the disturbed days, although IRI-2012 and IRI-PLUS TEC values are not change too much, a noticeable change in GPS-TEC values is occurred. GPS-TEC values are rapidly increased on 17-March 2015 to be severe magnetic storm (Dst = -124 nT). Then, on following days it was observed to significantly decrease. Thus, it is said that GPS-TEC values are more sensitive than IRI-2012 and IRI-PLUS models to variations occurred on disturbed days.

  4. U.S. Space Shuttle GPS navigation capability for all mission phases

    NASA Technical Reports Server (NTRS)

    Kachmar, Peter; Chu, William; Montez, Moises

    1993-01-01

    Incorporating a GPS capability on the Space Shuttle presented unique system integration design considerations and has led to an integration concept that has minimum impact on the existing Shuttle hardware and software systems. This paper presents the Space Shuttle GPS integrated design and the concepts used in implementing this GPS capability. The major focus of the paper is on the modifications that will be made to the navigation systems in the Space Shuttle General Purpose Computers (GPC) and on the Operational Requirements of the integrated GPS/GPC system. Shuttle navigation system architecture, functions and operations are discussed for the current system and with the GPS integrated navigation capability. The GPS system integration design presented in this paper has been formally submitted to the Shuttle Avionics Software Control Board for implementation in the on-board GPC software.

  5. Imaging the topside ionosphere and plasmasphere with ionospheric tomography using COSMIC GPS TEC

    NASA Astrophysics Data System (ADS)

    Pinto Jayawardena, Talini S.; Chartier, Alex T.; Spencer, Paul; Mitchell, Cathryn N.

    2016-01-01

    GPS-based ionospheric tomography is a well-known technique for imaging the total electron content (TEC) between GPS satellites and receivers. However, as an integral measurement of electron concentration, TEC typically encompasses both the ionosphere and plasmasphere, masking signatures from the topside ionosphere-plasmasphere due to the dominant ionosphere. Imaging these regions requires a technique that isolates TEC in the topside ionosphere-plasmasphere. Multi-Instrument Data Analysis System (MIDAS) employs tomography to image the electron distribution in the ionosphere. Its implementation for regions beyond is yet to be seen due to the different dynamics present above the ionosphere. This paper discusses the extension of MIDAS to image these altitudes using GPS phase-based TEC measurements and follows the work by Spencer and Mitchell (2011). Plasma is constrained to dipole field lines described by Euler potentials, resulting in a distribution symmetrical about the geomagnetic equator. A simulation of an empirical plasmaspheric model by Gallagher et al. (1988) is used to verify the technique by comparing reconstructions of the simulation with the empirical model. The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) is used as GPS receiver locations. The verification is followed by a validation of the modified MIDAS algorithm, where the regions' TEC is reconstructed from COSMIC GPS phase measurements and qualitatively compared with previous studies using Jason-1 and COSMIC data. Results show that MIDAS can successfully image features/trends of the topside ionosphere-plasmasphere observed in other studies, with deviations in absolute TEC attributed to differences in data set properties and the resolution of the images.

  6. Global Positioning System (GPS) survey of Augustine Volcano, Alaska, August 3-8, 2000: data processing, geodetic coordinates and comparison with prior geodetic surveys

    USGS Publications Warehouse

    Pauk, Benjamin A.; Power, John A.; Lisowski, Mike; Dzurisin, Daniel; Iwatsubo, Eugene Y.; Melbourne, Tim

    2001-01-01

    Between August 3 and 8,2000,the Alaska Volcano Observatory completed a Global Positioning System (GPS) survey at Augustine Volcano, Alaska. Augustine is a frequently active calcalkaline volcano located in the lower portion of Cook Inlet (fig. 1), with reported eruptions in 1812, 1882, 1909?, 1935, 1964, 1976, and 1986 (Miller et al., 1998). Geodetic measurements using electronic and optical surveying techniques (EDM and theodolite) were begun at Augustine Volcano in 1986. In 1988 and 1989, an island-wide trilateration network comprising 19 benchmarks was completed and measured in its entirety (Power and Iwatsubo, 1998). Partial GPS surveys of the Augustine Island geodetic network were completed in 1992 and 1995; however, neither of these surveys included all marks on the island.Additional GPS measurements of benchmarks A5 and A15 (fig. 2) were made during the summers of 1992, 1993, 1994, and 1996. The goals of the 2000 GPS survey were to:1) re-measure all existing benchmarks on Augustine Island using a homogeneous set of GPS equipment operated in a consistent manner, 2) add measurements at benchmarks on the western shore of Cook Inlet at distances of 15 to 25 km, 3) add measurements at an existing benchmark (BURR) on Augustine Island that was not previously surveyed, and 4) add additional marks in areas of the island thought to be actively deforming. The entire survey resulted in collection of GPS data at a total of 24 sites (fig. 1 and 2). In this report we describe the methods of GPS data collection and processing used at Augustine during the 2000 survey. We use this data to calculate coordinates and elevations for all 24 sites surveyed. Data from the 2000 survey is then compared toelectronic and optical measurements made in 1988 and 1989. This report also contains a general description of all marks surveyed in 2000 and photographs of all new marks established during the 2000 survey (Appendix A).

  7. Evaluation of the impact of ionospheric disturbances on air navigation augmentation system using multi-point GPS receivers

    NASA Astrophysics Data System (ADS)

    Omatsu, N.; Otsuka, Y.; Shiokawa, K.; Saito, S.

    2013-12-01

    In recent years, GPS has been utilized for navigation system for airplanes. Propagation delays in the ionosphere due to total electron content (TEC) between GPS satellite and receiver cause large positioning errors. In precision measurement using GPS, the ionospheric delay correction is generally conducted using both GPS L1 and L2 frequencies. However, L2 frequency is not internationally accepted as air navigation band, so it is not available for positioning directly in air navigation. In air navigation, not only positioning accuracy but safety is important, so augmentation systems are required to ensure the safety. Augmentation systems such as the satellite-based augmentation system (SBAS) or the ground-based augmentation system (GBAS) are being developed and some of them are already in operation. GBAS is available in a relatively narrow area around airports. In general, it corrects for the combined effects of multiple sources of positioning errors simultaneously, including satellite clock and orbital information errors, ionospheric delay errors, and tropospheric delay errors, using the differential corrections broadcast by GBAS ground station. However, if the spatial ionospheric delay gradient exists in the area, correction errors remain even after correction by GBAS. It must be a threat to GBAS. In this study, we use the GPS data provided by the Geographical Survey Institute in Japan. From the GPS data, TEC is obtained every 30 seconds. We select 4 observation points from 24.4 to 35.6 degrees north latitude in Japan, and analyze TEC data of these points from 2001 to 2011. Then we reveal dependences of Rate of TEC change Index (ROTI) on latitude, season, and solar activity statistically. ROTI is the root-mean-square deviation of time subtraction of TEC within 5 minutes. In the result, it is the midnight of the spring and the summer of the solar maximum in the point of 26.4 degrees north latitude that the value of ROTI becomes the largest. We think it is caused by plasma bubbles, and the maximum value of ROTI is about 6 TECU/min. Since it is thought that ROTI is an index representing the spatial ionospheric delay gradient, we can evaluate the effect of spatial ionospheric delay gradient to GBAS. In addition, we will discuss azimuth angle dependence of ROTI. We have found that ROTI tends to be high when the GPS satellites are seen westward. Initial analysis results in Indonesia show a similar feature. This feature could arise from the westward tilt of the plasma bubbles with altitude. More detailed results will be reported in this presentation.

  8. 77 FR 56254 - 89th Meeting: RTCA Special Committee 159, Global Positioning Systems (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... 159, Global Positioning Systems (GPS). SUMMARY: The FAA is issuing this notice to advise the public of the eighty-ninth meeting of the RTCA Special Committee 159, Global Positioning Systems (GPS). DATES... 159, Global Positioning Systems (GPS) AGENCY: Federal Aviation Administration (FAA), U.S. Department...

  9. 78 FR 13396 - 90th Meeting: RTCA Special Committee 159, Global Positioning Systems (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... 159, Global Positioning Systems (GPS) SUMMARY: The FAA is issuing this notice to advise the public of the eighty-ninth meeting of the RTCA Special Committee 159, Global Positioning Systems (GPS). DATES... 159, Global Positioning Systems (GPS) AGENCY: Federal Aviation Administration (FAA), U.S. Department...

  10. 76 FR 33022 - Eighty-Sixth Meeting: RTCA Special Committee 159: Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-07

    ... Committee 159: Global Positioning System (GPS) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 159 meeting: Global Positioning System (GPS). SUMMARY: The FAA is...), notice is hereby given for a Special Committee 159: Global Positioning System (GPS) meeting. The agenda...

  11. An Investigation of Multipath Effects on the GPS System During Auto-Rendezvous and Capture

    NASA Technical Reports Server (NTRS)

    Richie, James E.; Forest, Francis W.

    1995-01-01

    The proposed use of a Cargo Transport Vehicle (CTV) to carry hardware to the Space Station Freedom (SSF) during the construction phase of the SSF project requires remote maneuvering of the CTV. The CTV is not a manned vehicle. Obtaining the relative positions of the CTV and SSF for remote auto-rendezvous and capture (AR&C) scenarios will rely heavily on the Global Positioning System (GPS). The GPS system is expected to guide the CTV up to a distance of 100 to 300 meters from the SSF. At some point within this range, an optical docking system will take over the remote guidance for capture. During any remote guidance by GPS it is possible that significant multipath signals may be caused by large objects in the vicinity of the module being remotely guided. This could alter the position obtained by the GPS system from the actual position. Due to the nature of the GPS signals, it has been estimated that if the difference in distance between the Line of Sight (LOS) path and the multipath is greater than 300 meters, the GPS system is capable of discriminating between the direct signal and the reflected (or multipath) signal. However, if the path difference is less than 300 meters, one must be concerned. This report details the work accomplished by the Electromagnetic Simulations Laboratory at Marquette University over the period December 1993 to May 1995. This work is an investigation of the strength and phase of a multipath signal arriving at the CTV relative to the direct or line of sight (LOS) signal. The signal originates at a GPS satellite in half geo-stationary orbit and takes two paths to the CTV: (1) the direct or LOS path from the GPS satellite to the CTV; and (2) a scattered path from the GPS satellite to the SSF module and then to the CTV. The scattering from a cylinder has been computed using the physical optics approximation for the current. No other approximations or assumptions have been made including no assumptions regarding the far field or Fresnel field approximations. The integrations required to obtain the scattered field have been computed numerically using an N dimensional Romberg integration. The total scattered electric field is then projected onto the RCP component in the direction of propagation only. The direct or line of sight signal is then used to compute the relative strength and phase of the scattered field. The trajectory of the CTV has been parameterized into 4,214 points that are calculated for each of the geometries investigated. The motion of the CTV between points is small enough for the magnitude data (dB down from direct signal) to appear very smooth; however, because of the distances and wavelengths involved, the phase of the scattered field relative to the direct signal varies very rapidly.

  12. 76 FR 67019 - Eighty-Seventh: RTCA Special Committee 159: Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... Committee 159: Global Positioning System (GPS) 87th meeting. DATES: The meeting will be held November 14-18... Committee 159, Global Positioning System (GPS). The agenda will include the following: November 14-17, 2011... Committee 159: Global Positioning System (GPS) AGENCY: Federal Aviation Administration (FAA), U.S...

  13. Evaluation of different approaches to modeling the second-order ionospheric delay on GPS measurements

    NASA Astrophysics Data System (ADS)

    Garcia-Fernandez, M.; Desai, S. D.; Butala, M. D.; Komjathy, A.

    2013-12-01

    This work evaluates various approaches to compute the second order ionospheric correction (SOIC) to Global Positioning System (GPS) measurements. When estimating the reference frame using GPS, applying this correction is known to primarily affect the realization of the origin of the Earth's reference frame along the spin axis (Z coordinate). Therefore, the Z translation relative to the International Terrestrial Reference Frame 2008 is used as the metric to evaluate various published approaches to determining the slant total electron content (TEC) for the SOIC: getting the slant TEC from GPS measurements, and using the vertical total electron content (TEC) given by a Global Ionospheric Model (GIM) to transform it to slant TEC via a mapping function. All of these approaches agree to 1 mm if the ionospheric shell height needed in GIM-based approaches is set to 600 km. The commonly used shell height of 450 km introduces an offset of 1 to 2 mm. When the SOIC is not applied, the Z axis translation can be reasonably modeled with a ratio of +0.23 mm/TEC units of the daily median GIM vertical TEC. Also, precise point positioning (PPP) solutions (positions and clocks) determined with and without SOIC differ by less than 1 mm only if they are based upon GPS orbit and clock solutions that have consistently applied or not applied the correction, respectively. Otherwise, deviations of few millimeters in the north component of the PPP solutions can arise due to inconsistencies with the satellite orbit and clock products, and those deviations exhibit a dependency on solar cycle conditions.

  14. The reliability and validity of subjective notational analysis in comparison to global positioning system tracking to assess athlete movement patterns.

    PubMed

    Doğramac, Sera N; Watsford, Mark L; Murphy, Aron J

    2011-03-01

    Subjective notational analysis can be used to track players and analyse movement patterns during match-play of team sports such as futsal. The purpose of this study was to establish the validity and reliability of the Event Recorder for subjective notational analysis. A course was designed, replicating ten minutes of futsal match-play movement patterns, where ten participants undertook the course. The course allowed a comparison of data derived from subjective notational analysis, to the known distances of the course, and to GPS data. The study analysed six locomotor activity categories, focusing on total distance covered, total duration of activities and total frequency of activities. The values between the known measurements and the Event Recorder were similar, whereas the majority of significant differences were found between the Event Recorder and GPS values. The reliability of subjective notational analysis was established with all ten participants being analysed on two occasions, as well as analysing five random futsal players twice during match-play. Subjective notational analysis is a valid and reliable method of tracking player movements, and may be a preferred and more effective method than GPS, particularly for indoor sports such as futsal, and field sports where short distances and changes in direction are observed.

  15. Integrating GPS, GYRO, vehicle speed sensor, and digital map to provide accurate and real-time position in an intelligent navigation system

    NASA Astrophysics Data System (ADS)

    Li, Qingquan; Fang, Zhixiang; Li, Hanwu; Xiao, Hui

    2005-10-01

    The global positioning system (GPS) has become the most extensively used positioning and navigation tool in the world. Applications of GPS abound in surveying, mapping, transportation, agriculture, military planning, GIS, and the geosciences. However, the positional and elevation accuracy of any given GPS location is prone to error, due to a number of factors. The applications of Global Positioning System (GPS) positioning is more and more popular, especially the intelligent navigation system which relies on GPS and Dead Reckoning technology is developing quickly for future huge market in China. In this paper a practical combined positioning model of GPS/DR/MM is put forward, which integrates GPS, Gyro, Vehicle Speed Sensor (VSS) and digital navigation maps to provide accurate and real-time position for intelligent navigation system. This model is designed for automotive navigation system making use of Kalman filter to improve position and map matching veracity by means of filtering raw GPS and DR signals, and then map-matching technology is used to provide map coordinates for map displaying. In practical examples, for illustrating the validity of the model, several experiments and their results of integrated GPS/DR positioning in intelligent navigation system will be shown for the conclusion that Kalman Filter based GPS/DR integrating position approach is necessary, feasible and efficient for intelligent navigation application. Certainly, this combined positioning model, similar to other model, can not resolve all situation issues. Finally, some suggestions are given for further improving integrated GPS/DR/MM application.

  16. Geophysical Surveying of Shallow Magnetic Anomalies Using the iPhone Magnetometer

    NASA Astrophysics Data System (ADS)

    Opdyke, P.; Dudley, C.; Louie, J. N.

    2012-12-01

    This investigation examined whether the 3-axis Hall-effect magnetometer in the Apple iPhone 3GS can function as an effective shallow magnetic survey instrument. The xSensor Pro app from Crossbow Systems allows recoding of all three sensor components along with the GPS location, at a frequency of 1.0, 4.0, 16.0, and 32.0 Hz. If the iPhone proves successful in collecting useful magnetic data, then geophysicists and especially educators would have a new tool for high-density geophysical mapping. No-contract iPhones that can connect with WiFi can be obtained for about $400, allowing deployment of large numbers of instruments. iPhones with the xSensor Pro app surveyed in parallel with an Overhauser GEM system magnetometer (1 nT sensitivity) to test this idea. Anderson Bay, located on the Pyramid Lake Paiute Reservation, provided a rural survey location free from cultural interference. xSensor Pro, logged each component's intensity and the GPS location at a frequency of four measurements per second. Two Overhauser units functioned as a base unit and a roving unit. The roving unit collected total field at set points located with a handheld GPS. Comparing the total field computed from the iPhone components against that collected by the Overhauser establishes the level of anomalies that the iPhone can detect. iPhone total-field measurements commonly vary by 200 nT from point to point, so a spatial-temporal average over 25 seconds produces a smoothed signal for comparison. Preliminary analysis of the iPhone results show that the data do not accurately correlate to the total field collected by the Overhauser for any anomaly of less than 200 nT.

  17. Should general practitioners purchase health care for their patients? The total purchasing experiment in Britain.

    PubMed

    Wyke, Sally; Mays, Nicholas; Street, Andrew; Bevan, Gwyn; McLeod, Hugh; Goodwin, Nick

    2003-09-01

    Until relatively recently, general practitioners (GPs) have been allowed to work independently, with no requirement to consider the resource implications of their referral and prescribing decisions. In order to align the interests of GPs with the overall objectives of health systems a number of countries have introduced primary care based capitation, funds pooling and budget holding either as experiments or as an overall policy. Are these experiments and policies likely to work? This paper presents evidence from the UK total purchasing experiment, which was the first major quasi-market development in the NHS to be independently evaluated from the outset. Total purchasing gave volunteer groups of practices freedom to purchase all hospital and community health services for their patients. The evidence suggests that whilst GPs have great potential as purchasers, they also have considerable limitations. The expectation that they will be able to improve the quality of patient experience of care, or to alter the use of resources, may not be generally realised. GP-based purchasing may be more appropriate where the task is to alter the balance or location of care between hospital and extramural settings. However, budgetary incentives are not 'magic potions' which have similar effects on behaviour wherever they are introduced. Holding budgets and having independent contracts, while important pre-requisites for being taken seriously in a quasi-market, were not sufficient for effective total purchasing. The paper concludes that health systems should not only value innovation and experimentation and encourage learning from evaluative research; they should also recognise the importance of supportive circumstances for any innovation to effect real and sustained change.

  18. The Phenomenology of the Diagnostic Process: A Primary Care-Based Survey.

    PubMed

    Donner-Banzhoff, Norbert; Seidel, Judith; Sikeler, Anna Maria; Bösner, Stefan; Vogelmeier, Maria; Westram, Anja; Feufel, Markus; Gaissmaier, Wolfgang; Wegwarth, Odette; Gigerenzer, Gerd

    2017-01-01

    While dichotomous tasks and related cognitive strategies have been extensively researched in cognitive psychology, little is known about how primary care practitioners (general practitioners [GPs]) approach ill-defined or polychotomous tasks and how valid or useful their strategies are. To investigate cognitive strategies used by GPs for making a diagnosis. In a cross-sectional study, we videotaped 282 consultations, irrespective of presenting complaint or final diagnosis. Reflective interviews were performed with GPs after each consultation. Recordings of consultations and GP interviews were transcribed verbatim and analyzed using a coding system that was based on published literature and systematically checked for reliability. In total, 134 consultations included 163 diagnostic episodes. Inductive foraging (i.e., the initial, patient-guided search) could be identified in 91% of consultations. It contributed an average 31% of cues obtained by the GP in 1 consultation. Triggered routines and descriptive questions occurred in 38% and 84% of consultations, respectively. GPs resorted to hypothesis testing, the hallmark of the hypothetico-deductive method, in only 39% of consultations. Video recordings and interviews presumably interfered with GPs' behavior and accounts. GPs might have pursued more hypotheses and collected more information than usual. The testing of specific disease hypotheses seems to play a lesser role than previously thought. Our data from real consultations suggest that GPs organize their search for information in a skillfully adapted way. Inductive foraging, triggered routines, descriptive questions, and hypotheses testing are essential building blocks to make a diagnosis in the generalist setting. © The Author(s) 2016.

  19. Variation of GPS-TEC in a low latitude Indian region during the year 2012 and 2013

    NASA Astrophysics Data System (ADS)

    Patel, Nilesh C.; Karia, Sheetal P.; Pathak, Kamlesh N.

    2018-05-01

    The paper is based on the ionospheric variations in terms of vertical total electron content (VTEC) for the period from January 2012 to December 2013 based on the analysis of dual frequency signals from the Global Positioning System (GPS) satellites recorded at ground stations Surat (21.16°N, 72.78°E Geog.), situated under the northern crest of the equatorial ionization anomaly region (EIA) and other three International GNSS Service (IGS) stations Bangalore (13.02°N, 77.57°E Geog.), Hyderabad (17.25°N, 78.30°E Geog.), and Lucknow (26.91°N, 80.95°E Geog.) in India. We describe the diurnal and seasonal characteristics. It was observed that GPS-TEC reaches its maximum value between 12:00 and 16:00 IST. Further, Seasonal variations of GPS-TEC is categorized into four seasons, i.e., March equinox (February, March, and April), June solstice (May, June, and July), September equinox (August, September, and October) and December solstice (November, December and January). The forenoon rate of production in Lucknow (beyond EIA crest) is faster than Bangalore, Hyderabad and Surat station. It is found that September equinox shows GPS-TEC slightly higher than the March equinox, followed by June solstice and the lowest GPS-TEC are in winter solstice at four stations. The equinoctial asymmetry clearly observed in the current study. Also GPS-TEC shows a semiannual variation.

  20. 77 FR 12106 - 88th Meeting: RTCA Special Committee 159, Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... 159, Global Positioning System (GPS) AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 159, Global Positioning System (GPS). SUMMARY: The..., Global Positioning System (GPS). DATES: The meeting will be held March 13-16, 2012, from 9 a.m.-4:30 p.m...

  1. GPS-based system for satellite tracking and geodesy

    NASA Technical Reports Server (NTRS)

    Bertiger, Willy I.; Thornton, Catherine L.

    1989-01-01

    High-performance receivers and data processing systems developed for GPS are reviewed. The GPS Inferred Positioning System (GIPSY) and the Orbiter Analysis and Simulation Software (OASIS) are described. The OASIS software is used to assess GPS system performance using GIPSY for data processing. Consideration is given to parameter estimation for multiday arcs, orbit repeatability, orbit prediction, daily baseline repeatability, agreement with VLBI, and ambiguity resolution. Also, the dual-frequency Rogue receiver, which can track up to eight GPS satellites simultaneously, is discussed.

  2. Pre-Flight Testing of Spaceborne GPS Receivers using a GPS Constellation Simulator

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Davis, Edward; Alonso, R.

    1999-01-01

    The NASA Goddard Space Flight Center (GSFC) Global Positioning System (GPS) applications test facility has been established within the GSFC Guidance Navigation and Control Center. The GPS test facility is currently housing the Global Simulation Systems Inc. (GSSI) STR2760 GPS satellite 40-channel attitude simulator and a STR4760 12-channel navigation simulator. The facility also contains a few other resources such as an atomic time standard test bed, a rooftop antenna platform and a radome. It provides a new capability for high dynamics GPS simulations of space flight that is unique within the aerospace community. The GPS facility provides a critical element for the development and testing of GPS based technologies i.e. position, attitude and precise time determination used on-board a spacecraft, suborbital rocket balloon. The GPS simulation system is configured in a transportable rack and is available for GPS component development as well as for component, spacecraft subsystem and system level testing at spacecraft integration and tests sites. The GPS facility has been operational since early 1996 and has utilized by space flight projects carrying GPS experiments, such as the OrbView-2 and the Argentine SAC-A spacecrafts. The SAC-A pre-flight test data obtained by using the STR2760 simulator and the comparison with preliminary analysis of the GPS data from SAC-A telemetry are summarized. This paper describes pre-flight tests and simulations used to support a unique spaceborne GPS experiment. The GPS experiment mission objectives and the test program are described, as well as the GPS test facility configuration needed to verify experiment feasibility. Some operational and critical issues inherent in GPS receiver pre-flight tests and simulations using this GPS simulation, and test methodology are described. Simulation and flight data are presented. A complete program of pre-flight testing of spaceborne GPS receivers using a GPS constellation simulator is detailed.

  3. Pre-Flight Testing of Spaceborne GPS Receivers Using a GPS Constellation Simulator

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Davis, Edward; Alonso, Roberto

    1999-01-01

    The NASA Goddard Space Flight Center (GSFC) Global Positioning System (GPS) applications test facility has been established within the GSFC Guidance Navigation and Control Center. The GPS test facility is currently housing the Global Simulation Systems Inc. (GSSI) STR2760 GPS satellite 40-channel attitude simulator and a STR4760 12-channel navigation simulator. The facility also contains a few other resources such as an atomic time standard test bed, a rooftop antenna platform and a radome. It provides a new capability for high dynamics GPS simulations of space flight that is unique within the aerospace community. The GPS facility provides a critical element for the development and testing of GPS based technologies i.e. position, attitude and precise time determination used on-board a spacecraft, suborbital rocket or balloon. The GPS simulator system is configured in a transportable rack and is available for GPS component development as well as for component, spacecraft subsystem and system level testing at spacecraft integration and test sites. The GPS facility has been operational since early 1996 and has been utilized by space flight projects carrying GPS experiments, such as the OrbView-2 and the Argentine SAC-A spacecrafts. The SAC-A pre-flight test data obtained by using the STR2760 simulator and the comparison with preliminary analysis of the GPS data from SAC-A telemetry are summarized. This paper describes pre-flight tests and simulations used to support a unique spaceborne GPS experiment. The GPS experiment mission objectives and the test program are described, as well as the GPS test facility configuration needed to verify experiment feasibility. Some operational and critical issues inherent in GPS receiver pre-flight tests and simulations using this GPS simulator, and test methodology are described. Simulation and flight data are presented. A complete program of pre-flight testing of spaceborne GPS receivers using a GPS constellation simulator is detailed.

  4. Three methods to retrieve slant total electron content measurements from ground-based GPS receivers and performance assessment

    NASA Astrophysics Data System (ADS)

    Zhang, Baocheng

    2016-07-01

    The high sampling rate along with the global coverage of ground-based receivers makes Global Positioning System (GPS) data particularly ideal for sensing the Earth's ionosphere. Retrieval of slant total electron content measurements (TECMs) constitutes a key first step toward extracting various ionospheric parameters from GPS data. Within the ionospheric community, the interpretation of TECM is widely recognized as the slant total electron content along the satellite receiver line of sight, biased by satellite and receiver differential code biases (DCBs). The Carrier-to-Code Leveling (CCL) has long been used as a geometry-free method for retrieving TECM, mainly because of its simplicity and effectiveness. In fact, however, the CCL has proven inaccurate as it may give rise to TECM very susceptible to so-called leveling errors. With the goal of attaining more accurate TECM retrieval, we report in this contribution two other methods than the CCL, namely, the Precise Point Positioning (PPP) and the Array-aided PPP (A-PPP). The PPP further exploits the International GPS Service (IGS) orbit and clock products and turns out to be a geometry-based method. The A-PPP is designed to retrieve TECM from an array of colocated receivers, taking advantage of the broadcast orbit and clock products. Moreover, A-PPP also takes into account the fact that the ionospheric effects measured from one satellite to all colocated receivers ought to be the same, thus leading to the estimability of interreceiver DCB. We perform a comparative study of the formal precision and the empirical accuracy of the TECM that are retrieved, respectively, by three methods from the same set of GPS data. Results of such a study can be used to assess the actual performance of the three methods. In addition, we check the temporal stability in A-PPP-derived interreceiver DCB estimates over time periods ranging from 1 to 3 days.

  5. Spaceborne GPS Current Status and Future Visions

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Hartman, Kate; Lightsey, E. Glenn

    1998-01-01

    The Global Positioning System (GPS), developed by the Department of Defense, is quickly revolutionizing the architecture of future spacecraft and spacecraft systems. Significant savings in spacecraft life cycle cost, in power, and in mass can be realized by exploiting Global Positioning System (GPS) technology in spaceborne vehicles. These savings are realized because GPS is a systems sensor-it combines the ability to sense space vehicle trajectory, attitude, time, and relative ranging between vehicles into one package. As a result, a reduced spacecraft sensor complement can be employed on spacecraft and significant reductions in space vehicle operations cost can be realized through enhanced on- board autonomy. This paper provides an overview of the current status of spaceborne GPS, a description of spaceborne GPS receivers available now and in the near future, a description of the 1997-1999 GPS flight experiments and the spaceborne GPS team's vision for the future.

  6. Methodology and consistency of slant and vertical assessments for ionospheric electron content models

    NASA Astrophysics Data System (ADS)

    Hernández-Pajares, Manuel; Roma-Dollase, David; Krankowski, Andrzej; García-Rigo, Alberto; Orús-Pérez, Raül

    2017-12-01

    A summary of the main concepts on global ionospheric map(s) [hereinafter GIM(s)] of vertical total electron content (VTEC), with special emphasis on their assessment, is presented in this paper. It is based on the experience accumulated during almost two decades of collaborative work in the context of the international global navigation satellite systems (GNSS) service (IGS) ionosphere working group. A representative comparison of the two main assessments of ionospheric electron content models (VTEC-altimeter and difference of Slant TEC, based on independent global positioning system data GPS, dSTEC-GPS) is performed. It is based on 26 GPS receivers worldwide distributed and mostly placed on islands, from the last quarter of 2010 to the end of 2016. The consistency between dSTEC-GPS and VTEC-altimeter assessments for one of the most accurate IGS GIMs (the tomographic-kriging GIM `UQRG' computed by UPC) is shown. Typical error RMS values of 2 TECU for VTEC-altimeter and 0.5 TECU for dSTEC-GPS assessments are found. And, as expected by following a simple random model, there is a significant correlation between both RMS and specially relative errors, mainly evident when large enough number of observations per pass is considered. The authors expect that this manuscript will be useful for new analysis contributor centres and in general for the scientific and technical community interested in simple and truly external ways of validating electron content models of the ionosphere.

  7. PBO H2O: Plate Boundary Observatory Studies of the Water Cycle

    NASA Astrophysics Data System (ADS)

    Larson, K. M.; Small, E. E.; Chew, C. C.; Nievinski, F. G.; Pratt, J.; McCreight, J. L.; Braun, J.; Boniface, K.; Evans, S. G.

    2013-12-01

    The EarthScope Plate Boundary Observatory was built to measure the deformation of the North American continent. PBO stations can also be used to measure ground displacements at much higher frequencies (5-Hz) for studies of fault slip during large earthquakes and for warnings of volcanic eruptions. There is also a long history of using atmospheric delays on the GPS signals to estimate precipitable water vapor (for weather and climate studies) and total electron content (space weather studies). Recently the PBO H2O research group has demonstrated that GPS signals that reflect from the nearby environment can be used for water cycle research. These GPS reflections measure how much water is in the top layer of the soil, how much snow is on its surface, and water content of nearby vegetation. Observing and monitoring spatial and temporal changes in the water cycle is critical for both understanding and predicting Earth's climate. Since GPS reflections encompass an area of ~1000 m^2, they provide a spatial footprint that complements satellite systems which sense much larger areas and in situ systems that sense regions < 1 m^2. Water cycle products are produced from PBO data each day and updated on the PBO H2O website.

  8. Research on global plasmaspheric electron content by using LEO occultation and GPS data

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Yao, Yibin

    2015-05-01

    This paper investigates the characteristics of global plasmaspheric electron content (pTEC) using COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) occultation and GPS (Global Positioning System) data. The ionospheric electron content (iTEC) within 100-1000 km was obtained by fitting the COSMIC occultation electron density profiles, and the pTEC was obtained by subtracting the iTEC from CODE (Center for Orbit Determination in Europe) GIM (global ionosphere maps) TEC provided by University of Bern. This paper also investigates the characteristics of pTEC variations with local time, latitude and season. The results show that in 2011, the worldwide average of pTEC was 4.02 TECu, which is consistent with the findings of other studies. The pTEC shows significant diurnal variation characteristics, that is, pTEC is higher during daytime than during nighttime, but the percentage contribution of pTEC to GPS TEC is higher during nighttime than during daytime. The pTEC varies with the seasons, pTEC hemispheres symmetrically during spring and autumn, while pTEC in the summer hemisphere is higher than that in the winter hemisphere. Moreover, the percentage contribution of pTEC to GPS TEC (total electron content) is higher in winter hemisphere than in summer hemisphere.

  9. The Performance Analysis of a Real-Time Integrated INS/GPS Vehicle Navigation System with Abnormal GPS Measurement Elimination

    PubMed Central

    Chiang, Kai-Wei; Duong, Thanh Trung; Liao, Jhen-Kai

    2013-01-01

    The integration of an Inertial Navigation System (INS) and the Global Positioning System (GPS) is common in mobile mapping and navigation applications to seamlessly determine the position, velocity, and orientation of the mobile platform. In most INS/GPS integrated architectures, the GPS is considered to be an accurate reference with which to correct for the systematic errors of the inertial sensors, which are composed of biases, scale factors and drift. However, the GPS receiver may produce abnormal pseudo-range errors mainly caused by ionospheric delay, tropospheric delay and the multipath effect. These errors degrade the overall position accuracy of an integrated system that uses conventional INS/GPS integration strategies such as loosely coupled (LC) and tightly coupled (TC) schemes. Conventional tightly coupled INS/GPS integration schemes apply the Klobuchar model and the Hopfield model to reduce pseudo-range delays caused by ionospheric delay and tropospheric delay, respectively, but do not address the multipath problem. However, the multipath effect (from reflected GPS signals) affects the position error far more significantly in a consumer-grade GPS receiver than in an expensive, geodetic-grade GPS receiver. To avoid this problem, a new integrated INS/GPS architecture is proposed. The proposed method is described and applied in a real-time integrated system with two integration strategies, namely, loosely coupled and tightly coupled schemes, respectively. To verify the effectiveness of the proposed method, field tests with various scenarios are conducted and the results are compared with a reliable reference system. PMID:23955434

  10. Study of ionospheric disturbances over the China mid- and low-latitude region with GPS observations

    NASA Astrophysics Data System (ADS)

    Ning, Yafei; Tang, Jun

    2018-01-01

    Ionospheric disturbances constitute the main restriction factor for precise positioning techniques based on global positioning system (GPS) measurements. Simultaneously, GPS observations are widely used to determine ionospheric disturbances with total electron content (TEC). In this paper, we present an analysis of ionospheric disturbances over China mid- and low-latitude area before and during the magnetic storm on 17 March 2015. The work analyses the variation of magnetic indices, the amplitude of ionospheric irregularities observed with four arrays of GPS stations and the influence of geomagnetic storm on GPS positioning. The results show that significant ionospheric TEC disturbances occurred between 10:30 and 12:00 UT during the main phase of the large storm, and the static position reliability for this period are little affected by these disturbances. It is observed that the positive and negative disturbances propagate southward along the meridian from mid-latitude to low-latitude regions. The propagation velocity is from about 200 to 700 m s-1 and the amplitude of ionospheric disturbances is from about 0.2 to 0.9 TECU min-1. Moreover, the position dilution of precession (PDOP) with static precise point positioning (PPP) on storm and quiet days is 1.8 and 0.9 cm, respectively. This study is based on the analysis of ionospheric variability with differential rate of vertical TEC (DROVT) and impact of ionospheric storm on positioning with technique of GPS PPP.

  11. Observational study of ionospheric irregularities and GPS scintillations associated with the 2012 tropical cyclone Tembin passing Hong Kong

    NASA Astrophysics Data System (ADS)

    Yang, Zhe; Liu, Zhizhao

    2016-05-01

    This study presents the ionospheric responses observed in Hong Kong to a Typhoon, namely, Tembin, from the aspects of the occurrence of ionospheric irregularities and scintillations, using Global Positioning System (GPS) observations from a ground-based GPS scintillation monitoring station in Hong Kong and from GPS receivers on board the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. The ionospheric irregularities and scintillations are characterized by the rate of total electron content variation index (ROTI) and the amplitude scintillation index S4, respectively. The typhoon Tembin formed over the western North Pacific during 18-30 August 2012 and approached Hong Kong during 24-27 August 2012 with the closest distance 290 km from Hong Kong at around 17 universal time (UT) on 25 August 2012. The ground-based observations indicate that in the nighttime period of 20:00-02:00 local time (LT = UT + 8 h) on 26 August when Tembin passed closely to Hong Kong, the ionospheric irregularities and scintillations of GPS signals were observed in the south of Hong Kong, over the area of 13°N ~ 23°N in latitude and 110°E ~ 120°E in longitude. From the COSMIC observations, it shows that the number of radio occultation scintillation events peaks on 26 August 2012 during the passage of Tembin. Without the presence of strong geomagnetic or solar activity, it is suspected that gravity waves might be generated in the lower atmosphere and likely seed the formation of ionospheric plasma irregularities. This work for the first time from Hong Kong observes the sign of coupling between the lower atmosphere and ionosphere in a tropical cyclone event, combining both ground- and space-based GPS observation data.

  12. Indoor/Outdoor Seamless Positioning Using Lighting Tags and GPS Cellular Phones for Personal Navigation

    NASA Astrophysics Data System (ADS)

    Namie, Hiromune; Morishita, Hisashi

    The authors focused on the development of an indoor positioning system which is easy to use, portable and available for everyone. This system is capable of providing the correct position anywhere indoors, including onboard ships, and was invented in order to evaluate the availability of GPS indoors. Although the performance of GPS is superior outdoors, there has been considerable research regarding indoor GPS involving sensitive GPS, pseudolites (GPS pseudo satellite), RFID (Radio Frequency IDentification) tags, and wireless LAN .However, the positioning rate and the precision are not high enough for general use, which is the reason why these technologies have not yet spread to personal navigation systems. In this regard, the authors attempted to implement an indoor positioning system using cellular phones with built-in GPS and infrared light data communication functionality, which are widely used in Japan. GPS is becoming increasingly popular, where GPGGS sentences of the NMEA outputted from the GPS receiver provide spatiotemporal information including latitude, longitude, altitude, and time or ECEF xyz coordinates. As GPS applications grow rapidly, spatiotemporal data becomes key to the ubiquitous outdoor and indoor seamless positioning services at least for the entire area of Japan, as well as to becoming familiar with satellite positioning systems (e.g. GPS). Furthermore, the authors are also working on the idea of using PDAs (Personal Digital Assistants), as cellular phones with built-in GPS and PDA functionality are also becoming increasingly popular.

  13. GPS/REFSAT definition study report for low-cost terminals

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A relay transponder, located either on a satellite in geostationary orbit or on a local tower to relay acquisition-aiding data, ephemerides, etc, from a ground-based remote control station to a GPS civil user terminal located on a ship or land-transportation vehicle is described. Termed REFSAT (Reference Satellite), this concept reduces the circuit complexity and cost of user terminals. The various systems needed to implement the REFSAT concept for low-cost, GPS civil terminals are defined. The GPS/REFSAT system compatible with the NAVSTAR GPS system consists of a geostationary relay satellite, civil user terminals, and the central facility which performs operations common to all users for relay via the space segment. A GPS/REFSAT system utilizing a local tower for the relay transponder is described, results of a study of civil user requirements are presented, and specifications for the GPS/REFSAT system and its individual segments are included.

  14. Crustal deformation of the Yellowstone-Snake River Plain volcano-tectonic system-Campaign and continuous GPS observations, 1987-2004

    USGS Publications Warehouse

    Puskas, C.M.; Smith, R.B.; Meertens, Charles M.; Chang, W. L.

    2007-01-01

    The Yellowstone-Snake River Plain tectonomagmatic province resulted from Late Tertiary volcanism in western North America, producing three large, caldera-forming eruptions at the Yellowstone Plateau in the last 2 Myr. To understand the kinematics and geodynamics of this volcanic system, the University of Utah conducted seven GPS campaigns at 140 sites between 1987 and 2003 and installed a network of 15 permanent stations. GPS deployments focused on the Yellowstone caldera, the Hebgen Lake and Teton faults, and the eastern Snake River Plain. The GPS data revealed periods of uplift and subsidence of the Yellowstone caldera at rates up to 15 mm/yr. From 1987 to 1995, the caldera subsided and contracted, implying volume loss. From 1995 to 2000, deformation shifted to inflation and extension northwest of the caldera. From 2000 to 2003, uplift continued to the northwest while caldera subsidence was renewed. The GPS observations also revealed extension across the Hebgen Lake fault and fault-normal contraction across the Teton fault. Deformation rates of the Yellowstone caldera and Hebgen Lake fault were converted to equivalent total moment rates, which exceeded historic seismic moment release and late Quaternary fault slip-derived moment release by an order of magnitude. The Yellowstone caldera deformation trends were superimposed on regional southwest extension of the Yellowstone Plateau at up to 4.3 ± 0.2 mm/yr, while the eastern Snake River Plain moved southwest as a slower rate at 2.1 ± 0.2 mm/yr. This southwest extension of the Yellowstone-Snake River Plain system merged into east-west extension of the Basin-Range province. Copyright 2007 by the American Geophysical Union.

  15. GPS Radio Occultation as Part of the Global Observing System for Atmosphere

    NASA Technical Reports Server (NTRS)

    Mannucci, Anthony J.; Ao, C. O.; Iijima, B. A.; Wilson, B. D.; Yunck, T. P.; Kursinski, E. R.

    2008-01-01

    Topics include: The Measurement (Physical retrievals based on time standards), GPS Retrieval Products, Retrievals and Radiances: CLARREO Mission, GPS RO and AIRS, GPS RO and Microwave, GPS RO and Radiosondes, GPS/GNSS Science, and Conclusions.

  16. Atmospheric pressure loading effects on Global Positioning System coordinate determinations

    NASA Technical Reports Server (NTRS)

    Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.

    1994-01-01

    Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.

  17. Modified Glasgow Prognostic Score is Associated With Risk of Recurrence in Bladder Cancer Patients After Radical Cystectomy

    PubMed Central

    Ferro, Matteo; De Cobelli, Ottavio; Buonerba, Carlo; Di Lorenzo, Giuseppe; Capece, Marco; Bruzzese, Dario; Autorino, Riccardo; Bottero, Danilo; Cioffi, Antonio; Matei, Deliu Victor; Caraglia, Michele; Borghesi, Marco; De Berardinis, Ettore; Busetto, Gian Maria; Giovannone, Riccardo; Lucarelli, Giuseppe; Ditonno, Pasquale; Perdonà, Sisto; Bove, Pierluigi; Castaldo, Luigi; Hurle, Rodolfo; Musi, Gennaro; Brescia, Antonio; Olivieri, Michele; Cimmino, Amelia; Altieri, Vincenzo; Damiano, Rocco; Cantiello, Francesco; Serretta, Vincenzo; De Placido, Sabino; Mirone, Vincenzo; Sonpavde, Guru; Terracciano, Daniela

    2015-01-01

    Abstract Recently, many studies explored the role of inflammation parameters in the prognosis of urinary cancers, but the results were not consistent. The modified Glasgow Prognostic Score (mGPS), a systemic inflammation marker, is a prognostic marker in various types of cancers. The aim of the present study was to investigate the usefulness of the preoperative mGPS as predictor of recurrence-free (RFS), overall (OS), and cancer-specific (CSS) survivals in a large cohort of urothelial bladder cancer (UBC) patients. A total of 1037 patients with UBC were included in this study with a median follow-up of 22 months (range 3–60 months). An mGPS = 0 was observed in 646 patients (62.3%), mGPS = 1 in 297 patients (28.6 %), and mGPS = 2 in 94 patients (9.1%). In our study cohort, subjects with an mGPS equal to 2 had a significantly shorter median RFS compared with subjects with mGPS equal to 1 (16 vs 19 months, hazard ratio [HR] 1.54, 95% CI 1.31–1.81, P < 0.001) or with subjects with mGPS equal to 0 (16 vs 29 months, HR 2.38, 95% CI 1.86–3.05, P < 0.001). The association between mGPS and RFS was confirmed by weighted multivariate Cox model. Although in univariate analysis higher mGPS was associated with lower OS and CSS, this association disappeared in multivariate analysis where only the presence of lymph node-positive bladder cancer and T4 stage were predictors of worse prognosis for OS and CSS. In conclusion, the mGPS is an easily measured and inexpensive prognostic marker that was significantly associated with RFS in UBC patients. PMID:26496339

  18. The Glasgow Prognostic Score Predicts Response to Chemotherapy in Patients with Metastatic Breast Cancer.

    PubMed

    Wang, Dexing; Duan, Li; Tu, Zhiquan; Yan, Fei; Zhang, Cuicui; Li, Xu; Cao, Yuzhu; Wen, Hongsheng

    2016-01-01

    Breast cancer is one of the most common causes of cancer death in women worldwide. The Glasgow Prognostic Score (GPS), a cumulative prognostic score based on C-reactive protein and albumin, indicates the presence of a systemic inflammatory response. The GPS has been adopted as a powerful prognostic tool for patients with various types of malignant tumors, including breast cancer. The aim of this study was to assess the value of the GPS in predicting the response and toxicity in breast cancer patients treated with chemotherapy. Patients with metastatic breast cancers in a progressive stage for consideration of chemotherapy were eligible. The clinical characteristics and demographics were recorded. The GPS was calculated before the onset of chemotherapy. Data on the response to chemotherapy and progression-free survival (PFS) were also collected. Objective tumor responses were evaluated according to Response Evaluation Criteria in Solid Tumors (RECIST). Toxicities were graded according to National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTC) version 3.0 throughout therapy. In total, 106 breast cancer patients were recruited. The GPS was associated with the response rate (p = 0.05), the clinical benefit rate (p = 0.03), and PFS (p = 0.005). The GPS was the only independent predictor of PFS (p = 0.005). The GPS was significantly associated with neutropenia, thrombocytopenia, anorexia, nausea and vomiting, fatigue, and mucositis (p = 0.05-0.001). Our data demonstrate that GPS assessment is associated with poor clinical outcomes and severe chemotherapy-related toxicities in patients with metastatic breast cancer who have undergone chemotherapy, without any specific indication regarding the type of chemotherapy applied. © 2016 S. Karger AG, Basel.

  19. Climatology of GPS signal loss observed by Swarm satellites

    NASA Astrophysics Data System (ADS)

    Xiong, Chao; Stolle, Claudia; Park, Jaeheung

    2018-04-01

    By using 3-year global positioning system (GPS) measurements from December 2013 to November 2016, we provide in this study a detailed survey on the climatology of the GPS signal loss of Swarm onboard receivers. Our results show that the GPS signal losses prefer to occur at both low latitudes between ±5 and ±20° magnetic latitude (MLAT) and high latitudes above 60° MLAT in both hemispheres. These events at all latitudes are observed mainly during equinoxes and December solstice months, while totally absent during June solstice months. At low latitudes the GPS signal losses are caused by the equatorial plasma irregularities shortly after sunset, and at high latitude they are also highly related to the large density gradients associated with ionospheric irregularities. Additionally, the high-latitude events are more often observed in the Southern Hemisphere, occurring mainly at the cusp region and along nightside auroral latitudes. The signal losses mainly happen for those GPS rays with elevation angles less than 20°, and more commonly occur when the line of sight between GPS and Swarm satellites is aligned with the shell structure of plasma irregularities. Our results also confirm that the capability of the Swarm receiver has been improved after the bandwidth of the phase-locked loop (PLL) widened, but the updates cannot radically avoid the interruption in tracking GPS satellites caused by the ionospheric plasma irregularities. Additionally, after the PLL bandwidth increased larger than 0.5 Hz, some unexpected signal losses are observed even at middle latitudes, which are not related to the ionospheric plasma irregularities. Our results suggest that rather than 1.0 Hz, a PLL bandwidth of 0.5 Hz is a more suitable value for the Swarm receiver.

  20. US-TEC: A new data assimilation product from the Space Environment Center characterizing the ionospheric total electron content using real-time GPS data

    NASA Astrophysics Data System (ADS)

    Fuller-Rowell, Tim; Araujo-Pradere, Eduardo; Minter, Cliff; Codrescu, Mihail; Spencer, Paul; Robertson, Doug; Jacobson, Abram R.

    2006-12-01

    The potential of data assimilation for operational numerical weather forecasting has been appreciated for many years. For space weather it is a new path that we are just beginning to explore. With the emergence of satellite constellations and the networks of ground-based observations, sufficient data sources are now available to make the application of data assimilation techniques a viable option. The first space weather product at Space Environment Center (SEC) utilizing data assimilation techniques, US-TEC, was launched as a test operational product in November 2004. US-TEC characterizes the ionospheric total electron content (TEC) over the continental United States (CONUS) every 15 min with about a 15-min latency. US-TEC is based on a Kalman filter data assimilation scheme driven by a ground-based network of real-time GPS stations. The product includes a map of the vertical TEC, an estimate of the uncertainty in the map, and the departure of the TEC from a 10-day average at that particular universal time. In addition, data files are provided for vertical TEC and the line-of-sight electron content to all GPS satellites in view over the CONUS at that time. The information can be used to improve single-frequency GPS positioning by providing more accurate corrections for the ionospheric signal delay, or it can be used to initialize rapid integer ambiguity resolution schemes for dual-frequency GPS systems. Validation of US-TEC indicates an accuracy of the line-of-sight electron content of between 2 and 3 TEC units (1 TECU = 1016 el m-2), equivalent to less than 50 cm signal delay at L1 frequencies, which promises value for GPS users. This is the first step along a path that will likely lead to major improvement in space weather forecasting, paralleling the advances achieved in meteorological weather forecasting.

  1. Out-of-hours demand in primary care: frequency, mode of contact and reasons for encounter in Switzerland.

    PubMed

    Huber, Carola A; Rosemann, Thomas; Zoller, Marco; Eichler, Klaus; Senn, Oliver

    2011-02-01

    To investigate the demand for traditional out-of-hours general practitioner (GP) emergency care in Switzerland including GPs' satisfaction and reasons for encounter (RFE). During a 2-month period (2009), a questionnaire-based, cross-sectional study was performed in GPs participating in the mandatory out-of-hours service in the city of Zurich, Switzerland. The number and mode of patient contacts were assessed to investigate the demand for GP care in traditional out-of-hours services. GPs and patient characteristics, including RFE according to the International Classification of Primary Care, were noted. Descriptive statistics and non-parametric tests were conducted. Out of the 295 out-of-hours episodes during the study period, 148 (50%) duty periods were documented by a total of 93 GPs (75% men) with a mean (SD) age of 48.0 (6.2) years. The median (interquartile range) number of out-of-hours contacts was 5 (3-8) and the demand for home visits was significantly more common compared with practice and telephone consultations. A total of 112 different RFEs were responsible for the 382 documented patient contacts with fever accounting for the most common complaint (13.9%). Although 80% of GPs agreed to be satisfied overall with their profession as primary care provider, 57.6% among them were dissatisfied with the current out-of-hours service. Inappropriate payment and interference with their daily work in practice were most frequently reported. Our findings indicate that there is still strong patient demand for out-of-hours care with special need for home visits, suggesting that new organizational models such as integrating GPs into emergency care may not be an appropriate approach for all patients. Therefore, the ongoing reorganization of the out-of-hours-service in many health care systems has to be evaluated carefully in order not to miss important patient needs. © 2010 Blackwell Publishing Ltd.

  2. Spaceborne GPS: Current Status and Future Visions

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Hartman, Kate; Lightsey, E. Glenn

    1998-01-01

    The Global Positioning System (GPS), developed by the Department of Defense is quickly revolutionizing the architecture of future spacecraft and spacecraft systems. Significant savings in spacecraft life cycle cost, in power, and in mass can be realized by exploiting GPS technology in spaceborne vehicles. These savings are realized because GPS is a systems sensor--it combines the ability to sense space vehicle trajectory, attitude, time, and relative ranging between vehicles into one package. As a result, a reduced spacecraft sensor complement can be employed and significant reductions in space vehicle operations cost can be realized through enhanced on-board autonomy. This paper provides an overview of the current status of spaceborne GPS, a description of spaceborne GPS receivers available now and in the near future, a description of the 1997-2000 GPS flight experiments, and the spaceborne GPS team's vision for the future.

  3. USNO GPS program

    NASA Technical Reports Server (NTRS)

    Putkovich, K.

    1981-01-01

    Initial test results indicated that the Global Positioning System/Time Transfer Unit (GPS/TTU) performed well within the + or - 100 nanosecond range required by the original system specification. Subsequent testing involved the verification of GPS time at the master control site via portable clocks and the acquisition and tracking of as many passes of the space vehicles currently in operation as possible. A description and discussion of the testing, system modifications, test results obtained, and an evaluation of both GPS and the GPS/TTU are presented.

  4. Nighttime Medium-Scale Traveling Ionospheric Disturbances From Airglow Imager and Global Navigation Satellite Systems Observations

    NASA Astrophysics Data System (ADS)

    Huang, Fuqing; Lei, Jiuhou; Dou, Xiankang; Luan, Xiaoli; Zhong, Jiahao

    2018-01-01

    In this study, coordinated airglow imager, GPS total electron content (TEC), and Beidou geostationary orbit (GEO) TEC observations for the first time are used to investigate the characteristics of nighttime medium-scale traveling ionospheric disturbances (MSTIDs) over central China. The results indicated that the features of nighttime MSTIDs from three types of observations are generally consistent, whereas the nighttime MSTID features from the Beidou GEO TEC are in better agreement with those from airglow images as compared with the GPS TEC, given that the nighttime MSTID characteristics from GPS TEC are significantly affected by Doppler effect due to satellite movement. It is also found that there are three peaks in the seasonal variations of the occurrence rate of nighttime MSTIDs in 2016. Our study revealed that the Beidou GEO satellites provided fidelity TEC observations to study the ionospheric variability.

  5. Spacecraft applications of advanced global positioning system technology

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This is the final report on the Texas Instruments Incorporated (TI) simulations study of Spacecraft Application of Advanced Global Positioning System (GPS) Technology. This work was conducted for the NASA Johnson Space Center (JSC) under contract NAS9-17781. GPS, in addition to its baselined capability as a highly accurate spacecraft navigation system, can provide traffic control, attitude control, structural control, and uniform time base. In Phase 1 of this program, another contractor investigated the potential of GPS in these four areas and compared GPS to other techniques. This contract was for the Phase 2 effort, to study the performance of GPS for these spacecraft applications through computer simulations. TI had previously developed simulation programs for GPS differential navigation and attitude measurement. These programs were adapted for these specific spacecraft applications. In addition, TI has extensive expertise in the design and production of advanced GPS receivers, including space-qualified GPS receivers. We have drawn on this background to augment the simulation results in the system level overview, which is Section 2 of this report.

  6. Glasgow Prognostic Score as a Prognostic Clinical Marker in T4 Esophageal Squamous Cell Carcinoma.

    PubMed

    Ohira, Masaichi; Kubo, Naoshi; Masuda, Go; Yamashita, Yoshito; Sakurai, Katsunobu; Toyokawa, Takahiro; Tanaka, Hiroaki; Muguruma, Kazuya; Hirakawa, Kosei

    2015-09-01

    Patients with clinical T4 esophageal squamous cell carcinoma (ESCC) have an unfavorable prognosis, mainly indicated by the response to chemoradiotherapy (CRT), crucial to estimating long-term survival. Other prognostic measures include systemic inflammatory or immunonutritional indices such as the Glasgow Prognostic Score (GPS) and Prognostic Nutritional Index (PNI) that have not been sufficiently documented. This study retrospectively evaluated 91 patients with T4 ESCC treated at our Hospital between 2000 and 2013. All patients initially received CRT, including 5-fluorouracil (5FU) and cisplatin or nedaplatin with concurrent 2-Gy/fraction radiation (total dose, 40-60 Gy). Curative tumor resection was undertaken in suitable patients on completing CRT. Patients were classified as GPS0, GPS1, or GPS2 based on C-reactive protein (CRP) ≤ 10 mg/l and albumin ≥ 35 g/l, CRP >10 mg/l or albumin <35 g/l, or CRP >10 mg/l and albumin <35 g/l, respectively. PNI was calculated as 10-times the serum albumin (g/dl)+0.005 × total lymphocyte count (/mm(3)). The impact of the pre-treatment GPS and PNI on the prognosis of patients with T4 ESCC was investigated in univariate and multivariate analyses. Sixty (67%) patients responded to CRT (9 complete responses and 51 partial responses). Forty-one (45%) patients also underwent surgical resection of the residual tumor. The overall 5-year survival rate and median survival time were 27.0% and 11.8 months, respectively. In the cohort of CRT-plus-surgical resection, the 5-year survival rate was significantly higher than in the groups treated with CRT-alone (51.1% vs. 6.5%; p < 0.01). On multivariate analysis, good response to CRT [hazard ratio (HR) =0.449, p<0.01], GPS1/2 (HR=2.151, p=0.015), and surgical resection (HR=0.282, p<0.01) were significant prognostic factors, whereas PNI was not. The GPS is a useful, simple survival marker for patients with T4 ESCC undergoing multimodal therapy. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Radiation-hardened fast acquisition/weak signal tracking system and method

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke (Inventor); Boegner, Gregory J. (Inventor); Sirotzky, Steve (Inventor)

    2009-01-01

    A global positioning system (GPS) receiver and method of acquiring and tracking GPS signals comprises an antenna adapted to receive GPS signals; an analog radio frequency device operatively connected to the antenna and adapted to convert the GPS signals from an analog format to a digital format; a plurality of GPS signal tracking correlators operatively connected to the analog RF device; a GPS signal acquisition component operatively connected to the analog RF device and the plurality of GPS signal tracking correlators, wherein the GPS signal acquisition component is adapted to calculate a maximum vector on a databit correlation grid; and a microprocessor operatively connected to the plurality of GPS signal tracking correlators and the GPS signal acquisition component, wherein the microprocessor is adapted to compare the maximum vector with a predetermined correlation threshold to allow the GPS signal to be fully acquired and tracked.

  8. Tomography Reconstruction of Ionospheric Electron Density with Empirical Orthonormal Functions Using Korea GNSS Network

    NASA Astrophysics Data System (ADS)

    Hong, Junseok; Kim, Yong Ha; Chung, Jong-Kyun; Ssessanga, Nicholas; Kwak, Young-Sil

    2017-03-01

    In South Korea, there are about 80 Global Positioning System (GPS) monitoring stations providing total electron content (TEC) every 10 min, which can be accessed through Korea Astronomy and Space Science Institute (KASI) for scientific use. We applied the computerized ionospheric tomography (CIT) algorithm to the TEC dataset from this GPS network for monitoring the regional ionosphere over South Korea. The algorithm utilizes multiplicative algebraic reconstruction technique (MART) with an initial condition of the latest International Reference Ionosphere-2016 model (IRI-2016). In order to reduce the number of unknown variables, the vertical profiles of electron density are expressed with a linear combination of empirical orthonormal functions (EOFs) that were derived from the IRI empirical profiles. Although the number of receiver sites is much smaller than that of Japan, the CIT algorithm yielded reasonable structure of the ionosphere over South Korea. We verified the CIT results with NmF2 from ionosondes in Icheon and Jeju and also with GPS TEC at the center of South Korea. In addition, the total time required for CIT calculation was only about 5 min, enabling the exploration of the vertical ionospheric structure in near real time.

  9. Estimating Total Electron Content Using 1,000+ GPS Receivers

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila; Mannucci, Anthony

    2006-01-01

    A computer program uses data from more than 1,000 Global Positioning System (GPS) receivers in an Internet-accessible global network to generate daily estimates of the global distribution of vertical total electron content (VTEC) of the ionosphere. This program supersedes an older program capable of processing readings from only about 200 GPS receivers. This program downloads the data via the Internet, then processes the data in three stages. In the first stage, raw data from a global subnetwork of about 200 receivers are preprocessed, station by station, in a Kalman-filter-based least-squares estimation scheme that estimates satellite and receiver differential biases for these receivers and for satellites. In the second stage, an observation equation that incorporates the results from the first stage and the raw data from the remaining 800 receivers is solved to obtain the differential biases for these receivers. The only remaining error sources for which an account cannot be given are multipath and receiver noise contributions. The third stage is a postprocessing stage in which all the processed data are combined and used to generate new data products, including receiver differential biases and global and regional VTEC maps and animations.

  10. Navstar Global Positioning System (GPS) clock program: Present and future

    NASA Technical Reports Server (NTRS)

    Tennant, D. M.

    1981-01-01

    Global Positioning System (GPS) program status are discussed and plans for ensuring the long term continuation of the program are presented. Performance of GPS clocks is presented in terms of on orbit data as portrayed by GPS master control station kalman filter processing. The GPS Clock reliability program is reviewed in depth and future plans fo the overall clock program are published.

  11. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    NASA Technical Reports Server (NTRS)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  12. Physical game demands in elite rugby union: a global positioning system analysis and possible implications for rehabilitation.

    PubMed

    Coughlan, Garrett F; Green, Brian S; Pook, Paul T; Toolan, Eoin; O'Connor, Sean P

    2011-08-01

    Descriptive. To evaluate the physical demands of an international Rugby Union-level game using a global positioning system (GPS). Elite Rugby Union teams currently employ the latest technology to monitor and evaluate physical demands of training and games on their players. GPS data from 2 players, a back and a forward, were collected during an international Rugby Union game. Locomotion speed, total body load, and body load sustained in tackles and scrums were analyzed. Players completed an average distance of 6715 m and spent the major portion of the game standing or walking, interspersed with medium- and high-intensity running activities. The back performed a higher number of high-intensity sprints and reached a greater maximal speed. Body load data revealed that high levels of gravitational force are sustained in tackling and scrum tasks. The current study provides a detailed GPS analysis of the physical demands of international Rugby Union players. These data, when combined with game video footage, may assist sports medicine professionals in understanding the demands of the game and mechanism of injury, as well as improving injury rehabilitation.

  13. Ionosphere Threat Model Investigations by Using Turkish National Permanent GPS Network

    NASA Astrophysics Data System (ADS)

    Köroǧlu, Meltem; Arikan, Feza; Koroglu, Ozan

    2016-07-01

    Global Positioning System (GPS) signal realibity may decrease significantly due to the variable electron density structure of ionosphere. In the literature, ionospheric disturbance is modeled as a linear semi-definite wave which has width, gradient and a constant velocity. To provide precise positioning, Ground Based Augmentation Systems (GBAS) are used. GBAS collects all measurements from GPS network receivers and computes an integrity level for the measurement by comparing the network GPS receivers measurements with the threat models of ionosphere. Threat models are computed according to ionosphere gradient characteristics. Gradient is defined as the difference of slant delays between the receivers. Slant delays are estimated from the STEC (Slant Total Electron Content) values of the ionosphere that is given by the line integral of the electron density between the receiver and GPS satellite. STEC can be estimated over Global Navigation Satellite System (GNSS) signals by using IONOLAB-STEC and IONOLAB-BIAS algorithms. Since most of the ionospheric disturbance observed locally, threat models for the GBAS systems must be extracted as locally. In this study, an automated ionosphere gradient estimation algorithm was developed by using Turkish National Permanent GPS Network (TNPGN-Active) data for year 2011. The GPS receivers are grouped within 150 km radius. For each region, for each day and for each satellite all STEC values are estimated by using IONOLAB-STEC and IONOLAB-BIAS softwares (www.ionolab.org). In the gradient estimation, station-pair method is used. Statistical properties of the valid gradients are extracted as tables for each region, day and satellite. By observing the histograms of the maximum gradients and standard deviations of the gradients with respect to the elevation angle for each day, the anomalies and disturbances of the ionosphere can be detected. It is observed that, maximum gradient estimates are less than 40 mm/km and maximum standard deviation of the gradients are observed as 5 mm/km. In the stormy days, the level of gradients and the standard deviation values becomes larger than those of quiet days. These observations may also form a basis for the estimationof velocity and width of the traveling ionospheric disturbances. The study is supported by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.

  14. Autonomous navigation system based on GPS and magnetometer data

    NASA Technical Reports Server (NTRS)

    Julie, Thienel K. (Inventor); Richard, Harman R. (Inventor); Bar-Itzhack, Itzhack Y. (Inventor)

    2004-01-01

    This invention is drawn to an autonomous navigation system using Global Positioning System (GPS) and magnetometers for low Earth orbit satellites. As a magnetometer is reliable and always provides information on spacecraft attitude, rate, and orbit, the magnetometer-GPS configuration solves GPS initialization problem, decreasing the convergence time for navigation estimate and improving the overall accuracy. Eventually the magnetometer-GPS configuration enables the system to avoid costly and inherently less reliable gyro for rate estimation. Being autonomous, this invention would provide for black-box spacecraft navigation, producing attitude, orbit, and rate estimates without any ground input with high accuracy and reliability.

  15. Impact of faxed health alerts on the preparedness of general practitioners during communicable disease outbreaks.

    PubMed

    Rosewell, Alexander; Patel, Mahomed; Viney, Kerri; Marich, Andrew; Lawrence, Glenda L

    2010-03-01

    The NSW Department of Health (NSW Health) faxed health alerts to general medical practitioners during measles outbreaks in March and May 2006. We conducted a retrospective cohort study of randomly selected general practitioners (GPs) (1 per medical practice) in New South Wales to investigate the effectiveness of faxing health alerts to GPs during a communicable disease outbreak. Fax transmission data allowed comparison of GPs sent and not sent the measles alert for self-reported awareness and practice actions aimed at the prevention and control of measles. A total of 328 GPs participated in the study. GPs who were sent the alert were more likely to be aware of the measles outbreak (RR 1.18, 95% CI 1.02, 1.38). When analysed by whether a fax had been received from either NSW Health or the Australian General Practice Network, GPs who reported receiving a faxed measles alert were more likely to be aware of the outbreak (RR 2.56, 95% CI 1.84, 3.56), to offer vaccination to susceptible staff (RR 6.46, 95% CI 2.49, 16.78), and be aware of other infection control recommendations. Respondents reported that the faxed alerts were useful with 65% reporting that the alerts had reminded them to consider measles in the differential diagnosis. This study shows that faxed health alerts were useful for preparing GPs to respond effectively to a communicable disease outbreak. The fax alert system could be improved by ensuring that all general practices in New South Wales are included in the faxstream database and that their contact details are updated regularly.

  16. Correction of Single Frequency Altimeter Measurements for Ionosphere Delay

    NASA Technical Reports Server (NTRS)

    Schreiner, William S.; Markin, Robert E.; Born, George H.

    1997-01-01

    This study is a preliminary analysis of the accuracy of various ionosphere models to correct single frequency altimeter height measurements for Ionospheric path delay. In particular, research focused on adjusting empirical and parameterized ionosphere models in the parameterized real-time ionospheric specification model (PRISM) 1.2 using total electron content (TEC) data from the global positioning system (GPS). The types of GPS data used to adjust PRISM included GPS line-of-sight (LOS) TEC data mapped to the vertical, and a grid of GPS derived TEC data in a sun-fixed longitude frame. The adjusted PRISM TEC values, as well as predictions by IRI-90, a climatotogical model, were compared to TOPEX/Poseidon (T/P) TEC measurements from the dual-frequency altimeter for a number of T/P tracks. When adjusted with GPS LOS data, the PRISM empirical model predicted TEC over 24 1 h data sets for a given local time to with in a global error of 8.60 TECU rms during a midnight centered ionosphere and 9.74 TECU rms during a noon centered ionosphere. Using GPS derived sun-fixed TEC data, the PRISM parameterized model predicted TEC within an error of 8.47 TECU rms centered at midnight and 12.83 TECU rms centered at noon. From these best results, it is clear that the proposed requirement of 3-4 TECU global rms for TOPEX/Poseidon Follow-On will be very difficult to meet, even with a substantial increase in the number of GPS ground stations, with any realizable combination of the aforementioned models or data assimilation schemes.

  17. Satellite-motion Compensation for Monitoring Travelling Ionospheric Disturbances (TIDs) Using GPS

    NASA Astrophysics Data System (ADS)

    Jackson-Booth, N.; Penney, R.

    2016-12-01

    The ionosphere exerts a strong influence over a wide range of modern communications and navigtion systems, but is subject to complex influences from both terrestrial and solar sources. Ionospheric disturbances can be triggered by lower-atmosphere phenomena such as hurricanes as well as geophysical events such as earthquakes, as well as being strongly influenced by cyclical and unpredictable solar behaviour. Dual-band GPS receivers provide a popular and convenient means of obtaining information about the ionosphere, and ionospheric disturbances. While GPS measurements can provide clues about the state of the ionosphere, there are many challenges in obtaining reliable information from them. For example, drop-outs and carrier-phase cycle slips may have little influence on using GPS for (medium-precision) navigation, but can lead to signal-processing artefacts that would cause false alarms in detecting ionospheric disturbances. If one is interested in measuring the motion of travelling ionospheric disturbances (TIDs) one must also be able to disentangle the effects of satellite motion from the TID motion. We discuss a novel approach to robustly separating TID waveforms from background trends within GPS time-series of total electron content (TEC), as well as innovative techniques for estimating TID velocities using ideas from Synthetic Aperture Radar (SAR). Underpinning these, we consider how to robustly pre-process GPS time-series to reduce the influence of drop-outs while also reducing data volumes. We present comparisons of our TID velocity estimates with more standard "cross-correlation" techniques, including cases where these standard techniques produce pathological results. We also show results from simulated GPS time-series derived from modelled ionospheric disturbances.

  18. Application of DGPS for Collision Avoidance in Intelligent Transportation Systems In a Wireless Environment

    DOT National Transportation Integrated Search

    2001-02-19

    The Global Positioning System (GPS) is a satellite based radio-navigation system. A relatively large number of vehicles are already equipped with GPS devices. This project evaluated the application of Global Positing System (GPS) technology in collis...

  19. NASA's global differential GPS system and the TDRSS augmentation service for satellites

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Yoaz; Young, Larry; Stocklin, Frank; Rush, John

    2004-01-01

    NASA is planning to launch a new service for Earth satellites providing them with precise GPS differential corrections and other ancillary information enabling decimeter level orbit determination accuracy, and nanosecond time-transfer accuracy, onboard, in real-time. The TDRSS Augmentation Service for Satellites (TASS) will broadcast its message on the S-band multiple access channel of NASA's Tracking and Data Relay Satellite System (TDRSS). The satellite's phase array antenna has been configured to provide a wide beam, extending coverage up to 1000 km altitude over the poles. Global coverage will be ensured with broadcast from three or more TDRSS satellites. The GPS differential corrections are provided by the NASA Global Differential GPS (GDGPS) System, developed and operated by NASA's Jet Propulsion Laboratory. The GDGPS System employs a global ground network of more than 70 GPS receivers to monitor the GPS constellation in real time. The system provides real-time estimates of the GPS satellite states, as well as many other real-time products such as differential corrections, global ionospheric maps, and integrity monitoring. The unique multiply redundant architecture of the GDGPS System ensures very high reliability, with 99.999% demonstrated since the inception of the system in Early 2000. The estimated real time GPS orbit and clock states provided by the GDGPS system are accurate to better than 20 cm 3D RMS, and have been demonstrated to support sub-decimeter real time positioning and orbit determination for a variety of terrestrial, airborne, and spaceborne applications. In addition to the GPS differential corrections, TASS will provide real-time Earth orientation and solar flux information that enable precise onboard knowledge of the Earth-fixed position of the spacecraft, and precise orbit prediction and planning capabilities. TASS will also provide 5 seconds alarms for GPS integrity failures based on the unique GPS integrity monitoring service of the GDGPS System.

  20. Enhancement and Utilization of Airborne Magnetometry for the Detection, Characterization, and Identification of Unexploded Ordance (UXO)

    DTIC Science & Technology

    2007-07-01

    measurement system is based on four GPS antennas rather than a fluxgate magnetometer measurement used in previous generation systems. For the ORAGS...hardware 1 $36,500 Orientation system 1 $16,600 Fluxgate magnetometer 1 $5,300 Navigation system 1 $5,200 Laser altimeter 1 $7,300 Data...1 iii LIST OF FIGURES Page Figure 1. Schematic for the ORAGS-Arrowhead Airborne Total Field Magnetometer System Developed for this Project

  1. The Evolution of Global Positioning System (GPS) Technology.

    ERIC Educational Resources Information Center

    Kumar, Sameer; Moore, Kevin B.

    2002-01-01

    Describes technological advances in the Global Positioning System (GPS), which is also known as the NAVSTAR GPS satellite constellation program developed in 1937, and changes in the nature of our world by GPS in the areas of agriculture, health, military, transportation, environment, wildlife biology, surveying and mapping, space applications, and…

  2. Sustained changes in water storage across the western U.S. inferred from elastic land displacements observed with GPS: Parching of the ground during the summer of drought years and seeping of snow melt into the ground during the spring of heavy-precipitation years

    NASA Astrophysics Data System (ADS)

    Argus, D. F.; Wiese, D. N.; Landerer, F. W.; Famiglietti, J. S.; Martens, H. R.; Shirzaei, M.; Reager, J. T., II

    2017-12-01

    GPS elastic land displacements are inverted for change in total water storage as a function of location in the western U.S. each month from Jan 2006 to the Present. GPS sites recording solid Earth's porous response to groundwater changes or affected by volcanic activity are first omitted, elastic deformation due to known changes in surface water in artificial reservoirs and viscous deformation due to unloading of the ice sheets 15 to 5 thousand years ago are next removed, and change in total mass is then determined while setting groundwater change in the Central Valley equal to an a priori model. Atmosphere mass is next removed, and the resulting GPS-determined changes in total water storage are analyzed and placed in the context of hydrology models and complementary GRACE and InSAR observations. The GPS results show changes in water storage to be sustained over periods of drought and years of heavy precipitation. For example, the Sierra Nevada gained 18 km3 of water during heavy precipitation from October 2009 to October 2011 and lost 48 km3 of water during harsh drought from October 2011 to October 2015. Snow accumulation in October is insignificant and long-term changes in soil moisture are small in hydrology models. We therefore attribute the large sustained water changes inferred from GPS to be from the ground, either change in deep soil moisture or change in groundwater in river alluvium or in crystalline basement in the Sierra Nevada. Most of the 24 mm of uplift of the Sierra Nevada from Oct 2011 to Oct 2015 observed with GPS is due to water loss in the Sierra Nevada itself; unloading of 32 km3 of Central Valley groundwater during the time period raises the Sierra Nevada by just 5 mm, and tectonic uplift is at most 2 mm. Analysis of the GPS determination of change in total water storage in the context of snow model SNODAS yields insight into water processes: In years of drought, all snow disappears in the Spring and parching of the ground further reduces total water storage in the Summer. In years of heavy precipitation, melting snow seeps into the Sierra Nevada in the Spring, as evident in the inference that then total water storage decreases less quickly than snow mass.

  3. GPS-based satellite tracking system for precise positioning

    NASA Technical Reports Server (NTRS)

    Yunck, T. P.; Melbourne, W. G.; Thornton, C. L.

    1985-01-01

    NASA is developing a Global Positioning System (GPS) based measurement system to provide precise determination of earth satellite orbits, geodetic baselines, ionospheric electron content, and clock offsets between worldwide tracking sites. The system will employ variations on the differential GPS observing technique and will use a network of nine fixed ground terminals. Satellite applications will require either a GPS flight receiver or an on-board GPS beacon. Operation of the system for all but satellite tracking will begin by 1988. The first major satellite application will be a demonstration of decimeter accuracy in determining the altitude of TOPEX in the early 1990's. By then the system is expected to yield long-baseline accuracies of a few centimeters and instantaneous time synchronization to 1 ns.

  4. COSMIC Payload in NCAR-NASPO GPS Satellite System for Severe Weather Prediction

    NASA Astrophysics Data System (ADS)

    Lai-Chen, C.

    Severe weather, such as cyclones, heavy rainfall, outburst of cold air, etc., results in great disaster all the world. It is the mission for the scientists to design a warning system, to predict the severe weather systems and to reduce the damage of the society. In Taiwan, National Satellite Project Office (NSPO) initiated ROCSAT-3 program at 1997. She scheduled the Phase I conceptual design to determine the mission for observation weather system. Cooperating with National Center of Atmospheric Research (NCAR), NSPO involved an international cooperation research and operation program to build a 32 GPS satellites system. NCAR will offer 24 GPS satellites. The total expanse will be US 100 millions. NSPO also provide US 80 millions for launching and system engineering operation. And NCAR will be responsible for Payload Control Center and Fiducial Network. The cooperative program contract has been signed by Taiwan National Science Council, Taipei Economic Cultural Office of United States and American Institute in Taiwan. One of the payload is COSMIC, Constellation Observation System for Meteorology, Ionosphere and Climate. It is a GPS meteorology instrument system. The system will observe the weather information, e. g. electron density profiles, horizontal and vertical TEC and CFT scintillation and communication outage maps. The mission is to obtain the weather data such as vertical temperature profiles, water vapor distribution and pressure distribution over the world for global weather forecasting, especially during the severe weather period. The COSMIC Conference held on November, 1998. The export license was also issued by Department of Commerce of Unites States at November, 1998. Recently, NSPO begun to train their scientists to investigate the system. Scientists simulate the observation data to combine the existing routine satellite infrared cloud maps, radar echo and synoptic weather analysis for severe weather forecasting. It is hopeful to provide more accurate weather analysis for forecasting and decreasing the damage of the disasters over the area concerned.

  5. What do general practitioners think about an online self-regulation programme for health promotion? Focus group interviews.

    PubMed

    Plaete, Jolien; Crombez, Geert; DeSmet, Ann; Deveugele, Myriam; Verloigne, Maïté; De Bourdeaudhuij, Ilse

    2015-01-22

    Chronic diseases may be prevented through programmes that promote physical activity and healthy nutrition. Computer-tailoring programmes are effective in changing behaviour in the short- and long-term. An important issue is the implementation of these programmes in general practice. However, there are several barriers that hinder the adoption of eHealth programmes in general practice. This study explored the feasibility of an eHealth programme that was designed, using self-regulation principles. Seven focus group interviews (a total of 62 GPs) were organized to explore GPs' opinions about the feasibility of the eHealth programme for prevention in general practice. At the beginning of each focus group, GPs were informed about the principles of the self-regulation programme 'My Plan'. Open-ended questions were used to assess the opinion of GPs about the content and the use of the programme. The focus groups discussions were audio-taped, transcribed and thematically analysed via NVivo software. The majority of the GPs was positive about the use of self-regulation strategies and about the use of computer-tailored programmes in general practice. There were contradictory results about the delivery mode of the programme. GPs also indicated that the programme might be less suited for patients with a low educational level or for old patients. Overall, GPs are positive about the adoption of self-regulation techniques for health promotion in their practice. However, they raised doubts about the adoption in general practice. This barrier may be addressed (1) by offering various ways to deliver the programme, and (2) by allowing flexibility to match different work flow systems. GPs also believed that the acceptability and usability of the programme was low for patients who are old or with low education. The issues raised by GPs will need to be taken into account when developing and implementing an eHealth programme in general practice.

  6. A study of ionospheric grid modification technique for BDS/GPS receiver

    NASA Astrophysics Data System (ADS)

    Liu, Xuelin; Li, Meina; Zhang, Lei

    2017-07-01

    For the single-frequency GPS receiver, ionospheric delay is an important factor affecting the positioning performance. There are many kinds of ionospheric correction methods, common models are Bent model, IRI model, Klobuchar model, Ne Quick model and so on. The US Global Positioning System (GPS) uses the Klobuchar coefficients transmitted in the satellite signal to correct the ionospheric delay error for a single frequency GPS receiver, but this model can only reduce the ionospheric error of about 50% in the mid-latitudes. In the Beidou system, the accuracy of the correction delay is higher. Therefore, this paper proposes a method that using BD grid information to correct GPS ionospheric delay to improve the ionospheric delay for the BDS/GPS compatible positioning receiver. In this paper, the principle of ionospheric grid algorithm is introduced in detail, and the positioning accuracy of GPS system and BDS/GPS compatible positioning system is compared and analyzed by the real measured data. The results show that the method can effectively improve the positioning accuracy of the receiver in a more concise way.

  7. Development of a GPS buoy system for monitoring tsunami, sea waves, ocean bottom crustal deformation and atmospheric water vapor

    NASA Astrophysics Data System (ADS)

    Kato, Teruyuki; Terada, Yukihiro; Nagai, Toshihiko; Koshimura, Shun'ichi

    2010-05-01

    We have developed a GPS buoy system for monitoring tsunami for over 12 years. The idea was that a buoy equipped with a GPS antenna and placed offshore may be an effective way of monitoring tsunami before its arrival to the coast and to give warning to the coastal residents. The key technology for the system is real-time kinematic (RTK) GPS technology. We have successfully developed the system; we have detected tsunamis of about 10cm in height for three large earthquakes, namely, the 23 June 2001 Peru earthquake (Mw8.4), the 26 September 2003 Tokachi earthquake (Mw8.3) and the 5 September 2004 earthquake (Mw7.4). The developed GPS buoy system is also capable of monitoring sea waves that are mainly caused by winds. Only the difference between tsunami and sea waves is their frequency range and can be segregated each other by a simple filtering technique. Given the success of GPS buoy experiments, the system has been adopted as a part of the Nationwide Ocean Wave information system for Port and HArborS (NOWPHAS) by the Ministry of Land, Infrastructure, Transport and Tourism of Japan. They have established more than eight GPS buoys along the Japanese coasts and the system has been operated by the Port and Airport Research Institute. As a future scope, we are now planning to implement some other additional facilities for the GPS buoy system. The first application is a so-called GPS/Acoustic system for monitoring ocean bottom crustal deformation. The system requires acoustic waves to detect ocean bottom reference position, which is the geometrical center of an array of transponders, by measuring distances between a position at the sea surface (vessel) and ocean bottom equipments to return the received sonic wave. The position of the vessel is measured using GPS. The system was first proposed by a research group at the Scripps Institution of Oceanography in early 1980's. The system was extensively developed by Japanese researchers and is now capable of detecting ocean bottom positions with a few centimeters in accuracy. The system is now operational for more than ten sites along the Japanese coasts. Currently, however, the measurements are not continuous but have been done once to several times a year using a boat. If a GPS and acoustic system is placed on a buoy, ocean bottom position could be monitored in near real-time and continuous manner. This will allow us to monitor more detailed and short term crustal deformations at the sea bottom. Another application plan is for an atmospheric research. Previous researchers have shown that GPS is capable of measuring atmospheric water vapor through estimating tropospheric zenith delay measurements of GPS at the sea surface. Information of water vapor content and its temporal variation over sea surface will much contribute to weather forecast on land which has mostly been conducted only by land observations. Considering that the atmospheric mass moves from west to east in general in and around Japanese islands, information of water vapor together with other atmospheric data from an array of GPS buoy placed in the west of Japanese Islands, will much improve weather forecast. We try to examine if this is also feasible. As a conclusion of a series of GPS buoy experiments, we could assert that GPS buoy system will be a powerful tool to monitor ocean surface and much contribute to provide safe and secure life of people.

  8. Miniaturized GPS/MEMS IMU integrated board

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2012-01-01

    This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.

  9. The Glasgow Prognostic Score. An useful tool to predict survival in patients with advanced esophageal squamous cell carcinoma.

    PubMed

    Henry, Maria Aparecida Coelho de Arruda; Lerco, Mauro Masson; de Oliveira, Walmar Kerche; Guerra, Anderson Roberto; Rodrigues, Maria Aparecida Marchesan

    2015-08-01

    To evaluate the usefulness of the Glasgow Prognostic Score (GPS) in patients with esophageal carcinoma (EC). A total of 50 patients with EC were analyzed for GPS, nutritional and clinicopathologic parameters. Patients with CRP ≤ 1.0mg/L and albumin ≥ 3.5mg/L were considered as GPS = 0. Patients with only CRP increased or albumin decreased were classified as GPS = 1 and patients with CRP > 1.0mg/L and albumin < 3.5mg/L were considered as GPS = 2. GPS of 0, 1 and 2 were observed in seven, 23 and 20 patients, respectively. A significant inverse relationship was observed between GPS scores and the survival rate. The survival rate was greatest in patients with GPS = 0 and significantly higher than those from patients with GPS = 1 and GPS = 2. Minimum 12-month survival was observed in 71% patients with GPS = 0 and in 30% patients with GPS = 1. None of the patients with GPS = 2 survived for 12 months. A significant relationship between CRP or albumin individually and the survival rate was observed. No significant relationship among nutritional, clinic pathological parameters and survival was found. Glasgow Prognostic Score is an useful tool to predict survival in patients with esophageal carcinoma.

  10. Feasibility study on the spatial and temporal movement of Samburu's cattle and wildlife in Kenya using GPS radio-tracking, remote sensing and GIS.

    PubMed

    Raizman, E A; Rasmussen, H Barner; King, L E; Ihwagi, F W; Douglas-Hamilton, I

    2013-08-01

    The study was conducted to assess the technical feasibility of studying the spatial and temporal interaction of traditionally herded livestock and wildlife using global positioning system (GPS) tracking technology in Northern Kenya. Two types of collars were used on nine cows: radio frequency and global system for mobile communications (GSM) collars and GPS-satellite (SAT) collars. Full results of cattle tracking were available for eight cows (3 GSM and 5 SAT) tracked between July 2008 and September 2010. A cumulative total of 1556 tracking days was recorded over the 17 month period. On average cows walked 10,203 m/day (average total monthly distance walked was 234 km). Significant seasonal differences were found; on average cows walked 9.607 m and 10,392 m per day in the rainy and the dry seasons, respectively. This difference was also significant for total monthly and daily distance walked between the dry and the rainy season. On average cows walked daily 9607 m and 10,392 m on the rainy and the dry season respectively. During the dry months a 48 h cycle was observed with cows walking 15-25 km to water every 2nd day but only 5-8 km/day between watering days. There was a 24% overlap of cattle range with both elephants and zebras. This study demonstrated the feasibility of tracking cattle using radio collars. It shows the complexity of spatial use by cattle and wildlife. Such information can be used to understand the dynamics of disease transmission between livestock and wildlife. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Implementing GPS into Pave-IR.

    DOT National Transportation Integrated Search

    2009-03-01

    To further enhance the capabilities of the Pave-IR thermal segregation detection system developed at the Texas Transportation Institute, researchers incorporated global positioning system (GPS) data collection into the thermal profiles. This GPS capa...

  12. National aerospace meeting of the Institute of Navigation

    NASA Astrophysics Data System (ADS)

    Fell, Patrick

    The program for this year's aerospace meeting of The Institute of Navigation addressed developments in the evolving Global Positioning System (GPS) of navigation satellites, inertial navigation systems, and other electronic navigation systems and their applications. Also included in the program were a limited number of papers addressing the geodetic use of the GPS system.The Global Positioning System is a constellation of 18 navigation satellites being developed by the Department of Defense to provide instantaneous worldwide navigation. The system will support a multitude of military applications. The first paper by Jacobson reviewed the engineering development of GPS navigation receivers stressing the use of common hardware and software modules. A later paper by Ould described the mechanization of a digital receiver for GPS applications designed for faster acquisition of the spread spectrum satellite transmissions than analog receivers. The paper by Brady discussed the worldwide coverage that is provided by the limited number of satellites that will constitute the GPS constellation through 1983. The capability provided by the satellites presently on orbit would support a variety of experiments at almost any location. Tables of multiple satellite availability are provided for numerous worldwide locations. For civil aviation applications, Vogel addressed the satellite geometry considerations for low cost GPS user equipment, Esposito described the Federal Aviation Administration acceptance tests of a GPS navigation receiver, and Hopkins discussed the design and capability of an integrated GPS strapdown attitude and heading reference system for avionics.

  13. GENESIS: GPS Environmental and Earth Science Information System

    NASA Technical Reports Server (NTRS)

    Hajj, George

    1999-01-01

    This presentation reviews the GPS ENvironmental and Earth Science Information System (GENESIS). The objectives of GENESIS are outlined (1) Data Archiving, searching and distribution for science data products derived from Space borne TurboRogue Space Receivers for GPS science and other ground based GPS receivers, (2) Data browsing using integrated visualization tools, (3) Interactive web/java-based data search and retrieval, (4) Data subscription service, (5) Data migration from existing GPS archived data, (6) On-line help and documentation, and (7) participation in the WP-ESIP federation. The presentation reviews the products and services of Genesis, and the technology behind the system.

  14. Test results of the STI GPS time transfer receiver

    NASA Technical Reports Server (NTRS)

    Hall, D. L.; Handlan, J.; Wheeler, P.

    1983-01-01

    Global time transfer, or synchronization, between a user clock and USNO UTC time can be performed using the Global Positioning System (GPS), and commercially available time transfer receivers. This paper presents the test results of time transfer using the GPS system and a Stanford Telecommunications, Inc. (STI) Time Transfer System (TTS) Model 502. Tests at the GPS Master Control Site (MCS) in Vandenburg, California and at the United States Naval Observatory (USNO) in Washington, D.C. are described. An overview of GPS, and the STI TTS 502 is presented. A discussion of the time transfer process and test concepts is included.

  15. Tsallis non-extensive statistical mechanics in the ionospheric detrended total electron content during quiet and storm periods

    NASA Astrophysics Data System (ADS)

    Ogunsua, B. O.; Laoye, J. A.

    2018-05-01

    In this paper, the Tsallis non-extensive q-statistics in ionospheric dynamics was investigated using the total electron content (TEC) obtained from two Global Positioning System (GPS) receiver stations. This investigation was carried out considering the geomagnetically quiet and storm periods. The micro density variation of the ionospheric total electron content was extracted from the TEC data by method of detrending. The detrended total electron content, which represent the variation in the internal dynamics of the system was further analyzed using for non-extensive statistical mechanics using the q-Gaussian methods. Our results reveals that for all the analyzed data sets the Tsallis Gaussian probability distribution (q-Gaussian) with value q > 1 were obtained. It was observed that there is no distinct difference in pattern between the values of qquiet and qstorm. However the values of q varies with geophysical conditions and possibly with local dynamics for the two stations. Also observed are the asymmetric pattern of the q-Gaussian and a highly significant level of correlation for the q-index values obtained for the storm periods compared to the quiet periods between the two GPS receiver stations where the TEC was measured. The factors responsible for this variation can be mostly attributed to the varying mechanisms resulting in the self-reorganization of the system dynamics during the storm periods. The result shows the existence of long range correlation for both quiet and storm periods for the two stations.

  16. Improve wildlife species tracking—Implementing an enhanced global positioning system data management system for California condors

    USGS Publications Warehouse

    Waltermire, Robert G.; Emmerich, Christopher U.; Mendenhall, Laura C.; Bohrer, Gil; Weinzierl, Rolf P.; McGann, Andrew J.; Lineback, Pat K.; Kern, Tim J.; Douglas, David C.

    2016-05-03

    U.S. Fish and Wildlife Service (USFWS) staff in the Pacific Southwest Region and at the Hopper Mountain National Wildlife Refuge Complex requested technical assistance to improve their global positioning system (GPS) data acquisition, management, and archive in support of the California Condor Recovery Program. The USFWS deployed and maintained GPS units on individual Gymnogyps californianus (California condor) in support of long-term research and daily operational monitoring and management of California condors. The U.S. Geological Survey (USGS) obtained funding through the Science Support Program to provide coordination among project participants, provide GPS Global System for Mobile Communication (GSM) transmitters for testing, and compare GSM/GPS with existing Argos satellite GPS technology. The USFWS staff worked with private companies to design, develop, and fit condors with GSM/GPS transmitters. The Movebank organization, an online database of animal tracking data, coordinated with each of these companies to automatically stream their GPS data into Movebank servers and coordinated with USFWS to improve Movebank software for managing transmitter data, including proofing/error checking of incoming GPS data. The USGS arranged to pull raw GPS data from Movebank into the USGS California Condor Management and Analysis Portal (CCMAP) (https://my.usgs.gov/ccmap) for production and dissemination of a daily map of condor movements including various automated alerts. Further, the USGS developed an automatic archiving system for pulling raw and proofed Movebank data into USGS ScienceBase to comply with the Federal Information Security Management Act of 2002. This improved data management system requires minimal manual intervention resulting in more efficient data flow from GPS data capture to archive status. As a result of the project’s success, Pinnacles National Park and the Ventana Wildlife Society California condor programs became partners and adopted the same workflow, tracking, and data archive system. This GPS tracking data management model and workflow should be applicable and beneficial to other wildlife tracking programs.

  17. General practitioners' knowledge and concern about electromagnetic fields.

    PubMed

    Berg-Beckhoff, Gabriele; Breckenkamp, Jürgen; Larsen, Pia Veldt; Kowall, Bernd

    2014-12-01

    Our aim is to explore general practitioners' (GPs') knowledge about EMF, and to assess whether different knowledge structures are related to the GPs' concern about EMF. Random samples were drawn from lists of GPs in Germany in 2008. Knowledge about EMF was assessed by seven items. A latent class analysis was conducted to identify latent structures in GPs' knowledge. Further, the GPs' concern about EMF health risk was measured using a score comprising six items. The association between GPs' concern about EMF and their knowledge was analysed using multiple linear regression. In total 435 (response rate 23.3%) GPs participated in the study. Four groups were identified by the latent class analysis: 43.1% of the GPs gave mainly correct answers; 23.7% of the GPs answered low frequency EMF questions correctly; 19.2% answered only the questions relating EMF with health risks, and 14.0% answered mostly "don't know". There was no association between GPs' latent knowledge classes or between the number of correct answers given by the GPs and their EMF concern, whereas the number of incorrect answers was associated with EMF concern. Greater EMF concern in subjects with more incorrect answers suggests paying particular attention to misconceptions regarding EMF in risk communication.

  18. A low-cost GPS/INS integrated vehicle heading angle measurement system

    NASA Astrophysics Data System (ADS)

    Wu, Ye; Gao, Tongyue; Ding, Yi

    2018-04-01

    GPS can provide continuous heading information, but the accuracy is easily affected by the velocity and shelter from buildings or trees. For vehicle systems, we propose a low-cost heading angle update algorithm. Based on the GPS/INS integrated navigation kalman filter, we add the GPS heading angle to the measurement vector, and establish its error model. The experiment results show that this algorithm can effectively improve the accuracy of GPS heading angle.

  19. Applications of Clocks to Space Navigation & "Planetary GPS"

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    2004-01-01

    The ability to fly atomic clocks on GPS satellites has profoundly defined the capabilities and limitations of GPS in near-Earth applications. It is likely that future infrastructure for Lunar and Mars applications will be constrained by financial factors. The development of a low cost, small, high performance space clock -- or ultrahigh performance space clocks -- could revolutionize and drive the entire approach to GPS-like systems at the Moon (or Mars), and possibly even change the future of GPS at Earth. Many system trade studies are required. The performance of future GPS-like tracking systems at the Moon or Mars will depend critically on clock performance, availability of inertial sensors, and constellation coverage. Example: present-day GPS carry 10(exp -13) clocks and require several updates per day. With 10(exp -15) clocks, a constellation at Mars could operate autonomously with updates just once per month. Use of GPS tracking at the Moon should be evaluated in a technical study.

  20. Modular Software for Spacecraft Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.; Hartman, K. R.; Weidow, D. A.; Berry, D. L.; Oza, D. H.; Long, A. C.; Joyce, E.; Steger, W. L.

    1996-01-01

    The Goddard Space Flight Center Flight Dynamics and Mission Operations Divisions have jointly investigated the feasibility of engineering modular Global Positioning SYSTEM (GPS) navigation software to support both real time flight and ground postprocessing configurations. The goals of this effort are to define standard GPS data interfaces and to engineer standard, reusable navigation software components that can be used to build a broad range of GPS navigation support applications. The paper discusses the GPS modular software (GMOD) system and operations concepts, major requirements, candidate software architecture, feasibility assessment and recommended software interface standards. In additon, ongoing efforts to broaden the scope of the initial study and to develop modular software to support autonomous navigation using GPS are addressed,

  1. 77 FR 13350 - Certain Automotive GPS Navigation Systems, Components Thereof, and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-814] Certain Automotive GPS Navigation Systems, Components Thereof, and Products Containing Same; Determination Not To Review Initial... importation of certain automotive GPS navigation systems, components thereof, and products containing the same...

  2. Evaluation of a Mobile Phone for Aircraft GPS Interference

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.

    2004-01-01

    Measurements of spurious emissions from a mobile phone are conducted in a reverberation chamber for the Global Positioning System (GPS) radio frequency band. This phone model was previously determined to have caused interference to several aircraft GPS receivers. Interference path loss (IPL) factors are applied to the emission data, and the outcome compared against GPS receiver susceptibility. The resulting negative safety margins indicate there are risks to aircraft GPS systems. The maximum emission level from the phone is also shown to be comparable with some laptop computer's emissions, implying that laptop computers can provide similar risks to aircraft GPS receivers.

  3. A review of GPS-based tracking techniques for TDRS orbit determination

    NASA Technical Reports Server (NTRS)

    Haines, B. J.; Lichten, S. M.; Malla, R. P.; Wu, S.-C.

    1993-01-01

    This article evaluates two fundamentally different approaches to the Tracking and Data Relay Satellite (TDRS) orbit determination utilizing Global Positioning System (GPS) technology and GPS-related techniques. In the first, a GPS flight receiver is deployed on the TDRS. The TDRS ephemerides are determined using direct ranging to the GPS spacecraft, and no ground network is required. In the second approach, the TDRS's broadcast a suitable beacon signal, permitting the simultaneous tracking of GPS and Tracking and Data Relay Satellite System satellites by ground receivers. Both strategies can be designed to meet future operational requirements for TDRS-II orbit determination.

  4. The impact of GPS receiver modifications and ionospheric activity on Swarm baseline determination

    NASA Astrophysics Data System (ADS)

    Mao, X.; Visser, P. N. A. M.; van den IJssel, J.

    2018-05-01

    The European Space Agency (ESA) Swarm mission is a satellite constellation launched on 22 November 2013 aiming at observing the Earth geomagnetic field and its temporal variations. The three identical satellites are equipped with high-precision dual-frequency Global Positioning System (GPS) receivers, which make the constellation an ideal test bed for baseline determination. From October 2014 to August 2016, a number of GPS receiver modifications and a new GPS Receiver Independent Exchange Format (RINEX) converter were implemented. Moreover, the on-board GPS receiver performance has been influenced by the ionospheric scintillations. The impact of these factors is assessed for baseline determination of the pendulum formation flying Swarm-A and -C satellites. In total 30 months of data - from 15 July 2014 to the end of 2016 - is analyzed. The assessment includes analysis of observation residuals, success rate of GPS carrier phase ambiguity fixing, a consistency check between the so-called kinematic and reduced-dynamic baseline solution, and validations of orbits by comparing with Satellite Laser Ranging (SLR) observations. External baseline solutions from The German Space Operations Center (GSOC) and Astronomisches Institut - Universität Bern (AIUB) are also included in the comparison. Results indicate that the GPS receiver modifications and RINEX converter changes are effective to improve the baseline determination. This research eventually shows a consistency level of 9.3/4.9/3.0 mm between kinematic and reduced-dynamic baselines in the radial/along-track/cross-track directions. On average 98.3% of the epochs have kinematic solutions. Consistency between TU Delft and external reduced-dynamic baseline solutions is at a level of 1 mm level in all directions.

  5. Detection of Geomagnetic Pulsations of the Earth Using GPS-TEC Data

    NASA Astrophysics Data System (ADS)

    Koroglu, Ozan; Arikan, Feza; Köroǧlu, Meltem; Sabri Ozkazanc, Yakup

    2016-07-01

    The magnetosphere of the Earth is made up of both magnetic fields and plasma. In this layer, plasma waves propagate as Ultra Low Frequency (ULF) waves having mHz scale frequencies. ULF waves are produced due to complicated solar-geomagnetic interactions. In the literature, these ULF waves are defined as pulsations. The geomagnetic pulsations are classified into main two groups as continuous pulsations (Pc) and irregular pulsations (Pi). These pulsations can be determined by ionospheric parameters due to the complex lithosphere-ionosphere-magnetosphere coupling processes. Total Electron Content (TEC) is one of the most important parameters for investigating the variability of ionosphere. Global Positioning System (GPS) provides a cost-effective means for estimating TEC from GPS satellite orbital height of 20,000 km to the ground based receivers. Therefore, the time series of GPS-TEC inherently contains the above mentioned ULF waves. In this study, time series analysis of GPS-TEC is carried out by applying periodogram method to the mid-latitude annual TEC data. After the analysis of GPS-TEC data obtained for GPS stations located in Central Europe and Turkey for 2011, it is observed that some of the fundamental frequencies that are indicators of Pc waves, diurnal and semi-diurnal periodicity and earth-free oscillations can be identified. These results will be used in determination of low frequency trend structure of magnetosphere and ionosphere. Further investigation of remaining relatively low magnitude frequencies, all Pi and Pc can be identified by using time and frequency domain techniques such as wavelet analysis. This study is supported by the joint TUBITAK 115E915 and joint TUBITAK114E092 and AS CR 14/001 projects.

  6. GPS in ten years

    DOT National Transportation Integrated Search

    1997-09-16

    What will GPS look like in ten years? This paper discusses improvements to the overall GPS system planned over the next ten years and examines their impact on system performance for several applications. The Presidential Decision Directive (PDD) rele...

  7. Seasonal Water Storage Variations as Impacted by Water Abstractions: Comparing the Output of a Global Hydrological Model with GRACE and GPS Observations

    NASA Astrophysics Data System (ADS)

    Döll, Petra; Fritsche, Mathias; Eicker, Annette; Müller Schmied, Hannes

    2014-11-01

    Better quantification of continental water storage variations is expected to improve our understanding of water flows, including evapotranspiration, runoff and river discharge as well as human water abstractions. For the first time, total water storage (TWS) on the land area of the globe as computed by the global water model WaterGAP (Water Global Assessment and Prognosis) was compared to both gravity recovery and climate experiment (GRACE) and global positioning system (GPS) observations. The GRACE satellites sense the effect of TWS on the dynamic gravity field of the Earth. GPS reference points are displaced due to crustal deformation caused by time-varying TWS. Unfortunately, the worldwide coverage of the GPS tracking network is irregular, while GRACE provides global coverage albeit with low spatial resolution. Detrended TWS time series were analyzed by determining scaling factors for mean annual amplitude ( f GRACE) and time series of monthly TWS ( f GPS). Both GRACE and GPS indicate that WaterGAP underestimates seasonal variations of TWS on most of the land area of the globe. In addition, seasonal maximum TWS occurs 1 month earlier according to WaterGAP than according to GRACE on most land areas. While WaterGAP TWS is sensitive to the applied climate input data, none of the two data sets result in a clearly better fit to the observations. Due to the low number of GPS sites, GPS observations are less useful for validating global hydrological models than GRACE observations, but they serve to support the validity of GRACE TWS as observational target for hydrological modeling. For unknown reasons, WaterGAP appears to fit better to GPS than to GRACE. Both GPS and GRACE data, however, are rather uncertain due to a number of reasons, in particular in dry regions. It is not possible to benefit from either GPS or GRACE observations to monitor and quantify human water abstractions if only detrended (seasonal) TWS variations are considered. Regarding GRACE, this is mainly caused by the attenuation of the TWS differences between water abstraction variants due to the filtering required for GRACE TWS. Regarding GPS, station density is too low. Only if water abstractions lead to long-term changes in TWS by depletion or restoration of water storage in groundwater or large surface water bodies, GRACE may be used to support the quantification of human water abstractions.

  8. Integration of the Plate Boundary Observatory and Existing GPS Networks in Southern California: A Multi Use Geodetic Network

    NASA Astrophysics Data System (ADS)

    Walls, C.; Blume, F.; Meertens, C.; Arnitz, E.; Lawrence, S.; Miller, S.; Bradley, W.; Jackson, M.; Feaux, K.

    2007-12-01

    The ultra-stable GPS monument design developed by Southern California Geodetic Network (SCIGN) in the late 1990s demonstrates sub-millimeter errors on long time series where there are a high percentage of observations and low multipath. Following SCIGN, other networks such as PANGA and BARGEN have adopted the monument design for both deep drilled braced monuments (DDBM = 5 legs grouted 10.7 meters into bedrock/stratigraphy) and short drilled braced monuments (SDBM = 4 legs epoxied 2 meters into bedrock). A Plate Boundary Observatory (PBO) GPS station consists of a "SCIGN" style monument and state of the art NetRS receiver and IP based communications. Between the years 2003-2008 875 permanent PBO GPS stations are being built throughout the United States. Concomitant with construction of the PBO the majority of pre-existing GPS stations that meet stability specifications are being upgraded with Trimble NetRS and IP based communications to PBO standards under the EarthScope PBO Nucleus project. In 2008, with completed construction of the Plate Boundary Observatory, more than 1100 GPS stations will share common design specifications and have identical receivers with common communications making it the most homogenous geodetic network in the World. Of the 875 total Plate Boundary Observatory GPS stations, 211 proposed sites are distributed throughout the Southern California region. As of August 2007 the production status is: 174 stations built (81 short braced monuments, 93 deep drilled braced monuments), 181 permits signed, 211 permits submitted and 211 station reconnaissance reports. The balance of 37 stations (19 SDBM and 18 DDBM) will be built over the next year from Long Valley to the Mexico border in order of priority as recommended by the PBO Transform, Extension and Magmatic working groups. Fifteen second data is archived for each station and 1 Hz as well as 5 Hz data is buffered to be triggered for download in the event of an earthquake. Communications equipment includes CDMA Proxicast modems, Hughes Vsat, Intuicom 900 MHz Ethernet bridge radios and several "real-time" sites use 2.4 GHz Wilan radios. Ultimately, 125 of the existing former-SCIGN GPS stations will be integrated into the So Cal region of PBO, of which 25 have real-time data streams. At the time of this publication the total combined Southern California region has over 40 stations streaming real-time data using both radios and CDMA modems. The real-time GPS sites provide specific benefits beyond the standard GPS station: they can provide a live correction for local surveyors and can be used to trigger an alarm if large displacements are recorded. The cross fault spatial distribution of these 336 GPS stations in the seismically active southern California region has the grand potential of augmenting a strong motion earthquake early warning system.

  9. Space Weather Data Drop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Space weather data collected via instruments on GPS satellites has been made available to researchers for the first time. The instruments were developed at Los Alamos National Laboratory and ride aboard 23 of the nation’s more than 30 on-orbit GPS satellites. When you multiply the number of satellites collecting data with the number of years they’ve been doing it, it totals more than 167 years. This data gives researchers a treasure trove of measurements that they can use to better understand how space weather works and how best to protect critical infrastructure, such as the nation’s satellites, aircraft, communications networks,more » navigation systems, and the electric power grid.« less

  10. 76 FR 66750 - Certain Automotive GPS Navigation Systems, Components Thereof, and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-27

    ... INTERNATIONAL TRADE COMMISSION [DN 2850] Certain Automotive GPS Navigation Systems, Components... given that the U.S. International Trade Commission has received a complaint entitled In Re Certain Automotive GPS Navigation Systems, Components Thereof, And Products Containing Same, DN 2850; the Commission...

  11. A New Indoor Positioning System Architecture Using GPS Signals.

    PubMed

    Xu, Rui; Chen, Wu; Xu, Ying; Ji, Shengyue

    2015-04-29

    The pseudolite system is a good alternative for indoor positioning systems due to its large coverage area and accurate positioning solution. However, for common Global Positioning System (GPS) receivers, the pseudolite system requires some modifications of the user terminals. To solve the problem, this paper proposes a new pseudolite-based indoor positioning system architecture. The main idea is to receive real-world GPS signals, repeat each satellite signal and transmit those using indoor transmitting antennas. The transmitted GPS-like signal can be processed (signal acquisition and tracking, navigation data decoding) by the general receiver and thus no hardware-level modification on the receiver is required. In addition, all Tx can be synchronized with each other since one single clock is used in Rx/Tx. The proposed system is simulated using a software GPS receiver. The simulation results show the indoor positioning system is able to provide high accurate horizontal positioning in both static and dynamic situations.

  12. Differences in medical services in Nordic general practice: a comparative survey from the QUALICOPC study.

    PubMed

    Eide, Torunn Bjerve; Straand, Jørund; Björkelund, Cecilia; Kosunen, Elise; Thorgeirsson, Ofeigur; Vedsted, Peter; Rosvold, Elin Olaug

    2017-06-01

    We aim to describe medical services provided by Nordic general practitioners (GPs), and to explore possible differences between the countries. We did a comparative analysis of selected data from the Nordic part of the study Quality and Costs of Primary Care in Europe (QUALICOPC). A total of 875 Nordic GPs (198 Norwegian, 80 Icelandic, 97 Swedish, 212 Danish and 288 Finnish) answered identical questionnaires regarding their practices. The GPs indicated which equipment they used in practice, which procedures that were carried out, and to what extent they were involved in treatment/follow-up of a selection of diagnoses. The Danish GPs performed minor surgical procedures significantly less frequent than GPs in all other countries, although they inserted IUDs significantly more often than GPs in Iceland, Sweden and Finland. Finnish GPs performed a majority of the medical procedures more frequently than GPs in the other countries. The GPs in Iceland reported involvement in a more narrow selection of conditions than the GPs in the other countries. The Finnish GPs had more advanced technical equipment than GPs in all other Nordic countries. GPs in all Nordic countries are well equipped and offer a wide range of medical services, yet with a substantial variation between countries. There was no clear pattern of GPs in one country doing consistently more procedures, having consistently more equipment and treating a larger diversity of medical conditions than GPs in the other countries. However, structural factors seemed to affect the services offered.

  13. The effect of reminder letters on the uptake of an e-learning programme on dementia: a randomized trial in general practice.

    PubMed

    Waldorff, Frans Boch; Siersma, Volkert; Nielsen, Bente; Steenstrup, Annette Plesner; Bro, Flemming

    2009-12-01

    The aim of the present study was to evaluate whether three reminder letters mailed to GPs after dissemination of a Dementia Guideline increased the GPs' use of the corresponding e-learning programme (ELP). Single-blinded randomized trial among all GPs in Copenhagen Municipality from 1 November 2006 to 1 May 2007. A total of 15 of 320 GPs (4.7%) had a web-based logon during the study period. The intervention group had a significantly increased frequency of web-based logons (P = 0.0192) equivalent to a hazard ratio of 8.0 (95% CI: 1.03-66.1; P = 0.047). NNT was calculated to 22.2. We could not detect any significant differences in any of the secondary outcomes. Three reminder letters added to a nation-wide dissemination increased the probability for a GP logon in the ELP by a Factor 8. However, in total, only a small proportion used the ELP. Thus, further research is needed in order to consider future implementation strategies for Internet-based Continuous Medical Education activities among not primed GPs.

  14. Estimating Integrated Water Vapor (IWV) regional map distribution using METEOSAT satellite data and GPS Zenith Wet Delay (ZWD)

    NASA Astrophysics Data System (ADS)

    Reuveni, Y.; Leontiev, A.

    2016-12-01

    Using GPS satellites signals, we can study atmospheric processes and coupling mechanisms, which can help us understand the physical conditions in the upper atmosphere that might lead or act as proxies for severe weather events such as extreme storms and flooding. GPS signals received by geodetic stations on the ground are multi-purpose and can also provide estimates of tropospheric zenith delays, which can be converted into mm-accuracy Precipitable Water Vapor (PWV) using collocated pressure and temperature measurements on the ground. Here, we present the use of Israel's geodetic GPS receivers network for extracting tropospheric zenith path delays combined with near Real Time (RT) METEOSAT-10 Water Vapor (WV) and surface temperature pixel intensity values (7.3 and 12.1 channels, respectively) in order to obtain absolute IWV (kg/m2) or PWV (mm) map distribution. The results show good agreement between the absolute values obtained from our triangulation strategy based solely on GPS Zenith Total Delays (ZTD) and METEOSAT-10 surface temperature data compared with available radiosonde Precipitable IWV/PWV absolute values. The presented strategy can provide unprecedented temporal and special IWV/PWV distribution, which is needed as part of the accurate and comprehensive initial conditions pro­vided by upper-air observation systems at temporal and spatial resolutions consistent with the models assimilating them.

  15. Study of TEC and foF2 with the Help of GPS and Ionosonde Data over Maitri, Antarctica

    NASA Astrophysics Data System (ADS)

    Khatarkar, Prakash; Gwal, Ashok Kumar

    Prakash Khatarkar, Purusottam Bhaware, Azad Ahmad Mansoori, Varsha Kachneria, Shweta Thakur, and A. K. Gwal Abstract The behavior of ionosphere can be diagnosed by a number of techniques. The common techniques used are the space based Global Positioning System and the ground based Ionosonde. We have compared the variability of ionospheric parameters by using two different techniques GPS and Ionosonde, during December 2009 to November 2010 at the Indian base station Maitri (11.45E, 70.45S). The comparison between the measurements of two techniques was realized through the Total Electron Content (TEC) parameters derived by using different methods. The comparison was made diurnally, seasonally, polar day and polar night variations and the annually. From our analysis we found that a strong correlation exists between the GPS derived TEC and Ionosonde derived foF2 during the day period while during the night time the correlation is insignificant. At the same time we found that a strong correlation exists between the Ionosonde and GPS derived TEC. The pattern of variation of ionospheric parameters derived from two techniques is strikingly similar indicating that the high degree of synchronization between them. This has a practical applicability by allowing calculating the error in one technique by comparing with other. Keywords: Ionosphere, Ionosonde, GPS, foF2, TEC.

  16. General practitioners' attitudes toward reporting and learning from adverse events: results from a survey.

    PubMed

    Mikkelsen, Thorbjørn H; Sokolowski, Ineta; Olesen, Frede

    2006-03-01

    To investigate GPs' attitudes to and willingness to report and learn from adverse events and to study how a reporting system should function. Survey. General practice in Denmark. GPs' attitudes to exchange of experience with colleagues and others, and circumstances under which such exchange is accepted. A structured questionnaire sent to 1198 GPs of whom 61% responded. RESULTS. GPs had a positive attitude towards discussing adverse events in the clinic with colleagues and staff and in their continuing medical education groups. The GPs had a positive attitude to reporting adverse events to a database if the system granted legal and administrative immunity to reporters. The majority preferred a reporting system located at a research institute. GPs have a very positive attitude towards discussing and reporting adverse events. This project encourages further research and pilot projects testing concrete reporting systems.

  17. Real-Time Detection of Tsunami Ionospheric Disturbances with a Stand-Alone GNSS Receiver: An Integration of GPS and Galileo Systems

    NASA Astrophysics Data System (ADS)

    Savastano, Giorgio; Komjathy, Attila; Verkhoglyadova, Olga; Wei, Yong; Mazzoni, Augusto; Crespi, Mattia

    2017-04-01

    Tsunamis can produce gravity waves that propagate up to the ionosphere generating disturbed electron densities in the E and F regions. These ionospheric disturbances are studied in detail using ionospheric total electron content (TEC) measurements collected by continuously operating ground-based receivers from the Global Navigation Satellite Systems (GNSS). Here, we present results using a new approach, named VARION (Variometric Approach for Real-Time Ionosphere Observation), and for the first time, we estimate slant TEC (sTEC) variations in a real-time scenario from GPS and Galileo constellations. Specifically, we study the 2016 New Zealand tsunami event using GNSS receivers with multi-constellation tracking capabilities located in the Pacific region. We compare sTEC estimates obtained using GPS and Galileo constellations. The efficiency of the real-time sTEC estimation using the VARION algorithm has been demonstrated for the 2012 Haida Gwaii tsunami event. TEC variations induced by the tsunami event are computed using 56 GPS receivers in Hawai'i. We observe TEC perturbations with amplitudes up to 0.25 TEC units and traveling ionospheric disturbances moving away from the epicenter at a speed of about 316 m/s. We present comparisons with the real-time tsunami model MOST (Method of Splitting Tsunami) provided by the NOAA Center for Tsunami Research. We observe variations in TEC that correlate well in time and space with the propagating tsunami waves. We conclude that the integration of different satellite constellations is a crucial step forward to increasing the reliability of real-time tsunami detection systems using ground-based GNSS receivers as an augmentation to existing tsunami early warning systems.

  18. 76 FR 72442 - Certain Automotive GPS Navigation Systems, Components Thereof, and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-814] Certain Automotive GPS Navigation Systems... the sale within the United States after importation of certain automotive GPS navigation systems... further alleges that an industry in the United States exists as required by subsection (a)(2) of section...

  19. 76 FR 27744 - Eighty-Fifth Meeting: RTCA Special Committee 159: Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... Committee 159: Global Positioning System (GPS) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 159 meeting: Global Positioning System (GPS). SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 159: Global Positioning...

  20. 75 FR 28318 - Eighty-Second Meeting: RTCA Special Committee 159: Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... Committee 159: Global Positioning System (GPS) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 159 meeting: Global Positioning System (GPS). SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 159: Global Positioning...

  1. 75 FR 2581 - Eighty-First Meeting: RTCA Special Committee 159: Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ... Committee 159: Global Positioning System (GPS) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 159 meeting: Global Positioning System (GPS). SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 159: Global Positioning...

  2. Fundamentals of satellite navigation

    NASA Astrophysics Data System (ADS)

    Stiller, A. H.

    The basic operating principles and capabilities of conventional and satellite-based navigation systems for air, sea, and land vehicles are reviewed and illustrated with diagrams. Consideration is given to autonomous onboard systems; systems based on visible or radio beacons; the Transit, Cicada, Navstar-GPS, and Glonass satellite systems; the physical laws and parameters of satellite motion; the definition of time in satellite systems; and the content of the demodulated GPS data signal. The GPS and Glonass data format frames are presented graphically, and tables listing the GPS and Glonass satellites, their technical characteristics, and the (past or scheduled) launch dates are provided.

  3. A Leo Satellite Navigation Algorithm Based on GPS and Magnetometer Data

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Harman, Rick; Bar-Itzhack, Itzhack

    2001-01-01

    The Global Positioning System (GPS) has become a standard method for low cost onboard satellite orbit determination. The use of a GPS receiver as an attitude and rate sensor has also been developed in the recent past. Additionally, focus has been given to attitude and orbit estimation using the magnetometer, a low cost, reliable sensor. Combining measurements from both GPS and a magnetometer can provide a robust navigation system that takes advantage of the estimation qualities of both measurements. Ultimately, a low cost, accurate navigation system can result, potentially eliminating the need for more costly sensors, including gyroscopes. This work presents the development of a technique to eliminate numerical differentiation of the GPS phase measurements and also compares the use of one versus two GPS satellites.

  4. Real-time, autonomous precise satellite orbit determination using the global positioning system

    NASA Astrophysics Data System (ADS)

    Goldstein, David Ben

    2000-10-01

    The desire for autonomously generated, rapidly available, and highly accurate satellite ephemeris is growing with the proliferation of constellations of satellites and the cost and overhead of ground tracking resources. Autonomous Orbit Determination (OD) may be done on the ground in a post-processing mode or in real-time on board a satellite and may be accomplished days, hours or immediately after observations are processed. The Global Positioning System (GPS) is now widely used as an alternative to ground tracking resources to supply observation data for satellite positioning and navigation. GPS is accurate, inexpensive, provides continuous coverage, and is an excellent choice for autonomous systems. In an effort to estimate precise satellite ephemeris in real-time on board a satellite, the Goddard Space Flight Center (GSFC) created the GPS Enhanced OD Experiment (GEODE) flight navigation software. This dissertation offers alternative methods and improvements to GEODE to increase on board autonomy and real-time total position accuracy and precision without increasing computational burden. First, GEODE is modified to include a Gravity Acceleration Approximation Function (GAAF) to replace the traditional spherical harmonic representation of the gravity field. Next, an ionospheric correction method called Differenced Range Versus Integrated Doppler (DRVID) is applied to correct for ionospheric errors in the GPS measurements used in GEODE. Then, Dynamic Model Compensation (DMC) is added to estimate unmodeled and/or mismodeled forces in the dynamic model and to provide an alternative process noise variance-covariance formulation. Finally, a Genetic Algorithm (GA) is implemented in the form of Genetic Model Compensation (GMC) to optimize DMC forcing noise parameters. Application of GAAF, DRVID and DMC improved GEODE's position estimates by 28.3% when applied to GPS/MET data collected in the presence of Selective Availability (SA), 17.5% when SA is removed from the GPS/MET data and 10.8% on SA free TOPEX data. Position estimates with RSS errors below I meter are now achieved using SA free TOPEX data. DRVID causes an increase in computational burden while GAAF and DMC reduce computational burden. The net effect of applying GAAF, DRVID and DMC is an improvement in GEODE's accuracy/precision without an increase in computational burden.

  5. Use and Protection of GPS Sidelobe Signals for Enhanced Navigation Performance in High Earth Orbit

    NASA Technical Reports Server (NTRS)

    Parker, Joel J. K.; Valdez, Jennifer E.; Bauer, Frank H.; Moreau, Michael C.

    2016-01-01

    The application of the Global Positioning System (GPS) for navigation of spacecraft in High and Geosynchronous Earth Orbit (HEO/GEO) has crossed a threshold and is now being employed in operational missions. Utilizing advanced GPS receivers optimized for these missions, space users have made extensive use of the sidelobe transmissions from the GPS satellites to realize navigation performance that far exceeds that predicted by pre-launch simulations. Unfortunately, the official specification for the GPS Space Service Volume (SSV), developed in 2006, assumes that only signals emanating from the main beam of the GPS transmit antenna are useful for navigation, which greatly under-estimates the number of signals available for navigation purposes. As a result, future high-altitude space users may be vulnerable to any GPS design changes that suppress the sidelobe transmissions, beginning with Block III space vehicles (SVs) 11-32. This paper presents proposed changes to the GPS system SSV requirements, as informed by data from recent experiments in the SSV and new mission applications that are enabled by GPS navigation in HEO/GEO regimes. The NASA/NOAA GOES-R series satellites are highlighted as an example of a mission that relies on this currently-unspecified GPS system performance to meet mission requirements.

  6. 75 FR 8928 - Announcement of IS-GPS-200, IS-GPS-705, IS-GPS-800 Interface Control Working Group (ICWG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... DEPARTMENT OF DEFENSE Department of the Air Force Announcement of IS-GPS-200, IS-GPS-705, IS-GPS-800Interface Control Working Group (ICWG) Teleconference Meeting AGENCY: Department of the Air Force, DoD... Positioning Systems Wing will be hosting an Interface Control Working Group (ICWG) teleconference meeting for...

  7. SPECTRE (www.noveltis.fr/spectre): a web Service for Ionospheric Products

    NASA Astrophysics Data System (ADS)

    Jeansou, E.; Crespon, F.; Garcia, R.; Helbert, J.; Moreaux, G.; Lognonne, P.

    2005-12-01

    The dense GPS networks developed for geodesic applications appear to be very efficient ionospheric sensors because of interaction between plasma and electromagnetic waves. Indeed, the dual frequency receivers provide data from which the Slant Total Electron Content (STEC) can be easily extracted to compute Vertical Total Electron Content (VTEC) maps. The SPECTRE project, Service and Products for ionospheric Electron Content and Tropospheric Refractivity over Europe, is currently a pre-operational service providing VTEC maps with high time and space resolution after 3 days time delay (http://www.noveltis.fr/spectre and http://ganymede.ipgp.jussieu.fr/spectre). This project is a part of SWENET, SpaceWeather European Network, initiated by the European Space Agency. The SPECTRE data products are useful for many applications. We will present these applications in term of interest for the scientific community with a special focus on spaceweather and transient ionospheric perturbations related to Earthquakes. Moreover, the pre-operational extensions of SPECTRE to the californian (SCIGN/BARD) and japanese (GEONET) dense GPS networks will be presented. Then the method of 3D tomography of the electron density from GPS data will be presented and its resolution discussed. The expected improvements of the 3D tomographic images by new tomographic reconstruction algorithms and by the advent of the Galileo system will conclude the presentation.

  8. No relationship exists between urinary NT-proBNP and GPS technology in professional rugby union.

    PubMed

    Lindsay, Angus; Lewis, John G; Gill, Nicholas; Draper, Nick; Gieseg, Steven P

    2017-08-01

    We investigated the level of cardiovascular stress associated with professional rugby union and whether these changes could be explained through external workload systems like GPS and video analysis. Urine samples (14 in game one and 13 in game two) were collected from professional rugby players before, immediately post- and 36h post-play in two consecutive games. Urine was analysed for NT-proBNP by ELISA. Comparison with GPS (player-load and distance covered at specific speed bands) and video analysis (total impacts) were conducted. There was a significant increase in urinary NT-proBNP during game one (31.6±5.4 to 53.5±10.8pg/mL) and game two (35.4±3.9 to 49.8±11.7pg/mL) that did not correlate with the number of impacts, total distance covered, distance covered at pre-determined speed bands or player-load. Concentrations returned to pre-game concentrations 36h post-game whilst a large inter-individual variation in NT-proBNP was observed among players (p<0.001). Professional rugby union causes a transient increase in cardiovascular stress that seems to be independent of the external workload characteristics of a player. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. Improving general practitioner clinical records with a quality assurance minimal intervention.

    PubMed Central

    Del Mar, C B; Lowe, J B; Adkins, P; Arnold, E; Baade, P

    1998-01-01

    BACKGROUND: Although good medical records have been associated with good care, there is considerable room for their improvement in general practice. AIM: To improve the quality of general practice medical records at minimal cost. METHOD: A total of 150 randomly sampled general practitioners (GPs) in suburban Brisbane, Australia, were randomized in a controlled trial to receive or not receive an intervention. The intervention consisted of 6 to 12 one-hour monthly meetings when the pairs of GPs assessed samples of each other's medical records using a 12-item instrument. This was developed previously by a process of consensus of general practice teachers. Mean scores of 10 medical records selected at random from before the intervention started and one year later were compared. RESULTS: After the intervention, the increase in the total score (for which the maximum possible was 18) for the intervention GPs (from a baseline of 11.5 to 12.3) was not significantly greater than for the controls (from 11.4 to 11.7). Legibility and being able to determine the doctor's assessment of the consultation were significantly improved. The post-intervention increase of 1.06 (9.3%) of the total scores of the 47% of intervention GPs who complied with the intervention was significantly greater than that for the controls. CONCLUSION: The quality assurance activity improved some components of the quality of GPs' clinical records. However, the improvement was small, and the search for activities for Australian GPs that demonstrate an improvement in the quality of their practice must continue. Images p1311-a PMID:9747547

  10. Generation of real-time mode high-resolution water vapor fields from GPS observations

    NASA Astrophysics Data System (ADS)

    Yu, Chen; Penna, Nigel T.; Li, Zhenhong

    2017-02-01

    Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.

  11. Space Shuttle Navigation in the GPS Era

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2001-01-01

    The Space Shuttle navigation architecture was originally designed in the 1970s. A variety of on-board and ground based navigation sensors and computers are used during the ascent, orbit coast, rendezvous, (including proximity operations and docking) and entry flight phases. With the advent of GPS navigation and tightly coupled GPS/INS Units employing strapdown sensors, opportunities to improve and streamline the Shuttle navigation process are being pursued. These improvements can potentially result in increased safety, reliability, and cost savings in maintenance through the replacement of older technologies and elimination of ground support systems (such as Tactical Air Control and Navigation (TACAN), Microwave Landing System (MLS) and ground radar). Selection and missionization of "off the shelf" GPS and GPS/INS units pose a unique challenge since the units in question were not originally designed for the Space Shuttle application. Various options for integrating GPS and GPS/INS units with the existing orbiter avionics system were considered in light of budget constraints, software quality concerns, and schedule limitations. An overview of Shuttle navigation methodology from 1981 to the present is given, along with how GPS and GPS/INS technology will change, or not change, the way Space Shuttle navigation is performed in the 21 5 century.

  12. The GPS Topex/Poseidon precise orbit determination experiment - Implications for design of GPS global networks

    NASA Technical Reports Server (NTRS)

    Lindqwister, Ulf J.; Lichten, Stephen M.; Davis, Edgar S.; Theiss, Harold L.

    1993-01-01

    Topex/Poseidon, a cooperative satellite mission between United States and France, aims to determine global ocean circulation patterns and to study their influence on world climate through precise measurements of sea surface height above the geoid with an on-board altimeter. To achieve the mission science aims, a goal of 13-cm orbit altitude accuracy was set. Topex/Poseidon includes a Global Positioning System (GPS) precise orbit determination (POD) system that has now demonstrated altitude accuracy better than 5 cm. The GPS POD system includes an on-board GPS receiver and a 6-station GPS global tracking network. This paper reviews early GPS results and discusses multi-mission capabilities available from a future enhanced global GPS network, which would provide ground-based geodetic and atmospheric calibrations needed for NASA deep space missions while also supplying tracking data for future low Earth orbiters. Benefits of the enhanced global GPS network include lower operations costs for deep space tracking and many scientific and societal benefits from the low Earth orbiter missions, including improved understanding of ocean circulation, ocean-weather interactions, the El Nino effect, the Earth thermal balance, and weather forecasting.

  13. Evaluating Cumulative Ascent:. Mountain Biking Meets Mandelbrot

    NASA Astrophysics Data System (ADS)

    Rapaport, D. C.

    The problem of determining total distance ascended during a mountain bike trip is addressed. Altitude measurements are obtained from GPS receivers utilizing both GPS-based and barometric altitude data, with data averaging used to reduce fluctuations. The estimation process is sensitive to the degree of averaging, and is related to the well-known question of determining coastline length. Barometric-based measurements prove more reliable, due to their insensitivity to GPS altitude fluctuations.

  14. Quantifying movement demands of AFL football using GPS tracking.

    PubMed

    Wisbey, Ben; Montgomery, Paul G; Pyne, David B; Rattray, Ben

    2010-09-01

    Global positioning system (GPS) monitoring of movement patterns is widespread in elite football including the Australian Football League (AFL). However documented analysis of this activity is lacking. We quantified the movement patterns of AFL football and differences between nomadic (midfield), forward and defender playing positions, and determined whether the physical demands have increased over a four season period. Selected premiership games were monitored during the 2005 (n=80 game files), 2006 (n=244), 2007 (n=632) and 2008 (n=793) AFL seasons. Players were fitted with a shoulder harness containing a GPS unit. GPS data were downloaded after games and the following measures extracted: total distance (km), time in various speed zones, maximum speed, number of surges, accelerations, longest continuous efforts and a derived exertion index representing playing intensity. In 2008 nomadic players covered per game 3.4% more total distance (km), had 4.8% less playing time (min), a 17% higher exertion index (per min), and 23% more time running >18kmh(-1) than forwards and defenders (all p<0.05). Physical demands were substantially higher in the 2008 season compared with 2005: an 8.4% increase in mean speed, a 14% increase in intensity (exertion index) and a 9.0% decrease in playing time (all p<0.05). Nomadic players in AFL work substantially harder than forwards and defenders in covering more ground and at higher running intensities. Increases in the physical demands of AFL football were evident between 2005 and 2008. The increasing speed of the game has implications for game authorities, players and coaching staff.

  15. Combining GPS, GIS, and accelerometry to explore the physical activity and environment relationship in children and young people - a review.

    PubMed

    McCrorie, Paul R W; Fenton, Candida; Ellaway, Anne

    2014-09-13

    The environment has long been associated with physical activity engagement, and recent developments in technology have resulted in the ability to objectively quantify activity behaviours and activity context. This paper reviews studies that have combined Global Positioning Systems (GPS), Geographic Information Systems (GIS) and accelerometry to investigate the PA-environment relationship in children and young people (5-18 years old). Literature searches of the following bibliographic databases were undertaken: Sportdiscus, Medline, Embase, CINAHL, Psychinfo and Applied Social Sciences Index and Abstracts (ASSIA). Fourteen studies met the inclusion criteria, and covered topics including greenspace use, general land use, active travel, and the built environment. Studies were largely cross-sectional and took place across developed countries (UK, USA, Canada, New Zealand, and Australia). Findings suggest that roads and streets, school grounds, and the home location are important locations for total PA, and moderate to vigorous PA (MVPA). The relationship between greenspace was positive, however, multiple definitions and outcome measures add complexity to the results. MVPA was more likely in those exposed to higher levels of greenspace compared to sedentary individuals. Total MVPA time in greenspace is low, but when framed as a proportion of the total can be quite high. Domestic gardens may be an important area for higher intensity activity.

  16. Temporal and spatial characterization of zenith total delay (ZTD) in North Europe

    NASA Astrophysics Data System (ADS)

    Stoew, B.; Elgered, G.

    2003-04-01

    The estimates of ZTD are often treated as realizations of random walk stochastic processes. We derive the corresponding process parameters for 34 different locations in North Europe using two measurement techniques - Global Positioning System (GPS) and Water Vapor Radiometer (WVR). GPS-estimated ZTD is an excellent candidate for data assimilation in numerical weather prediction (NWP) models in terms of both spatial and temporal resolution. We characterize the long term behavior of the ZTD as a function of site latitude and height. The spatial characteristics of the ZTD are studied as a function of site separation and season. We investigate the influence of the time-interpolated atmospheric pressure data used for the estimation of zenith wet delay (ZWD) from ZTD. Characterization of extreme atmospheric events can aid the development of an early warning system. We consider two types of extreme meteorological phenomena with regard to their spatial scales. The first type concerns larger regions (including several GPS sites); the extreme weather is characterized by intense precipitation which may result in a flood. The second type is related to local variations in the ZWD/ZTD and can be used for detection/monitoring of passing atmospheric fronts.

  17. Error modeling for differential GPS. M.S. Thesis - MIT, 12 May 1995

    NASA Technical Reports Server (NTRS)

    Blerman, Gregory S.

    1995-01-01

    Differential Global Positioning System (DGPS) positioning is used to accurately locate a GPS receiver based upon the well-known position of a reference site. In utilizing this technique, several error sources contribute to position inaccuracy. This thesis investigates the error in DGPS operation and attempts to develop a statistical model for the behavior of this error. The model for DGPS error is developed using GPS data collected by Draper Laboratory. The Marquardt method for nonlinear curve-fitting is used to find the parameters of a first order Markov process that models the average errors from the collected data. The results show that a first order Markov process can be used to model the DGPS error as a function of baseline distance and time delay. The model's time correlation constant is 3847.1 seconds (1.07 hours) for the mean square error. The distance correlation constant is 122.8 kilometers. The total process variance for the DGPS model is 3.73 sq meters.

  18. Application of IRI-Plas in Ionospheric Tomography and HF Communication Studies with Assimilation of GPS-TEC

    NASA Astrophysics Data System (ADS)

    Arikan, Feza; Gulyaeva, Tamara; Sezen, Umut; Arikan, Orhan; Toker, Cenk; Hakan Tuna, MR.; Erdem, Esra

    2016-07-01

    International Reference Ionosphere is the most acknowledged climatic model of ionosphere that provides electron density profile and hourly, monthly median values of critical layer parameters of the ionosphere for a desired location, date and time between 60 to 2,000 km altitude. IRI is also accepted as the International Standard Ionosphere model. Recently, the IRI model is extended to the Global Positioning System (GPS) satellite orbital range of 20,000 km. The new version is called IRI-Plas and it can be obtained from http://ftp.izmiran.ru/pub/izmiran /SPIM/. A user-friendly online version is also provided at www.ionolab.org as a space weather service. Total Electron Content (TEC), which is defined as the line integral of electron density on a given ray path, is an observable parameter that can be estimated from earth based GPS receivers in a cost-effective manner as GPS-TEC. One of the most important advantages of IRI-Plas is the possible input of GPS-TEC to update the background deterministic ionospheric model to the current ionospheric state. This option is highly useful in regional and global tomography studies and HF link assessments. IONOLAB group currently implements IRI-Plas as a background model and updates the ionospheric state using GPS-TEC in IONOLAB-CIT and IONOLAB-RAY algorithms. The improved state of ionosphere allows the most reliable 4-D imaging of electron density profiles and HF and satellite communication link simulations.This study is supported by TUBITAK 115E915 and joint TUBITAK 114E092 and AS CR 14/001.

  19. Running Speed Can Be Predicted from Foot Contact Time during Outdoor over Ground Running.

    PubMed

    de Ruiter, Cornelis J; van Oeveren, Ben; Francke, Agnieta; Zijlstra, Patrick; van Dieen, Jaap H

    2016-01-01

    The number of validation studies of commercially available foot pods that provide estimates of running speed is limited and these studies have been conducted under laboratory conditions. Moreover, internal data handling and algorithms used to derive speed from these pods are proprietary and thereby unclear. The present study investigates the use of foot contact time (CT) for running speed estimations, which potentially can be used in addition to the global positioning system (GPS) in situations where GPS performance is limited. CT was measured with tri axial inertial sensors attached to the feet of 14 runners, during natural over ground outdoor running, under optimized conditions for GPS. The individual relationships between running speed and CT were established during short runs at different speeds on two days. These relations were subsequently used to predict instantaneous speed during a straight line 4 km run with a single turning point halfway. Stopwatch derived speed, measured for each of 32 consecutive 125m intervals during the 4 km runs, was used as reference. Individual speed-CT relations were strong (r2 >0.96 for all trials) and consistent between days. During the 4km runs, median error (ranges) in predicted speed from CT 2.5% (5.2) was higher (P<0.05) than for GPS 1.6% (0.8). However, around the turning point and during the first and last 125m interval, error for GPS-speed increased to 5.0% (4.5) and became greater (P<0.05) than the error predicted from CT: 2.7% (4.4). Small speed fluctuations during 4km runs were adequately monitored with both methods: CT and GPS respectively explained 85% and 73% of the total speed variance during 4km runs. In conclusion, running speed estimates bases on speed-CT relations, have acceptable accuracy and could serve to backup or substitute for GPS during tarmac running on flat terrain whenever GPS performance is limited.

  20. UNAVCO GPS High-Rate and Real-Time Products and Services: Building a next generation geodetic network.

    NASA Astrophysics Data System (ADS)

    Mencin, David; Meertens, Charles; Mattioli, Glen; Feaux, Karl; Looney, Sara; Sievers, Charles; Austin, Ken

    2013-04-01

    Recent advances in GPS technology and data processing are providing position estimates with centimeter-level precision at high-rate (1-5 Hz) and low latency (<1 s). Broad community interest in these data is growing rapidly because these data will have the potential to improve our understanding in diverse areas of geophysics including properties of seismic, volcanic, magmatic and tsunami deformation sources, and moreover profoundly transforming rapid event characterization, early warning, as well as hazard mitigation and response. Other scientific and operational applications for high-rate GPS also include glacier and ice sheet motions, tropospheric modeling, and better constraints on the dynamics of space weather. UNAVCO, through community input and the recent Plate Boundary Observatory (PBO) NSF-ARRA Cascadia initiative, has nearly completed the process of upgrading a total of 373 PBO GPS sites to real-time high-rate capability and these streams are now being archived in the UNAVCO data center. Further, through the UNAVCO core proposal (GAGE), currently under review at NSF, UNAVCO has proposed upgrading a significant portion of the ~1100 GPS stations that PBO currently operates to real-time high-rate capability to address community science and operational needs. In addition, in collaboration with NOAA, 74 of these stations will provide meteorological data in real-time, primarily to support watershed and flood analyses for regional early-warning systems related to NOAA's work with California Department of Water Resources. In preparation for this increased emphasis on high-rate GPS data, UNAVCO hosted an NSF funded workshop in Boulder, CO on March 26-28, 2012, which brought together 70 participants representing a spectrum of research fields with a goal to develop a community plan for the use of real-time GPS data products within the UNAVCO and EarthScope communities. These data products are expected to improve and expand the use of real-time, high-rate GPS data over the next decade.

  1. Real-time Scintillation Monitoring in Alaska from a Longitudinal Chain of ASTRA's SM-211 GPS TEC and Scintillation Receivers

    NASA Astrophysics Data System (ADS)

    Crowley, G.; Azeem, S. I.; Reynolds, A.; Santana, J.; Hampton, D. L.

    2013-12-01

    Amplitude and phase scintillation can cause serious difficulties for GPS receivers. Intense scintillation can cause loss of lock. High latitude studies generally show that phase scintillation can be severe, but the amplitude scintillation tends to be small. The reason for this is not yet understood. Furthermore, the actual causes of the ionospheric irregularities that produce high latitude scintillation are not well understood. While the gradient drift instability is thought to be important in the F-region, there may be other structures present in either the E- or F-regions. The role of particle precipitation is also not well understood. Four of ASTRA's CASES GPS receivers were deployed in Alaska to demonstrate our ability to map scintillation in realtime, to provide space weather services to GPS users, and to initiate a detailed investigation of these effects. These dual-frequency GPS receivers measure total electron content (TEC) and scintillation. The scintillation monitors were deployed in a longitudinal chain at sites in Kaktovic, Fort Yukon, Poker Flat, and Gakona. Scintillation statistics show phase scintillations to be largest at Kaktovic and smallest at Gakona. We present GPS phase scintillation and auroral emission results from the Alaska chain to characterize the correspondence between scintillation and auroral features, and to investigate the role of high latitude auroral features in driving the phase scintillations. We will also present data showing how phase scintillation can cause other GPS receivers to lose lock. The data and results are particularly valuable because they illustrate some of the challenges of using GPS systems for positioning and navigation in an auroral region like Alaska. These challenges for snowplough drivers were recently highlighted, along with the CASES SM-211 space weather monitor, in a special video in which ASTRA and three other small businesses were presented with an entrepreneurial award from William Shatner (http://youtu.be/bIVKEQH_YPk).

  2. Global Positioning System: Observations on Quarterly Reports from the Air Force

    DTIC Science & Technology

    2016-10-17

    Positioning System : Observations on Quarterly Reports from the Air Force The satellite-based Global Positioning System (GPS) provides positioning, navigation...infrastructure, and transportation safety. The Department of Defense (DOD)—specifically, the Air Force—develops and operates the GPS system , which...programs, including the most recent detailed assessment of the next generation operational control system (OCX) and development of military GPS

  3. SUPL support for mobile devices

    NASA Astrophysics Data System (ADS)

    Narisetty, Jayanthi; Soghoyan, Arpine; Sundaramurthy, Mohanapriya; Akopian, David

    2012-02-01

    Conventional Global Positioning System (GPS) receivers operate well in open-sky environments. But their performance degrades in urban canyons, indoors and underground due to multipath, foliage, dissipation, etc. To overcome such situations, several enhancements have been suggested such as Assisted GPS (A-GPS). Using this approach, orbital parameters including ephemeris and almanac along with reference time and coarse location information are provided to GPS receivers to assist in acquisition of weak signals. To test A-GPS enabled receivers high-end simulators are used, which are not affordable by many academic institutions. This paper presents an economical A-GPS supplement for inexpensive simulators which operates on application layer. Particularly proposed solution is integrated with National Instruments' (NI) GPS Simulation Toolkit and implemented using NI's Labview environment. This A-GPS support works for J2ME and Android platforms. The communication between the simulator and the receiver is in accordance with the Secure User Plane Location (SUPL) protocol encapsulated with Radio Resource Location Protocol (RRLP) applies to Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS) cellular networks.

  4. The August 21, 2017 American total solar eclipse through the eyes of GPS

    NASA Astrophysics Data System (ADS)

    Kundu, Bhaskar; Panda, Dibyashakti; Gahalaut, Vineet K.; Catherine, J. K.

    2018-04-01

    We explored spatio-temporal variation in Total Electron Contents (TEC) in the ionosphere caused by the recent August 21, 2017 total solar eclipse, which was observed over the United States of America. The path of total solar eclipse passes through the continental parts of the United States of America, starting in the northwestern state of Oregon and ending in the southeastern state of South Carolina, approximately covering 4000 km length. Across this length EarthScope Plate Boundary Observatory (PBO) has been operating a dense cGPS/GNSS networks. During the course of passage of the solar eclipse, the sudden decline in solar radiation by temporarily obscuration by the Moon caused a drop of ˜6-9 × 1016 electrons/m2in the ionosphere with time-delay at the cGPS sites. The significant drop in TEC at cGPS sites captured the average migration velocity of shadow along the eclipse path (0.74 km/s), from which we estimated the Moon's orbital velocity (˜1 km/s). Further, this event also caused some marginal increase in TEC during the eclipse in the Earth's ionosphere in the magnetically conjugate region at the tip of South America and Antarctica, consistent with the model predictions of SAMI3 by Naval Research Laboratory.

  5. Kinematic-PPP using Single/Dual Frequency Observations from (GPS, GLONASS and GPS/GLONASS) Constellations for Hydrography

    NASA Astrophysics Data System (ADS)

    Farah, Ashraf

    2018-03-01

    Global Positioning System (GPS) technology is ideally suited for inshore and offshore positioning because of its high accuracy and the short observation time required for a position fix. Precise point positioning (PPP) is a technique used for position computation with a high accuracy using a single GNSS receiver. It relies on highly accurate satellite position and clock data that can be acquired from different sources such as the International GNSS Service (IGS). PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of observations among other factors. PPP offers comparable accuracy to differential GPS with safe in cost and time. For many years, PPP users depended on GPS (American system) which considered the solely reliable system. GLONASS's contribution in PPP techniques was limited due to fail in maintaining full constellation. Yet, GLONASS limited observations could be integrated into GPS-based PPP to improve availability and precision. As GLONASS reached its full constellation early 2013, there is a wide interest in PPP systems based on GLONASS only and independent of GPS. This paper investigates the performance of kinematic PPP solution for the hydrographic applications in the Nile river (Aswan, Egypt) based on GPS, GLONASS and GPS/GLONASS constellations. The study investigates also the effect of using two different observation types; single-frequency and dual frequency observations from the tested constellations.

  6. UNAVCO-PBO Southwest Region Network Operations

    NASA Astrophysics Data System (ADS)

    Walls, C. P.; Mann, D.; Basset, A.; Sklar, J.; Jarvis, C.; Pitcher, T.; Lawrence, S.; Greathouse, M.; Feaux, K.

    2012-12-01

    The UNAVCO Southwest region of the Plate Boundary Observatory manages 470 continuously operating GPS stations located principally along the transform system of the San Andreas Fault, Eastern California Shear Zone and the northern Baja peninsula. In the past year, network uptime averaged 98% with greater than 99% data acquisition. Communications range from CDMA modem (314), radio (100), Vsat (30), DSL/T1/other (25) to manual download (1). Thirty-four stations have WXT520 metpacks. Sixty-four stations stream 1 Hz data over the VRS3Net typically with <0.5 second latency. Over 650 maintenance activities were performed during 341 onsite visits out of approximately 346 engineer field days. Within the past year there have been 7 incidences of minor (attempted theft) to moderate vandalism (solar panel stolen) with one total loss of receiver and communications gear. Security was enhanced at these sites through fencing and more secure station configurations. UNAVCO is working with NOAA to stream real-time GPS and met data from PBO stations with WXT520 meteorological sensors and high rate data communications. These streams support watershed and flood analyses for regional early-warning systems related to NOAA's work with California Department of Water Resources. Network-wide NOAA receives a total of 54 streams including stations in Cascadia. In 2008 PBO became the steward of 209 existing network stations ("Nucleus stations") of which 140 are in the SW region that included SCIGN, BARD, BARGEN stations. Due to the mix of incompatible equipment used between PBO and existing network stations a project was undertaken to standardize existing network GPS stations to PBO specifications by upgrading antenna cabling, power systems and enclosures. In 2012 the Nucleus upgrade project was completed.

  7. Robust GPS autonomous signal quality monitoring

    NASA Astrophysics Data System (ADS)

    Ndili, Awele Nnaemeka

    The Global Positioning System (GPS), introduced by the U.S. Department of Defense in 1973, provides unprecedented world-wide navigation capabilities through a constellation of 24 satellites in global orbit, each emitting a low-power radio-frequency signal for ranging. GPS receivers track these transmitted signals, computing position to within 30 meters from range measurements made to four satellites. GPS has a wide range of applications, including aircraft, marine and land vehicle navigation. Each application places demands on GPS for various levels of accuracy, integrity, system availability and continuity of service. Radio frequency interference (RFI), which results from natural sources such as TV/FM harmonics, radar or Mobile Satellite Systems (MSS), presents a challenge in the use of GPS, by posing a threat to the accuracy, integrity and availability of the GPS navigation solution. In order to use GPS for integrity-sensitive applications, it is therefore necessary to monitor the quality of the received signal, with the objective of promptly detecting the presence of RFI, and thus provide a timely warning of degradation of system accuracy. This presents a challenge, since the myriad kinds of RFI affect the GPS receiver in different ways. What is required then, is a robust method of detecting GPS accuracy degradation, which is effective regardless of the origin of the threat. This dissertation presents a new method of robust signal quality monitoring for GPS. Algorithms for receiver autonomous interference detection and integrity monitoring are demonstrated. Candidate test statistics are derived from fundamental receiver measurements of in-phase and quadrature correlation outputs, and the gain of the Active Gain Controller (AGC). Performance of selected test statistics are evaluated in the presence of RFI: broadband interference, pulsed and non-pulsed interference, coherent CW at different frequencies; and non-RFI: GPS signal fading due to physical blockage and multipath. Results are presented which verify the effectiveness of these proposed methods. The benefits of pseudolites in reducing service outages due to interference are demonstrated. Pseudolites also enhance the geometry of the GPS constellation, improving overall system accuracy. Designs for pseudolites signals, to reduce the near-far problem associated with pseudolite use, are also presented.

  8. Global Positioning System (GPS) civil signal monitoring (CSM) trade study report

    DOT National Transportation Integrated Search

    2014-03-07

    This GPS Civil Signal Monitoring (CSM) Trade Study has been performed at the direction of DOT/FAA Navigation Programs as the agency of reference for consolidating civil monitoring requirements on the Global Positioning System (GPS). The objective of ...

  9. Exploration of GPS to enhance the safe transport of hazardous materials

    DOT National Transportation Integrated Search

    1997-12-01

    The report (1) documents a set of requirements for the performance of location systems that utilize the Global Positioning System (GPS), (2) identifies potential uses of GPS in hazardous materials transport, (3) develops service descriptions for the ...

  10. The Global Positioning System and Its Integration into College Geography Curricula.

    ERIC Educational Resources Information Center

    Wikle, Thomas A.; Lambert, Dean P.

    1996-01-01

    Introduces global positioning system (GPS) technology to nonspecialist geographers and recommends a framework for implementing GPS instructional modules in college geography courses. GPS was developed as a worldwide satellite-based system by the U.S. Department of Defense to simplify and improve military and civilian navigation and positioning.…

  11. Performance analysis of an integrated GPS/inertial attitude determination system. M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Sullivan, Wendy I.

    1994-01-01

    The performance of an integrated GPS/inertial attitude determination system is investigated using a linear covariance analysis. The principles of GPS interferometry are reviewed, and the major error sources of both interferometers and gyroscopes are discussed and modeled. A new figure of merit, attitude dilution of precision (ADOP), is defined for two possible GPS attitude determination methods, namely single difference and double difference interferometry. Based on this figure of merit, a satellite selection scheme is proposed. The performance of the integrated GPS/inertial attitude determination system is determined using a linear covariance analysis. Based on this analysis, it is concluded that the baseline errors (i.e., knowledge of the GPS interferometer baseline relative to the vehicle coordinate system) are the limiting factor in system performance. By reducing baseline errors, it should be possible to use lower quality gyroscopes without significantly reducing performance. For the cases considered, single difference interferometry is only marginally better than double difference interferometry. Finally, the performance of the system is found to be relatively insensitive to the satellite selection technique.

  12. Innovative Navigation Systems to Support Digital Geophysical Mapping

    DTIC Science & Technology

    2004-02-01

    9 Figure 8. Blackhawk/ Applanix GPS/INS System.................................................................10 Figure 9. Figure-Eight Traverse...Vulcan/LaserStation Line-of-sight laser Parsons Trimble INS/GPS DGPS and inertia guidance Blackhawk Applanix INS/GPS DGPS and inertia guidance...The Applanix Positioning and Orientation System for Land Survey (POS/LS) was used for the Phase I work. The system is similar to the Parsons

  13. Assessing the role of GPs in Nordic health care systems.

    PubMed

    Quaye, Randolph K

    2016-05-03

    Purpose This paper examines the changing role of general practitioners (GPs) in Nordic countries of Sweden, Norway and Denmark. It aims to explore the "gate keeping" role of GPs in the face of current changes in the health care delivery systems in these countries. Design/methodology/approach Data were collected from existing literature, interviews with GPs, hospital specialists and representatives of Danish regions and Norwegian Medical Association. Findings The paper contends that in all these changes, the position of the GPs in the medical division of labor has been strengthened, and patients now have increased and broadened access to choice. Research limitations/implications Health care cost and high cancer mortality rates have forced Nordic countries of Sweden, Norway and Denmark to rethink their health care systems. Several attempts have been made to reduce health care cost through market reform and by strenghtening the position of GPs. The evidence suggests that in Norway and Denmark, right incentives are in place to achieve this goal. Sweden is not far behind. The paper has limitations of a small sample size and an exclusive focus on GPs. Practical implications Anecdotal evidence suggests that physicians are becoming extremely unhappy. Understanding the changing status of primary care physicians will yield valuable information for assessing the effectiveness of Nordic health care delivery systems. Social implications This study has wider implications of how GPs see their role as potential gatekeepers in the Nordic health care systems. The role of GPs is changing as a result of recent health care reforms. Originality/value This paper contends that in Norway and Denmark, right incentives are in place to strengthen the position of GPs.

  14. The Performance Analysis of a 3d Map Embedded Ins/gps Fusion Algorithm for Seamless Vehicular Navigation in Elevated Highway Environments

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Chiang, K. W.

    2012-07-01

    In this study, a 3D Map Matching (3D MM) algorithm is embedded to current INS/GPS fusion algorithm for enhancing the sustainability and accuracy of INS/GPS integration systems, especially the height component. In addition, this study propose an effective solutions to the limitation of current commercial vehicular navigation systems where they fail to distinguish whether the vehicle is moving on the elevated highway or the road under it because those systems don't have sufficient height resolution. To validate the performance of proposed 3D MM embedded INS/GPS integration algorithms, in the test area, two scenarios were considered, paths under the freeways and streets between tall buildings, where the GPS signal is obstacle or interfered easily. The test platform was mounted on the top of a land vehicle and also systems in the vehicle. The IMUs applied includes SPAN-LCI (0.1 deg/hr gyro bias) from NovAtel, which was used as the reference system, and two MEMS IMUs with different specifications for verifying the performance of proposed algorithm. The preliminary results indicate the proposed algorithms are able to improve the accuracy of positional components in GPS denied environments significantly with the use of INS/GPS integrated systems in SPP mode.

  15. Implementation of a low-cost, commercial orbit determination system

    NASA Technical Reports Server (NTRS)

    Corrigan, Jim

    1994-01-01

    This paper describes the implementation and potential applications of a workstation-based orbit determination system developed by Storm Integration, Inc. called the Precision Orbit Determination System (PODS). PODS is offered as a layered product to the commercially-available Satellite Tool Kit (STK) produced by Analytical Graphics, Inc. PODS also incorporates the Workstation/Precision Orbit Determination (WS/POD) product offered by Van Martin System, Inc. The STK graphical user interface is used to access and invoke the PODS capabilities and to display the results. WS/POD is used to compute a best-fit solution to user-supplied tracking data. PODS provides the capability to simultaneously estimate the orbits of up to 99 satellites based on a wide variety of observation types including angles, range, range rate, and Global Positioning System (GPS) data. PODS can also estimate ground facility locations, Earth geopotential model coefficients, solar pressure and atmospheric drag parameters, and observation data biases. All determined data is automatically incorporated into the STK data base, which allows storage, manipulation and export of the data to other applications. PODS is offered in three levels: Standard, Basic GPS and Extended GPS. Standard allows processing of non-GPS observation types for any number of vehicles and facilities. Basic GPS adds processing of GPS pseudo-ranging data to the Standard capabilities. Extended GPS adds the ability to process GPS carrier phase data.

  16. Impact of Swarm GPS receiver updates on POD performance

    NASA Astrophysics Data System (ADS)

    van den IJssel, Jose; Forte, Biagio; Montenbruck, Oliver

    2016-05-01

    The Swarm satellites are equipped with state-of-the-art Global Positioning System (GPS) receivers, which are used for the precise geolocation of the magnetic and electric field instruments, as well as for the determination of the Earth's gravity field, the total electron content and low-frequency thermospheric neutral densities. The onboard GPS receivers deliver high-quality data with an almost continuous data rate. However, the receivers show a slightly degraded performance when flying over the geomagnetic poles and the geomagnetic equator, due to ionospheric scintillation. Furthermore, with only eight channels available for dual-frequency tracking, the amount of collected GPS tracking data is relatively low compared with various other missions. Therefore, several modifications have been implemented to the Swarm GPS receivers. To optimise the amount of collected GPS data, the GPS antenna elevation mask has slowly been reduced from 10° to 2°. To improve the robustness against ionospheric scintillation, the bandwidths of the GPS receiver tracking loops have been widened. Because these modifications were first implemented on Swarm-C, their impact can be assessed by a comparison with the close flying Swarm-A satellite. This shows that both modifications have a positive impact on the GPS receiver performance. The reduced elevation mask increases the amount of GPS tracking data by more than 3 %, while the updated tracking loops lead to around 1.3 % more observations and a significant reduction in tracking losses due to severe equatorial scintillation. The additional observations at low elevation angles increase the average noise of the carrier phase observations, but nonetheless slightly improve the resulting reduced-dynamic and kinematic orbit accuracy as shown by independent satellite laser ranging (SLR) validation. The more robust tracking loops significantly reduce the large carrier phase observation errors at the geomagnetic poles and along the geomagnetic equator and do not degrade the observations at midlatitudes. SLR validation indicates that the updated tracking loops also improve the reduced-dynamic and kinematic orbit accuracy. It is expected that the Swarm gravity field recovery will benefit from the improved kinematic orbit quality and potentially also from the expected improvement of the kinematic baseline determination and the anticipated reduction in the systematic gravity field errors along the geomagnetic equator. Finally, other satellites that carry GPS receivers that encounter similar disturbances might also benefit from this analysis.

  17. Effectiveness of the ACA (Availability, Current issues and Anticipation) training programme on GP-patient communication in palliative care; a controlled trial

    PubMed Central

    2013-01-01

    Background Communicating effectively with palliative care patients has been acknowledged to be somewhat difficult, but little is known about the effect that training general practitioners (GPs) in specific elements of communication in palliative care might have. We hypothesized that GPs exposed to a new training programme in GP-patient communication in palliative care focusing on availability of the GP for the patient, current issues the GP should discuss with the patient and anticipation by the GP of various scenarios (ACA), would discuss more issues and become more skilled in their communication with palliative care patients. Methods In this controlled trial among GPs who attended a two-year Palliative Care Peer Group Training Course in the Netherlands only intervention GPs received the ACA training programme. To evaluate the effect of the programme a content analysis (Roter Interaction Analysis System) was performed of one videotaped 15-minute consultation of each GP with a simulated palliative care patient conducted at baseline, and one at 12 months follow-up. Both how the GP communicated with the patient (‘availability’) and the number of current and anticipated issues the GP discussed with the patient were measured quantitatively. We used linear mixed models and logistic regression models to evaluate between-group differences over time. Results Sixty-two GPs were assigned to the intervention and 64 to the control group. We found no effect of the ACA training programme on how the GPs communicated with the patient or on the number of issues discussed by GPs with the patient. The total number of issues discussed by the GPs was eight out of 13 before and after the training in both groups. Conclusion The ACA training programme did not influence how the GPs communicated with the simulated palliative care patient or the number of issues discussed by the GPs in this trial. Further research should evaluate whether this training programme is effective for GPs who do not have a special interest in palliative care and whether studies using outcomes at patient level can provide more insight into the effectiveness of the ACA training programme. Trial registration Current Controlled Trials ISRCTN56722368 PMID:23819723

  18. Towards GPS Surface Reflection Remote Sensing of Sea Ice Conditions

    NASA Technical Reports Server (NTRS)

    Komjathy, A.; Maslanik, J. A.; Zavorotny, V. U.; Axelrad, P.; Katzberg, S. J.

    2000-01-01

    This paper describes the research to extend the application of Global Positioning System (GPS) signal reflections, received by airborne instruments, to cryospheric remote sensing. The characteristics of the GPS signals and equipment afford the possibility of new measurements not possible with existing radar and passive microwave systems. In particular, the GPS receiving systems are small and light-weight, and as such are particularly well suited to be deployed on small aircraft or satellite platforms with minimal impact. Our preliminary models and experimental results indicate that reflected GPS signals have potential to provide information on the presence and condition of sea and fresh-water ice as well as the freeze/thaw state of frozen ground. In this paper we show results from aircraft experiments over the ice pack near Barrow, Alaska suggesting correlation between forward scattered GPS returns and RADARSAT backscattered signals.

  19. Evaluating elk habitat interactions with GPS collars

    Treesearch

    Mark A. Rumble; Lakhdar Benkobi; Fredrick Lindzey; R. Scott Gamo

    2001-01-01

    Global positioning systems (GPS) are likely to revolutionize animal telemetry studies. GPS collars allow biologists to collect systematically scheduled data when VHF telemetry data is difficult or impossible to collect. Past studies have shown that the success of GPS telemetry is greater when animals are standing, or in open habitats. To make effective use of GPS...

  20. Differences in medical services in Nordic general practice: a comparative survey from the QUALICOPC study

    PubMed Central

    Eide, Torunn Bjerve; Straand, Jørund; Björkelund, Cecilia; Kosunen, Elise; Thorgeirsson, Ofeigur; Vedsted, Peter; Rosvold, Elin Olaug

    2017-01-01

    Objective We aim to describe medical services provided by Nordic general practitioners (GPs), and to explore possible differences between the countries. Design and setting We did a comparative analysis of selected data from the Nordic part of the study Quality and Costs of Primary Care in Europe (QUALICOPC). Subjects A total of 875 Nordic GPs (198 Norwegian, 80 Icelandic, 97 Swedish, 212 Danish and 288 Finnish) answered identical questionnaires regarding their practices. Main outcome measures The GPs indicated which equipment they used in practice, which procedures that were carried out, and to what extent they were involved in treatment/follow-up of a selection of diagnoses. Results The Danish GPs performed minor surgical procedures significantly less frequent than GPs in all other countries, although they inserted IUDs significantly more often than GPs in Iceland, Sweden and Finland. Finnish GPs performed a majority of the medical procedures more frequently than GPs in the other countries. The GPs in Iceland reported involvement in a more narrow selection of conditions than the GPs in the other countries. The Finnish GPs had more advanced technical equipment than GPs in all other Nordic countries. Conclusions GPs in all Nordic countries are well equipped and offer a wide range of medical services, yet with a substantial variation between countries. There was no clear pattern of GPs in one country doing consistently more procedures, having consistently more equipment and treating a larger diversity of medical conditions than GPs in the other countries. However, structural factors seemed to affect the services offered. PMID:28613127

  1. Measuring precise sea level from a buoy using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Rocken, Christian; Kelecy, Thomas M.; Born, George H.; Young, Larry E.; Purcell, George H., Jr.; Wolf, Susan Kornreich

    1990-01-01

    The feasibility of using the Global Positioning System (GPS) for accurate sea surface positioning was examined. An experiment was conducted on the Scripps pier at La Jolla, California from December 13-15, 1989. A GPS-equipped buoy was deployed about 100 m off the pier. Two fixed reference GPS receivers, located on the pier and about 80 km away on Monument Peak, were used to estimate the relative position of the floater. Kinematic GPS processing software, developed at the National Geodetic Survey, and the Jet Propulsion Laboratory's GPS Infrared Processing System software were used to determine the floater position relative to land-fixing receivers. Calculations were made of sea level and ocean wave spectra from GPS measurements. It is found that the GPS sea level for the short 100 m baseline agrees with the PPT sea level at the 1 cm level and has an rms variation of 5 mm over a period of 4 hours.

  2. Application of GPS attitude determination to gravity gradient stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Lightsey, E. G.; Cohen, Clark E.; Parkinson, Bradford W.

    1993-01-01

    Recent advances in the Global Positioning System (GPS) technology have initiated a new era in aerospace navigation and control. GPS receivers have become increasingly compact and affordable, and new developments have made attitude determination using subcentimeter positioning among two or more antennas feasible for real-time applications. GPS-based attitude control systems will become highly portable packages which provide time, navigation, and attitude information of sufficient accuracy for many aerospace needs. A typical spacecraft application of GPS attitude determination is a gravity gradient stabilized satellite in low Earth orbit that employs a GPS receiver and four body mounted patch antennas. The coupled, linearized equations of motion enable complete position and attitude information to be extracted from only two antennas. A discussion of the various error sources for spaceborne GPS attitude measurement systems is included. Attitude determination of better than 0.3 degrees is possible for 1 meter antenna separation. Suggestions are provided to improve the accuracy of the attitude solution.

  3. FAA aircraft certification human factors and operations checklist for standalone GPS receivers (TSO C129 Class A)

    DOT National Transportation Integrated Search

    1995-04-01

    This document is a checklist designed to assist Federal Aviation Administration(FAA) certification personnel and global : positioning system (GPS) receiver manufacturers in the evaluation of the pilot-system interface characteristlcs of GPS : recieve...

  4. Office of Space Flight standard spaceborne Global Positioning System user equipment project

    NASA Technical Reports Server (NTRS)

    Saunders, Penny E.

    1991-01-01

    The Global Positioning System (GPS) provides users autonomous, real-time navigation capability. A vehicle equipped with GPS user equipment can receive and process signals transmitted by a constellation of GPS satellites and derive from the resulting measurements the vehicle's position and velocity. Specified accuracies range from 16 to 76 meters and 0.1 to 1.0 meters/second for position and velocity, respectively. In a rendezvous and docking scenario, the use of a technique called relative GPS can provide range and range rate accuracies on the order of 1 meter and 0.01 meters/second, respectively. Relative GPS requires both vehicles to be equipped with GPS user equipment and a data communication link for transmission of GPS data and GPS satellite selection coordination information. Through coordinated satellite selection, GPS measurement errors common to both users are cancelled and improved relative position and velocity accuracies are achieved. The background, the design approach, the expected performance and capabilities, the development plan, and the project status are described. In addition, a description of relative GPS, the possible GPS hardware and software configurations, and its application to automated rendezvous and capture are presented.

  5. GPS for low-cost attitude determination. A review of concepts, in-flight experiences, and current developments

    NASA Astrophysics Data System (ADS)

    Chu, Q. P.; Van Woerkom, P. Th. L. M.

    The Global Positioning System or GPS has been developed for the purpose of enabling accurate positioning and navigation anywhere on or near the surface of the Earth. In addition to the US system GPS-NAVSTAR, the Russian GLONASS system is also in place and operational. Other such systems are under study. The key measurement involved is the time of travel of signals from a particular GPS spacecraft to the navigating receiver. Navigation accuracies of the order of tenths of meters are achievable, and accuracies at the centimeter level can also be obtained with special enhancement techniques. In recent years spacecraft have already been exploring the use of GPS for in-orbit navigation. As the receiver is solid state, rugged, power-lean, and cheap, GPS for autonomous navigation will be an objective even for low-cost spacecraft of only modest sophistication. When the GPS receiver is equipped with multiple antennas with baselines even as low as about one meter, it can also give attitude information. In this case, the position of the spacecraft needs to be known with only very moderate accuracy. However, the phase differences between signals received by the different antennas now constitute the key measurements. In this case a centimeter level accuracy of range difference can be obtained. Receivers carrying out the processing of such measurements are already on the market, even in space-qualified versions. For spacecraft maneuvering at low rates, accuracies of the order of tenths of a degree are achievable. There are reasons for maintaining classical attitude sensor suites on a spacecraft even when a GPS receiver is added. In this case the classical sensors may be allowed to be of modest quality only, as subsequent fusion of their data with those from the GPS receiver may restore the accuracy of the final estimate again to an acceptable level. Hence, low-cost attitude sensors combined with a low-cost GPS receiver can still satisfy non-trivial attitude reconstitution accuracy requirements. As carrier phase difference measurements are ambiguous because of the unknown number of GPS signal cycles received, the estimated attitude is in principle ambiguous as well. Therefore, resolution of the GPS signal cycle ambiguity becomes a necessary task before determining the attitude for a stand-alone GPS attitude sensing system. This problem may be solved by introducing additional low-cost reference attitude sensors like three-axis magnetometers. This is also one of the advantages of integrated sensor systems. The paper is organized as follows. Global Positioning System and GPS observables are described in the first two sections. The main attitude determination concepts are presented in the next section. For small spacecraft, GPS integrated with other low-cost attitude sensors results in a data fusion concept, to be discussed next. The last section highlights experiences and on-going projects related to the spacecraft attitude determination using GPS.

  6. NASA Johnson Space Center: Mini AERCam Testing with GSS6560

    NASA Technical Reports Server (NTRS)

    Cryant, Scott P.

    2004-01-01

    This slide presentation reviews the testing of the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) with the GPS/SBAS simulation system, GSS6560. There is a listing of several GPS based programs at NASA Johnson, including the testing of Shuttle testing of the GPS system. Including information about Space Integrated GPS/INS (SIGI) testing. There is also information about the standalone ISS SIGI test,and testing of the SIGI for the Crew Return Vehicle. The Mini AERCam is a small, free-flying camera for remote inspections of the ISS, it uses precise relative navigation with differential carrier phase GPS to provide situational awareness to operators. The closed loop orbital testing with and without the use of the GSS6550 system of the Mini AERCam system is reviewed.

  7. Development of GPS survey data management protocols/policy.

    DOT National Transportation Integrated Search

    2010-08-01

    This project developed a statewide policy and criteria for collecting, analyzing, and managing global position system (GPS) survey data. The research project determined the needs of the Department in adopting the GPS real time kinetic (GPS RTK) stake...

  8. GPS=A Good Candidate for Data Assimilation?

    NASA Technical Reports Server (NTRS)

    Poli, P.; Joiner, J.; Kursinski, R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Global Positioning System (GPS) enables positioning anywhere about our planet. The microwave signals sent by the 24 transmitters are sensitive to the atmosphere. Using the radio occultation technique, it is possible to perform soundings, with a Low Earth Orbiter (700 km) GPS receiver. The insensitiveness to clouds and aerosols, the relatively high vertical resolution (1.5 km), the self-calibration and stability of the GPS make it a priori a potentially good observing system candidate for data assimilation. A low-computing cost simple method to retrieve both temperature and humidity will be presented. Comparisons with radiosonde show the capability of the GPS to resolve the tropopause. Options for using GPS for data assimilation and remaining issues will be discussed.

  9. Spectral Investigation of Large and Medium Scale Traveling Ionospheric Disturbances using GPS Slant Total Electron Content

    NASA Astrophysics Data System (ADS)

    Yarici, Aysenur; Arikan, Feza; Efendi, Emre

    2016-07-01

    Global Positioning System (GPS) provides opportunity to study the ionospheric variability as the navigation and positions signals transverse ionosphere on their path to ground based dual frequency receivers. Slant Total Electron Content (STEC) is defined as the line integral of electron density along a ray path that connect GPS receiver to satellite. Due to the inhomogeneous, anisotropic, temporally and spatially varying nature of ionosphere, GPS signals that are passing through the ionosphere are affected and this situation can be observed as disturbance on STEC data. Traveling Ionospheric Disturbances (TIDs) are irregularities of the ionosphere expressed as wave-like oscillations decrescent slowly through time. TIDs are classified into two types according to their wave parameters such as velocity, period and wavelength as large and medium scale. In this study, a new method, namely Ionospheric-Fast Fourier Transform (I-FFT), is developed to investigate the spectral properties of TIDs. I-FFT is applied to STEC data after the TID is detected using the Differential Rate of TEC (DRoT) method developed by IONOLAB group. The performance of the developed I-FFT method is evaluated over the synthetic data to obtain the bounds on the estimation error. It is observed that I-FFT method can estimate the frequency and duration of TIDs with 80% or more accuracy. In the application of I-FFT to various GPS-STEC data from stations located at high, equatorial and mid-latitude regions for detection of frequency and duration of TIDs due to geomagnetic storms and seismic activities, it is observed that TIDs with frequencies between 0.6 mHz to 2.4 mHz and durations longer than 10 minutes; and TIDs with frequencies between 0.15 mHz to 0.6 mHz and durations longer than 75 minutes can be estimated automatically with more than 80% accuracy. This study is supported by TUBITAK EEEAG 115E915 project.

  10. [Change in service provision and availability under the list patient system reform].

    PubMed

    Grytten, Jostein; Skau, Irene; Sørensen, Rune; Aasland, Olaf G

    2004-02-05

    In this article, we analyse the relationship between length of patient lists and general practitioners' (GPs') service provision in order to investigate whether the list patient system reform has led to reduced accessibility and/or supplier inducement. The data were collected from a comprehensive questionnaire survey among GPs in the list patient system in 2002 (2306 GPs) and from the National Insurance Administration in 2001 (1637 GPs). The relationship between length of patient lists and service provision was analysed using regression analysis. The relationship between length of patient lists and number of consultations per GP was almost proportional, as was the relationship between length of patient list and number of consultations initiated by GPs. GPs who wanted more patients on their list had fewer consultations than those who were satisfied with the length of their lists and they did not compensate by taking more laboratory tests per consultation. Analysis of the two independent sets of data gave almost identical results. Patients' access to their GPs is independent of the length of his or her patient list. Even GPs with long lists do not ration consultations. This probably reflects efficient organisation of the practice. Our results do not support the theory that GPs induce demand for their services; one explanation is that GPs with short lists have chosen to have precisely that and have no need to induce demand.

  11. TOPEX/POSEIDON operational orbit determination results using global positioning satellites

    NASA Technical Reports Server (NTRS)

    Guinn, J.; Jee, J.; Wolff, P.; Lagattuta, F.; Drain, T.; Sierra, V.

    1994-01-01

    Results of operational orbit determination, performed as part of the TOPEX/POSEIDON (T/P) Global Positioning System (GPS) demonstration experiment, are presented in this article. Elements of this experiment include the GPS satellite constellation, the GPS demonstration receiver on board T/P, six ground GPS receivers, the GPS Data Handling Facility, and the GPS Data Processing Facility (GDPF). Carrier phase and P-code pseudorange measurements from up to 24 GPS satellites to the seven GPS receivers are processed simultaneously with the GDPF software MIRAGE to produce orbit solutions of T/P and the GPS satellites. Daily solutions yield subdecimeter radial accuracies compared to other GPS, LASER, and DORIS precision orbit solutions.

  12. Effect of Behavior Modification on Outcome in Early- to Moderate-Stage Chronic Kidney Disease: A Cluster-Randomized Trial.

    PubMed

    Yamagata, Kunihiro; Makino, Hirofumi; Iseki, Kunitoshi; Ito, Sadayoshi; Kimura, Kenjiro; Kusano, Eiji; Shibata, Takanori; Tomita, Kimio; Narita, Ichiei; Nishino, Tomoya; Fujigaki, Yoshihide; Mitarai, Tetsuya; Watanabe, Tsuyoshi; Wada, Takashi; Nakamura, Teiji; Matsuo, Seiichi

    2016-01-01

    Owing to recent changes in our understanding of the underlying cause of chronic kidney disease (CKD), the importance of lifestyle modification for preventing the progression of kidney dysfunction and complications has become obvious. In addition, effective cooperation between general physicians (GPs) and nephrologists is essential to ensure a better care system for CKD treatment. In this cluster-randomized study, we studied the effect of behavior modification on the outcome of early- to moderate-stage CKD. Stratified open cluster-randomized trial. A total of 489 GPs belonging to 49 local medical associations (clusters) in Japan. A total of 2,379 patients (1,195 in group A (standard intervention) and 1,184 in group B (advanced intervention)) aged between 40 and 74 years, who had CKD and were under consultation with GPs. All patients were managed in accordance with the current CKD guidelines. The group B clusters received three additional interventions: patients received both educational intervention for lifestyle modification and a CKD status letter, attempting to prevent their withdrawal from treatment, and the group B GPs received data sheets to facilitate reducing the gap between target and practice. The primary outcome measures were 1) the non-adherence rate of accepting continuous medical follow-up of the patients, 2) the collaboration rate between GPs and nephrologists, and 3) the progression of CKD. The rate of discontinuous clinical visits was significantly lower in group B (16.2% in group A vs. 11.5% in group B, p = 0.01). Significantly higher referral and co-treatment rates were observed in group B (p<0.01). The average eGFR deterioration rate tended to be lower in group B (group A: 2.6±5.8 ml/min/1.73 m2/year, group B: 2.4±5.1 ml/min/1.73 m2/year, p = 0.07). A significant difference in eGFR deterioration rate was observed in subjects with Stage 3 CKD (group A: 2.4±5.9 ml/min/1.73 m2/year, group B: 1.9±4.4 ml/min/1.73 m2/year, p = 0.03). Our care system achieved behavior modification of CKD patients, namely, significantly lower discontinuous clinical visits, and behavior modification of both GPs and nephrologists, namely significantly higher referral and co-treatment rates, resulting in the retardation of CKD progression, especially in patients with proteinuric Stage 3 CKD. The University Hospital Medical Information Network clinical trials registry UMIN000001159.

  13. A simultaneously calibration approach for installation and attitude errors of an INS/GPS/LDS target tracker.

    PubMed

    Cheng, Jianhua; Chen, Daidai; Sun, Xiangyu; Wang, Tongda

    2015-02-04

    To obtain the absolute position of a target is one of the basic topics for non-cooperated target tracking problems. In this paper, we present a simultaneously calibration method for an Inertial navigation system (INS)/Global position system (GPS)/Laser distance scanner (LDS) integrated system based target positioning approach. The INS/GPS integrated system provides the attitude and position of observer, and LDS offers the distance between the observer and the target. The two most significant errors are taken into jointly consideration and analyzed: (1) the attitude measure error of INS/GPS; (2) the installation error between INS/GPS and LDS subsystems. Consequently, a INS/GPS/LDS based target positioning approach considering these two errors is proposed. In order to improve the performance of this approach, a novel calibration method is designed to simultaneously estimate and compensate these two main errors. Finally, simulations are conducted to access the performance of the proposed target positioning approach and the designed simultaneously calibration method.

  14. Modeling and Assessment of GPS/BDS Combined Precise Point Positioning.

    PubMed

    Chen, Junping; Wang, Jungang; Zhang, Yize; Yang, Sainan; Chen, Qian; Gong, Xiuqiang

    2016-07-22

    Precise Point Positioning (PPP) technique enables stand-alone receivers to obtain cm-level positioning accuracy. Observations from multi-GNSS systems can augment users with improved positioning accuracy, reliability and availability. In this paper, we present and evaluate the GPS/BDS combined PPP models, including the traditional model and a simplified model, where the inter-system bias (ISB) is treated in different way. To evaluate the performance of combined GPS/BDS PPP, kinematic and static PPP positions are compared to the IGS daily estimates, where 1 month GPS/BDS data of 11 IGS Multi-GNSS Experiment (MGEX) stations are used. The results indicate apparent improvement of GPS/BDS combined PPP solutions in both static and kinematic cases, where much smaller standard deviations are presented in the magnitude distribution of coordinates RMS statistics. Comparisons between the traditional and simplified combined PPP models show no difference in coordinate estimations, and the inter system biases between the GPS/BDS system are assimilated into receiver clock, ambiguities and pseudo-range residuals accordingly.

  15. Predicting educational achievement from DNA

    PubMed Central

    Selzam, S; Krapohl, E; von Stumm, S; O'Reilly, P F; Rimfeld, K; Kovas, Y; Dale, P S; Lee, J J; Plomin, R

    2017-01-01

    A genome-wide polygenic score (GPS), derived from a 2013 genome-wide association study (N=127,000), explained 2% of the variance in total years of education (EduYears). In a follow-up study (N=329,000), a new EduYears GPS explains up to 4%. Here, we tested the association between this latest EduYears GPS and educational achievement scores at ages 7, 12 and 16 in an independent sample of 5825 UK individuals. We found that EduYears GPS explained greater amounts of variance in educational achievement over time, up to 9% at age 16, accounting for 15% of the heritable variance. This is the strongest GPS prediction to date for quantitative behavioral traits. Individuals in the highest and lowest GPS septiles differed by a whole school grade at age 16. Furthermore, EduYears GPS was associated with general cognitive ability (~3.5%) and family socioeconomic status (~7%). There was no evidence of an interaction between EduYears GPS and family socioeconomic status on educational achievement or on general cognitive ability. These results are a harbinger of future widespread use of GPS to predict genetic risk and resilience in the social and behavioral sciences. PMID:27431296

  16. Development of a High Precision Displacement Measurement System by Fusing a Low Cost RTK-GPS Sensor and a Force Feedback Accelerometer for Infrastructure Monitoring.

    PubMed

    Koo, Gunhee; Kim, Kiyoung; Chung, Jun Yeon; Choi, Jaemook; Kwon, Nam-Yeol; Kang, Doo-Young; Sohn, Hoon

    2017-11-28

    A displacement measurement system fusing a low cost real-time kinematic global positioning system (RTK-GPS) receiver and a force feedback accelerometer is proposed for infrastructure monitoring. The proposed system is composed of a sensor module, a base module and a computation module. The sensor module consists of a RTK-GPS rover and a force feedback accelerometer, and is installed on a target structure like conventional RTK-GPS sensors. The base module is placed on a rigid ground away from the target structure similar to conventional RTK-GPS bases, and transmits observation messages to the sensor module. Then, the initial acceleration, velocity and displacement responses measured by the sensor module are transmitted to the computation module located at a central monitoring facility. Finally, high precision and high sampling rate displacement, velocity, and acceleration are estimated by fusing the acceleration from the accelerometer, the velocity from the GPS rover, and the displacement from RTK-GPS. Note that the proposed displacement measurement system can measure 3-axis acceleration, velocity as well as displacement in real time. In terms of displacement, the proposed measurement system can estimate dynamic and pseudo-static displacement with a root-mean-square error of 2 mm and a sampling rate of up to 100 Hz. The performance of the proposed system is validated under sinusoidal, random and steady-state vibrations. Field tests were performed on the Yeongjong Grand Bridge and Yi Sun-sin Bridge in Korea, and the Xihoumen Bridge in China to compare the performance of the proposed system with a commercial RTK-GPS sensor and other data fusion techniques.

  17. Change in Total Water in California's Mountains and Groundwater in Central Valley During the 2011-2014 Drought From GPS, GRACE, and InSAR

    NASA Astrophysics Data System (ADS)

    Argus, D. F.; Fu, Y.; Landerer, F. W.; Farr, T.; Watkins, M. M.; Famiglietti, J. S.

    2014-12-01

    Changes in total water thickness in most of California are being estimated using GPS measurements of vertical ground displacement. The Sierra Nevada each year subsides about 12 mm in the fall and winter due to the load of rain and snow, then rises about the same amount in the spring and summer when the snow melts, water runs off, and soil moisture evaporates. Earth's elastic response to a surface load is well known (except at thick sedimentary basins). Changes in equivalent water thickness can thus be inferred [Argus Fu Landerer 2014]. The average seasonal change in total water thickness is found to be 0.5 meters in the Sierra Nevada and Klamath Mountains and 0.1 meters in the Great Basin. The average seasonal change in the Sierra Nevada Mountains estimated with GPS is 35 Gigatons. GPS vertical ground displacements are furthermore being used to estimate changes in water in consecutive years of either drought or heavy precipitation. Changes in the sum of snow and soil moisture during California's drought from June 2011 to June 2014 are estimated from GPS in this study. Changes in water in California's massive reservoirs are well known and removed, yielding an estimate of change in the thickness of snow plus soil moisture. Water loss is found to be largest near the center of the southern Sierra Nevada (0.8 m equivalent water thickness) and smaller in the northern Sierra Nevada and southern Klamath Mountains (0.3 m). The GPS estimates of changes in the sum of snow and soil moisture complement GRACE observations of water change in the Sacramento-San Joaquin River basin. Whereas GPS provides estimates of water change at high spatial resolution in California's mountains, GRACE observes changes in groundwater in the Central Valley. We will further compare and contrast the GPS and GRACE measurements, and also evaluate the finding of Amos et al. [2014] that groundwater loss in the southern Central Valley (Tulare Basin) is causing the mountains on either side to rise at 1 to 3 mm/yr.

  18. GPS Auto-Navigation Design for Unmanned Air Vehicles

    NASA Technical Reports Server (NTRS)

    Nilsson, Caroline C. A.; Heinzen, Stearns N.; Hall, Charles E., Jr.; Chokani, Ndaona

    2003-01-01

    A GPS auto-navigation system is designed for Unmanned Air Vehicles. The objective is to enable the air vehicle to be used as a test-bed for novel flow control concepts. The navigation system uses pre-programmed GPS waypoints. The actual GPS position, heading, and velocity are collected by the flight computer, a PC104 system running in Real-Time Linux, and compared with the desired waypoint. The navigator then determines the necessity of a heading correction and outputs the correction in the form of a commanded bank angle, for a level coordinated turn, to the controller system. This controller system consists of 5 controller! (pitch rate PID, yaw damper, bank angle PID, velocity hold, and altitude hold) designed for a closed loop non-linear aircraft model with linear aerodynamic coefficients. The ability and accuracy of using GPS data, is validated by a GPS flight. The autopilots are also validated in flight. The autopilot unit flight validations show that the designed autopilots function as designed. The aircraft model, generated on Matlab SIMULINK is also enhanced by the flight data to accurately represent the actual aircraft.

  19. Adaptive Resampling Particle Filters for GPS Carrier-Phase Navigation and Collision Avoidance System

    NASA Astrophysics Data System (ADS)

    Hwang, Soon Sik

    This dissertation addresses three problems: 1) adaptive resampling technique (ART) for Particle Filters, 2) precise relative positioning using Global Positioning System (GPS) Carrier-Phase (CP) measurements applied to nonlinear integer resolution problem for GPS CP navigation using Particle Filters, and 3) collision detection system based on GPS CP broadcasts. First, Monte Carlo filters, called Particle Filters (PF), are widely used where the system is non-linear and non-Gaussian. In real-time applications, their estimation accuracies and efficiencies are significantly affected by the number of particles and the scheduling of relocating weights and samples, the so-called resampling step. In this dissertation, the appropriate number of particles is estimated adaptively such that the error of the sample mean and variance stay in bounds. These bounds are given by the confidence interval of a normal probability distribution for a multi-variate state. Two required number of samples maintaining the mean and variance error within the bounds are derived. The time of resampling is determined when the required sample number for the variance error crosses the required sample number for the mean error. Second, the PF using GPS CP measurements with adaptive resampling is applied to precise relative navigation between two GPS antennas. In order to make use of CP measurements for navigation, the unknown number of cycles between GPS antennas, the so called integer ambiguity, should be resolved. The PF is applied to this integer ambiguity resolution problem where the relative navigation states estimation involves nonlinear observations and nonlinear dynamics equation. Using the PF, the probability density function of the states is estimated by sampling from the position and velocity space and the integer ambiguities are resolved without using the usual hypothesis tests to search for the integer ambiguity. The ART manages the number of position samples and the frequency of the resampling step for real-time kinematics GPS navigation. The experimental results demonstrate the performance of the ART and the insensitivity of the proposed approach to GPS CP cycle-slips. Third, the GPS has great potential for the development of new collision avoidance systems and is being considered for the next generation Traffic alert and Collision Avoidance System (TCAS). The current TCAS equipment, is capable of broadcasting GPS code information to nearby airplanes, and also, the collision avoidance system using the navigation information based on GPS code has been studied by researchers. In this dissertation, the aircraft collision detection system using GPS CP information is addressed. The PF with position samples is employed for the CP based relative position estimation problem and the same algorithm can be used to determine the vehicle attitude if multiple GPS antennas are used. For a reliable and enhanced collision avoidance system, three dimensional trajectories are projected using the estimates of the relative position, velocity, and the attitude. It is shown that the performance of GPS CP based collision detecting algorithm meets the accuracy requirements for a precise approach of flight for auto landing with significantly less unnecessary collision false alarms and no miss alarms.

  20. Comparison of Three Wind Measuring Systems for Flight Test

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.; Harvey, Philip O.

    2000-01-01

    A preliminary field test of the accuracy of wind velocity measurements obtained using global positioning system-tracked rawinsonde balloons has been performed. Wind comparisons have been conducted using global positioning system (GPS) and radio automatic theodolite sounder (RATS) rawinsondes and a high-precision range instrumentation radar-tracked reflector. Wind velocity differences between the GPS rawinsondes and the radar were significantly less than between the RATS rawinsondes and the radar. These limited test results indicate a root-mean-square wind velocity difference from 4.98 kn (2.56 m/sec) for the radar and RATS to 1.09 kn (0.56 m/sec) for the radar and GPS. Differences are influenced by user reporting requirements, data processing techniques, and the inherent tracking accuracies of the system. This brief field test indicates that the GPS sounding system tracking data are more precise than the RATS system. When high-resolution wind data are needed, use of GPS rawinsonde systems can reduce the burden on range radar operations.

  1. Anti-Jam GPS Antennas for Wearable Dismounted Soldier Navigation Systems

    DTIC Science & Technology

    2016-06-01

    in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. Citation...Approaches for the design and fabrication of a wearable anti-jam global positioning system (GPS) antenna are explored to support accurate and uninterrupted...including GPS antenna element and array designs , and algorithms for jammer mitigation, and the candidate technologies best fit for wearable anti-jam GPS

  2. Localization system for use in GPS denied environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trueblood, J. J.

    The military uses to autonomous platforms to complete missions to provide standoff for the warfighters. However autonomous platforms rely on GPS to provide their global position. In many missions spaces the autonomous platforms may encounter GPS denied environments which limits where the platform operates and requires the warfighters to takes its place. GPS denied environments can occur due to tall building, trees, canyon wall blocking the GPS satellite signals or a lack of coverage. An Inertial Navigation System (INS) uses sensors to detect the vehicle movement and direction its traveling to calculate the vehicle. One of biggest challenges with anmore » INS system is the accuracy and accumulation of errors over time of the sensors. If these challenges can be overcome the INS would provide accurate positioning information to the autonomous vehicle in GPS denied environments and allow them to provide the desired standoff for the warfighters.« less

  3. An Initial Investigation of Ionospheric Gradients for Detection of Ionospheric Disturbances over Turkey

    NASA Astrophysics Data System (ADS)

    Koroglu, Meltem; Arikan, Feza; Koroglu, Ozan

    2015-04-01

    Ionosphere is an ionized layer of earth's atmosphere which affect the propagation of radio signals due to highly varying electron density structure. Total Electron Content (TEC) and Slant Total Electron Content (STEC) are convenient measures of total electron density along a ray path. STEC model is given by the line integral of the electron density between the receiver and GPS satellite. TEC and STEC can be estimated by observing the difference between the two GPS signal time delays that have different frequencies L1 (1575 MHz) and L2 (1227 MHz). During extreme ionospheric storms ionospheric gradients becomes larger than those of quiet days since time delays of the radio signals becomes anomalous. Ionosphere gradients can be modeled as a linear semi-infinite wave front with constant propagation speed. One way of computing the ionospheric gradients is to compare the STEC values estimated between two neighbouring GPS stations. In this so-called station-pair method, ionospheric gradients are defined by dividing the difference of the time delays of two receivers, that see the same satellite at the same time period. In this study, ionospheric gradients over Turkey are computed using the Turkish National Permanent GPS Network (TNPGN-Active) between May 2009 and September 2012. The GPS receivers are paired in east-west and north-south directions with distances less than 150 km. GPS-STEC for each station are calculated using IONOLAB-TEC and IONOLAB-BIAS softwares (www.ionolab.org). Ionospheric delays are calculated for each paired station for both L1 and L2 frequencies and for each satellite in view with 30 s time resolution. During the investigation period, different types of geomagnetic storms, Travelling Ionospheric Disturbances (TID), Sudden Ionospheric Disturbances (SID) and various earthquakes with magnitudes between 3 to 7.4 have occured. Significant variations in the structure of station-pair gradients have been observed depending on location of station-pairs, the path of the satellites, strength of the geomagnetic storms and type, depth and magnitude of the earthquakes. For a typical geomagnetic storm the gradients can get as high as 30 mm/km. For the earthquakes, both the magnitude and the structure of the ionospheric delay gradients exhibit strong variability. This study forms a basis for a comprehensive understanding of ionospheric variability for midlatitude GBAS and SBAS systems. This study is supported by a joint grant of TUBITAK 112E568 and RFBR 13-02-91370-CT_a.

  4. Using GPS Reflections for Satellite Remote Sensing

    NASA Technical Reports Server (NTRS)

    Mickler, David

    2000-01-01

    GPS signals that have reflected off of the ocean's surface have shown potential for use in oceanographic and atmospheric studies. The research described here investigates the possible deployment of a GPS reflection receiver onboard a remote sensing satellite in low Earth orbit (LEO). The coverage and resolution characteristics of this receiver are calculated and estimated. This mission analysis examines using reflected GPS signals for several remote sensing missions. These include measurement of the total electron content in the ionosphere, sea surface height, and ocean wind speed and direction. Also discussed is the potential test deployment of such a GPS receiver on the space shuttle. Constellations of satellites are proposed to provide adequate spatial and temporal resolution for the aforementioned remote sensing missions. These results provide a starting point for research into the feasibility of augmenting or replacing existing remote sensing satellites with spaceborne GPS reflection-detecting receivers.

  5. High accurate time system of the Low Latitude Meridian Circle.

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Wang, Feng; Li, Zhiming

    In order to obtain the high accurate time signal for the Low Latitude Meridian Circle (LLMC), a new GPS accurate time system is developed which include GPS, 1 MC frequency source and self-made clock system. The second signal of GPS is synchronously used in the clock system and information can be collected by a computer automatically. The difficulty of the cancellation of the time keeper can be overcomed by using this system.

  6. Global positioning system and associated technologies in animal behaviour and ecological research

    PubMed Central

    Tomkiewicz, Stanley M.; Fuller, Mark R.; Kie, John G.; Bates, Kirk K.

    2010-01-01

    Biologists can equip animals with global positioning system (GPS) technology to obtain accurate (less than or equal to 30 m) locations that can be combined with sensor data to study animal behaviour and ecology. We provide the background of GPS techniques that have been used to gather data for wildlife studies. We review how GPS has been integrated into functional systems with data storage, data transfer, power supplies, packaging and sensor technologies to collect temperature, activity, proximity and mortality data from terrestrial species and birds. GPS ‘rapid fixing’ technologies combined with sensors provide location, dive frequency and duration profiles, and underwater acoustic information for the study of marine species. We examine how these rapid fixing technologies may be applied to terrestrial and avian applications. We discuss positional data quality and the capability for high-frequency sampling associated with GPS locations. We present alternatives for storing and retrieving data by using dataloggers (biologging), radio-frequency download systems (e.g. very high frequency, spread spectrum), integration of GPS with other satellite systems (e.g. Argos, Globalstar) and potential new data recovery technologies (e.g. network nodes). GPS is one component among many rapidly evolving technologies. Therefore, we recommend that users and suppliers interact to ensure the availability of appropriate equipment to meet animal research objectives. PMID:20566494

  7. Global positioning system and associated technologies in animal behaviour and ecological research

    USGS Publications Warehouse

    Tomkiewicz, Stanley M.; Fuller, Mark R.; Kie, John G.; Bates, Kirk K.

    2010-01-01

    Biologists can equip animals with global positioning system (GPS) technology to obtain accurate (less than or equal to 30 m) locations that can be combined with sensor data to study animal behaviour and ecology. We provide the background of GPS techniques that have been used to gather data for wildlife studies. We review how GPS has been integrated into functional systems with data storage, data transfer, power supplies, packaging and sensor technologies to collect temperature, activity, proximity and mortality data from terrestrial species and birds. GPS 'rapid fixing' technologies combined with sensors provide location, dive frequency and duration profiles, and underwater acoustic information for the study of marine species. We examine how these rapid fixing technologies may be applied to terrestrial and avian applications. We discuss positional data quality and the capability for high-frequency sampling associated with GPS locations. We present alternatives for storing and retrieving data by using dataloggers (biologging), radio-frequency download systems (e.g. very high frequency, spread spectrum), integration of GPS with other satellite systems (e.g. Argos, Globalstar) and potential new data recovery technologies (e.g. network nodes). GPS is one component among many rapidly evolving technologies. Therefore, we recommend that users and suppliers interact to ensure the availability of appropriate equipment to meet animal research objectives.

  8. A Wireless Local Area Network Command and Control System for Explosive Ordnance Disposal Incident Response

    DTIC Science & Technology

    2001-09-01

    43 4. GPS ......................................................................................................44 E. POWER SUPPLY HARDWARE...44 Figure 5.6 Earthmate GPS Receiver ........................................................................................45...and 5Watts at 25 Ft Effective Range Minimum range of wireless link is 5 miles. Positional awareness System requires GPS input to determine

  9. Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.; Carpenter, J. Russell; Long, Anne C.; Farahmand, Mitra

    2016-01-01

    NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMS is achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.

  10. Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.; Carpenter, J. Russell; Long, Anne C.; Farahmand, Mitra

    2016-01-01

    NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMSis achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.

  11. PiVoT GPS Receiver

    NASA Technical Reports Server (NTRS)

    Wennersten, Miriam; Banes, Vince; Boegner, Greg; Clagnett, Charles; Dougherty, Lamar; Edwards, Bernard; Roman, Joe; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    NASA Goddard Space Flight Center has built an open architecture, 24 channel spaceflight Global Positioning System (GPS) receiver. The compact PCI PiVoT GPS receiver card is based on the Mitel/GEC Plessey Builder 2 board. PiVoT uses two Plessey 2021 correlators to allow tracking of up to 24 separate GPS SV's on unique channels. Its four front ends can support four independent antennas, making it a useful card for hosting GPS attitude determination algorithms. It has been built using space quality, radiation tolerant parts. The PiVoT card works at a lower signal to noise ratio than the original Builder 2 board. It also hosts an improved clock oscillator. The PiVoT software is based on the original Piessey Builder 2 software ported to the Linux operating system. The software is posix compliant and can be easily converted to other posix operating systems. The software is open source to anyone with a licensing agreement with Plessey. Additional tasks can be added to the software to support GPS science experiments or attitude determination algorithms. The next generation PiVoT receiver will be a single radiation hardened compact PCI card containing the microprocessor and the GPS receiver optimized for use above the GPS constellation.

  12. GPS meteorology - Remote sensing of atmospheric water vapor using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Bevis, Michael; Businger, Steven; Herring, Thomas A.; Rocken, Christian; Anthes, Richard A.; Ware, Randolph H.

    1992-01-01

    We present a new approach to remote sensing of water vapor based on the Global Positioning System (GPS). Geodesists and geophysicists have devised methods for estimating the extent to which signals propagating from GPS satellites to ground-based GPS receivers are delayed by atmospheric water vapor. This delay is parameterized in terms of a time-varying zenith wet delay (ZWD) which is retrieved by stochastic filtering of the GPS data. Given surface temperature and pressure readings at the GPS receiver, the retrieved ZWD can be transformed with very little additional uncertainty into an estimate of the integrated water vapor (IWV) overlying that receiver. Networks of continuously operating GPS receivers are being constructed by geodesists, geophysicists, and government and military agencies, in order to implement a wide range of positioning capabilities. These emerging GPS networks offer the possibility of observing the horizontal distribution of IWV or, equivalently, precipitate water with unprecedented coverage and a temporal resolution of the order of 10 min. These measurements could be utilized in operational weather forecasting and in fundamental research into atmospheric storm systems, the hydrologic cycle, atmospheric chemistry, and global climate change.

  13. Differential GPS/inertial navigation approach/landing flight test results

    NASA Technical Reports Server (NTRS)

    Snyder, Scott; Schipper, Brian; Vallot, Larry; Parker, Nigel; Spitzer, Cary

    1992-01-01

    In November of 1990 a joint Honeywell/NASA-Langley differential GPS/inertial flight test was conducted at Wallops Island, Virginia. The test objective was to acquire a system performance database and demonstrate automatic landing using an integrated differential GPS/INS (Global Positioning System/inertial navigation system) with barometric and radar altimeters. The flight test effort exceeded program objectives with over 120 landings, 36 of which were fully automatic differential GPS/inertial landings. Flight test results obtained from post-flight data analysis are discussed. These results include characteristics of differential GPS/inertial error, using the Wallops Island Laser Tracker as a reference. Data on the magnitude of the differential corrections and vertical channel performance with and without radar altimeter augmentation are provided.

  14. A Mobile GPS Application: Mosque Tracking with Prayer Time Synchronization

    NASA Astrophysics Data System (ADS)

    Hashim, Rathiah; Ikhmatiar, Mohammad Sibghotulloh; Surip, Miswan; Karmin, Masiri; Herawan, Tutut

    Global Positioning System (GPS) is a popular technology applied in many areas and embedded in many devices, facilitating end-users to navigate effectively to user's intended destination via the best calculated route. The ability of GPS to track precisely according to coordinates of specific locations can be utilized to assist a Muslim traveler visiting or passing an unfamiliar place to find the nearest mosque in order to perform his prayer. However, not many techniques have been proposed for Mosque tracking. This paper presents the development of GPS technology in tracking the nearest mosque using mobile application software embedded with the prayer time's synchronization system on a mobile application. The prototype GPS system developed has been successfully incorporated with a map and several mosque locations.

  15. The U.S. Federal Radionavigation Plan

    NASA Astrophysics Data System (ADS)

    Shirer, Heywood O.

    The author presents an overview of the 1990 Federal Radionavigation Plan (FRP) policy and a discussion of the status of GPS (Global Positioning System), Loran-C, Omega, VOR/DME (VHF omnidirectional range/distance measuring equipment), VORTAC, TACAN, MLS (Microwave Landing System), ILS (instrument landing systems), Transit, and radiobeacons. The 1990 FRP contains significant changes regarding several of the radionavigation systems. It is concluded that it is difficult at best to ascertain the post-GPS final systems mix of federally provided radionavigation systems. The phase-out dates of other systems in favor of GPS still remain soft. Many uncertainties remain until the capabilities of GPS are verified for all classes of users. The federal radionavigation planning process accommodates such uncertainties, keeping pace with the constantly changing radionavigation user profile and rapid advancements in system technology.

  16. Integration of the B-52G Offensive Avionics System (OAS) with the Global Positioning System (GPS)

    NASA Astrophysics Data System (ADS)

    Foote, A. L.; Pluntze, S. C.

    Integration of the B-52G OAS with the GPS has been accomplished by modification of existing OAS software. GPS derived position and velocity data are used to enhance the quality of the OAS inertial and dead reckoning navigation systems. The engineering design and the software development process used to implement this design are presented.

  17. GPS dependencies in the transportation sector : an inventory of Global Positioning System dependencies in the transportation sector, best practices for improved robustness of GPS devices, and potential alternative solutions for positioning, navigation and

    DOT National Transportation Integrated Search

    2016-08-01

    The John A. Volpe National Transportation Systems Center (Volpe Center) was asked by the NOAA Office of Space Commercialization to analyze dependencies on Global Positioning System (GPS) positioning, navigation, and timing (PNT) services within the U...

  18. Performance evaluation of ionospheric time delay forecasting models using GPS observations at a low-latitude station

    NASA Astrophysics Data System (ADS)

    Sivavaraprasad, G.; Venkata Ratnam, D.

    2017-07-01

    Ionospheric delay is one of the major atmospheric effects on the performance of satellite-based radio navigation systems. It limits the accuracy and availability of Global Positioning System (GPS) measurements, related to critical societal and safety applications. The temporal and spatial gradients of ionospheric total electron content (TEC) are driven by several unknown priori geophysical conditions and solar-terrestrial phenomena. Thereby, the prediction of ionospheric delay is challenging especially over Indian sub-continent. Therefore, an appropriate short/long-term ionospheric delay forecasting model is necessary. Hence, the intent of this paper is to forecast ionospheric delays by considering day to day, monthly and seasonal ionospheric TEC variations. GPS-TEC data (January 2013-December 2013) is extracted from a multi frequency GPS receiver established at K L University, Vaddeswaram, Guntur station (geographic: 16.37°N, 80.37°E; geomagnetic: 7.44°N, 153.75°E), India. An evaluation, in terms of forecasting capabilities, of three ionospheric time delay models - an Auto Regressive Moving Average (ARMA) model, Auto Regressive Integrated Moving Average (ARIMA) model, and a Holt-Winter's model is presented. The performances of these models are evaluated through error measurement analysis during both geomagnetic quiet and disturbed days. It is found that, ARMA model is effectively forecasting the ionospheric delay with an accuracy of 82-94%, which is 10% more superior to ARIMA and Holt-Winter's models. Moreover, the modeled VTEC derived from International Reference Ionosphere, IRI (IRI-2012) model and new global TEC model, Neustrelitz TEC Model (NTCM-GL) have compared with forecasted VTEC values of ARMA, ARIMA and Holt-Winter's models during geomagnetic quiet days. The forecast results are indicating that ARMA model would be useful to set up an early warning system for ionospheric disturbances at low latitude regions.

  19. Multichannel Singular Spectrum Analysis in the Estimates of Common Environmental Effects Affecting GPS Observations

    NASA Astrophysics Data System (ADS)

    Gruszczynska, Marta; Rosat, Severine; Klos, Anna; Gruszczynski, Maciej; Bogusz, Janusz

    2018-03-01

    We described a spatio-temporal analysis of environmental loading models: atmospheric, continental hydrology, and non-tidal ocean changes, based on multichannel singular spectrum analysis (MSSA). We extracted the common annual signal for 16 different sections related to climate zones: equatorial, arid, warm, snow, polar and continents. We used the loading models estimated for a set of 229 ITRF2014 (International Terrestrial Reference Frame) International GNSS Service (IGS) stations and discussed the amount of variance explained by individual modes, proving that the common annual signal accounts for 16, 24 and 68% of the total variance of non-tidal ocean, atmospheric and hydrological loading models, respectively. Having removed the common environmental MSSA seasonal curve from the corresponding GPS position time series, we found that the residual station-specific annual curve modelled with the least-squares estimation has the amplitude of maximum 2 mm. This means that the environmental loading models underestimate the seasonalities observed by the GPS system. The remaining signal present in the seasonal frequency band arises from the systematic errors which are not of common environmental or geophysical origin. Using common mode error (CME) estimates, we showed that the direct removal of environmental loading models from the GPS series causes an artificial loss in the CME power spectra between 10 and 80 cycles per year. When environmental effect is removed from GPS series with MSSA curves, no influence on the character of spectra of CME estimates was noticed.

  20. Multichannel Singular Spectrum Analysis in the Estimates of Common Environmental Effects Affecting GPS Observations

    NASA Astrophysics Data System (ADS)

    Gruszczynska, Marta; Rosat, Severine; Klos, Anna; Gruszczynski, Maciej; Bogusz, Janusz

    2018-05-01

    We described a spatio-temporal analysis of environmental loading models: atmospheric, continental hydrology, and non-tidal ocean changes, based on multichannel singular spectrum analysis (MSSA). We extracted the common annual signal for 16 different sections related to climate zones: equatorial, arid, warm, snow, polar and continents. We used the loading models estimated for a set of 229 ITRF2014 (International Terrestrial Reference Frame) International GNSS Service (IGS) stations and discussed the amount of variance explained by individual modes, proving that the common annual signal accounts for 16, 24 and 68% of the total variance of non-tidal ocean, atmospheric and hydrological loading models, respectively. Having removed the common environmental MSSA seasonal curve from the corresponding GPS position time series, we found that the residual station-specific annual curve modelled with the least-squares estimation has the amplitude of maximum 2 mm. This means that the environmental loading models underestimate the seasonalities observed by the GPS system. The remaining signal present in the seasonal frequency band arises from the systematic errors which are not of common environmental or geophysical origin. Using common mode error (CME) estimates, we showed that the direct removal of environmental loading models from the GPS series causes an artificial loss in the CME power spectra between 10 and 80 cycles per year. When environmental effect is removed from GPS series with MSSA curves, no influence on the character of spectra of CME estimates was noticed.

  1. A Simple Method to Improve Autonomous GPS Positioning for Tractors

    PubMed Central

    Gomez-Gil, Jaime; Alonso-Garcia, Sergio; Gómez-Gil, Francisco Javier; Stombaugh, Tim

    2011-01-01

    Error is always present in the GPS guidance of a tractor along a desired trajectory. One way to reduce GPS guidance error is by improving the tractor positioning. The most commonly used ways to do this are either by employing more precise GPS receivers and differential corrections or by employing GPS together with some other local positioning systems such as electronic compasses or Inertial Navigation Systems (INS). However, both are complex and expensive solutions. In contrast, this article presents a simple and low cost method to improve tractor positioning when only a GPS receiver is used as the positioning sensor. The method is based on placing the GPS receiver ahead of the tractor, and on applying kinematic laws of tractor movement, or a geometric approximation, to obtain the midpoint position and orientation of the tractor rear axle more precisely. This precision improvement is produced by the fusion of the GPS data with tractor kinematic control laws. Our results reveal that the proposed method effectively reduces the guidance GPS error along a straight trajectory. PMID:22163917

  2. Combining GPS, GIS, and accelerometry: methodological issues in the assessment of location and intensity of travel behaviors.

    PubMed

    Oliver, Melody; Badland, Hannah; Mavoa, Suzanne; Duncan, Mitch J; Duncan, Scott

    2010-01-01

    Global positioning systems (GPS), geographic information systems (GIS), and accelerometers are powerful tools to explain activity within a built environment, yet little integration of these tools has taken place. This study aimed to assess the feasibility of combining GPS, GIS, and accelerometry to understand transport-related physical activity (TPA) in adults. Forty adults wore an accelerometer and portable GPS unit over 7 consecutive days and completed a demographics questionnaire and 7-day travel log. Accelerometer and GPS data were extracted for commutes to/from workplace and integrated into a GIS database. GIS maps were generated to visually explore physical activity intensity, GPS speeds and routes traveled. GPS, accelerometer, and survey data were collected for 37 participants. Loss of GPS data was substantial due to a range of methodological issues, such as low battery life, signal drop out, and participant noncompliance. Nonetheless, greater travel distances and significantly higher speeds were observed for motorized trips when compared with TPA. Pragmatic issues of using GPS monitoring to understand TPA behaviors and methodological recommendations for future research were identified. Although methodologically challenging, the combination of GPS monitoring, accelerometry and GIS technologies holds promise for understanding TPA within the built environment.

  3. Mapping where We Live and Play with GPS Technology

    ERIC Educational Resources Information Center

    Gentry, Deborah J.

    2006-01-01

    As a result of technological advances such as the Global Positioning System (GPS) and the Geographic Information System (GIS), mapping practices and applications have become far more sophisticated. This article suggests family and consumer sciences students and professionals consider using GPS technology to map their communities as a strategy to…

  4. 78 FR 67132 - GPS Satellite Simulator Control Working Group Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... DEPARTMENT OF DEFENSE Department of the Air Force GPS Satellite Simulator Control Working Group Meeting AGENCY: Space and Missile Systems Center, Global Positioning Systems (GPS) Directorate, Air Force... Control Working Group (SSCWG) meeting on 6 December 2013 from 0900-1300 PST at Los Angeles Air Force Base...

  5. 77 FR 70421 - GPS Satellite Simulator Control Working Group Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... DEPARTMENT OF DEFENSE Department of the Air Force GPS Satellite Simulator Control Working Group Meeting AGENCY: Space and Missile Systems Center, Global Positioning Systems (GPS) Directorate, Department... Control Working Group (SSCWG) meeting on 14 December 2012 from 0900-1600 PST at Los Angeles Air Force Base...

  6. Advancing Technology: GPS and GIS Outreach Training for Agricultural Producers

    ERIC Educational Resources Information Center

    Flynn, Allison; Arnold, Shannon

    2010-01-01

    The use of the Global Positioning System (GPS) and Global Information Systems (GIS) has made significant impacts on agricultural production practices. However, constant changes in the technologies require continuing educational updates. The outreach program described here introduces the operation, use, and applications of GPS receivers and GIS…

  7. Demonstration of precise estimation of polar motion parameters with the global positioning system: Initial results

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.

    1991-01-01

    Data from the Global Positioning System (GPS) were used to determine precise polar motion estimates. Conservatively calculated formal errors of the GPS least squares solution are approx. 10 cm. The GPS estimates agree with independently determined polar motion values from very long baseline interferometry (VLBI) at the 5 cm level. The data were obtained from a partial constellation of GPS satellites and from a sparse worldwide distribution of ground stations. The accuracy of the GPS estimates should continue to improve as more satellites and ground receivers become operational, and eventually a near real time GPS capability should be available. Because the GPS data are obtained and processed independently from the large radio antennas at the Deep Space Network (DSN), GPS estimation could provide very precise measurements of Earth orientation for calibration of deep space tracking data and could significantly relieve the ever growing burden on the DSN radio telescopes to provide Earth platform calibrations.

  8. 2006 Precision Strike Technology Symposium

    DTIC Science & Technology

    2006-10-19

    s Navy Unique Joint system 14 A/C Unique Components Framework JMPS Common Components Crypto Key GCCS-M Interface Carrier Intel Feed Carrier...210 GPS Prediction CUPC GPS Crypto Key TAMMAC SLAM-ER GPS Almanac ETIRMS PMA-281 NGMS PMA-209 Boeing PMA-201 Raytheon ESC (USAF) Hill AFB PMA-234 PMA...242 F/A-18 UPC GPS Prediction CUPC GPS Crypto Key TAMMAC SLAM-ER GPS Almanac HARM WASP Framework ARC-210 ETIRMS PMA-281 Integration/Test/ Support TLAM

  9. Barriers to implement screening for alcohol consumption in Spanish hypertensive patients.

    PubMed

    Miquel, Laia; López-Pelayo, Hugo; Nuño, Laura; Arbesú, José Ángel; Zarco, José; Manthey, Jakob; Rehm, Jürgen; Gual, Antoni

    2018-05-23

    Alcohol intake and hypertension (HT) are interrelated public health problems with cost-effective interventions at the primary care level that, to date, are poorly implemented. This study aims to explore the barriers to implementing alcohol interventions for people with HT in primary care. As part of the project BASIS (Baseline Alcohol Screening and Intervention Survey), an internet survey from five European countries was developed to determine the role of alcohol in the management of HT in primary care practice. The survey contained 28 core items and 7 country-specific items. We present answers from Spanish general practitioners (GPs), who were reached through the main professional and scientific societies via e-mail and asked to take the online survey. In total, 867 GPs answered the survey (65.1% women, 70.4% > 30 years old). As indicated by the Alcohol Use Disorders Identification Test-C scores, 12.4% of GPs who responded were risky drinkers (21.3% of men versus 7.1% of women). GPs reported considering alcohol relatively unimportant in HT treatment, as well as a difficult condition to deal with. The three main barriers to implement screening for alcohol consumption in HT patients were the lack of time (50.0%), considering alcohol unimportant for HT (28.4%) and stigma (16.5%). GPs did not consider alcohol consumption a relevant factor for HT and, additionally, found it difficult to deal with alcohol problems. Some of the barriers for alcohol screening could be overcome through structural changes in the health system, such as empowering GPs to treat alcohol use disorders (rather than a single focus on implementing preventive strategies) by enhancing training in alcohol diagnosis and treatment.

  10. Developing accreditation for community based surgery: the Irish experience.

    PubMed

    Ní Riain, Ailís; Collins, Claire; O'Sullivan, Tony

    2018-02-05

    Purpose Carrying out minor surgery procedures in the primary care setting is popular with patients, cost effective and delivers at least as good outcomes as those performed in the hospital setting. This paper aims to describe the central role of clinical leadership in developing an accreditation system for general practitioners (GPs) undertaking community-based surgery in the Irish national setting where no mandatory accreditation process currently exists. Design/methodology/approach In all, 24 GPs were recruited to the GP network. Ten pilot standards were developed addressing GPs' experience and training, clinical activity and practice supporting infrastructure and tested, using information and document review, prospective collection of clinical data and a practice inspection visit. Two additional components were incorporated into the project (patient satisfaction survey and self-audit). A multi-modal evaluation was undertaken. A majority of GPs was included at all stages of the project, in line with the principles of action learning. The steering group had a majority of GPs with relevant expertise and representation of all other actors in the minor surgery arena. The GP research network contributed to each stage of the project. The project lead was a GP with minor surgery experience. Quantitative data collected were analysed using Predictive Analytic SoftWare. Krueger's framework analysis approach was used to analyse the qualitative data. Findings A total of 9 GPs achieved all standards at initial review, 14 successfully completed corrective actions and 1 GP did not achieve the required standard. Standards were then amended to reflect findings and a supporting framework was developed. Originality/value The flexibility of the action-learning approach and the clinical leadership design allowed for the development of robust quality standards in a short timeframe.

  11. Indoor versus outdoor time in preschoolers at child care.

    PubMed

    Tandon, Pooja S; Saelens, Brian E; Zhou, Chuan; Kerr, Jacqueline; Christakis, Dimitri A

    2013-01-01

    Being outdoors may have health benefits including being more physically active. Understanding the relationship between outdoor time and health is hampered by the difficulty of measuring outdoor time. To examine the accuracy and validity of light-sensor and GPS methods for quantifying outdoor time among those aged 3-5 years at child care. A total of 45 children (mean age 4.5 years, 64% boys) from five child care centers wore portable accelerometers with built-in light sensors and a separate GPS device around their waists during child care, providing 80,648 episodes (15 seconds each) for analysis. Direct observation (gold standard) of children being outdoors versus indoors was conducted for 2 days at each center. GPS signal-to-noise ratios, processed through the Personal Activity and Location Measurement System were used to define indoor versus outdoor locations. Receiver operating characteristic (ROC) analyses were used to determine thresholds for defining being indoors versus outdoors. Data were collected in Fall 2011, analyzed in 2012. Mean observed outdoor time was 63 [±44; range: 18-152] minutes/day. Mean light-sensor levels were significantly higher outdoors. The area under the ROC curve for location based on light sensor for all weather conditions was 0.82 (range: 0.70 on partly cloudy days to 0.97 on sunny days); for GPS, it was 0.89. The light sensor had a sensitivity of 74% and specificity of 86%. GPS had a sensitivity of 82% and specificity of 88%. A light sensor and a GPS device both distinguish indoor from outdoor time for preschoolers with moderate to high levels of accuracy. These devices can increase the feasibility and lower the cost of measuring outdoor time in studies of preschool children. Copyright © 2013 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Operation of a single-channel, sequential Navstar GPS receiver in a helicopter mission environment

    NASA Technical Reports Server (NTRS)

    Edwards, F. G.; Hamlin, J. R.

    1984-01-01

    It is pointed out that the future utilization of the Navstar Global Positioning System (GPS) by civil helicopters will provide an enhanced performance not obtainable with current navigations systems. GPS will supply properly equipped users with extremely accurate three-dimensional position and velocity information anywhere in the world. Preliminary studies have been conducted to investigate differential GPS concept mechanizations and cost, and to theoretically predict navigation performance and the impact of degradation of the GPS C/A code for national security considerations. The obtained results are encouraging, but certain improvements are needed. As a second step in the program, a single-channel sequential GPS navigator was installed and operated in the NASA SH-3G helicopter. A series of flight tests were conducted. It is found that performance of the Navstar GPS Z-set is quite acceptable to support area navigation and nonprecision approach operations.

  13. Monitoring of GPS(Global Positioning System) System Performance

    DOT National Transportation Integrated Search

    1985-06-01

    The Global Positioning System (GPS), a worldwide satellite-based navigation system developed by the Department of Defense, is scheduled to become operational in late 1988. The system has the potential to become the primary radionaviagation system for...

  14. Planning Training Workload in Football Using Small-Sided Games' Density.

    PubMed

    Sangnier, Sebastien; Cotte, Thierry; Brachet, Olivier; Coquart, Jeremy; Tourny, Claire

    2018-05-08

    Sangnier, S, Cotte, T, Brachet, O, Coquart, J, and Tourny, C. Planning training workload in football using small-sided games density. J Strength Cond Res XX(X): 000-000, 2018-To develop the physical qualities, the small-sided games' (SSGs) density may be essential in soccer. Small-sided games are games in which the pitch size, players' number, and rules are different to those for traditional soccer matches. The purpose was to assess the relation between training workload and SSGs' density. The 33 densities data (41 practice games and 3 full games) were analyzed through global positioning system (GPS) data collected from 25 professional soccer players (80.7 ± 7.0 kg; 1.83 ± 0.05 m; 26.4 ± 4.9 years). From total distance, distance metabolic power, sprint distance, and acceleration distance, the data GPS were divided into 4 categories: endurance, power, speed, and strength. Statistical analysis compared the relation between GPS values and SSGs' densities, and 3 methods were applied to assess models (R-squared, root-mean-square error, and Akaike information criterion). The results suggest that all the GPS data match the player's essential athletic skills. They were all correlated with the game's density. Acceleration distance, deceleration distance, metabolic power, and total distance followed a logarithmic regression model, whereas distance and number of sprints follow a linear regression model. The research reveals options to monitor the training workload. Coaches could anticipate the load resulting from the SSGs and adjust the field size to the players' number. Taking into account the field size during SSGs enables coaches to target the most favorable density for developing expected physical qualities. Calibrating intensity during SSGs would allow coaches to assess each athletic skill in the same conditions of intensity as in the competition.

  15. GPs’ confidence in caring for their patients on the autism spectrum: an online self-report study

    PubMed Central

    Unigwe, Silvana; Buckley, Carole; Crane, Laura; Kenny, Lorcan; Remington, Anna; Pellicano, Elizabeth

    2017-01-01

    Background In the UK, GPs play a key role in the identification and management of children, young people, and adults on the autism spectrum, but there is a paucity of research on GPs’ perceptions of working with these patients. Aim To understand GPs’ perceived self-efficacy in identifying and managing their patients on the autism spectrum, and the factors affecting this. Design and setting An online self-report survey was developed for completion by GPs across the UK. Method A total of 304 GPs in the UK took part. The survey collected responses on participants’ background, training, and experience, both as a GP and with regard to autism, and included a 22-item knowledge of autism questionnaire, a 14-item self-efficacy scale targeting GPs’ perceived confidence in identifying and managing their autistic patients, and an open question eliciting participants’ experiences of working with autistic people. Results In total, 39.5% (n = 120) of GP participants reported never having received formal training in autism. Despite demonstrating good knowledge of its key features, participants reported limited confidence in their abilities to identify and manage autistic patients, with many citing a number of barriers that overwhelmingly focused on perceived failings of the current healthcare system (such as a lack of clarity around referral pathways). Conclusion There is an urgent need for improved local specialist service provision alongside clearer referral pathways for diagnosis to improve both GPs’ confidence in caring for their autistic patients and the healthcare experiences of autistic patients and their families. Local clinical commissioning groups are best served to assist GPs in ensuring that they can reliably detect the condition and make appropriate provisions for support. PMID:28483821

  16. Tropospheric Correction for InSAR Using Interpolated ECMWF Data and GPS Zenith Total Delay

    NASA Technical Reports Server (NTRS)

    Webb, Frank H.; Fishbein, Evan F.; Moore, Angelyn W.; Owen, Susan E.; Fielding, Eric J.; Granger, Stephanie L.; Bjorndahl, Fredrik; Lofgren Johan

    2011-01-01

    To mitigate atmospheric errors caused by the troposphere, which is a limiting error source for spaceborne interferometric synthetic aperture radar (InSAR) imaging, a tropospheric correction method has been developed using data from the European Centre for Medium- Range Weather Forecasts (ECMWF) and the Global Positioning System (GPS). The ECMWF data was interpolated using a Stretched Boundary Layer Model (SBLM), and ground-based GPS estimates of the tropospheric delay from the Southern California Integrated GPS Network were interpolated using modified Gaussian and inverse distance weighted interpolations. The resulting Zenith Total Delay (ZTD) correction maps have been evaluated, both separately and using a combination of the two data sets, for three short-interval InSAR pairs from Envisat during 2006 on an area stretching from northeast from the Los Angeles basin towards Death Valley. Results show that the root mean square (rms) in the InSAR images was greatly reduced, meaning a significant reduction in the atmospheric noise of up to 32 percent. However, for some of the images, the rms increased and large errors remained after applying the tropospheric correction. The residuals showed a constant gradient over the area, suggesting that a remaining orbit error from Envisat was present. The orbit reprocessing in ROI_pac and the plane fitting both require that the only remaining error in the InSAR image be the orbit error. If this is not fulfilled, the correction can be made anyway, but it will be done using all remaining errors assuming them to be orbit errors. By correcting for tropospheric noise, the biggest error source is removed, and the orbit error becomes apparent and can be corrected for

  17. A LEO Satellite Navigation Algorithm Based on GPS and Magnetometer Data

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    The Global Positioning System (GPS) has become a standard method for low cost onboard satellite orbit determination. The use of a GPS receiver as an attitude and rate sensor has also been developed in the recent past. Additionally, focus has been given to attitude and orbit estimation using the magnetometer, a low cost, reliable sensor. Combining measurements from both GPS and a magnetometer can provide a robust navigation system that takes advantage of the estimation qualities of both measurements. Ultimately a low cost, accurate navigation system can result, potentially eliminating the need for more costly sensors, including gyroscopes.

  18. FPGA-based real-time embedded system for RISS/GPS integrated navigation.

    PubMed

    Abdelfatah, Walid Farid; Georgy, Jacques; Iqbal, Umar; Noureldin, Aboelmagd

    2012-01-01

    Navigation algorithms integrating measurements from multi-sensor systems overcome the problems that arise from using GPS navigation systems in standalone mode. Algorithms which integrate the data from 2D low-cost reduced inertial sensor system (RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS receiver via a Kalman filter has proved to be worthy in providing a consistent and more reliable navigation solution compared to standalone GPS receivers. It has been also shown to be beneficial, especially in GPS-denied environments such as urban canyons and tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that follows the algorithm development by realizing a low-cost real-time embedded navigation system capable of computing the data-fused positioning solution. The role of the developed system is to synchronize the measurements from the three sensors, relative to the pulse per second signal generated from the GPS, after which the navigation algorithm is applied to the synchronized measurements to compute the navigation solution in real-time. Employing a customizable soft-core processor on an FPGA in the kernel of the navigation system, provided the flexibility for communicating with the various sensors and the computation capability required by the Kalman filter integration algorithm.

  19. FPGA-Based Real-Time Embedded System for RISS/GPS Integrated Navigation

    PubMed Central

    Abdelfatah, Walid Farid; Georgy, Jacques; Iqbal, Umar; Noureldin, Aboelmagd

    2012-01-01

    Navigation algorithms integrating measurements from multi-sensor systems overcome the problems that arise from using GPS navigation systems in standalone mode. Algorithms which integrate the data from 2D low-cost reduced inertial sensor system (RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS receiver via a Kalman filter has proved to be worthy in providing a consistent and more reliable navigation solution compared to standalone GPS receivers. It has been also shown to be beneficial, especially in GPS-denied environments such as urban canyons and tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that follows the algorithm development by realizing a low-cost real-time embedded navigation system capable of computing the data-fused positioning solution. The role of the developed system is to synchronize the measurements from the three sensors, relative to the pulse per second signal generated from the GPS, after which the navigation algorithm is applied to the synchronized measurements to compute the navigation solution in real-time. Employing a customizable soft-core processor on an FPGA in the kernel of the navigation system, provided the flexibility for communicating with the various sensors and the computation capability required by the Kalman filter integration algorithm. PMID:22368460

  20. Global Positioning System III (GPS III)

    DTIC Science & Technology

    2015-12-01

    Vacuum (TVAC) testing on October 12, 2015, and successfully completed baseline TVAC testing on December 23, 2015 – a major system- level event...0.0 0.0 Total 4142.9 5285.2 N/A 5180.4 4269.8 5650.1 5557.4 Current APB Cost Estimate Reference SCP dated July 02, 2015 Confidence Level Confidence... Level of cost estimate for current APB: 60% The current APB is established at the 60% confidence level . This estimate is built upon the February 2015

  1. Clinical governance. Onus points.

    PubMed

    Malbon, G; Gillam, S; Mays, N

    1998-11-19

    A survey of lead GPs in total purchasing pilots revealed poor understanding of the responsibilities of clinical governance. Many saw it in a negative light and were concerned about its administrative costs. Explicit guidance is needed, spelling out the clinical governance responsibilities of GPs and others in primary care groups.

  2. Evaluation of GPS Coverage for the X-33 Michael-6 Trajectory

    NASA Technical Reports Server (NTRS)

    Lundberg, John B.

    1998-01-01

    The onboard navigational system for the X-33 test flights will be based on the use of measurements collected from the Embedded Global Positioning System (GPS)/INS system. Some of the factors which will affect the quality of the GPS contribution to the navigational solution will be the number of pseudorange measurements collected at any instant in time, the distribution of the GPS satellites within the field of view, and the inherent noise level of the GPS receiver. The distribution of GPS satellites within the field of view of the receiver's antenna will depend on the receiver's position, the time of day, pointing direction of the antenna, and the effective cone angle of the antenna. The number of pseudorange measurements collected will depend upon these factors as well as the time required to lock onto a GPS satellite signal once the GPS satellite comes into the field of view of the antenna and the number of available receiver channels. The objective of this study is to evaluate the GPS coverage resulting from the proposed antenna pointing directions, the proposed antenna cone angles, and the effects due to the time of day for the X-33 Michael-6 trajectory from launch at Edwards AFB, California, to the start of the Terminal Area Energy Management (TAEM) phase on approach to Michael AAF, Utah.

  3. On principles, methods and recent advances in studies towards a GPS-based control system for geodesy and geodynamics

    NASA Technical Reports Server (NTRS)

    Delikaraoglou, Demitris

    1989-01-01

    Although Very Long Baseline Interferometry (VLBI) and Satellite Laser Ranging (SLR) are becoming increasingly important tools for geodynamic studies, their future role may well be fulfilled by using alternative techniques such as those utilizing the signals from the Global Positioning System (GPS). GPS, without the full implementation of the system, already offers a favorable combination of cost and accuracy and has consistently demonstrated the capability to provide high precision densification control in the regional and local areas of the VLBI and SLR networks. This report reviews VLBI and SLR vis-a-vis GPS and outlines the capabilities and limitations of each technique and how their complementary application can be of benefit to geodetic and geodynamic operations. It demonstrates, albeit with a limited data set, that dual-frequency GPS observations and interferometric type analysis techniques make possible the modelling of the GPS orbits for several days with an accuracy of a few meters. The use of VLBI or SLR sites as fiducial stations together with refinements in the orbit determination procedures can greatly reduce the systematic errors in the GPS satellite orbits used to compute the positions of non-fiducial locations. In general, repeatability and comparison with VLBI of the GPS determined locations are of the order of between 2 parts in 10 to the 7th power and 5 parts in 10 to the 8th power for baseline lengths less than 2000 km. This report is mainly a synthesis of problems, assumptions, methods and recent advances in the studies towards the establishment of a GPS-based system for geodesy and geodynamics and is one phase in the continuing effort for the development of such a system. To some, including the author, it seems reasonable to expect within the next few years that more evidence will show GPS to be as a powerful and reliable a tool as mobile VLBI and SLR are today, but largely more economical.

  4. TOPEX orbit determination using GPS signals plus a sidetone ranging system

    NASA Technical Reports Server (NTRS)

    Bender, P. L.; Larden, D. R.

    1982-01-01

    The GPS orbit determination was studied to see how well the radial coordinate for altimeter satellites such as TOPEX could be found by on board measurements of GPS signals, including the reconstructed carrier phase. The inclusion on altimeter satellites of an additional high accuracy tracking system is recommended. It is suggested that a sidetone ranging system is used in conjunction with TRANET 2 beacons.

  5. 78 FR 57672 - 91st Meeting: RTCA Special Committee 159, Global Positioning Systems (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... include the following: Working Group Sessions October 7 Working Group 2C, GPS/Inertial, ARINC & A4A Rooms October 8 Working Group 2, GPS/WAAS, McIntosh-NBAA Room and Colson Board Room October 9 Working Group 2, GPS/WAAS, ARINC & A4A Rooms, Afternoon, 1:00 p.m.-5:00 p.m., Working Group 4, GPS/Precision Landing...

  6. The systemic inflammatory response as a prognostic factor for advanced hepatocellular carcinoma with extrahepatic metastasis.

    PubMed

    Aino, Hajime; Sumie, Shuji; Niizeki, Takashi; Kuromatsu, Ryoko; Tajiri, Nobuyoshi; Nakano, Masahito; Satani, Manabu; Okamura, Shusuke; Shimose, Shigeo; Miyahara, Kensuke; Torimura, Takuji

    2016-07-01

    Several indices have been proposed to evaluate the systemic inflammatory response (SIR), which has been reported to be a useful prognostic factor in various types of cancer. We investigated the usefulness of the Glasgow Prognostic Score (GPS), neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) as prognostic factors in patients with advanced hepatocellular carcinoma (HCC) with extrahepatic metastasis (stage IVB). Between April, 1997 and March, 2013, a total of 434 HCC patients who developed extrahepatic metastasis were enrolled in the present study. The GPS was defined on the basis of pretreatment C-reactive protein (CRP) and albumin (Alb) levels, and the subjects were grouped according to GPS 0-2. The NLR was calculated as the neutrophil count/lymphocyte count, and the PLR was calculated as the platelet count/lymphocyte count. A comparative examination was performed using a survival analysis with approximate median values to determine the cut-off value for both ratios. The median survival time (MST) of the 434 patients overall was 7.3 months, with cumulative survival rates of 31.8, 14.5 and 7.7% at 1, 2 and 3 years, respectively. The patient backround was as follows: The male:female ratio was 363:71, with a median age of 67.0 years (range, 15.0-92.0 years). Hepatitis B virus patients:hepatitis C virus patients:non-B, non-C hepatitis patients = 75:303:56. Child-Pugh class A:B:C = 218:153:63. As regards T stage, ≤T2:T3:T4 = 60:190:181. The median white blood cell count was 4,650/l (range, 1,400-20,500/l); the platelet count was 11.1×10 4 /µl (range, 3.1×10 4 -45.5×10 4 /µl); the aspartate aminotransferase level was 40.0 U/l (range, 7.0-338.0 U/l) and the alanine aminotransferase level 64.5 U/l (range, 16.0-407.0 U/l); the α-fetoprotein level was 622.1 ng/ml (range, 1.5-3,311,794.0 ng/ml); and the des-gamma-carboxyprothrombin level was 1,285.0 mAU/ml (range, 8.0->75,000 mAU/ml). The principal sites of metastasis included the lungs (53.9%), bone (38.9%), lymph nodes (21.4%) and adrenal glands (10.1%). The survival analysis revealed that hepatic functional reserve [Child-Pugh class B+C; hazard ratio (HR)=2.055; 95% confidence interval (CI): 1.592-2.651, P<0.001], T stage (T3; HR=2.359; 95% CI: 1.648-3.376, P<0.001), AFP (≥200 ng/ml; HR=1.416; 95% CI: 1.125-1.783, P=0.003), NLR (≥3; HR=1.569; 95% CI: 1.253-1.963, P<0.001) and GPS (1+2; HR=1.410; 95% CI: 1.060-1.874, P=0.018) were independent risk factors. A total of 136 patients were included in the GPS 0 group, 169 patients in the GPS 1 group and 129 patients in the GPS 2 group. The low together with the high NLR groups comprised 217 patients. The MST was 480 days in the GPS 0 group, 154 days in the GPS 1 and 2 groups, 115 days in the high NLR group and 321 days in the low NLR group; a significant difference in survival was observed for the GPS and NLR groups. Therefore, we consider GPS and NLR to be useful prognostic factors in patients with stage IVB HCC.

  7. Performance Analysis of Several GPS/Galileo Precise Point Positioning Models

    PubMed Central

    Afifi, Akram; El-Rabbany, Ahmed

    2015-01-01

    This paper examines the performance of several precise point positioning (PPP) models, which combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite single-difference (BSSD) modes. These include the traditional un-differenced model, the decoupled clock model, the semi-decoupled clock model, and the between-satellite single-difference model. We take advantage of the IGS-MGEX network products to correct for the satellite differential code biases and the orbital and satellite clock errors. Natural Resources Canada’s GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. A total of six data sets of GPS and Galileo observations at six IGS stations are processed to examine the performance of the various PPP models. It is shown that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of BSSD combination used. As well, the BSSD model improves the precision of the estimated parameters by about 50% and 25% when the loose and the tight combinations are used, respectively, in comparison with the un-differenced GPS-only model. Comparable results are obtained through the tight combination when either a GPS or a Galileo satellite is selected as a reference. PMID:26102495

  8. Performance Analysis of Several GPS/Galileo Precise Point Positioning Models.

    PubMed

    Afifi, Akram; El-Rabbany, Ahmed

    2015-06-19

    This paper examines the performance of several precise point positioning (PPP) models, which combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite single-difference (BSSD) modes. These include the traditional un-differenced model, the decoupled clock model, the semi-decoupled clock model, and the between-satellite single-difference model. We take advantage of the IGS-MGEX network products to correct for the satellite differential code biases and the orbital and satellite clock errors. Natural Resources Canada's GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. A total of six data sets of GPS and Galileo observations at six IGS stations are processed to examine the performance of the various PPP models. It is shown that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of BSSD combination used. As well, the BSSD model improves the precision of the estimated parameters by about 50% and 25% when the loose and the tight combinations are used, respectively, in comparison with the un-differenced GPS-only model. Comparable results are obtained through the tight combination when either a GPS or a Galileo satellite is selected as a reference.

  9. GPS/INS Sensor Fusion Using GPS Wind up Model

    NASA Technical Reports Server (NTRS)

    Williamson, Walton R. (Inventor)

    2013-01-01

    A method of stabilizing an inertial navigation system (INS), includes the steps of: receiving data from an inertial navigation system; and receiving a finite number of carrier phase observables using at least one GPS receiver from a plurality of GPS satellites; calculating a phase wind up correction; correcting at least one of the finite number of carrier phase observables using the phase wind up correction; and calculating a corrected IMU attitude or velocity or position using the corrected at least one of the finite number of carrier phase observables; and performing a step selected from the steps consisting of recording, reporting, or providing the corrected IMU attitude or velocity or position to another process that uses the corrected IMU attitude or velocity or position. A GPS stabilized inertial navigation system apparatus is also described.

  10. A Low-Cost GPS GSM/GPRS Telemetry System: Performance in Stationary Field Tests and Preliminary Data on Wild Otters (Lutra lutra)

    PubMed Central

    Quaglietta, Lorenzo; Martins, Bruno Herlander; de Jongh, Addy; Mira, António; Boitani, Luigi

    2012-01-01

    Background Despite the increasing worldwide use of global positioning system (GPS) telemetry in wildlife research, it has never been tested on any freshwater diving animal or in the peculiar conditions of the riparian habitat, despite this latter being one of the most important habitat types for many animal taxa. Moreover, in most cases, the GPS devices used have been commercial and expensive, limiting their use in low-budget projects. Methodology/Principal Findings We have developed a low-cost, easily constructed GPS GSM/GPRS (Global System for Mobile Communications/General Packet Radio Service) and examined its performance in stationary tests, by assessing the influence of different habitat types, including the riparian, as well as water submersion and certain climatic and environmental variables on GPS fix-success rate and accuracy. We then tested the GPS on wild diving animals, applying it, for the first time, to an otter species (Lutra lutra). The rate of locations acquired during the stationary tests reached 63.2%, with an average location error of 8.94 m (SD = 8.55). GPS performance in riparian habitats was principally affected by water submersion and secondarily by GPS inclination and position within the riverbed. Temporal and spatial correlations of location estimates accounted for some variation in the data sets. GPS-tagged otters also provided accurate locations and an even higher GPS fix-success rate (68.2%). Conclusions/Significance Our results suggest that GPS telemetry is reliably applicable to riparian and even diving freshwater animals. They also highlight the need, in GPS wildlife studies, for performing site-specific pilot studies on GPS functioning as well as for taking into account eventual spatial and temporal correlation of location estimates. The limited price, small dimensions, and high performance of the device presented here make it a useful and cost-effective tool for studies on otters and other aquatic or terrestrial medium-to-large-sized animals. PMID:22242163

  11. A low-cost GPS GSM/GPRS telemetry system: performance in stationary field tests and preliminary data on wild otters (Lutra lutra).

    PubMed

    Quaglietta, Lorenzo; Martins, Bruno Herlander; de Jongh, Addy; Mira, António; Boitani, Luigi

    2012-01-01

    Despite the increasing worldwide use of global positioning system (GPS) telemetry in wildlife research, it has never been tested on any freshwater diving animal or in the peculiar conditions of the riparian habitat, despite this latter being one of the most important habitat types for many animal taxa. Moreover, in most cases, the GPS devices used have been commercial and expensive, limiting their use in low-budget projects. We have developed a low-cost, easily constructed GPS GSM/GPRS (Global System for Mobile Communications/General Packet Radio Service) and examined its performance in stationary tests, by assessing the influence of different habitat types, including the riparian, as well as water submersion and certain climatic and environmental variables on GPS fix-success rate and accuracy. We then tested the GPS on wild diving animals, applying it, for the first time, to an otter species (Lutra lutra). The rate of locations acquired during the stationary tests reached 63.2%, with an average location error of 8.94 m (SD = 8.55). GPS performance in riparian habitats was principally affected by water submersion and secondarily by GPS inclination and position within the riverbed. Temporal and spatial correlations of location estimates accounted for some variation in the data sets. GPS-tagged otters also provided accurate locations and an even higher GPS fix-success rate (68.2%). Our results suggest that GPS telemetry is reliably applicable to riparian and even diving freshwater animals. They also highlight the need, in GPS wildlife studies, for performing site-specific pilot studies on GPS functioning as well as for taking into account eventual spatial and temporal correlation of location estimates. The limited price, small dimensions, and high performance of the device presented here make it a useful and cost-effective tool for studies on otters and other aquatic or terrestrial medium-to-large-sized animals.

  12. Analysis of ionosphere variability over low-latitude GNSS stations during 24th solar maximum period

    NASA Astrophysics Data System (ADS)

    Venkata Ratnam, D.; Sivavaraprasad, G.; Latha Devi, N. S. M. P.

    2017-07-01

    Global Positioning System (GPS) is a remote sensing tool of space weather and ionospheric variations. However, the interplanetary space-dependent drifts in the ionospheric irregularities cause predominant ranging errors in the GPS signals. The dynamic variability of the low-latitude ionosphere is an imperative threat to the satellite-based radio communication and navigation ranging systems. The study of temporal and spatial variations in the ionosphere has triggered new investigations in modelling, nowcasting and forecasting the ionospheric variations. Hence, in this paper, the dynamism in the day-to-day, month-to-month and seasonal variability of the ionospheric Total Electron Content (TEC) has been explored during the solar maximum period, January-December 2013, of the 24th solar cycle. The spatial and temporal variations of the ionosphere are analysed using the TEC values derived from three Indian low-latitude GPS stations, namely, Bengaluru, Guntur and Hyderabad, separated by 13-18° in latitude and 77-81° in longitude. The observed regional GPS-TEC variations are compared with the predicted TEC values of the International Reference Ionosphere (IRI-2012 and 2007) models. Ionospheric parameters such as Vertical TEC (VTEC), relative TEC deviation index and monthly variations in the grand-mean of ionosphere TEC and TEC intensity, along with the upper and lower quartiles, are adopted to investigate the ionosphere TEC variability during quiet and disturbed days. The maximum ionospheric TEC variability is found during March and September equinoxes, followed by December solstice while the minimum variability is observed during June solstice. IRI models are in reasonable agreement with GPS TEC but are overestimating during dawn hours (01:00-06:00 LT) as compared to the dusk hours. Higher percentage deviations are observed during equinoctial months than summer over EIA stations, Guntur and Hyderabad. GPS TEC variations are overestimated during dawn hours for all the seasons over Bengaluru. It has also been observed that positive storm effect (enhancement of TEC) is observed during the main phase of the March storm, 2013 (March 16-18, 2013) while both positive and negative storm effects (depletion of TEC) are registered during the main phase of the June storm, 2013 (June 28-30, 2013) at Bengaluru and Guntur, respectively. IRI-2012 model has slightly large discrepancies with the GPS-VTEC compared with the IRI-2007 model during the June storm, 2013 over Guntur station. This analysis highlights the importance of upgrading the IRI models due to their discrepancies during quiet and disturbed states of the ionosphere and developing an early warning forecast system to alert about ionosphere variability.

  13. Precise GPS orbits for geodesy

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L.

    1994-01-01

    The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.

  14. Human Factors and Operations Issues in GPS and WAAS Sensor Approvals A Review and Comparison of FAA and RTCA Documents

    DOT National Transportation Integrated Search

    1997-07-01

    This report is the culmination of the first task in a project to evaluate human factors and operations issues associated : with the integration of Class C Global Positioning System (GPS) sensors and Class Beta GPS/Wide Area Augmentation System : (WAA...

  15. Human factors and operations issues in GPS and WAAS sensor approvals : a review and comparison of FAA and RTCA documents

    DOT National Transportation Integrated Search

    1997-07-01

    This report is the culmination of the first task in a project to evaluate human factors and operations issues associated with the integration of Class C Global Positioning System (GPS) sensors and Class Beta GPS/Wide Area Augmentation System (WAAS) s...

  16. A web-based GPS system for displacement monitoring and failure mechanism analysis of reservoir landslide.

    PubMed

    Li, Yuanyao; Huang, Jinsong; Jiang, Shui-Hua; Huang, Faming; Chang, Zhilu

    2017-12-07

    It is important to monitor the displacement time series and to explore the failure mechanism of reservoir landslide for early warning. Traditionally, it is a challenge to monitor the landslide displacements real-timely and automatically. Globe Position System (GPS) is considered as the best real-time monitoring technology, however, the accuracies of the landslide displacements monitored by GPS are not assessed effectively. A web-based GPS system is developed to monitor the landslide displacements real-timely and automatically in this study. And the discrete wavelet transform (DWT) is proposed to assess the accuracy of the GPS monitoring displacements. Wangmiao landslide in Three Gorges Reservoir area in China is used as case study. The results show that the web-based GPS system has advantages of high precision, real-time, remote control and automation for landslide monitoring; the Root Mean Square Errors of the monitoring landslide displacements are less than 5 mm. Meanwhile, the results also show that a rapidly falling reservoir water level can trigger the reactivation of Wangmiao landslide. Heavy rainfall is also an important factor, but not a crucial component.

  17. Results of an Internet-Based Dual-Frequency Global Differential GPS System

    NASA Technical Reports Server (NTRS)

    Muellerschoen, R.; Bertiger, W.; Lough, M.

    2000-01-01

    Observables from a global network of 18 GPS receivers are returned in real-time to JPL over the open Internet. 30 - 40 cm RSS global GPS orbits and precise dual-frequency GPS clocks are computed in real-time with JPL's Real Time Gipsy (RTG) software.

  18. 33 CFR 164.43 - Automatic Identification System Shipborne Equipment-Prince William Sound.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...GPS) receiver; (2) Marine band Non-Directional Beacon receiver capable of receiving dGPS error... frequency; and (4) Control unit. (b) An AISSE must have the following capabilities: (1) Use dGPS to sense... Recommended Standards for Differential NAVSTAR GPS Service in determining the required information; (3...

  19. USGS earthquake hazards program (EHP) GPS use case : earthquake early warning (EEW) and shake alert

    DOT National Transportation Integrated Search

    2017-03-30

    GPS Adjacent Band Workshop VI RTCA Inc., Washington D.C., 30 March 2017. USGS GPS receiver use case - Real-Time GPS for EEW -Continued: CRITICAL EFFECT - The GNSS component of the Shake Alert system augments the inertial sensors and is especial...

  20. International developments in revenues and incomes of general practitioners from 2000 to 2010

    PubMed Central

    2013-01-01

    Background The remuneration system of General Practitioners (GPs) has changed in several countries in the past decade. The aim of our study was: to establish the effect of these changes on the revenues and income of GPs in the first decade of the 21st century. Methods Annual GP revenue and practice costs were collected from national institutes in the eight countries included in our study (Belgium, Denmark, Finland, France, Germany, The Netherlands, Sweden, The United Kingdom (UK)) from 2000–2010. The data were corrected for inflation and purchasing power. Data on the remuneration systems and changes herein were collected from the European Observatory Health Systems Reviews and country experts. Results Comprehensive changes in the remuneration system of GPs were associated with considerable changes in GP income. Incremental changes mainly coincided with a gradual increase in income after correction for inflation. Average GP income was higher in countries with a strong primary care structure. Conclusions The gap between the countries where GPs have a lower income (Belgium, Sweden, France and Finland) and the countries where GPs have a higher income (Netherlands, Germany and the UK) continues to exist over time and appeared to be related to dimensions of primary care, such as governance and access. New payment forms, such as integrated care payment systems, and new health care professionals that are working for GPs, increasingly blur the line between practice costs and income, making it more and more important to clearly define expenditures on GPs, to remain sight on the actual income of GPs. PMID:24152337

  1. [On the front line: survey on shared responsibility. General practitioners and schizophrenia].

    PubMed

    Stip, Emmanuel; Boyer, Richard; Sepehry, Amir Ali; Rodriguez, Jean Pierre; Umbricht, Daniel; Tempier, Adrien; Simon, Andor E

    2007-01-01

    General practitioners (GP) play a preponderant role in the treatment of patients suffering of schizophrenia. Discovering the number of patients with schizophrenia who are treated by GPs ; the needs and attitudes of GPs, their knowledge concerning diagnosis, and the treatment they provide. A postal survey was conducted with Quebec GPs who were randomly chosen. A total of 1003 GPs have participated in the survey. Among them, a small percentage have to treat an early onset schizophrenia and the GPs have expressed their wish to be more informed on the accessibility of specialized services. Results pertaining to questions on diagnoses and knowledge on treatments are inconsistent. The majority of GPs treat the first psychotic episodes with antipsychotic medication. Only a third of GPs surveyed propose maintaining the treatment after a first psychotic episode, in accordance with international recommendations and the recent Canadian guidelines on practices that recommends at least 6 to 12 months of treatment after a partial or complete clinical response. Time given by male GPs to a first contact varies between 10 and 20 minutes, while 80 % of female GPs spend at least 20 minutes. The adverse effects of antipsychotic medication that raise most concern is weight gain before neurological signs. some of this survey's data should be considered by various professional and governmental associations, in order to improve the place of GPs in a health plan destined to treat schizophrenia.

  2. Infant gastro-oesophageal reflux disease (GORD): Australian GP attitudes and practices.

    PubMed

    Kirby, Catherine N; Segal, Ahuva Y; Hinds, Rupert; Jones, Kay M; Piterman, Leon

    2016-01-01

    The aim of this study was to evaluate the attitudes and practices of Australian general practitioners (GPs) regarding infant gastro-oesophageal reflux disease (GORD) diagnosis and management. A national cross-sectional survey, involving a random sample of currently practising Australian GPs (n = 2319) was undertaken between July and September 2011. GPs attitudes and management of infant GORD were surveyed via an online and paper-based 41-item questionnaire. In total, 400 responses were analysed (17.24% response rate). The majority of GPs employed empirical trials of acid-suppression medication and/or lifestyle modifications to diagnose infant GORD. GPs frequently recommended dietary modification despite the belief that they were only moderately effective at best. In addition, GPs frequently prescribed acid-suppression medication, despite concerns regarding their safety in the infant population. Other GP concerns included the lack of clinical guidelines and education for GPs about infant GORD, as well as the level of evidence available for the safety and efficacy of diagnostic tests and treatments. Despite the important role Australian GPs play in the diagnosis and management of infant GORD, high-level evidence-based guidelines for GPs are lacking. Consequently, GPs engage in diagnostic and management practices despite their concerns regarding the safety and effectiveness. © 2015 The Authors. Journal of Paediatrics and Child Health © 2015 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  3. sUAS Position Estimation and Fusion in GPS-Degraded and GPS-Denied Environments using an ADS-B Transponder and Local Area Multilateration

    NASA Astrophysics Data System (ADS)

    Larson, Robert Sherman

    An Unmanned Aerial Vehicle (UAV) and a manned aircraft are tracked using ADS-B transponders and the Local Area Multilateration System (LAMS) in simulated GPS-degraded and GPS-denied environments. Several position estimation and fusion algorithms are developed for use with the Autonomous Flight Systems Laboratory (AFSL) TRansponder based Position Information System (TRAPIS) software. At the lowest level, these estimation and fusion algorithms use raw information from ADS-B and LAMS data streams to provide aircraft position estimates to the ground station user. At the highest level, aircraft position is estimated using a discrete time Kalman filter with real-time covariance updates and fusion involving weighted averaging of ADS-B and LAMS positions. Simulation and flight test results are provided, demonstrating the feasibility of incorporating an ADS-B transponder on a commercially-available UAS and maintaining situational awareness of aircraft positions in GPS-degraded and GPS-denied environments.

  4. Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila; Sparks, Lawrence; Wilson, Brian D.; Mannucci, Anthony J.

    2005-01-01

    To take advantage of the vast amount of GPS data, researchers use a number of techniques to estimate satellite and receiver interfrequency biases and the total electron content (TEC) of the ionosphere. Most techniques estimate vertical ionospheric structure and, simultaneously, hardware-related biases treated as nuisance parameters. These methods often are limited to 200 GPS receivers and use a sequential least squares or Kalman filter approach. The biases are later removed from the measurements to obtain unbiased TEC. In our approach to calibrating GPS receiver and transmitter interfrequency biases we take advantage of all available GPS receivers using a new processing algorithm based on the Global Ionospheric Mapping (GIM) software developed at the Jet Propulsion Laboratory. This new capability is designed to estimate receiver biases for all stations. We solve for the instrumental biases by modeling the ionospheric delay and removing it from the observation equation using precomputed GIM maps. The precomputed GIM maps rely on 200 globally distributed GPS receivers to establish the ''background'' used to model the ionosphere at the remaining 800 GPS sites.

  5. Techniques for monitoring and controlling yaw attitude of a GPS satellite

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M. (Inventor); Bar-Sever, Yoaz (Inventor); Zumberge, James (Inventor); Bertiger, William I. (Inventor); Muellerschoen, Ronald J. (Inventor); Wu, Sien-Chong (Inventor); Hurst, Kenneth (Inventor); Blewitt, Geoff (Inventor); Yunck, Thomas (Inventor); Thornton, Catherine (Inventor)

    2001-01-01

    Techniques for monitoring and controlling yawing of a GPS satellite in an orbit that has an eclipsing portion out of the sunlight based on the orbital conditions of the GPS satellite. In one embodiment, a constant yaw bias is generated in the attitude control system of the GPS satellite to control the yawing of the GPS satellite when it is in the shadow of the earth.

  6. Navigation: National Plans; NAVSTAR-GPS; Laser Gyros

    DTIC Science & Technology

    1982-08-31

    REFERENC-~CP STER . TECHNICAL REPORT ! "NO. 12686,-’-. - NAVIGATION: NATIONAL PLANS ; NAVSTAR-GPS; LASER GYROS CONTRACT NO. DAAK30-80-C-0073 31 AUGUST...Technical ReportAW Ng. riiNational Plans ; Navstar-GPS; S... : NavstarGPS; a3 Sept 1980 - 31 Aug 1982 ....Lasr Gyros. 6. PERFORMING ORG. REPORT NUMBER PRA...identify by block number) Navigation Navigation Satellites Laser Gyros Position-Location . NAVSTAR-GPS Fiberoptic Gyros Planning Global Positioning System

  7. Global positioning system & Google Earth in the investigation of an outbreak of cholera in a village of Bengaluru Urban district, Karnataka.

    PubMed

    Masthi, N R Ramesh; Madhusudan, M; Puthussery, Yannick P

    2015-11-01

    The global positioning system (GPS) technology along with Google Earth is used to measure (spatial map) the accurate distribution of morbidity, mortality and planning of interventions in the community. We used this technology to find out its role in the investigation of a cholera outbreak, and also to identify the cause of the outbreak. This study was conducted in a village near Bengaluru, Karnataka in June 2013 during a cholera outbreak. House-to-house survey was done to identify acute watery diarrhoea cases. A hand held GPS receiver was used to record north and east coordinates of the households of cases and these values were subsequently plotted on Google Earth map. Water samples were collected from suspected sources for microbiological analysis. A total of 27 cases of acute watery diarrhoea were reported. Fifty per cent of cases were in the age group of 14-44 yr and one death was reported. GPS technology and Google Earth described the accurate location of household of cases and spot map generated showed clustering of cases around the suspected water sources. The attack rate was 6.92 per cent and case fatality rate was 3.7 per cent. Water samples collected from suspected sources showed the presence of Vibrio cholera O1 Ogawa. GPS technology and Google Earth were easy to use, helpful to accurately pinpoint the location of household of cases, construction of spot map and follow up of cases. Outbreak was found to be due to contamination of drinking water sources.

  8. Tightly coupled low cost 3D RISS/GPS integration using a mixture particle filter for vehicular navigation.

    PubMed

    Georgy, Jacques; Noureldin, Aboelmagd

    2011-01-01

    Satellite navigation systems such as the global positioning system (GPS) are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS)-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF). Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF) was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D) reduced inertial sensors system (RISS) with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle's odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s) even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift, which are loosely-coupled updates, a hybrid loosely/tightly coupled solution is proposed. This solution is suitable for downtown environments because of the long natural outages or degradation of GPS. The performance of the proposed 3D Navigation solution using Mixture PF for 3D RISS/GPS integration is examined by road test trajectories in a land vehicle and compared to the KF counterpart.

  9. Tightly Coupled Low Cost 3D RISS/GPS Integration Using a Mixture Particle Filter for Vehicular Navigation

    PubMed Central

    Georgy, Jacques; Noureldin, Aboelmagd

    2011-01-01

    Satellite navigation systems such as the global positioning system (GPS) are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS)-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF). Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF) was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D) reduced inertial sensors system (RISS) with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle’s odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s) even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift, which are loosely-coupled updates, a hybrid loosely/tightly coupled solution is proposed. This solution is suitable for downtown environments because of the long natural outages or degradation of GPS. The performance of the proposed 3D Navigation solution using Mixture PF for 3D RISS/GPS integration is examined by road test trajectories in a land vehicle and compared to the KF counterpart. PMID:22163846

  10. The potential impact of Brexit and immigration policies on the GP workforce in England: a cross-sectional observational study of GP qualification region and the characteristics of the areas and population they served in September 2016.

    PubMed

    Esmail, Aneez; Panagioti, Maria; Kontopantelis, Evangelos

    2017-11-16

    The UK is dependent on international doctors, with a greater proportion of non-UK qualified doctors working in its universal health care system than in any other European country, except Ireland and Norway. The terms of the UK exit from the European Union can reduce the ability of European Economic Area (EEA) qualified doctors to work in the UK, while new visa requirements will significantly restrict the influx of non-EEA doctors. We aimed to explore the implications of policy restrictions on immigration, by regionally and spatially describing the characteristics of general practitioners (GPs) by region of medical qualification and the characteristics of the populations they serve. This is a cross-sectional study on 37,792 of 41,865 GPs in England, as of 30 September 2016. The study involved age, sex, full-time equivalent (FTE), country and region of qualification and geography (organisational regions) of individual GPs. Additionally at the practice and geography levels, we studied patient list size by age groups, average patient location deprivation, the overall morbidity as measured by the Quality and Outcomes Framework (QOF) and the average payment made to primary care per patient. Non-UK qualified GPs comprised 21.1% of the total numbers of GPs, with the largest percentage observed in East England (29.8%). Compared to UK qualified GPs, EEA and elsewhere qualified GPs had higher FTE (medians were 0.80, 0.89 and 0.93, respectively) and worked in practices with higher median patient location deprivation (18.3, 22.5 and 25.2, respectively). Practices with high percentages of EEA and elsewhere qualified GPs served patients who resided in more deprived areas, had lower GP-to-patient ratios and lower GP-to-cumulative QOF register ratios. A decrease in pay as the percentage of elsewhere qualified GPs increased was observed; a 10% increase in elsewhere qualified GPs was linked to a £1 decrease (95% confidence interval 0.5-1.4) in average pay per patient. A large percentage of the UK general practice workforce consists of non-UK qualified GPs who work longer hours, are older and serve a larger number of patients in more deprived areas. Following Brexit, difficulties in replacing this valuable workforce will primarily threaten the care delivery in deprived areas.

  11. Variation in general practitioners' information-seeking behaviour - a cross-sectional study on the influence of gender, age and practice form.

    PubMed

    Le, Jette V; Pedersen, Line B; Riisgaard, Helle; Lykkegaard, Jesper; Nexøe, Jørgen; Lemmergaard, Jeanette; Søndergaard, Jens

    2016-12-01

    To assess general practitioners' (GPs') information-seeking behaviour and perceived importance of sources of scientific medical information and to investigate associations with GP characteristics. A national cross-sectional survey was distributed electronically in December 2013. Danish general practice. A population of 3440 GPs (corresponding to approximately 96% of all Danish GPs). GPs' use and perceived importance of information sources. Multilevel mixed-effects logit models were used to investigate associations with GP characteristics after adjusting for relevant covariates. A total of 1580 GPs (46.4%) responded to the questionnaire. GPs' information-seeking behaviour is associated with gender, age and practice form. Single-handed GPs use their colleagues as an information source significantly less than GPs working in partnership practices and they do not use other sources more frequently. Compared with their younger colleagues, GPs aged above 44 years are less likely to seek information from colleagues, guidelines and websites, but more likely to seek information from medical journals. Male and female GPs seek information equally frequently. However, whereas male GPs are more likely than female GPs to find that pharmaceutical sales representative and non-refundable CME meetings are important, they are less likely to find that colleagues, refundable CME meetings, guidelines and websites are important. Results from this study indicate that GP characteristics should be taken into consideration when disseminating scientific medical information, to ensure that patients receive medically updated, high-quality care. KEY POINTS Research indicates that information-seeking behaviour is associated with GP characteristics. Further insights could provide opportunities for targeting information dissemination strategies. Single-handed GPs seek information from colleagues less frequently than GPs in partnerships and do not use other sources more frequently. GPs aged above 44 years do not seek information as frequently as their younger colleagues and prefer other information sources. Male and female GPs seek information equally frequently, but do not consider information sources equally important in keeping medically updated.

  12. Inflammation-based prognostic score and number of lymph node metastases are independent prognostic factors in esophageal squamous cell carcinoma.

    PubMed

    Kobayashi, Takashi; Teruya, Masanori; Kishiki, Tomokazu; Kaneko, Susumu; Endo, Daisuke; Takenaka, Yoshiharu; Miki, Kenji; Kobayashi, Kaoru; Morita, Koji

    2010-08-01

    Few studies have investigated whether the Glasgow Prognostic Score (GPS), an inflammation-based prognostic score, is useful for postoperative prognosis of esophageal squamous cell carcinoma. GPS was calculated on the basis of admission data as follows: patients with elevated C-reactive protein level (>10 mg/l) and hypoalbuminemia (<35 g/l) were assigned to GPS2. Patients with one or no abnormal value were assigned to GPS1 or GPS0. A new scoring system was constructed using independent prognostic variables and was evaluated on whether it could be used to dictate the choice of clinical options. 65 patients with esophageal squamous cell carcinoma were enrolled. GPS and the number of lymph node metastases were found to be independent prognostic variables. The scoring system comprising GPS and the number of lymph node metastases was found to be effective in the prediction of a long-term outcome (p < 0.0001). Preoperative GPS may be useful for postoperative prognosis of patients with esophageal squamous cell carcinoma. GPS and the number of lymph node metastases could be used to identify a subgroup of patients with esophageal squamous cell carcinoma who are eligible for radical resection but show poor prognosis.

  13. Does an activity based remuneration system attract young doctors to general practice?

    PubMed Central

    2012-01-01

    Background The use of increasingly complex payment schemes in primary care may represent a barrier to recruiting general practitioners (GP). The existing Norwegian remuneration system is fully activity based - 2/3 fee-for-service and 1/3 capitation. Given that the system has been designed and revised in close collaborations with the medical association, it is likely to correspond - at least to some degree - with the preferences of current GPs (men in majority). The objective of this paper was to study which preferences that young doctors (women in majority), who are the potential entrants to general practice have for activity based vs. salary based payment systems. Methods In November-December 2010 all last year medical students and all interns in Norway (n = 1.562) were invited to participate in an online survey. The respondents were asked their opinion on systems of remuneration for GPs; inclination to work as a GP; risk attitude; income preferences; work pace tolerance. The data was analysed using one-way ANOVA and multinomial logistic regression analysis. Results A total of 831 (53%) responded. Nearly half the sample (47%) did not consider the remuneration system to be important for their inclination to work as GP; 36% considered the current system to make general practice more attractive, while 17% considered it to make general practice less attractive. Those who are attracted by the existing system were men and those who think high income is important, while those who are deterred by the system are risk averse and less happy with a high work pace. On the question of preferred remuneration system, half the sample preferred a mix of salary and activity based remuneration (the median respondent would prefer a 50/50 mix). Only 20% preferred a fully activity based system like the existing one. A salary system was preferred by women, and those less concerned with high income, while a fully activity based system was preferred by men, and those happy with a high work pace. Conclusions Given a concern about low recruitment to general practice in Norway, and the fact that an increasing share of medical students is women, we were interested in the extent to which the current Norwegian remuneration system correspond with the preferences of potential GPs. This study suggests that an existing remuneration mechanism has a selection effect on who would like to become a GP. Those most attracted are income motivated men. Those deterred are risk averse, and less happy with a high work pace. More research is needed on the extent to which experienced GPs differ along the questions we asked potential GPs, as well as studying the relative importance of other attributes than payment schemes. PMID:22433750

  14. RESEARCH PAPERS : Ionospheric signature of surface mine blasts from Global Positioning System measurements

    NASA Astrophysics Data System (ADS)

    Calais, Eric; Bernard Minster, J.; Hofton, Michelle; Hedlin, Michael

    1998-01-01

    Sources such as atmospheric or buried explosions and shallow earthquakes are known to produce infrasonic pressure waves in the atmosphere Because of the coupling between neutral particles and electrons at ionospheric altitudes, these acoustic and gravity waves induce variations of the ionospheric electron density. The Global Positioning System (GPS) provides a way of directly measuring the total electron content in the ionosphere and, therefore, of detecting such perturbations in the upper atmosphere. In July and August 1996, three large surface mine blasts (1.5 Kt each) were detonated at the Black Thunder coal mine in eastern Wyoming. As part of a seismic and acoustic monitoring experiment, we deployed five dual-frequency GPS receivers at distances ranging from 50 to 200 km from the mine and were able to detect the ionospheric perturbation caused by the blasts. The perturbation starts 10 to 15 min after the blast, lasts for about 30 min, and propagates with an apparent horizontal velocity of 1200 m s- 1. Its amplitude reaches 3 × 1014 el m- 2 in the 7-3 min period band, a value close to the ionospheric perturbation caused by the M=6.7 Northridge earthquake (Calais & Minster 1995). The small signal-to-noise ratio of the perturbation can be improved by slant-stacking the electron content time-series recorded by the different GPS receivers taking into account the horizontal propagation of the perturbation. The energy of the perturbation is concentrated in the 200 to 300 s period band, a result consistent with previous observations and numerical model predictions. The 300 s band probably corresponds to gravity modes and shorter periods to acoustic modes, respectively. Using a 1-D stratified velocity model of the atmosphere we show that linear acoustic ray tracing fits arrival times at all GPS receivers. We interpret the perturbation as a direct acoustic wave caused by the explosion itself. This study shows that even relatively small subsurface events can produce ionospheric perturbations that are above the detection threshold of the GPS technique. By sensing derivative signals, which can be detected over a relatively broad region, it appears that GPS might be particularly useful for source characterization within the first acoustic quiet zone where infrasound would probably be ineffective. This suggests that dual-frequency GPS monitoring could contribute to Comprehensive Nuclear Test Ban Treaty verification.

  15. Ionospheric Signature of Surface Mine Blasts from Global Positioning System Measurements

    NASA Technical Reports Server (NTRS)

    Calais, Eric; Minster, J. Bernard; Hofton, Michelle A.; Hedlin, Michael A. H.

    1998-01-01

    Sources such as atmospheric or buried explosions and shallow earthquakes are known to produce infrasonic pressure waves in the atmosphere. Because of the coupling between neutral particles and electrons at ionospheric altitudes, these acoustic and gravity waves induce variations of the ionospheric electron density. The Global Positioning System (GPS) provides a way of directly measuring the total electron content in the ionosphere and, therefore, of detecting such perturbations in the upper atmosphere. In July and August 1996, three large surface mine blasts (1.5 Kt each) were detonated at the Black Thunder coal mine in eastern Wyoming. As part of a seismic and acoustic monitoring- experiment, we deployed five dual-frequency GPS receivers at distances ranging from 50 to 200 km from the mine and were able to detect the ionospheric perturbation caused by the blasts. The perturbation starts 10 to 15 min after the blast, lasts for about 30 min, and propagates with an apparent horizontal velocity of 1200 meters per second. Its amplitude reaches 3 x 10 (exp 14) el per square meters in the 7-3 min period band, a value close to the ionospheric perturbation caused by the M = 6.7 Northridge earthquake. The small signal-to-noise ratio of the perturbation can be improved by slant-stacking the electron content time-series recorded by the different GPS receivers taking into account the horizontal propagation of the perturbation. The energy of the perturbation is concentrated in the 200 to 300 second period band, a result consistent with previous observations and numerical model predictions. The 300 second band probably corresponds to gravity modes and shorter periods to acoustic modes, respectively. Using a 1-D stratified velocity model of the atmosphere we show that linear acoustic ray tracing fits arrival times at all GPS receivers. We interpret the perturbation as a direct acoustic wave caused by the explosion itself. This study shows that even relatively small subsurface events can produce ionospheric perturbations that are above the detection threshold of the GPS technique. By sensing derivative signals, which can be detected over a relatively broad region, it appears that GPS might be particularly useful for source characterization within the first acoustic quiet zone where infrasound would probably be ineffective. This suggests that dual-frequency GPS monitoring could contribute to Comprehensive Nuclear Test Ban Treaty verification.

  16. Questionnaire-based person trip visualization and its integration to quantitative measurements in Myanmar

    NASA Astrophysics Data System (ADS)

    Kimijiama, S.; Nagai, M.

    2016-06-01

    With telecommunication development in Myanmar, person trip survey is supposed to shift from conversational questionnaire to GPS survey. Integration of both historical questionnaire data to GPS survey and visualizing them are very important to evaluate chronological trip changes with socio-economic and environmental events. The objectives of this paper are to: (a) visualize questionnaire-based person trip data, (b) compare the errors between questionnaire and GPS data sets with respect to sex and age and (c) assess the trip behaviour in time-series. Totally, 345 individual respondents were selected through random stratification to assess person trip using a questionnaire and GPS survey for each. Conversion of trip information such as a destination from the questionnaires was conducted by using GIS. The results show that errors between the two data sets in the number of trips, total trip distance and total trip duration are 25.5%, 33.2% and 37.2%, respectively. The smaller errors are found among working-age females mainly employed with the project-related activities generated by foreign investment. The trip distant was yearly increased. The study concluded that visualization of questionnaire-based person trip data and integrating them to current quantitative measurements are very useful to explore historical trip changes and understand impacts from socio-economic events.

  17. Accurate aircraft wind measurements using the global positioning system (GPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobosy, R.J.; Crawford, T.L., McMillen, R.T., Dumas, E.J.

    1996-11-01

    High accuracy measurements of the spatial distribution of wind speed are required in the study of turbulent exchange between the atmosphere and the earth. The use of a differential global positioning system (GPS) to determine the sensor velocity vector component of wind speed is discussed in this paper. The results of noise and rocking testing are summarized, and fluxes obtained from the GPS-based methods are compared to those measured from systems on towers and airplanes. The GPS-based methods provided usable measurements that compared well with tower and aircraft data at a significantly lower cost. 21 refs., 1 fig., 2 tabs.

  18. Autonomous satellite navigation with the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Fuchs, A. J.; Wooden, W. H., II; Long, A. C.

    1977-01-01

    This paper discusses the potential of using the Global Positioning System (GPS) to provide autonomous navigation capability to NASA satellites in the 1980 era. Some of the driving forces motivating autonomous navigation are presented. These include such factors as advances in attitude control systems, onboard science annotation, and onboard gridding of imaging data. Simulation results which demonstrate baseline orbit determination accuracies using GPS data on Seasat, Landsat-D, and the Solar Maximum Mission are presented. Emphasis is placed on identifying error sources such as GPS time, GPS ephemeris, user timing biases, and user orbit dynamics, and in a parametric sense on evaluating their contribution to the orbit determination accuracies.

  19. Effect of forest canopy on GPS-based movement data

    Treesearch

    Nicholas J. DeCesare; John R. Squires; Jay A. Kolbe

    2005-01-01

    The advancing role of Global Positioning System (GPS) technology in ecology has made studies of animal movement possible for larger and more vagile species. A simple field test revealed that lengths of GPS-based movement data were strongly biased (P<0.001) by effects of forest canopy. Global Positioning System error added an average of 27.5% additional...

  20. Is Pattern of Life Size-Invariant? Recovering the Underlying Intent of a Walker from Human Walking Trajectory Data

    DTIC Science & Technology

    2013-07-01

    scripted walking actions were recorded using a Global Positioning System (GPS)-enabled BlackBerry (BB) smartphone. GPS data, consisting of latitude and...2014-1239; Cleared 26 March 2014   LIST OF ACRONYMS     AFRL Air Force Research Laboratory BB BlackBerry GPS Global Positioning System

  1. Getting from Here to There and Knowing Where: Teaching Global Positioning Systems to Students with Visual Impairments

    ERIC Educational Resources Information Center

    Phillips, Craig L.

    2011-01-01

    Global Positioning Systems' (GPS) technology is available for individuals with visual impairments to use in wayfinding and address Lowenfeld's "three limitations of blindness." The considerations and methodologies for teaching GPS usage have developed over time as GPS information and devices have been integrated into orientation and mobility…

  2. 76 FR 8353 - Positioning Systems Directorate Will Be Hosting an Interface Control Working Group (ICWG) Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... an Interface Control Working Group (ICWG) Meeting for Document ICD-GPS-870 AGENCY: Interface Control Working Group (ICWG) meeting for document ICD-GPS-870. ACTION: Meeting Notice. SUMMARY: This notice... Working Group (ICWG) meeting for document ICD-GPS-870, Navstar Next Generation GPS Operational Control...

  3. A demonstration of centimeter-level monitoring of polar motion with the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Lindqwister, U. J.; Freedman, A. P.; Blewitt, G.

    1992-01-01

    Daily estimates of the Earth's pole position were obtained with the Global Positioning System (GPS) by using measurements obtained during the GPS IERS (International Earth Rotation Service) and Geodynamics (GIG'91) experiment from 22 Jan. to 13 Feb. 1991. Data from a globally distributed network consisting of 21 Rogue GPS receivers were chosen for the analysis. A comparison of the GPS polar motion series with nine 24-hour very long baseline interferometry (VLBI) estimates yielded agreement in the day-to-day pole position of about 1.5 cm for both X and Y polar motion. A similar comparison of GPS and satellite laser ranging (SLR) data showed agreement to about 1.0 cm. These preliminary results indicate that polar motion can be determined by GPS independent of, and at a level comparable to, that which is obtained from either VLBI or SLR. Furthermore, GPS can provide these data with a daily frequency that neither alternative technique can readily achieve. Thus, GPS promises to be a powerful tool for determining high-frequency platform parameter variation, essential for the ultraprecise spacecraft-tracking requirements of the coming years.

  4. GPS Navigation Above 76,000 km for the MMS Mission

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke; Bamford, Bill; Price, Samuel; Long, Anne; Farahmand, Mitra; Carpenter, Russell

    2016-01-01

    NASA's MMS mission, launched in March of 2015,consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12and 25 Earth radii in the first and second phases of the mission. Navigation for MMS is achieved independently onboard each spacecraft by processing GPS observables using NASA GSFC's Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents the culmination of over a decade of high-altitude GPS navigation research and development at NASA GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data. We extrapolate these results to predict performance in the Phase 2b mission orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.

  5. Frequency Comparison of [Formula: see text] Ion Optical Clocks at PTB and NPL via GPS PPP.

    PubMed

    Leute, J; Huntemann, N; Lipphardt, B; Tamm, Christian; Nisbet-Jones, P B R; King, S A; Godun, R M; Jones, J M; Margolis, H S; Whibberley, P B; Wallin, A; Merimaa, M; Gill, P; Peik, E

    2016-07-01

    We used precise point positioning, a well-established GPS carrier-phase frequency transfer method to perform a direct remote comparison of two optical frequency standards based on single laser-cooled [Formula: see text] ions operated at the National Physical Laboratory (NPL), U.K. and the Physikalisch-Technische Bundesanstalt (PTB), Germany. At both institutes, an active hydrogen maser serves as a flywheel oscillator which is connected to a GPS receiver as an external frequency reference and compared simultaneously to a realization of the unperturbed frequency of the (2)S1/2(F=0)-(2)D3/2(F=2) electric quadrupole transition in [Formula: see text] via an optical femtosecond frequency comb. To profit from long coherent GPS-link measurements, we extrapolate the fractional frequency difference over the various data gaps in the optical clock to maser comparisons which introduces maser noise to the frequency comparison but improves the uncertainty from the GPS-link instability. We determined the total statistical uncertainty consisting of the GPS-link uncertainty and the extrapolation uncertainties for several extrapolation schemes. Using the extrapolation scheme with the smallest combined uncertainty, we find a fractional frequency difference [Formula: see text] of -1.3×10(-15) with a combined uncertainty of 1.2×10(-15) for a total measurement time of 67 h. This result is consistent with an agreement of the frequencies realized by both optical clocks and with recent absolute frequency measurements against caesium fountain clocks within the corresponding uncertainties.

  6. BDS/GPS Dual Systems Positioning Based on the Modified SR-UKF Algorithm

    PubMed Central

    Kong, JaeHyok; Mao, Xuchu; Li, Shaoyuan

    2016-01-01

    The Global Navigation Satellite System can provide all-day three-dimensional position and speed information. Currently, only using the single navigation system cannot satisfy the requirements of the system’s reliability and integrity. In order to improve the reliability and stability of the satellite navigation system, the positioning method by BDS and GPS navigation system is presented, the measurement model and the state model are described. Furthermore, the modified square-root Unscented Kalman Filter (SR-UKF) algorithm is employed in BDS and GPS conditions, and analysis of single system/multi-system positioning has been carried out, respectively. The experimental results are compared with the traditional estimation results, which show that the proposed method can perform highly-precise positioning. Especially when the number of satellites is not adequate enough, the proposed method combine BDS and GPS systems to achieve a higher positioning precision. PMID:27153068

  7. The limits of direct satellite tracking with the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Bertiger, W. I.; Yunck, T. P.

    1988-01-01

    Recent advances in high precision differential Global Positioning System-based satellite tracking can be applied to the more conventional direct tracking of low earth satellites. To properly evaluate the limiting accuracy of direct GPS-based tracking, it is necessary to account for the correlations between the a-priori errors in GPS states, Y-bias, and solar pressure parameters. These can be obtained by careful analysis of the GPS orbit determination process. The analysis indicates that sub-meter accuracy can be readily achieved for a user above 1000 km altitude, even when the user solution is obtained with data taken 12 hours after the data used in the GPS orbit solutions.

  8. Performance Evaluation of Block Acquisition and Tracking Algorithms Using an Open Source GPS Receiver Platform

    NASA Technical Reports Server (NTRS)

    Ramachandran, Ganesh K.; Akopian, David; Heckler, Gregory W.; Winternitz, Luke B.

    2011-01-01

    Location technologies have many applications in wireless communications, military and space missions, etc. US Global Positioning System (GPS) and other existing and emerging Global Navigation Satellite Systems (GNSS) are expected to provide accurate location information to enable such applications. While GNSS systems perform very well in strong signal conditions, their operation in many urban, indoor, and space applications is not robust or even impossible due to weak signals and strong distortions. The search for less costly, faster and more sensitive receivers is still in progress. As the research community addresses more and more complicated phenomena there exists a demand on flexible multimode reference receivers, associated SDKs, and development platforms which may accelerate and facilitate the research. One of such concepts is the software GPS/GNSS receiver (GPS SDR) which permits a facilitated access to algorithmic libraries and a possibility to integrate more advanced algorithms without hardware and essential software updates. The GNU-SDR and GPS-SDR open source receiver platforms are such popular examples. This paper evaluates the performance of recently proposed block-corelator techniques for acquisition and tracking of GPS signals using open source GPS-SDR platform.

  9. Differential GPS for air transport: Status

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.

    1993-01-01

    The presentation presents background on what the Global Navigation Satellite System (GNSS) is, desired target dates for initial GNSS capabilities for aircraft operations, and a description of differential GPS (Global Positioning System). The presentation also presents an overview of joint flight tests conducted by LaRC and Honeywell on an integrated differential GPS/inertial reference unit (IRU) navigation system. The overview describes the system tested and the results of the flight tests. The last item presented is an overview of a current grant with Ohio University from LaRC which has the goal of developing a precision DGPS navigation system based on interferometry techniques. The fundamentals of GPS interferometry are presented and its application to determine attitude and heading and precision positioning are shown. The presentation concludes with the current status of the grant.

  10. Evaluation of Stiffness Changes in a High-Rise Building by Measurements of Lateral Displacements Using GPS Technology

    PubMed Central

    Choi, Se Woon; Kim, Ill Soo; Park, Jae Hwan; Kim, Yousok; Sohn, Hong Gyoo; Park, Hyo Seon

    2013-01-01

    The outrigger truss system is one of the most frequently used lateral load resisting structural systems. However, little research has been reported on the effect of installation of outrigger trusses on improvement of lateral stiffness of a high-rise building through full-scale measurements. In this paper, stiffness changes of a high-rise building due to installation of outrigger trusses have been evaluated by measuring lateral displacements using a global positioning system (GPS). To confirm the error range of the GPS measurement system used in the full-scale measurement tests, the GPS displacement monitoring system is investigated through a free vibration test of the experimental model. Then, for the evaluation of lateral stiffness of a high-rise building under construction, the GPS displacement monitoring system is applied to measurements of lateral displacements of a 66-story high-rise building before and after installation of outrigger truss. The stiffness improvement of the building before and after the installation is confirmed through the changes of the natural frequencies and the ratios of the base shear forces to the roof displacements. PMID:24233025

  11. Precision Time Protocol-Based Trilateration for Planetary Navigation

    NASA Technical Reports Server (NTRS)

    Murdock, Ron

    2015-01-01

    Progeny Systems Corporation has developed a high-fidelity, field-scalable, non-Global Positioning System (GPS) navigation system that offers precision localization over communications channels. The system is bidirectional, providing position information to both base and mobile units. It is the first-ever wireless use of the Institute of Electrical and Electronics Engineers (IEEE) Precision Time Protocol (PTP) in a bidirectional trilateration navigation system. The innovation provides a precise and reliable navigation capability to support traverse-path planning systems and other mapping applications, and it establishes a core infrastructure for long-term lunar and planetary occupation. Mature technologies are integrated to provide navigation capability and to support data and voice communications on the same network. On Earth, the innovation is particularly well suited for use in unmanned aerial vehicles (UAVs), as it offers a non-GPS precision navigation and location service for use in GPS-denied environments. Its bidirectional capability provides real-time location data to the UAV operator and to the UAV. This approach optimizes assisted GPS techniques and can be used to determine the presence of GPS degradation, spoofing, or jamming.

  12. Walking Objectively Measured: Classifying Accelerometer Data with GPS and Travel Diaries

    PubMed Central

    Kang, Bumjoon; Moudon, Anne V.; Hurvitz, Philip M.; Reichley, Lucas; Saelens, Brian E.

    2013-01-01

    Purpose This study developed and tested an algorithm to classify accelerometer data as walking or non-walking using either GPS or travel diary data within a large sample of adults under free-living conditions. Methods Participants wore an accelerometer and a GPS unit, and concurrently completed a travel diary for 7 consecutive days. Physical activity (PA) bouts were identified using accelerometry count sequences. PA bouts were then classified as walking or non-walking based on a decision-tree algorithm consisting of 7 classification scenarios. Algorithm reliability was examined relative to two independent analysts’ classification of a 100-bout verification sample. The algorithm was then applied to the entire set of PA bouts. Results The 706 participants’ (mean age 51 years, 62% female, 80% non-Hispanic white, 70% college graduate or higher) yielded 4,702 person-days of data and had a total of 13,971 PA bouts. The algorithm showed a mean agreement of 95% with the independent analysts. It classified physical activity into 8,170 (58.5 %) walking bouts and 5,337 (38.2%) non-walking bouts; 464 (3.3%) bouts were not classified for lack of GPS and diary data. Nearly 70% of the walking bouts and 68% of the non-walking bouts were classified using only the objective accelerometer and GPS data. Travel diary data helped classify 30% of all bouts with no GPS data. The mean duration of PA bouts classified as walking was 15.2 min (SD=12.9). On average, participants had 1.7 walking bouts and 25.4 total walking minutes per day. Conclusions GPS and travel diary information can be helpful in classifying most accelerometer-derived PA bouts into walking or non-walking behavior. PMID:23439414

  13. Broadcasting GPS integrity information using Loran-C

    NASA Astrophysics Data System (ADS)

    Lo, Sherman Chih

    The United States Federal Aviation Administration (FAA) will adopt the Global Positioning System (GPS) as its primary navigation systems for aviation as stated by the Federal Radionavigation Plans (FRP) of 1996 and 1999. The FRP also proposes the reduction or termination of some existing radionavigation system in favor of GPS and satellite navigation. It may be beneficial to retain some of these existing terrestrial navigation systems if they can provide increased safety and redundancy to the GPS based architecture. One manner in which this can be done is by using or creating a data link on these existing radionavigation systems. These systems thus can provide both navigation and an additional broadcast of GPS integrity information. This thesis examines the use of terrestrial data links to provide Wide Area Augmentation System (WAAS) based GPS integrity information for aviation. The thesis focuses on using Loran-C to broadcast WAAS data. Analysis and experimental results demonstrating the capabilities of these designs are also discussed. Using Loran for this purpose requires increasing its data capacity. Many Loran modulation schemes are developed and analyzed. The data rates developed significantly increased the Loran data capacity. However, retaining compatibility with Loran legacy users resulted in data rates below the WARS data rate of 250 bps. As a result, this thesis also examines means of reducing the data requirements for WAAS information. While higher data rates offer improved performance and compatibility with WAAS, this thesis demonstrates that higher rates incur greater interference. Therefore, this work develops and considers a 108 bps and 167 bps Loran GPS integrity channel (LOGIC) design. The performance of the two designs illustrates some of the advantages and disadvantages of using a higher data rate. Analysis demonstrated means of maintaining integrity with these low data rate systems and determined the theoretical capabilities of the systems. The system was tested empirically by developing software that generated the LOGIC message and applied these messages to a GPS user. The resulting 108 bps and 167 bps systems demonstrated capability to provide lateral navigation/vertical navigation (LNAV/VNAV) and approach with vertical guidance (APV) respectively.

  14. Seasonal influenza vaccination delivery through community pharmacists in England: evaluation of the London pilot

    PubMed Central

    Atkins, Katherine; van Hoek, Albert Jan; Watson, Conall; Baguelin, Marc; Choga, Lethiwe; Patel, Anika; Raj, Thara; Jit, Mark; Griffiths, Ulla

    2016-01-01

    Objective To evaluate the effectiveness and cost of the pan-London pharmacy initiative, a programme that allows administration of seasonal influenza vaccination to eligible patients at pharmacies. Design We analysed 2013–2015 data on vaccination uptake in pharmacies via the Sonar reporting system, and the total vaccination uptake via 2011–2015 ImmForm general practitioner (GP) reporting system data. We conducted an online survey of London pharmacists who participate in the programme to assess time use data, vaccine choice, investment costs and opinions about the programme. We conducted an online survey of London GPs to assess vaccine choice of vaccine and opinions about the pharmacy vaccine delivery programme. Setting All London boroughs. Participants London-based GPs, and pharmacies that currently offer seasonal flu vaccination. Interventions Not applicable. Main outcome measures Comparison of annual vaccine uptake in London across risk groups from years before pharmacy vaccination introduction to after pharmacy vaccination introduction. Completeness of vaccine uptake reporting data. Cost to the National Health Service (NHS) of flu vaccine delivery at pharmacies with that at GPs. Cost to pharmacists of flu delivery. Opinions of pharmacists and GPs regarding the flu vaccine pharmacy initiative. Results No significant change in the uptake of seasonal vaccination in any of the risk groups as a result of the pharmacy initiative. While on average a pharmacy-administered flu vaccine dose costs the NHS up to £2.35 less than a dose administered at a GP, a comparison of the 2 recording systems suggests there is substantial loss of data. Conclusions Flu vaccine delivery through pharmacies shows potential for improving convenience for vaccine recipients. However, there is no evidence that vaccination uptake increases and the use of 2 separate recording systems leads to time-consuming data entry and missing vaccine record data. PMID:26883237

  15. Seasonal influenza vaccination delivery through community pharmacists in England: evaluation of the London pilot.

    PubMed

    Atkins, Katherine; van Hoek, Albert Jan; Watson, Conall; Baguelin, Marc; Choga, Lethiwe; Patel, Anika; Raj, Thara; Jit, Mark; Griffiths, Ulla

    2016-02-16

    To evaluate the effectiveness and cost of the pan-London pharmacy initiative, a programme that allows administration of seasonal influenza vaccination to eligible patients at pharmacies. We analysed 2013-2015 data on vaccination uptake in pharmacies via the Sonar reporting system, and the total vaccination uptake via 2011-2015 ImmForm general practitioner (GP) reporting system data. We conducted an online survey of London pharmacists who participate in the programme to assess time use data, vaccine choice, investment costs and opinions about the programme. We conducted an online survey of London GPs to assess vaccine choice of vaccine and opinions about the pharmacy vaccine delivery programme. All London boroughs. London-based GPs, and pharmacies that currently offer seasonal flu vaccination. Not applicable. Comparison of annual vaccine uptake in London across risk groups from years before pharmacy vaccination introduction to after pharmacy vaccination introduction. Completeness of vaccine uptake reporting data. Cost to the National Health Service (NHS) of flu vaccine delivery at pharmacies with that at GPs. Cost to pharmacists of flu delivery. Opinions of pharmacists and GPs regarding the flu vaccine pharmacy initiative. No significant change in the uptake of seasonal vaccination in any of the risk groups as a result of the pharmacy initiative. While on average a pharmacy-administered flu vaccine dose costs the NHS up to £2.35 less than a dose administered at a GP, a comparison of the 2 recording systems suggests there is substantial loss of data. Flu vaccine delivery through pharmacies shows potential for improving convenience for vaccine recipients. However, there is no evidence that vaccination uptake increases and the use of 2 separate recording systems leads to time-consuming data entry and missing vaccine record data. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. 78 FR 68861 - Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... Devices, Navigation and Display Systems, Radar Systems, Navigational Aids, Mapping Systems and Related... navigation products, including GPS devices, navigation and display systems, radar systems, navigational aids..., radar systems, navigational aids, mapping systems and related software by reason of infringement of one...

  17. GPS-based tracking system for TOPEX orbit determination

    NASA Technical Reports Server (NTRS)

    Melbourne, W. G.

    1984-01-01

    A tracking system concept is discussed that is based on the utilization of the constellation of Navstar satellites in the Global Positioning System (GPS). The concept involves simultaneous and continuous metric tracking of the signals from all visible Navstar satellites by approximately six globally distributed ground terminals and by the TOPEX spacecraft at 1300-km altitude. Error studies indicate that this system could be capable of obtaining decimeter position accuracies and, most importantly, around 5 cm in the radial component which is key to exploiting the full accuracy potential of the altimetric measurements for ocean topography. Topics covered include: background of the GPS, the precision mode for utilization of the system, past JPL research for using the GPS in precision applications, the present tracking system concept for high accuracy satellite positioning, and results from a proof-of-concept demonstration.

  18. Performance evaluation of linear time-series ionospheric Total Electron Content model over low latitude Indian GPS stations

    NASA Astrophysics Data System (ADS)

    Dabbakuti, J. R. K. Kumar; Venkata Ratnam, D.

    2017-10-01

    Precise modeling of the ionospheric Total Electron Content (TEC) is a critical aspect of Positioning, Navigation, and Timing (PNT) services intended for the Global Navigation Satellite Systems (GNSS) applications as well as Earth Observation System (EOS), satellite communication, and space weather forecasting applications. In this paper, linear time series modeling has been carried out on ionospheric TEC at two different locations at Koneru Lakshmaiah University (KLU), Guntur (geographic 16.44° N, 80.62° E; geomagnetic 7.55° N) and Bangalore (geographic 12.97° N, 77.59° E; geomagnetic 4.53° N) at the northern low-latitude region, for the year 2013 in the 24th solar cycle. The impact of the solar and geomagnetic activity on periodic oscillations of TEC has been investigated. Results confirm that the correlation coefficient of the estimated TEC from the linear model TEC and the observed GPS-TEC is around 93%. Solar activity is the key component that influences ionospheric daily averaged TEC while periodic component reveals the seasonal dependency of TEC. Furthermore, it is observed that the influence of geomagnetic activity component on TEC is different at both the latitudes. The accuracy of the model has been assessed by comparing the International Reference Ionosphere (IRI) 2012 model TEC and TEC measurements. Moreover, the absence of winter anomaly is remarkable, as determined by the Root Mean Square Error (RMSE) between the linear model TEC and GPS-TEC. On the contrary, the IRI2012 model TEC evidently failed to predict the absence of winter anomaly in the Equatorial Ionization Anomaly (EIA) crest region. The outcome of this work will be useful for improving the ionospheric now-casting models under various geophysical conditions.

  19. Global Positioning Systems (GPS) Technology to Study Vector-Pathogen-Host Interactions

    DTIC Science & Technology

    2016-12-01

    Award Number: W81XWH-11-2-0175 TITLE: Global Positioning Systems (GPS) Technology to Study Vector-Pathogen-Host Interactions PRINCIPAL...Positioning Systems (GPS) Technology to Study Vector-Pathogen-Host Interactions 5b. GRANT NUMBER W81XWH-11-2-0175 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...objective of this project is to examine the evolutionary consequences of introducing a tetravalent live- attenuated dengue virus vaccine into children in

  20. Dynamic Positioning at Sea Using the Global Positioning System.

    DTIC Science & Technology

    1987-06-01

    the Global Positioning System (GPS) acquired in Phase II of the Seafloor Benchmark Experiment on R/V Point Sur in August 1986. CPS position...data from the Global Positioning System (GPS) acquired in Phase 11 of the Seafloor Benchmark Experiment on R,:V Point Sur in August 1986. GPS position...The Seafloor Benchmark Experiment, a project of the Hydrographic Sciences Group of the Oceanography Department at the Naval Postgraduate School (NPS

  1. SLR tracking of GPS-35

    NASA Technical Reports Server (NTRS)

    Pavlis, Erricos C.

    1994-01-01

    An experiment was designed to launch a corner cube retroreflector array on one of the Global Positioning Satellites (GPS). The launch on Aug. 31, 1993 ushered in the era of SLR tracking of GPS spacecraft. Once the space operations group finished the check-out procedures for the new satellite, the agreed upon SLR sites were allowed to track it. The first site to acquire GPS-35 was the Russian system at Maidanak and closely after the MLRS system at McDonald Observatory, Texas. The laser tracking network is currently tracking the GPS spacecraft known as GPS-35 or PRN 5 with great success. From the NASA side there are five stations that contribute data regularly and nearly as many from the international partners. Upcoming modifications to the ground receivers will allow for a further increase in the tracking capabilities of several additional sites and add some desperately needed southern hemisphere tracking. We are analyzing the data and are comparing SLR-derived orbits to those determined on the basis of GPS radiometric data.

  2. IGS Directory

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The International GPS (Global Positioning System) Service for Geodynamics (IGS) supports and helps coordinate GPS data production and parameters useful for generating more accurate data products. The IGS has operated a GPS tracking system for several years. It contains more than 100 stations worldwide and has produced a combined GPS ephemeris that has become the standard for geodesists and geophysicists worldwide. IGS data and products are freely available to all, thanks to the cooperation and participation of all the IGS members. This directory provides data on the stations and provides names and contact information with personnel involved with the IGS.

  3. General practitioners using complementary and alternative medicine differ from general practitioners using conventional medicine in their view of the risks of electromagnetic fields: a postal survey from Germany.

    PubMed

    Kowall, Bernd; Breckenkamp, Jürgen; Berg-Beckhoff, Gabriele

    2015-01-01

    General practitioners (GPs) play a key role in consulting patients worried about health effects of electromagnetic fields (EMF). We compared GPs using conventional medicine (COM) with GPs using complementary and alternative medicine (CAM) concerning their perception of EMF risks. Moreover, we assessed whether the kind of alternative medicine has an influence on the results. A total of 2795 GPs drawn randomly from lists of German GPs were sent an either long or short self-administered postal questionnaire on EMF-related topics. Adjusted logistic regression models were fitted to assess the association of an education in alternative medicine with various aspects of perceiving EMF risks. Concern about EMF, misconceptions about EMF, and distrust toward scientific organizations are more prevalent in CAM-GPs. CAM-GPs more often falsely believed that mobile phone use can lead to head warming of more than 1°C (odds ratio [OR] = 2.2, 95% confidence interval [CI] = 1.5-3.3), more often distrusted the Federal Office for Radiation Protection (OR = 2.2, 95% CI = 1.4-3.6), were more often concerned about mobile phone base stations (OR = 2.4, 95% CI = 1.6-3.6), more often attributed own health complaints to EMF (OR = 3.2, 95% CI = 1.8-5.6), and more often reported at least 1 EMF consultation (OR = 2.5, 95% CI = 1.6-3.9). GPs using homeopathy perceived EMF as more risky than GPs using acupuncture or naturopathic treatment. Concern about common EMF sources is highly prevalent among German GPs. CAM-GPs perceive stronger associations between EMF and health problems than COM-GPs. There is a need for evidence-based information about EMF risks for GPs and particularly for CAM-GPs. This is the precondition that GPs can inform patients about EMF and health in line with current scientific knowledge. © The Author(s) 2014.

  4. Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections

    NASA Astrophysics Data System (ADS)

    Wang, Ningbo; Yuan, Yunbin; Li, Zishen; Huo, Xingliang

    2016-04-01

    Broadcast ionospheric model is currently an effective approach to mitigate the ionospheric time delay for real-time Global Navigation Satellite System (GNSS) single-frequency users. Klobuchar coefficients transmitted in Global Positioning System (GPS) navigation message have been widely used in various GNSS positioning and navigation applications; however, this model can only reduce the ionospheric error by approximately 50% in mid-latitudes. With the emerging BeiDou and Galileo, as well as the modernization of GPS and GLONASS, more precise ionospheric correction models or algorithms are required by GNSS single-frequency users. Numerical analysis of the initial phase and nighttime term in Klobuchar algorithm demonstrates that more parameters should be introduced to better describe the variation of nighttime ionospheric total electron content (TEC). In view of this, several schemes are proposed for the improvement of Klobuchar algorithm. Performance of these improved Klobuchar-like models are validated over the continental and oceanic regions during high (2002) and low (2006) levels of solar activities, respectively. Over the continental region, GPS TEC generated from 35 International GNSS Service (IGS) and the Crust Movement Observation Network of China (CMONOC) stations are used as references. Over the oceanic region, TEC data from TOPEX/Poseidon and JASON-1 altimeters are used for comparison. A ten-parameter Klobuchar-like model, which describes the nighttime term as a linear function of geomagnetic latitude, is finally proposed for GNSS single-frequency ionospheric corrections. Compared to GPS TEC, while GPS broadcast model can correct for 55.0% and 49.5% of the ionospheric delay for the year 2002 and 2006, respectively, the proposed ten-parameter Klobuchar-like model can reduce the ionospheric error by 68.4% and 64.7% for the same period. Compared to TOPEX/Poseidon and JASON-1 TEC, the improved ten-parameter Klobuchar-like model can mitigate the ionospheric delay by 61.1% and 64.3% in 2002 and 2006, respectively.

  5. Continuous GPS : pilot applications - Phase II

    DOT National Transportation Integrated Search

    2003-08-01

    The primary objective of this research was to evaluate the feasibility of applying Global Positioning System (GPS) technology in the study of geotechnical phenomenon by developing, integrating, and test deploying a GPS-based instrumentation package u...

  6. Vertical Guidance Performance Analysis of the L1–L5 Dual-Frequency GPS/WAAS User Avionics Sensor

    PubMed Central

    Jan, Shau-Shiun

    2010-01-01

    This paper investigates the potential vertical guidance performance of global positioning system (GPS)/wide area augmentation system (WAAS) user avionics sensor when the modernized GPS and Galileo are available. This paper will first investigate the airborne receiver code noise and multipath (CNMP) confidence (σair). The σair will be the dominant factor in the availability analysis of an L1–L5 dual-frequency GPS/WAAS user avionics sensor. This paper uses the MATLAB Algorithm Availability Simulation Tool (MAAST) to determine the required values for the σair, so that an L1–L5 dual-frequency GPS/WAAS user avionics sensor can meet the vertical guidance requirements of APproach with Vertical guidance (APV) II and CATegory (CAT) I over conterminous United States (CONUS). A modified MAAST that includes the Galileo satellite constellation is used to determine under what user configurations WAAS could be an APV II system or a CAT I system over CONUS. Furthermore, this paper examines the combinations of possible improvements in signal models and the addition of Galileo to determine if GPS/WAAS user avionics sensor could achieve 10 m Vertical Alert Limit (VAL) within the service volume. Finally, this paper presents the future vertical guidance performance of GPS user avionics sensor for the United States’ WAAS, Japanese MTSAT-based satellite augmentation system (MSAS) and European geostationary navigation overlay service (EGNOS). PMID:22319263

  7. Cryospheric monitoring with new low power RTK dGPS systems

    NASA Astrophysics Data System (ADS)

    Martinez, K.; Hart, J. K.; Bragg, G. M.; Curry, J. S.

    2017-12-01

    Differential GPS is often used to measure the movement of glaciers. It requires data to be recorded at a fixed base station as well as the moving rover unit, followed by post-processing in order to compute the rover's positions. The typical dGPS units used consume considerable power and the recording times are often around one hour per reading. While this provides very precise (typically millimetre) precision it comes at a cost of power used and the data is rather large to send offsite regularly. Real-time kinematic modes of dGPS are typically used for rapid mapping and autonomous vehicles. New devices are lower cost and smaller size. They also provide a fix within a few minutes, which can be transmitted home. We describe the design, deployment and preliminary results of two tracking systems to monitor ice movement. The first used a normal GPS and Iridium satellite messaging to track the movement of a Greenland iceberg which calved from the Nattivit Apusiiat glacier (south west Greenland). This system followed the iceberg as it flowed 660 km south along the coast of Greenland. The second system was installed in Iceland to track the movement of glaciers using 2 different dGPS systems. A low power ARM Cortex M4-based controller ran Python code to schedule dGPS activity periodically and gather fixes. An Iridium short messaging unit (Rockblock) was used to transmit RTK location fixes. The aim was to experiment with the use of RTK dGPS as an alternative to recordings to measure how the glaciers responded to small scale changes in temperature and precipitation throughout the year.

  8. A statistical characterization of the Galileo-to-GPS inter-system bias

    NASA Astrophysics Data System (ADS)

    Gioia, Ciro; Borio, Daniele

    2016-11-01

    Global navigation satellite system operates using independent time scales and thus inter-system time offsets have to be determined to enable multi-constellation navigation solutions. GPS/Galileo inter-system bias and drift are evaluated here using different types of receivers: two mass market and two professional receivers. Moreover, three different approaches are considered for the inter-system bias determination: in the first one, the broadcast Galileo to GPS time offset is used to align GPS and Galileo time scales. In the second, the inter-system bias is included in the multi-constellation navigation solution and is estimated using the measurements available. Finally, an enhanced algorithm using constraints on the inter-system bias time evolution is proposed. The inter-system bias estimates obtained with the different approaches are analysed and their stability is experimentally evaluated using the Allan deviation. The impact of the inter-system bias on the position velocity time solution is also considered and the performance of the approaches analysed is evaluated in terms of standard deviation and mean errors for both horizontal and vertical components. From the experiments, it emerges that the inter-system bias is very stable and that the use of constraints, modelling the GPS/Galileo inter-system bias behaviour, significantly improves the performance of multi-constellation navigation.

  9. Investigation of the seismo-ionospheric effects on the base of GPS/GLONASS measurements

    NASA Astrophysics Data System (ADS)

    Zakharenkova, I.; Cherniak, Iu.; Shagimuratov, I.; Suslova, O.

    2012-04-01

    During last years the monitoring of the ionospheric effects of different origin is carried out mainly with use of Global Navigating Satellite Systems (GPS / GLONASS). By means of measurements of the signals temporal delays it is possible to do the mapping of total electron content (TEC) in a column of unit cross section through the Earth's ionosphere and investigate its temporal evolution depended on the variations of electron concentration (NmF2) in the F2 ionospheric region. In the given report we present results of analysis of spatial-temporal variability of the ionosphere during the earthquake preparation phase for several major earthquakes which took place in Japan. It was revealed that for considered events mainly positive TEC anomalies appeared 1-5 days prior to the earthquake. The enhancement of electron concentration reached the value of 30-70% relative to the quiet geomagnetic conditions. In order to analyze the revealed effects in more details it was additionally involved data of GPS TEC values over GPS stations located at different distances from earthquake epicenters and data of vertical sounding of the ionosphere (NICT database). The hourly values of critical frequency of ionospheric F2 and Es layers were obtained from manually scaled ionograms recorded at Japanese ionospheric sounding stations Wakkanai, Kokubunji and Yamagawa. Acknowledgments. We acknowledge the IGS community for providing GPS permanent data and WDC for Ionosphere, Tokyo, National Institute of Information and Communications Technology (NICT) for providing ionosonde data. This work was supported by Russian Federation President grant MK-2058.2011.5.

  10. Forecasting Space Weather-Induced GPS Performance Degradation Using Random Forest

    NASA Astrophysics Data System (ADS)

    Filjar, R.; Filic, M.; Milinkovic, F.

    2017-12-01

    Space weather and ionospheric dynamics have a profound effect on positioning performance of the Global Satellite Navigation System (GNSS). However, the quantification of that effect is still the subject of scientific activities around the world. In the latest contribution to the understanding of the space weather and ionospheric effects on satellite-based positioning performance, we conducted a study of several candidates for forecasting method for space weather-induced GPS positioning performance deterioration. First, a 5-days set of experimentally collected data was established, encompassing the space weather and ionospheric activity indices (including: the readings of the Sudden Ionospheric Disturbance (SID) monitors, components of geomagnetic field strength, global Kp index, Dst index, GPS-derived Total Electron Content (TEC) samples, standard deviation of TEC samples, and sunspot number) and observations of GPS positioning error components (northing, easting, and height positioning error) derived from the Adriatic Sea IGS reference stations' RINEX raw pseudorange files in quiet space weather periods. This data set was split into the training and test sub-sets. Then, a selected set of supervised machine learning methods based on Random Forest was applied to the experimentally collected data set in order to establish the appropriate regional (the Adriatic Sea) forecasting models for space weather-induced GPS positioning performance deterioration. The forecasting models were developed in the R/rattle statistical programming environment. The forecasting quality of the regional forecasting models developed was assessed, and the conclusions drawn on the advantages and shortcomings of the regional forecasting models for space weather-caused GNSS positioning performance deterioration.

  11. Effect of Behavior Modification on Outcome in Early- to Moderate-Stage Chronic Kidney Disease: A Cluster-Randomized Trial

    PubMed Central

    Yamagata, Kunihiro; Makino, Hirofumi; Iseki, Kunitoshi; Ito, Sadayoshi; Kimura, Kenjiro; Kusano, Eiji; Shibata, Takanori; Tomita, Kimio; Narita, Ichiei; Nishino, Tomoya; Fujigaki, Yoshihide; Mitarai, Tetsuya; Watanabe, Tsuyoshi; Wada, Takashi; Nakamura, Teiji; Matsuo, Seiichi

    2016-01-01

    Objectives Owing to recent changes in our understanding of the underlying cause of chronic kidney disease (CKD), the importance of lifestyle modification for preventing the progression of kidney dysfunction and complications has become obvious. In addition, effective cooperation between general physicians (GPs) and nephrologists is essential to ensure a better care system for CKD treatment. In this cluster-randomized study, we studied the effect of behavior modification on the outcome of early- to moderate-stage CKD. Design Stratified open cluster-randomized trial. Setting A total of 489 GPs belonging to 49 local medical associations (clusters) in Japan. Participants A total of 2,379 patients (1,195 in group A (standard intervention) and 1,184 in group B (advanced intervention)) aged between 40 and 74 years, who had CKD and were under consultation with GPs. Intervention All patients were managed in accordance with the current CKD guidelines. The group B clusters received three additional interventions: patients received both educational intervention for lifestyle modification and a CKD status letter, attempting to prevent their withdrawal from treatment, and the group B GPs received data sheets to facilitate reducing the gap between target and practice. Main outcome measure The primary outcome measures were 1) the non-adherence rate of accepting continuous medical follow-up of the patients, 2) the collaboration rate between GPs and nephrologists, and 3) the progression of CKD. Results The rate of discontinuous clinical visits was significantly lower in group B (16.2% in group A vs. 11.5% in group B, p = 0.01). Significantly higher referral and co-treatment rates were observed in group B (p<0.01). The average eGFR deterioration rate tended to be lower in group B (group A: 2.6±5.8 ml/min/1.73 m2/year, group B: 2.4±5.1 ml/min/1.73 m2/year, p = 0.07). A significant difference in eGFR deterioration rate was observed in subjects with Stage 3 CKD (group A: 2.4±5.9 ml/min/1.73 m2/year, group B: 1.9±4.4 ml/min/1.73 m2/year, p = 0.03). Conclusion Our care system achieved behavior modification of CKD patients, namely, significantly lower discontinuous clinical visits, and behavior modification of both GPs and nephrologists, namely significantly higher referral and co-treatment rates, resulting in the retardation of CKD progression, especially in patients with proteinuric Stage 3 CKD. Trial registration The University Hospital Medical Information Network clinical trials registry UMIN000001159 PMID:26999730

  12. An Artificial Neural Network Embedded Position and Orientation Determination Algorithm for Low Cost MEMS INS/GPS Integrated Sensors

    PubMed Central

    Chiang, Kai-Wei; Chang, Hsiu-Wen; Li, Chia-Yuan; Huang, Yun-Wen

    2009-01-01

    Digital mobile mapping, which integrates digital imaging with direct geo-referencing, has developed rapidly over the past fifteen years. Direct geo-referencing is the determination of the time-variable position and orientation parameters for a mobile digital imager. The most common technologies used for this purpose today are satellite positioning using Global Positioning System (GPS) and Inertial Navigation System (INS) using an Inertial Measurement Unit (IMU). They are usually integrated in such a way that the GPS receiver is the main position sensor, while the IMU is the main orientation sensor. The Kalman Filter (KF) is considered as the optimal estimation tool for real-time INS/GPS integrated kinematic position and orientation determination. An intelligent hybrid scheme consisting of an Artificial Neural Network (ANN) and KF has been proposed to overcome the limitations of KF and to improve the performance of the INS/GPS integrated system in previous studies. However, the accuracy requirements of general mobile mapping applications can’t be achieved easily, even by the use of the ANN-KF scheme. Therefore, this study proposes an intelligent position and orientation determination scheme that embeds ANN with conventional Rauch-Tung-Striebel (RTS) smoother to improve the overall accuracy of a MEMS INS/GPS integrated system in post-mission mode. By combining the Micro Electro Mechanical Systems (MEMS) INS/GPS integrated system and the intelligent ANN-RTS smoother scheme proposed in this study, a cheaper but still reasonably accurate position and orientation determination scheme can be anticipated. PMID:22574034

  13. GPS radio collar 3D performance as influenced by forest structure and topography

    Treesearch

    R. Scott Gamo; Mark A. Rumble; Fred Lindzey; Matt Stefanich

    2000-01-01

    Global Positioning System (GPS) telemetry enables biologists to obtain accurate and systematic locations of animals. Vegetation can block signals from satellites to GPS radio collars. Therefore, a vegetation dependent bias to telemetry data may occur which if quantified, could be accounted for. We evaluated the performance of GPS collars in 6 structural stage...

  14. The International GPS Service (IGS) as a Continuous Reference System for Precise GPS Positioning

    NASA Technical Reports Server (NTRS)

    Neilan, Ruth; Heflin, Michael; Watkins, Michael; Zumberge, James

    1996-01-01

    The International GPS Service for Geodynamics (IGS) is an organization which operates under the auspices of the International Association of Geodesy (IAG) and has been operational since January 1994. The primary objective of the IGS is to provide precise GPS data and data products to support geodetic and geophysical research activities.

  15. Detection of VHF lightning from GPS orbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suszcynsky, D. M.

    2003-01-01

    Satellite-based VHF' lightning detection is characterized at GPS orbit by using a VHF receiver system recently launched on the GPS SVN 54 satellite. Collected lightning triggers consist of Narrow Bipolar Events (80%) and strong negative return strokes (20%). The results are used to evaluate the performance of a future GPS-satellite-based VHF global lightning monitor.

  16. Global positioning system for general aviation: Joint FAA-NASA Seminar. [conferences

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Programs to examine and develop means to utilize the global positioning system (GPS) for civil aviation functions are described. User requirements in this regard are discussed, the development of technologies in the areas of antennas, receivers, and signal processors for the GPS are examined, and modifications to the GPS to fit operational and design criteria are evaluated.

  17. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm

    PubMed Central

    Gao, Yanbin; Liu, Shifei; Atia, Mohamed M.; Noureldin, Aboelmagd

    2015-01-01

    This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoor environments and indoors, where GPS is unreliable or unavailable and LiDAR measurements are rich, LiDAR replaces GPS to integrate with INS. This paper also proposes an innovative hybrid scan matching algorithm that combines the feature-based scan matching method and Iterative Closest Point (ICP) based scan matching method. The algorithm can work and transit between two modes depending on the number of matched line features over two scans, thus achieving efficiency and robustness concurrently. Two integration schemes of INS and LiDAR with hybrid scan matching algorithm are implemented and compared. Real experiments are performed on an Unmanned Ground Vehicle (UGV) for both outdoor and indoor environments. Experimental results show that the multi-sensor integrated system can remain sub-meter navigation accuracy during the whole trajectory. PMID:26389906

  18. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm.

    PubMed

    Gao, Yanbin; Liu, Shifei; Atia, Mohamed M; Noureldin, Aboelmagd

    2015-09-15

    This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoor environments and indoors, where GPS is unreliable or unavailable and LiDAR measurements are rich, LiDAR replaces GPS to integrate with INS. This paper also proposes an innovative hybrid scan matching algorithm that combines the feature-based scan matching method and Iterative Closest Point (ICP) based scan matching method. The algorithm can work and transit between two modes depending on the number of matched line features over two scans, thus achieving efficiency and robustness concurrently. Two integration schemes of INS and LiDAR with hybrid scan matching algorithm are implemented and compared. Real experiments are performed on an Unmanned Ground Vehicle (UGV) for both outdoor and indoor environments. Experimental results show that the multi-sensor integrated system can remain sub-meter navigation accuracy during the whole trajectory.

  19. GPS water level measurements for Indonesia's Tsunami Early Warning System

    NASA Astrophysics Data System (ADS)

    Schöne, T.; Pandoe, W.; Mudita, I.; Roemer, S.; Illigner, J.; Zech, C.; Galas, R.

    2011-03-01

    On Boxing Day 2004, a severe tsunami was generated by a strong earthquake in Northern Sumatra causing a large number of casualties. At this time, neither an offshore buoy network was in place to measure tsunami waves, nor a system to disseminate tsunami warnings to local governmental entities. Since then, buoys have been developed by Indonesia and Germany, complemented by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys, and have been moored offshore Sumatra and Java. The suite of sensors for offshore tsunami detection in Indonesia has been advanced by adding GPS technology for water level measurements. The usage of GPS buoys in tsunami warning systems is a relatively new approach. The concept of the German Indonesian Tsunami Early Warning System (GITEWS) (Rudloff et al., 2009) combines GPS technology and ocean bottom pressure (OBP) measurements. Especially for near-field installations where the seismic noise may deteriorate the OBP data, GPS-derived sea level heights provide additional information. The GPS buoy technology is precise enough to detect medium to large tsunamis of amplitudes larger than 10 cm. The analysis presented here suggests that for about 68% of the time, tsunamis larger than 5 cm may be detectable.

  20. [Statements of general practitioners on cooperation with specialists and a future health care system].

    PubMed

    Heintze, Christoph; Matysiak-Klose, Dorothea; Howorka, Antje; Kröhn, Thorsten; Braun, Vittoria

    2004-08-15

    Ideas of general practitioners (GPs) could be of value for the restructuring of the German ambulant health care system. The way managed care is seen by GPs is of particular interest. The aim of this study was to record opinions of GPs, working in Berlin, in regard to several aspects of their daily work. 14 female and 16 male GPs from Berlin participated in a qualitative survey. These 30 GPs were interviewed about their attitude toward cooperation with specialized colleagues and their opinions on a future medical care system. The interviews performed were summarized, structured and analyzed according to the qualitative content analysis by Mayring. From the GPs' point of view, ambulant cooperation is facilitated by knowing specialized colleagues, by staying in close contact to them via telephone and by being able to arrange short-term appointments with these specialists. A closer cooperation with specialists in a network as well as an advanced use of digital information systems for accessing patients' data were considered to be vital elements for a future health care system. An important reason for choosing the cooperation with specialists is to find quick comprehensive treatment strategies for patients. It may be concluded that ambulant managed care of patients could be optimized with the creation of medical networks.

  1. Earthquake Rupture Process Inferred from Joint Inversion of 1-Hz GPS and Strong Motion Data: The 2008 Iwate-Miyagi Nairiku, Japan, Earthquake

    NASA Astrophysics Data System (ADS)

    Yokota, Y.; Koketsu, K.; Hikima, K.; Miyazaki, S.

    2009-12-01

    1-Hz GPS data can be used as a ground displacement seismogram. The capability of high-rate GPS to record seismic wave fields for large magnitude (M8 class) earthquakes has been demonstrated [Larson et al., 2003]. Rupture models were inferred solely and supplementarily from 1-Hz GPS data [Miyazaki et al., 2004; Ji et al., 2004; Kobayashi et al., 2006]. However, none of the previous studies have succeeded in inferring the source process of the medium-sized (M6 class) earthquake solely from 1-Hz GPS data. We first compared 1-Hz GPS data with integrated strong motion waveforms for the 2008 Iwate-Miyagi Nairiku, Japan, earthquake. We performed a waveform inversion for the rupture process using 1-Hz GPS data only [Yokota et al., 2009]. We here discuss the rupture processes inferred from the inversion of 1-Hz GPS data of GEONET only, the inversion of strong motion data of K-NET and KiK-net only, and the joint inversion of 1-Hz GPS and strong motion data. The data were inverted to infer the rupture process of the earthquake using the inversion codes by Yoshida et al. [1996] with the revisions by Hikima and Koketsu [2005]. In the 1-Hz GPS inversion result, the total seismic moment is 2.7×1019 Nm (Mw: 6.9) and the maximum slip is 5.1 m. These results are approximately equal to 2.4×1019 Nm and 4.5 m from the inversion of strong motion data. The difference in the slip distribution on the northern fault segment may come from long-period motions possibly recorded only in 1-Hz GPS data. In the joint inversion result, the total seismic moment is 2.5×1019 Nm and the maximum slip is 5.4 m. These values also agree well with the result of 1-Hz GPS inversion. In all the series of snapshots that show the dynamic features of the rupture process, the rupture propagated bilaterally from the hypocenter to the south and north. The northern rupture speed is faster than the northern one. These agreements demonstrate the ability of 1-Hz GPS data to infer not only static, but also dynamic features of a medium-sized (M6 class) earthquake, although some details, such as the shallow extension of the southern asperity, are missing, due possibly to their limitations such as the sampling interval of 1 s and the sparse GPS stations distiribution in the near field of the earthquake. The result of the joint inversion indiates that these minor discrepancies can be reduced by the introduction of strong motion data. Continuous GPS monitoring at a much higher rate (e.g., 10 Hz) will also be helpful for reducing the minor discrepancies.

  2. Accuracy assessment of high-rate GPS measurements for seismology

    NASA Astrophysics Data System (ADS)

    Elosegui, P.; Davis, J. L.; Ekström, G.

    2007-12-01

    Analysis of GPS measurements with a controlled laboratory system, built to simulate the ground motions caused by tectonic earthquakes and other transient geophysical signals such as glacial earthquakes, enables us to assess the technique of high-rate GPS. The root-mean-square (rms) position error of this system when undergoing realistic simulated seismic motions is 0.05~mm, with maximum position errors of 0.1~mm, thus providing "ground truth" GPS displacements. We have acquired an extensive set of high-rate GPS measurements while inducing seismic motions on a GPS antenna mounted on this system with a temporal spectrum similar to real seismic events. We found that, for a particular 15-min-long test event, the rms error of the 1-Hz GPS position estimates was 2.5~mm, with maximum position errors of 10~mm, and the error spectrum of the GPS estimates was approximately flicker noise. These results may however represent a best-case scenario since they were obtained over a short (~10~m) baseline, thereby greatly mitigating baseline-dependent errors, and when the number and distribution of satellites on the sky was good. For example, we have determined that the rms error can increase by a factor of 2--3 as the GPS constellation changes throughout the day, with an average value of 3.5~mm for eight identical, hourly-spaced, consecutive test events. The rms error also increases with increasing baseline, as one would expect, with an average rms error for a ~1400~km baseline of 9~mm. We will present an assessment of the accuracy of high-rate GPS based on these measurements, discuss the implications of this study for seismology, and describe new applications in glaciology.

  3. Automatic dependent surveillance broadcast via GPS-Squitter: a major upgrade to the national airspace system

    NASA Astrophysics Data System (ADS)

    Jones, Ronnie D.; Knittel, George H.; Orlando, Vincent A.

    1995-06-01

    GPS-Squitter is a technology for surveillance of aircraft via broadcast of their GPS-determined positions to all listeners, using the Mode S data link. It can be used to provide traffic displays, on the ground for controllers and in the cockpit for pilots, and will enhance TCAS performance. It is compatible with the existing ground-based beacon interrogator radar system and is an evolutionary way to more from ground-based-radar surveillance to satellite-based surveillance. GPS-Squitter takes advantage of the substantial investment made by the U.S. in the powerful GPS position-determining system and has the potential to free the Federal Aviation Administration from having to continue maintaining a precise position-determining capability in ground-based radar. This would permit phasing out the ground-based secondary surveillance radar system over a period of 10 to 20 years and replacing it with much simpler ground stations, resulting in cost savings of hundreds of millions of dollars.

  4. Real-time single-frequency GPS/MEMS-IMU attitude determination of lightweight UAVs.

    PubMed

    Eling, Christian; Klingbeil, Lasse; Kuhlmann, Heiner

    2015-10-16

    In this paper, a newly-developed direct georeferencing system for the guidance, navigation and control of lightweight unmanned aerial vehicles (UAVs), having a weight limit of 5 kg and a size limit of 1.5 m, and for UAV-based surveying and remote sensing applications is presented. The system is intended to provide highly accurate positions and attitudes (better than 5 cm and 0.5°) in real time, using lightweight components. The main focus of this paper is on the attitude determination with the system. This attitude determination is based on an onboard single-frequency GPS baseline, MEMS (micro-electro-mechanical systems) inertial sensor readings, magnetic field observations and a 3D position measurement. All of this information is integrated in a sixteen-state error space Kalman filter. Special attention in the algorithm development is paid to the carrier phase ambiguity resolution of the single-frequency GPS baseline observations. We aim at a reliable and instantaneous ambiguity resolution, since the system is used in urban areas, where frequent losses of the GPS signal lock occur and the GPS measurement conditions are challenging. Flight tests and a comparison to a navigation-grade inertial navigation system illustrate the performance of the developed system in dynamic situations. Evaluations show that the accuracies of the system are 0.05° for the roll and the pitch angle and 0.2° for the yaw angle. The ambiguities of the single-frequency GPS baseline can be resolved instantaneously in more than 90% of the cases.

  5. The lesser evil? Initiating a benzodiazepine prescription in general practice: a qualitative study on GPs' perspectives.

    PubMed

    Anthierens, Sibyl; Habraken, Hilde; Petrovic, Mirko; Christiaens, Thierry

    2007-12-01

    Chronic benzodiazepine (BZD) use is widespread and linked with adverse effects. There is consensus concerning the importance of initiating BZD as a crucial moment. Nevertheless specific research in this field is lacking. This paper addresses the views of GPs on why they start prescribing BZDs to first-time users. Qualitative study with five focus groups analysed using a systematic content analysis. Regions of Ghent and Brussels in Belgium. A total of 35 general practitioners. The GPs' perspective on their initiating of BZD prescribing. GPs reported that they are cautious in initiating BZD usage. At the same time, GPs feel overwhelmed by the psychosocial problems of their patients. They show empathy by prescribing. They feel in certain situations there are no other solutions and they experience BZDs as the lesser evil. They admit to resorting to BZDs because of time restraint and lack of alternatives. GPs do not perceive the addictive nature of BZD consumption as a problem with first-time users. GPs do not specifically mention patients' demand as an element for starting. The main concern of GPs is to help the patient. GPs should be aware of the addictive nature of BZD even in low doses and a non-pharmacological approach should be seen as the best first approach. If GPs decide to prescribe a BZD they should make plain to the patient that the medication is only a "temporary" solution with clear agreements with regard to medication withdrawal.

  6. Fine tuning GPS clock estimation in the MCS

    NASA Technical Reports Server (NTRS)

    Hutsell, Steven T.

    1995-01-01

    With the completion of a 24 operational satellite constellation, GPS is fast approaching the critical milestone, Full Operational Capability (FOC). Although GPS is well capable of providing the timing accuracy and stability figures required by system specifications, the GPS community will continue to strive for further improvements in performance. The GPS Master Control Station (MCS) recently demonstrated that timing improvements are always composite Clock, and hence, Kalman Filter state estimation, providing a small improvement to user accuracy.

  7. The usefulness of GPS bicycle tracking data for evaluating the impact of infrastructure change on cycling behaviour.

    PubMed

    Heesch, Kristiann C; Langdon, Michael

    2016-02-01

    Issue addressed A key strategy to increase active travel is the construction of bicycle infrastructure. Tools to evaluate this strategy are limited. This study assessed the usefulness of a smartphone GPS tracking system for evaluating the impact of this strategy on cycling behaviour. Methods Cycling usage data were collected from Queenslanders who used a GPS tracking app on their smartphone from 2013-2014. 'Heat' and volume maps of the data were reviewed, and GPS bicycle counts were compared with surveillance data and bicycle counts from automatic traffic-monitoring devices. Results Heat maps broadly indicated that changes in cycling occurred near infrastructure improvements. Volume maps provided changes in counts of cyclists due to these improvements although errors were noted in geographic information system (GIS) geo-coding of some GPS data. Large variations were evident in the number of cyclists using the app in different locations. These variations limited the usefulness of GPS data for assessing differences in cycling across locations. Conclusion Smartphone GPS data are useful in evaluating the impact of improved bicycle infrastructure in one location. Using GPS data to evaluate differential changes in cycling across multiple locations is problematic when there is insufficient traffic-monitoring devices available to triangulate GPS data with bicycle traffic count data. So what? The use of smartphone GPS data with other data sources is recommended for assessing how infrastructure improvements influence cycling behaviour.

  8. Joint IRIS/PASSCAL UNAVCO Seismic and GPS Installations, Testing, and Development

    NASA Astrophysics Data System (ADS)

    Fowler, J.; Alvarez, M.; Beaudoin, B.; Jackson, M.; Feaux, K.; Ruud, O.; Andreatta, V.; Meertens, C.; Ingate, S.

    2002-12-01

    Future large-scale deformation initiatives such as EarthScope (http://www.earthscope.org/) will provide an opportunity for collocation and integration of GPS receivers and broadband and short period seismic instruments. Example integration targets include PBO backbone and cluster sites with USArray Transportable (Bigfoot) and Permanent Array. A GPS seismic integration and testing facility at the IRIS/PASSCAL Instrument Center in Socorro, NM is currently performing side-by-side testing of different seismometers, GPS receivers, communications hardware, power systems and data streaming software. One configuration tested uses an integrated VSAT data communications system and a broadband seismometer collocated with a geodetic quality GPS system. Data are routed through a VSAT hub and distributed to the UNAVCO Data Archive in Boulder and the IRIS Data Management Center in Seattle. Preliminary results indicate data availability approaching 100% with a maximum latency of 5 sec.

  9. NAVSTAR GPS Simulation and Analysis Program (Interim Report)

    DOT National Transportation Integrated Search

    1983-10-01

    This study assesses the capability of the planned NAVSTAR Global Positioning System (GPS) to meet civil navigation requirements. When it becomes operational in about 1983, NAVSTAR GPS will provide accurate two-dimensional and three-dimensional servic...

  10. General practitioners' clinical expertise in managing suicidal young people: implications for continued education.

    PubMed

    Michail, Maria; Tait, Lynda; Churchill, Dick

    2017-09-01

    Aim To examine general practitioners' (GPs) clinical expertise in assessing, communicating with, and managing suicidal young people aged 14-25 to inform the development of an educational intervention for GPs on youth suicide prevention. Suicide is the second leading cause of death for young people worldwide. GPs are ideally suited to facilitate early identification and assessment of suicide risk. However, GPs' levels of competence, knowledge, and attitudes towards suicidal young people have not yet been explored. A cross-sectional survey on GPs' levels of confidence in assessing and managing young people at risk of suicide; knowledge of risk factors and warning signs of suicide in young people; attitudes towards young suicidal people; and training preferences on managing suicide risk. Findings Seventy GPs completed the survey (30 males). The majority of GPs reported high levels of confidence in assessing and managing suicidality in young people. Experienced GPs demonstrated high levels of knowledge of suicide risk factors in young people but low levels of knowledge of warning signs that might indicate heightened risk. Although 48% of GPs disagreed that maintaining compassionate care is difficult with those who deliberately self-harm, GPs perceived communication with young people to be difficult, with one-third reporting frustration in managing those at risk of suicide. A total of 75% of GPs said they would be interested in receiving further training on assessing and managing young people at risk of suicide. The study has important implications for providing specialist training to support GPs in assessing and managing youth suicide risk and facilitating attitudinal change. GP education on youth suicide risk assessment and management should promote a holistic understanding and assessment of risk and its individual, social and contextual influences in line with clinical recommendations to facilitate therapeutic engagement and communication with young people.

  11. Limited potential of genetic predisposition scores to predict muscle mass and strength performance in Flemish Caucasians between 19 and 73 years of age.

    PubMed

    Charlier, Ruben; Caspers, Maarten; Knaeps, Sara; Mertens, Evelien; Lambrechts, Diether; Lefevre, Johan; Thomis, Martine

    2017-03-01

    Since both muscle mass and strength performance are polygenic in nature, the current study compared four genetic predisposition scores (GPS) in their ability to predict these phenotypes. Data were gathered within the framework of the first-generation Flemish Policy Research Centre "Sport, Physical Activity and Health" (2002-2004). Results are based on muscle characteristics data of 565 Flemish Caucasians (19-73 yr, 365 men). Skeletal muscle mass was determined from bioelectrical impedance. The Biodex dynamometer was used to measure isometric (PT static120° ) and isokinetic strength (PT dynamic60° and PT dynamic240° ), ballistic movement speed (S 20% ), and muscular endurance (Work) of the knee extensors. Genotyping was done for 153 gene variants, selected on the basis of a literature search and the expression quantitative trait loci of selected genes. Four GPS were designed: a total GPS (based on the sum of all 153 variants, each favorable allele = score 1), a data-driven and weighted GPS [respectively, the sum of favorable alleles of those variants with significant b-coefficients in stepwise regression (GPS dd ), and the sum of these variants weighted with their respective partial r 2 (GPS w )], and an elastic net GPS (based on the variants that were selected by an elastic net regularization; GPS en ). It was found that four different models for a GPS were able to significantly predict up to ~7% of the variance in strength performance. GPS en made the best prediction of SMM and Work. However, this was not the case for the remaining strength performance parameters, where best predictions were made by GPS dd and GPS w . Copyright © 2017 the American Physiological Society.

  12. Autonomous Navigation Improvements for High-Earth Orbiters Using GPS

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Garrison, James; Carpenter, J. Russell; Bauer, F. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center is currently developing autonomous navigation systems for satellites in high-Earth orbits where acquisition of the GPS signals is severely limited This paper discusses autonomous navigation improvements for high-Earth orbiters and assesses projected navigation performance for these satellites using Global Positioning System (GPS) Standard Positioning Service (SPS) measurements. Navigation performance is evaluated as a function of signal acquisition threshold, measurement errors, and dynamic modeling errors using realistic GPS signal strength and user antenna models. These analyses indicate that an autonomous navigation position accuracy of better than 30 meters root-mean-square (RMS) can be achieved for high-Earth orbiting satellites using a GPS receiver with a very stable oscillator. This accuracy improves to better than 15 meters RMS if the GPS receiver's signal acquisition threshold can be reduced by 5 dB-Hertz to track weaker signals.

  13. Accuracy Analysis of Precise Point Positioning of Compass Navigation System Applied to Crustal Motion Monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Yuebing

    2017-04-01

    Based on the observation data of Compass/GPSobserved at five stations, time span from July 1, 2014 to June 30, 2016. UsingPPP positioning model of the PANDA software developed by Wuhan University,Analyzedthe positioning accuracy of single system and Compass/GPS integrated resolving, and discussed the capability of Compass navigation system in crustal motion monitoring. The results showed that the positioning accuracy in the east-west directionof the Compass navigation system is lower than the north-south direction (the positioning accuracy de 3 times RMS), in general, the positioning accuracyin the horizontal direction is about 1 2cm and the vertical direction is about 5 6cm. The GPS positioning accuracy in the horizontal direction is better than 1cm and the vertical direction is about 1 2cm. The accuracy of Compass/GPS integrated resolving is quite to GPS. It is worth mentioning that although Compass navigation system precision point positioning accuracy is lower than GPS, two sets of velocity fields obtained by using the Nikolaidis (2002) model to analyze the Compass and GPS time series results respectively, the results showed that the maximum difference of the two sets of velocity field in horizontal directions is 1.8mm/a. The Compass navigation system can now be used to monitor the crustal movement of the large deformation area, based on the velocity field in horizontal direction.

  14. Ionospheric corrections to precise time transfer using GPS

    NASA Technical Reports Server (NTRS)

    Snow, Robert W.; Osborne, Allen W., III; Klobuchar, John A.; Doherty, Patricia H.

    1994-01-01

    The free electrons in the earth's ionosphere can retard the time of reception of GPS signals received at a ground station, compared to their time in free space, by many tens of nanoseconds, thus limiting the accuracy of time transfer by GPS. The amount of the ionospheric time delay is proportional to the total number of electrons encountered by the wave on its path from each GPS satellite to a receiver. This integrated number of electrons is called Total Electron Content, or TEC. Dual frequency GPS receivers designed by Allen Osborne Associates, Inc. (AOA) directly measure both the ionospheric differential group delay and the differential carrier phase advance for the two GPS frequencies and derive from this the TEC between the receiver and each GPS satellite in track. The group delay information is mainly used to provide an absolute calibration to the relative differential carrier phase, which is an extremely precise measure of relative TEC. The AOA Mini-Rogue ICS-4Z and the AOA TurboRogue ICS-4000Z receivers normally operate using the GPS P code, when available, and switch to cross-correlation signal processing when the GPS satellites are in the Anti-Spoofing (A-S) mode and the P code is encrypted. An AOA ICS-Z receiver has been operated continuously for over a year at Hanscom AFB, MA to determine the statistics of the variability of the TEC parameter using signals from up to four different directions simultaneously. The 4-channel ICS-4Z and the 8-channel ICS-4000Z, have proven capabilities to make precise, well calibrated, measurements of the ionosphere in several directions simultaneously. In addition to providing ionospheric corrections for precise time transfer via satellite, this dual frequency design allows full code and automatic codeless operation of both the differential group delay and differential carrier phase for numerous ionospheric experiments being conducted. Statistical results of the data collected from the ICS-4Z during the initial year of ionospheric time delay in the northeastern U.S., and initial results with the ICS-4000Z, will be presented.

  15. Navigation and Positioning System Using High Altitude Platforms Systems (HAPS)

    NASA Astrophysics Data System (ADS)

    Tsujii, Toshiaki; Harigae, Masatoshi; Harada, Masashi

    Recently, some countries have begun conducting feasibility studies and R&D projects on High Altitude Platform Systems (HAPS). Japan has been investigating the use of an airship system that will function as a stratospheric platform for applications such as environmental monitoring, communications and broadcasting. If pseudolites were mounted on the airships, their GPS-like signals would be stable augmentations that would improve the accuracy, availability, and integrity of GPS-based positioning systems. Also, the sufficient number of HAPS can function as a positioning system independent of GPS. In this paper, a system design of the HAPS-based positioning system and its positioning error analyses are described.

  16. Did the new French pay-for-performance system modify benzodiazepine prescribing practices?

    PubMed

    Rat, Cédric; Penhouet, Gaëlle; Gaultier, Aurélie; Chaslerie, Anicet; Pivette, Jacques; Nguyen, Jean Michel; Victorri-Vigneau, Caroline

    2014-07-11

    French general practitioners (GPs) were enrolled in a new payment system in January 2012. As part of a national agreement with the French National Ministry of Health, GPs were asked to decrease the proportion of patients who continued their benzodiazepine treatment 12 weeks after its initiation and to decrease the proportion of patients older than 65 who were prescribed long half-life benzodiazepines. In return, GPs could expect an extra payment of up to 490 euros per year. This study reports the evolution of the corresponding prescribing practices of French GPs during that period regarding patients who were prescribed a benzodiazepine for the first time. The national healthcare system's administrative database was used to report the longitudinal follow-up of two historical cohorts of French patients from the Pays de la Loire area. The "2011" and "2012" cohorts included all patients who initiated benzodiazepine regimens from April 1 to June 30 in 2011 and 2012, respectively.The primary outcomes were the proportion of those study patients who continued benzodiazepine treatment after 12 weeks and the proportion of study patients >65 years who were prescribed long half-life benzodiazepines.Analyses were performed using a multi-level regression. In total, 41,436 and 42,042 patients initiated benzodiazepine treatment in 2011 and 2012, respectively. A total of 18.97% of patients continued treatment for more than 12 weeks in 2012, compared with 18.18% in 2011. In all, 27.43% and 28.06% of patients >65 years continued treatment beyond 12 weeks in 2011 and 2012, respectively. The proportion of patients >65 years who were prescribed long half-life benzodiazepines decreased from 53.5% to 48.8% (p < 0.005) due to an increase in short half-life benzodiazepine prescriptions. Patients >65 years who were prescribed short half-life benzodiazepines were more likely to continue treatment after 12 weeks (p < 0.005). Despite the pay-for-performance strategy, the number of short half-life benzodiazepine prescriptions increased between 2011 and 2012, and the number of long half-life benzodiazepine initiations remained unchanged. Reducing the proportion of long half-life benzodiazepine prescriptions might be counterproductive because prescribing short half-life benzodiazepines was associated with higher rates of continuation beyond the recommended duration.

  17. Detection of Seismic Precursors Using Distance Metrics Between GPS-TEC and IRI-Plas

    NASA Astrophysics Data System (ADS)

    Necat Deviren, M.; Gulyaeva, Tamara; Sezen, Umut; Arikan, Feza; Arikan, Orhan

    Ionosphere is an important layer of atmosphere that varies under solar, geomagnetic, gravitational and seismic activities. Total Electron Content (TEC) is one of the main observables of ionosphere. International Reference Ionosphere Extended to Plasmasphere (IRI-Plas) is accepted by International Organization for Standardization (ISO) as the standard climatic model. IRI-Plas provides TEC up to GPS satellite height. TEC can be estimated using Global Positioning System (GPS) Networks. In this study, TEC is computed using both IRI-Plas and Turkish National Permanent GPS Network as IONOLAB-TEC. In order to detect seismic precursors, three different distance metrics, namely Symmetric Kullback-Liebler Distance (SKLD), Cross-Correlation Coefficient (CC), and L2-Norm (L2N), are implemented between IONOLAB-TEC and IRI-Plas-TEC values. SKLD is also computed between IONOLAB-TEC Maps and IRI-Plas-TEC Maps over Turkey. Between May 2009 and September 2012, it is observed that SKLD metric indicates a disturbance within the period prior to 10 days of earthquake day. The disturbance in SKLD increases for the range of stations in the neighborhood of the epicenter. For strong earthquakes all of the three distance metrics indicate a disturbance before the earthquake, yet SKLD behaves as a more sensitive precursor for earthquakes larger than magnitude 4. This study is supported by the joint grant of TUBITAK 112E568 and RFBR 13-02-91370-CT_a.

  18. Special Features in the Structure of Resonant Perturbations of Uncontrollable Objects of Glonass and GPS Navigating Systems. Influence on the Orbital Evolution

    NASA Astrophysics Data System (ADS)

    Tomilova, I. V.; Bordovitsyna, T. V.

    2017-08-01

    Results of investigation into the resonant structure of perturbations and long-term orbital evolution of space vehicles of GLONASS and GPS global navigating satellite systems (GNSS) under assumption that all of them have lost control on 08/01/2015 are presented. It is demonstrated that the majority of the examined objects are in the range of action of the secular resonances of various types. In addition, practically all satellites of the GPS system are within the scope of the 2:1 orbital resonance with rotation of the Earth. Results of the MEGNO analysis demonstrate that the motion of all objects of the GLONASS system during the 100-year period is regular, whereas the motion of the majority of objects of the GPS system is subject to chaotization.

  19. A Tightly-Coupled GPS/INS/UWB Cooperative Positioning Sensors System Supported by V2I Communication

    PubMed Central

    Wang, Jian; Gao, Yang; Li, Zengke; Meng, Xiaolin; Hancock, Craig M.

    2016-01-01

    This paper investigates a tightly-coupled Global Position System (GPS)/Ultra-Wideband (UWB)/Inertial Navigation System (INS) cooperative positioning scheme using a Robust Kalman Filter (RKF) supported by V2I communication. The scheme proposes a method that uses range measurements of UWB units transmitted among the terminals as augmentation inputs of the observations. The UWB range inputs are used to reform the GPS observation equations that consist of pseudo-range and Doppler measurements and the updated observation equation is processed in a tightly-coupled GPS/UWB/INS integrated positioning equation using an adaptive Robust Kalman Filter. The result of the trial conducted on the roof of the Nottingham Geospatial Institute (NGI) at the University of Nottingham shows that the integrated solution provides better accuracy and improves the availability of the system in GPS denied environments. RKF can eliminate the effects of gross errors. Additionally, the internal and external reliabilities of the system are enhanced when the UWB observables received from the moving terminals are involved in the positioning algorithm. PMID:27355947

  20. GPS net­work operations for the International GPS Geodynamics Service

    USGS Publications Warehouse

    Neilan, Ruth E.

    1993-01-01

    As GPS technology comes of age in the 1990’s, it is evident that an internationally sponsored GPS tracking system is called for to provide consistent, timely ground tracking data and data products to the geophysical community. The planning group for the International GPS Geodynamics Service (IGS), sponsored by the International Association of Geodesy (IAG), is addressing all elements of the end-to-end tracking system, ranging from data collection to data analysis and distribution of products (Mueller, 1992). Part of the planning process is to formulate how these various elements work together to create the common infrastructure needed to support a wide variety of GPS investigations. A key element for any permanent satellite tracking system is certainly the acquisition segment; the reliability and robustness of the ground network operations directly determine the fates and limitations of final products. The IGS planning group therefore included a committee tasked to develop and establish standards governing data acquisition and site-specific characteristics deemed necessary to ensure the collection of a high quality, continuous data set.

  1. Measurement of shallow sea floor motion with GPS on a rigid buoy: system design and synthetic analysis

    NASA Astrophysics Data System (ADS)

    Dixon, T. H.; Xie, S.; Malservisi, R.; Lembke, C.; Iannaccone, G.; Law, J.; Rodgers, M.; Russell, R.; Voss, N. K.

    2017-12-01

    A GPS-buoy system has been built and is currently undergoing test to measure precise 3D sea floor motion in the shallow (less than 200 m) continental shelf environment. Offshore deformation is undersampled in most subduction zones. In Cascadia, the shallow shelf environment constitutes roughly 20%-25% of the offshore area between the coastline and the trench. In the system being tested, the GPS receiver at the top of the buoy is connected to the sea floor through a rigid structure supported by a float. A similar design has been used by INGV (Italy) to measure vertical deformation on the sea floor near the Campi Flegrei caldera. Synthetic analysis shows that by adding a 3-axis digital compass to measure heading and tilt, along with kinematic GPS measurements, position of the anchor can be recovered to an accuracy of several centimeters or better, depending on water depth and GPS baseline length. Synthetic resolution tests show that our ability to detect shallow slow slip events on subduction plate boundaries can be greatly improved by adding offshore GPS-buoy sites.

  2. General practitioners' experiences with sickness certification: a comparison of survey data from Sweden and Norway

    PubMed Central

    2012-01-01

    Background In most countries with sickness insurance systems, general practitioners (GPs) play a key role in the sickness-absence process. Previous studies have indicated that GPs experience several tasks and situations related to sickness certification consultations as problematic. The fact that the organization of primary health care and social insurance systems differ between countries may influence both GPs' experiences and certification. The aim of the present study was to gain more knowledge of GPs' experiences of sickness certification, by comparing data from Sweden and Norway, regarding frequencies and aspects of sickness certification found to be problematic. Methods Statistical analyses of cross-sectional survey data of sickness certification by GPs in Sweden and Norway. In Sweden, all GPs were included, with 3949 (60.6%) responding. In Norway, a representative sample of GPs was included, with 221 (66.5%) responding. Results Most GPs reported having consultations involving sickness certification at least once a week; 95% of the GPs in Sweden and 99% of the GPs in Norway. A majority found such tasks problematic; 60% of the GPs in Sweden and 53% in Norway. In a logistic regression, having a higher frequency of sickness certification consultations was associated with a higher risk of experiencing them as problematic, in both countries. A higher rate of GPs in Sweden than in Norway reported meeting patients wanting a sickness certification without a medical reason. GPs in Sweden found it more problematic to discuss the advantages and disadvantages of sick leave with patients and to issue a prolongation of a sick-leave period initiated by another physician. GPs in Norway more often worried that patients would go to another physician if they did not issue a certificate, and a higher proportion of Norwegian GPs found it problematic to handle situations where they and their patient disagreed on the need for sick leave. Conclusions The study confirms that many GPs experience sickness absence consultations as problematic. However, there were differences between the two countries in GPs' experiences, which may be linked to differences in social security regulations and the organization of GP services. Possible causes and consequences of national differences should be addressed in future studies. PMID:22375615

  3. A single-station empirical model for TEC over the Antarctic Peninsula using GPS-TEC data

    NASA Astrophysics Data System (ADS)

    Feng, Jiandi; Wang, Zhengtao; Jiang, Weiping; Zhao, Zhenzhen; Zhang, Bingbing

    2017-02-01

    Compared with regional or global total electron content (TEC) empirical models, single-station TEC empirical models may exhibit higher accuracy in describing TEC spatial and temporal variations for a single station. In this paper, a new single-station empirical total electron content (TEC) model, called SSM-month, for the O'Higgins Station in the Antarctic Peninsula is proposed by using Global Positioning System (GPS)-TEC data from 01 January 2004 to 30 June 2015. The diurnal variation of TEC in the O'Higgins Station may have changing features in different months, sometimes even in opposite forms, because of ionospheric phenomena, such as the Mid-latitude Summer Nighttime Anomaly (MSNA). To avoid the influence of different diurnal variations, the concept of monthly modeling is proposed in this study. The SSM-month model, which is established by month (including 12 submodels that correspond to the 12 months), can effectively describe the diurnal variation of TEC in different months. Each submodel of the SSM-month model exhibits good agreement with GPS-TEC input data. Overall, the SSM-month model fits the input data with a bias of 0.03 TECU (total electron content unit, 1 TECU = 1016 el m-2) and a standard deviation of 2.78 TECU. This model, which benefits from the modeling method, can effectively describe the MSNA phenomenon without implementing any modeling correction. TEC data derived from Center for Orbit Determination in Europe global ionosphere maps (CODE GIMs), International Reference Ionosphere 2012 (IRI2012), and NeQuick are compared with the SSM-month model in the years of 2001 and 2015-2016. Result shows that the SSM-month model exhibits good consistency with CODE GIMs, which is better than that of IRI2012 and NeQuick, in the O'Higgins Station on the test days.

  4. Application of GPS tracking techniques to orbit determination for TDRS

    NASA Technical Reports Server (NTRS)

    Haines, B. J.; Lichten, S. M.; Malla, R. P.; Wu, S. C.

    1993-01-01

    In this paper, we evaluate two fundamentally different approaches to TDRS orbit determination utilizing Global Positioning System (GPS) technology and GPS-related techniques. In the first, a GPS flight receiver is deployed on the TDRSS spacecraft. The TDRS ephemerides are determined using direct ranging to the GPS spacecraft, and no ground network is required. In the second approach, the TDRSS spacecraft broadcast a suitable beacon signal, permitting the simultaneous tracking of GPS and TDRSS satellites from a small ground network. Both strategies can be designed to meet future operational requirements for TDRS-2 orbit determination.

  5. Altimetry Using GPS-Reflection/Occultation Interferometry

    NASA Technical Reports Server (NTRS)

    Cardellach, Estel; DeLaTorre, Manuel; Hajj, George A.; Ao, Chi

    2008-01-01

    A Global Positioning System (GPS)- reflection/occultation interferometry was examined as a means of altimetry of water and ice surfaces in polar regions. In GPS-reflection/occultation interferometry, a GPS receiver aboard a satellite in a low orbit around the Earth is used to determine the temporally varying carrier- phase delay between (1) one component of a signal from a GPS transmitter propagating directly through the atmosphere just as the GPS transmitter falls below the horizon and (2) another component of the same signal, propagating along a slightly different path, reflected at glancing incidence upon the water or ice surface.

  6. Analysis of meteorological variables in the Australasian region using ground- and space-based GPS techniques

    NASA Astrophysics Data System (ADS)

    Kuleshov, Yuriy; Choy, Suelynn; Fu, Erjiang Frank; Chane-Ming, Fabrice; Liou, Yuei-An; Pavelyev, Alexander G.

    2016-07-01

    Results of analysis of meteorological variables (temperature and moisture) in the Australasian region using the global positioning system (GPS) radio occultation (RO) and GPS ground-based observations verified with in situ radiosonde (RS) data are presented. The potential of using ground-based GPS observations for retrieving column integrated precipitable water vapour (PWV) over the Australian continent has been demonstrated using the Australian ground-based GPS reference stations network. Using data from the 15 ground-based GPS stations, the state of the atmosphere over Victoria during a significant weather event, the March 2010 Melbourne storm, has been investigated, and it has been shown that the GPS observations has potential for monitoring the movement of a weather front that has sharp moisture contrast. Temperature and moisture variability in the atmosphere over various climatic regions (the Indian and the Pacific Oceans, the Antarctic and Australia) has been examined using satellite-based GPS RO and in situ RS observations. Investigating recent atmospheric temperature trends over Antarctica, the time series of the collocated GPS RO and RS data were examined, and strong cooling in the lower stratosphere and warming through the troposphere over Antarctica has been identified, in agreement with outputs of climate models. With further expansion of the Global Navigation Satellite Systems (GNSS) system, it is expected that GNSS satellite- and ground-based measurements would be able to provide an order of magnitude larger amount of data which in turn could significantly advance weather forecasting services, climate monitoring and analysis in the Australasian region.

  7. Carrier-phase time transfer.

    PubMed

    Larson, K M; Levine, J

    1999-01-01

    We have conducted several time-transfer experiments using the phase of the GPS carrier rather than the code, as is done in current GPS-based time-transfer systems. Atomic clocks were connected to geodetic GPS receivers; we then used the GPS carrier-phase observations to estimate relative clock behavior at 6-minute intervals. GPS carrier-phase time transfer is more than an order of magnitude more precise than GPS common view time transfer and agrees, within the experimental uncertainty, with two-way satellite time-transfer measurements for a 2400 km baseline. GPS carrier-phase time transfer has a stability of 100 ps, which translates into a frequency uncertainty of about two parts in 10(-15) for an average time of 1 day.

  8. A design proposal of a certain missile tactical command system based on Beidou satellite communication and GPS positioning techniques

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Hao, Yongsheng; Miao, Jian; Zhang, Jianmao

    2007-11-01

    This paper introduced a design proposal of tactical command system that applied to a kind of anti-tank missile carriers. The tactical command system was made up of embedded computer system based on PC104 bus, Linux operating system, digital military map, Beidou satellite communication equipments and GPS positioning equipments. The geographic coordinates was measured by the GPS receiver, the positioning data, commands and information were transmitted real-time between tactical command systems, tactical command systems and command center, by the Beidou satellite communication systems. The Beidou satellite communication equipments and GPS positioning equipments were integrated to an independent module, exchanging data with embedded computer through RS232 serial ports and USB ports. The decision support system software based on information fusion, calculates positioning data, geography information and battle field information synthetically, shows the position of allies and the position of enemy on the military map, and assesses the various threats of different enemy objects, educes a situation assessment and threat assessment.

  9. Retained satellite information influences performance of GPS devices in a forested ecosystem

    Treesearch

    Katie M. Moriarty; Clinton W. Epps

    2015-01-01

    Global Positioning System (GPS) units used in animal telemetry often suffer from nonrandom data loss and location error. GPS units use stored satellite information to estimate locations, including almanac and ephemeris data reflecting satellite positions at weekly and at <4-hr temporal scales, respectively. Using the smallest GPS collars (45–51 g) available for...

  10. Using GPS to evaluate productivity and performance of forest machine systems

    Treesearch

    Steven E. Taylor; Timothy P. McDonald; Matthew W. Veal; Ton E. Grift

    2001-01-01

    This paper reviews recent research and operational applications of using GPS as a tool to help monitor the locations, travel patterns, performance, and productivity of forest machines. The accuracy of dynamic GPS data collected on forest machines under different levels of forest canopy is reviewed first. Then, the paper focuses on the use of GPS for monitoring forest...

  11. Demonstration of an Enhanced Vertical Magnetic Gradient System for UXO

    DTIC Science & Technology

    2008-04-01

    flights were conducted and results evaluated. The cesium magnetometers , GPS systems (positioning and attitude), fluxgate magnetometers , data...makes a measurement and when it is time-stamped and recorded. This applies to the magnetometers , fluxgate and the GPS. Accurate positioning...requires a correction for this lag. Time lags between the magnetometers , fluxgate and GPS signals were measured by a proprietary utility. This utility

  12. GPS Timing Performance

    DTIC Science & Technology

    2014-01-01

    termed the Galileo -GPS Time Offset (GGTO), and it will be Type 35 in the GPS CNAV message. Knowledge of the GGTO makes it possible for a properly...U.S. Naval Observatory (USNO) [1]. Interoperability with Galileo , and perhaps someday with other Global Navigation Satellite Systems (GNSS), is to...Interoperability with Galileo , and perhaps someday with other Global Navigation Satellite Systems (GNSS), is to be established through transmission of the

  13. An Observational Study of Tropical Cyclone Spin-Up in Supertyphoon Jangmi and Hurricane Georges

    DTIC Science & Technology

    2011-12-01

    Reconnaissance Squadron stationed at Keesler Air Force Base in Biloxi, Mississippi, and the National Oceanic and Atmospheric Administration (NOAA) Aircraft...implementation of the National Center for Atmospheric Research (NCAR) Global Positioning System (GPS) dropsonde in specialized boundary-layer...transiting the western Pacific, Gulf of Mexico, and Atlantic Ocean basins. 107 APPENDIX A: NCAR GPS DROPSONDES The Global Positioning System (GPS

  14. GPS/INS integration by functional partitioning

    NASA Astrophysics Data System (ADS)

    Diesel, John W.

    It is shown that a GPS/INS system integrated by functional partitioning can satisfy all of the RTCA navigation requirements and goals. This is accomplished by accurately calibrating the INS using GPS after the inertial instruments are thermally stabilized and by exploiting the very slow subsequent error growth in the INS information. In this way, autonomous integrity monitoring can be achieved using only existing or presently planned systems.

  15. NAVSTAR GPS Marine Receiver Performance Analysis

    DOT National Transportation Integrated Search

    1984-09-01

    This report is an analysis and comparison of the capability of several NAVSTAR GPS receiver configurations to provide accurate position data to the civil marine user. The NAVSTAR GPS system itself has the potential to provide civil marine users with ...

  16. 75 FR 61818 - Eighty-Third Meeting: RTCA Special Committee 159: Global Positioning System (GPS).

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... & Hilton-ATA Room. All Day, Working Group 7, GPS/Antennas, ARINC Room. Friday, October 29 Plenary Session...) GPS/Antennas (WG-7) Review of EUROCAE Activities. Nav and ADS-B Out Equipment Requirements--Discussion...

  17. The world after SA : benefits to GPS integrity.

    DOT National Transportation Integrated Search

    2000-03-01

    The Presidential Decision Directive (PDD) on the Global Positioning System (GPS) recommends that selective availability (SA) be removed by 2006. The question remains: if SA were to be turned off, how significant are the benefits to the GPS community?...

  18. GPs' thoughts on prescribing medication and evidence-based knowledge: the benefit aspect is a strong motivator. A descriptive focus group study.

    PubMed

    Skoglund, Ingmarie; Segesten, Kerstin; Björkelund, Cecilia

    2007-06-01

    To describe GPs' thoughts of prescribing medication and evidence-based knowledge (EBM) concerning drug therapy. Tape-recorded focus-group interviews transcribed verbatim and analysed using qualitative methods. GPs from the south-eastern part of Västra Götaland, Sweden. A total of 16 GPs out of 178 from the south-eastern part of the region strategically chosen to represent urban and rural, male and female, long and short GP experience. Transcripts were analysed using a descriptive qualitative method. The categories were: benefits, time and space, and expert knowledge. The benefit was a merge of positive elements, all aspects of the GPs' tasks. Time and space were limitations for GPs' tasks. EBM as a constituent of expert knowledge should be more customer adjusted to be able to be used in practice. Benefit was the most important category, existing in every decision-making situation for the GP. The core category was prompt and pragmatic benefit, which was the utmost benefit. GPs' thoughts on evidence-based medicine and prescribing medication were highly related to reflecting on benefit and results. The interviews indicated that prompt and pragmatic benefit is important for comprehending their thoughts.

  19. Orbiter global positioning system design and Ku-band problem investigations, exhibit B, revision 1

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.

    1983-01-01

    The hardware, software, and interface between them was investigated for a low dynamics, nonhostile environment, low cost GPS receiver (GPS Z set). The set is basically a three dimensional geodetic and way point navigator with GPS time, ground speed, and ground track as possible outputs in addition to the usual GPS receiver set outputs. Each functional module comprising the GPS set is described, enumerating its functional inputs and outputs, leading to the interface between hardware and software of the set.

  20. GPS Monitor Station Upgrade Program at the Naval Research Laboratory

    NASA Technical Reports Server (NTRS)

    Galysh, Ivan J.; Craig, Dwin M.

    1996-01-01

    One of the measurements made by the Global Positioning System (GPS) monitor stations is to measure the continuous pseudo-range of all the passing GPS satellites. The pseudo-range contains GPS and monitor station clock errors as well as GPS satellite navigation errors. Currently the time at the GPS monitor station is obtained from the GPS constellation and has an inherent inaccuracy as a result. Improved timing accuracy at the GPS monitoring stations will improve GPS performance. The US Naval Research Laboratory (NRL) is developing hardware and software for the GPS monitor station upgrade program to improve the monitor station clock accuracy. This upgrade will allow a method independent of the GPS satellite constellation of measuring and correcting monitor station time to US Naval Observatory (USNO) time. THe hardware consists of a high performance atomic cesium frequency standard (CFS) and a computer which is used to ensemble the CFS with the two CFS's currently located at the monitor station by use of a dual-mixer system. The dual-mixer system achieves phase measurements between the high-performance CFS and the existing monitor station CFS's to within 400 femtoseconds. Time transfer between USNO and a given monitor station is achieved via a two way satellite time transfer modem. The computer at the monitor station disciplines the CFS based on a comparison of one pulse per second sent from the master site at USNO. The monitor station computer is also used to perform housekeeping functions, as well as recording the health status of all three CFS's. This information is sent to the USNO through the time transfer modem. Laboratory time synchronization results in the sub nanosecond range have been observed and the ability to maintain the monitor station CFS frequency to within 3.0 x 10 (sup minus 14) of the master site at USNO.

  1. Near-Real Time Monitoring of TEC Over Japan at NICT (RWC Tokyo OF ISES)

    NASA Astrophysics Data System (ADS)

    Miyake, W.; Jin, H.

    2010-05-01

    The world wide use of global navigation satellite systems such as GPS offers unique opportunities for a permanent monitoring of the total electron content (TEC) of the ionosphere. We have developed a system of the rapid derivation of TEC from GEONET (a dense GPS receiver network in Japan). In addition to a previous plot of TEC temporal variation over Japan, we have recently developed a near-real-time two-dimensional TEC map and have used it for the daily operation of Space Weather Forecast Center at NICT (Regional Warning Center Tokyo of International Space Environment Service). The TEC map can be used to continuously monitor the ionospheric disturbances over Japan, including spatial and temporal development of ionospheric storms, large-amplitude traveling ionospheric disturbances, and plasma bubbles intruding over Japan, with high time resolution. The development of the real-time monitoring system of TEC enables us to monitor large ionospheric disturbances, ranging from global- to small-scale disturbances, expected in the next solar maximum. The plot and maps are open to the public and are available on http://wdc.nict.go.jp/IONO/index_E.html.

  2. Vision-Aided RAIM: A New Method for GPS Integrity Monitoring in Approach and Landing Phase

    PubMed Central

    Fu, Li; Zhang, Jun; Li, Rui; Cao, Xianbin; Wang, Jinling

    2015-01-01

    In the 1980s, Global Positioning System (GPS) receiver autonomous integrity monitoring (RAIM) was proposed to provide the integrity of a navigation system by checking the consistency of GPS measurements. However, during the approach and landing phase of a flight path, where there is often low GPS visibility conditions, the performance of the existing RAIM method may not meet the stringent aviation requirements for availability and integrity due to insufficient observations. To solve this problem, a new RAIM method, named vision-aided RAIM (VA-RAIM), is proposed for GPS integrity monitoring in the approach and landing phase. By introducing landmarks as pseudo-satellites, the VA-RAIM enriches the navigation observations to improve the performance of RAIM. In the method, a computer vision system photographs and matches these landmarks to obtain additional measurements for navigation. Nevertheless, the challenging issue is that such additional measurements may suffer from vision errors. To ensure the reliability of the vision measurements, a GPS-based calibration algorithm is presented to reduce the time-invariant part of the vision errors. Then, the calibrated vision measurements are integrated with the GPS observations for integrity monitoring. Simulation results show that the VA-RAIM outperforms the conventional RAIM with a higher level of availability and fault detection rate. PMID:26378533

  3. Vision-Aided RAIM: A New Method for GPS Integrity Monitoring in Approach and Landing Phase.

    PubMed

    Fu, Li; Zhang, Jun; Li, Rui; Cao, Xianbin; Wang, Jinling

    2015-09-10

    In the 1980s, Global Positioning System (GPS) receiver autonomous integrity monitoring (RAIM) was proposed to provide the integrity of a navigation system by checking the consistency of GPS measurements. However, during the approach and landing phase of a flight path, where there is often low GPS visibility conditions, the performance of the existing RAIM method may not meet the stringent aviation requirements for availability and integrity due to insufficient observations. To solve this problem, a new RAIM method, named vision-aided RAIM (VA-RAIM), is proposed for GPS integrity monitoring in the approach and landing phase. By introducing landmarks as pseudo-satellites, the VA-RAIM enriches the navigation observations to improve the performance of RAIM. In the method, a computer vision system photographs and matches these landmarks to obtain additional measurements for navigation. Nevertheless, the challenging issue is that such additional measurements may suffer from vision errors. To ensure the reliability of the vision measurements, a GPS-based calibration algorithm is presented to reduce the time-invariant part of the vision errors. Then, the calibrated vision measurements are integrated with the GPS observations for integrity monitoring. Simulation results show that the VA-RAIM outperforms the conventional RAIM with a higher level of availability and fault detection rate.

  4. Further Investigations of Ionospheric Total Electron Content and Scintillation Effects on Transionospheric Radiowave Propagation

    DTIC Science & Technology

    1998-02-12

    HAARP ). 14. SUBJECT TERMS Global Positioning System (GPS), High Frequency Active Auroral Research Program ( HAARP ), ionosphere, radiowave...Scintillation Simulation 23 4.10 Automated Calibrations 23 5. HAARP Activities 24 5.1 Development of HAARP Diagnostics 24 5.2 Facilitation of... HAARP Operations and Broader Scientific Collaborations 27 5.3 Public Relations 28 6. Publications 30 References 30 Acronyms and Initials 30 Appendix

  5. Novel Hybrid of LS-SVM and Kalman Filter for GPS/INS Integration

    NASA Astrophysics Data System (ADS)

    Xu, Zhenkai; Li, Yong; Rizos, Chris; Xu, Xiaosu

    Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) technologies can overcome the drawbacks of the individual systems. One of the advantages is that the integrated solution can provide continuous navigation capability even during GPS outages. However, bridging the GPS outages is still a challenge when Micro-Electro-Mechanical System (MEMS) inertial sensors are used. Methods being currently explored by the research community include applying vehicle motion constraints, optimal smoother, and artificial intelligence (AI) techniques. In the research area of AI, the neural network (NN) approach has been extensively utilised up to the present. In an NN-based integrated system, a Kalman filter (KF) estimates position, velocity and attitude errors, as well as the inertial sensor errors, to output navigation solutions while GPS signals are available. At the same time, an NN is trained to map the vehicle dynamics with corresponding KF states, and to correct INS measurements when GPS measurements are unavailable. To achieve good performance it is critical to select suitable quality and an optimal number of samples for the NN. This is sometimes too rigorous a requirement which limits real world application of NN-based methods.The support vector machine (SVM) approach is based on the structural risk minimisation principle, instead of the minimised empirical error principle that is commonly implemented in an NN. The SVM can avoid local minimisation and over-fitting problems in an NN, and therefore potentially can achieve a higher level of global performance. This paper focuses on the least squares support vector machine (LS-SVM), which can solve highly nonlinear and noisy black-box modelling problems. This paper explores the application of the LS-SVM to aid the GPS/INS integrated system, especially during GPS outages. The paper describes the principles of the LS-SVM and of the KF hybrid method, and introduces the LS-SVM regression algorithm. Field test data is processed to evaluate the performance of the proposed approach.

  6. Design and flight test of a differential GPS/inertial navigation system for approach/landing guidance

    NASA Technical Reports Server (NTRS)

    Vallot, Lawrence; Snyder, Scott; Schipper, Brian; Parker, Nigel; Spitzer, Cary

    1991-01-01

    NASA-Langley has conducted a flight test program evaluating a differential GPS/inertial navigation system's (DGPS/INS) utility as an approach/landing aid. The DGPS/INS airborne and ground components are based on off-the-shelf transport aircraft avionics, namely a global positioning/inertial reference unit (GPIRU) and two GPS sensor units (GPSSUs). Systematic GPS errors are measured by the ground GPSSU and transmitted to the aircraft GPIRU, allowing the errors to be eliminated or greatly reduced in the airborne equipment. Over 120 landings were flown; 36 of these were fully automatic DGPS/INS landings.

  7. Autonomous Relative Navigation for Formation-Flying Satellites Using GPS

    NASA Technical Reports Server (NTRS)

    Gramling, Cheryl; Carpenter, J. Russell; Long, Anne; Kelbel, David; Lee, Taesul

    2000-01-01

    The Goddard Space Flight Center is currently developing advanced spacecraft systems to provide autonomous navigation and control of formation flyers. This paper discusses autonomous relative navigation performance for a formation of four eccentric, medium-altitude Earth-orbiting satellites using Global Positioning System (GPS) Standard Positioning Service (SPS) and "GPS-like " intersatellite measurements. The performance of several candidate relative navigation approaches is evaluated. These analyses indicate that an autonomous relative navigation position accuracy of 1meter root-mean-square can be achieved by differencing high-accuracy filtered solutions if only measurements from common GPS space vehicles are used in the independently estimated solutions.

  8. ISKANDARnet IOMOS: Near real-time equatorial space weather monitoring and alert system in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Musa, Tajul Ariffin; Leong, Shien Kwun; Abdullah, Khairul Anuar; Othman, Rusli

    2012-11-01

    This work proposes ISKANDARnet Ionospheric Outburst MOnitoring and alert System (IOMOS), along with Ionospheric Outburst Index (IOX) to develop an operational near real-time space weather service for Malaysia. The IOMOS is based on Global Positioning System (GPS) Network-based Real-Time Kinematic (NRTK) concept which is by nature for atmospheric (ionosphere and troposphere) modeling within the network coverage. The elegance of this solution lies in the fact that IOMOS utilize differential ionospheric residual from network of GPS baselines which incur no additional cost for operation. Users will be informed about the ionospheric perturbation through Short Message Service (SMS), email or Twitter®. This approach will ultimately beneficial for the navigation and satellite positioning communities, particularly during the coming Solar Cycle 24. In addition, a combination of local and global GPS network has been employed to study the equatorial ionosphere geomorphology and climatology in the Malaysian sector. Equatorial Total Electron Content (TEC) over Malaysia shows semi-annual, annual, and seasonal variations with maximum values appearing during equinoctial months and minimum during solstices months. The TEC value during vernal equinox is about 21% higher than autumnal equinox, and December solstice exceeds that at the June solstice by around 14%. It is also found that semi-annual variation is present at all levels of solar activity, whereas June solstice predominates December solstice during high solar activity for annual and seasonal variations. In near future, a near real-time TEC derivation system will be developed to support equatorial ionosphere modeling to enhance space weather service for Malaysia.

  9. Development of a congestion management system using GPS technology

    DOT National Transportation Integrated Search

    1997-04-01

    This report describes the results of a study undertaken to demonstrate the feasibility of using global positioning system (GPS) and geographic information system (GIS) technologies to measure travel time and speed data on urban highways. The methodol...

  10. GPS Usage in a Population of Low-Vision Drivers.

    PubMed

    Cucuras, Maria; Chun, Robert; Lee, Patrick; Jay, Walter M; Pusateri, Gregg

    2017-01-01

    We surveyed bioptic and non-bioptic low-vision drivers in Illinois, USA, to determine their usage of global positioning system (GPS) devices. Low-vision patients completed an IRB-approved phone survey regarding driving demographics and usage of GPS while driving. Participants were required to be active drivers with an Illinois driver's license, and met one of the following criteria: best-corrected visual acuity (BCVA) less than or equal to 20/40, central or significant peripheral visual field defects, or a combination of both. Of 27 low-vision drivers, 10 (37%) used GPS while driving. The average age for GPS users was 54.3 and for non-users was 77.6. All 10 drivers who used GPS while driving reported increased comfort or safety level. Since non-GPS users were significantly older than GPS users, it is likely that older participants would benefit from GPS technology training from their low-vision eye care professionals.

  11. Benefits of combined GPS/GLONASS with low-cost MEMS IMUs for vehicular urban navigation.

    PubMed

    Angrisano, Antonio; Petovello, Mark; Pugliano, Giovanni

    2012-01-01

    The integration of Global Navigation Satellite Systems (GNSS) with Inertial Navigation Systems (INS) has been very actively researched for many years due to the complementary nature of the two systems. In particular, during the last few years the integration with micro-electromechanical system (MEMS) inertial measurement units (IMUs) has been investigated. In fact, recent advances in MEMS technology have made possible the development of a new generation of low cost inertial sensors characterized by small size and light weight, which represents an attractive option for mass-market applications such as vehicular and pedestrian navigation. However, whereas there has been much interest in the integration of GPS with a MEMS-based INS, few research studies have been conducted on expanding this application to the revitalized GLONASS system. This paper looks at the benefits of adding GLONASS to existing GPS/INS(MEMS) systems using loose and tight integration strategies. The relative benefits of various constraints are also assessed. Results show that when satellite visibility is poor (approximately 50% solution availability) the benefits of GLONASS are only seen with tight integration algorithms. For more benign environments, a loosely coupled GPS/GLONASS/INS system offers performance comparable to that of a tightly coupled GPS/INS system, but with reduced complexity and development time.

  12. Perceptions of Indonesian general practitioners in maintaining standards of medical practice at a time of health reform.

    PubMed

    Syah, Nur A; Roberts, Chris; Jones, Alison; Trevena, Lyndal; Kumar, Koshila

    2015-10-01

    There is little research on how GPs experience the demands of maintaining standards of medical practice in developing countries and what strategies might improve their capability to provide high-quality primary health care (PHC). This study aims to explore the underlying factors, which shape GPs' experience within the Indonesian PHC system and impact on their experience of professional practice. A grounded theory approach was applied using semi-structured interviews of 25 purposively selected GPs in West Sumatra, Indonesia. The interviews were analysed inductively through an iterative process of the interplay between empirical data, emerging analysis and theory development. Three major health care systems attribute shaped GPs' experiences of professional practice, including (i) a restricted concept of the PHC system, (ii) lack of regulation of private primary care practice conducted by GPs, midwives, nurses and specialists and (iii) low coverage and inappropriate policy of the health insurance system. The findings indicate that a major revision of current health care system is required with a focus on promoting the concept of PHC services to the population, redefining the role of the GP to deliver recognised best practice within available resources, changing the way GPs are remunerated by the public health system and the health insurance industry, policing of the regulations related to the scope of practice of other health care professionals, particularly midwives and nurses, and regulation of prescribing. GPs can be the champions of the PHC service that Indonesia needs, but it requires sustained systematic change. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Global Positioning Systems Wing : GPS IIR-20 (SVN-49) Information.

    DOT National Transportation Integrated Search

    2010-01-25

    Purpose for this briefing: : -Discuss SVN-49 signal problem with GPS community : -Provide information on potential mitigations : -Present way forward for SVN-49 : Background: : -SVN-49 unlike other GPS IIR Satellites had L5 R&D Demonstration Payload ...

  14. Human factors evaluation of TSO-C129A GPS receivers

    DOT National Transportation Integrated Search

    1998-10-22

    This report documents an evaluation of the usability of TSO-C129a-certified Global Positioning System (GPS) receivers. Bench and flight tests were conducted on six GPS receivers. The evaluations covered 23 flight tasks. Both subjective and objective ...

  15. Cutting-edge technologies: GPS/Satellite communications-based tracking

    USDA-ARS?s Scientific Manuscript database

    Despite wide-spread adoption of GPS and satellite-communication technologies within the freight and transportation industries, commercially-available telemetry tracking systems have not kept pace with the evolving demands of ecological research. Commercial GPS tracking collars are costly ($1,500 to...

  16. Propagation of Radiosonde Pressure Sensor Errors to Ozonesonde Measurements

    NASA Technical Reports Server (NTRS)

    Stauffer, R. M.; Morris, G.A.; Thompson, A. M.; Joseph, E.; Coetzee, G. J. R.; Nalli, N. R.

    2014-01-01

    Several previous studies highlight pressure (or equivalently, pressure altitude) discrepancies between the radiosonde pressure sensor and that derived from a GPS flown with the radiosonde. The offsets vary during the ascent both in absolute and percent pressure differences. To investigate this problem further, a total of 731 radiosonde-ozonesonde launches from the Southern Hemisphere subtropics to Northern mid-latitudes are considered, with launches between 2005 - 2013 from both longer-term and campaign-based intensive stations. Five series of radiosondes from two manufacturers (International Met Systems: iMet, iMet-P, iMet-S, and Vaisala: RS80-15N and RS92-SGP) are analyzed to determine the magnitude of the pressure offset. Additionally, electrochemical concentration cell (ECC) ozonesondes from three manufacturers (Science Pump Corporation; SPC and ENSCI-Droplet Measurement Technologies; DMT) are analyzed to quantify the effects these offsets have on the calculation of ECC ozone (O3) mixing ratio profiles (O3MR) from the ozonesonde-measured partial pressure. Approximately half of all offsets are 0.6 hPa in the free troposphere, with nearly a third 1.0 hPa at 26 km, where the 1.0 hPa error represents 5 persent of the total atmospheric pressure. Pressure offsets have negligible effects on O3MR below 20 km (96 percent of launches lie within 5 percent O3MR error at 20 km). Ozone mixing ratio errors above 10 hPa (30 km), can approach greater than 10 percent ( 25 percent of launches that reach 30 km exceed this threshold). These errors cause disagreement between the integrated ozonesonde-only column O3 from the GPS and radiosonde pressure profile by an average of +6.5 DU. Comparisons of total column O3 between the GPS and radiosonde pressure profiles yield average differences of +1.1 DU when the O3 is integrated to burst with addition of the McPeters and Labow (2012) above-burst O3 column climatology. Total column differences are reduced to an average of -0.5 DU when the O3 profile is integrated to 10 hPa with subsequent addition of the O3 climatology above 10 hPa. The RS92 radiosondes are superior in performance compared to other radiosondes, with average 26 km errors of -0.12 hPa or +0.61 percent O3MR error. iMet-P radiosondes had average 26 km errors of -1.95 hPa or +8.75 percent O3MR error. Based on our analysis, we suggest that ozonesondes always be coupled with a GPS-enabled radiosonde and that pressure-dependent variables, such as O3MR, be recalculated-reprocessed using the GPS-measured altitude, especially when 26 km pressure offsets exceed 1.0 hPa 5 percent.

  17. Serum lactate dehydrogenase with a systemic inflammation score is useful for predicting response and survival in patients with newly diagnosed diffuse large B-cell lymphoma.

    PubMed

    Jung, Sung-Hoon; Yang, Deok-Hwan; Ahn, Jae-Sook; Kim, Yeo-Kyeoung; Kim, Hyeoung-Joon; Lee, Je-Jung

    2015-01-01

    We evaluated the relationship between serum lactate dehydrogenase (LDH) level with systemic inflammation score and survival in 213 patients with diffuse large B-cell lymphoma (DLBCL) receiving R-CHOP chemotherapy. The patients were classified into 3 groups based on LDH with the Glasgow Prognostic Score (L-GPS). A score of 2 was assigned to patients with elevated C-reactive protein, hypoalbuminemia and elevated LDH, a score of 1 to those with one or two abnormalities and a score of 0 to those with no abnormality. In multivariate analysis, independent poor prognostic factors for progression-free survival were L-GPS 2 [hazard ratio (HR) 5.415, p = 0.001], Eastern Cooperative Oncology Group performance status (ECOG PS) ≥2 (HR 3.504, p = 0.001) and bulky lesion (HR 2.030, p = 0.039). Independent poor prognostic factors for overall survival were L-GPS 2 (HR 5.898, p = 0.001) and ECOG PS ≥2 (HR 3.525, p = 0.001). The overall response rate for the R-CHOP chemotherapy decreased according to the L-GPS; it was 96.7% at L-GPS 0, 87% at L-GPS 1 and 75% at L-GPS 2 (p = 0.009). L-GPS based on systemic inflammatory indicators may be a useful clinical prognostic indicator for survival, and predicts the response for R-CHOP chemotherapy in patients with newly diagnosed DLBCL. © 2014 S. Karger AG, Basel.

  18. GPS synchronized power system phase angle measurements

    NASA Astrophysics Data System (ADS)

    Wilson, Robert E.; Sterlina, Patrick S.

    1994-09-01

    This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.

  19. The March 1985 demonstration of the fiducial network concept for GPS geodesy: A preliminary report

    NASA Technical Reports Server (NTRS)

    Davidson, J. M.; Thornton, C. L.; Dixon, T. H.; Vegos, C. J.; Young, L. E.; Yunck, T. P.

    1986-01-01

    The first field tests in preparation for the NASA Global Positioning System (GPS) Caribbean Initiative were conducted in late March and Early April of 1985. The GPS receivers were located at the POLARIS Very Long Base Interferometry (VLBI) stations at Westford, Massachusetts; Richmond, Florida; and Ft. Davis, Texas; and at the Mojave, Owens Valley, and Hat Creek VLBI stations in California. Other mobile receivers were placed near Mammoth Lakes, California; Pt. Mugu, California; Austin, Texas; and Dahlgren, Virginia. These sites were equipped with a combination of GPS receiver types, including SERIES-X, TI-4100 and AFGL dual frequency receivers. The principal objectives of these tests were the demonstration of the fiducial network concept for precise GPS geodesy, the performance assessment of the participating GPS receiver types, and to conduct the first in a series of experiments to monitor ground deformation in the Mammoth Lakes-Long Valley caldera region in California. Other objectives included the testing of the water vapor radiometers for the calibration of GPS data, the development of efficient procedures for planning and coordinating GPS field exercise, the establishment of institutional interfaces for future cooperating ventures, the testing of the GPS Data Analysis Software (GIPSY, for GPS Inferred Positioning SYstem), and the establishment of a set of calibration baselines in California. Preliminary reports of the success of the field tests, including receiver performance and data quality, and on the status of the data analysis software are given.

  20. GPS/GLONASS Time Transfer with 20-Channel Dual GNSS Receiver

    NASA Technical Reports Server (NTRS)

    Daly, P.; Riley, S.

    1996-01-01

    One of the world's two global navigation systems, the Global Positioning System (GPS), is already fully operational (April 1994) and the other, the Global Navigation Satellite System (GLONASS) will become operational by the end of 1995 or early 1996. Each will offer, independently of the other, precise location and time transfer continuously anywhere in the world and indeed in space itself. Many potential users, in particular the civil aviation community, are keenly interested in a joint GPS/GLONASS operation since it would offer substantial advantages in defining and maintaining the integrity of the navigation aid. Results are presented on the characterization of GPS/GLONASS time comparison using a 20-channel dual receiver developed and constructed at the University of Leeds, UK.

  1. Applying GPS to enhance understanding of transport-related physical activity.

    PubMed

    Duncan, Mitch J; Badland, Hannah M; Mummery, W Kerry

    2009-09-01

    The purpose of the paper is to review the utility of the global positioning system (GPS) in the study of health-related physical activity. The paper draws from existing literature to outline the current work performed using GPS to examine transport-related physical activity, with a focus on the relative utility of the approach when combined with geographic information system (GIS) and other data sources including accelerometers. The paper argues that GPS, especially when used in combination with GIS and accelerometery, offers great promise in objectively measuring and studying the relationship of numerous environmental attributes to human behaviour in terms of physical activity and transport-related activity. Limitations to the use of GPS for the purpose of monitoring health-related physical activity are presented, and recommendations for future avenues of research are discussed.

  2. An introduction to the global positioning system and some geological applications

    NASA Technical Reports Server (NTRS)

    Dixon, T. H.

    1991-01-01

    The fundamental principles of the global positioning system (GPS) are reviewed, with consideration given to geological and geophysical applications and related accuracy requirements. Recent improvements are emphasized which relate to areas such as equipment cost, limitations in the GPS satellite constellation, data analysis, uncertainties in satellite orbits and propagation delays, and problems in resolving carrier phase cycle ambiguities. Earthquake processes and near-fault crustal deformation monitoring have been facilitated by advances in GPS data acquisition and analysis. Horizontal positioning capability has been improved by new satellite constellation, better models, and global tracking networks. New classes of tectonic problems may now be studied through GPS, such as kinematic descriptions of crustal deformation and the measurement of relative plate motion at convergent boundaries. Continued improvements in the GPS are foreseen.

  3. GPS Lessons Learned from the International Space Station, Space Shuttle and X-38

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2005-01-01

    This document is a collection of writings concerning the application of Global Positioning System (GPS) technology to the International Space Station (ISS), Space Shuttle, and X-38 vehicles. An overview of how GPS technology was applied is given for each vehicle, including rationale behind the integration architecture, and rationale governing the use (or non-use) of GPS data during flight.

  4. Real-Time Single-Frequency GPS/MEMS-IMU Attitude Determination of Lightweight UAVs

    PubMed Central

    Eling, Christian; Klingbeil, Lasse; Kuhlmann, Heiner

    2015-01-01

    In this paper, a newly-developed direct georeferencing system for the guidance, navigation and control of lightweight unmanned aerial vehicles (UAVs), having a weight limit of 5 kg and a size limit of 1.5 m, and for UAV-based surveying and remote sensing applications is presented. The system is intended to provide highly accurate positions and attitudes (better than 5 cm and 0.5∘) in real time, using lightweight components. The main focus of this paper is on the attitude determination with the system. This attitude determination is based on an onboard single-frequency GPS baseline, MEMS (micro-electro-mechanical systems) inertial sensor readings, magnetic field observations and a 3D position measurement. All of this information is integrated in a sixteen-state error space Kalman filter. Special attention in the algorithm development is paid to the carrier phase ambiguity resolution of the single-frequency GPS baseline observations. We aim at a reliable and instantaneous ambiguity resolution, since the system is used in urban areas, where frequent losses of the GPS signal lock occur and the GPS measurement conditions are challenging. Flight tests and a comparison to a navigation-grade inertial navigation system illustrate the performance of the developed system in dynamic situations. Evaluations show that the accuracies of the system are 0.05∘ for the roll and the pitch angle and 0.2∘ for the yaw angle. The ambiguities of the single-frequency GPS baseline can be resolved instantaneously in more than 90% of the cases. PMID:26501281

  5. GPS system simulation methodology

    NASA Technical Reports Server (NTRS)

    Ewing, Thomas F.

    1993-01-01

    The following topics are presented: background; Global Positioning System (GPS) methodology overview; the graphical user interface (GUI); current models; application to space nuclear power/propulsion; and interfacing requirements. The discussion is presented in vugraph form.

  6. Investigation of a L1-optimized choke ring ground plane for a low-cost GPS receiver-system

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Schwieger, Volker

    2018-01-01

    Besides the geodetic dual-frequency GNSS receivers-systems (receiver and antenna), there are also low-cost single-frequency GPS receiver-systems. The multipath effect is a limiting factor of accuracy for both geodetic dual-frequency and low-cost single-frequency GPS receivers. And the multipath effect is for the short baselines dominating error (typical for the monitoring in Engineering Geodesy). So accuracy and reliability of GPS measurement for monitoring can be improved by reducing the multipath signal. In this paper, the self-constructed L1-optimized choke ring ground plane (CR-GP) is applied to reduce the multipath signal. Its design will be described and its performance will be investigated. The results show that the introduced low-cost single-frequency GPS receiver-system, which contains the Ublox LEA-6T single-frequency GPS receiver and Trimble Bullet III antenna with a self-constructed L1-optimized CR-GP, can reach standard deviations of 3 mm in east, 5 mm in north and 9 mm in height in the test field which has many reflectors. This accuracy is comparable with the geodetic dual-frequency GNSS receiver-system. The improvement of the standard deviation of the measurement using the CR-GP is about 50 % and 35 % compared to the used antenna without shielding and with flat ground plane respectively.

  7. General practitioners knowledge about use of topical corticosteroids in paediatric atopic dermatitis in Australia.

    PubMed

    Smith, Saxon D; Harris, Victoria; Lee, Andrew; Blaszczynski, Alex; Fischer, Gayle

    2017-01-01

    Topical corticosteroids are the standard of care in paediatric atopic dermatitis (pAD). However, messages that overstress possible side effects can have a negative impact on perceptions of safety and contribute to treatment non-adherence. The aim of this study was to assess general practitioners' (GPs') perception of the safety of topical corticosteroids in pAD treatment. Australian GPs participating in continuing professional development programs were assessed before an education session on pAD. Responses were recorded via an electronic survey. A total of 257 GPs were surveyed. More than one-third (40.7%) of the GPs instructed parents to apply topical corticosteroids for two weeks or less. Nearly half (47.7%) instructed parents to apply topical corticosteroids sparingly or with the smallest amount possible. Furthermore, nearly one-third (30.2%) reported skin atrophy as the most common side effect of topical corticosteroids. Advice to patients given by Australian GPs may carry unintentional risk messages contributing to treatment non‑adherence. Evidence-based information on the safety of topical corticosteroids is needed to empower GPs to improve treatment outcomes in pAD.

  8. Development of a congestion management system using GPS technology : technical summary.

    DOT National Transportation Integrated Search

    1996-11-01

    The overall goal of this research study was to demonstrate the feasibility of using global positioning system (GPS) and geographic information system (GIS) technologies to measure travel time and speed data on urban highways.Compared to more traditio...

  9. Development of a congestion management system using GPS technology : volume I.

    DOT National Transportation Integrated Search

    1997-04-01

    This report describes the results of a study undertaken to demonstrate the feasibility of using global positioning system( GPS) and geographic information system (CIS) technologies to measure travel time and speed data on urban highways. Compared to ...

  10. Global Positioning System III (GPS III)

    DTIC Science & Technology

    2013-12-01

    Galileo satellite navigation system signal, E1. L1C is also compatible with those signals planned for broadcast on Japan’s Quazi-Zenith Satellite...and Galileo constellations, further increasing the accuracy and availability of civil PNT solutions. GPS III December 2013 SAR April 16, 2014...vehicle- level core mate. The overall program continues to make progress on the GPS III Non-Flight Satellite Testbed (GNST), on SV01 development, and

  11. Reduced variability and execution time to reach a target with a needle GPS system: Comparison between physicians, residents and nurse anaesthetists.

    PubMed

    Fevre, Marie-Cécile; Vincent, Caroline; Picard, Julien; Vighetti, Arnaud; Chapuis, Claire; Detavernier, Maxime; Allenet, Benoît; Payen, Jean-François; Bosson, Jean-Luc; Albaladejo, Pierre

    2018-02-01

    Ultrasound (US) guided needle positioning is safer than anatomical landmark techniques for central venous access. Hand-eye coordination and execution time depend on the professional's ability, previous training and personal skills. Needle guidance positioning systems (GPS) may theoretically reduce execution time and facilitate needle positioning in specific targets, thus improving patient comfort and safety. Three groups of healthcare professionals (41 anaesthesiologists and intensivists, 41 residents in anaesthesiology and intensive care, 39 nurse anaesthetists) were included and required to perform 3 tasks (positioning the tip of a needle in three different targets in a silicon phantom) by using successively a conventional US-guided needle positioning and a needle GPS. We measured execution times to perform the tasks, hand-eye coordination and the number of repositioning occurrences or errors in handling the needle or the probe. Without the GPS system, we observed a significant inter-individual difference for execution time (P<0.05), hand-eye coordination and the number of errors/needle repositioning between physicians, residents and nurse anaesthetists. US training and video gaming were found to be independent factors associated with a shorter execution time. Use of GPS attenuated the inter-individual and group variability. We observed a reduced execution time and improved hand-eye coordination in all groups as compared to US without GPS. Neither US training, video gaming nor demographic personal or professional factors were found to be significantly associated with reduced execution time when GPS was used. US associated with GPS systems may improve safety and decrease execution time by reducing inter-individual variability between professionals for needle-handling procedures. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  12. Error Analysis System for Spacecraft Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.; Hart, R. C.; Hartman, K. R.; Tomcsik, T. L.; Searl, J. E.; Bernstein, A.

    1997-01-01

    The Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing improved space-navigation filtering algorithms to use the Global Positioning System (GPS) for autonomous real-time onboard orbit determination. In connection with a GPS technology demonstration on the Small Satellite Technology Initiative (SSTI)/Lewis spacecraft, FDD analysts and programmers have teamed with the GSFC Guidance, Navigation, and Control Branch to develop the GPS Enhanced Orbit Determination Experiment (GEODE) system. The GEODE system consists of a Kalman filter operating as a navigation tool for estimating the position, velocity, and additional states required to accurately navigate the orbiting Lewis spacecraft by using astrodynamic modeling and GPS measurements from the receiver. A parallel effort at the FDD is the development of a GPS Error Analysis System (GEAS) that will be used to analyze and improve navigation filtering algorithms during development phases and during in-flight calibration. For GEAS, the Kalman filter theory is extended to estimate the errors in position, velocity, and other error states of interest. The estimation of errors in physical variables at regular intervals will allow the time, cause, and effect of navigation system weaknesses to be identified. In addition, by modeling a sufficient set of navigation system errors, a system failure that causes an observed error anomaly can be traced and accounted for. The GEAS software is formulated using Object Oriented Design (OOD) techniques implemented in the C++ programming language on a Sun SPARC workstation. The Phase 1 of this effort is the development of a basic system to be used to evaluate navigation algorithms implemented in the GEODE system. This paper presents the GEAS mathematical methodology, systems and operations concepts, and software design and implementation. Results from the use of the basic system to evaluate navigation algorithms implemented on GEODE are also discussed. In addition, recommendations for generalization of GEAS functions and for new techniques to optimize the accuracy and control of the GPS autonomous onboard navigation are presented.

  13. Modeling the global positioning system signal propagation through the ionosphere

    NASA Technical Reports Server (NTRS)

    Bassiri, S.; Hajj, G. A.

    1992-01-01

    Based on realistic modeling of the electron density of the ionosphere and using a dipole moment approximation for the Earth's magnetic field, one is able to estimate the effect of the ionosphere on the Global Positioning System (GPS) signal for a ground user. The lowest order effect, which is on the order of 0.1-100 m of group delay, is subtracted out by forming a linear combination of the dual frequencies of the GPS signal. One is left with second- and third-order effects that are estimated typically to be approximately 0-2 cm and approximately 0-2 mm at zenith, respectively, depending on the geographical location, the time of day, the time of year, the solar cycle, and the relative geometry of the magnetic field and the line of sight. Given the total electron content along a line of sight, the authors derive an approximation to the second-order term which is accurate to approximately 90 percent within the magnetic dipole moment model; this approximation can be used to reduce the second-order term to the millimeter level, thus potentially improving precise positioning in space and on the ground. The induced group delay, or phase advance, due to second- and third-order effects is examined for two ground receivers located at equatorial and mid-latitude regions tracking several GPS satellites.

  14. Medical errors and uncertainty in primary healthcare: A comparative study of coping strategies among young and experienced GPs

    PubMed Central

    Kuikka, Liisa; Pitkälä, Kaisu

    2014-01-01

    Abstract Objective. To study coping differences between young and experienced GPs in primary care who experience medical errors and uncertainty. Design. Questionnaire-based survey (self-assessment) conducted in 2011. Setting. Finnish primary practice offices in Southern Finland. Subjects. Finnish GPs engaged in primary health care from two different respondent groups: young (working experience ≤ 5years, n = 85) and experienced (working experience > 5 years, n = 80). Main outcome measures. Outcome measures included experiences and attitudes expressed by the included participants towards medical errors and tolerance of uncertainty, their coping strategies, and factors that may influence (positively or negatively) sources of errors. Results. In total, 165/244 GPs responded (response rate: 68%). Young GPs expressed significantly more often fear of committing a medical error (70.2% vs. 48.1%, p = 0.004) and admitted more often than experienced GPs that they had committed a medical error during the past year (83.5% vs. 68.8%, p = 0.026). Young GPs were less prone to apologize to a patient for an error (44.7% vs. 65.0%, p = 0.009) and found, more often than their more experienced colleagues, on-site consultations and electronic databases useful for avoiding mistakes. Conclusion. Experienced GPs seem to better tolerate uncertainty and also seem to fear medical errors less than their young colleagues. Young and more experienced GPs use different coping strategies for dealing with medical errors. Implications. When GPs become more experienced, they seem to get better at coping with medical errors. Means to support these skills should be studied in future research. PMID:24914458

  15. Prognostic value of the Glasgow Prognostic Score for glioblastoma multiforme patients treated with radiotherapy and temozolomide.

    PubMed

    Topkan, Erkan; Selek, Ugur; Ozdemir, Yurday; Yildirim, Berna A; Guler, Ozan C; Ciner, Fuat; Mertsoylu, Huseyin; Tufan, Kadir

    2018-04-25

    To evaluate the prognostic value of the Glasgow Prognostic Score (GPS), the combination of C-reactive protein (CRP) and albumin, in glioblastoma multiforme (GBM) patients treated with radiotherapy (RT) and concurrent plus adjuvant temozolomide (GPS). Data of newly diagnosed GBM patients treated with partial brain RT and concurrent and adjuvant TMZ were retrospectively analyzed. The patients were grouped into three according to the GPS criteria: GPS-0: CRP < 10 mg/L and albumin > 35 g/L; GPS-1: CRP < 10 mg/L and albumin < 35 g/L or CRP > 10 mg/L and albumin > 35 g/L; and GPS-2: CRP > 10 mg/L and albumin < 35 g/L. Primary end-point was the association between the GPS groups and the overall survival (OS) outcomes. A total of 142 patients were analyzed (median age: 58 years, 66.2% male). There were 64 (45.1%), 40 (28.2%), and 38 (26.7%) patients in GPS-0, GPS-1, and GPS-2 groups, respectively. At median 15.7 months follow-up, the respective median and 5-year OS rates for the whole cohort were 16.2 months (95% CI 12.7-19.7) and 9.5%. In multivariate analyses GPS grouping emerged independently associated with the median OS (P < 0.001) in addition to the extent of surgery (P = 0.032), Karnofsky performance status (P = 0.009), and the Radiation Therapy Oncology Group recursive partitioning analysis (RTOG RPA) classification (P < 0.001). The GPS grouping and the RTOG RPA classification were found to be strongly correlated in prognostic stratification of GBM patients (correlation coefficient: 0.42; P < 0.001). The GPS appeared to be useful in prognostic stratification of GBM patients into three groups with significantly different survival durations resembling the RTOG RPA classification.

  16. Azimuth selection for sea level measurements using geodetic GPS receivers

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolei; Zhang, Qin; Zhang, Shuangcheng

    2018-03-01

    Based on analysis of Global Positioning System (GPS) multipath signals recorded by a geodetic GPS receiver, GPS Reflectometry (GPS-R) has demonstrated unique advantages in relation to sea level monitoring. Founded on multipath reflectometry theory, sea level changes can be measured by GPS-R through spectral analysis of recorded signal-to-noise ratio data. However, prior to estimating multipath parameters, it is necessary to define azimuth and elevation angle mask to ensure the reflecting zones are on water. Here, a method is presented to address azimuth selection, a topic currently under active development in the field of GPS-R. Data from three test sites: the Kachemak Bay GPS site PBAY in Alaska (USA), Friday Harbor GPS site SC02 in the San Juan Islands (USA), and Brest Harbor GPS site BRST in Brest (France) are analyzed. These sites are located in different multipath environments, from a rural coastal area to a busy harbor, and they experience different tidal ranges. Estimates by the GPS tide gauges at azimuths selected by the presented method are compared with measurements from physical tide gauges and acceptable correspondence found for all three sites.

  17. Simulation and analysis of differential GPS

    NASA Astrophysics Data System (ADS)

    Denaro, R. P.

    NASA is conducting a research program to evaluate differential Global Positioning System (GPS) concepts for civil helicopter navigation. It is pointed out that the civil helicopter community will probably be an early user of GPS because of the unique mission operations in areas where precise navigation aids are not available. However, many of these applications involve accuracy requirements which cannot be satisfied by conventional GPS. Such applications include remote area search and rescue, offshore oil platform approach, remote area precision landing, and other precise navigation operations. Differential GPS provides a promising approach for meeting very demanding accuracy requirements. The considered procedure eliminates some of the common bias errors experienced by conventional GPS. This is done by making use of a second GPS receiver. A simulation process is developed as a tool for analyzing various scenarios of GPS-referenced civil aircraft navigation.

  18. GPS-based household interview survey for the Cincinnati, Ohio Region.

    DOT National Transportation Integrated Search

    2012-02-01

    Methods for Conducting a Large-Scale GPS-Only Survey of Households: Past Household Travel Surveys (HTS) in the United States have only piloted small subsamples of Global Positioning Systems (GPS) completes compared with 1-2 day self-reported travel i...

  19. Site selection plan and installation guidelines for a nationwide differential GPS service

    DOT National Transportation Integrated Search

    1997-08-05

    The Global Positioning System (GPS), in its current form, is used within the transportation industry for vehicle tracking and navigation. With the advent of a nationwide differential GPS (DGPS) service, this role will expand to include public safety,...

  20. 76 FR 31943 - Global Positioning System Directorate (Gpsd); Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ...) Durations. All comments must be submitted in Comments Resolution Matrix (CRM) form. These forms along with... process for IS-GPS-200, IS-GPS-705, and IS-GPS-800. Please provide them in the CRM form and submit to Tony...

  1. Design Document for Differential GPS Ground Reference Station Pseudorange Correction Generation Algorithm

    DOT National Transportation Integrated Search

    1986-12-01

    The algorithms described in this report determine the differential corrections to be broadcast to users of the Global Positioning System (GPS) who require higher accuracy navigation or position information than the 30 to 100 meters that GPS normally ...

  2. Guidelines for the Design of GPS and LORAN Receiver Controls and Displays

    DOT National Transportation Integrated Search

    1995-03-01

    Long range navigation (Loran) and global positioning system (GPS) receivers are widely used in aviation. The Loran and GPS receivers are similar in size and function but derive their navigation signals from different sources. The design of the contro...

  3. Use of GPS and InSAR Technology and its Further Development in Earthquake Modeling

    NASA Technical Reports Server (NTRS)

    Donnellan, A.; Lyzenga, G.; Argus, D.; Peltzer, G.; Parker, J.; Webb, F.; Heflin, M.; Zumberge, J.

    1999-01-01

    Global Positioning System (GPS) data are useful for understanding both interseismic and postseismic deformation. Models of GPS data suggest that the lower crust, lateral heterogeneity, and fault slip, all provide a role in the earthquake cycle.

  4. The role of complementary and alternative medicine (CAM) in Germany - a focus group study of GPs.

    PubMed

    Joos, Stefanie; Musselmann, Berthold; Miksch, Antje; Rosemann, Thomas; Szecsenyi, Joachim

    2008-06-12

    There has been a marked increase in the use of complementary and alternative medicine (CAM) in recent years worldwide. In Germany, apart from 'Heilpraktiker' (= state-licensed, non-medical CAM practitioners), some general practitioners (GPs) provide CAM in their practices. This paper aims to explore the attitudes of GPs about the role of CAM in Germany, in relation to the healthcare system, quality of care, medical education and research. Furthermore, experiences of GPs integrating CAM in their daily practice were explored. Using a qualitative methodological approach 3 focus groups with a convenience sample of 17 GPs were conducted. The discussions were transcribed verbatim and analysed using qualitative content analysis. The majority of the participating GPs had integrated one or more CAM therapies into their every-day practice. Four key themes were identified based on the topics covered in the focus groups: the role of CAM within the German healthcare system, quality of care, education and research. Within the theme 'role of CAM within the healthcare system' there were five categories: integration of CAM, CAM in the Statutory Health Insurance, modernisation of the Statutory Health Insurance Act, individual healthcare services and 'Heilpraktiker'. Regarding quality of care there were two broad groups of GPs: those who thought patients would benefit from standardizing CAM and those who feared that quality control would interfere with the individual approach of CAM. The main issues identified relating to research and education were the need for the development of alternative research strategies and the low quality of existing CAM education respectively. The majority of the participating GPs considered CAM as a reasonable complementary approach within primary care. The study increased our understanding of GPs attitudes about the role of CAM within the German healthcare system and the use of 'Heilpraktiker' as a competing CAM-provider. It seems to be a need for increased funding for research, better education and remuneration by the Statutory Health Insurance in order to improve access to 'Integrative medicine' in Germany.

  5. Workshop Builds Strategies to Address Global Positioning System Vulnerabilities

    NASA Astrophysics Data System (ADS)

    Fisher, Genene

    2011-01-01

    When we examine the impacts of space weather on society, do we really understand the risks? Can past experiences reliably predict what will happen in the future? As the complexity of technology increases, there is the potential for it to become more fragile, allowing for a single point of failure to bring down the entire system. Take the Global Positioning System (GPS) as an example. GPS positioning, navigation, and timing have become an integral part of daily life, supporting transportation and communications systems vital to the aviation, merchant marine, cargo, cellular phone, surveying, and oil exploration industries. Everyday activities such as banking, mobile phone operations, and even the control of power grids are facilitated by the accurate timing provided by GPS. Understanding the risks of space weather to GPS and the many economic sectors reliant upon it, as well as how to build resilience, was the focus of a policy workshop organized by the American Meteorological Society (AMS) and held on 13-14 October 2010 in Washington, D. C. The workshop brought together a select group of policy makers, space weather scientists, and GPS experts and users.

  6. Global positioning system : challenges in sustaining and upgrading capabilities persist.

    DOT National Transportation Integrated Search

    2010-09-01

    The Global Positioning System (GPS) provides positioning, navigation, and timing (PNT) data to users worldwide. The U.S. Air Force, which is responsible for GPS acquisition, is in the process of modernizing the system. Last year GAO reported that it ...

  7. UNITED STATES DEPARTMENT OF TRANSPORTATION GLOBAL POSITIONING SYSTEM (GPS) ADJACENT BAND COMPATIBILITY ASSESSMENT

    DOT National Transportation Integrated Search

    2018-04-01

    The goal of the U.S. Department of Transportation (DOT) Global Positioning System (GPS) Adjacent Band Compatibility Assessment is to evaluate the maximum transmitted power levels of adjacent band radiofrequency (RF) systems that can be tolerated by G...

  8. a New Survey on Self-Tuning Integrated Low-Cost Gps/ins Vehicle Navigation System in Harsh Environment

    NASA Astrophysics Data System (ADS)

    Navidi, N.; Landry, R., Jr.

    2015-08-01

    Nowadays, Global Positioning System (GPS) receivers are aided by some complementary radio navigation systems and Inertial Navigation Systems (INS) to obtain more accuracy and robustness in land vehicular navigation. Extended Kalman Filter (EKF) is an acceptable conventional method to estimate the position, the velocity, and the attitude of the navigation system when INS measurements are fused with GPS data. However, the usage of the low-cost Inertial Measurement Units (IMUs) based on the Micro-Electro-Mechanical Systems (MEMS), for the land navigation systems, reduces the precision and stability of the navigation system due to their inherent errors. The main goal of this paper is to provide a new model for fusing low-cost IMU and GPS measurements. The proposed model is based on EKF aided by Fuzzy Inference Systems (FIS) as a promising method to solve the mentioned problems. This model considers the parameters of the measurement noise to adjust the measurement and noise process covariance. The simulation results show the efficiency of the proposed method to reduce the navigation system errors compared with EKF.

  9. The Utility and Validity of Kinematic GPS Positioning for the Geosar Airborne Terrain Mapping Radar System

    NASA Technical Reports Server (NTRS)

    Freedman, Adam; Hensley, Scott; Chapin, Elaine; Kroger, Peter; Hussain, Mushtaq; Allred, Bruce

    1999-01-01

    GeoSAR is an airborne, interferometric Synthetic Aperture Radar (IFSAR) system for terrain mapping, currently under development by a consortium including NASA's Jet Propulsion Laboratory (JPL), Calgis, Inc., a California mapping sciences company, and the California Department of Conservation (CaIDOC), with funding provided by the U.S. Army Corps of Engineers Topographic Engineering Center (TEC) and the U.S. Defense Advanced Research Projects Agency (DARPA). IFSAR data processing requires high-accuracy platform position and attitude knowledge. On 9 GeoSAR, these are provided by one or two Honeywell Embedded GPS Inertial Navigation Units (EGI) and an Ashtech Z12 GPS receiver. The EGIs provide real-time high-accuracy attitude and moderate-accuracy position data, while the Ashtech data, post-processed differentially with data from a nearby ground station using Ashtech PNAV software, provide high-accuracy differential GPS positions. These data are optimally combined using a Kalman filter within the GeoSAR motion measurement software, and the resultant position and orientation information are used to process the dual frequency (X-band and P-band) radar data to generate high-accuracy, high -resolution terrain imagery and digital elevation models (DEMs). GeoSAR requirements specify sub-meter level planimetric and vertical accuracies for the resultant DEMS. To achieve this, platform positioning errors well below one meter are needed. The goal of GeoSAR is to obtain 25 cm or better 3-D positions from the GPS systems on board the aircraft. By imaging a set of known point target corner-cube reflectors, the GeoSAR system can be calibrated. This calibration process yields the true position of the aircraft with an uncertainty of 20- 50 cm. This process thus allows an independent assessment of the accuracy of our GPS-based positioning systems. We will present an overview of the GeoSAR motion measurement system, focusing on the use of GPS and the blending of position data from the various systems. We will present the results of our calibration studies that relate to the accuracy the GPS positioning. We will discuss the effects these positioning, errors have on the resultant DEM products and imagery.

  10. Capacity evaluation for general practitioners in Pudong new area of Shanghai: an empirical study.

    PubMed

    Li, Ming; Shu, Zhiqun; Huang, Xuan; Du, Zhaohui; Wu, Jun; Xia, Qingshi; Liu, Kun; Lou, Jiquan; Jing, Limei

    2016-11-28

    Building highly qualified General Practitioners (GPs) is key to the development of primary health care. It's therefore urgent to ensure the GPs' quality service under the background of the new round of health care system reforms in China. A new model of GP qualification examination was originally implemented in Pudong New Area of Shanghai, China, which aimed to empirically evaluate the GPs' capability in terms of clinical performance and social recognition. In the current study, an analysis was made of the first two years (2014-2015) of such theoretical and practical examinations on the GPs there with a view to getting a deep insight into the GP community so as to identify the barriers to such a form of GP qualification examination. The agency survey method was applied to the two-year database of the GP examinees, the formative research conducted to explore the key elements for developing the examination model. The data analysis was performed with SPSS for Windows (Version 19.0) to describe the GPs' overall characteristics, and to make comparisons between different groups. In 2015, the total number of GPs was 1264 in the area, in different districts of which, statistically significant differences were found in sex, age, professional title and employment span (P < 0.05). Such results were found to be similar to those in 2014. The examinees' theoretical scores were statistically different (F = 7.76; P < 0.05), showing a sloping trend from the urban district to the suburban, to the rural and then to the farther rural, as indicated by LSD-t test (P < 0.05). From the theoretical examinations the scores were higher on the western medicine than on the traditional Chinese medicine (F = 22.11; P < 0.05). As suggested by the current study on the GPs' qualification examination, which was pioneered in Pudong New Area of Shanghai, the construction of GP community was far from sufficient. It was a preliminary study and further studies are merited along the construction and development in terms of continuing medical education, performance appraisal and incentive mechanism.

  11. General practitioners' decisions about discontinuation of medication: an explorative study.

    PubMed

    Nixon, Michael Simon; Vendelø, Morten Thanning

    2016-06-20

    Purpose - The purpose of this paper is to investigate how general practitioners' (GPs) decisions about discontinuation of medication are influenced by their institutional context. Design/methodology/approach - In total, 24 GPs were interviewed, three practices were observed and documents were collected. The Gioia methodology was used to analyse data, drawing on a theoretical framework that integrate the sensemaking perspective and institutional theory. Findings - Most GPs, who actively consider discontinuation, are reluctant to discontinue medication, because the safest course of action for GPs is to continue prescriptions, rather than discontinue them. The authors conclude that this is in part due to the ambiguity about the appropriateness of discontinuing medication, experienced by the GPs, and in part because the clinical guidelines do not encourage discontinuation of medication, as they offer GPs a weak frame for discontinuation. Three reasons for this are identified: the guidelines provide dominating triggers for prescribing, they provide weak priming for discontinuation as an option, and they underscore a cognitive constraint against discontinuation. Originality/value - The analysis offers new insights about decision making when discontinuing medication. It also offers one of the first examinations of how the institutional context embedding GPs influences their decisions about discontinuation. For policymakers interested in the discontinuation of medication, the findings suggest that de-stigmatising discontinuation on an institutional level may be beneficial, allowing GPs to better justify discontinuation in light of the ambiguity they experience.

  12. [Comfort and discomfort: the role of emotions in GPs' prescription practices].

    PubMed

    Henriksen, Kristin; Hansen, Ebba Holme

    2005-12-05

    The role of emotions in GPs' prescribing has been ignored. The present article describes 20 GPs' reflections about what precedes comfort and discomfort in prescribing situations. In-depth interviews were done with 20 GPs who contributed with examples on an open comfort-discomfort scale. Analysis of the data was inspired by grounded theory. The GPs experienced a broad spectrum of emotions when prescribing. In every prescribing situation, conditions could pull towards both comfort and discomfort. Comfort appeared when the indication was correct and the patient's condition was serious, when the patient experienced the problem as serious, when the situation was acute and the medicine effective, and when the GP experienced himself as competent. Medicines were placed between comfort and discomfort when prescribing was perceived as indifferent, unproblematic and easy, when the GP was concerned about inflicting a sick role on the patients, and when patients were not convinced about the appropriateness of the medication. Discomfort appeared when there was a great risk of dependence, when GPs experienced and gave in to pressure, when they had to convince patients, and when they prescribed addictive medicine regularly. The totality of conditions in the situation determined the emotional state in the prescribing situation. The GPs' emotions reflected how they evaluated the appropriateness of their prescribing. This should be taken advantage of in rational pharmacotherapy. Future interventions should address both the rationality of GPs and their emotions.

  13. An Interdisciplinary Approach at Studying the Earth-Sun System with GPS/GNSS and GPS-like Signals

    NASA Technical Reports Server (NTRS)

    Zuffada, Cinzia; Hajj, George; Mannucci, Anthony J.; Chao, Yi; Ao, Chi; Zumberge, James

    2005-01-01

    The value of Global Positioning Satellites (GPS) measurements to atmospheric science, space physics, and ocean science, is now emerging or showing a potential to play a major role in the evolving programs of NASA, NSF and NOAA. The objective of this communication is to identify and articulate the key scientific questions that are optimally, or perhaps uniquely, addressed by GPS or GPS-like observations, and discuss their relevance to existing or planned national Earth-science research programs. The GPS-based ocean reflection experiments performed to date have demonstrated the precision and spatial resolution suitable to altimetric applications that require higher spatial resolution and more frequent repeat than the current radar altimeter satellites. GPS radio occultation is promising as a climate monitoring tool because of its benchmark properties: its raw observable is based on extremely accurate timing measurements. GPS-derived temperature profiles can provide meaningful climate trend information over decadal time scales without the need for overlapping missions or mission-to-mission calibrations. By acquiring data as GPS satellites occult behind the Earth's limb, GPS also provides high vertical resolution information on the vertical structure of electron density with global coverage. New experimental techniques will create more comprehensive TEC maps by using signals reflected from the oceans and received in orbit. This communication will discuss a potential future GNSS Earth Observing System project which would deploy a constellation of satellites using GPS and GPS-like measurements, to obtain a) topography measurements based on GPS reflections with an accuracy and horizontal resolution suitable for eddy monitoring, and h) climate-records quality atmospheric temperature profiles. The constellation would also provide for measurements of ionospheric elec tron density. This is a good example of an interdisciplinary mission concept, with broad science objectives of high societal relevance, al l resting on common cost-effective technology.

  14. Integration of X-SAR observations with data of other remote sensing techniques: preliminary results achieved with Cosmo/SkyMed announcement of opportunity projects

    NASA Astrophysics Data System (ADS)

    Vespe, Francesco; Baldini, Luca; Notarnicola, Claudia; Prati, Claudio; Zerbini, Susanna; Celidonio, G.

    2011-11-01

    The Italian Space Agency is funding 27 scientific projects in the framework of Cosmo/Skymed program (hereafter CSK) . A subset of them are focusing on the improvements of the quality and quantity of information which can be extracted from X-SAR data if integrated with other independent techniques like GPS or SAR imagery in L and C bands. The GPS observations, namely zenith total delays estimated by means of GPS ground stations, could be helpful to estimate the troposphere bias to remove from IN-SAR imagery. Another contribution of GPS could be the improvements of the orbits of Cosmo/SkyMed satellites. In particular the GPS navigation data of the CSK satellites could serve to improve the atmospheric drag models acting on them. The integration of SAR data in L and C bands on the other hand are helpful to investigate land hydrogeology parameters as well as to improve global precipitation observations. The combined use of L, C and X SAR data with different penetration depth could give profiles of land surface properties, especially in forest and snow/ice-packs. For what concern the use of X-SAR imagery for rain precipitation monitoring, particular attention will be paid to its polarimetric properties that we plan to determine aligning the CSK observations with those obtained with ground L and C radars. Anyway the study goals, the approaches proposed, the test sites identified and the external data selected for the development and validation will be described for each project. Particular attention will be paid to single the advantages that the research activities can benefit from the added potentials of CSK system: the more frequent revisiting time and the higher resolution capabilities.

  15. Anti-epidermal or anti-vascular endothelial growth factor as first-line metastatic colorectal cancer in modified Glasgow prognostic score 2' patients

    PubMed Central

    Dréanic, Johann; Dhooge, Marion; Barret, Maximilien; Brezault, Catherine; Mir, Olivier; Chaussade, Stanislas; Coriat, Romain

    2015-01-01

    Background In metastatic colorectal cancer, the modified Glasgow prognostic score (mGPS) has been approved as an independent prognostic indicator of survival. No data existed on poor prognosis patients treated with molecular-targeted agents. Methods From January 2007 to February 2012, patients with metastatic colorectal cancer and poor predictive survival score (mGPS = 2), treated with 5-fluorouracil-based chemotherapy in addition to an anti-epidermal growth factor receptor (EGFR) or anti-vascular epidermal growth factor (VEGF) therapy, were included to assess the interest of targeted therapy within mGPS = 2' patients. Results A total of 27 mGPS = 2' patients were included and received a 5-fluorouracil-based systemic chemotherapy in addition to an anti-EGFR treatment (cetuximab; n = 18) or an anti-VEGF treatment (bevacizumab; n = 9). Median follow-up was 12.1 months (interquartile range 4.9–22). Patients were Eastern Cooperative Oncology Group (ECOG) Performance Status 1, 2, and 3 in 66% (n = 18), 26% (n = 7), and 8% (n = 2), respectively. Comparing anti-EGFR and anti-VEGF groups, median progression-free survival was 3.9 and 15.4 months, respectively, and was significantly different (P = 0.046). Conversely, the median overall survival was not significantly different between the two groups (P = 0.15). Conclusion Our study confirmed the poor survival of patients with mGPS = 2 despite the use of targeted therapy and identified the superiority of an anti-VEGF treatment in progression-free survival, without a significant benefit in the overall survival compared with the anti-EGFR therapy. Our results deserved confirmation by a prospective clinical trial. PMID:26401469

  16. Assessment of Radiometer Calibration with GPS Radio Occultation for the MiRaTA CubeSat Mission.

    PubMed

    Marinan, Anne D; Cahoy, Kerri L; Bishop, Rebecca L; Lui, Susan S; Bardeen, James R; Mulligan, Tamitha; Blackwell, William J; Leslie, R Vincent; Osaretin, Idahosa; Shields, Michael

    2016-12-01

    The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). The science payload on MiRaTA consists of a tri-band microwave radiometer and Global Positioning System (GPS) radio occultation (GPSRO) sensor. The microwave radiometer takes measurements of all-weather temperature (V-band, 50-57 GHz), water vapor (G-band, 175-191 GHz), and cloud ice (G-band, 205 GHz) to provide observations used to improve weather forecasting. The Aerospace Corporation's GPSRO experiment, called the Compact TEC (Total Electron Content) and Atmospheric GPS Sensor (CTAGS), measures profiles of temperature and pressure in the upper troposphere/lower stratosphere (∼20 km) and electron density in the ionosphere (over 100 km). The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, (2) the application of a commercial off the shelf (COTS) GPS receiver and custom patch antenna array technology to obtain neutral atmospheric GPSRO retrieval from a nanosatellite, and (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. In this paper, we focus on objective (3), developing operational models to meet a mission goal of 100 concurrent radiometer and GPSRO measurements, and estimating the temperature measurement precision for the CTAGS instrument based on thermal noise. Based on an analysis of thermal noise of the CTAGS instrument, the expected temperature retrieval precision is between 0.17 K and 1.4 K, which supports the improvement of radiometric calibration to 0.25 K.

  17. Continuous GPS observations of postseismic deformation following the 16 October 1999 Hector Mine, California, earthquake (Mw 7.1)

    USGS Publications Warehouse

    Hudnutt, K.W.; King, N.E.; Galetzka, J.E.; Stark, K.F.; Behr, J.A.; Aspiotes, A.; van, Wyk S.; Moffitt, R.; Dockter, S.; Wyatt, F.

    2002-01-01

    Rapid field deployment of a new type of continuously operating Global Positioning System (GPS) network and data from Southern California Integrated GPS Network (SCIGN) stations that had recently begun operating in the area allow unique observations of the postseismic deformation associated with the 1999 Hector Mine earthquake. Innovative solutions in fieldcraft, devised for the 11 new GPS stations, provide high-quality observations with 1-year time histories on stable monuments at remote sites. We report on our results from processing the postseismic GPS data available from these sites, as well as 8 other SCIGN stations within 80 km of the event (a total of 19 sites). From these data, we analyze the temporal character and spatial pattern of the postseismic transients. Data from some sites display statistically significant time variation in their velocities. Although this is less certain, the spatial pattern of change in the postseismic velocity field also appears to have changed. The pattern now is similar to the pre-Landers (pre-1992) secular field, but laterally shifted and locally at twice the rate. We speculate that a 30 km ?? 50 km portion of crust (near Twentynine Palms), which was moving at nearly the North American plate rate (to within 3.5 mm/yr of that rate) prior to the 1992 Landers sequence, now is moving along with the crust to the west of it, as though it has been entrained in flow along with the Pacific Plate as a result of the Landers and Hector Mine earthquake sequence. The inboard axis of right-lateral shear deformation (at lower crustal to upper mantle depth) may have jumped 30 km farther into the continental crust at this fault junction that comprises the southern end of the eastern California shear zone.

  18. Assessment of Radiometer Calibration with GPS Radio Occultation for the MiRaTA CubeSat Mission

    PubMed Central

    Marinan, Anne D.; Cahoy, Kerri L.; Bishop, Rebecca L.; Lui, Susan S.; Bardeen, James R.; Mulligan, Tamitha; Blackwell, William J.; Leslie, R. Vincent; Osaretin, Idahosa; Shields, Michael

    2017-01-01

    The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). The science payload on MiRaTA consists of a tri-band microwave radiometer and Global Positioning System (GPS) radio occultation (GPSRO) sensor. The microwave radiometer takes measurements of all-weather temperature (V-band, 50-57 GHz), water vapor (G-band, 175-191 GHz), and cloud ice (G-band, 205 GHz) to provide observations used to improve weather forecasting. The Aerospace Corporation's GPSRO experiment, called the Compact TEC (Total Electron Content) and Atmospheric GPS Sensor (CTAGS), measures profiles of temperature and pressure in the upper troposphere/lower stratosphere (∼20 km) and electron density in the ionosphere (over 100 km). The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, (2) the application of a commercial off the shelf (COTS) GPS receiver and custom patch antenna array technology to obtain neutral atmospheric GPSRO retrieval from a nanosatellite, and (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. In this paper, we focus on objective (3), developing operational models to meet a mission goal of 100 concurrent radiometer and GPSRO measurements, and estimating the temperature measurement precision for the CTAGS instrument based on thermal noise. Based on an analysis of thermal noise of the CTAGS instrument, the expected temperature retrieval precision is between 0.17 K and 1.4 K, which supports the improvement of radiometric calibration to 0.25 K. PMID:28828144

  19. The Integration, Testing and Flight of the EO-1 GPS

    NASA Technical Reports Server (NTRS)

    Quinn, David A.; Sanneman, Paul A.; Shulman, Seth E.; Sager, Jennifer A.

    2001-01-01

    The Global Positioning System has long been hailed as the wave of the future for autonomous on-board navigation of low Earth orbiting spacecraft despite the fact that relatively few spacecraft have actually employed it for this purpose. While several missions operated out of the Goddard Space Flight Center have flown GPS receivers on board, the New Millenium Program (NMP) Earth Orbiting-1 (EO-1) spacecraft is the first to employ GPS for active, autonomous on-board navigation. Since EO-1 was designed to employ GPS as its primary source of the navigation ephemeris, special care had to be taken during the integration phase of spacecraft construction to assure proper performance. This paper is a discussion of that process: a brief overview of how the GPS works, how it fits into the design of the EO-1 Attitude Control System (ACS), the steps taken to integrate the system into the EO-1 spacecraft, the ultimate on-orbit performance during launch and early operations of the EO-1 mission and the performance of the on-board GPS ephemeris versus the ground based ephemeris. Conclusions will include a discussion of the lessons learned.

  20. Operational Use of GPS Navigation for Space Shuttle Entry

    NASA Technical Reports Server (NTRS)

    Goodman, John L.; Propst, Carolyn A.

    2008-01-01

    The STS-118 flight of the Space Shuttle Endeavour was the first shuttle mission flown with three Global Positioning System (GPS) receivers in place of the three legacy Tactical Air Navigation (TACAN) units. This marked the conclusion of a 15 year effort involving procurement, missionization, integration, and flight testing of a GPS receiver and a parallel effort to formulate and implement shuttle computer software changes to support GPS. The use of GPS data from a single receiver in parallel with TACAN during entry was successfully demonstrated by the orbiters Discovery and Atlantis during four shuttle missions in 2006 and 2007. This provided the confidence needed before flying the first all GPS, no TACAN flight with Endeavour. A significant number of lessons were learned concerning the integration of a software intensive navigation unit into a legacy avionics system. These lessons have been taken into consideration during vehicle design by other flight programs, including the vehicle that will replace the Space Shuttle, Orion.

  1. Evaluation of Mobile Phone Interference With Aircraft GPS Navigation Systems

    NASA Technical Reports Server (NTRS)

    Pace, Scott; Oria, A. J.; Guckian, Paul; Nguyen, Truong X.

    2004-01-01

    This report compiles and analyzes tests that were conducted to measure cell phone spurious emissions in the Global Positioning System (GPS) radio frequency band that could affect the navigation system of an aircraft. The cell phone in question had, as reported to the FAA (Federal Aviation Administration), caused interference to several GPS receivers on-board a small single engine aircraft despite being compliant with data filed at the time with the FCC by the manufacturer. NASA (National Aeronautics and Space Administration) and industry tests show that while there is an emission in the 1575 MHz GPS band due to a specific combination of amplifier output impedance and load impedance that induces instability in the power amplifier, these spurious emissions (i.e., not the intentional transmit signal) are similar to those measured on non-intentionally transmitting devices such as, for example, laptop computers. Additional testing on a wide sample of different commercial cell phones did not result in any emission in the 1575 MHz GPS Band above the noise floor of the measurement receiver.

  2. Investigation of Models and Estimation Techniques for GPS Attitude Determination

    NASA Technical Reports Server (NTRS)

    Garrick, J.

    1996-01-01

    Much work has been done in the Flight Dynamics Analysis Branch (FDAB) in developing algorithms to met the new and growing field of attitude determination using the Global Positioning SYstem (GPS) constellation of satellites. Flight Dynamics has the responsibility to investigate any new technology and incorporate the innovations in the attitude ground support systems developed to support future missions. The work presented here is an investigative analysis that will produce the needed adaptation to allow the Flight Dynamics Support System (FDSS) to incorporate GPS phase measurements and produce observation measurements compatible with the FDSS. A simulator was developed to produce the necessary measurement data to test the models developed for the different estimation techniques used by FDAB. This paper gives an overview of the current modeling capabilities of the simulator models and algorithms for the adaptation of GPS measurement data and results from each of the estimation techniques. Future analysis efforts to evaluate the simulator and models against inflight GPS measurement data are also outlined.

  3. Launch vehicle tracking enhancement through Global Positioning System Metric Tracking

    NASA Astrophysics Data System (ADS)

    Moore, T. C.; Li, Hanchu; Gray, T.; Doran, A.

    United Launch Alliance (ULA) initiated operational flights of both the Atlas V and Delta IV launch vehicle families in 2002. The Atlas V and Delta IV launch vehicles were developed jointly with the US Air Force (USAF) as part of the Evolved Expendable Launch Vehicle (EELV) program. Both Launch Vehicle (LV) families have provided 100% mission success since their respective inaugural launches and demonstrated launch capability from both Vandenberg Air Force Base (VAFB) on the Western Test Range and Cape Canaveral Air Force Station (CCAFS) on the Eastern Test Range. However, the current EELV fleet communications, tracking, & control architecture & technology, which date back to the origins of the space launch business, require support by a large and high cost ground footprint. The USAF has embarked on an initiative known as Future Flight Safety System (FFSS) that will significantly reduce Test Range Operations and Maintenance (O& M) cost by closing facilities and decommissioning ground assets. In support of the FFSS, a Global Positioning System Metric Tracking (GPS MT) System based on the Global Positioning System (GPS) satellite constellation has been developed for EELV which will allow both Ranges to divest some of their radar assets. The Air Force, ULA and Space Vector have flown the first 2 Atlas Certification vehicles demonstrating the successful operation of the GPS MT System. The first Atlas V certification flight was completed in February 2012 from CCAFS, the second Atlas V certification flight from VAFB was completed in September 2012 and the third certification flight on a Delta IV was completed October 2012 from CCAFS. The GPS MT System will provide precise LV position, velocity and timing information that can replace ground radar tracking resource functionality. The GPS MT system will provide an independent position/velocity S-Band telemetry downlink to support the current man-in-the-loop ground-based commanded destruct of an anomalous flight- The system utilizes a 50 channel digital receiver capable of navigating in high dynamic environments and high altitudes fed by antennas mounted diametrically opposed on the second stage airframe skin. To enhance cost effectiveness, the GPS MT System design implemented existing commercial parts and common environmental and interface requirements for both EELVs. The EELV GPS MT System design is complete, successfully qualified and has demonstrated that the system performs as simulated. This paper summarizes the current development status, system cost comparison, and performance capabilities of the EELV GPS MT System.

  4. Velocity Noise in Space Shuttle and ISS GPS from the Ionosphere

    NASA Technical Reports Server (NTRS)

    Kramer, Leonard

    2004-01-01

    A viewgraph presentation on the noise velocity effects on the Space Shuttle and International Space Station (ISS) Global Positioning System (GPS) from the ionosphere is shown. The topics include: Scintillation in MAGR/S GPS used for Shuttle; 2) Geographic Distribution of Scintillation; 3) Diurnal Variability; 4) Feynman's interpretation of interference; 5) Angle between line of sight and S/C velocity; and 6) Space Station GPS

  5. PiVoT GPS Receiver

    NASA Technical Reports Server (NTRS)

    Wennersten, Miriam Dvorak; Banes, Anthony Vince; Boegner, Gregory J.; Dougherty, Lamar; Edwards, Bernard L.; Roman, Joseph; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    NASA Goddard Space Flight Center has built an open architecture, 24 channel space flight GPS receiver. The CompactPCI PiVoT GPS receiver card is based on the Mitel/GEC Plessey Builder-2 board. PiVoT uses two Plessey 2021 correlators to allow tracking of up to 24 separate GPS SV's on unique channels. Its four front ends can support four independent antennas, making it a useful card for hosting GPS attitude determination algorithms. It has been built using space quality, radiation tolerant parts. The PiVoT card will track a weaker signal than the original Builder 2 board. It also hosts an improved clock oscillator. The PiVoT software is based on the original Plessey Builder 2 software ported to the Linux operating system. The software is POSIX complaint and can easily be converted to other POSIX operating systems. The software is open source to anyone with a licensing agreement with Plessey. Additional tasks can be added to the software to support GPS science experiments or attitude determination algorithms. The next generation PiVoT receiver will be a single radiation hardened CompactPCI card containing the microprocessor and the GPS receiver optimized for use above the GPS constellation. PiVoT was flown successfully on a balloon in July, 2001, for its first non-simulated flight.

  6. Supporting EarthScope Cyber-Infrastructure with a Modern GPS Science Data System

    NASA Astrophysics Data System (ADS)

    Webb, F. H.; Bock, Y.; Kedar, S.; Jamason, P.; Fang, P.; Dong, D.; Owen, S. E.; Prawirodirjo, L.; Squibb, M.

    2008-12-01

    Building on NASA's investment in the measurement of crustal deformation from continuous GPS, we are developing and implementing a Science Data System (SDS) that will provide mature, long-term Earth Science Data Records (ESDR's). This effort supports NASA's Earth Surface and Interiors (ESI) focus area and provide NASA's component to the EarthScope PBO. This multi-year development is sponsored by NASA's Making Earth System data records for Use in Research Environments (MEaSUREs) program. The SDS integrates the generation of ESDRs with data analysis and exploration, product generation, and modeling tools based on daily GPS data that include GPS networks in western North America and a component of NASA's Global GPS Network (GGN) for terrestrial reference frame definition. The system is expandable to multiple regional and global networks. The SDS builds upon mature data production, exploration, and analysis algorithms developed under NASA's REASoN, ACCESS, and SENH programs. This SDS provides access to positions, time series, velocity fields, and strain measurements derived from continuous GPS data obtained at tracking stations in both the Plate Boundary Observatory and other regional Western North America GPS networks, dating back to 1995. The SDS leverages the IT and Web Services developments carried out under the SCIGN/REASoN and ACCESS projects, which have streamlined access to data products for researchers and modelers, and which have created a prototype an on-the-fly interactive research environment through a modern data portal, GPS Explorer. This IT system has been designed using modern IT tools and principles in order to be extensible to any geographic location, scale, natural hazard, and combination of geophysical sensor and related data. We have built upon open GIS standards, particularly those of the OGC, and have used the principles of Web Service-based Service Oriented Architectures to provide scalability and extensibility to new services and capabilities.

  7. New approach for processing data provided by an INS/GPS system onboard a vehicle

    NASA Astrophysics Data System (ADS)

    Dumitrascu, Ana; Serbanescu, Ionut; Tamas, Razvan D.; Danisor, Alin; Caruntu, George; Ticu, Ionela

    2016-12-01

    Due to the technology development, navigation systems are widely used in ground vehicle applications such as position prediction, safety of life, etc. It is known that a hybrid navigation system consisting of a GPS and inertial navigation system (INS) can provide a more accurate position prediction. By applying a Method of Moments (MoM) approach on the acquired data with INS/GPS we can extract both the coordinate and important information concerning safety of life. This kind of system will be cost effective and can also be used as a black box on boats, cars, submersible ships and even on small aircrafts.

  8. A Java-based tool for creating KML files from GPS waypoints

    NASA Astrophysics Data System (ADS)

    Kinnicutt, P. G.; Rivard, C.; Rimer, S.

    2008-12-01

    Google Earth provides a free tool with powerful capabilities for visualizing geoscience images and data. Commercial software tools exist for doing sophisticated digitizing and spatial modeling , but for the purposes of presentation, visualization and overlaying aerial images with data Google Earth provides much of the functionality. Likewise, with current technologies in GPS (Global Positioning System) systems and with Google Earth Plus, it is possible to upload GPS waypoints, tracks and routes directly into Google Earth for visualization. However, older technology GPS units and even low-cost GPS units found today may lack the necessary communications interface to a computer (e.g. no Bluetooth, no WiFi, no USB, no Serial, etc.) or may have an incompatible interface, such as a Serial port but no USB adapter available. In such cases, any waypoints, tracks and routes saved in the GPS unit or recorded in a field notebook must be manually transferred to a computer for use in a GIS system or other program. This presentation describes a Java-based tool developed by the author which enables users to enter GPS coordinates in a user-friendly manner, then save these coordinates in a Keyhole MarkUp Language (KML) file format, for visualization in Google Earth. This tool either accepts user-interactive input or accepts input from a CSV (Comma Separated Value) file, which can be generated from any spreadsheet program. This tool accepts input in the form of lat/long or UTM (Universal Transverse Mercator) coordinates. This presentation describes this system's applicability through several small case studies. This free and lightweight tool simplifies the task of manually inputting GPS data into Google Earth for people working in the field without an automated mechanism for uploading the data; for instance, the user may not have internet connectivity or may not have the proper hardware or software. Since it is a Java application and not a web- based tool, it can be installed on one's field laptop and the GPS data can be manually entered without the need for internet connectivity. This tool provides a table view of the GPS data, but lacks a KML viewer to view the data overlain on top of an aerial view, as this viewer functionality is provided in Google Earth. The tool's primary contribution lies in its more convenient method for entering the GPS data manually when automated technologies are not available.

  9. Orbit determination using real tracking data from FY3C-GNOS

    NASA Astrophysics Data System (ADS)

    Xiong, Chao; Lu, Chuanfang; Zhu, Jun; Ding, Huoping

    2017-08-01

    China is currently developing the BeiDou Navigation Satellite System, also known as BDS. The nominal constellation of BDS (regional), which had been able to provide preliminary regional positioning and navigation functions, was composed of fourteen satellites, including 5 GEO, 5 IGSO and 4 MEO satellites, and was realized by the end of 2013. Global navigation satellite system occultation sounder (GNOS) on board the Fengyun3C (FY3C) satellite, which is the first BDS/GPS compatible radio occultation (RO) sounder in the world, was launched on 23 September 2013. The GNOS instrument is capable of tracking up to 6 BeiDou satellites and more than 8 GPS satellites. We first present a quality analysis using 1-week onboard BDS/GPS measurements collected by GNOS. Satellite visibility, multipath combination and the ratio of cycle slips are analyzed. The analysis of satellite visibility shows that for one week the BDS receiver can track up to 6 healthy satellites. The analysis of multipath combinations (MPC) suggests more multipath present for BDS than GPS for the CA code (B1 MPC is 0.597 m, L1 MPC is 0.326 m), but less multipath for the P code (B2 MPC is 0.421 m, L2 MPC is 0.673 m). More cycle slips occur for the BDS than for the GPS receiver as shown by the ratio of total satellites/cycle slips observed over a 24 h period. Both the maximum value and average of the ratio of cycle slips based on BDS measurements is 72/50.29, which is smaller than 368/278.71 based on GPS measurements. Second, the results of reduced dynamic orbit determination using BDS/GPS code and phase measurements, standalone BDS SPP (Single Point Positioning) kinematic solution and real-time orbit determination using BDS/GPS code measurements are presented and analyzed. Using an overlap analysis, the orbit consistency of FY3C-GNOS is about 3.80 cm. The precision of BDS only solutions is about 22 cm. The precision of FY3C-GNOS orbit with the Helmert variance component estimation are improved slightly after the BDS observations are added for one week (October 10-16, 2013). In the three-dimensional direction, the orbit precision is respectively improved by 0.31 cm. BDS code observations already allow a standalone positioning with RMS accuracy of at least 22 m using BDS broadcast ephemeris, while the accuracy is at least 5 m using BDS precise ephemeris. The standard deviations of differences of real-time orbit determination with the Dynamic Model Compensation using BDS/GPS, GPS, and BDS code measurements are 1.24 m, 1.27 m and 6.67 m in three-dimensional direction, respectively. It can slightly improve convergence time for real-time orbit determination by 17 s after the BDS observations are added. And it can also slightly improve the accuracy of real-time orbit determination by 0.03 m. The results obtained in this paper are already rather promising.

  10. Invesion of tsunami height using GPS TEC data. The case of the 2012 Haida Gwaii tsunami and Earthquake.

    NASA Astrophysics Data System (ADS)

    Rakoto, V.; Lognonne, P. H.; Rolland, L. M.

    2015-12-01

    Large earthquakes (i.eM>6) and tsunamis associated are responsible for ionospheric perturbations. These perturbations can be observed in the total electron content (TEC) measured from multi- frequency Global Navigation Satellite systems (GNSS) data (e.g GPS). We will focus on the studies of the Haïda Gwaii earthquake and tsunami case. It happened the 28 october 2012 along the Queen Charlotte fault of the Canada Western Coast. First, we compare GPS data of perturbation TEC to our model. We model the TEC perturbation in several steps. (1) First, we compute tsunami normal modes modes in atmosphere in using PREM model with 4.7km of oceanic layer. (2) We sum all the tsunami modes to obtain the neutral displacement. (3) We couple the ionosphere with the neutral atmosphere. (4) We integrate the perturbed electron density along each satellite station line of sight. At last, we present first results of TEC inversion in order to retrieve the waveform of the tsunami. This inversion has been done on synthetics data assuming Queen Charlotte Earthquake and Tsunami can be considered as a point source in far field.

  11. Atmospheric Delay Reduction Using KARAT for GPS Analysis and Implications for VLBI

    NASA Technical Reports Server (NTRS)

    Ichikawa, Ryuichi; Hobiger, Thomas; Koyama, Yasuhiro; Kondo, Tetsuro

    2010-01-01

    We have been developing a state-of-the-art tool to estimate the atmospheric path delays by raytracing through mesoscale analysis (MANAL) data, which is operationally used for numerical weather prediction by the Japan Meteorological Agency (JMA). The tools, which we have named KAshima RAytracing Tools (KARAT)', are capable of calculating total slant delays and ray-bending angles considering real atmospheric phenomena. The KARAT can estimate atmospheric slant delays by an analytical 2-D ray-propagation model by Thayer and a 3-D Eikonal solver. We compared PPP solutions using KARAT with that using the Global Mapping Function (GMF) and Vienna Mapping Function 1 (VMF1) for GPS sites of the GEONET (GPS Earth Observation Network System) operated by Geographical Survey Institute (GSI). In our comparison 57 stations of GEONET during the year of 2008 were processed. The KARAT solutions are slightly better than the solutions using VMF1 and GMF with linear gradient model for horizontal and height positions. Our results imply that KARAT is a useful tool for an efficient reduction of atmospheric path delays in radio-based space geodetic techniques such as GNSS and VLBI.

  12. Development And Test of A Digitally Steered Antenna Array for The Navigator GPS Receiver

    NASA Technical Reports Server (NTRS)

    Pinto, Heitor David; Valdez, Jennifer E.; Winternitz, Luke M. B.; Hassouneh, Munther A.; Price, Samuel R.

    2012-01-01

    Global Positioning System (GPS)-based navigation has become common for low-Earth orbit spacecraft as the signal environment is similar to that on the Earth s surface. The situation changes abruptly, however, for spacecraft whose orbital altitudes exceed that of the GPS constellation. Visibility is dramatically reduced and signals that are present may be very weak and more susceptible to interference. GPS receivers effective at these altitudes require increased sensitivity, which often requires a high-gain antenna. Pointing such an antenna can pose a challenge. One efficient approach to mitigate these problems is the use of a digitally steered antenna array. Such an antenna can optimally allocate gain toward desired signal sources and away from interferers. This paper presents preliminary results in the development and test of a digitally steered antenna array for the Navigator GPS research program at NASA s Goddard Space Flight Center. In particular, this paper highlights the development of an array and front-end electronics, the development and test of a real-time software GPS receiver, and implementation of three beamforming methods for combining the signals from the array. Additionally, this paper discusses the development of a GPS signal simulator which produces digital samples of the GPS L1C/A signals as they would be received by an arbitrary antenna array configuration. The simulator models transmitter and receiver dynamics, near-far and multipath interference, and has been a critical component in both the development and test of the GPS receiver. The GPS receiver system was tested with real and simulated GPS signals. Preliminary results show that performance improvement was achieved in both the weak signal and interference environments, matching analytical predictions. This paper summarizes our initial findings and discusses the advantages and limitations of the antenna array and the various beamforming methods.

  13. Rail inspection system based on iGPS

    NASA Astrophysics Data System (ADS)

    Fu, Xiaoyan; Wang, Mulan; Wen, Xiuping

    2018-05-01

    Track parameters include gauge, super elevation, cross level and so on, which could be calculated through the three-dimensional coordinates of the track. The rail inspection system based on iGPS (indoor/infrared GPS) was composed of base station, receiver, rail inspection frame, wireless communication unit, display and control unit and data processing unit. With the continuous movement of the inspection frame, the system could accurately inspect the coordinates of rail; realize the intelligent detection and precision measurement. According to principle of angle intersection measurement, the inspection model was structured, and detection process was given.

  14. ALLTEM System User’s Manual, Munitions Management Projects, ALLTEM Multi-Axis Electromagnetic Induction System Demonstration and Validation, Version 1.0

    DTIC Science & Technology

    2012-03-05

    Alarm button. Under the GPS frame are two smaller frames. On the left is a frame with buttons labeled Tractor Guidance and Acquisition Error... GPS ) and the Attitude Heading Reference System (AHRS) data. 5.2 Using the Data Acquisition Simulator Software The simulator and a practice set... acquisition for one polarity of the TX (33ms dead band for relay switching + 33 ms of waveforms). When the GPS is being used this is usually “1”, but may be

  15. GPS Integrity Channel RTCA Working Group recommendations

    NASA Astrophysics Data System (ADS)

    Kalafus, Rudolph M.

    Recommendations made by a working group established by the Radio Technical Commission for Aeronautics are presented for the design of a wide-area broadcast service to provide indications on the status of GPS satellites. The integrity channel requirements and operational goals are outlined. Six integrity channel system concepts are considered and system design and time-to-alarm considerations are examined. The recommended system includes the broadcast of a coarse range measurement for each satellite which will enable the on-board GPS receiver to determine whether or not the navigation accuracy is within prescribed limits.

  16. Development of vehicular and personal universal longitudinal travel diary systems using GPS and new technology.

    DOT National Transportation Integrated Search

    2006-12-01

    This report provides an overview of travel surveys, including literature review and background, as well as the motivation for the : research and development of the Global Positioning System Automated Travel Diary (GPS-ATD). The system requirements an...

  17. Using Airborne Lidar Data from IcePod to Measure Annual and Seasonal Ice Changes Over Greenland

    NASA Astrophysics Data System (ADS)

    Frearson, N.; Bertinato, C.; Das, I.

    2014-12-01

    The IcePod is a multi-sensor airborne science platform that supports a wide suite of instruments, including a Riegl VQ-580 infrared scanning laser, GPS-inertial positioning system, shallow and deep-ice radars, visible-wave and infrared cameras, and upward-looking pyrometer. These instruments allow us to image the ice from top to bottom, including the surface of melt-water plumes that originate at the ice-ocean boundary. In collaboration with the New York Air National Guard 109th Airlift Wing, the IcePod is flown on LC-130 aircraft, which presents the unique opportunity to routinely image the Greenland ice sheet several times within a season. This is particularly important for mass balance studies, as we can measure elevation changes during the melt season. During the 2014 summer, laser data was collected via IcePod over the Greenland ice sheet, including Russell Glacier, Jakobshavn Glacier, Eqip Glacier, and Summit Camp. The Icepod will also be routinely operated in Antarctica. We present the initial testing, calibration, and error estimates from the first set of laser data that were collected on IcePod. At a survey altitude of 1000 m, the laser swath covers ~ 1000 m. A Northrop-Grumman LN-200 tactical grade IMU is rigidly attached to the laser scanner to provide attitude data at a rate of 200 Hz. Several methods were used to determine the lever arm between the IMU center of navigation and GPS antenna phase center, terrestrial scanning laser, total station survey, and optimal estimation. Additionally, initial bore sight calibration flights yielded misalignment angles within an accuracy of ±4 cm. We also performed routine passes over the airport ramp in Kangerlussuaq, Greenland, comparing the airborne GPS and Lidar data to a reference GPS-based ground survey across the ramp, spot GPS points on the ramp and a nearby GPS base station. Positioning errors can severely impact the accuracy of a laser altimeter when flying over remote regions such as across the ice sheets. Setting up GPS base stations along the flight track can prove to be logistically challenging. We have processed the GPS-inertial data using both DGPS and PPP and present the comparison of those results here. Finally, we discuss our processing, calibration and error estimation methods and compare our results to previously flown IceBridge lines.

  18. Improving CAR Navigation with a Vision-Based System

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, K.; Lee, I.

    2015-08-01

    The real-time acquisition of the accurate positions is very important for the proper operations of driver assistance systems or autonomous vehicles. Since the current systems mostly depend on a GPS and map-matching technique, they show poor and unreliable performance in blockage and weak areas of GPS signals. In this study, we propose a vision oriented car navigation method based on sensor fusion with a GPS and in-vehicle sensors. We employed a single photo resection process to derive the position and attitude of the camera and thus those of the car. This image georeferencing results are combined with other sensory data under the sensor fusion framework for more accurate estimation of the positions using an extended Kalman filter. The proposed system estimated the positions with an accuracy of 15 m although GPS signals are not available at all during the entire test drive of 15 minutes. The proposed vision based system can be effectively utilized for the low-cost but high-accurate and reliable navigation systems required for intelligent or autonomous vehicles.

  19. Improving Car Navigation with a Vision-Based System

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, K.; Lee, I.

    2015-08-01

    The real-time acquisition of the accurate positions is very important for the proper operations of driver assistance systems or autonomous vehicles. Since the current systems mostly depend on a GPS and map-matching technique, they show poor and unreliable performance in blockage and weak areas of GPS signals. In this study, we propose a vision oriented car navigation method based on sensor fusion with a GPS and in-vehicle sensors. We employed a single photo resection process to derive the position and attitude of the camera and thus those of the car. This image georeferencing results are combined with other sensory data under the sensor fusion framework for more accurate estimation of the positions using an extended Kalman filter. The proposed system estimated the positions with an accuracy of 15 m although GPS signals are not available at all during the entire test drive of 15 minutes. The proposed vision based system can be effectively utilized for the low-cost but high-accurate and reliable navigation systems required for intelligent or autonomous vehicles.

  20. Fuzzy adaptive integration scheme for low-cost SINS/GPS navigation system

    NASA Astrophysics Data System (ADS)

    Nourmohammadi, Hossein; Keighobadi, Jafar

    2018-01-01

    Due to weak stand-alone accuracy as well as poor run-to-run stability of micro-electro mechanical system (MEMS)-based inertial sensors, special approaches are required to integrate low-cost strap-down inertial navigation system (SINS) with global positioning system (GPS), particularly in long-term applications. This paper aims to enhance long-term performance of conventional SINS/GPS navigation systems using a fuzzy adaptive integration scheme. The main concept behind the proposed adaptive integration is the good performance of attitude-heading reference system (AHRS) in low-accelerated motions and its degradation in maneuvered or accelerated motions. Depending on vehicle maneuvers, gravity-based attitude angles can be intelligently utilized to improve orientation estimation in the SINS. Knowledge-based fuzzy inference system is developed for decision-making between the AHRS and the SINS according to vehicle maneuvering conditions. Inertial measurements are the main input data of the fuzzy system to determine the maneuvering level during the vehicle motions. Accordingly, appropriate weighting coefficients are produced to combine the SINS/GPS and the AHRS, efficiently. The assessment of the proposed integrated navigation system is conducted via real data in airborne tests.

Top