Sample records for system heat stress

  1. Improved Heat-Stress Algorithm

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.; Fehn, Steven

    2007-01-01

    NASA Dryden presents an improved and automated site-specific algorithm for heat-stress approximation using standard atmospheric measurements routinely obtained from the Edwards Air Force Base weather detachment. Heat stress, which is the net heat load a worker may be exposed to, is officially measured using a thermal-environment monitoring system to calculate the wet-bulb globe temperature (WBGT). This instrument uses three independent thermometers to measure wet-bulb, dry-bulb, and the black-globe temperatures. By using these improvements, a more realistic WBGT estimation value can now be produced. This is extremely useful for researchers and other employees who are working on outdoor projects that are distant from the areas that the Web system monitors. Most importantly, the improved WBGT estimations will make outdoor work sites safer by reducing the likelihood of heat stress.

  2. Heat stress mortality and desired adaptation responses of healthcare system in Poland

    NASA Astrophysics Data System (ADS)

    Błażejczyk, Anna; Błażejczyk, Krzysztof; Baranowski, Jarosław; Kuchcik, Magdalena

    2018-03-01

    Heat stress is one of the environmental factors influencing the health of individuals and the wider population. There is a large body of research to document significant increases in mortality and morbidity during heat waves all over the world. This paper presents key results of research dealing with heat-related mortality (HRM) in various cities in Poland which cover about 25% of the country's population. Daily mortality and weather data reports for the years 1991-2000 were used. The intensity of heat stress was assessed by the universal thermal climate index (UTCI). The research considers also the projections of future bioclimate to the end of twenty-first century. Brain storming discussions were applied to find necessary adaptation strategies of healthcare system (HCS) in Poland, to minimise negative effects of heat stress. In general, in days with strong and very strong heat stress, ones must expect increase in mortality (in relation to no thermal stress days) of 12 and 47%, respectively. Because of projected rise in global temperature and heat stress frequency, we must expect significant increase in HRM to the end of twenty-first century of even 165% in comparison to present days. The results of research show necessity of urgent implementation of adaptation strategies to heat in HCS.

  3. Human Cardiovascular Responses to Passive Heat Stress

    PubMed Central

    Crandall, Craig G.; Wilson, Thad E.

    2016-01-01

    Heat stress increases human morbidity and mortality compared to normothermic conditions. Many occupations, disease states, as well as stages of life are especially vulnerable to the stress imposed on the cardiovascular system during exposure to hot ambient conditions. This review focuses on the cardiovascular responses to heat stress that are necessary for heat dissipation. To accomplish this regulatory feat requires complex autonomic nervous system control of the heart and various vascular beds. For example, during heat stress cardiac output increases up to twofold, by increases in heart rate and an active maintenance of stroke volume via increases in inotropy in the presence of decreases in cardiac preload. Baroreflexes retain the ability to regulate blood pressure in many, but not all, heat stress conditions. Central hypovolemia is another cardiovascular challenge brought about by heat stress, which if added to a subsequent central volumetric stress, such as hemorrhage, can be problematic and potentially dangerous, as syncope and cardiovascular collapse may ensue. These combined stresses can compromise blood flow and oxygenation to important tissues such as the brain. It is notable that this compromised condition can occur at cardiac outputs that are adequate during normothermic conditions but are inadequate in heat because of the increased systemic vascular conductance associated with cutaneous vasodilation. Understanding the mechanisms within this complex regulatory system will allow for the development of treatment recommendations and countermeasures to reduce risks during the ever-increasing frequency of severe heat events that are predicted to occur. PMID:25589263

  4. Effects of cyclic heat stress or vitamin C supplementation during cyclic heat stress on HSP70, inflammatory cytokines, and the antioxidant defense system in Sprague Dawley rats.

    PubMed

    Yun, Seo-Hyun; Moon, Yang-Soo; Sohn, Sea-Hwan; Jang, In-Surk

    2012-01-01

    A total of 21 male SD rats were divided into three groups to investigate the effects of consecutive cyclic heat stress or vitamin C under heat stress on heat shock protein (HSP) 70, inflammatory cytokines, and antioxidant systems. The heat stress (HS) and vitamin C supplementation during heat stress (HS+VC) groups were exposed to cyclic heat stress (23 to 38 to 23°C) for 2 h on each of seven consecutive days. The HS+VC group had free access to water containing 0.5% vitamin C throughout the experiment. Hepatic HSP70 mRNA in the HS group was significantly (P<0.05) higher than that in the control (CON) or HS+VC group. The mRNA levels of tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS) in the HS group were greater (P<0.05) than those in the CON group. The HS+VC group showed significantly (P<0.05) lower mRNA levels of hepatic interleukin-6 and TNF-α than the HS group. However, thymic HSP70 and inflammatory cytokines were unaffected by treatments. In the hepatic antioxidant system, the mRNA and activity of glutathione peroxidase (GPX) were greater (P<0.05) in the HS than in the CON group, whereas the HS+VC group showed markedly (P<0.05) lower GPX mRNA and activity than the HS group. However, superoxide dismutase, glutathione S-transferase, and malondialdehyde were unaffected by treatments. In conclusion, cyclic heat stress activated hepatic HSP70, TNF-α, iNOS, and GPX genes, whereas vitamin C during heat stress ameliorated heat stress-induced cellular responses in rats.

  5. Heat Stress

    MedlinePlus

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir OSHA-NIOSH ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  6. Salicylic acid and heat acclimation pretreatment protects Laminaria japonica sporophyte (Phaeophyceae) from heat stress

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Tang, Xuexi; Wang, You

    2010-07-01

    Possible mediatory roles of heat acclimation and salicylic acid in protecting the sporophyte of marine macroalga Laminaria japonica (Phaeophyceae) from heat stress were studied. Heat stress resulted in oxidative injury in the kelp blades. Under heat stress significant accumulation of hydrogen peroxide (H2O2) and malonaldehyde (MDA), a membrane lipid peroxidation product, and a drastic decrease in chlorophyll a content were recorded. Activity of the enzymatic antioxidant system was drastically affected by heat stress. The activity of superoxide dismutase (SOD) was significantly increased while peroxidase (POD), catalase (CAT) and glutathione peroxidase (GPX) were greatly inhibited and, simultaneously, phenylalanine ammonia-lyase was activated while polyphenol oxidase (PPO) was inhibited. Both heat acclimation pretreatment and exogenous application of salicylic acid alleviated oxidative damage in kelp blades. Blades receiving heat acclimation pretreatment and exogenous salicylic acid prior to heat stress exhibited a reduced increase in H2O2 and MDA content, and a lower reduction in chlorophyll a content. Pretreatment with heat acclimation and salicylic acid elevated activities of SOD, POD, CAT, GPX and PPO. Considering these results collectively, we speculate that the inhibition of antioxidant enzymes is a possible cause of the heat-stress-induced oxidative stress in L. japonica, and enhanced thermotolerance may be associated, at least in part, with the elevated activity of the enzymatic antioxidant system.

  7. Study of heat exchange in cooling systems of heat-stressed structures

    NASA Astrophysics Data System (ADS)

    Vikulin, A. V.; Yaroslavtsev, N. L.; Zemlyanaya, V. A.

    2017-01-01

    Increasing working parameters of the cycle of gas-turbine engines, complicating design of gas-turbine plants, as well as growing aerodynamic, thermal, static, and dynamic loads, necessitate the development of promising cooling systems for heat-stressed structures. This work is devoted to an experimental study of heat exchange in ducts equipped with systems of inclined and cross walls (fins). It has been found that an increase in the Reynolds number Re from 3000 to 20000 leads to a decrease in the heat exchange, which is characterized by the relative Nusselt number overline{Nu}, by 19-30% at the angle of inclination of the walls φ = 0, 40°, 50°, and 90° if the length of the walls x w is comparable to the spacing b s and by 12-15% at φ = 30° and 90° if x w ≫ b s. If cross walls are used in cooling ducts, the length of the walls x w plays the governing role; an increase in this characteristic from 1.22 × 10-3 to 3.14 × 10-3 m leads to an increase in the intensity of heat exchange by 30-40% and to a decrease in the capacity of the entire system of the walls. It has been shown that, on surfaces with wavy fins, the intensity of heat exchange is closest to that determined in the models under study. For example, values of the Colborne criterion StPr2/3 for ducts equipped with wavy fins and for the models under study differ only slightly (by 2-20% depending on the value of the angle φ). However, the difference for surfaces with short plate fins and ducts equipped with inclined walls is high (30-40%). This is due to the design features of these surfaces and to the severe effect of the inlet portion on heat exchange, since the surfaces are characterized by a higher ratio of the duct length to the hydraulic diameter L/d h at small fin thicknesses ((0.1-0.15) × 10-3 m). The experimental results can be used in developing designs of nozzle and rotor blades of high-temperature gas turbines in gas-turbine engines and plants.

  8. Physiological tolerance to uncompensated heat stress in soldiers: effects of various types of body cooling systems.

    PubMed

    Jovanović, Dalibor; Karkalić, Radovan; Zeba, Snjezana; Pavlović, Miroslav; Radaković, Sonja S

    2014-03-01

    In military services, emergency situations when soldiers are exposed to a combination of nuclear, biological and chemical (NBC) contamination combined with heat stress, are frequent and complex. In these specific conditions, usage of personal body cooling systems may be effective in reducing heat stress. The present study was conducted in order to evaluate the efficiency of four various types of contemporary personal body cooling systems based on the "Phase Change Material" (PCM), and its effects on soldiers' subjective comfort and physiological performance during exertional heat stress in hot environments. Ten male soldiers were voluntarily subjected to exertional heat stress tests (EHSTs) consisted of walking on a treadmill (5.5 km/h) in hot conditions (40 degreesC) in climatic chamber, wearing NBC isolating impermeable protective suits. One of the tests was performed without any additional cooling solution (NOCOOL), and four tests were performed while using different types of cooling systems: three in a form of vests and one as underwear. Physiological strain was determined by the mean skin temperature (Tsk), tympanic temperature (Tty), and heart rate values (HR), while sweat rates (SwR) indicated changes in hydration status. In all the cases EHST induced physiological response manifested through increasing Tty, HR and SwR. Compared to NOCOOL tests, when using cooling vests, Tty and Tsk were significantly lower (on 35th min, for 0.44 +/- 0.03 and 0.49 +/- 0.05 degrees C, respectively; p < 0.05), as well as the average SwR (0.17 +/- 0.03 L/m2/h). When using underwear, the values of given parameters were not significantly different compared to NOCOOL tests. Using a body cooling system based on PCM in the form of vest under NBC protective clothes during physical activity in hot conditions, reduces sweating and alleviates heat stress manifested by increased core and skin temperatures and heart rate values. These effects directly improve heat tolerance, hydration

  9. Quantifying Livestock Heat Stress Impacts in the Sahel

    NASA Astrophysics Data System (ADS)

    Broman, D.; Rajagopalan, B.; Hopson, T. M.

    2014-12-01

    Livestock heat stress, especially in regions of the developing world with limited adaptive capacity, has a largely unquantified impact on food supply. Though dominated by ambient air temperature, relative humidity, wind speed, and solar radiation all affect heat stress, which can decrease livestock growth, milk production, reproduction rates, and mortality. Indices like the thermal-humidity index (THI) are used to quantify the heat stress experienced from climate variables. Livestock experience differing impacts at different index critical thresholds that are empirically determined and specific to species and breed. This lack of understanding has been highlighted in several studies with a limited knowledge of the critical thresholds of heat stress in native livestock breeds, as well as the current and future impact of heat stress,. As adaptation and mitigation strategies to climate change depend on a solid quantitative foundation, this knowledge gap has limited such efforts. To address the lack of study, we have investigated heat stress impacts in the pastoral system of Sub-Saharan West Africa. We used a stochastic weather generator to quantify both the historic and future variability of heat stress. This approach models temperature, relative humidity, and precipitation, the climate variables controlling heat stress. Incorporating large-scale climate as covariates into this framework provides a better historical fit and allows us to include future CMIP5 GCM projections to examine the climate change impacts on heat stress. Health and production data allow us to examine the influence of this variability on livestock directly, and are considered in conjunction with the confounding impacts of fodder and water access. This understanding provides useful information to decision makers looking to mitigate the impacts of climate change and can provide useful seasonal forecasts of heat stress risk. A comparison of the current and future heat stress conditions based on

  10. Heat Stress Monitor

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The heavy, cumbersome body protection suits worn by members of hazardous materials response teams cause marked elevation of body temperatures, which can reduce effectiveness and lead to heat stress and injury. The CorTemp System, marketed by Human Technologies, Inc., provides the basis for a body temperature monitoring alarm system. Encased in a three-quarter-inch ingestible capsule, the system includes a mini-thermometer, miniature telemetry system, a microbattery and temperature sensor. It makes its way through the digestive system, continuously monitoring temperature. Findings are sent to the recorder by telemetry, and then displayed and stored for transfer to a computer.

  11. Sensing the heat stress by Mammalian cells.

    PubMed

    Cates, Jordan; Graham, Garrett C; Omattage, Natalie; Pavesich, Elizabeth; Setliff, Ian; Shaw, Jack; Smith, Caitlin Lee; Lipan, Ovidiu

    2011-08-11

    The heat-shock response network controls the adaptation and survival of the cell against environmental stress. This network is highly conserved and is connected with many other signaling pathways. A key element of the heat-shock network is the heat-shock transcription factor-1 (HSF), which is transiently activated by elevated temperatures. HSF translocates to the nucleus upon elevated temperatures, forming homotrimeric complexes. The HSF homotrimers bind to the heat shock element on the DNA and control the expression of the hsp70 gene. The Hsp70 proteins protect cells from thermal stress. Thermal stress causes the unfolding of proteins, perturbing thus the pathways under their control. By binding to these proteins, Hsp70 allows them to refold and prevents their aggregation. The modulation of the activity of the hsp70-promoter by the intensity of the input stress is thus critical for cell's survival. The promoter activity starts from a basal level and rapidly increases once the stress is applied, reaches a maximum level and attenuates slowely back to the basal level. This phenomenon is the hallmark of many experimental studies and of all computational network analysis. The molecular construct used as a measure of the response to thermal stress is a Hsp70-GFP fusion gene transfected in Chinese hamster ovary (CHO) cells. The time profile of the GFP protein depends on the transient activity, Transient(t), of the heat shock system. The function Transient(t) depends on hsp70 promoter activity, transcriptional regulation and the translation initiation effects elicited by the heat stress. The GFP time profile is recorded using flow cytometry measurements, a technique that allows a quantitative measurement of the fluorescence of a large number of cells (104). The GFP responses to one and two heat shocks were measured for 261 conditions of different temperatures and durations. We found that: (i) the response of the cell to two consecutive shocks (i.e., no recovery time in

  12. Heat shock protein 70 as a biomarker of heat stress in a simulated hot cockpit.

    PubMed

    Kumar, Yadunanda; Chawla, Anuj; Tatu, Utpal

    2003-07-01

    Fighter pilots are frequently exposed to high temperatures during high-speed low-level flight. Heat strain can result in temporary impairment of cognitive functions and when severe, loss of consciousness and consequent loss of life and equipment. Induction of stress proteins is a highly conserved stress response mechanism from bacteria to humans. Induced stress protein levels are known to be cytoprotective and have been correlated with stress tolerance. Although many studies on the heat shock response mechanisms have been performed in cell culture and animal model systems, there is very limited information on stress protein induction in human subjects. Heat shock proteins (Hsp), especially Hsp70, may be induced in human subjects exposed to high temperatures in a hot cockpit designed to simulate heat stress experienced in low flying sorties. Six healthy volunteers were subjected to heat stress at 55 degrees C in a high temperature cockpit simulator for a period of 1 h at 30% humidity. Physiological parameters such as oral and skin temperatures, heart rate, and sweat rate were monitored regularly during this time. The level of Hsp70 in leukocytes was examined before and after the heat exposure in each subject. Hsp70 was found to be significantly induced in all the six subjects exposed to heat stress. The level of induced Hsp70 appears to correlate with other strain indicators such as accumulative circulatory strain and Craig's modified index. The usefulness of Hsp70 as a molecular marker of heat stress in humans is discussed.

  13. Whole body heat stress increases motor cortical excitability and skill acquisition in humans

    PubMed Central

    Littmann, Andrew E.; Shields, Richard K.

    2015-01-01

    Objective Vigorous systemic exercise stimulates a cascade of molecular and cellular processes that enhance central nervous system (CNS) plasticity and performance. The influence of heat stress on CNS performance and learning is novel. We designed two experiments to determine whether passive heat stress 1) facilitated motor cortex excitability and 2) improved motor task acquisition compared to no heat stress. Methods Motor evoked potentials (MEPs) from the first dorsal interosseus (FDI) were collected before and after 30 minutes of heat stress at 73° C. A second cohort of subjects performed a motor learning task using the FDI either following heat or the no heat condition. Results Heat stress increased heart rate to 65% of age-predicted maximum. After heat, mean resting MEP amplitude increased 48% (P < 0.05). MEP stimulus-response amplitudes did not differ according to stimulus intensity. In the second experiment, heat stress caused a significant decrease in absolute and variable error (p < 0.05) during a novel movement task using the FDI. Conclusions Passive environmental heat stress 1) increases motor cortical excitability, and 2) enhances performance in a motor skill acquisition task. Significance Controlled heat stress may prime the CNS to enhance motor skill acquisition during rehabilitation. PMID:26616546

  14. Whole body heat stress increases motor cortical excitability and skill acquisition in humans.

    PubMed

    Littmann, Andrew E; Shields, Richard K

    2016-02-01

    Vigorous systemic exercise stimulates a cascade of molecular and cellular processes that enhance central nervous system (CNS) plasticity and performance. The influence of heat stress on CNS performance and learning is novel. We designed two experiments to determine whether passive heat stress (1) facilitated motor cortex excitability and (2) improved motor task acquisition compared to no heat stress. Motor evoked potentials (MEPs) from the first dorsal interosseus (FDI) were collected before and after 30 min of heat stress at 73 °C. A second cohort of subjects performed a motor learning task using the FDI either following heat or the no heat condition. Heat stress increased heart rate to 65% of age-predicted maximum. After heat, mean resting MEP amplitude increased 48% (p<0.05). MEP stimulus-response amplitudes did not differ according to stimulus intensity. In the second experiment, heat stress caused a significant decrease in absolute and variable error (p<0.05) during a novel movement task using the FDI. Passive environmental heat stress (1) increases motor cortical excitability, and (2) enhances performance in a motor skill acquisition task. Controlled heat stress may prime the CNS to enhance motor skill acquisition during rehabilitation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress.

    PubMed

    Tang, Shu; Chen, Hongbo; Cheng, Yanfen; Nasir, Mohammad Abdel; Kemper, Nicole; Bao, Endong

    2016-01-01

    Heat shock factor 1 (HSF1) is a heat shock transcription factor that rapidly induces heat shock gene transcription following thermal stress. In this study, we subjected primary neonatal rat myocardial cells to heat stress in vitro to create a model system for investigating the trends in expression and association between various heat shock proteins (HSPs) and HSF1 under adverse environmental conditions. After the cells were subjected to heat stress at 42˚C for different periods of time, HSP and HSF1 mRNA and protein levels were detected by qPCR and western blot analysis in the heat-stressed cells. The HSF1 expression levels significantly increased in the cells following 120 min of exposure to heat stess compared to the levels observed at the beginning of heat stress exposure. HSP90 followed a similar trend in expression to HSF1, whereas HSP70 followed an opposite trend. However, no significant changes were observed in the crystallin, alpha B (CRYAB, also known as HSP beta-5) expression levels during the 480‑min period of exposure to heat stress. The interaction between the HSPs and HSF1 was analyzed by STRING 9.1, and it was found that HSF1 interacted with HSP90 and HSP70, and that it did not play a role in regulating CRYAB expression. Based on our findings, HSP70 may suppress HSF1 in rat myocardial cells under conditions of heat stress. Furthermore, our data demonstrate that HSF1 is not the key factor for all HSPs, and this was particularly the case for CRYAB.

  16. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress

    PubMed Central

    TANG, SHU; CHEN, HONGBO; CHENG, YANFEN; NASIR, MOHAMMAD ABDEL; KEMPER, NICOLE; BAO, ENDONG

    2016-01-01

    Heat shock factor 1 (HSF1) is a heat shock transcription factor that rapidly induces heat shock gene transcription following thermal stress. In this study, we subjected primary neonatal rat myocardial cells to heat stress in vitro to create a model system for investigating the trends in expression and association between various heat shock proteins (HSPs) and HSF1 under adverse environmental conditions. After the cells were subjected to heat stress at 42°C for different periods of time, HSP and HSF1 mRNA and protein levels were detected by qPCR and western blot analysis in the heat-stressed cells. The HSF1 expression levels significantly increased in the cells following 120 min of exposure to heat stess compared to the levels observed at the beginning of heat stress exposure. HSP90 followed a similar trend in expression to HSF1, whereas HSP70 followed an opposite trend. However, no significant changes were observed in the crystallin, alpha B (CRYAB, also known as HSP beta-5) expression levels during the 480-min period of exposure to heat stress. The interaction between the HSPs and HSF1 was analyzed by STRING 9.1, and it was found that HSF1 interacted with HSP90 and HSP70, and that it did not play a role in regulating CRYAB expression. Based on our findings, HSP70 may suppress HSF1 in rat myocardial cells under conditions of heat stress. Furthermore, our data demonstrate that HSF1 is not the key factor for all HSPs, and this was particularly the case for CRYAB. PMID:26719858

  17. Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings

    PubMed Central

    Gao, Guizhen; Li, Jun; Li, Hao; Li, Feng; Xu, Kun; Yan, Guixin; Chen, Biyun; Qiao, Jiangwei; Wu, Xiaoming

    2014-01-01

    DNA methylation is responsive to various biotic and abiotic stresses. Heat stress is a serious threat to crop growth and development worldwide. Heat stress results in an array of morphological, physiological and biochemical changes in plants. The relationship between DNA methylation and heat stress in crops is relatively unknown. We investigated the differences in methylation levels and changes in the cytosine methylation patterns in seedlings of two rapeseed genotypes (heat-sensitive and heat-tolerant) under heat stress. Our results revealed that the methylation levels were different between a heat-tolerant genotype and a heat-sensitive one under control conditions. Under heat treatment, methylation increased more in the heat-sensitive genotype than in the heat-tolerant genotype. More DNA demethylation events occurred in the heat-tolerant genotype, while more DNA methylation occurred in the heat-sensitive genotype. A large and diverse set of genes were affected by heat stress via cytosine methylation changes, suggesting that these genes likely play important roles in the response and adaption to heat stress in Brassica napus L. This study indicated that the changes in DNA methylation differed between heat-tolerant and heat-sensitive genotypes of B. napus in response to heat stress, which further illuminates the molecular mechanisms of the adaption to heat stress in B. napus. PMID:24987298

  18. Heat Stress Effects on Growing-Finishing Swine

    USDA-ARS?s Scientific Manuscript database

    Understanding the factors that create heat stress, the response of the animals while under heat stress, and the signs of heat-stressed swine are essential to making rational decisions for the selection, design, and management of their environments. Heat stressors include combinations of environment...

  19. Ruminant Nutrition Symposium: ruminant production and metabolic responses to heat stress.

    PubMed

    Baumgard, L H; Rhoads, R P

    2012-06-01

    Heat stress compromises efficient animal production by marginalizing nutrition, management, and genetic selection efforts to maximize performance endpoints. Modifying farm infrastructure has yielded modest success in mitigating heat stress-related losses, yet poor production during the summer remains arguably the costliest issue facing livestock producers. Reduced output (e.g., milk yield and muscle growth) during heat stress was traditionally thought to result from decreased nutrient intake (i.e., a classic biological response shared by all animals during environmental-induced hyperthermia). Our recent observations have begun to challenge this belief and indicate heat-stressed animals employ novel homeorhetic strategies to direct metabolic and fuel selection priorities independently of nutrient intake or energy balance. Alterations in systemic physiology support a shift in carbohydrate metabolism, evident by increased basal and stimulated circulating insulin concentrations. Perhaps most intriguing given the energetic shortfall of the heat-stressed animal is the apparent lack of basal adipose tissue mobilization coupled with a reduced responsiveness to lipolytic stimuli. Thus, the heat stress response markedly alters postabsorptive carbohydrate, lipid, and protein metabolism independently of reduced feed intake through coordinated changes in fuel supply and utilization by multiple tissues. Interestingly, the systemic, cellular, and molecular changes appear conserved amongst different species and physiological states. Ultimately, these changes result in the reprioritization of fuel selection during heat stress, which appears to be primarily responsible for reduced ruminant animal productivity during the warm summer months.

  20. Heat stress and cardiovascular, hormonal, and heat shock proteins in humans.

    PubMed

    Iguchi, Masaki; Littmann, Andrew E; Chang, Shuo-Hsiu; Wester, Lydia A; Knipper, Jane S; Shields, Richard K

    2012-01-01

    Conditions such as osteoarthritis, obesity, and spinal cord injury limit the ability of patients to exercise, preventing them from experiencing many well-documented physiologic stressors. Recent evidence indicates that some of these stressors might derive from exercise-induced body temperature increases. To determine whether whole-body heat stress without exercise triggers cardiovascular, hormonal, and extracellular protein responses of exercise. Randomized controlled trial. University research laboratory. Twenty-five young, healthy adults (13 men, 12 women; age = 22.1 ± 2.4 years, height = 175.2 ± 11.6 cm, mass = 69.4 ± 14.8 kg, body mass index = 22.6 ± 4.0) volunteered. Participants sat in a heat stress chamber with heat (73°C) and without heat (26°C) stress for 30 minutes on separate days. We obtained blood samples from a subset of 13 participants (7 men, 6 women) before and after exposure to heat stress. Extracellular heat shock protein (HSP72) and catecholamine plasma concentration, heart rate, blood pressure, and heat perception. After 30 minutes of heat stress, body temperature measured via rectal sensor increased by 0.8°C. Heart rate increased linearly to 131.4 ± 22.4 beats per minute (F₆,₂₄ = 186, P < .001) and systolic and diastolic blood pressure decreased by 16 mm Hg (F₆,₂₄ = 10.1, P < .001) and 5 mm Hg (F₆,₂₄ = 5.4, P < .001), respectively. Norepinephrine (F₁,₁₂ = 12.1, P = .004) and prolactin (F₁,₁₂ = 30.2, P < .001) increased in the plasma (58% and 285%, respectively) (P < .05). The HSP72 (F₁,₁₂ = 44.7, P < .001) level increased with heat stress by 48.7% ± 53.9%. No cardiovascular or blood variables showed changes during the control trials (quiet sitting in the heat chamber with no heat stress), resulting in differences between heat and control trials. We found that whole-body heat stress triggers some of the physiologic responses observed with exercise. Future studies are necessary to investigate whether

  1. Scenario-neutral Food Security Risk Assessment: A livestock Heat Stress Case Study

    NASA Astrophysics Data System (ADS)

    Broman, D.; Rajagopalan, B.; Hopson, T. M.

    2015-12-01

    Food security risk assessments can provide decision-makers with actionable information to identify critical system limitations, and alternatives to mitigate the impacts of future conditions. The majority of current risk assessments have been scenario-led and results are limited by the scenarios - selected future states of the world's climate system and socioeconomic factors. A generic scenario-neutral framework for food security risk assessments is presented here that uses plausible states of the world without initially assigning likelihoods. Measures of system vulnerabilities are identified and system risk is assessed for these states. This framework has benefited greatly by research in the water and natural resource fields to adapt their planning to provide better risk assessments. To illustrate the utility of this framework we develop a case study using livestock heat stress risk within the pastoral system of West Africa. Heat stress can have a major impact not only on livestock owners, but on the greater food production system, decreasing livestock growth, milk production, and reproduction, and in severe cases, death. A heat stress index calculated from daily weather is used as a vulnerability measure and is computed from historic daily weather data at several locations in the study region. To generate plausible states, a stochastic weather generator is developed to generate synthetic weather sequences at each location, consistent with the seasonal climate. A spatial model of monthly and seasonal heat stress provide projections of current and future livestock heat stress measures across the study region, and can incorporate in seasonal climate and other external covariates. These models, when linked with empirical thresholds of heat stress risk for specific breeds offer decision-makers with actionable information for use in near-term warning systems as well as for future planning. Future assessment can indicate under which states livestock are at greatest risk

  2. On the use of wearable physiological monitors to assess heat strain during occupational heat stress.

    PubMed

    Notley, Sean R; Flouris, Andreas D; Kenny, Glen P

    2018-05-04

    Workers in many industries are required to perform arduous work in high heat stress conditions, which can lead to rapid increases in body temperature that elevate the risk of heat-related illness or even death. Traditionally, effort to mitigate work-related heat injury has been directed to the assessment of environmental heat stress (e.g., wet-bulb globe temperature), rather than the associated physiological strain responses (e.g., heart rate, skin and core temperatures). However, since a workers physiological response to a given heat stress is modified independently by inter-individual factors (e.g., age, sex, chronic disease, others) and intra-individual factors both within (e.g., medication use, fitness, acclimation and hydration state, others) and beyond a workers control (e.g., shift duration, illness, others), it becomes challenging to protect workers on an individual basis from heat-related injury without assessing those physiological responses. Recent advancements in wearable technology have made it possible to monitor one or more physiological indices of heat strain. Nonetheless, information on the utility of the wearable systems available for assessing occupational heat strain is unavailable. This communication is therefore directed at identifying the physiological indices of heat strain that may be quantified in the workplace and evaluating the wearable monitoring systems available for assessing those responses. Finally, emphasis is directed to the barriers associated with implementing these devices to assist in mitigating work-related heat injury. This information is fundamental for protecting worker health and could also be utilized to prevent heat illnesses in vulnerable people during leisure or athletic activities in the heat.

  3. Effects of heat stress on mammalian reproduction

    PubMed Central

    Hansen, Peter J.

    2009-01-01

    Heat stress can have large effects on most aspects of reproductive function in mammals. These include disruptions in spermatogenesis and oocyte development, oocyte maturation, early embryonic development, foetal and placental growth and lactation. These deleterious effects of heat stress are the result of either the hyperthermia associated with heat stress or the physiological adjustments made by the heat-stressed animal to regulate body temperature. Many effects of elevated temperature on gametes and the early embryo involve increased production of reactive oxygen species. Genetic adaptation to heat stress is possible both with respect to regulation of body temperature and cellular resistance to elevated temperature. PMID:19833646

  4. Stress-induced cardiomyopathy caused by heat stroke.

    PubMed

    Chen, Wei-Ta; Lin, Cheng-Hsin; Hsieh, Ming-Hsiung; Huang, Chun-Yao; Yeh, Jong-Shiuan

    2012-07-01

    Heat stroke is defined by central nervous system abnormalities and failure of proper maintenance of thermoregulation as a result of high core body temperature ensuing from exposure to high environmental temperatures or strenuous exercise. Common complications include acute respiratory distress syndrome, disseminated intravascular coagulation, acute renal injury, hepatic injury, and rhabdomyolysis. Myocardial injury may also occur during heat stroke, resulting in cardiac enzyme increase and ST-segment changes on the ECG. Such findings might behave as diagnostic pitfalls by mimicking the presentation of coronary artery occlusive myocardial infarction. A previous case report described a patient with heat stroke and ST-segment elevation, in which the definite cause of the ST-segment elevation was unclear; however, acute myocardial infarction caused by coronary artery disease was ruled out according to the clinical signs, serial ECG changes, and serum level of cardiac biomarkers. Stress-induced cardiomyopathy (Takotsubo cardiomyopathy) was suspected, but it could not be confirmed because of the lack of coronary angiography. We herein report a case of heat stroke presenting with ST-segment elevation and cardiogenic shock. Coronary angiography was performed and coronary artery occlusive myocardial infarction was ruled out because of the presence of patent coronary arteries. Left ventriculography showed midventricular and apical hypokinesis, and stress-induced cardiomyopathy was then determined to be the appropriate diagnosis. Heat stroke causes increase of serum catecholamine levels, in which oversecretion and abnormal responses to catecholamines are a possible cause of stress-induced cardiomyopathy. Catecholamines may therefore be the key in linking heat stroke and stress-induced cardiomyopathy. Copyright © 2011. Published by Mosby, Inc.

  5. Differential expression pattern of heat shock protein 70 gene in tissues and heat stress phenotypes in goats during peak heat stress period.

    PubMed

    Rout, P K; Kaushik, R; Ramachandran, N

    2016-07-01

    It has been established that the synthesis of heat shock protein 70 (Hsp70) is temperature-dependent. The Hsp70 response is considered as a cellular thermometer in response to heat stress and other stimuli. The variation in Hsp70 gene expression has been positively correlated with thermotolerance in Drosophila melanogaster, Caenorhabditis elegans, rodents and human. Goats have a wide range of ecological adaptability due to their anatomical and physiological characteristics; however, the productivity of the individual declines during thermal stress. The present study was carried out to analyze the expression of heat shock proteins in different tissues and to contrast heat stress phenotypes in response to chronic heat stress. The investigation has been carried out in Jamunapari, Barbari, Jakhrana and Sirohi goats. These breeds differ in size, coat colour and production performance. The heat stress assessment in goats was carried out at a temperature humidity index (THI) ranging from 85.36-89.80 over the period. Phenotyping for heat stress susceptibility was carried out by combining respiration rate (RR) and heart rate (HR). Based on the distribution of RR and HR over the breeds in the population, individual animals were recognized as heat stress-susceptible (HSS) and heat stress-tolerant (HST). Based on their physiological responses, the selected animals were slaughtered for tissue collection during peak heat stress periods. The tissue samples from different organs such as liver, spleen, heart, testis, brain and lungs were collected and stored at -70 °C for future use. Hsp70 concentrations were analyzed from tissue extract with ELISA. mRNA expression levels were evaluated using the SYBR green method. Kidney, liver and heart had 1.5-2.0-fold higher Hsp70 concentrations as compared to other organs in the tissue extracts. Similarly, the gene expression pattern of Hsp70 in different organs indicated that the liver, spleen, brain and kidney exhibited 5.94, 4.96, 5

  6. On thermal stress failure of the SNAP-19A RTG heat shield

    NASA Technical Reports Server (NTRS)

    Pitts, W. C.; Anderson, L. A.

    1974-01-01

    Results of a study on thermal stress problems in an amorphous graphite heat shield that is part of the launch-abort protect system for the SNAP-19A radio-isotope thermoelectric generators (RTG) that will be used on the Viking Mars Lander are presended. The first result is from a thermal stress analysis of a full-scale RTG heat source that failed to survive a suborbital entry flight test, possibly due to thermal stress failure. It was calculated that the maximum stress in the heat shield was only 50 percent of the ultimate strength of the material. To provide information on the stress failure criterion used for this calculation, some heat shield specimens were fractured under abort entry conditions in a plasma arc facility. It was found that in regions free of stress concentrations the POCO graphite heat shield material did fracture when the local stress reached the ultimate uniaxial stress of the material.

  7. Heat-stress-related mortality in five cities in Southern Ontario: 1980-1996.

    PubMed

    Smoyer, K E; Rainham, D G; Hewko, J N

    2000-11-01

    The Toronto-Windsor corridor of Southern Ontario, Canada, experiences hot and humid weather conditions in summer, thus exposing the population to heat stress and a greater risk of mortality. In the event of a climate change, heat-stress conditions may become more frequent and severe in Southern Ontario. To assess the impact of summer weather on health, we analyzed heat-related mortality in the elderly (older than 64 years) in the metropolitan areas of Windsor, London, Kitchener-Waterloo-Cambridge, Hamilton, and Toronto for a 17-year period. Demographic, socioeconomic, and housing factors were also evaluated to assess their effect on the potential of the population to adapt and their vulnerability to heat stress. Heat-stress days were defined as those with an apparent temperature (heat index) above 32 degrees C. Mortality among the elderly was significantly higher on heat-stress days than on non-heat-stress days in all cities except Windsor. The strongest relationships occurred in Toronto and London, followed by Hamilton. Cities with the greatest heat-related mortality have relatively high levels of urbanization and high costs of living. Even without the warming induced by a climate change, (1) vulnerability is likely to increase as the population ages, and (2) ongoing urban development and sprawl are expected to intensify heat-stress conditions in Southern Ontario. Actions should be taken to reduce vulnerability to heat stress conditions, and to develop a comprehensive hot weather watch/warning system for the region.

  8. Scaling and Thermal Evolution of Internally Heated Planets: Yield Stress and Thermal History.

    NASA Astrophysics Data System (ADS)

    Weller, M. B.; Lenardic, A.; Moore, W. B.

    2014-12-01

    Using coupled 3D mantle convection and planetary tectonics models of bi-stable systems, we show how system behaviors for mobile-lid and stagnant-lid states scale as functions of internal heating rates (Q) and basal Ra (Rab). With parameter ranges for temperature- and depth-dependant viscosities: 1e4 - 3e4, Rab: 1e5- 3e5, Q: 0 - 100, and yield stress: 1e4 - 2e5, it can be shown the internal temperatures, velocities, heat fluxes, and system behaviors for mobile-lid and stagnant-lid states diverge, for equivalent parameter values, as a function of increasing Q. For the mobile-lid regime, yielding behavior in the upper boundary layer strongly influences the dynamics of the system. Internal temperatures, and consequently temperature-dependant viscosities, vary strongly as a function of yield stress for a given Q. The temperature distribution across the upper and lower mantles are sub-adiabatic for low to moderate yield stress, and adiabatic to super-adiabatic for high yield stresses. Across the parameter range considered, and for fixed yield stress, the Nu across the basal boundary (Nub) is positive and only weakly dependant on Q (varies by ~ 9%). Nub varies strongly as a function of yield stress (maximum variation of ~84%). Both mobile-lid velocities and lid-thicknesses are yield stress dependant for a given Q and Ra. In contrast to mobile-lids, the stagnant-lid regime is governed by the relative inefficiency of heat transport through the surface boundary layer. Internal temperatures are yield stress independent, and are on average 30% greater. Nub has a strong dependence on heating rates and surface boundary layer thicknesses. Within the parameter space considered, the maximum stagnant-lid Nub corresponds to the minimum mobile-lid Nub (for high yield stress), and decreases with increasing Q. For high Q, super-heated stagnant-lids may develop, with Nub< 0, and changes in trends for system behaviors. Planets with high levels of internal heating and/or high yield

  9. Developmental competence of bovine embryos from heat-stressed ova.

    PubMed

    Edwards, J L; Bogart, A N; Rispoli, L A; Saxton, A M; Schrick, F N

    2009-02-01

    Because multiple ovulation embryo transfer procedures are occasionally performed in cows experiencing heat stress, the goal of this study was to assess the developmental competence of otherwise morphologically normal embryos from heat-stressed ova. To this end, the ability of compact morulae from heat-stressed and non-heat-stressed bovine ova to undergo blastocyst development after culture at 38.5 or 41.0 degrees C was examined. It was hypothesized that heat-induced perturbations in the ooplasm carry over to increase the susceptibility of the preattachment embryo to heat stress. Initially, ova were matured at 38.5 or 41.0 degrees C. The consequences of heat stress did not include altered cleavage, but did reduce the proportion of 8- to 16-cell-stage embryos (55.3 vs. 50.6%; SEM +/- 1.9). Although proportionately fewer, compact morulae from heat-stressed ova were equivalent in quality to those from non-heat-stressed ova (2.1 and 2.1; SEM = 0.04). Culture of compact morulae from non-heat-stressed ova at 41.0 degrees C did not affect blastocyst development (71.9 and 71.5%; SEM = 3.0). Furthermore, the development of compact morulae from heat-stressed ova was similar to that of non-heat-stressed ova after culture at 38.5 degrees C (68.2 vs. 71.9 and 71.5%; SEM = 3.0). However, blastocyst development was reduced when compact morulae from heat-stressed ova were cultured at 41.0 degrees C (62.3 vs. 71.9, 71.5 and 68.2; SEM = 3.1). In summary, reduced compaction rates of heat-stressed ova explained in part why fewer develop to the blastocyst stage after fertilization. The thermolability of the few embryos that develop from otherwise developmentally challenged ova emphasizes the importance of minimizing exposure to stressor(s) during oocyte maturation.

  10. Managing heat and immune stress in athletes with evidence-based strategies.

    PubMed

    Pyne, David B; Guy, Joshua H; Edwards, Andrew M

    2014-09-01

    Heat and immune stress can affect athletes in a wide range of sports and environmental conditions. The classical thermoregulatory model of heat stress has been well characterized, as has a wide range of practical strategies largely centered on cooling and heat-acclimation training. In the last decade evidence has emerged of an inflammatory pathway that can also contribute to heat stress. Studies are now addressing the complex and dynamic interplay between hyperthermia, the coagulation cascade, and a systemic inflammatory response occurring after transient damage to the gastrointestinal tract. Damage to the intestinal mucosal membrane increases permeability, resulting in leakage of endotoxins into the circulation. Practical strategies that target both thermoregulatory and inflammatory causes of heat stress include precooling; short-term heat-acclimation training; nutritional countermeasures including hydration, energy replacement, and probiotic supplementation; pacing strategies during events; and postevent cooling measures. Cooperation between international, national, and local sporting organizations is required to ensure that heat-management policies and strategies are implemented effectively to promote athletes' well-being and performance.

  11. Mechanisms of orthostatic intolerance during heat stress

    PubMed Central

    Schlader, Zachary J.; Wilson, Thad E.; Crandall, Craig G.

    2017-01-01

    Heat stress profoundly and unanimously reduces orthostatic tolerance. This review aims to provide an overview of the numerous and multifactorial mechanisms by which this occurs in humans. Potential causal factors include changes in arterial and venous vascular resistance and blood distribution, and the modulation of cardiac output, all of which contribute to the inability to maintain cerebral perfusion during heat and orthostatic stress. A number of countermeasures have been established to improve orthostatic tolerance during heat stress, which alleviate heat stress induced central hypovolemia (e.g., volume expansion) and/or increase peripheral vascular resistance (e.g., skin cooling). Unfortunately, these countermeasures can often be cumbersome to use with populations prone to syncopal episodes. Identifying the mechanisms of inter-individual differences in orthostatic intolerance during heat stress has proven elusive, but could provide greater insights into the development of novel and personalized countermeasures for maintaining or improving orthostatic tolerance during heat stress. This development will be especially impactful in occuational settings and clinical situations that present with orthostatic intolerance and/or central hypovolemia. Such investigations should be considered of vital importance given the impending increased incidence of heat events, and associated cardiovascular challenges that are predicted to occur with the ensuing changes in climate. PMID:26723547

  12. Effects of heat stress on baroreflex function in humans

    NASA Technical Reports Server (NTRS)

    Crandall, Craig G.; Cui, Jian; Wilson, Thad E.

    2003-01-01

    INTRODUCTION: Heat stress significantly reduces orthostatic tolerance in humans. The mechanism(s) causing this response remain unknown. The purpose of this review article is to present data pertaining to the hypothesis that reduced orthostatic tolerance in heat stressed individuals is a result of heat stress induced alterations in baroflex function. METHODS: In both normothermic and heat stressed conditions baroreflex responsiveness was assessed via pharmacological and non-pharmacological methods. In addition, the effects of heat stress on post-synaptic vasoconstrictor responsiveness were assessed. RESULTS: Generally, whole body heating did not alter baroreflex sensitivity defined as the gain of the linear portion of the baroreflex curve around the operating point. However, whole body heating shifted the baroreflex curve to the prevailing (i.e. elevated) heart rate and muscle sympathetic nerve activity. Finally, the heat stress impaired vasoconstrictor responses to exogenous administration of adrenergic agonists. CONCLUSION: Current data do not support the hypothesis that reduced orthostatic tolerance associated with heat stress in humans is due to impaired baroreflex responsiveness. This phenomenon may be partially due to the effects of heat stress on reducing vasoconstrictor responsiveness.

  13. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress.

    PubMed

    Zhou, Rong; Yu, Xiaqing; Ottosen, Carl-Otto; Rosenqvist, Eva; Zhao, Liping; Wang, Yinlei; Yu, Wengui; Zhao, Tongmin; Wu, Zhen

    2017-01-25

    Abiotic stresses due to environmental factors could adversely affect the growth and development of crops. Among the abiotic stresses, drought and heat stress are two critical threats to crop growth and sustainable agriculture worldwide. Considering global climate change, incidence of combined drought and heat stress is likely to increase. The aim of this study was to shed light on plant growth performance and leaf physiology of three tomatoes cultivars ('Arvento', 'LA1994' and 'LA2093') under control, drought, heat and combined stress. Shoot fresh and dry weight, leaf area and relative water content of all cultivars significantly decreased under drought and combined stress as compared to control. The net photosynthesis and starch content were significantly lower under drought and combined stress than control in the three cultivars. Stomata and pore length of the three cultivars significantly decreased under drought and combined stress as compared to control. The tomato 'Arvento' was more affected by heat stress than 'LA1994' and 'LA2093' due to significant decreases in shoot dry weight, chlorophyll a and carotenoid content, starch content and NPQ (non-photochemical quenching) only in 'Arvento' under heat treatment. By comparison, the two heat-tolerant tomatoes were more affected by drought stress compared to 'Arvento' as shown by small stomatal and pore area, decreased sucrose content, Φ PSII (quantum yield of photosystem II), ETR (electron transport rate) and q L (fraction of open PSII centers) in 'LA1994' and 'LA2093'. The three cultivars showed similar response when subjected to the combination of drought and heat stress as shown by most physiological parameters, even though only 'LA1994' and 'LA2093' showed decreased F v /F m (maximum potential quantum efficiency of photosystem II), Φ PSII , ETR and q L under combined stress. The cultivars differing in heat sensitivity did not show difference in the combined stress sensitivity, indicating that selection for

  14. The efficacy of radiant heat controls on workers' heat stress around the blast furnace of a steel industry.

    PubMed

    Giahi, Omid; Darvishi, Ebrahim; Aliabadi, Mohsen; Khoubi, Jamshid

    2015-01-01

    Workers' exposure to excessive heat in molten industries is mainly due to radiant heat from hot sources. The aim of this study was to evaluate the efficacy of radiant heat controls on workers heat stress around a typical blast furnace. Two main interventions were applied for reducing radiant heat around the blast furnace of a steel industry located in western Iran. These included using a heat absorbing system in the furnace body and installing reflective aluminum barrier in the main workstation. Heat stress indexes were measured before and after each intervention using the digital WBGT-meter. The results showed MRT and WBGT indexes decreased by 20 °C and 3.9 °C, respectively after using heat absorbing system and also decreased by 18.6 °C and 2.5 °C, respectively after installing a reflective barrier. These indexes decrease by 26.5 °C and 5.2 °C, respectively due to the simultaneous application of the two interventions which were statistically significant (p < 0.001). The core body temperature of workers decreased by 2.6 °C after the application of interventions which was also significant (p < 0.05). The results confirmed heat control at source can be considered as a first solution for reducing radiant heat of blast furnaces. However, the simultaneous application of interventions could noticeably reduce worker heat stress. The results provide reliable information in order to implement the effective heat controls in typical hot steel industries.

  15. Genome-wide analysis of the heat stress response in Zebu (Sahiwal) cattle.

    PubMed

    Mehla, Kusum; Magotra, Ankit; Choudhary, Jyoti; Singh, A K; Mohanty, A K; Upadhyay, R C; Srinivasan, Surendran; Gupta, Pankaj; Choudhary, Neelam; Antony, Bristo; Khan, Farheen

    2014-01-10

    Environmental-induced hyperthermia compromises animal production with drastic economic consequences to global animal agriculture and jeopardizes animal welfare. Heat stress is a major stressor that occurs as a result of an imbalance between heat production within the body and its dissipation and it affects animals at cellular, molecular and ecological levels. The molecular mechanism underlying the physiology of heat stress in the cattle remains undefined. The present study sought to evaluate mRNA expression profiles in the cattle blood in response to heat stress. In this study we report the genes that were differentially expressed in response to heat stress using global scale genome expression technology (Microarray). Four Sahiwal heifers were exposed to 42°C with 90% humidity for 4h followed by normothermia. Gene expression changes include activation of heat shock transcription factor 1 (HSF1), increased expression of heat shock proteins (HSP) and decreased expression and synthesis of other proteins, immune system activation via extracellular secretion of HSP. A cDNA microarray analysis found 140 transcripts to be up-regulated and 77 down-regulated in the cattle blood after heat treatment (P<0.05). But still a comprehensive explanation for the direction of fold change and the specific genes involved in response to acute heat stress still remains to be explored. These findings may provide insights into the underlying mechanism of physiology of heat stress in cattle. Understanding the biology and mechanisms of heat stress is critical to developing approaches to ameliorate current production issues for improving animal performance and agriculture economics. © 2013 Elsevier B.V. All rights reserved.

  16. Reductions in labour capacity from heat stress under climate warming

    NASA Astrophysics Data System (ADS)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  17. Temperature and blood flow distribution in the human leg during passive heat stress

    PubMed Central

    Chiesa, Scott T.; Trangmar, Steven J.

    2016-01-01

    The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia. PMID:26823344

  18. Genome-wide analysis identifies chickpea (Cicer arietinum) heat stress transcription factors (Hsfs) responsive to heat stress at the pod development stage.

    PubMed

    Chidambaranathan, Parameswaran; Jagannadham, Prasanth Tej Kumar; Satheesh, Viswanathan; Kohli, Deshika; Basavarajappa, Santosh Halasabala; Chellapilla, Bharadwaj; Kumar, Jitendra; Jain, Pradeep Kumar; Srinivasan, R

    2018-05-01

    The heat stress transcription factors (Hsfs) play a prominent role in thermotolerance and eliciting the heat stress response in plants. Identification and expression analysis of Hsfs gene family members in chickpea would provide valuable information on heat stress responsive Hsfs. A genome-wide analysis of Hsfs gene family resulted in the identification of 22 Hsf genes in chickpea in both desi and kabuli genome. Phylogenetic analysis distinctly separated 12 A, 9 B, and 1 C class Hsfs, respectively. An analysis of cis-regulatory elements in the upstream region of the genes identified many stress responsive elements such as heat stress elements (HSE), abscisic acid responsive element (ABRE) etc. In silico expression analysis showed nine and three Hsfs were also expressed in drought and salinity stresses, respectively. Q-PCR expression analysis of Hsfs under heat stress at pod development and at 15 days old seedling stage showed that CarHsfA2, A6, and B2 were significantly upregulated in both the stages of crop growth and other four Hsfs (CarHsfA2, A6a, A6c, B2a) showed early transcriptional upregulation for heat stress at seedling stage of chickpea. These subclasses of Hsfs identified in this study can be further evaluated as candidate genes in the characterization of heat stress response in chickpea.

  19. Effects of heat stress on antioxidant defense system, inflammatory injury, and heat shock proteins of Muscovy and Pekin ducks: evidence for differential thermal sensitivities.

    PubMed

    Zeng, Tao; Li, Jin-jun; Wang, De-qian; Li, Guo-qin; Wang, Gen-lin; Lu, Li-zhi

    2014-11-01

    Rising temperatures are severely affecting the mortality, laying performance, and meat quality of duck. Our aim was to investigate the effect of acute heat stress on the expression of heat shock proteins (HSPs: HSP90, 70, 60, 40, and 10) and inflammatory factors (nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2)) and antioxidant enzyme activity (superoxide dismutase (SOD), malondialdehybe (MDA), catalase (CAT), total antioxidant capacity (T-AOC)) in livers of ducks and to compare the thermal tolerance of Pekin and Muscovy ducks exposed to acute heat stress. Ducks were exposed to heat at 39 ± 0.5 °C for 1 h and then returned to 20 °C for 1 h followed by a 3-h recovery period. The liver and other tissues were collected from each individual for analysis. The mRNA levels of HSPs (70, 60, and 40) increased in both species, except for HSP10, which was upregulated in Muscovy ducks and had no difference in Pekin ducks after heat stress. Simultaneously, the mRNA level of HSP90 decreased in the stress group in both species. Morphological analysis indicated that heat stress induced tissue injury in both species, and the liver of Pekin ducks was severely damaged. The activities of several antioxidant enzymes increased in Muscovy duck liver, but decreased in Pekin duck. The mRNA levels of inflammatory factors were increased after heat stress in both duck species. These results suggested that heat stress could influence HSPs, inflammatory factors expression, and the activities of antioxidant enzymes. Moreover, the differential response to heat stress indicated that the Muscovy duck has a better thermal tolerance than does the Pekin duck.

  20. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress.

    PubMed

    Sawka, Michael N; Leon, Lisa R; Montain, Scott J; Sonna, Larry A

    2011-10-01

    This article emphasizes significant recent advances regarding heat stress and its impact on exercise performance, adaptations, fluid electrolyte imbalances, and pathophysiology. During exercise-heat stress, the physiological burden of supporting high skin blood flow and high sweating rates can impose considerable cardiovascular strain and initiate a cascade of pathophysiological events leading to heat stroke. We examine the association between heat stress, particularly high skin temperature, on diminishing cardiovascular/aerobic reserves as well as increasing relative intensity and perceptual cues that degrade aerobic exercise performance. We discuss novel systemic (heat acclimation) and cellular (acquired thermal tolerance) adaptations that improve performance in hot and temperate environments and protect organs from heat stroke as well as other dissimilar stresses. We delineate how heat stroke evolves from gut underperfusion/ischemia causing endotoxin release or the release of mitochondrial DNA fragments in response to cell necrosis, to mediate a systemic inflammatory syndrome inducing coagulopathies, immune dysfunction, cytokine modulation, and multiorgan damage and failure. We discuss how an inflammatory response that induces simultaneous fever and/or prior exposure to a pathogen (e.g., viral infection) that deactivates molecular protective mechanisms interacts synergistically with the hyperthermia of exercise to perhaps explain heat stroke cases reported in low-risk populations performing routine activities. Importantly, we question the "traditional" notion that high core temperature is the critical mediator of exercise performance degradation and heat stroke. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  1. Biophysical aspects of human thermoregulation during heat stress.

    PubMed

    Cramer, Matthew N; Jay, Ollie

    2016-04-01

    Humans maintain a relatively constant core temperature through the dynamic balance between endogenous heat production and heat dissipation to the surrounding environment. In response to metabolic or environmental disturbances to heat balance, the autonomic nervous system initiates cutaneous vasodilation and eccrine sweating to facilitate higher rates of dry (primarily convection and radiation) and evaporative transfer from the body surface; however, absolute heat losses are ultimately governed by the properties of the skin and the environment. Over the duration of a heat exposure, the cumulative imbalance between heat production and heat dissipation leads to body heat storage, but the consequent change in core temperature, which has implications for health and safety in occupational and athletic settings particularly among certain clinical populations, involves a complex interaction between changes in body heat content and the body's morphological characteristics (mass, surface area, and tissue composition) that collectively determine the body's thermal inertia. The aim of this review is to highlight the biophysical aspects of human core temperature regulation by outlining the principles of human energy exchange and examining the influence of body morphology during exercise and environmental heat stress. An understanding of the biophysical factors influencing core temperature will enable researchers and practitioners to better identify and treat individuals/populations most vulnerable to heat illness and injury during exercise and extreme heat events. Further, appropriate guidelines may be developed to optimize health, safety, and work performance during heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Temperature and blood flow distribution in the human leg during passive heat stress.

    PubMed

    Chiesa, Scott T; Trangmar, Steven J; González-Alonso, José

    2016-05-01

    The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia. Copyright © 2016 the American Physiological Society.

  3. Management of climatic heat stress risk in construction: a review of practices, methodologies, and future research.

    PubMed

    Rowlinson, Steve; Yunyanjia, Andrea; Li, Baizhan; Chuanjingju, Carrie

    2014-05-01

    Climatic heat stress leads to accidents on construction sites brought about by a range of human factors emanating from heat induced illness, and fatigue leading to impaired capability, physical and mental. It is an occupational characteristic of construction work in many climates and the authors take the approach of re-engineering the whole safety management system rather than focusing on incremental improvement, which is current management practice in the construction industry. From a scientific viewpoint, climatic heat stress is determined by six key factors: (1) air temperature, (2) humidity, (3) radiant heat, and (4) wind speed indicating the environment, (5) metabolic heat generated by physical activities, and (6) "clothing effect" that moderates the heat exchange between the body and the environment. By making use of existing heat stress indices and heat stress management processes, heat stress risk on construction sites can be managed in three ways: (1) control of environmental heat stress exposure through use of an action-triggering threshold system, (2) control of continuous work time (CWT, referred by maximum allowable exposure duration) with mandatory work-rest regimens, and (3) enabling self-paced working through empowerment of employees. Existing heat stress practices and methodologies are critically reviewed and the authors propose a three-level methodology for an action-triggering, localized, simplified threshold system to facilitate effective decisions by frontline supervisors. The authors point out the need for "regional based" heat stress management practices that reflect unique climatic conditions, working practices and acclimatization propensity by local workers indifferent geographic regions. The authors set out the case for regional, rather than international, standards that account for this uniqueness and which are derived from site-based rather than laboratory-based research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Drivers and barriers to heat stress resilience.

    PubMed

    Hatvani-Kovacs, Gertrud; Belusko, Martin; Skinner, Natalie; Pockett, John; Boland, John

    2016-11-15

    Heatwaves are the most dangerous natural hazard to health in Australia. The frequency and intensity of heatwaves will increase due to climate change and urban heat island effects in cities, aggravating the negative impacts of heatwaves. Two approaches exist to develop population heat stress resilience. Firstly, the most vulnerable social groups can be identified and public health services can prepare for the increased morbidity. Secondly, the population level of adaptation and the heat stress resistance of the built environment can be increased. The evaluation of these measures and their efficiencies has been fragmented across research disciplines. This study explored the relationships between the elements of heat stress resilience and their potential demographic and housing drivers and barriers. The responses of a representative online survey (N=393) about heat stress resilience at home and work from Adelaide, South Australia were analysed. The empirical findings demonstrate that heat stress resistant buildings increased adaptation capacity and decreased the number of health problems. Air-conditioning increased dependence upon it, limited passive adaptation and only people living in homes with whole-house air-conditioning had less health problems during heatwaves. Tenants and respondents with pre-existing health conditions were the most vulnerable, particularly as those with health conditions were not aware of their vulnerability. The introduction of an Energy Performance Certificate is proposed and discussed as an effective incentive to increase the heat stress resistance of and the general knowledge about the built environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Re-evaluating occupational heat stress in a changing climate.

    PubMed

    Spector, June T; Sheffield, Perry E

    2014-10-01

    The potential consequences of occupational heat stress in a changing climate on workers, workplaces, and global economies are substantial. Occupational heat stress risk is projected to become particularly high in middle- and low-income tropical and subtropical regions, where optimal controls may not be readily available. This commentary presents occupational heat stress in the context of climate change, reviews its impacts, and reflects on implications for heat stress assessment and control. Future efforts should address limitations of existing heat stress assessment methods and generate economical, practical, and universal approaches that can incorporate data of varying levels of detail, depending on resources. Validation of these methods should be performed in a wider variety of environments, and data should be collected and analyzed centrally for both local and large-scale hazard assessments and to guide heat stress adaptation planning. Heat stress standards should take into account variability in worker acclimatization, other vulnerabilities, and workplace resources. The effectiveness of controls that are feasible and acceptable should be evaluated. Exposure scientists are needed, in collaboration with experts in other areas, to effectively prevent and control occupational heat stress in a changing climate. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  6. Heat stress and carbon monoxide exposure during C-130 vehicle transportation.

    PubMed

    Dor, Alex; Pokroy, Russell; Goldstein, Liav; Barenboim, Erez; Zilberberg, Michal

    2005-04-01

    Running gasoline engines in a confined space causes heat stress and carbon monoxide (CO) buildup. Loading the C-130 aircraft by driving the vehicles onto the platform may expose the C-130 cabin crew to these environmental hazards. This study was aimed at investigating heat stress and CO exposure in the C-130 cabin during vehicle airlift. There were four summer flights (two two-vehicle, two three-vehicle; 2 d, 2 nights) studied. The cabin heat stress index (wet bulb globe temperature, WBGT) and CO levels before vehicle loading (control) were compared with those after vehicle loading. Furthermore, two- and three-vehicle transportations, as well as day and night transportations, were compared. Ground temperature ranged from 18.2 to 33.4 degrees C. Mean heat stress index was higher in vehicle transportation than control flights, the greatest difference being 5.9 degrees C (p < 0.001). The WBGT levels exceeded the recommended exposure limit in 28 of 38 measurements during day flights. The cabin heat stress increased sharply with vehicle loading, and continued to increase for a range of 60-140 min after loading. Elevated cabin CO levels were found in three-vehicle flights as compared with two, and in night flights as compared with day. In hot climates, C-130 vehicle transportation may exacerbate heat stress. The in-flight heat stress can be predicted by the ambient temperature, duration of the vehicle transportation, and number of transported vehicles. The cabin CO level is related to the number of transported vehicles. We recommend the use of effective environmental control systems during C-130 vehicle transportation in hot climates.

  7. Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens.

    PubMed

    Liu, L L; He, J H; Xie, H B; Yang, Y S; Li, J C; Zou, Y

    2014-01-01

    and reduces oxidative stress in heat-stressed black-boned chickens by increasing serum growth hormone concentrations and modulating the expression of heat shock genes in organs of the immune system.

  8. Whole-body heat stress and exercise stimulate the appearance of platelet microvesicles in plasma with limited influence of vascular shear stress.

    PubMed

    Wilhelm, Eurico N; González-Alonso, José; Chiesa, Scott T; Trangmar, Steven J; Kalsi, Kameljit K; Rakobowchuk, Mark

    2017-11-01

    Intense, large muscle mass exercise increases circulating microvesicles, but our understanding of microvesicle dynamics and mechanisms inducing their release remains limited. However, increased vascular shear stress is generally thought to be involved. Here, we manipulated exercise-independent and exercise-dependent shear stress using systemic heat stress with localized single-leg cooling (low shear) followed by single-leg knee extensor exercise with the cooled or heated leg (Study 1, n  = 8) and whole-body passive heat stress followed by cycling (Study 2, n  = 8). We quantified femoral artery shear rates (SRs) and arterial and venous platelet microvesicles (PMV-CD41 + ) and endothelial microvesicles (EMV-CD62E + ). In Study 1, mild passive heat stress while one leg remained cooled did not affect [microvesicle] ( P  ≥ 0.05). Single-leg knee extensor exercise increased active leg SRs by ~12-fold and increased arterial and venous [PMVs] by two- to threefold, even in the nonexercising contralateral leg ( P  < 0.05). In Study 2, moderate whole-body passive heat stress increased arterial [PMV] compared with baseline (mean±SE, from 19.9 ± 1.5 to 35.5 ± 5.4 PMV . μ L -1. 10 3 , P  < 0.05), and cycling with heat stress increased [PMV] further in the venous circulation (from 27.5 ± 2.2 at baseline to 57.5 ± 7.2 PMV . μ L -1. 10 3 during cycling with heat stress, P  < 0.05), with a tendency for increased appearance of PMV across exercising limbs. Taken together, these findings demonstrate that whole-body heat stress may increase arterial [PMV], and intense exercise engaging either large or small muscle mass promote PMV formation locally and systemically, with no influence upon [EMV]. Local shear stress, however, does not appear to be the major stimulus modulating PMV formation in healthy humans. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological

  9. Heat stress intervention research in construction: gaps and recommendations.

    PubMed

    Yang, Yang; Chan, Albert Ping-Chuen

    2017-06-08

    Developing heat stress interventions for construction workers has received mounting concerns in recent years. However, limited efforts have been exerted to elaborate the rationale, methodology, and practicality of heat stress intervention in the construction industry. This study aims to review previous heat stress intervention research in construction, to identify the major research gaps in methodological issues, and to offer detailed recommendations for future studies. A total of 35 peer-reviewed journal papers have been identified to develop administrative, environmental or personal engineering interventions to safeguard construction workers. It was found that methodological limitations, such as arbitrary sampling methods and unreliable instruments, could be the major obstacle in undertaking heat stress intervention research. To bridge the identified research gaps, this study then refined a research framework for conducting heat stress intervention studies in the construction industry. The proposed research strategy provides researchers and practitioners with fresh insights into expanding multidisciplinary research areas and solving practical problems in the management of heat stress. The proposed research framework may foster the development of heat stress intervention research in construction, which further aids researchers, practitioners, and policymakers in formulating proper intervention strategies.

  10. Drivers of self-reported heat stress in the Australian labour force.

    PubMed

    Zander, Kerstin K; Moss, Simon A; Garnett, Stephen T

    2017-01-01

    Heat stress causes reductions in well-being and health. As average annual temperatures increase, heat stress is expected to affect more people. While most research on heat stress has explored how exposure to heat affects functioning of the human organism, stress from heat can be manifest long before clinical symptoms are evident, with profound effects on behavior. Here we add to the little research conducted on these subclinical effects of environmental heat using results from an Australian-wide cross-sectional study of nearly 2000 respondents on their self-reported level of heat stress. Slightly less than half (47%) of the respondents perceived themselves as at least sometimes, often or very often stressed by heat during the previous 12 months. Health status and smoking behavior had the expected impact on self-reported perceived heat stress. There were also regional differences with people living in South Australia, Victoria and New South Wales most likely to have reported to have felt heat stressed. People generally worried about climate change, who had been influenced by recent heat waves and who thought there was a relationship between climate change and health were also more likely to have been heat stressed. Surprisingly average maximum temperatures did not significantly explain heat stress but stress was greater among people who perceived the day of the survey as hotter than usual. Currently heat stress indices are largely based on monitoring the environment and physical limitations to people coping with heat. Our results suggest that psychological perceptions of heat need to be considered when predicting how people will be affected by heat under climate change and when developing heat relief and climate change adaptation plans, at work, at home or in public spaces. We further conclude that the perception of temperature and heat stress complements measures that assess heat exposure and heat strain. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Occupational Heat Stress Profiles in Selected Workplaces in India.

    PubMed

    Venugopal, Vidhya; Chinnadurai, Jeremiah S; Lucas, Rebekah A I; Kjellstrom, Tord

    2015-12-29

    Health and productivity impacts from occupational heat stress have significant ramifications for the large workforce of India. This study profiled occupational heat stress impacts on the health and productivity of workers in select organized and unorganized Indian work sectors. During hotter and cooler seasons, Wet Bulb Globe Temperatures (WBGT) were used to quantify the risk of heat stress, according to International workplace guidelines. Questionnaires assessed workers' perceived health and productivity impacts from heat stress. A total of 442 workers from 18 Indian workplaces participated (22% and 78% from the organized and unorganized sector, respectively). Overall 82% and 42% of workers were exposed to higher than recommended WBGT during hotter and cooler periods, respectively. Workers with heavy workloads reported more heat-related health issues (chi square = 23.67, p ≤ 0.001) and reduced productivity (chi square = 15.82, p ≤ 0.001), especially the outdoor workers. Heat-rashes, dehydration, heat-syncope and urinogenital symptoms were self-reported health issues. Cited reasons for productivity losses were: extended-work hours due to fatigue/exhaustion, sickness/hospitalization and wages lost. Reducing workplace heat stress will benefit industries and workers via improving worker health and productivity. Adaptation and mitigation measures to tackle heat stress are imperative to protect the present and future workforce as climate change progresses.

  12. Occupational Heat Stress Profiles in Selected Workplaces in India

    PubMed Central

    Venugopal, Vidhya; Chinnadurai, Jeremiah S.; Lucas, Rebekah A. I.; Kjellstrom, Tord

    2015-01-01

    Health and productivity impacts from occupational heat stress have significant ramifications for the large workforce of India. This study profiled occupational heat stress impacts on the health and productivity of workers in select organized and unorganized Indian work sectors. During hotter and cooler seasons, Wet Bulb Globe Temperatures (WBGT) were used to quantify the risk of heat stress, according to International workplace guidelines. Questionnaires assessed workers’ perceived health and productivity impacts from heat stress. A total of 442 workers from 18 Indian workplaces participated (22% and 78% from the organized and unorganized sector, respectively). Overall 82% and 42% of workers were exposed to higher than recommended WBGT during hotter and cooler periods, respectively. Workers with heavy workloads reported more heat-related health issues (chi square = 23.67, p ≤ 0.001) and reduced productivity (chi square = 15.82, p ≤ 0.001), especially the outdoor workers. Heat-rashes, dehydration, heat-syncope and urinogenital symptoms were self-reported health issues. Cited reasons for productivity losses were: extended-work hours due to fatigue/exhaustion, sickness/hospitalization and wages lost. Reducing workplace heat stress will benefit industries and workers via improving worker health and productivity. Adaptation and mitigation measures to tackle heat stress are imperative to protect the present and future workforce as climate change progresses. PMID:26729144

  13. Genome scale transcriptional response diversity among ten ecotypes of Arabidopsis thaliana during heat stress

    PubMed Central

    Barah, Pankaj; Jayavelu, Naresh D.; Mundy, John; Bones, Atle M.

    2013-01-01

    In the scenario of global warming and climate change, heat stress is a serious threat to crop production worldwide. Being sessile, plants cannot escape from heat. Plants have developed various adaptive mechanisms to survive heat stress. Several studies have focused on diversity of heat tolerance levels in divergent Arabidopsis thaliana (A. thaliana) ecotypes, but comprehensive genome scale understanding of heat stress response in plants is still lacking. Here we report the genome scale transcript responses to heat stress of 10 A. thaliana ecotypes (Col, Ler, C24, Cvi, Kas1, An1, Sha, Kyo2, Eri, and Kond) originated from different geographical locations. During the experiment, A. thaliana plants were subjected to heat stress (38°C) and transcript responses were monitored using Arabidopsis NimbleGen ATH6 microarrays. The responses of A. thaliana ecotypes exhibited considerable variation in the transcript abundance levels. In total, 3644 transcripts were significantly heat regulated (p < 0.01) in the 10 ecotypes, including 244 transcription factors and 203 transposable elements. By employing a systems genetics approach- Network Component Analysis (NCA), we have constructed an in silico transcript regulatory network model for 35 heat responsive transcription factors during cellular responses to heat stress in A. thaliana. The computed activities of the 35 transcription factors showed ecotype specific responses to the heat treatment. PMID:24409190

  14. Heat stress alters genome-wide profiles of circular RNAs in Arabidopsis.

    PubMed

    Pan, Ting; Sun, Xiuqiang; Liu, Yangxuan; Li, Hui; Deng, Guangbin; Lin, Honghui; Wang, Songhu

    2018-02-01

    1599 novel circRNAs and 1583 heat stress-specific circRNAs were identified in Arabidopsis. Heat stress enhanced accumulation of circRNAs remarkably. Heat stress altered the sizes of circRNAs, numbers of circularized exons and alterative circularization events. A putative circRNA-mediated ceRNA networks under heat stress was established. Heat stress retards plant growth and destabilizes crop yield. The noncoding RNAs were demonstrated to be involved in plant response to heat stress. As a newly-characterized class of noncoding RNAs, circular RNAs (circRNAs) play important roles in transcriptional and post-transcriptional regulation. A few recent investigations indicated that plant circRNAs were differentially expressed under abiotic stress. However, little is known about how heat stress mediates biogenesis of circRNAs in plants. Here, we uncovered 1599 previously-unknown circRNAs and 1583 heat-specific circRNAs, by RNA-sequencing and bioinformatic analysis. Our results indicated that much more circRNAs were expressed under heat stress than in control condition. Besides, heat stress also increased the length of circRNAs, the quantity of circularized exons, and alternative circularization events. Moreover, we observed a positive correlation between expression patterns of some circRNAs and their parental genes. The prediction of ceRNA (competing endogenous RNA) networks indicated that differentially-expressed circRNAs could influence expression of many important genes, that participate in response to heat stress, hydrogen peroxide, and phytohormone signaling pathways, by interacting with the corresponding microRNAs. Together, our observations indicated that heat stress had great impacts on the biogenesis of circRNAs. Heat-induced circRNAs might participate in plant response to heat stress through the circRNA-mediated ceRNA networks.

  15. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks.

    PubMed

    Fragkostefanakis, Sotirios; Röth, Sascha; Schleiff, Enrico; Scharf, Klaus-Dieter

    2015-09-01

    Cell survival under high temperature conditions involves the activation of heat stress response (HSR), which in principle is highly conserved among different organisms, but shows remarkable complexity and unique features in plant systems. The transcriptional reprogramming at higher temperatures is controlled by the activity of the heat stress transcription factors (Hsfs). Hsfs allow the transcriptional activation of HSR genes, among which heat shock proteins (Hsps) are best characterized. Hsps belong to multigene families encoding for molecular chaperones involved in various processes including maintenance of protein homeostasis as a requisite for optimal development and survival under stress conditions. Hsfs form complex networks to activate downstream responses, but are concomitantly subjected to cell-type-dependent feedback regulation through factor-specific physical and functional interactions with chaperones belonging to Hsp90, Hsp70 and small Hsp families. There is increasing evidence that the originally assumed specialized function of Hsf/chaperone networks in the HSR turns out to be a complex central stress response system that is involved in the regulation of a broad variety of other stress responses and may also have substantial impact on various developmental processes. Understanding in detail the function of such regulatory networks is prerequisite for sustained improvement of thermotolerance in important agricultural crops. © 2014 John Wiley & Sons Ltd.

  16. Occupational Heat Stress and Kidney Health: From Farms to Factories.

    PubMed

    Nerbass, Fabiana B; Pecoits-Filho, Roberto; Clark, William F; Sontrop, Jessica M; McIntyre, Christopher W; Moist, Louise

    2017-11-01

    Millions of workers around the world are exposed to high temperatures, intense physical activity, and lax labor practices that do not allow for sufficient rehydration breaks. The extent and consequences of heat exposure in different occupational settings, countries, and cultural contexts is not well studied. We conducted an in-depth review to examine the known effects of occupational heat stress on the kidney. We also examined methods of heat-stress assessment, strategies for prevention and mitigation, and the economic consequences of occupational heat stress. Our descriptive review summarizes emerging evidence that extreme occupational heat stress combined with chronic dehydration may contribute to the development of CKD and ultimately kidney failure. Rising global temperatures, coupled with decreasing access to clean drinking water, may exacerbate the effects of heat exposure in both outdoor and indoor workers who are exposed to chronic heat stress and recurrent dehydration. These changes create an urgent need for health researchers and industry to identify work practices that contribute to heat-stress nephropathy, and to test targeted, robust prevention and mitigation strategies. Preventing occupational heat stress presents a great challenge for a concerted multidisciplinary effort from employers, health authorities, engineers, researchers, and governments.

  17. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans

    PubMed Central

    Petrie, Michael A.; Kimball, Amy L.; McHenry, Colleen L.; Suneja, Manish; Yen, Chu-Ling; Sharma, Arpit; Shields, Richard K.

    2016-01-01

    Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat) and mechanical stress (vibration) on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction. Purpose: The purpose of this study is to examine whether active mechanical stress (muscle contraction), passive mechanical stress (vibration), or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair. Methods: Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI) participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus) to analyze mRNA gene expression. Results: We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold), PGC-1α (5.46 fold), and ABRA (5.98 fold); and repressed MSTN (0.56 fold). Heat stress repressed PGC-1α (0.74 fold change; p < 0.05); while vibration induced FOXK2 (2.36 fold change; p < 0.05). Vibration similarly caused a down regulation of MSTN (0.74 fold change; p < 0.05), but to a lesser extent than active muscle contraction. Vibration induced FOXK2 (p < 0.05) while heat stress repressed PGC-1α (0.74 fold) and ANKRD1 genes (0.51 fold; p < 0.05). Conclusion: These findings support a distinct gene regulation in response to heat stress, vibration, and muscle contractions. Understanding these responses may assist in developing regenerative

  18. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans.

    PubMed

    Petrie, Michael A; Kimball, Amy L; McHenry, Colleen L; Suneja, Manish; Yen, Chu-Ling; Sharma, Arpit; Shields, Richard K

    2016-01-01

    Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat) and mechanical stress (vibration) on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction. The purpose of this study is to examine whether active mechanical stress (muscle contraction), passive mechanical stress (vibration), or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair. Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI) participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus) to analyze mRNA gene expression. We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold), PGC-1α (5.46 fold), and ABRA (5.98 fold); and repressed MSTN (0.56 fold). Heat stress repressed PGC-1α (0.74 fold change; p < 0.05); while vibration induced FOXK2 (2.36 fold change; p < 0.05). Vibration similarly caused a down regulation of MSTN (0.74 fold change; p < 0.05), but to a lesser extent than active muscle contraction. Vibration induced FOXK2 (p < 0.05) while heat stress repressed PGC-1α (0.74 fold) and ANKRD1 genes (0.51 fold; p < 0.05). These findings support a distinct gene regulation in response to heat stress, vibration, and muscle contractions. Understanding these responses may assist in developing regenerative rehabilitation interventions to improve muscle cell

  19. Perceived heat stress and health effects on construction workers.

    PubMed

    Dutta, Priya; Rajiva, Ajit; Andhare, Dileep; Azhar, Gulrez Shah; Tiwari, Abhiyant; Sheffield, Perry

    2015-01-01

    Increasing heat waves-particularly in urban areas where construction is most prevalent, highlight a need for heat exposure assessment of construction workers. This study aims to characterize the effects of heat on construction workers from a site in Gandhinagar. This study involved a mixed methods approach consisting of a cross sectional survey with anthropometric measurements (n = 219) and four focus groups with construction workers, as well as environmental measurements of heat stress exposure at a construction site. Survey data was collected in two seasons i.e., summer and winter months, and heat illness and symptoms were compared between the two time periods. Thematic coding of focus group data was used to identify vulnerability factors and coping mechanisms of the workers. Heat stress, recorded using a wet bulb globe temperature monitor, was compared to international safety standards. The survey findings suggest that heat-related symptoms increased in summer; 59% of all reports in summer were positive for symptoms (from Mild to Severe) as compared to 41% in winter. Focus groups revealed four dominant themes: (1) Non-occupational stressors compound work stressors; (2) workers were particularly attuned to the impact of heat on their health; (3) workers were aware of heat-related preventive measures; and (4) few resources were currently available to protect workers from heat stress. Working conditions often exceed international heat stress safety thresholds. Female workers and new employees might be at increased risk of illness or injury. This study suggests significant health impacts on construction workers from heat stress exposure in the workplace, showed that heat stress levels were higher than those prescribed by international standards and highlights the need for revision of work practices, increased protective measures, and possible development of indigenous work safety standards for heat exposure.

  20. Perceived heat stress and health effects on construction workers

    PubMed Central

    Dutta, Priya; Rajiva, Ajit; Andhare, Dileep; Azhar, Gulrez Shah; Tiwari, Abhiyant; Sheffield, Perry

    2015-01-01

    Introduction: Increasing heat waves-particularly in urban areas where construction is most prevalent, highlight a need for heat exposure assessment of construction workers. This study aims to characterize the effects of heat on construction workers from a site in Gandhinagar. Materials and Methods: This study involved a mixed methods approach consisting of a cross sectional survey with anthropometric measurements (n = 219) and four focus groups with construction workers, as well as environmental measurements of heat stress exposure at a construction site. Survey data was collected in two seasons i.e., summer and winter months, and heat illness and symptoms were compared between the two time periods. Thematic coding of focus group data was used to identify vulnerability factors and coping mechanisms of the workers. Heat stress, recorded using a wet bulb globe temperature monitor, was compared to international safety standards. Results: The survey findings suggest that heat-related symptoms increased in summer; 59% of all reports in summer were positive for symptoms (from Mild to Severe) as compared to 41% in winter. Focus groups revealed four dominant themes: (1) Non-occupational stressors compound work stressors; (2) workers were particularly attuned to the impact of heat on their health; (3) workers were aware of heat-related preventive measures; and (4) few resources were currently available to protect workers from heat stress. Working conditions often exceed international heat stress safety thresholds. Female workers and new employees might be at increased risk of illness or injury. Conclusion: This study suggests significant health impacts on construction workers from heat stress exposure in the workplace, showed that heat stress levels were higher than those prescribed by international standards and highlights the need for revision of work practices, increased protective measures, and possible development of indigenous work safety standards for heat exposure

  1. [Influence of anisodamine on heat-stress in rats].

    PubMed

    Tang, Wenchun; Wang, Baofang; Xu, Xiaobo; Liu, Guangchao; Duan, Yongjian

    2002-02-01

    To study whether previously intravenous injection of anisodamine can prevent endotoxemia of heat stroke of rats. Experimental animals were randomly divided into two groups, their average artery pressure, heart rate, survival time, survival rate and rectal temperature were measured at an environmental temperature of 38 degrees C-40 degrees C and 50%-60% retative humidity. Blood samples for endotoxins analyses were taken both before and after heat-stress. During heat stress, the animals of rectal temperature of the experimental and control groups continuously increased and two hours later, separately to (42.7 +/- 0.6) degree C and (43.1 +/- 0.5) degree C, without statistic difference(P > 0.05), and to (44.6 +/- 0.4) degree C and (44.2 +/- 0.3) degree C prior to death, with statistic difference(P < 0.05). Before the experiment, the contents of endotoxins of portal vein blood were (45.7 +/- 5.2) pg/ml and (42.6 +/- 5.4) pg/ml, and that of systemic blood was (14.8 +/- 4.5) pg/ml and (13.9 +/- 7.2) pg/ml, without statistic difference(P > 0.05). Two hours later, the contents of portal vein blood separately increased to (122.2 +/- 16.7) pg/ml and (49.7 +/- 10.2) pg/ml, obviously higher than that before heat-stress(P < 0.01). And there were clear statistic difference between the two groups(P < 0.01). The changing tendency of the heart rhythm is almost the same in two groups, that is, first rose and then fell. But it is without statistic difference before and two hours later(P > 0.05): before heat-stress, the average artery pressures were (13.3 +/- 0.6) kPa and (13.6 +/- 0.5) kPa, without statistic difference(P > 0.05), and two hours later, were (9.6 +/- 0.5) kPa and (8.6 +/- 0.6) kPa, with obvious statistic difference(P < 0.01). The survival time of the animals were (166.5 +/- 16.9) min and (144.5 +/- 18.2) min with obvious statistic difference(P < 0.01), the survival rate of heat stressed rats in the experimental group were obviously higher than control group(P < 0.01 or P

  2. Effect of passive heat stress and exercise in the heat on arterial stiffness.

    PubMed

    Caldwell, Aaron R; Robinson, Forrest B; Tucker, Matthew A; Arcement, Cash H; Butts, Cory L; McDermott, Brendon P; Ganio, Matthew S

    2017-08-01

    Prior evidence indicates that acute heat stress and aerobic exercise independently reduce arterial stiffness. The combined effects of exercise and heat stress on PWV are unknown. The purpose of this study was to determine the effects of heat stress with passive heating and exercise in the heat on arterial stiffness. Nine participants (n = 3 females, 47 ± 11 years old; 24.1 ± 2.8 kg/m 2 ) completed four trials. In a control trial, participants rested supine (CON). In a passive heating trial (PH), participants were heated with a water-perfusion suit. In two other trials, participants cycled at ~50% of [Formula: see text] in a hot (~40 °C; HC trial) or cool (~15 °C; CC trial) environment. Arterial stiffness, measured by PWV, was obtained at baseline and after each intervention (immediately, 15, 30, 45, and 60 min post). Central PWV (C PWV ) was assessed between the carotid/femoral artery sites. Upper and lower peripheral PWV was assessed using the radial/carotid (U PWV ) and dorsalis pedis/femoral (L PWV ) artery sites. The mean body temperature (T B ) was calculated from the skin and rectal temperatures. No significant changes in T B were observed during the CON and CC trials. As expected, the PH and HC trials elevated T B 2.69 ± 0.23 °C and 1.67 ± 0.27 °C, respectively (p < 0.01). PWV did not change in CON, CC, or HC (p > 0.05). However, in the PH trial, U PWV was reduced immediately (-107 ± 81 cm/s) and 15 min (-93 ± 82 cm/s) post-heating (p < 0.05). Heat stress via exercise in the heat does not acutely change arterial stiffness. However, passive heating reduces U PWV , indicating that heat stress has an independent effect on PWV.

  3. Thermal Indices and Thermophysiological Modeling for Heat Stress.

    PubMed

    Havenith, George; Fiala, Dusan

    2015-12-15

    The assessment of the risk of human exposure to heat is a topic as relevant today as a century ago. The introduction and use of heat stress indices and models to predict and quantify heat stress and heat strain has helped to reduce morbidity and mortality in industrial, military, sports, and leisure activities dramatically. Models used range from simple instruments that attempt to mimic the human-environment heat exchange to complex thermophysiological models that simulate both internal and external heat and mass transfer, including related processes through (protective) clothing. This article discusses the most commonly used indices and models and looks at how these are deployed in the different contexts of industrial, military, and biometeorological applications, with focus on use to predict related thermal sensations, acute risk of heat illness, and epidemiological analysis of morbidity and mortality. A critical assessment is made of tendencies to use simple indices such as WBGT in more complex conditions (e.g., while wearing protective clothing), or when employed in conjunction with inappropriate sensors. Regarding the more complex thermophysiological models, the article discusses more recent developments including model individualization approaches and advanced systems that combine simulation models with (body worn) sensors to provide real-time risk assessment. The models discussed in the article range from historical indices to recent developments in using thermophysiological models in (bio) meteorological applications as an indicator of the combined effect of outdoor weather settings on humans. Copyright © 2015 John Wiley & Sons, Inc.

  4. Heat stress protects against mechanical ventilation-induced diaphragmatic atrophy.

    PubMed

    Ichinoseki-Sekine, Noriko; Yoshihara, Toshinori; Kakigi, Ryo; Sugiura, Takao; Powers, Scott K; Naito, Hisashi

    2014-09-01

    Mechanical ventilation (MV) is a life-saving intervention in patients who are incapable of maintaining adequate pulmonary gas exchange due to respiratory failure or other disorders. However, prolonged MV is associated with the development of respiratory muscle weakness. We hypothesized that a single exposure to whole body heat stress would increase diaphragm expression of heat shock protein 72 (HSP72) and that this treatment would protect against MV-induced diaphragmatic atrophy. Adult male Wistar rats (n = 38) were randomly assigned to one of four groups: an acutely anesthetized control group (CON) with no MV; 12-h controlled MV group (CMV); 1-h whole body heat stress (HS); or 1-h whole body heat stress 24 h prior to 12-h controlled MV (HSMV). Compared with CON animals, diaphragmatic HSP72 expression increased significantly in the HS and HSMV groups (P < 0.05). Prolonged MV resulted in significant atrophy of type I, type IIa, and type IIx fibers in the costal diaphragm (P < 0.05). Whole body heat stress attenuated this effect. In contrast, heat stress did not protect against MV-induced diaphragm contractile dysfunction. The mechanisms responsible for this heat stress-induced protection remain unclear but may be linked to increased expression of HSP72 in the diaphragm. Copyright © 2014 the American Physiological Society.

  5. Mitigation of heat stress-related complications by a yeast fermentate product.

    PubMed

    Giblot Ducray, Henri Alexandre; Globa, Ludmila; Pustovyy, Oleg; Reeves, Stuart; Robinson, Larry; Vodyanoy, Vitaly; Sorokulova, Iryna

    2016-08-01

    Heat stress results in a multitude of biological and physiological responses which can become lethal if not properly managed. It has been shown that heat stress causes significant adverse effects in both human and animals. Different approaches have been proposed to mitigate the adverse effects caused by heat stress, among which are special diet and probiotics. We characterized the effect of the yeast fermentate EpiCor (EH) on the prevention of heat stress-related complications in rats. We found that increasing the body temperature of animals from 37.1±0.2 to 40.6±0.2°C by exposure to heat (45°C for 25min) resulted in significant morphological changes in the intestine. Villi height and total mucosal thickness decreased in heat-stressed rats pre-treated with PBS in comparison with control animals not exposed to the heat. Oral treatment of rats with EH before heat stress prevented the traumatic effects of heat on the intestine. Changes in intestinal morphology of heat-stressed rats, pre-treated with PBS resulted in significant elevation of lipopolysaccharides (LPS) level in the serum of these animals. Pre-treatment with EH was effective in the prevention of LPS release into the bloodstream of heat-stressed rats. Our study revealed that elevation of body temperature also resulted in a significant increase of the concentration of vesicles released by erythrocytes in rats, pre-treated with PBS. This is an indication of a pathological impact of heat on the erythrocyte structure. Treatment of rats with EH completely protected their erythrocytes from this heat-induced pathology. Finally, exposure to heat stress conditions resulted in a significant increase of white blood cells in rats. In the group of animals pre-treated with EH before heat stress, the white blood cell count remained the same as in non-heated controls. These results showed the protective effect of the EH product in the prevention of complications, caused by heat stress. Copyright © 2016 The Authors

  6. Water Replacement Schedules in Heat Stress

    ERIC Educational Resources Information Center

    Londeree, Ben R.; and others

    1969-01-01

    Although early ingestion of cold water appears to lead to greater relief from heat stress during physical exertion than late ingestion, this difference is reduced toward the end of an hour's work in high heat and humidity. (CK)

  7. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice.

    PubMed

    Ohno, Y; Egawa, T; Yokoyama, S; Nakai, A; Sugiura, T; Ohira, Y; Yoshioka, T; Goto, K

    2015-12-01

    Effects of heat shock transcription factor 1 (HSF1) deficiency on heat stress-associated increase in slow soleus muscle mass of mice were investigated. Both HSF1-null and wild-type mice were randomly assigned to control and heat-stressed groups. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anaesthesia. Significant increase in wet and dry weights, and protein content of soleus muscle in wild-type mice was observed seven days after the application of the heat stress. However, heat stress had no impact on soleus muscle mass in HSF1-null mice. Neither type of mice exhibited much effect of heat stress on HSF mRNA expression (HSF1, HSF2 and HSF4). On the other hand, heat stress upregulated heat shock proteins (HSPs) at the mRNA (HSP72) and protein (HSP72 and HSP110) levels in wild-type mice, but not in HSF1-null mice. The population of Pax7-positive nuclei relative to total myonuclei of soleus muscle in wild-type mice was significantly increased by heat stress, but not in HSF1-null mice. Furthermore, the absence of HSF1 gene suppressed heat stress-associated phosphorylation of Akt and p70 S6 kinase (p-p70S6K) in soleus muscle. Heat stress-associated increase in skeletal muscle mass may be induced by HSF1 and/or HSF1-mediated stress response that activates muscle satellite cells and Akt/p70S6K signalling pathway. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  8. Heat loss through the glabrous skin surfaces of heavily insulated, heat-stressed individuals.

    PubMed

    Grahn, D A; Dillon, J L; Heller, H C

    2009-07-01

    Insulation reduces heat exchange between a body and the environment. Glabrous (nonhairy) skin surfaces (palms of the hands, soles of the feet, face, and ears) constitute a small percentage of total body surface area but contain specialized vascular structures that facilitate heat loss. We have previously reported that cooling the glabrous skin surfaces is effective in alleviating heat stress and that the application of local subatmospheric pressure enhances the effect. In this paper, we compare the effects of cooling multiple glabrous skin surfaces with and without vacuum on thermal recovery in heavily insulated heat-stressed individuals. Esophageal temperatures (T(es)) and heart rates were monitored throughout the trials. Water loss was determined from pre- and post-trial nude weights. Treadmill exercise (5.6 km/h, 9-16% slope, and 25-45 min duration) in a hot environment (41.5 degrees C, 20-30% relative humidity) while wearing insulating pants and jackets was used to induce heat stress (T(es)>or=39 degrees C). For postexercise recovery, the subjects donned additional insulation (a balaclava, winter gloves, and impermeable boot covers) and rested in the hot environment for 60 min. Postexercise cooling treatments included control (no cooling) or the application of a 10 degrees C closed water circulating system to (a) the hand(s) with or without application of a local subatmospheric pressure, (b) the face, (c) the feet, or (d) multiple glabrous skin regions. Following exercise induction of heat stress in heavily insulated subjects, the rate of recovery of T(es) was 0.4+/-0.2 degrees C/h(n=12), but with application of cooling to one hand, the rate was 0.8+/-0.3 degrees C/h(n=12), and with one hand cooling with subatmospheric pressure, the rate was 1.0+/-0.2 degrees C/h(n=12). Cooling alone yielded two responses, one resembling that of cooling with subatmospheric pressure (n=8) and one resembling that of no cooling (n=4). The effect of treating multiple surfaces was

  9. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows.

    PubMed

    Min, Li; Cheng, Jian-bo; Shi, Bao-lu; Yang, Hong-jian; Zheng, Nan; Wang, Jia-qi

    2015-06-01

    Heat stress affects feed intake, milk production, and endocrine status in dairy cows. The temperature-humidity index (THI) is employed as an index to evaluate the degree of heat stress in dairy cows. However, it is difficult to ascertain whether THI is the most appropriate measurement of heat stress in dairy cows. This experiment was conducted to investigate the effects of heat stress on serum insulin, adipokines (leptin and adiponectin), AMP-activated protein kinase (AMPK), and heat shock signal molecules (heat shock transcription factor (HSF) and heat shock proteins (HSP)) in dairy cows and to research biomarkers to be used for better understanding the meaning of THI as a bioclimatic index. To achieve these objectives, two experiments were performed. The first experiment: eighteen lactating Holstein dairy cows were used. The treatments were: heat stress (HS, THI average=81.7, n=9) and cooling (CL, THI average=53.4, n=9). Samples of HS were obtained on August 16, 2013, and samples of CL were collected on April 7, 2014 in natural conditions. The second experiment: HS treatment cows (n=9) from the first experiment were fed for 8 weeks from August 16, 2013 to October 12, 2013. Samples for moderate heat stress, mild heat stress, and no heat stress were obtained, respectively, according to the physical alterations of the THI. Results showed that heat stress significantly increased the serum adiponectin, AMPK, HSF, HSP27, HSP70, and HSP90 (P<0.05). Adiponectin is strongly associated with AMPK. The increases of adiponectin and AMPK may be one of the mechanisms to maintain homeostasis in heat-stressed dairy cows. When heat stress treatment lasted 8 weeks, a higher expression of HSF and HSP70 was observed under moderate heat stress. Serum HSF and HSP70 are sensitive and accurate in heat stress and they could be potential indicators of animal response to heat stress. We recommend serum HSF and HSP70 as meaningful biomarkers to supplement the THI and evaluate moderate heat

  10. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows*

    PubMed Central

    Min, Li; Cheng, Jian-bo; Shi, Bao-lu; Yang, Hong-jian; Zheng, Nan; Wang, Jia-qi

    2015-01-01

    Heat stress affects feed intake, milk production, and endocrine status in dairy cows. The temperature-humidity index (THI) is employed as an index to evaluate the degree of heat stress in dairy cows. However, it is difficult to ascertain whether THI is the most appropriate measurement of heat stress in dairy cows. This experiment was conducted to investigate the effects of heat stress on serum insulin, adipokines (leptin and adiponectin), AMP-activated protein kinase (AMPK), and heat shock signal molecules (heat shock transcription factor (HSF) and heat shock proteins (HSP)) in dairy cows and to research biomarkers to be used for better understanding the meaning of THI as a bioclimatic index. To achieve these objectives, two experiments were performed. The first experiment: eighteen lactating Holstein dairy cows were used. The treatments were: heat stress (HS, THI average=81.7, n=9) and cooling (CL, THI average=53.4, n=9). Samples of HS were obtained on August 16, 2013, and samples of CL were collected on April 7, 2014 in natural conditions. The second experiment: HS treatment cows (n=9) from the first experiment were fed for 8 weeks from August 16, 2013 to October 12, 2013. Samples for moderate heat stress, mild heat stress, and no heat stress were obtained, respectively, according to the physical alterations of the THI. Results showed that heat stress significantly increased the serum adiponectin, AMPK, HSF, HSP27, HSP70, and HSP90 (P<0.05). Adiponectin is strongly associated with AMPK. The increases of adiponectin and AMPK may be one of the mechanisms to maintain homeostasis in heat-stressed dairy cows. When heat stress treatment lasted 8 weeks, a higher expression of HSF and HSP70 was observed under moderate heat stress. Serum HSF and HSP70 are sensitive and accurate in heat stress and they could be potential indicators of animal response to heat stress. We recommend serum HSF and HSP70 as meaningful biomarkers to supplement the THI and evaluate moderate heat

  11. Biochemical analysis of 'kerosene tree' Hymenaea courbaril L. under heat stress.

    PubMed

    Gupta, Dinesh; Eldakak, Moustafa; Rohila, Jai S; Basu, Chhandak

    2014-01-01

    Hymenaea courbaril or jatoba is a tropical tree known for its medically important secondary metabolites production. Considering climate change, the goal of this study was to investigate differential expression of proteins and lipids produced by this tree under heat stress conditions. Total lipid was extracted from heat stressed plant leaves and various sesquiterpenes produced by the tree under heat stress were identified. Gas chromatographic and mass spectrometric analysis were used to study lipid and volatile compounds produced by the plant. Several volatiles, isoprene, 2-methyl butanenitrile, β ocimene and a numbers of sesquiterpenes differentially produced by the plant under heat stress were identified. We propose these compounds were produced by the tree to cope up with heat stress. A protein gel electrophoresis (2-D DIGE) was performed to study differential expression of proteins in heat stressed plants. Several proteins were found to be expressed many folds different in heat stressed plants compared to the control. These proteins included heat shock proteins, histone proteins, oxygen evolving complex, and photosynthetic proteins, which, we believe, played key roles in imparting thermotolerance in Hymenaea tree. To the best of our knowledge, this is the first report of extensive molecular physiological study of Hymenaea trees under heat stress. This work will open avenues of further research on effects of heat stress in Hymenaea and the findings can be applied to understand how global warming can affect physiology of other plants.

  12. Proteomics Analysis of Alfalfa Response to Heat Stress

    PubMed Central

    Li, Weimin; Wei, Zhenwu; Qiao, Zhihong; Wu, Zinian; Cheng, Lixiang; Wang, Yuyang

    2013-01-01

    The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin) seedlings were exposed to 25°C (control) and 40°C (heat stress) in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE), and differentially expressed protein spots were identified by mass spectrometry (MS). Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa. PMID:24324825

  13. Heat stress responses modulate calcium regulations and electrophysiological characteristics in atrial myocytes.

    PubMed

    Chen, Yao-Chang; Kao, Yu-Hsun; Huang, Chun-Feng; Cheng, Chen-Chuan; Chen, Yi-Jen; Chen, Shih-Ann

    2010-04-01

    Heat stress-induced responses change the ionic currents and calcium homeostasis. However, the molecular insights into the heat stress responses on calcium homeostasis remain unclear. The purposes of this study were to examine the mechanisms of heat stress responses on calcium handling and electrophysiological characteristics in atrial myocytes. We used indo-1 fluorimetric ratio technique and whole-cell patch clamp to investigate the intracellular calcium, action potentials, and ionic currents in isolated rabbit single atrial cardiomyocytes with or without (control) exposure to heat stress (43 degrees C, 15 min) 5+/-1 h before experiments. The expressions of sarcoplasmic reticulum ATPase (SERCA2a), and Na(+)-Ca(2+) exchanger (NCX) in the control and heat stress-treated atrial myocytes were evaluated by Western blot and real-time PCR. As compared with control myocytes, the heat stress-treated myocytes had larger sarcoplasmic reticulum calcium content and larger intracellular calcium transient with a shorter decay portion. Heat stress-treated myocytes also had larger L-type calcium currents, transient outward potassium currents, but smaller NCX currents. Heat stress responses increased the protein expressions, SERCA2a, NCX, and heat shock protein. However, heat stress responses did not change the RNA expression of SERCA2a and NCX. In conclusion, heat stress responses change calcium handling through protein but not RNA regulation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  14. Outdoor occupational environments and heat stress in IRAN.

    PubMed

    Heidari, Hamidreza; Golbabaei, Farideh; Shamsipour, Aliakbar; Rahimi Forushani, Abbas; Gaeini, Abbasali

    2015-01-01

    The present study aimed at demonstrating the heat stress situation (distribution and intensity) based on a standard and common heat stress index, Wet Bulb Globe Temperature (WBGT), during hot seasons and interpret the obtained results considering global warming and rising temperature in different parts of the country based on climate changes studied in Iran. Heat stress assessment was done using WBGT index. Environmental parameters were measured simultaneously in the early, middle and end of shift work. The personal parameters including cloth thermal insulation and metabolic rate of 242 participants from 9 climatic categories were recorded for estimating effective WBGT (measured WBGT plus cloth adjustment factor as well as metabolic rate effect). The values of the indicator were categorized in the statistical software media and then linked to the climatic zoning of the data in the GIS information layers, in which, WBGT values relating to selected stations were given generalization to similar climatic regionalization. The obtained results showed that in the summer about 60 % and more than 75 % of the measurements relating to 12 pm and 3 pm, respectively, were in heat stress situations (i.e. the average amount of heat stress index was higher than 28 °C). These values were found to be about 20-25 % in the spring. Moreover, only in the early hours of shift work in spring could safe conditions be seen throughout the country. This situation gradually decreased in the middle of the day hours and was replaced by the warning status and stress. And finally, in the final hours of shift work thermal stresses reached their peaks. These conditions for the summer were worse. Regarding several studies related to climate change in Iran and the results of present study, heat stress, especially in the central and southern parts of Iran, can be exacerbated in the decades to come if climate change and rising temperature occurs. Therefore, paying attention to this critical issue

  15. The development of anti-heat stress clothing for construction workers in hot and humid weather.

    PubMed

    Chan, Albert P C; Guo, Y P; Wong, Francis K W; Li, Y; Sun, S; Han, X

    2016-04-01

    The purpose of this study was to develop anti-heat stress clothing for construction workers in hot and humid weather. Following DeJonge's functional clothing design process, the design situation was explored, including clothing fabric heat/moisture transporting properties and UV protection and the aspects of clothing ergonomic design (mobility, convenience, and safety). The problem structure was derived from the results of the surveys in three local construction sites, which agreed well with the task requirements and observations. Specifications were consequently described and 30 commercially available fabrics were identified and tested. Fabric testing data and design considerations were inputted in S-smart system to predict the thermal functional performance of the clothing. A new uniform prototype was developed and evaluated. The results of all measurements suggest that the new uniform which incorporated fabrics with superior heat/moisture transporting properties and loose-fitting design could reduce the workers' heat stress and improve their comfort and work performance. Practitioner Summary: The construction workers' uniform currently used in Hong Kong during summer was unsatisfactory. Following DeJonge's functional clothing design process, an anti-heat stress uniform was developed by testing 30 fabrics and predicting clothing thermal functional performance using S-smart system. The new uniform could reduce the workers' heat stress and improve their comfort and work performance.

  16. Prior Heat Stress Effects Fatigue Recovery of the Elbow Flexor Muscles

    PubMed Central

    Iguchi, Masaki; Shields, Richard K.

    2011-01-01

    Introduction Long-lasting alterations in hormones, neurotransmitters and stress proteins after hyperthermia may be responsible for the impairment in motor performance during muscle fatigue. Methods Subjects (n = 25) performed a maximal intermittent fatigue task of elbow flexion after sitting in either 73 or 26 deg C to examine the effects of prior heat stress on fatigue mechanisms. Results The heat stress increased the tympanic and rectal temperatures by 2.3 and 0.82 deg C, respectively, but there was full recovery prior to the fatigue task. While prior heat stress had no effects on fatigue-related changes in volitional torque, EMG activity, torque relaxation rate, MEP size and SP duration, prior heat stress acutely increased the pre-fatigue relaxation rate and chronically prevented long-duration fatigue (p < 0.05). Discussion These findings indicate that prior passive heat stress alone does not alter voluntary activation during fatigue, but prior heat stress and exercise produce longer-term protection against long-duration fatigue. PMID:21674526

  17. Management of heat stress in the livestock industry

    USDA-ARS?s Scientific Manuscript database

    Heat stress costs the animal industry over $1.7 billion annually. Annual losses average $369 million in the beef cattle industry and $299 million in the swine industry. The impacts of a single heat stress event on individual animals are quite varied. Brief events often cause little or no effect. ...

  18. New type of heating system for clothes dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoh, K.; Itoh, C.

    1995-12-01

    The basic technology to improve serviceability and reliability of the electric clothes dryer relies on the heater and heat exchanger. This paper describes the status of stress analysis and the evaluation of reliability for semiconductors consisting of BaTiO{sub 3} for disk-type heat exchangers/heaters with honeycomb openings. If the authors could keep the Curie temperature of the semiconductor lower than the ignition temperature of clothing during the drying cycle, installation of two legally limited thermostats would no longer be required and reliability of the control system could be further improved due to its simplified structure. The heater can be made moremore » compact by designing a honeycomb-type heater/heat exchangers but the structural requirements for the heat exchanger and the heater would conflict. An approximate solution to heater/heat exchanger stress is being sought as a thermal stress issue for an equivalent solid compound disc.« less

  19. Tolerence for work-induced heat stress in men wearing liquidcooled garments

    NASA Technical Reports Server (NTRS)

    Blockley, W. V.; Roth, H. P.

    1971-01-01

    An investigation of the heat tolerance in men unable to dispose of metabolic heat as fast as it is produced within the body is discussed. Examinations were made of (a) the effect of work rate (metabolic rate) on tolerance time when body heat storage rate is a fixed quantity, and (b) tolerance time as a function of metabolic rate when heat loss is terminated after a thermal quasi-equilibrium was attained under comfortable conditions of heat transfer. The nature of the physiological mechanisms involved in such heat stress situations, and the possibility of using prediction techniques to establish standard procedures in emergencies involving cooling system failures are also discussed.

  20. Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus).

    PubMed

    Xie, Jingjing; Tang, Li; Lu, Lin; Zhang, Liyang; Xi, Lin; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang

    2014-01-01

    Heat stress due to high environmental temperature negatively influences animal performances. To better understand the biological impact of heat stress, laying broiler breeder chickens were subjected either to acute (step-wisely increasing temperature from 21 to 35°C within 24 hours) or chronic (32°C for 8 weeks) high temperature exposure. High temperature challenges significantly elevated body temperature of experimental birds (P<0.05). However, oxidation status of lipid and protein and expression of heat shock transcription factors (HSFs) and heat shock proteins (HSPs) 70 and 90 were differently affected by acute and chronic treatment. Tissue-specific responses to thermal challenge were also found among heart, liver and muscle. In the heart, acute heat challenge affected lipid oxidation (P = 0.05) and gene expression of all 4 HSF gene expression was upregulated (P<0.05). During chronic heat treatment, the HSP 70 mRNA level was increased (P<0.05) and HSP 90 mRNA (P<0.05) was decreased. In the liver, oxidation of protein was alleviated during acute heat challenge (P<0.05), however, gene expression HSF2, 3 and 4 and HSP 70 were highly induced (P<0.05). HSP90 expression was increased by chronic thermal treatment (P<0.05). In the muscle, both types of heat stress increased protein oxidation, but HSFs and HSPs gene expression remained unaltered. Only tendencies to increase were observed in HSP 70 (P = 0.052) and 90 (P = 0.054) gene expression after acute heat stress. The differential expressions of HSF and HSP genes in different tissues of laying broiler breeder chickens suggested that anti-heat stress mechanisms might be provoked more profoundly in the heart, by which the muscle was least protected during heat stress. In addition to HSP, HSFs gene expression could be used as a marker during acute heat stress.

  1. Clostridium thermocellum Transcriptomic Profiles after Exposure to Furfural or Heat Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Charlotte M; Yang, Shihui; Rodriguez, Jr., Miguel

    2013-01-01

    Background The thermophilic anaerobe Clostridium thermocellum is a candidate consolidated bioprocessing (CBP)biocatalyst for cellulosic ethanol production. It is capable of both cellulose solubilization and its fermentation to produce lignocellulosic ethanol. Intolerance to stresses routinely encountered during industrial fermentations may hinder the commercial development of this organism. A previous C. thermocellum ethanol stress study showed that largest transcriptomic response was in genes and proteins related to nitrogen uptake and metabolism. Results In this study, C. thermocellum was grown to mid-exponential phase and treated with furfural or heat to a final concentration of 3 g.L-1 or 68 C respectively to investigate generalmore » and specific physiological and regulatory stress responses. Samples were taken at 10, 30, 60 and 120 min post-shock, and from untreated control fermentations, for transcriptomic analyses and fermentation product determinations and compared to a published dataset from an ethanol stress study. Urea uptake genes were induced following furfural stress, but not to the same extent as ethanol stress and transcription from these genes was largely unaffected by heat stress. The largest transcriptomic response to furfural stress was genes for sulfate transporter subunits and enzymes in the sulfate assimilatory pathway, although these genes were also affected late in the heat and ethanol stress responses. Lactate production was higher in furfural treated culture, although the lactate dehydrogenase gene was not differentially expressed under this condition. Other redox related genes such as a copy of the rex gene, a bifunctional acetaldehyde-CoA/alcohol dehydrogenase and adjacent genes did show lower expression after furfural stress compared to the control, heat and ethanol fermentation profiles. Heat stress induced expression from chaperone related genes and overlap was observed with the responses to the other stresses. This study suggests

  2. Patterns of gene expression associated with recovery and injury in heat-stressed rats.

    PubMed

    Stallings, Jonathan D; Ippolito, Danielle L; Rakesh, Vineet; Baer, Christine E; Dennis, William E; Helwig, Bryan G; Jackson, David A; Leon, Lisa R; Lewis, John A; Reifman, Jaques

    2014-12-03

    The in vivo gene response associated with hyperthermia is poorly understood. Here, we perform a global, multiorgan characterization of the gene response to heat stress using an in vivo conscious rat model. We heated rats until implanted thermal probes indicated a maximal core temperature of 41.8°C (Tc,Max). We then compared transcriptomic profiles of liver, lung, kidney, and heart tissues harvested from groups of experimental animals at Tc,Max, 24 hours, and 48 hours after heat stress to time-matched controls kept at an ambient temperature. Cardiac histopathology at 48 hours supported persistent cardiac injury in three out of six animals. Microarray analysis identified 78 differentially expressed genes common to all four organs at Tc,Max. Self-organizing maps identified gene-specific signatures corresponding to protein-folding disorders in heat-stressed rats with histopathological evidence of cardiac injury at 48 hours. Quantitative proteomics analysis by iTRAQ (isobaric tag for relative and absolute quantitation) demonstrated that differential protein expression most closely matched the transcriptomic profile in heat-injured animals at 48 hours. Calculation of protein supersaturation scores supported an increased propensity of proteins to aggregate for proteins that were found to be changing in abundance at 24 hours and in animals with cardiac injury at 48 hours, suggesting a mechanistic association between protein misfolding and the heat-stress response. Pathway analyses at both the transcript and protein levels supported catastrophic deficits in energetics and cellular metabolism and activation of the unfolded protein response in heat-stressed rats with histopathological evidence of persistent heat injury, providing the basis for a systems-level physiological model of heat illness and recovery.

  3. Effect of exercise, heat stress and dehydration on myocardial performance.

    PubMed

    Fehling, P C; Haller, J M; Lefferts, W K; Hultquist, E M; Wharton, M; Rowland, T W; Smith, D L

    2015-06-01

    Myocardial dysfunction is a well-documented outcome of extended periods of high cardiac output. Whether similar effects occur during firefighting, an occupation characterized by repeated periods of work compounded by dehydration and heat stress, is uncertain. To investigate the independent and combined effects of moderate heat stress and dehydration on indicators of myocardial performance following intermittent, submaximal treadmill exercise while wearing personal protective equipment (PPE). Twelve aerobically fit young men (age 21.5±2.6 years; maximal oxygen uptake [VO2max] 60.3±4.4ml kg(-1) min(-1)) performed intermittent treadmill walking exercise consisting of three 20min bouts at an intensity of ~40% VO2max separated by two periods of rest in four different conditions in random order: (i) no heat stress-euhydrated, (ii) heat stress-euhydrated (heat stress created by wearing PPE, (iii) no heat stress-dehydrated and (iv) heat stress-dehydrated. We measured core temperature by a telemetric gastrointestinal pill. We determined cardiac variables by standard echocardiographic techniques immediately before and ~30min after exercise. We recorded no significant changes in markers of systolic (ejection fraction, shortening fraction, tissue Doppler-S) or diastolic (mitral peak E velocity, tissue Doppler-E' and E/E') function following exercise in any of the four conditions. In this model of exercise designed to mimic the work, heat stress and dehydration associated with firefighting activities, we observed no negative effects on myocardial inotropic or lusitropic function. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Heat-Stress and Light-Stress Induce Different Cellular Pathologies in the Symbiotic Dinoflagellate during Coral Bleaching

    PubMed Central

    Downs, C. A.; McDougall, Kathleen E.; Woodley, Cheryl M.; Fauth, John E.; Richmond, Robert H.; Kushmaro, Ariel; Gibb, Stuart W.; Loya, Yossi; Ostrander, Gary K.; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m−2 s−1 PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching. PMID:24324575

  5. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    PubMed

    Downs, C A; McDougall, Kathleen E; Woodley, Cheryl M; Fauth, John E; Richmond, Robert H; Kushmaro, Ariel; Gibb, Stuart W; Loya, Yossi; Ostrander, Gary K; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2) s(-1) PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  6. Effects of heat stress and starvation on clonal odontoblast-like cells.

    PubMed

    Morotomi, Takahiko; Kitamura, Chiaki; Toyono, Takashi; Okinaga, Toshinori; Washio, Ayako; Saito, Noriko; Nishihara, Tatsuji; Terashita, Masamichi; Anan, Hisashi

    2011-07-01

    Heat stress during restorative procedures, particularly under severe starvation conditions, can trigger damage to dental pulp. In the present study, we examined effects of heat stress on odontoblastic activity and inflammatory responses in an odontoblast-like cell line (KN-3) under serum-starved conditions. Viability, nuclear structures, and inflammatory responses of KN-3 cells were examined in culture medium containing 10% or 1% serum after exposure to heat stress at 43°C for 45 minutes. Gene expression of extracellular matrices, alkaline phosphatase activity, and detection of extracellular calcium deposition in cells exposed to heat stress were also examined. Reduced viability and apoptosis were transiently induced in KN-3 cells during the initial phases after heat stress; thereafter, cells recovered their viability. The cytotoxic effects of heat stress were enhanced under serum-starved conditions. Heat stress also strongly up-regulated expression of heat shock protein 25 as well as transient expression of tumor necrosis factor-alpha, interleukin-6, and cyclooxygenase-2 in KN-3 cells. In contrast, expression of type-1 collagen, runt-related transcription factor 2, and dentin sialophosphoprotein were not inhibited by heat stress although starvation suppressed ALP activity and delayed progression of calcification. Odontoblast-like cells showed thermoresistance with transient inflammatory responses and without loss of calcification activity, and their thermoresistance and calcification activity were influenced by nutritional status. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Heat-stressed structural components in combustion-engine design

    NASA Technical Reports Server (NTRS)

    Kraemer, Otto

    1938-01-01

    Heated structural parts alter their shape. Anything which hinders free heat expansion will give rise to heat stresses. Design rules are thus obtained for the heated walls themselves as well as for the adjoining parts. An important guiding principle is that of designing the heat-conducting walls as thin as possible.

  8. A spatial analysis of heat stress related emergency room visits in rural Southern Ontario during heat waves.

    PubMed

    Bishop-Williams, Katherine E; Berke, Olaf; Pearl, David L; Kelton, David F

    2015-08-06

    In Southern Ontario, climate change may have given rise to an increasing occurrence of heat waves since the year 2000, which can cause heat stress to the general public, and potentially have detrimental health consequences. Heat waves are defined as three consecutive days with temperatures of 32 °C and above. Heat stress is the level of discomfort. A variety of heat stress indices have been proposed to measure heat stress (e.g., the heat stress index (HSI)), and has been shown to predict increases in morbidity and/or mortality rates in humans and other species. Maps visualizing the distribution of heat stress can provide information about related health risks and insight for control strategies. Information to inform heat wave preparedness models in Ontario was previously only available for major metropolitan areas. Hospitals in communities of fewer than 100,000 individuals were recruited for a pilot study by telephone. The number of people visiting the emergency room or 24-hour urgent care service was collected for a total of 27 days, covering three heat waves and six 3-day control periods from 2010-2012. The heat stress index was spatially predicted using data from 37 weather stations across Southern Ontario by geostatistical kriging. Poisson regression modeling was applied to determine the rate of increased number of emergency room visits in rural hospitals with respect to the HSI. During a heat wave, the average rate of emergency room visits was 1.11 times higher than during a control period (IRR = 1.11, CI95% (IRR) = (1.07,1.15), p ≤ 0.001). In a univariable model, HSI was not a significant predictor of emergency room visits, but when accounting for the confounding effect of a spatial trend polynomial in the hospital location coordinates, a one unit increase in HSI predicted an increase in daily emergency rooms visits by 0.4% (IRR = 1.004, CI95%(IRR) = (1.0005,1.007), p = 0.024) across the region. One high-risk cluster and no low risk

  9. Effects of heat stress on bovine preimplantation embryos produced in vitro

    PubMed Central

    SAKATANI, Miki

    2017-01-01

    Summer heat stress decreases the pregnancy rate in cattle and has been thought to be associated with the early embryonic death caused by the elevation of maternal body temperature. In vitro cultures have been widely used for the evaluation of effects of heat stress on oocytes, fertilization, preimplantation, and embryonic development. Susceptibility to heat stress is present in developmental stages from oocytes to cleavage-stage (before embryonic gene activation, EGA) embryos, leading to a consequent decrease in developmental competence. On the other hand, advanced-stage embryos such as morula or blastocysts have acquired thermotolerance. The mechanism for the developmental stage-dependent change in thermotolerance is considered to be the accumulation of antioxidants in embryos in response to heat-inducible production of reactive oxygen species. The supplementation of antioxidants to the culture media has been known to neutralize the detrimental effects of heat stress. Besides, EGA could be involved in acquisition of thermotolerance in later stages of embryos. Morulae or blastocysts can repair heat-induced unfolded proteins or prevent DNA damage occurring in processes such as apoptosis. Therefore, embryo transfer (ET) that can bypass the heat-sensitive stage could be a good solution to improve the pregnancy rate under heat stress. However, frozen-thawed ET could not improve the pregnancy rate as expected. Frozen-thawed blastocysts were more sensitive to heat stress and showed less proliferation upon heat exposure, compared to fresh blastocysts. Therefore, further research is required to improve the reduction in pregnancy rates due to summer heat stress. PMID:28496018

  10. Effects of heat stress on bovine preimplantation embryos produced in vitro.

    PubMed

    Sakatani, Miki

    2017-08-19

    Summer heat stress decreases the pregnancy rate in cattle and has been thought to be associated with the early embryonic death caused by the elevation of maternal body temperature. In vitro cultures have been widely used for the evaluation of effects of heat stress on oocytes, fertilization, preimplantation, and embryonic development. Susceptibility to heat stress is present in developmental stages from oocytes to cleavage-stage (before embryonic gene activation, EGA) embryos, leading to a consequent decrease in developmental competence. On the other hand, advanced-stage embryos such as morula or blastocysts have acquired thermotolerance. The mechanism for the developmental stage-dependent change in thermotolerance is considered to be the accumulation of antioxidants in embryos in response to heat-inducible production of reactive oxygen species. The supplementation of antioxidants to the culture media has been known to neutralize the detrimental effects of heat stress. Besides, EGA could be involved in acquisition of thermotolerance in later stages of embryos. Morulae or blastocysts can repair heat-induced unfolded proteins or prevent DNA damage occurring in processes such as apoptosis. Therefore, embryo transfer (ET) that can bypass the heat-sensitive stage could be a good solution to improve the pregnancy rate under heat stress. However, frozen-thawed ET could not improve the pregnancy rate as expected. Frozen-thawed blastocysts were more sensitive to heat stress and showed less proliferation upon heat exposure, compared to fresh blastocysts. Therefore, further research is required to improve the reduction in pregnancy rates due to summer heat stress.

  11. DAZL is essential for stress granule formation implicated in germ cell survival upon heat stress.

    PubMed

    Kim, Byunghyuk; Cooke, Howard J; Rhee, Kunsoo

    2012-02-01

    Mammalian male germ cells should be maintained below body temperature for proper development. Here, we investigated how male germ cells respond to heat stress. A short exposure of mouse testes to core body temperature induced phosphorylation of eIF2α and the formation of stress granules (SGs) in male germ cells. We observed that DAZL, a germ cell-specific translational regulator, was translocated to SGs upon heat stress. Furthermore, SG assembly activity was significantly diminished in the early male germ cells of Dazl-knockout mice. The DAZL-containing SGs played a protective role against heat stress-induced apoptosis by the sequestration of specific signaling molecules, such as RACK1, and the subsequent blockage of the apoptotic MAPK pathway. Based on these results, we propose that DAZL is an essential component of the SGs, which prevent male germ cells from undergoing apoptosis upon heat stress.

  12. Amelioration of Heat Stress Induced Disturbances of Antioxidant Defense System in Chicken by Brahma Rasayana

    PubMed Central

    Rekha, P. S.; Sujatha, K. S.

    2008-01-01

    Since the range of comfort zone or thermo neutral zone of domestic chickens is narrow, they become easily susceptible to heat and cold environmental stress. We evaluated Brahma Rasayana (BR) supplementation on concentrations of certain oxidative stress markers associated with heat stress. A total of 48 egg type male chickens of local strain were divided into six groups (n = 8) for the study. Three groups were fed with BR orally at the rate of 2 g/kg bw daily for 10 days prior to and during the period of experiment. Two of the four groups that were exposed to heat stress (HST i.e. to a temperature of 40 ± 1°C and relative humidity of 80 ± 5% in an environmental chamber) for 4 h daily for 5 or 10 days, received BR orally. The other two groups remained as BR treated and untreated non-heat stressed (NHST) controls. There was a significant (P < 0.05) increase in the activities of antioxidant enzymes in blood such as catalase (CAT) and superoxide dismutase (SOD), as well as liver CAT, glutathione peroxidase (GPX) and glutathione reductase (GR) in NHST-BR treated and HST-BR treated (both 5 and 10 days) chickens when compared with untreated controls. A great deal of significant (P < 0.05) variations were seen in serum and liver reduced glutathione (GSH) concentration in NHST-BR treated and HST-BR treated (both 5 and 10 days) chickens. Serum and liver lipid peroxidation levels were found to be significantly (P < 0.05) higher in HST-untreated (both 5 and 10 days) chickens when compared with other groups. Thus BR supplementation during HST brings about enhanced action of enzymatic and non-enzymatic antioxidants, which nullified the undesired side effects of free radicals that are generated during HST. PMID:18317552

  13. Insect heat shock proteins during stress and diapause.

    PubMed

    King, Allison M; MacRae, Thomas H

    2015-01-07

    Insect heat shock proteins include ATP-independent small heat shock proteins and the larger ATP-dependent proteins, Hsp70, Hsp90, and Hsp60. In concert with cochaperones and accessory proteins, heat shock proteins mediate essential activities such as protein folding, localization, and degradation. Heat shock proteins are synthesized constitutively in insects and induced by stressors such as heat, cold, crowding, and anoxia. Synthesis depends on the physiological state of the insect, but the common function of heat shock proteins, often working in networks, is to maintain cell homeostasis through interaction with substrate proteins. Stress-induced expression of heat shock protein genes occurs in a background of protein synthesis inhibition, but in the course of diapause, a state of dormancy and increased stress tolerance, these genes undergo differential regulation without the general disruption of protein production. During diapause, when ATP concentrations are low, heat shock proteins may sequester rather than fold proteins.

  14. Rubisco activase and wheat productivity under heat stress conditions

    USDA-ARS?s Scientific Manuscript database

    Rubisco activase (RCA) constrains the photosynthetic potential of plants at high temperature (heat stress). We hypothesized that endogenous levels of RCA could serve as an important determinant of plant productivity under heat stress conditions. In this study, we investigated the possible relation...

  15. BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Young-Hee; Ahn, Sang-Gun; Kim, Soo-A., E-mail: ksooa@dongguk.ac.kr

    2015-08-21

    Bcl2-associated athoanogene (BAG) 3 is a member of the co-chaperone BAG family. It is induced by stressful stimuli such as heat shock and heavy metals, and it regulates cellular adaptive responses against stressful conditions. In this study, we identified a novel role for BAG3 in regulating the nuclear shuttling of HSF1 during heat stress. The expression level of BAG3 was induced by heat stress in HeLa cells. Interestingly, BAG3 rapidly translocalized to the nucleus upon heat stress. Immunoprecipitation assay showed that BAG3 interacts with HSF1 under normal and stressed conditions and co-translocalizes to the nucleus upon heat stress. We alsomore » demonstrated that BAG3 interacts with HSF1 via its BAG domain. Over-expression of BAG3 down-regulates the level of nuclear HSF1 by exporting it to the cytoplasm during the recovery period. Depletion of BAG3 using siRNA results in reduced nuclear HSF1 and decreased Hsp70 promoter activity. BAG3 in MEF(hsf1{sup −/−}) cells actively translocalizes to the nucleus upon heat stress suggesting that BAG3 plays a key role in the processing of the nucleocytoplasmic shuttling of HSF1 upon heat stress. - Highlights: • The expression level of BAG3 is induced by heat stress. • BAG3 translocates to the nucleus upon heat stress. • BAG3 interacts with HSF1 and co-localizes to the nucleus. • BAG3 is a key regulator for HSF1 nuclear shuttling.« less

  16. Genetic effects of heat stress on milk yield of Thai Holstein crossbreds.

    PubMed

    Boonkum, W; Misztal, I; Duangjinda, M; Pattarajinda, V; Tumwasorn, S; Sanpote, J

    2011-01-01

    The threshold for heat stress on milk yield of Holstein crossbreds under climatic conditions in Thailand was investigated, and genetic effects of heat stress on milk yield were estimated. Data included 400,738 test-day milk yield records for the first 3 parities from 25,609 Thai crossbred Holsteins between 1990 and 2008. Mean test-day milk yield ranged from 12.6 kg for cows with <87.5% Holstein genetics to 14.4 kg for cows with ≥93.7% Holstein genetics. Daily temperature and humidity data from 26 provincial weather stations were used to calculate a temperature-humidity index (THI). Test-day milk yield varied little with THI for first parity except above a THI of 82 for cows with ≥93.7% Holstein genetics. For third parity, test-day milk yield started to decline after a THI of 74 for cows with ≥87.5% Holstein genetics and declined more rapidly after a THI of 82. A repeatability test-day model with parities as correlated traits was used to estimate heat stress parameters; fixed effects included herd-test month-test year and breed groups, days in milk, calving age, and parity; random effects included 2 additive genetic effects, regular and heat stress, and 2 permanent environment, regular and heat stress. The threshold for effect of heat stress on test-day milk yield was set to a THI of 80. All variance component estimates increased with parity; the largest increases were found for effects associated with heat stress. In particular, genetic variance associated with heat stress quadrupled from first to third parity, whereas permanent environmental variance only doubled. However, permanent environmental variance for heat stress was at least 10 times larger than genetic variance. Genetic correlations among parities for additive effects without heat stress considered ranged from 0.88 to 0.96. Genetic correlations among parities for additive effects of heat stress ranged from 0.08 to 0.22, and genetic correlations between effects regular and heat stress effects ranged

  17. Water availability as dominant control of heat stress responses in two contrasting tree species.

    PubMed

    Ruehr, Nadine K; Gast, Andreas; Weber, Christina; Daub, Baerbel; Arneth, Almut

    2016-02-01

    Heat waves that trigger severe droughts are predicted to increase globally; however, we lack an understanding of how trees respond to the combined change of extreme temperatures and water availability. Here, we studied the impacts of two consecutive heat waves as well as post-stress recovery in young Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir) and Robinia pseudoacacia L. (black locust) growing under controlled conditions. Responses were compared under water supply close to the long-term average and under reduced irrigation to represent drought. Exposure to high temperatures (+10 °C above ambient) and vapour pressure deficit strongly affected the trees in terms of water relations, photosynthesis and growth. Douglas-fir used water resources conservatively, and transpiration decreased in response to mild soil water limitation. In black locust, heat stress led to pronounced tree water deficits (stem diameter shrinkage), accompanied by leaf shedding to alleviate stress on the hydraulic system. The importance of water availability during the heat waves became further apparent by a concurrent decline in photosynthesis and stomatal conductance with increasing leaf temperatures in both species, reaching the lowest rates in the heat-drought treatments. Stress severity determined both the speed and the amount of recovery. Upon release of stress, photosynthesis recovered rapidly in drought-treated black locust, while it remained below control rates in heat (t = -2.4, P < 0.05) and heat-drought stressed trees (t = 2.96, P < 0.05). In Douglas-fir, photosynthesis recovered quickly, while water-use efficiency increased in heat-drought trees because stomatal conductance remained reduced (t = -2.92, P < 0.05). Moreover, Douglas-fir was able to compensate for stem-growth reductions following heat (-40%) and heat-drought stress (-68%), but most likely at the expense of storage and other growth processes. Our results highlight the importance of studying heat waves alongside

  18. Effect of Heat Stress on Concentrations of Faecal Cortisol Metabolites in Dairy Cows.

    PubMed

    Rees, A; Fischer-Tenhagen, C; Heuwieser, W

    2016-06-01

    The negative impact of heat stress on health and productivity of dairy cows is well known. Heat stress can be quantified with the temperature-humidity index (THI) and is defined as a THI ≥ 72. Additionally, animal welfare is affected in cows living under heat stress conditions. Finding a way to quantify heat stress in dairy cows has been of increasing interest over the past decades. Therefore, the objective of this study was to evaluate concentrations of faecal glucocorticoid metabolites [i.e. 11,17-dioxoandrostanes (11,17-DOA)] as an indirect stress parameter in dairy cows without heat stress (DOA 0), with heat stress on a single day (acute heat stress, DOA 1) or with more than a single day of heat stress (chronic heat stress, DOA 2). Cows were housed in five farms under moderate European climates. Two statistical approaches (approach 1 and approach 2) were assessed. Using approach 1, concentrations of faecal 11,17-DOA were compared among DOA 0, DOA 1 and DOA 2 samples regardless of their origin (i.e. cow, unpaired comparison with a one-way anova). Using approach 2, a cow was considered as its own control; that is 11,17-DOA was treated as a cow-specific factor and only paired samples were included in the analysis for this approach (paired comparison with t-tests). In approach 1 (p = 0.006) and approach 2 (p = 0.038), 11,17-DOA values of cows under acute heat stress were higher compared to those of cows without heat stress. Our results also indicate that acute heat stress has to be considered as a confounder in studies measuring faecal glucocorticoid metabolites in cows to evaluate other stressful situations. © 2016 Blackwell Verlag GmbH.

  19. Calibration of Heat Stress Monitor and its Measurement Uncertainty

    NASA Astrophysics Data System (ADS)

    Ekici, Can

    2017-07-01

    Wet-bulb globe temperature (WBGT) equation is a heat stress index that gives information for the workers in the industrial areas. WBGT equation is described in ISO Standard 7243 (ISO 7243 in Hot environments—estimation of the heat stress on working man, based on the WBGT index, ISO, Geneva, 1982). WBGT is the result of the combined quantitative effects of the natural wet-bulb temperature, dry-bulb temperature, and air temperature. WBGT is a calculated parameter. WBGT uses input estimates, and heat stress monitor measures these quantities. In this study, the calibration method of a heat stress monitor is described, and the model function for measurement uncertainty is given. Sensitivity coefficients were derived according to GUM. Two-pressure humidity generators were used to generate a controlled environment. Heat stress monitor was calibrated inside of the generator. Two-pressure humidity generator, which is located in Turkish Standard Institution, was used as the reference device. This device is traceable to national standards. Two-pressure humidity generator includes reference temperature Pt-100 sensors. The reference sensor was sheltered with a wet wick for the calibration of natural wet-bulb thermometer. The reference sensor was centred into a black globe that has got 150 mm diameter for the calibration of the black globe thermometer.

  20. Expression of Rice Mature Carbonic Anhydrase Gene Increase E. coli Tolerance to Heat Stress.

    PubMed

    Tianpei, Xiuzi; Mao, Zhinang; Zhu, Yingguo; Li, Shaoqing

    2015-05-01

    Carbonic anhydrate is a zinc-containing metalloenzyme and involved in plant abiotic stress tolerance. In this study, we found that heat stress could induce rice mature carbonic anhydrate gene over-expression in rice plants. An Escherichia coli heterologous expression system was performed to identify the function of rice mature carbonic anhydrate in vitro. By sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), mature OsCA fusion protein was identified and proved to be soluble. The results of spot, survival rate, and growth curve assay demonstrated that the expression of the mature OsCA could enhance the thermo-tolerance of the induced mature OsCA recombinants in comparison with controls under heat stress. Meanwhile, compared with controls, the levels of reactive oxygen species in induced mature OsCA recombinants were apparently low under heat stress, and correspondingly, activities of the critical antioxidant enzymes including superoxide dismutase, catalase, and peroxidase in the induced mature OsCA recombinants were significantly increased. Additionally, relative to controls, the activity of the lactate dehydrogenase decreased in the induced mature OsCA recombinants under heat stress. Based on these results, we suggest that mature OsCA protein could confer the E. coli recombinants' tolerance to heat stress by a synergistic fashion of increasing the antioxidant enzymes' activities to reduce the oxidative damage and maintaining the lactate dehydrogenase (LDH) activity of E. coli.

  1. On Time Domain Analysis of Photoplethysmogram Signals for Monitoring Heat Stress

    PubMed Central

    Elgendi, Mohamed; Fletcher, Rich; Norton, Ian; Brearley, Matt; Abbott, Derek; Lovell, Nigel H.; Schuurmans, Dale

    2015-01-01

    There are a limited number of studies on heat stress dynamics during exercise using the photoplethysmogram (PPG) and its second derivative (APG). However, we investigate the most suitable index from short PPG signal recordings for heat stress assessment. The APG waveform consists of a, b, c and d waves in systole and an e wave in diastole. Our preliminary results indicate that the use of the energy of aa area, derived from PPG signals measured from emergency responders in tropical conditions, is promising in determining the heat stress level using 20-s recordings. After examining 14 time domain features using leave-one-out cross-validation, we found that the aa energy extracted from PPG signals is the most informative feature for classifying heat-stressed subjects, with an overall accuracy of 79%. Moreover, the combination of the aa energy with the traditional heart rate variability index of heat stress (i.e., the square root of the mean of the squares of the successive aa intervals) improved the heat stress detection to an overall accuracy of 83%. PMID:26404271

  2. On Time Domain Analysis of Photoplethysmogram Signals for Monitoring Heat Stress.

    PubMed

    Elgendi, Mohamed; Fletcher, Rich; Norton, Ian; Brearley, Matt; Abbott, Derek; Lovell, Nigel H; Schuurmans, Dale

    2015-09-25

    There are a limited number of studies on heat stress dynamics during exercise using the photoplethysmogram (PPG) and its second derivative (APG). However, we investigate the most suitable index from short PPG signal recordings for heat stress assessment. The APG waveform consists of a, b, c and d waves in systole and an e wave in diastole. Our preliminary results indicate that the use of the energy of aa area, derived from PPG signals measured from emergency responders in tropical conditions, is promising in determining the heat stress level using 20-s recordings. After examining 14 time domain features using leave-one-out cross-validation, we found that the aa energy extracted from PPG signals is the most informative feature for classifying heat-stressed subjects, with an overall accuracy of 79%. Moreover, the combination of the aa energy with the traditional Sensors 2015, 15 24717 heart rate variability index of heat stress (i.e., the square root of the mean of the squares of the successive aa intervals) improved the heat stress detection to an overall accuracy of 83%.

  3. Post-Heading Heat Stress in Rice of South China during 1981-2010

    PubMed Central

    Shi, Peihua; Tang, Liang; Wang, Lihuan; Sun, Ting; Liu, Leilei; Cao, Weixing; Zhu, Yan

    2015-01-01

    Frequent extreme heat events are the serious threat to rice production, but the historical trend of heat stress associated with phenology shift and its impact on rice yield over a long period are poorly known. Based on the analysis of observed climate and phenology data from 228 stations in South China during 1981-2010, the spatio-temporal variation of post-heading heat stress was investigated among two single-season rice sub-regions in the northern Middle and Lower Reaches of Yangtze River (S-NMLYtz) and Southwest Plateau (S-SWP), and two double-season early rice sub-regions in the southern Middle and Lower Reaches of Yangtze River (DE-SMLYtz) and Southern China (DE-SC). Post-heading heat stress was more severe in DE-SMLYtz, west S-NMLYtz and east S-SWP than elsewhere, because of rice exposure to the hot season during post-heading stage. The spatial variation of post-heading heat stress was greater in single-season rice region than in double-season early rice region due to the greater spatial variation of heading and maturity dates. Post-heading heat stress increased from 1981 to 2010 in most areas, with significant increases in the east of double-season early rice region and west S-SWP. Phenology shift during 1981-2010 mitigated the increasing trends of heat stress in most areas, but not in west S-SWP. Post-heading heat stress played a dominated role in the reduction of rice yield in South China. Grain yield was more sensitive to post-heading heat stress in double-season early rice region than that in single-season rice region. Rice yield decreased by 1.5%, 6.2%, 9.7% and 4.6% in S-NMLYtz, S-SWP, DE-SMLYtz and DE-SC, respectively, because of post-heading heat stress during 1981-2010, although there were some uncertainties. Given the current level and potential increase of post-heading heat stress in South China, the specific adaptation or mitigation strategies are necessary for different sub-regions to stabilize rice production under heat stress. PMID:26110263

  4. Tolerance endpoint for evaluating the effects of heat stress in dogs.

    DOT National Transportation Integrated Search

    1984-06-01

    Animals occasionally die from heat stress encountered during shipment in the nation's transportation systems. To provide a basis for a series of studies on shipping crates, environmental conditions, etc., as may be encountered in air transport of dog...

  5. Finite element residual stress analysis of induction heating bended ferritic steel piping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin

    2014-10-06

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residualmore » stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.« less

  6. Investigation of countermeasure for unloading-related muscle plasticity: role of heat stress

    NASA Astrophysics Data System (ADS)

    Goto, K.; Kobayashi, T.; Kojima, A.; Akema, T.; Sugiura, T.; Yamada, S.; Ohira, Y.; Yoshioka, T.

    We have been studying the mechanisms responsible for unloading- or loading-related muscle plasticity. The purpose of the current study was to investigate the effects of heat stress on the growth of mammalian skeletal muscles in vivo. Male Wistar rats (7 weeks old) were divided into two groups: control (n = 24) and heat stress (n = 24). Rats of heat stressed group were exposed to environmental heat stress (41°C for 60 min) in a heat chamber without anesthesia. The soleus muscles were dissected 1, 3, 7, and 14 days after the heat exposure. The wet weights of muscle relative to body weights in heat stressed group were significantly higher than control group 7 days after the exposure (p<0.05). The relative proportion of 5-bromo-2'-deoxyuridine- and proliferating cell nuclear antigen-positive nuclei, that are indicators for the cell proliferation, were increased 1 day after heating (p<0.05). Pax7-positive nuclei, that are indicators for the muscle satellite cells, were also increased 3 day after heat exposure. The expression of phosphorylated p70 S6 kinase was increased 1 day following heat exposure. These results suggest that heat stress could promote cell proliferation, activate satellite cells, and induce muscular hypertrophy.

  7. Camelid heat stress: 15 cases (2003–2011)

    PubMed Central

    Norton, Piper L.; Gold, Jenifer R.; Russell, Karen E.; Schulz, Kara L.; Porter, Brian F.

    2014-01-01

    This case series describes novel findings associated with heat stress in 15 cases in South American camelids that had no pre-existing illnesses and which had clinical signs of illness after exposure to a warm environment. Novel findings include decreased packed cell volume and albumin concentration and mild spinal axonal degeneration. Heat stress should be considered in weak camelids with a history of hyperthermia. PMID:25320390

  8. Factors of subjective heat stress of urban citizens in contexts of everyday life

    NASA Astrophysics Data System (ADS)

    Kunz-Plapp, Tina; Hackenbruch, Julia; Schipper, Janus Willem

    2016-04-01

    Heat waves and the consequent heat stress of urban populations have a growing relevance in urban risk management and strategies of urban adaptation to climate change. In this context, social science studies on subjective experiencing of heat as stress by urban citizens are a new emerging field. To contribute to the understanding of self-reported subjective heat stress and its major determinants in a daily life perspective, we conducted a questionnaire survey with 323 respondents in Karlsruhe, Germany, after heat waves in July and August 2013. Statistical data analysis showed that subjective heat stress is an issue permeating everyday activities. Subjective heat stress at home was lower than at work and in general. Subjective heat stress in general, at home, and at work was determined by the health impairments experienced during the heat and the feeling of being helplessly exposed to the heat. For subjective heat stress at home, characteristics of the residential building and the built environment additionally played a role. Although the rate of implemented coping measures was rather high, coping measures showed no uniform effect for the subjective heat stress. We conclude that in terms of urban adaptation strategies, further research is needed to understand how various processes of daily social (work) life enable or limit individual coping and that communication strategies are important for building capacities to better cope with future heat waves.

  9. Post-heading heat stress and yield impact in winter wheat of China.

    PubMed

    Liu, Bing; Liu, Leilei; Tian, Liying; Cao, Weixing; Zhu, Yan; Asseng, Senthold

    2014-02-01

    Wheat is sensitive to high temperatures, but the spatial and temporal variability of high temperature and its impact on yield are often not known. An analysis of historical climate and yield data was undertaken to characterize the spatial and temporal variability of heat stress between heading and maturity and its impact on wheat grain yield in China. Several heat stress indices were developed to quantify heat intensity, frequency, and duration between heading and maturity based on measured maximum temperature records of the last 50 years from 166 stations in the main wheat-growing region of China. Surprisingly, heat stress between heading and maturity was more severe in the generally cooler northern wheat-growing regions than the generally warmer southern regions of China, because of the delayed time of heading with low temperatures during the earlier growing season and the exposure of the post-heading phase into the warmer part of the year. Heat stress between heading and maturity has increased in the last decades in most of the main winter wheat production areas of China, but the rate was higher in the south than in the north. The correlation between measured grain yields and post-heading heat stress and average temperature were statistically significant in the entire wheat-producing region, and explained about 29% of the observed spatial and temporal yield variability. A heat stress index considering the duration and intensity of heat between heading and maturity was required to describe the correlation of heat stress and yield variability. Because heat stress is a major cause of yield loss and the number of heat events is projected to increase in the future, quantifying the future impact of heat stress on wheat production and developing appropriate adaptation and mitigation strategies are critical for developing food security policies in China and elsewhere. © 2013 John Wiley & Sons Ltd.

  10. Occupational heat stress in Australian workplaces

    PubMed Central

    Jay, Ollie; Brotherhood, John R.

    2016-01-01

    ABSTRACT The aim of this review was to summarize the current state of knowledge on heat stress risk within typical Australian occupational settings. We assessed identified occupations (mining, agriculture, construction, emergency services) for heat production and heat loss potential, and resultant levels of physiological heat strain. A total of 29 reports were identified that assessed in-situ work settings in Northern Territory, South Australia, Western Australia, Queensland, New South Wales and Victoria, that measured physiological responses and characterized the thermal environment. Despite workers across all industries being regularly exposed to high ambient temperatures (32–42°C) often coupled with high absolute humidity (max: 33 hPa), physiological strain is generally low in terms of core temperature (<38°C) and dehydration (<1 % reduction in mass) by virtue of the low energy demands of many tasks, and self-regulated pacing of work possible in most jobs. Heat stress risk is higher in specific jobs in agriculture (e.g. sheep shearing), deep underground mining, and emergency services (e.g., search/rescue and bushfire fighting). Heat strain was greatest in military-related activities, particularly externally-paced marching with carried loads which resulted in core temperatures often exceeding 39.5°C despite being carried out in cooler environments. The principal driver of core temperature elevations in most jobs is the rate of metabolic heat production. A standardized approach to evaluating the risk of occupational heat strain in Australian workplaces is recommended defining the individual parameters that alter human heat balance. Future research should also more closely examine female workers and occupational activities within the forestry and agriculture/horticulture sector. PMID:28349081

  11. The shifting influence of drought and heat stress for crops in northeast Australia.

    PubMed

    Lobell, David B; Hammer, Graeme L; Chenu, Karine; Zheng, Bangyou; McLean, Greg; Chapman, Scott C

    2015-11-01

    Characterization of drought environment types (ETs) has proven useful for breeding crops for drought-prone regions. Here, we consider how changes in climate and atmospheric carbon dioxide (CO2 ) concentrations will affect drought ET frequencies in sorghum and wheat systems of northeast Australia. We also modify APSIM (the Agricultural Production Systems Simulator) to incorporate extreme heat effects on grain number and weight, and then evaluate changes in the occurrence of heat-induced yield losses of more than 10%, as well as the co-occurrence of drought and heat. More than six million simulations spanning representative locations, soil types, management systems, and 33 climate projections led to three key findings. First, the projected frequency of drought decreased slightly for most climate projections for both sorghum and wheat, but for different reasons. In sorghum, warming exacerbated drought stresses by raising the atmospheric vapor pressure deficit and reducing transpiration efficiency (TE), but an increase in TE due to elevated CO2 more than offset these effects. In wheat, warming reduced drought stress during spring by hastening development through winter and reducing exposure to terminal drought. Elevated CO2 increased TE but also raised radiation-use efficiency and overall growth rates and water use, thereby offsetting much of the drought reduction from warming. Second, adding explicit effects of heat on grain number and grain size often switched projected yield impacts from positive to negative. Finally, although average yield losses associated with drought will remain generally higher than that for heat stress for the next half century, the relative importance of heat is steadily growing. This trend, as well as the likely high degree of genetic variability in heat tolerance, suggests that more emphasis on heat tolerance is warranted in breeding programs. At the same time, work on drought tolerance should continue with an emphasis on drought that co

  12. BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress.

    PubMed

    Jin, Young-Hee; Ahn, Sang-Gun; Kim, Soo-A

    2015-08-21

    Bcl2-associated athoanogene (BAG) 3 is a member of the co-chaperone BAG family. It is induced by stressful stimuli such as heat shock and heavy metals, and it regulates cellular adaptive responses against stressful conditions. In this study, we identified a novel role for BAG3 in regulating the nuclear shuttling of HSF1 during heat stress. The expression level of BAG3 was induced by heat stress in HeLa cells. Interestingly, BAG3 rapidly translocalized to the nucleus upon heat stress. Immunoprecipitation assay showed that BAG3 interacts with HSF1 under normal and stressed conditions and co-translocalizes to the nucleus upon heat stress. We also demonstrated that BAG3 interacts with HSF1 via its BAG domain. Over-expression of BAG3 down-regulates the level of nuclear HSF1 by exporting it to the cytoplasm during the recovery period. Depletion of BAG3 using siRNA results in reduced nuclear HSF1 and decreased Hsp70 promoter activity. BAG3 in MEF(hsf1(-/-)) cells actively translocalizes to the nucleus upon heat stress suggesting that BAG3 plays a key role in the processing of the nucleocytoplasmic shuttling of HSF1 upon heat stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Carotid baroreflex responsiveness in heat-stressed humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.

    2000-01-01

    The effects of whole body heating on human baroreflex function are relatively unknown. The purpose of this project was to identify whether whole body heating reduces the maximal slope of the carotid baroreflex. In 12 subjects, carotid-vasomotor and carotid-cardiac baroreflex responsiveness were assessed in normothermia and during whole body heating. Whole body heating increased sublingual temperature (from 36.4 +/- 0.1 to 37.4 +/- 0.1 degrees C, P < 0.01) and increased heart rate (from 59 +/- 3 to 83 +/- 3 beats/min, P < 0. 01), whereas mean arterial blood pressure (MAP) was slightly decreased (from 88 +/- 2 to 83 +/- 2 mmHg, P < 0.01). Carotid-vasomotor and carotid-cardiac responsiveness were assessed by identifying the maximal gain of MAP and heart rate to R wave-triggered changes in carotid sinus transmural pressure. Whole body heating significantly decreased the responsiveness of the carotid-vasomotor baroreflex (from -0.20 +/- 0.02 to -0.13 +/- 0.02 mmHg/mmHg, P < 0.01) without altering the responsiveness of the carotid-cardiac baroreflex (from -0.40 +/- 0.05 to -0.36 +/- 0.02 beats x min(-1) x mmHg(-1), P = 0.21). Carotid-vasomotor and carotid-cardiac baroreflex curves were shifted downward and upward, respectively, to accommodate the decrease in blood pressure and increase in heart rate that accompanied the heat stress. Moreover, the operating point of the carotid-cardiac baroreflex was shifted closer to threshold (P = 0.02) by the heat stress. Reduced carotid-vasomotor baroreflex responsiveness, coupled with a reduction in the functional reserve for the carotid baroreflex to increase heart rate during a hypotensive challenge, may contribute to increased susceptibility to orthostatic intolerance during a heat stress.

  14. New guidelines are needed to manage heat stress in elite sports--The Fédération Internationale de Volleyball (FIVB) Heat Stress Monitoring Programme.

    PubMed

    Bahr, Roald; Reeser, Jonathan C

    2012-09-01

    There seems to be a discrepancy between the available heat stress guidelines and the actual risk of heat-related illness among professional beach volleyball players competing under hot and humid conditions. To monitor heat stress and record cases of heat-related medical forfeits on the Swatch FIVB Beach Volleyball World Tour. The FIVB Heat Stress Monitoring Protocol covered events on the FIVB Beach Volleyball World Tour and FIVB Beach Volleyball World Championships during the 2009, 2010 and 2011 seasons (51 events, most of these double gender). The protocol consisted of (1) measuring the Wet Bulb Globe Temperature (WBGT) on centre court prior to the start of every match, and (2) recording any heat-related medical forfeits during the tournament. Data were collected during 48 of 51 events. There were nine events where the peak WBGT exceeded the US Navy Black flag conditions of >32.3°C and an additional two events where the peak WBGT exceeded 31°C, (meeting Red flag conditions.) In two events, the average WBGT equalled at least 31°C. One case of a medical forfeit related to heat stress was recorded over the 3-year surveillance period: an athlete whose fluid balance was compromised from a 3-day bout of acute gastroenteritis. The incidence of significant heat illness among athletes competing on the FIVB Beach Volleyball World Tour appears to be quite low, even though weather conditions frequently result in a WBGT index >32°C. Currently available guidelines appear to be inadequate to fully assess the risk of heat stress and too conservative to inform safety decisions in professional beach volleyball.

  15. Metabolic Effects of Acibenzolar-S-Methyl for Improving Heat or Drought Stress in Creeping Bentgrass

    PubMed Central

    Jespersen, David; Yu, Jingjin; Huang, Bingru

    2017-01-01

    Acibenzolar-S-methyl (ASM) is a synthetic functional analog of salicylic acid which can induce systemic acquired resistance in plants, but its effects on abiotic stress tolerance is not well known. The objectives of this study were to examine effects of acibenzolar-S-methyl on heat or drought tolerance in creeping bentgrass (Agrostis stolonifera) and to determine major ASM-responsive metabolites and proteins associated with enhanced abiotic stress tolerance. Creeping bentgrass plants (cv. ‘Penncross’) were foliarly sprayed with ASM and were exposed to non-stress (20/15°C day/night), heat stress (35/30°C), or drought conditions (by withholding irrigation) in controlled-environment growth chambers. Exogenous ASM treatment resulted in improved heat or drought tolerance, as demonstrated by higher overall turf quality, relative water content, and chlorophyll content compared to the untreated control. Western blotting revealed that ASM application resulted in up-regulation of ATP synthase, HSP-20, PR-3, and Rubisco in plants exposed to heat stress, and greater accumulation of dehydrin in plants exposed to drought stress. Metabolite profiling identified a number of amino acids, organic acids, and sugars which were differentially accumulated between ASM treated and untreated plants under heat or drought stress, including aspartic acid, glycine, citric acid, malic acid, and the sugars glucose, and fructose. Our results suggested that ASM was effective in improving heat or drought tolerance in creeping bentgrass, mainly through enhancing protein synthesis and metabolite accumulation involved in osmotic adjustment, energy metabolism, and stress signaling. PMID:28744300

  16. Detecting early signs of heat and drought stress in Phoenix dactylifera (date palm)

    PubMed Central

    Safronov, Omid; Kreuzwieser, Jürgen; Haberer, Georg; Alyousif, Mohamed S.; Schulze, Waltraud; Al-Harbi, Naif; Arab, Leila; Ache, Peter; Stempfl, Thomas; Kruse, Joerg; Mayer, Klaus X.; Hedrich, Rainer; Rennenberg, Heinz

    2017-01-01

    Plants adapt to the environment by either long-term genome evolution or by acclimatization processes where the cellular processes and metabolism of the plant are adjusted within the existing potential in the genome. Here we studied the adaptation strategies in date palm, Phoenix dactylifera, under mild heat, drought and combined heat and drought by transcriptomic and metabolomic profiling. In transcriptomics data, combined heat and drought resembled heat response, whereas in metabolomics data it was more similar to drought. In both conditions, soluble carbohydrates, such as fucose, and glucose derivatives, were increased, suggesting a switch to carbohydrate metabolism and cell wall biogenesis. This result is consistent with the evidence from transcriptomics and cis-motif analysis. In addition, transcriptomics data showed transcriptional activation of genes related to reactive oxygen species in all three conditions (drought, heat, and combined heat and drought), suggesting increased activity of enzymatic antioxidant systems in cytosol, chloroplast and peroxisome. Finally, the genes that were differentially expressed in heat and combined heat and drought stresses were significantly enriched for circadian and diurnal rhythm motifs, suggesting new stress avoidance strategies. PMID:28570677

  17. Climate Change and the Emergent Epidemic of CKD from Heat Stress in Rural Communities: The Case for Heat Stress Nephropathy

    PubMed Central

    Glaser, Jason; Lemery, Jay; Rajagopalan, Balaji; Diaz, Henry F.; García-Trabanino, Ramón; Taduri, Gangadhar; Madero, Magdalena; Amarasinghe, Mala; Abraham, Georgi; Anutrakulchai, Sirirat; Jha, Vivekanand; Stenvinkel, Peter; Roncal-Jimenez, Carlos; Lanaspa, Miguel A.; Correa-Rotter, Ricardo; Sheikh-Hamad, David; Burdmann, Emmanuel A.; Andres-Hernando, Ana; Milagres, Tamara; Weiss, Ilana; Kanbay, Mehmet; Wesseling, Catharina; Sánchez-Lozada, Laura Gabriela

    2016-01-01

    Climate change has led to significant rise of 0.8°C–0.9°C in global mean temperature over the last century and has been linked with significant increases in the frequency and severity of heat waves (extreme heat events). Climate change has also been increasingly connected to detrimental human health. One of the consequences of climate-related extreme heat exposure is dehydration and volume loss, leading to acute mortality from exacerbations of pre-existing chronic disease, as well as from outright heat exhaustion and heat stroke. Recent studies have also shown that recurrent heat exposure with physical exertion and inadequate hydration can lead to CKD that is distinct from that caused by diabetes, hypertension, or GN. Epidemics of CKD consistent with heat stress nephropathy are now occurring across the world. Here, we describe this disease, discuss the locations where it appears to be manifesting, link it with increasing temperatures, and discuss ongoing attempts to prevent the disease. Heat stress nephropathy may represent one of the first epidemics due to global warming. Government, industry, and health policy makers in the impacted regions should place greater emphasis on occupational and community interventions. PMID:27151892

  18. Practices for Alleviating Heat Stress of Dairy Cows in Humid Continental Climates: A Literature Review

    PubMed Central

    Fournel, Sébastien; Ouellet, Véronique; Charbonneau, Édith

    2017-01-01

    Simple Summary The severity of heat stress issues on dairy cows will increase as global warming progresses. Fortunately, major advances in environmental management, including fans, misters, sprinklers, and cooled waterbeds, can attenuate the effects of thermal stress on cow health, production, and reproduction. These cooling systems were, however, tested in subtropical areas and their efficiency in northern regions is uncertain. This article assesses the potential of existing technologies to cool cows in humid continental climates through calculation of heat stress indices. Abstract Heat stress negatively affects the health and performance of dairy cows, resulting in considerable economic losses for the industry. In future years, climate change will exacerbate these losses by making the climate warmer. Physical modification of the environment is considered to be the primary means of reducing adverse effects of hot weather conditions. At present, to reduce stressful heat exposure and to cool cows, dairy farms rely on shade screens and various forms of forced convection and evaporative cooling that may include fans and misters, feed-line sprinklers, and tunnel- or cross-ventilated buildings. However, these systems have been mainly tested in subtropical areas and thus their efficiency in humid continental climates, such as in the province of Québec, Canada, is unclear. Therefore, this study reviewed the available cooling applications and assessed their potential for northern regions. Thermal stress indices such as the temperature-humidity index (THI) were used to evaluate the different cooling strategies. PMID:28468329

  19. Subjective heat stress of urban citizens: influencing factors and coping strategies

    NASA Astrophysics Data System (ADS)

    Kunz-Plapp, Tina; Hackenbruch, Julia; Schipper, Hans

    2014-05-01

    Given urbanization trend and a higher probability of heat waves in Europe, heat discomfort or heat stress for the population in cities is a growing concern that is addressed from various perspectives, such as urban micro climate, urban and spatial planning, human health, work performance and economic impacts. This presentation focuses on subjective heat stress experienced by urban citizens. In order to better understand individual subjective heat stress of urban citizens and how different measures to cope with heat stress in everyday life are applied, a questionnaire survey was conducted in Karlsruhe, Germany. Karlsruhe is located in one of the warmest regions in Germany and holds the German temperature record of 40.2°C in August 2003. In 2013, two hot weather periods with continuous heat warnings by the German Weather Service for 7 and 8 days occurred during the last 10 days of July and first 10 days of August 2013 with an inofficial maximum temperature of again 40.2°C on July 27th in Karlsruhe (not taken by the official network of the German Weather Service). The survey data was collected in the six weeks after the heat using an online-questionnaire on the website of the South German Climate Office that was announced via newspapers and social media channels to reach a wide audience in Karlsruhe. The questionnaire was additionally sent as paper version to groups of senior citizens to ensure having enough respondents from this heat sensitive social group in the sample. The 428 respondents aged 17-94 show differences in subjective heat stress experienced at home, at work and during various typical activities in daily routine. They differ also in the measures they used to adjust to and cope with the heat such as drinking more, evading the heat, seeking cooler places, changing daily routines, or use of air condition. Differences in heat stress can be explained by housing type, age, subjective health status, employment, and different coping measures and strategies

  20. Exercise-induced heat stress disrupts the shear-dilatory relationship.

    PubMed

    Ives, Stephen J; Lefferts, Wesley K; Wharton, Margret; Fehling, Patricia C; Smith, Denise L

    2016-12-01

    What is the central question of this study? Although heat stress is known to increase cardiovascular strain, no study, to date, had explored the potential impact of exercise-induced heat stress on vascular function. What is the main finding and its importance? We found that acute exercise tended to reduce flow-mediated dilatation (FMD), owing in part to reduced reactive hyperaemia/shear stimulus; thus, when FMD is normalized to shear no postexercise deficit exists. Exercise-induced heat stress increased reactive hyperaemia, shear rate, coupled with a sustained FMD postexercise, suggests that exercise-induced heat stress increases the amount of shear stimulus to elicit a similar response, indicating reduced vascular responsiveness, or reserve, which might increase cardiovascular susceptibility. Heat stress increases cardiovascular strain and is of particular concern in occupations, such as firefighting, in which individuals are required to perform strenuous work while wearing personal protective equipment. Sudden cardiac events are associated with strenuous activity and are the leading cause of duty-related death among firefighters, accounting for ∼50% of duty-related fatalities per year. Understanding the acute effects of exercise-induced heat stress (EIHS) on vascular endothelial function may provide insight into the mechanisms precipitating acute coronary events in firefighters. The purpose of this study, therefore, was to determine the effects of EIHS on vascular endothelial function. Using a balanced crossover design, 12 healthy men performed 100 min of moderate-intensity, intermittent exercise with and without EIHS (personal protective equipment or cooling vest, respectively). Measurements of flow-mediated dilatation (FMD), reactive hyperaemia and shear rate area under the curve (SR AUC ) were performed pre- and postexercise. During EIHS, core temperature was significantly higher (38 ± 0.1 versus 37 ± 0.1°C). Postexercise FMD tended to be suppressed

  1. Sympathetic activity during passive heat stress in healthy aged humans

    PubMed Central

    Gagnon, Daniel; Schlader, Zachary J; Crandall, Craig G

    2015-01-01

    Abstract Cardiovascular adjustments during heat stress are generally attenuated in healthy aged humans, which could be due to lower increases in sympathetic activity compared to the young. We compared muscle sympathetic nerve activity (MSNA) between 11 young (Y: 28 ± 4 years) and 10 aged (A: 70 ± 5 years) subjects prior to and during passive heating. Furthermore, MSNA responses were compared when a cold pressor test (CPT) and lower body negative pressure (LBNP) were superimposed upon heating. Baseline MSNA burst frequency (Y: 15 ± 4 vs. A: 31 ± 3 bursts min−1, P ≤ 0.01) and burst incidence (Y: 26 ± 8 vs. A: 50 ± 7 bursts (100 cardiac cycles (CC))−1, P ≤ 0.01) were greater in the aged. Heat stress increased core temperature to a similar extent in both groups (Y: +1.2 ± 0.1 vs. A: +1.2 ± 0.0°C, P = 0.99). Absolute levels of MSNA remained greater in the aged during heat stress (burst frequency: Y: 47 ± 6 vs. A: 63 ± 11 bursts min−1, P ≤ 0.01; burst incidence: Y: 48 ± 8 vs. A: 67 ± 9 bursts (100 CC)−1, P ≤ 0.01); however, the increase in both variables was similar between groups (both P ≥ 0.1). The CPT and LBNP further increased MSNA burst frequency and burst incidence, although the magnitude of increase was similar between groups (both P ≥ 0.07). These results suggest that increases in sympathetic activity during heat stress are not attenuated in healthy aged humans. Key points Cardiovascular adjustments to heat stress are attenuated in healthy aged individuals, which could contribute to their greater prevalence of heat-related illnesses and deaths during heat waves. The attenuated cardiovascular adjustments in the aged could be due to lower increases in sympathetic nerve activity during heat stress. We examined muscle sympathetic nerve activity (MSNA) and plasma catecholamine concentrations in healthy young and aged individuals during whole-body passive heat stress. The main finding

  2. Heat stress assessment in artistic glass units

    PubMed Central

    d’AMBROSIO ALFANO, Francesca Romana; PALELLA, Boris Igor; RICCIO, Giuseppe; BARTALINI, Massimo; STRAMBI, Fabio; MALCHAIRE, Jacques

    2017-01-01

    Heat stress in glass industry is mainly studied in large and highly mechanized manufacturing Units. To the contrary, few studies were carried out in small factories specialized in hand-made products. To stress the need of combined objective and medical surveys in these environments, this paper deals with a simultaneous climatic and physiological investigation of working conditions in artistic crystal glass factories in Tuscany (Italy). The microclimatic monitoring, through a continuous survey has been carried out in early spring. The main physiological parameters (metabolic rate, heart rate, tympanic temperature and water loss) were measured over the whole shifts. The results show that, despite the arduousness of the working conditions, the heat stress levels are physiologically tolerable. The predictions made using the PHS model at the Analysis level described in ISO 15265 agree closely to the observed values, validating the use of PHS model in these conditions. This model was then used to analyse what is likely to be the situation during the summer. It is concluded that the heat constraint will be very high and that some steps must be taken from the spring to monitor closely the exposed workers in the summer and take measures to prevent any heat accident. PMID:29109359

  3. Heat stress assessment in artistic glass units.

    PubMed

    d'AMBROSIO Alfano, Francesca Romana; Palella, Boris Igor; Riccio, Giuseppe; Bartalini, Massimo; Strambi, Fabio; Malchaire, Jacques

    2018-04-07

    Heat stress in glass industry is mainly studied in large and highly mechanized manufacturing Units. To the contrary, few studies were carried out in small factories specialized in hand-made products. To stress the need of combined objective and medical surveys in these environments, this paper deals with a simultaneous climatic and physiological investigation of working conditions in artistic crystal glass factories in Tuscany (Italy). The microclimatic monitoring, through a continuous survey has been carried out in early spring. The main physiological parameters (metabolic rate, heart rate, tympanic temperature and water loss) were measured over the whole shifts. The results show that, despite the arduousness of the working conditions, the heat stress levels are physiologically tolerable. The predictions made using the PHS model at the Analysis level described in ISO 15265 agree closely to the observed values, validating the use of PHS model in these conditions. This model was then used to analyse what is likely to be the situation during the summer. It is concluded that the heat constraint will be very high and that some steps must be taken from the spring to monitor closely the exposed workers in the summer and take measures to prevent any heat accident.

  4. Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs.

    PubMed

    Liu, Fan; Cottrell, Jeremy J; Furness, John B; Rivera, Leni R; Kelly, Fletcher W; Wijesiriwardana, Udani; Pustovit, Ruslan V; Fothergill, Linda J; Bravo, David M; Celi, Pietro; Leury, Brian J; Gabler, Nicholas K; Dunshea, Frank R

    2016-07-01

    What is the central question of this study? Oxidative stress may play a role in compromising intestinal epithelial barrier integrity in pigs subjected to heat stress, but it is unknown whether an increase of dietary antioxidants (selenium and vitamin E) could alleviate gut leakiness in heat-stressed pigs. What is the main finding and its importance? Levels of dietary selenium (1.0 p.p.m.) and vitamin E (200 IU kg(-1) ) greater than those usually recommended for pigs reduced intestinal leakiness caused by heat stress. This finding suggests that oxidative stress plays a role in compromising intestinal epithelial barrier integrity in heat-stressed pigs and also provides a nutritional strategy for mitigating these effects. Heat stress compromises the intestinal epithelial barrier integrity of mammals through mechanisms that may include oxidative stress. Our objective was to test whether dietary supplementation with antioxidants, selenium (Se) and vitamin E (VE), protects intestinal epithelial barrier integrity in heat-stressed pigs. Female growing pigs (n = 48) were randomly assigned to four diets containing from 0.2 p.p.m. Se and 17 IU kg(-1) VE (control, National Research Council recommended) to 1.0 p.p.m. Se and 200 IU kg(-1) VE for 14 days. Six pigs from each dietary treatment were then exposed to either thermoneutral (20°C) or heat-stress conditions (35°C 09.00-17.00 h and 28°C overnight) for 2 days. Transepithelial electrical resistance and fluorescein isothiocyanate-dextran (4 kDa; FD4) permeability were measured in isolated jejunum and ileum using Ussing chambers. Rectal temperature, respiratory rate and intestinal HSP70 mRNA abundance increased (all P < 0.001), and respiratory alkalosis occurred, suggesting that pigs were heat stressed. Heat stress also increased FD4 permeability and decreased transepithelial electrical resistance (both P < 0.01). These changes were associated with changes indicative of oxidative stress, a decreased

  5. Adaptation to hot climate and strategies to alleviate heat stress in livestock production.

    PubMed

    Renaudeau, D; Collin, A; Yahav, S; de Basilio, V; Gourdine, J L; Collier, R J

    2012-05-01

    Despite many challenges faced by animal producers, including environmental problems, diseases, economic pressure, and feed availability, it is still predicted that animal production in developing countries will continue to sustain the future growth of the world's meat production. In these areas, livestock performance is generally lower than those obtained in Western Europe and North America. Although many factors can be involved, climatic factors are among the first and crucial limiting factors of the development of animal production in warm regions. In addition, global warming will further accentuate heat stress-related problems. The objective of this paper was to review the effective strategies to alleviate heat stress in the context of tropical livestock production systems. These strategies can be classified into three groups: those increasing feed intake or decreasing metabolic heat production, those enhancing heat-loss capacities, and those involving genetic selection for heat tolerance. Under heat stress, improved production should be possible through modifications of diet composition that either promotes a higher intake or compensates the low feed consumption. In addition, altering feeding management such as a change in feeding time and/or frequency, are efficient tools to avoid excessive heat load and improve survival rate, especially in poultry. Methods to enhance heat exchange between the environment and the animal and those changing the environment to prevent or limit heat stress can be used to improve performance under hot climatic conditions. Although differences in thermal tolerance exist between livestock species (ruminants > monogastrics), there are also large differences between breeds of a species and within each breed. Consequently, the opportunity may exist to improve thermal tolerance of the animals using genetic tools. However, further research is required to quantify the genetic antagonism between adaptation and production traits to evaluate

  6. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms.

    PubMed

    Hossain, Mohammad Anwar; Li, Zhong-Guang; Hoque, Tahsina Sharmin; Burritt, David J; Fujita, Masayuki; Munné-Bosch, Sergi

    2018-01-01

    Plants growing under field conditions are constantly exposed, either simultaneously or sequentially, to more than one abiotic stress factor. Plants have evolved sophisticated sensory systems to perceive a number of stress signals that allow them to activate the most adequate response to grow and survive in a given environment. Recently, cross-stress tolerance (i.e. tolerance to a second, strong stress after a different type of mild primary stress) has gained attention as a potential means of producing stress-resistant crops to aid with global food security. Heat or cold priming-induced cross-tolerance is very common in plants and often results from the synergistic co-activation of multiple stress signalling pathways, which involve reactive nitrogen species (RNS), reactive oxygen species (ROS), reactive carbonyl species (RCS), plant hormones and transcription factors. Recent studies have shown that the signalling functions of ROS, RNS and RCS, most particularly hydrogen peroxide, nitric oxide (NO) and methylglyoxal (MG), provide resistance to abiotic stresses and underpin cross-stress tolerance in plants by modulating the expression of genes as well as the post-translational modification of proteins. The current review highlights the key regulators and mechanisms underlying heat or cold priming-induced cross-stress tolerance in plants, with a focus on ROS, MG and NO signalling, as well as on the role of antioxidant and glyoxalase systems, osmolytes, heat-shock proteins (HSPs) and hormones. Our aim is also to provide a comprehensive idea on the topic for researchers using heat or cold priming-induced cross-tolerance as a mechanism to improve crop yields under multiple abiotic stresses.

  7. Role and regulation of autophagy in heat stress responses of tomato plants

    PubMed Central

    Zhou, Jie; Wang, Jian; Yu, Jing-Quan; Chen, Zhixiang

    2014-01-01

    As sessile organisms, plants are constantly exposed to a wide spectrum of stress conditions such as high temperature, which causes protein misfolding. Misfolded proteins are highly toxic and must be efficiently removed to reduce cellular proteotoxic stress if restoration of native conformations is unsuccessful. Although selective autophagy is known to function in protein quality control by targeting degradation of misfolded and potentially toxic proteins, its role and regulation in heat stress responses have not been analyzed in crop plants. In the present study, we found that heat stress induced expression of autophagy-related (ATG) genes and accumulation of autophagosomes in tomato plants. Virus-induced gene silencing (VIGS) of tomato ATG5 and ATG7 genes resulted in increased sensitivity of tomato plants to heat stress based on both increased development of heat stress symptoms and compromised photosynthetic parameters of heat-stressed leaf tissues. Silencing of tomato homologs for the selective autophagy receptor NBR1, which targets ubiquitinated protein aggregates, also compromised tomato heat tolerance. To better understand the regulation of heat-induced autophagy, we found that silencing of tomato ATG5, ATG7, or NBR1 compromised heat-induced expression of not only the targeted genes but also other autophagy-related genes. Furthermore, we identified two tomato genes encoding proteins highly homologous to Arabidopsis WRKY33 transcription factor, which has been previously shown to interact physically with an autophagy protein. Silencing of tomato WRKY33 genes compromised tomato heat tolerance and reduced heat-induced ATG gene expression and autophagosome accumulation. Based on these results, we propose that heat-induced autophagy in tomato is subject to cooperative regulation by both WRKY33 and ATG proteins and plays a critical role in tomato heat tolerance, mostly likely through selective removal of heat-induced protein aggregates. PMID:24817875

  8. Heat stress and antioxidant enzyme activity in bubaline ( Bubalus bubalis) oocytes during in vitro maturation

    NASA Astrophysics Data System (ADS)

    Waiz, Syma Ashraf; Raies-ul-Haq, Mohammad; Dhanda, Suman; Kumar, Anil; Goud, T. Sridhar; Chauhan, M. S.; Upadhyay, R. C.

    2016-09-01

    In vitro environments like heat stress usually increase the production of reactive oxygen species in bubaline oocytes which have been implicated as one of the major causes for reduced developmental competence. Oocytes during meiotic maturation are sensitive to oxidative stress, and heat stress accelerates cellular metabolism, resulting in the higher production of free radicals. Therefore, the aim of present work was to assess the impact of heat stress during meiotic maturation on bubaline cumulus-oocyte complexes (COC), denuded oocytes (DO), and cumulus cell mass in terms of their oxidative status. Accordingly, for control group, COC were matured at 38.5 °C for complete 24 h of meiotic maturation and heat stress of 40.5 and 41.5 °C was applied to COC during the first 12 h of maturation and then moved to 38.5 °C for rest of the 12 h. In another group, COC after maturation were denuded from the surrounding cumulus cells by manual pipetting. Results indicated that the production of reactive oxygen species (ROS), lipid peroxides, and nitric oxide (NO) was significantly ( P < 0.05) higher in the oocytes subjected to heat stress (40.5 and 41.5 °C) during meiotic maturation compared to the oocytes matured under standard in vitro culture conditions (38.5 °C). Also, the antioxidant enzymatic activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were significantly ( P < 0.05) increased in all the treatment groups compared to the control group. Therefore, the present study clearly establishes that heat stress ensues oxidative stress in bubaline oocytes which triggers the induction of antioxidant enzymatic defense system for scavenging the ROS.

  9. Heat and drought stresses in crops and approaches for their mitigation

    NASA Astrophysics Data System (ADS)

    Lamaoui, Mouna; Jemo, Martin; Datla, Raju; Bekkaoui, Faouzi

    2018-02-01

    Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavourable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.

  10. Heat and Drought Stresses in Crops and Approaches for Their Mitigation.

    PubMed

    Lamaoui, Mouna; Jemo, Martin; Datla, Raju; Bekkaoui, Faouzi

    2018-01-01

    Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavorable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.

  11. Recent changes of rice heat stress in Jiangxi province, southeast China.

    PubMed

    Huang, Jin; Zhang, Fangmin; Xue, Yan; Lin, Jie

    2017-04-01

    Around the intensity, frequency, duration, accumulated temperature, and even extremes of high-temperature events, nine selected temperature-related indices were used to explore the space and time changes of rice heat stress in Jiangxi province, southeast China. Several statistical methods including Mann-Kendall trend test (M-K test) and principal component analysis (PCA) were used in this study, and main results were listed as follows: (1) The changes in the intensity indices for high-temperature events were more significant, it was mainly embodied in that more than 80 % of stations had positive trends. (2) R-mode PCA was applied to the multiannual average values of nine selected indices of whole stations, and the results showed that the higher hazard for rice heat stress could be mainly detected in the middle and northeast area of Jiangxi. (3) S-mode PCA was applied to the integrated heat stress index series, and the results demonstrated that Jiangxi could be divided into four sub-regions with different variability in rice heat stress. However, all the sub-regions are dominated by increasing tendencies in rice heat stress since 1990. (4) Further analysis indicated that the western north Pacific sub-tropical high (WPSH) had the significant dominant influence on the rice heat stress in Jiangxi province.

  12. Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants.

    PubMed

    Tan, Wei; Meng, Qing wei; Brestic, Marian; Olsovska, Katarina; Yang, Xinghong

    2011-11-15

    Effects of exogenous calcium chloride (CaCl(2)) (20 mM) on photosynthetic gas exchange, photosystem II photochemistry, and the activities of antioxidant enzymes in tobacco plants under high temperature stress (43°C for 2 h) were investigated. Heat stress resulted in a decrease in net photosynthetic rate (P(n)), stomatal conductance as well as the apparent quantum yield (AQY) and carboxylation efficiency (CE) of photosynthesis. Heat stress also caused a decrease of the maximal photochemical efficiency of primary photochemistry (F(v)/F(m)). On the other hand, CaCl(2) application improved P(n), AQY, and CE as well as F(v)/F(m) under high temperature stress. Heat stress reduced the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), whereas the activities of these enzymes either decreased less or increased in plants pretreated with CaCl(2); glutathione reductase (GR) activity increased under high temperature, and it increased more in plants pretreated with CaCl(2). There was an obvious accumulation of H(2)O(2) and O(2)(-) under high temperature, but CaCl(2) application decreased the contents of H(2)O(2) and O(2)(-) under heat stress conditions. Heat stress induced the level of heat shock protein 70 (HSP70), while CaCl(2) pretreatment enhanced it. These results suggested that photosynthesis was improved by CaCl(2) application in heat-stressed plants and such an improvement was associated with an improvement in stomatal conductance and the thermostability of oxygen-evolving complex (OEC), which might be due to less accumulation of reactive oxygen species. Copyright © 2011 Elsevier GmbH. All rights reserved.

  13. Climate Change and the Emergent Epidemic of CKD from Heat Stress in Rural Communities: The Case for Heat Stress Nephropathy.

    PubMed

    Glaser, Jason; Lemery, Jay; Rajagopalan, Balaji; Diaz, Henry F; García-Trabanino, Ramón; Taduri, Gangadhar; Madero, Magdalena; Amarasinghe, Mala; Abraham, Georgi; Anutrakulchai, Sirirat; Jha, Vivekanand; Stenvinkel, Peter; Roncal-Jimenez, Carlos; Lanaspa, Miguel A; Correa-Rotter, Ricardo; Sheikh-Hamad, David; Burdmann, Emmanuel A; Andres-Hernando, Ana; Milagres, Tamara; Weiss, Ilana; Kanbay, Mehmet; Wesseling, Catharina; Sánchez-Lozada, Laura Gabriela; Johnson, Richard J

    2016-08-08

    Climate change has led to significant rise of 0.8°C-0.9°C in global mean temperature over the last century and has been linked with significant increases in the frequency and severity of heat waves (extreme heat events). Climate change has also been increasingly connected to detrimental human health. One of the consequences of climate-related extreme heat exposure is dehydration and volume loss, leading to acute mortality from exacerbations of pre-existing chronic disease, as well as from outright heat exhaustion and heat stroke. Recent studies have also shown that recurrent heat exposure with physical exertion and inadequate hydration can lead to CKD that is distinct from that caused by diabetes, hypertension, or GN. Epidemics of CKD consistent with heat stress nephropathy are now occurring across the world. Here, we describe this disease, discuss the locations where it appears to be manifesting, link it with increasing temperatures, and discuss ongoing attempts to prevent the disease. Heat stress nephropathy may represent one of the first epidemics due to global warming. Government, industry, and health policy makers in the impacted regions should place greater emphasis on occupational and community interventions. Copyright © 2016 by the American Society of Nephrology.

  14. Changes in antioxidants are critical in determining cell responses to short- and long-term heat stress.

    PubMed

    Sgobba, Alessandra; Paradiso, Annalisa; Dipierro, Silvio; De Gara, Laura; de Pinto, Maria Concetta

    2015-01-01

    Heat stress can have deleterious effects on plant growth by impairing several physiological processes. Plants have several defense mechanisms that enable them to cope with high temperatures. The synthesis and accumulation of heat shock proteins (HSPs), as well as the maintenance of an opportune redox balance play key roles in conferring thermotolerance to plants. In this study changes in redox parameters, the activity and/or expression of reactive oxygen species (ROS) scavenging enzymes and the expression of two HSPs were studied in tobacco Bright Yellow-2 (TBY-2) cells subjected to moderate short-term heat stress (SHS) and long-term heat stress (LHS). The results indicate that TBY-2 cells subjected to SHS suddenly and transiently enhance antioxidant systems, thus maintaining redox homeostasis and avoiding oxidative damage. The simultaneous increase in HSPs overcomes the SHS and maintains the metabolic functionality of cells. In contrast the exposure of cells to LHS significantly reduces cell growth and increases cell death. In the first phase of LHS, cells enhance antioxidant systems to prevent the formation of an oxidizing environment. Under prolonged heat stress, the antioxidant systems, and particularly the enzymatic ones, are inactivated. As a consequence, an increase in H2 O2 , lipid peroxidation and protein oxidation occurs. This establishment of oxidative stress could be responsible for the increased cell death. The rescue of cell growth and cell viability, observed when TBY-2 cells were pretreated with galactone-γ-lactone, the last precursor of ascorbate, and glutathione before exposure to LHS, highlights the crucial role of antioxidants in the acquisition of basal thermotolerance. © 2014 Scandinavian Plant Physiology Society.

  15. Thermotolerance and responses to short duration heat stress in tropical and temperate species

    NASA Astrophysics Data System (ADS)

    Marias, D.; Meinzer, F. C.; Still, C. J.

    2017-12-01

    Temperature and heat waves are predicted to increase throughout the 21st century in both tropical and temperate regions. Tropical species are vulnerable to heat stress because of the higher radiation load and the narrower distribution of temperatures typically experienced compared to extratropical species. Germinant seedlings are also vulnerable to heat stress because they inhabit the boundary layer close to the soil surface where intense heating occurs. We quantified the effect of leaf age and heat stress duration (45 min, 90 min) on leaf thermotolerance and whole plant physiological responses to heat stress in Coffea arabica (COAR) saplings. We also evaluated leaf thermotolerance and whole plant responses to heat stress of seedlings in two populations each of Pinus ponderosa (PIPO) and Pseudotsuga menziesii (PSME) from contrasting climates. Thermotolerance of detached leaves/needles was evaluated using chlorophyll fluorescence (FV/FM, FO) and electrolyte leakage. After exposure of whole plants to a simulated heat wave in a growth chamber, we monitored FV/FM, photosynthesis (A), stomatal conductance (gs), non-structural carbohydrates (NSCs), and carbon isotope ratios (δ13C). In COAR, thermotolerance and rate of recovery increased with leaf age. Following heat treatment, reductions in A and gs led to reduced intrinsic water use efficiency (iWUE) and increased leaf temperatures. NSC results suggested that starch was converted to sugars for recovery from heat stress and phloem transport was inhibited. Plants failed to flower in both heat stress duration treatments. In PIPO and PSME, heat treatment induced significant reductions in FV/FM and A. NSC results suggested that starch was converted to glucose + fructose to aid recovery from heat-induced damage. Populations from drier sites had greater δ13C values than those from wetter sites, consistent with higher iWUE of populations from drier climates. Thermotolerance and heat stress responses appeared to be

  16. Exploring Heat Stress Relief Measures among the Australian Labour Force

    PubMed Central

    Zander, Kerstin K.; Mathew, Supriya; Garnett, Stephen T.

    2018-01-01

    Australia experiences frequent heat waves and generally high average temperatures throughout the continent with substantial impacts on human health and the economy. People adapt to heat by adopting various relief measures in their daily lives including changing their behaviour. Many labour intensive outdoor industries implement standards for heat stress management for their workforce. However, little is known about how people cope with heat at their workplaces apart from studies targeting some specific industries where labourers are exposed to extreme heat. Here, we analysed responses from 1719 people in the Australian labour force to self-reported heat stress and associated coping mechanisms. Three quarters of respondents experienced heat stress at their workplace with fatigue and headache being the two most frequently stated symptoms. Almost all of those who were affected by heat would hydrate (88%), 67% would cool, and 44% would rest as a strategy for coping with heat. About 10% intended to change their jobs because of heat stress in the workplace. We found differences in heat relief measures across gender, education, health, level of physical intensity of job, and time spent working outside. People working in jobs that were not very demanding physically were more likely to choose cooling down as a relief measure, while those in labour intensive jobs and jobs that required considerable time outside were more likely to rest. This has potential consequences for their productivity and work schedules. Heat affects work in Australia in many types of industry with impact dependent on workforce acclimatisation, yet public awareness and work relief plans are often limited to outdoor and labour intensive industries. Industries and various levels of government in all sectors need to implement standards for heat management specific to climate zones to help people cope better with high temperatures as well as plan strategies in anticipation of projected temperature

  17. Exploring Heat Stress Relief Measures among the Australian Labour Force.

    PubMed

    Zander, Kerstin K; Mathew, Supriya; Garnett, Stephen T

    2018-02-26

    Australia experiences frequent heat waves and generally high average temperatures throughout the continent with substantial impacts on human health and the economy. People adapt to heat by adopting various relief measures in their daily lives including changing their behaviour. Many labour intensive outdoor industries implement standards for heat stress management for their workforce. However, little is known about how people cope with heat at their workplaces apart from studies targeting some specific industries where labourers are exposed to extreme heat. Here, we analysed responses from 1719 people in the Australian labour force to self-reported heat stress and associated coping mechanisms. Three quarters of respondents experienced heat stress at their workplace with fatigue and headache being the two most frequently stated symptoms. Almost all of those who were affected by heat would hydrate (88%), 67% would cool, and 44% would rest as a strategy for coping with heat. About 10% intended to change their jobs because of heat stress in the workplace. We found differences in heat relief measures across gender, education, health, level of physical intensity of job, and time spent working outside. People working in jobs that were not very demanding physically were more likely to choose cooling down as a relief measure, while those in labour intensive jobs and jobs that required considerable time outside were more likely to rest. This has potential consequences for their productivity and work schedules. Heat affects work in Australia in many types of industry with impact dependent on workforce acclimatisation, yet public awareness and work relief plans are often limited to outdoor and labour intensive industries. Industries and various levels of government in all sectors need to implement standards for heat management specific to climate zones to help people cope better with high temperatures as well as plan strategies in anticipation of projected temperature

  18. Development of accumulated heat stress index based on time-weighted function

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Sun; Byun, Hi-Ryong; Kim, Do-Woo

    2016-05-01

    Heat stress accumulates in the human body when a person is exposed to a thermal condition for a long time. Considering this fact, we have defined the accumulated heat stress (AH) and have developed the accumulated heat stress index (AHI) to quantify the strength of heat stress. AH represents the heat stress accumulated in a 72-h period calculated by the use of a time-weighted function, and the AHI is a standardized index developed by the use of an equiprobability transformation (from a fitted Weibull distribution to the standard normal distribution). To verify the advantage offered by the AHI, it was compared with four thermal indices the humidex, the heat index, the wet-bulb globe temperature, and the perceived temperature used by national governments. AH and the AHI were found to provide better detection of thermal danger and were more useful than other indices. In particular, AH and the AHI detect deaths that were caused not only by extremely hot and humid weather, but also by the persistence of moderately hot and humid weather (for example, consecutive daily maximum temperatures of 28-32 °C), which the other indices fail to detect.

  19. Down-regulation of miR-181a can reduce heat stress damage in PBMCs of Holstein cows.

    PubMed

    Chen, Kun-Lin; Fu, Yuan-Yuan; Shi, Min-Yan; Li, Hui-Xia

    2016-09-01

    Heat stress can weaken the immune system and even increase livestock's susceptibility to disease. MicroRNA (miR) is short non-coding RNA that functions in post-transcriptional regulation of gene expression and some phenotypes. Our recent study found that miR-181a is highly expressed in the serum of heat-stressed Holstein cows, but the potential function of miR-181a is still not clarified. In this study, peripheral blood mononuclear cells (PBMCs), isolated from Holstein cows' peripheral blood, were used to investigate the effects of miR-181a inhibitor on heat stress damage. Our results showed that significant apoptosis and oxidative damage were induced by heat stress in PBMCs. However, with apoptosis, the levels of reactive oxygen species (ROS) and content of malondialdehyde (MDA) were reduced, while the content of glutathione (GSH) and the activity of superoxide dismutase (SOD) were increased even under heat stress conditions after transfecting miR-181a inhibitors to PBMCs. Meanwhile, mRNA expression of bax and caspase-3 was significantly decreased, but mRNA expression of bcl-2 was increased in transfected PBMCs. In conclusion, our results demonstrated that down-regulation of miR-181a can reduce heat stress damage in PBMCs of Holstein cows.

  20. Effects of late-gestation heat stress on immunity and performance of calves.

    PubMed

    Dahl, G E; Tao, S; Monteiro, A P A

    2016-04-01

    Lactating cows that experience heat stress will have reduced dry matter intake and milk yield and shift metabolism, which ultimately reduces the efficiency of milk production. Dry cows that are heat stressed similarly experience lower intake, reduced mammary growth, and compromised immune function that ultimately results in a poorer transition into lactation and lower milk yield in the next lactation. A recent focus in our laboratory is on the effects of late gestation, in utero heat stress on calf survival and performance. We have completed a series of studies to examine preweaning growth and health, and later reproductive and productive responses, in an attempt to quantify acute and persistent effects of in utero heat strain. Late gestation heat stress results in calves with lower body weight at birth, shorter stature at weaning, and failure to achieve the same weight or height at 12 mo of age observed in calves from dams that are cooled when dry. A portion of the reduced growth may result from the lower immune status observed in calves heat stressed in utero, which begins with poorer apparent efficiency of immunoglobulin absorption and extends to lower survival rates through puberty. Heat-stressed calves, however, have permanent shifts in metabolism that are consistent with greater peripheral accumulation of energy and less lean growth relative to those from cooled dams. Comparing reproductive performance in calves heat stressed versus those cooled in utero, we observe that the cooled heifers require fewer services to attain pregnancy and become pregnant at an earlier age. Tracking the milk production in calves that were heat stressed in utero versus those cooled in late gestation revealed a significant reduction of yield in the first lactation, approximately 5 kg/d through 35 wk of lactation, despite similar body weight and condition score at calving. These observations indicate that a relatively brief period of heat stress in late gestation dramatically alters

  1. Heat stress, gastrointestinal permeability and interleukin-6 signaling - Implications for exercise performance and fatigue.

    PubMed

    Vargas, Nicole; Marino, Frank

    2016-01-01

    Exercise in heat stress exacerbates performance decrements compared to normothermic environments. It has been documented that the performance decrements are associated with reduced efferent drive from the central nervous system (CNS), however, specific factors that contribute to the decrements are not completely understood. During exertional heat stress, blood flow is preferentially distributed away from the intestinal area to supply the muscles and brain with oxygen. Consequently, the gastrointestinal barrier becomes increasingly permeable, resulting in the release of lipopolysaccharides (LPS, endotoxin) into the circulation. LPS leakage stimulates an acute-phase inflammatory response, including the release of interleukin (IL)-6 in response to an increasingly endotoxic environment. If LPS translocation is too great, heat shock, neurological dysfunction, or death may ensue. IL-6 acts initially in a pro-inflammatory manner during endotoxemia, but can attenuate the response through signaling the hypothalamic pituitary adrenal (HPA)-axis. Likewise, IL-6 is believed to be a thermoregulatory sensor in the gut during the febrile response, hence highlighting its role in periphery - to - brain communication. Recently, IL-6 has been implicated in signaling the CNS and influencing perceptions of fatigue and performance during exercise. Therefore, due to the cascade of events that occur during exertional heat stress, it is possible that the release of LPS and exacerbated response of IL-6 contributes to CNS modulation during exertional heat stress. The purpose of this review is to evaluate previous literature and discuss the potential role for IL-6 during exertional heat stress to modulate performance in favor of whole body preservation.

  2. A comparison of THI indices leads to a sensible heat-based heat stress index for shaded cattle that aligns temperature and humidity stress.

    PubMed

    Berman, A; Horovitz, Talia; Kaim, M; Gacitua, H

    2016-10-01

    The combined temperature-humidity heat stress is estimated in farm animals by indices derived of an index based on human thermal comfort sensation. The latter index consists of temperature and humidity measures that sum to form the temperature-humidity index (THI). The hitherto unknown relative contribution of temperature and humidity to the THI was examined. A temperature-humidity data set (temperature 20-42 °C and relative humidity 10-70 %) was used to assess by regression procedures the relative weights of temperature and humidity in the variance of THI values produced by six commonly used heat stress indices. The temperature (Ta) effect was predominant (0.82-0.95 of variance) and humidity accounted for only 0.05 to 0.12 of THI variance, half of the variance encountered in animal responses to variable humidity heat stress. Significant difference in THI values was found between indices in the relative weights of temperature and humidity. As in THI indices, temperature and humidity are expressed in different physical units, their sum has no physical attributes, and empirical evaluations assess THI relation to animal responses. A sensible heat THI was created, in which at higher temperatures humidity reaches 0.25 of sensible heat, similarly to evaporative heat loss span in heat stressed animals. It relates to ambient temperature-humidity similarly to present THI; its values are similar to other THI but greater at higher humidity. In warm conditions, mean animal responses are similar in both indices. The higher sensitivity to humidity makes this index preferable for warm-humid conditions.

  3. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels.

    PubMed

    Wang, Kehua; Zhang, Xunzhong; Goatley, Mike; Ervin, Erik

    2014-01-01

    Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on 'Penn-A4' creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha-1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance.

  4. Modeling heat stress under different environmental conditions.

    PubMed

    Carabaño, M J; Logar, B; Bormann, J; Minet, J; Vanrobays, M-L; Díaz, C; Tychon, B; Gengler, N; Hammami, H

    2016-05-01

    Renewed interest in heat stress effects on livestock productivity derives from climate change, which is expected to increase temperatures and the frequency of extreme weather events. This study aimed at evaluating the effect of temperature and humidity on milk production in highly selected dairy cattle populations across 3 European regions differing in climate and production systems to detect differences and similarities that can be used to optimize heat stress (HS) effect modeling. Milk, fat, and protein test day data from official milk recording for 1999 to 2010 in 4 Holstein populations located in the Walloon Region of Belgium (BEL), Luxembourg (LUX), Slovenia (SLO), and southern Spain (SPA) were merged with temperature and humidity data provided by the state meteorological agencies. After merging, the number of test day records/cows per trait ranged from 686,726/49,655 in SLO to 1,982,047/136,746 in BEL. Values for the daily average and maximum temperature-humidity index (THIavg and THImax) ranges for THIavg/THImax were largest in SLO (22-74/28-84) and shortest in SPA (39-76/46-83). Change point techniques were used to determine comfort thresholds, which differed across traits and climatic regions. Milk yield showed an inverted U-shaped pattern of response across the THI scale with a HS threshold around 73 THImax units. For fat and protein, thresholds were lower than for milk yield and were shifted around 6 THI units toward larger values in SPA compared with the other countries. Fat showed lower HS thresholds than protein traits in all countries. The traditional broken line model was compared with quadratic and cubic fits of the pattern of response in production to increasing heat loads. A cubic polynomial model allowing for individual variation in patterns of response and THIavg as heat load measure showed the best statistical features. Higher/lower producing animals showed less/more persistent production (quantity and quality) across the THI scale. The

  5. Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance?

    PubMed

    Esperk, T; Kjaersgaard, A; Walters, R J; Berger, D; Blanckenhorn, W U

    2016-05-01

    Extreme weather events such as heat waves are becoming more frequent and intense. Populations can cope with elevated heat stress by evolving higher basal heat tolerance (evolutionary response) and/or stronger induced heat tolerance (plastic response). However, there is ongoing debate about whether basal and induced heat tolerance are negatively correlated and whether adaptive potential in heat tolerance is sufficient under ongoing climate warming. To evaluate the evolutionary potential of basal and induced heat tolerance, we performed experimental evolution on a temperate source population of the dung fly Sepsis punctum. Offspring of flies adapted to three thermal selection regimes (Hot, Cold and Reference) were subjected to acute heat stress after having been exposed to either a hot-acclimation or non-acclimation pretreatment. As different traits may respond differently to temperature stress, several physiological and life history traits were assessed. Condition dependence of the response was evaluated by exposing juveniles to different levels of developmental (food restriction/rearing density) stress. Heat knockdown times were highest, whereas acclimation effects were lowest in the Hot selection regime, indicating a negative association between basal and induced heat tolerance. However, survival, adult longevity, fecundity and fertility did not show such a pattern. Acclimation had positive effects in heat-shocked flies, but in the absence of heat stress hot-acclimated flies had reduced life spans relative to non-acclimated ones, thereby revealing a potential cost of acclimation. Moreover, body size positively affected heat tolerance and unstressed individuals were less prone to heat stress than stressed flies, offering support for energetic costs associated with heat tolerance. Overall, our results indicate that heat tolerance of temperate insects can evolve under rising temperatures, but this response could be limited by a negative relationship between basal and

  6. Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress.

    PubMed

    Liu, Guo-Tian; Wang, Jun-Fang; Cramer, Grant; Dai, Zhan-Wu; Duan, Wei; Xu, Hong-Guo; Wu, Ben-Hong; Fan, Pei-Ge; Wang, Li-Jun; Li, Shao-Hua

    2012-09-28

    Grapes are a major fruit crop around the world. Heat stress can significantly reduce grape yield and quality. Changes at the molecular level in response to heat stress and subsequent recovery are poorly understood. To elucidate the effect of heat stress and subsequent recovery on expression of genes by grape leaves representing the classic heat stress response and thermotolerance mechanisms, transcript abundance of grape (Vitis vinifera L.) leaves was quantified using the Affymetrix Grape Genome oligonucleotide microarray (15,700 transcripts), followed by quantitative Real-Time PCR validation for some transcript profiles. We found that about 8% of the total probe sets were responsive to heat stress and/or to subsequent recovery in grape leaves. The heat stress and recovery responses were characterized by different transcriptional changes. The number of heat stress-regulated genes was almost twice the number of recovery-regulated genes. The responsive genes identified in this study belong to a large number of important traits and biological pathways, including cell rescue (i.e., antioxidant enzymes), protein fate (i.e., HSPs), primary and secondary metabolism, transcription factors, signal transduction, and development. We have identified some common genes and heat shock factors (HSFs) that were modulated differentially by heat stress and recovery. Most HSP genes were upregulated by heat stress but were downregulated by the recovery. On the other hand, some specific HSP genes or HSFs were uniquely responsive to heat stress or recovery. The effect of heat stress and recovery on grape appears to be associated with multiple processes and mechanisms including stress-related genes, transcription factors, and metabolism. Heat stress and recovery elicited common up- or downregulated genes as well as unique sets of responsive genes. Moreover, some genes were regulated in opposite directions by heat stress and recovery. The results indicated HSPs, especially small HSPs

  7. Cows exposed to heat stress during fetal life exhibit improved thermal tolerance.

    PubMed

    Ahmed, B M S; Younas, U; Asar, T O; Dikmen, S; Hansen, P J; Dahl, G E

    2017-08-01

    Maternal heat stress during late gestation affects calf function during postnatal life. The objective of the present study was to evaluate whether calves that experience heat stress in utero have altered thermoregulatory responses to acute heat stress later in life. Specifically, the hypothesis was that heat stress in utero would improve the response to acute heat stress at maturity. Females were born to dams exposed to heat stress or cooled during late gestation preceding their birth. All animals were raised postnatally under identical management. Twelve lactating Holstein cows that were exposed to in utero heat stress (HT) and 12 that were exposed to in utero control (CON) were used. A heat stress challenge was conducted in 3 blocks using 4 HT and 4 CON cows matched according to milk yield, stage of lactation, and parity. Each challenge consisted of transfer from a barn with shade and evaporative cooling to one with shade but no additional cooling for 48 h. The challenge was replicated twice for each block. Sweating rate, respiration rate, rectal temperature (RT), and skin temperature were measured on each cow at 0900, 1100, 1300, 1500, and 1700 h for 2 consecutive days. Mean ambient temperature across 6 challenge days was 26.15 ± 4.75°C. Tendencies for differences at 1700 h were observed between treatments for RT (HT: 39.5 ± 0.1; CON: 39.6 ± 0.1°C; = 0.065), however, there was no difference in respiration rate (HT: 77.6 ± 1.6; CON: 79.5 ± 1.6 bpm; = 0.85). Sweating rate for shaved skin (HT: 29.4 ± 2.0; CON: 36.0 ± 2.0 g/mh; = 0.057) and for non-shaved skin (HT: 22.5 ± 1.5; CON: 29.2 ± 1.2 g/mh; = 0.01) differed between groups. However, there was no effect on skin temperature at the shaved location (HT: 36.2 ± 0.2; CON: 36.0 ± 0.2°C; = 0.81), but there was a tendency for differences for the non-shaved area (HT: 35.4 ± 0.2; CON: 34.9 ± 0.2°C; = 0.097). Cows that underwent in utero heat stress had greater skin temperature at 1700 h vs. in utero

  8. Coptidis Rhizoma Prevents Heat Stress-Induced Brain Damage and Cognitive Impairment in Mice

    PubMed Central

    Moon, Minho; Huh, Eugene; Song, Eun Ji; Hwang, Deok-Sang; Lee, Tae Hee; Oh, Myung Sook

    2017-01-01

    Heat stress conditions lead to neuroinflammation, neuronal death, and memory loss in animals. Coptidis Rhizoma (CR) exhibits potent fever-reducing effects and has been used as an important traditional medicinal herb for treating fever. However, to date, the effects of antipyretic CR on heat-induced brain damages have not been investigated. In this study, CR significantly reduced the elevation of ear and rectal temperatures after exposure to heat in mice. Additionally, CR attenuated hyperthermia-induced stress responses, such as release of cortisol into the blood, and upregulation of heat shock protein and c-Fos in the hypothalamus and hippocampus of mice. The administration of CR inhibited gliosis and neuronal loss induced by thermal stress in the hippocampal CA3 region. Treatment with CR also reduced the heat stress-induced expression of nuclear factor kappa β, tumor necrosis factor-α, and interleukin-1β (IL-1β) in the hippocampus. Moreover, CR significantly decreased proinflammatory mediators such as IL-9 and IL-13 in the heat-stressed hypothalamus. Furthermore, CR attenuated cognitive dysfunction triggered by thermal stress. These results indicate that CR protects the brain against heat stress-mediated brain damage via amelioration of hyperthermia and neuroinflammation in mice, suggesting that fever-reducing CR can attenuate thermal stress-induced neuropathology. PMID:28946610

  9. Seasonal heat stress affects adipose tissue proteome toward enrichment of the Nrf2-mediated oxidative stress response in late-pregnant dairy cows.

    PubMed

    Zachut, M; Kra, G; Livshitz, L; Portnick, Y; Yakoby, S; Friedlander, G; Levin, Y

    2017-03-31

    Environmental heat stress and metabolic stress during transition from late gestation to lactation are main factors limiting production in dairy cattle, and there is a complex interaction between them. Many proteins expressed in adipose tissue are involved in metabolic responses to stress. We aimed to investigate the effects of seasonal heat stress on adipose proteome in late-pregnant cows, and to identify biomarkers of heat stress. Late pregnant cows during summer heat stress (S, n=18), or during the winter season (W, n=12) were used. Subcutaneous adipose tissue biopsies sampled 14days prepartum from S (n=10) and W (n=8) were analyzed by intensity-based, label-free, quantitative shotgun proteomics (nano-LC-MS/MS). Plasma concentrations of malondialdehyde and cortisol were higher in S than in W cows. Proteomic analysis revealed that 107/1495 proteins were differentially abundant in S compared to W (P<0.05 and fold change of at least ±1.5). Top canonical pathways in S vs. W adipose were Nrf2-mediated oxidative stress response, acute-phase response, and FXR/RXR and LXR/RXR activation. Novel biomarkers of heat stress in adipose tissue were found. These findings indicate that seasonal heat stress has a unique effect on adipose tissue in late-pregnant cows. This work shows that seasonal heat stress increases plasma concentrations of the oxidative stress marker malondialdehyde and cortisol in transition dairy cows. As many proteins expressed in the adipose tissue are involved in metabolic responses to stress, we investigated the effects of heat stress on the proteome of adipose tissue from late-pregnant cows during summer or winter seasons. We demonstrated that heat stress enriches several stress-related pathways, such as the Nrf2-mediated oxidative stress response and the acute-phase response in adipose tissues. Thus, environmental heat stress has a unique effect on adipose tissue in late-pregnant cows, as part of the regulatory adaptations to chronic heat load during

  10. Pectinase-treated Panax ginseng protects heat stress-induced testicular damage in rats.

    PubMed

    Kim, Min Kyoung; Cha, Kyu-Min; Hwang, Seock-Yeon; Park, Un-Kyu; Seo, Seok Kyo; Lee, Sang-Ho; Jeong, Min-Sik; Cho, SiHyun; Kopalli, Spandana Rajendra; Kim, Si-Kwan

    2017-06-01

    Testicular hyperthermia is well studied to cause impaired spermatogenesis. In the present study, the protective effect of enzymatically modified (pectinase-treated) Panax ginseng (GINST) against intermittent sub-chronic heat stress-induced testicular damage in rats was investigated. Male Sprague-Dawley rats were divided into four groups: normal control (NC), heat-stressed control (HC), heat-stressed plus GINST-100 mg/kg/day (HG100) and heat-stressed plus GINST-200 mg/kg/day (HG200) treatment groups. GINST (100 and 200 mg/kg/day) was mixed separately with a regular pellet diet and was administered orally for 8 weeks starting from 1 week before heat exposure. Parameters such as organ weight, blood chemistry, sperm kinetic values, expression of antioxidant enzymes, spermatogenesis molecules and sex hormone receptors levels were measured. Data revealed that kidney and epididymis weight were significantly ( P  < 0.05) decreased with heat stress and recovered by GINST treatment. Further, the altered levels of blood chemistry panels and sperm kinetic values in heat stress-induced rats were attenuated when GINST was administered ( P  < 0.05). Furthermore, the expression levels of antioxidant-related enzymes (GSTM5 and GPX4), spermatogenesis-related proteins (CREB1 and INHA) and sex hormone receptors (androgen receptor, luteinizing hormone receptor and follicle-stimulating hormone receptor) were reduced by heat stress; however, GINST treatment effectively ameliorated these changes. In conclusion, GINST was effective in reducing heat-induced damage in various male fertility factors in vivo and has considerable potential to be developed as a useful supplement in improving male fertility. © 2017 Society for Reproduction and Fertility.

  11. 21st Century Heat Stress Projections and their Effects on US Livestock

    NASA Astrophysics Data System (ADS)

    McCabe, E.; Buzan, J. R.; Krishnan, S.; Huber, M.

    2016-12-01

    In this study we aim to determine future yield changes in the United States for livestock caused by heat stress, under the high greenhouse gas emissions scenario, representative concentration pathway 8.5 (RCP8.5). We use CMIP5 output and the Community Earth System Model Large Ensemble (CESM LENS), produced by the National Center for Atmospheric Research (NCAR). We apply the HumanIndexMod, a diagnostic heat stress package, to calculate Temperature Humidity Index for Comfort (THIC) and wet bulb temperature (Buzan et al., 2015). THIC is used to assess an animal's behavioral changes as it is subjected to discomfort. Using output from our simulations with the HumanIndexMod, we utilized the agricultural livestock model of St. Pierre et al. (2003). THIC and wet bulb temperatures are all projected by climate models to increase by the end of the century. We found that increases in THIC and heat stress are caused by both temperature and humidity increases. We show the differences for dry matter intake loss and milk loss for the Dairy Cow Model as well as other yield related variables. These variables are estimated to decrease overall production for dairy cattle, finishing hogs, poultry and various livestock. By the end of the 21st century (2071-2100), dairy cow milk production decreases by 14%, and food intake decreases by 11% compared to the beginning of the century (2005-2034). 35% less weight is gained and 19% less food is consumed by hogs the end of the century compared to the beginning of the century. We estimate and discuss resulting yield losses for the livestock industries and the implications of these losses in the United States. These results indicate that the effect of heat stress on livestock production will be highest for dairy cows, finishing hogs, and poultry.References:Buzan, J.R., K. Oleson, and M. Huber. 2015. Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geoscien. Model Devel. 8(2): 151-170. St

  12. Plasma-based proteomics reveals immune response, complement and coagulation cascades pathway shifts in heat-stressed lactating dairy cows.

    PubMed

    Min, Li; Cheng, Jianbo; Zhao, Shengguo; Tian, He; Zhang, Yangdong; Li, Songli; Yang, Hongjian; Zheng, Nan; Wang, Jiaqi

    2016-09-02

    Heat stress (HS) has an enormous economic impact on the dairy industry. In recent years, many researchers have investigated changes in the gene expression and metabolomics profiles in dairy cows caused by HS. However, the proteomics profiles of heat-stressed dairy cows have not yet been completely elucidated. We compared plasma proteomics from HS-free and heat-stressed dairy cows using an iTRAQ labeling approach. After the depletion of high abundant proteins in the plasma, 1472 proteins were identified. Of these, 85 proteins were differentially abundant in cows exposed to HS relative to HS-free. Database searches combined with GO and KEGG pathway enrichment analyses revealed that many components of the complement and coagulation cascades were altered in heat-stressed cows compared with HS-free cows. Of these, many factors in the complement system (including complement components C1, C3, C5, C6, C7, C8, and C9, complement factor B, and factor H) were down-regulated by HS, while components of the coagulation system (including coagulation factors, vitamin K-dependent proteins, and fibrinogens) were up-regulated by HS. In conclusion, our results indicate that HS decreases plasma levels of complement system proteins, suggesting that immune function is impaired in dairy cows exposed to HS. Though many aspects of heat stress (HS) have been extensively researched, relatively little is known about the proteomics profile changes that occur during heat exposure. In this work, we employed a proteomics approach to investigate differential abundance of plasma proteins in HS-free and heat-stressed dairy cows. Database searches combined with GO and KEGG pathway enrichment analyses revealed that HS resulted in a decrease in complement components, suggesting that heat-stressed dairy cows have impaired immune function. In addition, through integrative analyses of proteomics and previous metabolomics, we showed enhanced glycolysis, lipid metabolic pathway shifts, and nitrogen

  13. Active and passive heat stress similarly compromise tolerance to a simulated hemorrhagic challenge.

    PubMed

    Pearson, J; Lucas, R A I; Schlader, Z J; Zhao, J; Gagnon, D; Crandall, C G

    2014-10-01

    Passive heat stress increases core and skin temperatures and reduces tolerance to simulated hemorrhage (lower body negative pressure; LBNP). We tested whether exercise-induced heat stress reduces LBNP tolerance to a greater extent relative to passive heat stress, when skin and core temperatures are similar. Eight participants (6 males, 32 ± 7 yr, 176 ± 8 cm, 77.0 ± 9.8 kg) underwent LBNP to presyncope on three separate and randomized occasions: 1) passive heat stress, 2) exercise in a hot environment (40°C) where skin temperature was moderate (36°C, active 36), and 3) exercise in a hot environment (40°C) where skin temperature was matched relative to that achieved during passive heat stress (∼38°C, active 38). LBNP tolerance was quantified using the cumulative stress index (CSI). Before LBNP, increases in core temperature from baseline were not different between trials (1.18 ± 0.20°C; P > 0.05). Also before LBNP, mean skin temperature was similar between passive heat stress (38.2 ± 0.5°C) and active 38 (38.2 ± 0.8°C; P = 0.90) trials, whereas it was reduced in the active 36 trial (36.6 ± 0.5°C; P ≤ 0.05 compared with passive heat stress and active 38). LBNP tolerance was not different between passive heat stress and active 38 trials (383 ± 223 and 322 ± 178 CSI, respectively; P = 0.12), but both were similarly reduced relative to active 36 (516 ± 147 CSI, both P ≤ 0.05). LBNP tolerance is not different between heat stresses induced either passively or by exercise in a hot environment when skin temperatures are similarly elevated. However, LBNP tolerance is influenced by the magnitude of the elevation in skin temperature following exercise induced heat stress. Copyright © 2014 the American Physiological Society.

  14. Heat stress management program improving worker health and operational effectiveness: a case study.

    PubMed

    Huss, Rosalyn G; Skelton, Scott B; Alvis, Kimberly L; Shane, Leigh A

    2013-03-01

    Heat stress monitoring is a vital component of an effective health and safety program when employees work in exceptionally warm environments. Workers at hazardous waste sites often wear personal protective equipment (PPE), which increases the body heat stress load. No specific Occupational Safety and Health Administration (OSHA) regulations address heat stress; however, OSHA does provide several guidance documents to assist employers in addressing this serious workplace health hazard. This article describes a heat stress and surveillance plan implemented at a hazardous waste site as part of the overall health and safety program. The PPE requirement for work at this site, coupled with extreme environmental temperatures, made heat stress a significant concern. Occupational health nurses and industrial hygienists developed a monitoring program for heat stress designed to prevent the occurrence of significant heat-related illness in site workers. The program included worker education on the signs of heat-related illness and continuous physiologic monitoring to detect early signs of heat-related health problems. Biological monitoring data were collected before workers entered the exclusion zone and on exiting the zone following decontamination. Sixty-six site workers were monitored throughout site remediation. More than 1,700 biological monitoring data points were recorded. Outcomes included improved worker health and safety, and increased operational effectiveness. Copyright 2013, SLACK Incorporated.

  15. The effects of glutathione depletion on thermotolerance and heat stress protein synthesis.

    PubMed Central

    Russo, A.; Mitchell, J. B.; McPherson, S.

    1984-01-01

    The effects of cellular glutathione depletion by buthionine sulfoximine on the development of thermotolerance and synthesis of heat stress protein was studied. Cellular glutathione levels were found to increase rapidly following an acute heat treatment of either 12 min at 45.5 degrees C or 1 h at 43 degrees C and remain elevated for prolonged periods. Glutathione depletion and prevention of glutathione synthesis by buthionine sulfoximine resulted in inhibition of the development of thermotolerance and a decrease in total protein as well as specific heat stress proteins. While the degree of inhibition of thermotolerance was similar for both glutathione depletion protocols, inhibition in heat stress protein synthesis was greater when glutathione was depleted to low levels prior to heating. The possible role of glutathione and the cellular redox state to thermotolerance and synthesis of heat stress protein is discussed. Images Figure 2 PMID:6733022

  16. BREEDING AND GENETICS SYMPOSIUM: Resilience and lessons from studies in genetics of heat stress.

    PubMed

    Misztal, I

    2017-04-01

    Production environments are expected to change, mostly to a hotter climate but also possibly more extreme and drier. Can the current generation of farm animals cope with the changes or should it be specifically selected for changing conditions? In general, genetic selection produces animals with a smaller environmental footprint but also with smaller environmental flexibility. Some answers are coming from heat-stress research across species, with heat tolerance partly understood as a greater environmental flexibility. Specific studies in various species show the complexities of defining and selecting for heat tolerance. In Holsteins, the genetic component for effect of heat stress on production approximately doubles in second and quadruples in third parity. Cows with elevated body temperature have the greatest production under heat stress but probably are at risk for increased mortality. In hot but less intensive environments, the effect of heat stress on production is minimal, although the negative effect on fertility remains. Mortality peaks under heat stress and increases with parity. In Angus, the effect of heat stress is stronger only in selected regions, probably because of adaptation of calving seasons to local conditions and crossbreeding. Genetically, the direct effect shows variability because of heat stress, but the maternal effect does not, probably because dams shield calves from environmental challenges. In pigs, the effect of heat stress is strong for commercial farms but almost nothing for nucleus farms, which have lower pig density and better heat abatement. Under intensive management, heat stress is less evident in drier environments because of more efficient cooling. A genetic component of heat stress exists, but it is partly masked by improving management and selection based on data from elite farms. Genetic selection may provide superior identification of heat-tolerant animals, but a few cycles may be needed for clear results. Also, simple

  17. The transcriptional response of the Pacific oyster Crassostrea gigas against acute heat stress.

    PubMed

    Yang, Chuanyan; Gao, Qiang; Liu, Chang; Wang, Lingling; Zhou, Zhi; Gong, Changhao; Zhang, Anguo; Zhang, Huan; Qiu, Limei; Song, Linsheng

    2017-09-01

    The Pacific oyster, Crassostrea gigas, has evolved sophisticated mechanisms to adapt the changing ambient conditions, and protect themselves from stress-induced injuries. In the present study, the expression profiles of mRNA transcripts in the haemocytes of oysters under heat stress were examined to reveal the possible mechanism of heat stress response. There were 23,315, 23,904, 23,123 and 23,672 transcripts identified in the haemocytes of oysters cultured at 25 °C for 0, 6, 12, and 24 h (designed as B, H6, H12, H24), respectively. And 22,330 differentially expressed transcripts (DTs) were yielded in the pairwise comparisons between the above four samples, which corresponded to 8074 genes. There were 9, 12 and 22 Gene Ontology (GO) terms identified in the DT pairwise comparison groups of H6_B, H12_H6 and H24_H12, respectively, and the richest GO terms in biological process category were cellular catabolic process, translational initiation and apoptotic process, respectively. There were 108, 102 and 102 KEGG pathways successfully retrieved from DTs comparison groups DTH6_B, DTH12_H6 and DTH24_H12, respectively, among which 93 pathways were shared by all three comparison groups, and most of them were related to metabolism of protein, carbohydrate and fat. The expression patterns of 12 representative heat stress response-relevant genes detected by quantitative real-time PCR (qRT-PCR) were similar to those obtained from transcriptome analysis. By flow cytometric analysis, the apoptosis rate of haemocytes increased significantly after oysters were treated at 25 °C for 24 h and recovered at 4 °C for 12 h (p < 0.05) and 36 h (p < 0.01), and it also increased significantly when the heat treatment lasted to 60 h (p < 0.01). The present results indicated that, when oysters encountered short term heat stress, the expression of genes related to energy metabolism, as well as unfolded protein response (UPR) and anti-apoptotic system, were firstly regulated to

  18. Peripheral vascular responses to heat stress after hindlimb suspension

    NASA Technical Reports Server (NTRS)

    Looft-Wilson, Robin C.; Gisolfi, Carl V.

    2002-01-01

    PURPOSE: The purpose of this study was to determine whether hindlimb suspension (which simulates the effects of microgravity) results in impaired hemodynamic responses to heat stress or alterations in mesenteric small artery sympathetic nerve innervation. METHODS: Over 28 d, 16 male Sprague-Dawley rats were hindlimb-suspended, and 13 control rats were housed in the same type of cage. After the treatment, mean arterial pressure (MAP), colonic temperature (Tcol), and superior mesenteric and iliac artery resistances (using Doppler flowmetry) were measured during heat stress [exposure to 42 degrees C until the endpoint of 80 mm Hg blood pressure was reached (75 +/- 9 min); endpoint Tcore = 43.6 +/- 0.2] while rats were anesthetized (sodium pentobarbital, 50 mg x kg(-1) BW). RESULTS: Hindlimb-suspended and control rats exhibited similar increases in Tcol, MAP, and superior mesenteric artery resistance, and similar decreases in iliac resistance during heat stress (endpoint was a fall in MAP below 80 mm Hg). Tyrosine hydroxylase immunostaining indicated similar sympathetic nerve innervation in small mesenteric arteries from both groups. CONCLUSION: Hindlimb suspension does not alter the hemodynamic or thermoregulatory responses to heat stress in the anesthetized rat or mesenteric sympathetic nerve innervation, suggesting that this sympathetic pathway is intact.

  19. Cardiopulmonary baroreceptor control of muscle sympathetic nerve activity in heat-stressed humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.; Etzel, R. A.; Farr, D. B.

    1999-01-01

    Whole body heating decreases central venous pressure (CVP) while increasing muscle sympathetic nerve activity (MSNA). In normothermia, similar decreases in CVP elevate MSNA, presumably via cardiopulmonary baroreceptor unloading. The purpose of this project was to identify whether increases in MSNA during whole body heating could be attributed to cardiopulmonary baroreceptor unloading coincident with the thermal challenge. Seven subjects were exposed to whole body heating while sublingual temperature, skin blood flow, heart rate, arterial blood pressure, and MSNA were monitored. During the heat stress, 15 ml/kg warmed saline was infused intravenously over 7-10 min to increase CVP and load the cardiopulmonary baroreceptors. We reported previously that this amount of saline was sufficient to return CVP to pre-heat stress levels. Whole body heating increased MSNA from 25 +/- 3 to 39 +/- 3 bursts/min (P < 0. 05). Central blood volume expansion via rapid saline infusion did not significantly decrease MSNA (44 +/- 4 bursts/min, P > 0.05 relative to heat stress period) and did not alter mean arterial blood pressure (MAP) or pulse pressure. To identify whether arterial baroreceptor loading decreases MSNA during heat stress, in a separate protocol MAP was elevated via steady-state infusion of phenylephrine during whole body heating. Increasing MAP from 82 +/- 3 to 93 +/- 4 mmHg (P < 0.05) caused MSNA to decrease from 36 +/- 3 to 15 +/- 4 bursts/min (P < 0.05). These data suggest that cardiopulmonary baroreceptor unloading during passive heating is not the primary mechanism resulting in elevations in MSNA. Moreover, arterial baroreceptors remain capable of modulating MSNA during heat stress.

  20. Heat stress related dairy cow mortality during heat waves and control periods in rural Southern Ontario from 2010-2012.

    PubMed

    Bishop-Williams, Katherine E; Berke, Olaf; Pearl, David L; Hand, Karen; Kelton, David F

    2015-11-27

    Heat stress is a physiological response to extreme environmental heat such as heat waves. Heat stress can result in mortality in dairy cows when extreme heat is both rapidly changing and has a long duration. As a result of climate change, heat waves, which are defined as 3 days of temperatures of 32 °C or above, are an increasingly frequent extreme weather phenomenon in Southern Ontario. Heat waves are increasing the risk for on-farm dairy cow mortality in Southern Ontario. Heat stress indices (HSIs) are generally based on temperature and humidity and provide a relative measure of discomfort which can be used to predict increased risk of on-farm dairy cow mortality. In what follows, the heat stress distribution was described over space and presented with maps. Similarly, on-farm mortality was described and mapped. The goal of this study was to demonstrate that heat waves and related HSI increases during 2010-2012 were associated with increased on-farm dairy cow mortality in Southern Ontario. Mortality records and farm locations for all farms registered in the CanWest Dairy Herd Improvement Program in Southern Ontario were retrieved for 3 heat waves and 6 three-day control periods from 2010 to 2012. A random sample of controls (2:1) was taken from the data set to create a risk-based hybrid design. On-farm heat stress was estimated using data from 37 weather stations and subsequently interpolated across Southern Ontario by geostatistical kriging. A Poisson regression model was applied to assess the on-farm mortality in relation to varying levels of the HSI. For every one unit increase in HSI the on-farm mortality rate across Southern Ontario increases by 1.03 times (CI95% (IRR) = (1.025,1.035); p = ≤ 0.001). With a typical 8.6 unit increase in HSI from a control period to a heat wave, mortality rates are predicted to increase by 1.27 times. Southern Ontario was affected by heat waves, as demonstrated by high levels of heat stress and increased on-farm mortality

  1. Early in vitro fertilization improves development of bovine ova heat stressed during in vitro maturation.

    PubMed

    Schrock, G E; Saxton, A M; Schrick, F N; Edwards, J L

    2007-09-01

    The objectives were to examine the development of embryos derived from control (38.5 degrees C) or heat-stressed ova [41.0 degrees C during the first 12 h of in vitro maturation (hIVM)] when in vitro fertilization (IVF) was performed at 16, 18, 20, 24, or 30 hIVM. Effects of heat stress in compromising ovum development depended on when IVF was performed (in vitro maturation temperature x IVF time interaction). When IVF was performed at 24 or 30 hIVM, fewer heat-stressed ova developed to the blastocyst stage compared with the respective controls. In contrast, when IVF was performed at 16, 18, or 20 hIVM, more heat-stressed ova developed to the blastocyst stage compared with the respective controls. Performing IVF earlier than usual was beneficial, because the ability of heat-stressed ova to develop to the blastocyst stage was improved when IVF was performed at 18 or 20 vs. 24 hIVM. Blastocyst stage and quality were equivalent to non-heat-stressed controls regardless of IVF time. Control ova undergoing IVF at 20, 24, 30, or 32 hIVM and heat-stressed ova undergoing IVF at 16, 18, 20, or 24 hIVM were compared for blastocyst development by multisource regression. Although linear and quadratic slopes were similar, heat stress reduced the peak and shifted the developmental response of ova by 7.3 h. In other words, obtaining optimal blastocyst development from heat-stressed ova would depend on performing IVF at 19.5 hIVM compared with 26.7 hIVM for non-heat-stressed controls. Heat-induced reductions in peak blastocyst development significantly reduced the window of time available to perform IVF and obtain > or = 20% blastocyst development. In summary, results support an effect of heat stress to hasten developmentally important events during oocyte maturation. The inability of earlier IVF to fully restore the development of heat-stressed ova to that of non-heat-stressed controls highlights the importance of further study.

  2. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean.

    PubMed

    Das, Aayudh; Eldakak, Moustafa; Paudel, Bimal; Kim, Dea-Wook; Hemmati, Homa; Basu, Chhandak; Rohila, Jai S

    2016-01-01

    Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2.

  3. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean

    PubMed Central

    Das, Aayudh; Eldakak, Moustafa; Paudel, Bimal; Kim, Dea-Wook; Hemmati, Homa; Basu, Chhandak

    2016-01-01

    Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2. PMID:27034942

  4. Heat stress, gastrointestinal permeability and interleukin-6 signaling — Implications for exercise performance and fatigue

    PubMed Central

    Vargas, Nicole; Marino, Frank

    2016-01-01

    ABSTRACT Exercise in heat stress exacerbates performance decrements compared to normothermic environments. It has been documented that the performance decrements are associated with reduced efferent drive from the central nervous system (CNS), however, specific factors that contribute to the decrements are not completely understood. During exertional heat stress, blood flow is preferentially distributed away from the intestinal area to supply the muscles and brain with oxygen. Consequently, the gastrointestinal barrier becomes increasingly permeable, resulting in the release of lipopolysaccharides (LPS, endotoxin) into the circulation. LPS leakage stimulates an acute-phase inflammatory response, including the release of interleukin (IL)-6 in response to an increasingly endotoxic environment. If LPS translocation is too great, heat shock, neurological dysfunction, or death may ensue. IL-6 acts initially in a pro-inflammatory manner during endotoxemia, but can attenuate the response through signaling the hypothalamic pituitary adrenal (HPA)-axis. Likewise, IL-6 is believed to be a thermoregulatory sensor in the gut during the febrile response, hence highlighting its role in periphery – to – brain communication. Recently, IL-6 has been implicated in signaling the CNS and influencing perceptions of fatigue and performance during exercise. Therefore, due to the cascade of events that occur during exertional heat stress, it is possible that the release of LPS and exacerbated response of IL-6 contributes to CNS modulation during exertional heat stress. The purpose of this review is to evaluate previous literature and discuss the potential role for IL-6 during exertional heat stress to modulate performance in favor of whole body preservation. PMID:27857954

  5. Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502

    PubMed Central

    Selby, Katja; Mascher, Gerald; Somervuo, Panu; Korkeala, Hannu

    2017-01-01

    Foodborne pathogenic bacteria are exposed to a number of environmental stresses during food processing, storage, and preparation, and in the human body. In order to improve the safety of food, the understanding of molecular stress response mechanisms foodborne pathogens employ is essential. Many response mechanisms that are activated during heat shock may cross-protect bacteria against other environmental stresses. To better understand the molecular mechanisms Clostridium botulinum, the causative agent of botulism, utilizes during acute heat stress and during adaptation to stressfully high temperature, the C. botulinum Group I strain ATCC 3502 was grown in continuous culture at 39°C and exposed to heat shock at 45°C, followed by prolonged heat stress at 45°C to allow adaptation of the culture to the high temperature. Growth in continuous culture was performed to exclude secondary growth phase effects or other environmental impacts on bacterial gene transcription. Changes in global gene expression profiles were studied using DNA microarray hybridization. During acute heat stress, Class I and III heat shock genes as well as members of the SOS regulon were activated. The neurotoxin gene botA and genes encoding the neurotoxin-associated proteins were suppressed throughout the study. Prolonged heat stress led to suppression of the sporulation machinery whereas genes related to chemotaxis and motility were activated. Induced expression of a large proportion of prophage genes was detected, suggesting an important role of acquired genes in the stress resistance of C. botulinum. Finally, changes in the expression of a large number of genes related to carbohydrate and amino acid metabolism indicated remodeling of the cellular metabolism. PMID:28464023

  6. Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502.

    PubMed

    Selby, Katja; Mascher, Gerald; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu

    2017-01-01

    Foodborne pathogenic bacteria are exposed to a number of environmental stresses during food processing, storage, and preparation, and in the human body. In order to improve the safety of food, the understanding of molecular stress response mechanisms foodborne pathogens employ is essential. Many response mechanisms that are activated during heat shock may cross-protect bacteria against other environmental stresses. To better understand the molecular mechanisms Clostridium botulinum, the causative agent of botulism, utilizes during acute heat stress and during adaptation to stressfully high temperature, the C. botulinum Group I strain ATCC 3502 was grown in continuous culture at 39°C and exposed to heat shock at 45°C, followed by prolonged heat stress at 45°C to allow adaptation of the culture to the high temperature. Growth in continuous culture was performed to exclude secondary growth phase effects or other environmental impacts on bacterial gene transcription. Changes in global gene expression profiles were studied using DNA microarray hybridization. During acute heat stress, Class I and III heat shock genes as well as members of the SOS regulon were activated. The neurotoxin gene botA and genes encoding the neurotoxin-associated proteins were suppressed throughout the study. Prolonged heat stress led to suppression of the sporulation machinery whereas genes related to chemotaxis and motility were activated. Induced expression of a large proportion of prophage genes was detected, suggesting an important role of acquired genes in the stress resistance of C. botulinum. Finally, changes in the expression of a large number of genes related to carbohydrate and amino acid metabolism indicated remodeling of the cellular metabolism.

  7. Heat stress presenting with encephalopathy and MRI findings of diffuse cerebral injury and hemorrhage.

    PubMed

    Guerrero, Waldo R; Varghese, Shaun; Savitz, Sean; Wu, Tzu Ching

    2013-06-17

    Heat stress results in multiorgan failure and CNS injury. There a few case reports in the literature on the neurological consequences of heat stress. We describe a patient with heat stress presenting with encephalopathy and bilateral cerebral, cerebellar, and thalamic lesions and intraventricular hemorrhage on MRI. Heat stress should be in the differential diagnosis of patients presenting with encephalopathy and elevated serum inflammatory markers especially if the history suggests a preceding episode of hyperthermia.

  8. Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress.

    PubMed

    Liu, Hsiang-Chin; Lämke, Jörn; Lin, Siou-Ying; Hung, Meng-Ju; Liu, Kuan-Ming; Charng, Yee-Yung; Bäurle, Isabel

    2018-05-11

    Plants can be primed by a stress cue to mount a faster or stronger activation of defense mechanisms upon a subsequent stress. A crucial component of such stress priming is the modified reactivation of genes upon recurring stress; however, the underlying mechanisms are poorly understood. Here, we report that dozens of Arabidopsis thaliana genes display transcriptional memory, i.e. stronger upregulation after a recurring heat stress, that lasts for at least three days. We define a set of transcription factors involved in this memory response and show that the transcriptional memory results in enhanced transcriptional activation within minutes after the onset of a heat stress cue. Further, we show that the transcriptional memory is active in all tissues. It may last for up to a week, and is associated with histone H3 lysine 4 hyper-methylation during this time. This transcriptional memory is cis-encoded, as we identify a promoter fragment that confers memory onto a heterologous gene. In summary, heat-induced transcriptional memory is a widespread and sustained response, and our study provides a framework for future mechanistic studies of somatic stress memory in higher plants. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Various Wolbachia genotypes differently influence host Drosophila dopamine metabolism and survival under heat stress conditions.

    PubMed

    Gruntenko, Nataly Е; Ilinsky, Yury Yu; Adonyeva, Natalya V; Burdina, Elena V; Bykov, Roman A; Menshanov, Petr N; Rauschenbach, Inga Yu

    2017-12-28

    One of the most widespread prokaryotic symbionts of invertebrates is the intracellular bacteria of Wolbachia genus which can be found in about 50% of insect species. Wolbachia causes both parasitic and mutualistic effects on its host that include manipulating the host reproductive systems in order to increase their transmission through the female germline, and increasing the host fitness. One of the mechanisms, promoting adaptation in biological organisms, is a non-specific neuroendocrine stress reaction. In insects, this reaction includes catecholamines, dopamine, serotonin and octopamine, which act as neurotransmitters, neuromodulators and neurohormones. The level of dopamine metabolism correlates with heat stress resistance in Drosophila adults. To examine Wolbachia effect on Drosophila survival under heat stress and dopamine metabolism we used five strains carrying the nuclear background of interbred Bi90 strain and cytoplasmic backgrounds with different genotype variants of Wolbachia (produced by 20 backcrosses of Bi90 males with appropriate source of Wolbachia). Non-infected Bi90 strain (treated with tetracycline for 3 generations) was used as a control group. We demonstrated that two of five investigated Wolbachia variants promote changes in Drosophila heat stress resistance and activity of enzymes that produce and degrade dopamine, alkaline phosphatase and dopamine-dependent arylalkylamine N-acetyltransferase. What is especially interesting, wMelCS genotype of Wolbachia increases stress resistance and the intensity of dopamine metabolism, whereas wMelPop strain decreases them. wMel, wMel2 and wMel4 genotypes of Wolbachia do not show any effect on the survival under heat stress or dopamine metabolism. L-DOPA treatment, known to increase the dopamine content in Drosophila, levels the difference in survival under heat stress between all studied groups. The genotype of symbiont determines the effect that the symbiont has on the stress resistance of the host

  10. The rpoE operon regulates heat stress response in Burkholderia pseudomallei.

    PubMed

    Vanaporn, Muthita; Vattanaviboon, Paiboon; Thongboonkerd, Visith; Korbsrisate, Sunee

    2008-07-01

    Burkholderia pseudomallei is a gram-negative bacterium and the causative agent of melioidosis, one of the important lethal diseases in tropical regions. In this article, we demonstrate the crucial role of the B. pseudomallei rpoE locus in the response to heat stress. The rpoE operon knockout mutant exhibited growth retardation and reduced survival when exposed to a high temperature. Expression analysis using rpoH promoter-lacZ fusion revealed that heat stress induction of rpoH, which encodes heat shock sigma factor (sigma(H)), was abolished in the B. pseudomallei rpoE mutant. Analysis of the rpoH promoter region revealed sequences sharing high homology to the consensus sequence of sigma(E)-dependent promoters. Moreover, the putative heat-induced sigma(H)-regulated heat shock proteins (i.e. GroEL and HtpG) were also absent in the rpoE operon mutant. Altogether, our data suggest that the rpoE operon regulates B. pseudomallei heat stress response through the function of rpoH.

  11. Occupational heat stress assessment and protective strategies in the context of climate change

    NASA Astrophysics Data System (ADS)

    Gao, Chuansi; Kuklane, Kalev; Östergren, Per-Olof; Kjellstrom, Tord

    2018-03-01

    Global warming will unquestionably increase the impact of heat on individuals who work in already hot workplaces in hot climate areas. The increasing prevalence of this environmental health risk requires the improvement of assessment methods linked to meteorological data. Such new methods will help to reveal the size of the problem and design appropriate interventions at individual, workplace and societal level. The evaluation of occupational heat stress requires measurement of four thermal climate factors (air temperature, humidity, air velocity and heat radiation); available weather station data may serve this purpose. However, the use of meteorological data for occupational heat stress assessment is limited because weather stations do not traditionally and directly measure some important climate factors, e.g. solar radiation. In addition, local workplace environmental conditions such as local heat sources, metabolic heat production within the human body, and clothing properties, all affect the exchange of heat between the body and the environment. A robust occupational heat stress index should properly address all these factors. This article reviews and highlights a number of selected heat stress indices, indicating their advantages and disadvantages in relation to meteorological data, local workplace environments, body heat production and the use of protective clothing. These heat stress and heat strain indices include Wet Bulb Globe Temperature, Discomfort Index, Predicted Heat Strain index, and Universal Thermal Climate Index. In some cases, individuals may be monitored for heat strain through physiological measurements and medical supervision prior to and during exposure. Relevant protective and preventive strategies for alleviating heat strain are also reviewed and proposed.

  12. Occupational heat stress assessment and protective strategies in the context of climate change.

    PubMed

    Gao, Chuansi; Kuklane, Kalev; Östergren, Per-Olof; Kjellstrom, Tord

    2018-03-01

    Global warming will unquestionably increase the impact of heat on individuals who work in already hot workplaces in hot climate areas. The increasing prevalence of this environmental health risk requires the improvement of assessment methods linked to meteorological data. Such new methods will help to reveal the size of the problem and design appropriate interventions at individual, workplace and societal level. The evaluation of occupational heat stress requires measurement of four thermal climate factors (air temperature, humidity, air velocity and heat radiation); available weather station data may serve this purpose. However, the use of meteorological data for occupational heat stress assessment is limited because weather stations do not traditionally and directly measure some important climate factors, e.g. solar radiation. In addition, local workplace environmental conditions such as local heat sources, metabolic heat production within the human body, and clothing properties, all affect the exchange of heat between the body and the environment. A robust occupational heat stress index should properly address all these factors. This article reviews and highlights a number of selected heat stress indices, indicating their advantages and disadvantages in relation to meteorological data, local workplace environments, body heat production and the use of protective clothing. These heat stress and heat strain indices include Wet Bulb Globe Temperature, Discomfort Index, Predicted Heat Strain index, and Universal Thermal Climate Index. In some cases, individuals may be monitored for heat strain through physiological measurements and medical supervision prior to and during exposure. Relevant protective and preventive strategies for alleviating heat strain are also reviewed and proposed.

  13. Summary: Disabled Submarine Heat Stress Conference

    DTIC Science & Technology

    2009-09-11

    by dry bulb thermometer and humidity using either a sling psychrometer or a portable battery-powered electronic device providing a direct readout of...and sling psychrometer in each compartment 3) One battery-powered electronic thermometer/hygrometer in each compartment Heat Stress When-To

  14. Impact of Heat Stress on Cellular and Transcriptional Adaptation of Mammary Epithelial Cells in Riverine Buffalo (Bubalus Bubalis)

    PubMed Central

    Kapila, Neha; Sharma, Ankita; Kishore, Amit; Sodhi, Monika; Tripathi, Pawan K.; Mohanty, Ashok K.

    2016-01-01

    The present study aims to identify the heat responsive genes and biological pathways in heat stressed buffalo mammary epithelial cells (MECs). The primary mammary epithelial cells of riverine buffalo were exposed to thermal stress at 42°C for one hour. The cells were subsequently allowed to recover at 37°C and harvested at different time intervals (30 min to 48 h) along with control samples (un-stressed). In order to assess the impact of heat stress in buffalo MECs, several in-vitro cellular parameters (lactate dehydrogenase activity, cell proliferation assay, cellular viability, cell death and apoptosis) and transcriptional studies were conducted. The heat stress resulted in overall decrease in cell viability and cell proliferation of MECs while induction of cellular apoptosis and necrosis. The transcriptomic profile of heat stressed MECs was generated using Agilent 44 K bovine oligonucleotide array and at cutoff criteria of ≥3-or ≤3 fold change, a total of 153 genes were observed to be upregulated while 8 genes were down regulated across all time points post heat stress. The genes that were specifically up-regulated or down-regulated were identified as heat responsive genes. The upregulated genes in heat stressed MECs belonged to heat shock family viz., HSPA6, HSPB8, DNAJB2, HSPA1A. Along with HSPs, genes like BOLA, MRPL55, PFKFB3, PSMC2, ENDODD1, ARID5A, and SENP3 were also upregulated. Microarray data revealed that the heat responsive genes belonged to different functional classes viz., chaperons; immune responsive; cell proliferation and metabolism related. Gene ontology analysis revealed enrichment of several biological processes like; cellular process, metabolic process, response to stimulus, biological regulation, immune system processes and signaling. The transcriptome analysis data was further validated by RT-qPCR studies. Several HSP (HSP40, HSP60, HSP70, HSP90, and HSPB1), apoptotic (Bax and Bcl2), immune (IL6, TNFα and NF-kβ) and oxidative

  15. Heat stress affects carbohydrate metabolism during cold-induced sweetening of potato (Solanum tuberosum L.).

    PubMed

    Herman, Derek J; Knowles, Lisa O; Knowles, N Richard

    2017-03-01

    Tolerance to heat stress for retention of low-temperature sweetening-resistant phenotype in potato is conferred by insensitivity of acid invertase activity to cold induction. Heat stress exacerbated cold sweetening (buildup of reducing sugars) of the LTS (low-temperature sweetening)-susceptible potato (Solanum tuberosum L.) cultivars, Ranger Russet and Russet Burbank, and completely abolished the resistance to cold sweetening in the LTS-resistant cultivars/clones, Sage Russet, GemStar Russet, POR06V12-3 and A02138-2. Payette Russet and EGA09702-2, however, demonstrated considerable tolerance to heat stress for retention of their LTS-resistant phenotype. Heat-primed Payette Russet and EGA09702-2 tubers accumulated fourfold more sucrose when subsequently stored at 4 °C, while reducing sugar concentrations also increased marginally but remained low relative to the non-heat-tolerant LTS-resistant clones, resulting in light-colored fries. By contrast, sucrose concentrations in heat-primed tubers of the non-heat-tolerant clones remained unchanged during LTS, but reducing sugars increased fivefold, resulting in darkening of processed fries. Acid invertase activity increased in the LTS-susceptible and non-heat-tolerant LTS-resistant cultivars/clones during cold storage. However, Payette Russet tubers maintained very low invertase activity regardless of heat stress and cold storage treatments, as was the case for Innate ® Russet Burbank (W8) tubers, where silenced invertase conferred robust tolerance to heat stress for retention of LTS-resistant phenotype. Importantly, heat-stressed tubers of Payette Russet, EGA09702-2 and Innate ® Russet Burbank (W8) demonstrated similar low reducing sugar and high sucrose-accumulating phenotypes when stored at 4 °C. Tolerance to heat stress for retention of LTS-resistant phenotype in Payette Russet and likely its maternal parent, EGA09702-2, is, therefore, conferred by the ability to maintain low invertase activity during cold

  16. Gel-free/label-free proteomic analysis of developing rice grains under heat stress.

    PubMed

    Timabud, Tarinee; Yin, Xiaojian; Pongdontri, Paweena; Komatsu, Setsuko

    2016-02-05

    High temperature markedly reduces the yields and quality of rice grains. To identify the mechanisms underlying heat stress-induced responses in rice grains, proteomic technique was used. Developing Khao Dawk Mali 105 rice grains at the milky, dough, and mature stages were treated at 40 °C for 3 days. Aromatic compounds were decreased in rice grains under heat stress. The protein abundance involved in glycolysis and tricarboxylic acid cycle, including glyceraldehyde 3-phosphate dehydrogenase and citrate synthase, was changed in milky and dough grains after heat treatment; however, none changes in mature grains. The abundance involved in amino acid metabolism was increased in dough grains, but decreased in milky grains. In addition, the abundance involved in starch and sucrose metabolism, such as starch synthase, ADP-glucose pyrophosphorylase, granule-bound starch synthase, and alpha amylase, was decreased in milky grains, but increased in dough grains. A number of redox homeostasis-related proteins, such as ascorbate peroxidase and peroxiredoxin, were increased in developing rice grains treated with heat stress. These results suggest that in response to heat stress, the abundance of numerous proteins involved in redox homeostasis and carbohydrate biosynthetic pathways may play a major role in the development of KDML105 rice grains. Yield of Khao Dawk Mali 105 rice, which is an economical aromatic rice, was disrupted by environmental stress. Rice grains developed under heat stress caused loss of aroma compound. To identify the mechanism of heat response in rice grain, gel-free/label-free proteomic technique was used. The abundance of proteins involved in glycolysis and tricarboxylic acid cycle was disrupted by heat stress. High temperature limited starch biosynthesis; however, it enhanced sugar biosynthesis in developing rice grains. Redox homeostasis related proteins were disrupted by heat stress. These results suggest that proteins involved in redox homeostasis

  17. Expression dynamics of HSP70 during chronic heat stress in Tharparkar cattle.

    PubMed

    Bharati, Jaya; Dangi, S S; Chouhan, V S; Mishra, S R; Bharti, M K; Verma, V; Shankar, O; Yadav, V P; Das, K; Paul, A; Bag, S; Maurya, V P; Singh, G; Kumar, P; Sarkar, M

    2017-06-01

    Six male Tharparkar cattle aged 2-3 years were selected for the study. The animals were acclimatized in the psychrometric chamber at thermoneutral zone (TNZ) for 15 days and then exposed to 42 °C temperature up to 23 days followed by 12 days of recovery period. Physiological responses were estimated, and peripheral blood mononuclear cells (PBMCs) were isolated at TNZ on day 1, day 5, and day 12; after 6 h of heat stress exposure on day 16 to day 20, day 25, day 30, day 32, day 34, day 36, and day 38; and a recovery period on day 45 and day 50. The PBMCs were cultured to study the effect of thermal challenge on HSP70 messenger RNA (mRNA) expression pattern at different temperature-time combinations. The mRNA and protein expression of HSP70 in PBMCs along with serum extracellular HSP70 (eHSP70) was increased (P < 0.05) and showed two peaks on day 17 and day 32 (2nd and 17th days of thermal challenge, respectively). The HSP70 mRNA expression was increased (P < 0.05) in a temperature- and time-dependent manner in heat stress challenge treatment as compared to control in cultured PBMCs. HSP70 expression was found to be higher (P < 0.05) after 10 days of heat exposure (corresponds to chronic heat stress) as compared to the first 5 days of heat stress (corresponds to short-term heat stress) and control period at TNZ. The present findings indicate that HSP70 is possibly involved in heat stress adaptive response in Tharparkar cattle and the biphasic expression pattern may be providing a second window of protection during chronic heat stress.

  18. Wheat multiple synthetic derivatives: a new source for heat stress tolerance adaptive traits

    PubMed Central

    Elbashir, Awad Ahmed Elawad; Gorafi, Yasir Serag Alnor; Tahir, Izzat Sidahmed Ali; Kim, June-Sik; Tsujimoto, Hisashi

    2017-01-01

    Heat stress is detrimental to wheat (Triticum aestivum L.) productivity. In this study, we aimed to select heat-tolerant plants from a multiple synthetic derivatives (MSD) population and evaluate their agronomic and physiological traits. We selected six tolerant plants from the population with the background of the cultivar ‘Norin 61’ (N61) and established six MNH (MSD population of N61 selected as heat stress-tolerant) lines. We grew these lines with N61 in the field and growth chamber. In the field, we used optimum and late sowings to ensure plant exposure to heat. In the growth chamber, in addition to N61, we used the heat-tolerant cultivars ‘Gelenson’ and ‘Bacanora’. We confirmed that MNH2 and MNH5 lines acquired heat tolerance. These lines had higher photosynthesis and stomata conductance and exhibited no reduction in grain yield and biomass under heat stress compared to N61. We noticed that N61 had relatively good adaptability to heat stress. Our results indicate that the MSD population includes the diversity of Aegilops tauschii and is a promising resource to uncover useful quantitative traits derived from this wild species. Selected lines could be useful for heat stress tolerance breeding. PMID:28744178

  19. The heat-shock protein/chaperone network and multiple stress resistance.

    PubMed

    Jacob, Pierre; Hirt, Heribert; Bendahmane, Abdelhafid

    2017-04-01

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multistress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat-shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone 'client proteins', many are primary metabolism enzymes and signal transduction components with essential roles for the proper functioning of a cell. HSPs/chaperones are controlled by the action of diverse heat-shock factors, which are recruited under stress conditions. In this review, we give an overview of the regulation of the HSP/chaperone network with a focus on Arabidopsis thaliana. We illustrate the role of HSPs/chaperones in regulating diverse signalling pathways and discuss several basic principles that should be considered for engineering multiple stress resistance in crops through the HSP/chaperone network. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Evaluation of floor cooling on lactating sows under mild and moderate heat stress

    USDA-ARS?s Scientific Manuscript database

    The effectiveness of sow cooling pads during lactation was evaluated under mild and moderate heat stress conditions. The moderate heat stress room was targeted to achieve 32°C from 0800 to 1600 h and 27°C for the rest of the day. The mild heat stress room was targeted to achieve 27°C and 22°C for th...

  1. Long-term heat stress induces the inflammatory response in dairy cows revealed by plasma proteome analysis.

    PubMed

    Min, Li; Zheng, Nan; Zhao, Shengguo; Cheng, Jianbo; Yang, Yongxin; Zhang, Yangdong; Yang, Hongjian; Wang, Jiaqi

    2016-03-04

    In this work we employed a comparative proteomic approach to evaluate seasonal heat stress and investigate proteomic alterations in plasma of dairy cows. Twelve lactating Holstein dairy cows were used and the treatments were: heat stress (n = 6) in hot summer (at the beginning of the moderate heat stress) and no heat stress (n = 6) in spring natural ambient environment, respectively. Subsequently, heat stress treatment lasted 23 days (at the end of the moderate heat stress) to investigate the alterations of plasma proteins, which might be employed as long-term moderate heat stress response in dairy cows. Changes in plasma proteins were analyzed by two-dimensional electrophoresis (2-DE) combined with mass spectrometry. Analysis of the properties of the identified proteins revealed that the alterations of plasma proteins were related to inflammation in long-term moderate heat stress. Furthermore, the increase in plasma tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) directly demonstrated that long-term moderate heat stress caused an inflammatory response in dairy cows. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Genetic variation for tolerance to terminal heat stress in Dasypyrum villosum

    USDA-ARS?s Scientific Manuscript database

    Heat stress substantially reduces the grain yield and quality of wheat and poses a major challenge to sustain productivity due to global warming. Across wheat growing regions in the US and globally, wheat often experiences terminal heat stress during the post-flowering period. Dasypyrum villosum, a ...

  3. Modulatory Effect of Monochromatic Blue Light on Heat Stress Response in Commercial Broilers.

    PubMed

    Abdo, Safaa E; El-Kassas, Seham; El-Nahas, Abeer F; Mahmoud, Shawky

    2017-01-01

    In a novel approach, monochromatic blue light was used to investigate its modulatory effect on heat stress biomarkers in two commercial broiler strains (Ross 308 and Cobb 500). At 21 days old, birds were divided into four groups including one group housed in white light, a second group exposed to blue light, a 3rd group exposed to white light + heat stress, and a 4th group exposed to blue light + heat stress. Heat treatment at 33°C lasted for five h for four successive days. Exposure to blue light during heat stress reduced MDA concentration and enhanced SOD and CAT enzyme activities as well as modulated their gene expression. Blue light also reduced the degenerative changes that occurred in the liver tissue as a result of heat stress. It regulated, though variably, liver HSP70 , HSP90 , HSF1 , and HSF3 gene expression among Ross and Cobb chickens. Moreover, the Cobb strain showed better performance than Ross manifested by a significant reduction of rectal temperature in the case of H + B. Furthermore, a significant linear relationship was found between the lowered rectal temperature and the expression of all HSP genes. Generally, the performance of both strains by most assessed parameters under heat stress is improved when using blue light.

  4. The stress heat-flow paradox and thermal results from Cajon Pass

    USGS Publications Warehouse

    Lachenbruch, A.H.; Sass, J.H.

    1988-01-01

    Conventional friction models predict a substantial thermal anomaly associated with active traces of strike-slip faults, but no such anomaly is observed from over 100 heat-flow determinations along 1000 km of the San Andreas fault. The Cajon Pass well is being drilled to bring deep heat-flow and stress data to bear on this paradox. Preliminary stress results from Cajon Pass and a new interpretation of regional data by Mark D. Zoback and colleagues suggests that the maximum compressive stress near the fault is almost normal to the trace, and hence the resolved shear stress is low and the fault, weak. The heat-flow data show large variability with depth, probably from three-dimensional structure, and an overall decrease from over 90 mW/m2 in the upper kilometer to less than 80 mW/m2 in the lower 300 m with no evidence of advective heat transfer. -from Authors

  5. Glutamatergic Response to Heat Pain Stress in Schizophrenia.

    PubMed

    Chiappelli, Joshua; Shi, Qiaoyun; Wijtenburg, Sarah Andrea; Quiton, Raimi; Wisner, Krista; Gaston, Frank; Kodi, Priyadurga; Gaudiot, Christopher; Kochunov, Peter; Rowland, Laura M; Hong, Liyi Elliot

    2018-06-06

    Regulation of stress response involves top-down mechanisms of the frontal-limbic glutamatergic system. As schizophrenia is associated with glutamatergic abnormalities, we hypothesized that schizophrenia patients may have abnormal glutamatergic reactivity within the dorsal anterior cingulate cortex (dACC), a key region involved in perception of and reaction to stress. To test this, we developed a somatic stress paradigm involving pseudorandom application of safe but painfully hot stimuli to the forearm of participants while they were undergoing serial proton magnetic resonance spectroscopy to measure changes in glutamate and glutamine levels in the dACC. This paradigm was tested in a sample of 21 healthy controls and 23 patients with schizophrenia. Across groups, glutamate levels significantly decreased following exposure to thermal pain, while ratio of glutamine to glutamate significantly increased. However, schizophrenia patients exhibited an initial increase in glutamate levels during challenge that was significantly different from controls, after controlling for heat pain tolerance. Furthermore, in patients, the acute glutamate response was positively correlated with childhood trauma (r = .41, P = .050) and inversely correlated with working memory (r = -.49, P = .023). These results provide preliminary evidence for abnormal glutamatergic response to stress in schizophrenia patients, which may point toward novel approaches to understanding how stress contributes to the illness.

  6. [Regulation of heat shock gene expression in response to stress].

    PubMed

    Garbuz, D G

    2017-01-01

    Heat shock (HS) genes, or stress genes, code for a number of proteins that collectively form the most ancient and universal stress defense system. The system determines the cell capability of adaptation to various adverse factors and performs a variety of auxiliary functions in normal physiological conditions. Common stress factors, such as higher temperatures, hypoxia, heavy metals, and others, suppress transcription and translation for the majority of genes, while HS genes are upregulated. Transcription of HS genes is controlled by transcription factors of the HS factor (HSF) family. Certain HSFs are activated on exposure to higher temperatures or other adverse factors to ensure stress-induced HS gene expression, while other HSFs are specifically activated at particular developmental stages. The regulation of the main mammalian stress-inducible factor HSF1 and Drosophila melanogaster HSF includes many components, such as a variety of early warning signals indicative of abnormal cell activity (e.g., increases in intracellular ceramide, cytosolic calcium ions, or partly denatured proteins); protein kinases, which phosphorylate HSFs at various Ser residues; acetyltransferases; and regulatory proteins, such as SUMO and HSBP1. Transcription factors other than HSFs are also involved in activating HS gene transcription; the set includes D. melanogaster GAF, mammalian Sp1 and NF-Y, and other factors. Transcription of several stress genes coding for molecular chaperones of the glucose-regulated protein (GRP) family is predominantly regulated by another stress-detecting system, which is known as the unfolded protein response (UPR) system and is activated in response to massive protein misfolding in the endoplasmic reticulum and mitochondrial matrix. A translational fine tuning of HS protein expression occurs via changing the phosphorylation status of several proteins involved in translation initiation. In addition, specific signal sequences in the 5'-UTRs of some HS

  7. Comparison of heat strain recovery in different anti-heat stress clothing ensembles after work to exhaustion.

    PubMed

    Zhao, Yijie; Yi, Wen; Chan, Albert P C; Chan, Daniel W M

    2017-10-01

    A hot environment combined with physically demanding tasks can subject workers to a higher risk of heat stress. A series of regulations and guidelines have been proposed to design appropriate anti-heat stress work uniform to reduce body heat strain. The present study aimed to examine heat strain recovery in different anti-heat stress clothing ensembles after work to exhaustion in the heat. 10 healthy males performed intermittent treadmill running/walking to exhaustion, followed by 30min passive recovery sitting in a climatic chamber, which simulated the hot and humid outdoor environment (34°C temperature, 60% relative humidity, 0.3m/s air velocity, and 450W/m 2 solar radiation). The participants took part in five wear trials in counter-balanced order, including Sportswear, CIC Uniform, NEW Uniform, ICEBANK Cooling Vest, and NEW Cooling Vest, which have different levels of cooling capacity. Core temperature, skin temperature, heart rate, sweat loss, ratings of perceived exertion, and thermal sensations were measured throughout the entire heat exposure period. Physiological heat strain indices, including the physiological strain index (PhSI) and the perceptual strain index (PeSI), were used as a yardstick to quantify and compare the rate of recovery. Significantly lower physiological strain was observed in the newly developed NEW Uniform and NEW Cooling Vest groups compared with the commonly worn CIC Uniform group during recovery. At the end of the recovery period, participants in NEW Cooling Vest achieved the highest recovery (42.18% in PhSI and 81.08% in PeSI), followed by ICEBANK Cooling Vest, Sportswear, NEW Uniform, and CIC Uniform. The cooling capacity of anti-heat stress clothing ensembles and the recovery time significantly affect the rate of recovery in PhSI and PeSI, which may benefit the industry by formulating the appropriate work-rest schedule by considering the clothing effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effect of heat stress on blood rheology in different pigs breeds.

    PubMed

    Waltz, Xavier; Baillot, Michelle; Connes, Philippe; Gourdine, Jean-Luc; Philibert, Lucien; Beltan, Eric; Chalabi, Tawfik; Renaudeau, David

    2014-01-01

    The main objectives of the present work were to test the effects of heat stress on blood rheology and to determine whether the responses can change according to the pig breeds. Thirty-six pigs from three pig's lines (n = 12 for each line) with assumed different tolerance to heat stress were compared: Large White (LW, little tolerance), Creole (CR, good tolerance) and LW × CR pigs (produced from a cross between LW and CR lines). In a first period, all pigs were exposed to a 9-d period of thermo-neutral environment (24°C; d-9 to d-1; P0). At the end of P0, six pigs from each line were slaughtered (n = 18). Then in a second period, the remaining pigs (6/breed; n = 18) were exposed to a 5-d period of heat stress (32°C; d + 1 -d + 5; P1) and thereafter slaughtered at d + 5. Rectal and skin temperatures, as well as respiratory rate, were recorded on d-1 and d + 5. At slaughter, blood was sampled for hematological and hemorheological measurements. Heat stress caused a rise of the skin temperature and respiratory rate without any changes in the rectal temperature or on the hematological and hemorheological parameters when all pigs' lines were considered. We observed a pig line effect on blood viscosity at high shear rate (375 s-1) and red blood cell deformability at 30 Pa with CR pigs having lower blood viscosity and higher red blood cell deformability than LW pigs. While the changes of blood viscosity under heat stress did not reach statistical significance in LW and CR lines, blood viscosity (at 375 s-1) increased above the temperate values in the LW × CR line. Red blood cell deformability at 30 Pa was higher in CR pigs exposed to heat stress compared to LW pigs in the same condition. In conclusion, thermal loading caused physiological stress but did not widely change the hematological and hemorheological profiles. Although some blood rheological parameters seem to vary with the pig breeds, the responses to heat stress are very similar.

  9. Thermomechanical Stress in Cryopreservation Via Vitrification With Nanoparticle Heating as a Stress-Moderating Effect.

    PubMed

    Eisenberg, David P; Bischof, John C; Rabin, Yoed

    2016-01-01

    This study focuses on thermomechanical effects in cryopreservation associated with a novel approach of volumetric heating by means on nanoparticles in an alternating electromagnetic field. This approach is studied for the application of cryopreservation by vitrification, where the crystalline phase is completely avoided-the cornerstone of cryoinjury. Vitrification can be achieved by quickly cooling the material to cryogenic storage, where ice cannot form. Vitrification can be maintained at the end of the cryogenic protocol by quickly rewarming the material back to room temperature. The magnitude of the rewarming rates necessary to maintain vitrification is much higher than the magnitude of the cooling rates that are required to achieve it in the first place. The most common approach to achieve the required cooling and rewarming rates is by exposing the specimen's surface to a temperature-controlled environment. Due to the underlying principles of heat transfer, there is a size limit in the case of surface heating beyond which crystallization cannot be prevented at the center of the specimen. Furthermore, due to the underlying principles of solid mechanics, there is a size limit beyond which thermal expansion in the specimen can lead to structural damage and fractures. Volumetric heating during the rewarming phase of the cryogenic protocol can alleviate these size limitations. This study suggests that volumetric heating can reduce thermomechanical stress, when combined with an appropriate design of the thermal protocol. Without such design, this study suggests that the level of stress may still lead to structural damage even when volumetric heating is applied. This study proposes strategies to harness nanoparticles heating in order to reduce thermomechanical stress in cryopreservation by vitrification.

  10. Prostaglandin E synthase interacts with inducible heat shock protein 70 after heat stress in bovine primary dermal fibroblast cells.

    PubMed

    Richter, Constanze; Viergutz, Torsten; Schwerin, Manfred; Weitzel, Joachim M

    2015-01-01

    Exposure to heat stress in dairy cows leads to undesired side effects that are reflected by complex alterations in endocrine parameters, such as reduced progesterone, estradiol, and thyroid hormone concentrations. These endocrine maladaptation leads to failure to resume cyclicity, a poor uterine environment and inappropriate immune responses in postpartum dairy cows. Prostaglandins (PG's) are lipid mediators, which serve as signal molecules in response to various external stimuli as well as to cell-specific internal signal molecules. A central role in PG synthesis plays prostaglandin E synthase (PGES) that catalyzes the isomerization of PGH2 to PGE2 .The present study was conducted to investigate heat stress associated PGES expression. Expression of PGES and inducible heat shock protein 70 (HSP70), as a putative chaperonic protein, was studied in bovine primary fibroblasts under different heat shock conditions. Bovine primary fibroblasts produce PGE2 at homoiothermical norm temperature (38.5°C in bovine), but reduce PGE2 production rates under extreme heat stress (at 45°C for 6 h). By contrast, PGE2 production rates are maintained after a milder heat stress (at 41.5°C for 6 h). PGE2 synthesis is abolished by application of cyclooxygenase inhibitor indomethacin, indicating de novo synthesis. Heat stress increases HSP70 but not PGES protein concentrations. HSP70 physically interacts with PGES and the PGES-HSP70 complex did not dissociate upon heat stress at 45°C even after returning the cells to 37°C. The PGE2 production negatively correlates with the portion of PGES-HSP70 complex. These results suggest a protein interaction between HSP70 and PGES in dermal fibroblast cells. Blockage of PGES protein by HSP70 seems to interfere with the regulatory processes essential for cellular adaptive protection. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.

  11. Heat stress but not inbreeding affects offensive sperm competitiveness in Callosobruchus maculatus

    PubMed Central

    Lieshout, Emile; Tomkins, Joseph L; Simmons, Leigh W

    2013-01-01

    Environmental and genetic stress have well-known detrimental effects on ejaculate quality, but their concomitant effect on male fitness remains poorly understood. We used competitive fertilization assays to expose the effects of stress on offensive sperm competitive ability in the beetle Callosobruchus maculatus, a species where ejaculates make up more than 5% of male body mass. To examine the effects of environmental and genetic stress, males derived from outcrosses or sib matings were heat shocked at 50°C for 50 min during the pupal stage, while their siblings were maintained at a standard rearing temperature of 28°C. Heat-shocked males achieved only half the offensive paternity success of their siblings. While this population exhibited inbreeding depression in body size, sperm competitiveness was unaffected by inbreeding, nor did the effect of heat shock stress on sperm competitiveness depend on inbreeding status. In contrast, pupal emergence success was increased by 34% among heat-stressed individuals, regardless of their inbreeding status. Heat-shocked males' ejaculate size was 19% reduced, but they exhibited 25% increased mating duration in single mating trials. Our results highlight both the importance of stress in postcopulatory sexual selection, and the variability among stressors in affecting male fitness. PMID:24101978

  12. Heat stress but not inbreeding affects offensive sperm competitiveness in Callosobruchus maculatus.

    PubMed

    Lieshout, Emile; Tomkins, Joseph L; Simmons, Leigh W

    2013-09-01

    Environmental and genetic stress have well-known detrimental effects on ejaculate quality, but their concomitant effect on male fitness remains poorly understood. We used competitive fertilization assays to expose the effects of stress on offensive sperm competitive ability in the beetle Callosobruchus maculatus, a species where ejaculates make up more than 5% of male body mass. To examine the effects of environmental and genetic stress, males derived from outcrosses or sib matings were heat shocked at 50°C for 50 min during the pupal stage, while their siblings were maintained at a standard rearing temperature of 28°C. Heat-shocked males achieved only half the offensive paternity success of their siblings. While this population exhibited inbreeding depression in body size, sperm competitiveness was unaffected by inbreeding, nor did the effect of heat shock stress on sperm competitiveness depend on inbreeding status. In contrast, pupal emergence success was increased by 34% among heat-stressed individuals, regardless of their inbreeding status. Heat-shocked males' ejaculate size was 19% reduced, but they exhibited 25% increased mating duration in single mating trials. Our results highlight both the importance of stress in postcopulatory sexual selection, and the variability among stressors in affecting male fitness.

  13. The response of contrasting tomato genotypes to combined heat and drought stress.

    PubMed

    Nankishore, Alliea; Farrell, Aidan D

    2016-09-01

    Efforts to maximize yields of food crops can be undermined by abiotic stress factors, particularly those related to climate change. Here, we use a range of physiological methods to detect the individual and combined effects of heat and drought stress on three contrasting varieties of tomato: Hybrid 61, Moskvich, and Nagcarlang. Seedlings were acclimated under the following treatment regimes: CONTROL (25-36°C; well-watered), DRY (25-36°C; 20% field capacity), HOT (25-42°C; well-watered) and HOT+DRY (25-42°C; 20% field capacity). In each treatment, stomatal conductance, leaf temperature, chlorophyll content, and several chlorophyll fluorescence variables (both in situ and in vitro following a heat shock treatment) were measured. Plants from the HOT treatment remained statistically similar to the CONTROL plants in most of the measured parameters, while those from the DRY treatment and especially the HOT+DRY treatment showed clear effects of abiotic stress. Hybrid 61 showed considerable resilience to heat and drought stress compared to the other varieties, with significantly cooler leaves (one day after treatments imposed) and significantly higher Fv/Fm values both in situ and in vitro. The genotypic differences in resilience to heat stress were only apparent under water-limited conditions, highlighting the need to consider leaf temperature rather than air temperature when testing for tolerance to heat stress. The most effective parameters for discriminating genotypic variation in heat and drought stress were in vitro Fv/Fm and chlorophyll content. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Class I and II Small Heat Shock Proteins Together with HSP101 Protect Protein Translation Factors during Heat Stress.

    PubMed

    McLoughlin, Fionn; Basha, Eman; Fowler, Mary E; Kim, Minsoo; Bordowitz, Juliana; Katiyar-Agarwal, Surekha; Vierling, Elizabeth

    2016-10-01

    The ubiquitous small heat shock proteins (sHSPs) are well documented to act in vitro as molecular chaperones to prevent the irreversible aggregation of heat-sensitive proteins. However, the in vivo activities of sHSPs remain unclear. To investigate the two most abundant classes of plant cytosolic sHSPs (class I [CI] and class II [CII]), RNA interference (RNAi) and overexpression lines were created in Arabidopsis (Arabidopsis thaliana) and shown to have reduced and enhanced tolerance, respectively, to extreme heat stress. Affinity purification of CI and CII sHSPs from heat-stressed seedlings recovered eukaryotic translation elongation factor (eEF) 1B (α-, β-, and γ-subunits) and eukaryotic translation initiation factor 4A (three isoforms), although the association with CI sHSPs was stronger and additional proteins involved in translation were recovered with CI sHSPs. eEF1B subunits became partially insoluble during heat stress and, in the CI and CII RNAi lines, showed reduced recovery to the soluble cell fraction after heat stress, which was also dependent on HSP101. Furthermore, after heat stress, CI sHSPs showed increased retention in the insoluble fraction in the CII RNAi line and vice versa. Immunolocalization revealed that both CI and CII sHSPs were present in cytosolic foci, some of which colocalized with HSP101 and with eEF1Bγ and eEF1Bβ. Thus, CI and CII sHSPs have both unique and overlapping functions and act either directly or indirectly to protect specific translation factors in cytosolic stress granules. © 2016 American Society of Plant Biologists. All Rights Reserved.

  15. Modulatory effect of betaine on expression dynamics of HSPs during heat stress acclimation in goat (Capra hircus).

    PubMed

    Dangi, Satyaveer Singh; Dangi, Saroj K; Chouhan, V S; Verma, M R; Kumar, Puneet; Singh, Gyanendra; Sarkar, Mihir

    2016-01-10

    Changing climatic scenario with expected global rise in surface temperature compelled more focus of research over decoding heat stress response mechanism of animals and mitigation of heat stress. Recently betaine, a trimethyl form of glycine has been found to ameliorate heat stress in some species of animals. To overcome deleterious effect of heat stress, an attempt was taken to investigate the effect of betaine supplementation on heat stress mitigation in goats. Eighteen female Barbari goats were taken and randomly divided into 3 groups (n=6) such as control, HS (Heat stressed), HS+B (Heat stressed administered with betaine). Except for the control group, other groups were exposed to repeated heat stress (42 °C) for 6 h for sixteen consecutive days. Blood samples were collected at the end of heat exposure on day 1 (Initial heat stress acclimation - IHSA), day 6 (Short term heat stress acclimation - STHSA) and day 16 (Long term heat stress acclimation - LTHSA). When the groups were compared between different heat stress acclimatory phases, expression of all HSPs (HSP60, HSP70, HSP90 and HSP105/110) showed a similar pattern with a first peak on IHSA, reaching a basal level on STHSA followed by second peak on LTHSA. The messenger RNA (mRNA) and protein expression of HSPs was observed to be higher (P<0.05) in HS group than HS+B group except HSP90 on IHSA and HSP60 on STHSA. HSP105/110 expression was highest (P<0.05) on LTHSA. Immunocytochemical analysis revealed that HSPs were mainly localized both in nucleus and cytoplasm of PBMCs. In conclusion, heat stress increases HSPs expression and betaine administration was shown to have a dwindling effect on expression of HSPs, suggesting a possible role of this chemical chaperone on heat stress amelioration. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Beyond the extreme: Recovery dynamics following heat and drought stress in trees

    NASA Astrophysics Data System (ADS)

    Ruehr, N.; Duarte, A. G.; Arneth, A.

    2016-12-01

    Plant recovery processes following extreme events can have profound impacts on forest carbon and water cycling. However, large knowledge gaps persist on recovery dynamics of tree physiological processes following heat and drought stress. To date, few experimental studies exist that include recovery responses in stress research. We synthesized recent research on tree recovery processes related to carbon and water exchange following heat and drought stress, and show that the intensity of stress can affect the pace of recovery with large variations among tree species and processes. Following stress release, leaf water potential recovers instantaneously upon rewatering as found in most studies. Transpiration (T), stomatal conductance (gs) and photosynthesis (A) often lag behind, with lowest recovery following severe stress. Interestingly, the patterns in heat and drought stress recovery apparently differ. While A recovers generally more quickly than gs following drought, which increases water-use-efficiency, both gs and A tend to remain reduced following heat events. The pace of recovery following heat events likely depends on water availability during stress and temperature maxima reached (photosynthetic impairment at temperatures > 40°C). Slow recovery during the initial post-stress days might result from hydraulic limitation and elevated levels of abscisic acid. The mechanisms resulting in a continued impairment of T and gs during a later stage of the recovery period (from weeks up to months) are still elusive. Feedback loops from the photosynthetic machinery, reduced mesophyll conductance or leaf morphological changes may play an important role. In summary, post-stress recovery can substantially affect tree carbon and water cycling. Thus, in order to estimate the impacts of extreme climate events on forest ecosystems in the long-term, we need a better understanding of recovery dynamics and their limitations in terms of stress timing, intensity and duration.

  17. Spatially distinct effects of preceding precipitation on heat stress over eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Xingcai; Tang, Qiuhong; Zhang, Xuejun; Groisman, Pavel; Sun, Siao; Lu, Hui; Li, Zhe

    2017-11-01

    In many terrestrial regions, higher than usual surface temperatures are associated with (or are even induced by) surface moisture deficits. When in the warm season temperatures become anomalously high, their extreme values affect human beings causing heat stress. Besides increased temperature, rising humidity may also have substantial implications for bodily thermal comfort. However, the effects of surface moisture on heat stress, when considering both temperature and humidity, are less known. In this study, the relationship between the number of hot days in July as indicated by the wet-bulb globe temperature and the preceding three months of precipitation was assessed over eastern China. It is found that the probability of occurrence of above the average number of hot days exceeds 0.7 after a preceding precipitation deficit in northeastern China, but is less than 0.3 in southeastern China. Generally, over eastern China, the precipitation in the preceding months is negatively correlated with temperature and positively correlated with specific humidity in July. The combined effects generate a spatially distinct pattern: precipitation deficits in preceding months enhance heat stress in northeastern China while in southern China these deficits are associated with reduction of heat stress. In the south, abundant preceding precipitation tends to increase atmospheric humidity that is instrumental for the increase of heat stress. These results contribute predictive information about the probability of mid-summer heat stress in eastern China a few weeks ahead of its occurrence.

  18. Spatially distinct effects of preceding precipitation on heat stress over Eastern China

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Liu, X.; Zhang, X.; Groisman, P. Y.; Sun, S.; Lu, H.; Li, Z.

    2017-12-01

    In many terrestrial regions, higher than usual surface temperatures are associated with (or even are induced by) surface moisture deficits. When in the warm season temperatures become anomalously high, their extreme values affect human beings causing heat stress. Besides increased temperature, rising humidity may also have substantial implications for human body thermal comfort. However, effects of surface moisture on heat stress, when considering both temperature and humidity, are less known. In this study, the relationship between the number of hot days in July as indicated by the wet-bulb globe temperature (WBGT) and preceding 3-month precipitation was assessed over Eastern China. It is found that the probability of occurrence of the above-the-average number of hot days exceeds 0.7 after preceding precipitation deficit in northeastern China, but is less than 0.3 in southeastern China. Generally, over Eastern China, precipitation in preceding months is negatively correlated with temperature and positively correlated with specific humidity in July. The combined effects generate a spatially distinct pattern: precipitation deficits in preceding months enhance heat stress in northeastern China while in southern China these deficits are associated with reduction of heat stress. In the south, abundant preceding precipitation tends to increase atmospheric humidity that is instrumental for increase of heat stress. These results contribute predictive information about the probability of mid-summer heat stress in Eastern China a few weeks ahead of its occurrence.

  19. Modulatory Effect of Monochromatic Blue Light on Heat Stress Response in Commercial Broilers

    PubMed Central

    Abdo, Safaa E.; Mahmoud, Shawky

    2017-01-01

    In a novel approach, monochromatic blue light was used to investigate its modulatory effect on heat stress biomarkers in two commercial broiler strains (Ross 308 and Cobb 500). At 21 days old, birds were divided into four groups including one group housed in white light, a second group exposed to blue light, a 3rd group exposed to white light + heat stress, and a 4th group exposed to blue light + heat stress. Heat treatment at 33°C lasted for five h for four successive days. Exposure to blue light during heat stress reduced MDA concentration and enhanced SOD and CAT enzyme activities as well as modulated their gene expression. Blue light also reduced the degenerative changes that occurred in the liver tissue as a result of heat stress. It regulated, though variably, liver HSP70, HSP90, HSF1, and HSF3 gene expression among Ross and Cobb chickens. Moreover, the Cobb strain showed better performance than Ross manifested by a significant reduction of rectal temperature in the case of H + B. Furthermore, a significant linear relationship was found between the lowered rectal temperature and the expression of all HSP genes. Generally, the performance of both strains by most assessed parameters under heat stress is improved when using blue light. PMID:28698764

  20. Aspirin upregulates αB-Crystallin to protect the myocardium against heat stress in broiler chickens

    PubMed Central

    Tang, Shu; Yin, Bin; Song, Erbao; Chen, Hongbo; Cheng, Yanfen; Zhang, Xiaohui; Bao, Endong; Hartung, Joerg

    2016-01-01

    We established in vivo and in vitro models to investigate the role of αB-Crystallin (CryAB) and assess the ability of aspirin (ASA) to protect the myocardium during prolonged heat stress. Thirty-day-old chickens were divided into three groups (n = 90): heat stress (HS, 40±1 °C); ASA(−)HS(+), 1 mg/kg ASA orally 2 h before heat stress; and ASA(+)HS(−), pretreated with aspirin, no heat stress (25 °C). Hearts were excised after 0, 1, 2, 3, 5, 7, 10, 15 and 24 h. Heat stress increased body temperature, though the ASA(−)HS(+) group had significantly higher temperatures than the ASA(+)HS(+) group at all time points. Compared to ASA(+)HS(+), the ASA(−)HS(+) group displayed increased sensitivity to heat stress. Pathological analysis revealed the ASA (+)HS(+) myocardium showed less severe changes (narrowed, chaotic fibers; fewer necrotic cells) than the ASA(−)HS(+) group (bleeding and extensive cell death). In vitro, ASA-pretreatment significantly increased primary chicken myocardial cell survival during heat stress. ELISAs indicated ASA induced CryAB in vivo to protect against heat stress-induced myocardial damage, but ASA did not induce CryAB in primary chicken myocardial cells. The mechanisms by which ASA induces the expression of CryAB in vivo and protects the myocardium during heat stress merit further research. PMID:27857180

  1. Heat stress in pregnant sows: Thermal responses and subsequent performance of sows and their offspring.

    PubMed

    Lucy, Matthew C; Safranski, Timothy J

    2017-09-01

    Seasonal infertility is a significant problem in the swine industry, and may be influenced by photoperiod and heat stress. Heat stress during gestation in particular affects pregnancy, resulting in long-term developmental damage to the offspring. This review summarizes what is known about how heat stress on the pregnant sow affects lactation and her offspring. Sows responded to heat stress during gestation with increased rectal temperature, respiration rate, and skin temperature, and tended to reduce their activity-which may have changed their body composition, increasing the adipose-to-muscle ratio. Heat stress during gestation caused temporary insulin resistance during lactation, but this metabolic state did not seem to affect health, lactation, or rebreeding performance of the sow. Heat-stressed sows also presented with a shorter gestation period and reduced litter birth weight, although weaning weights are not affected when these sows are moved to thermoneutral conditions for lactation. The offspring of gestational heat-stressed sows, however, possessed unique phenotypes, including elevated body temperature, greater fat deposition, and impaired gonad development. Thus, gestational heat stress may significantly impact a herd through its effects on sows and their offspring. Further work is necessary to determine the magnitude of the effects across fa cilities and breeds. © 2017 Wiley Periodicals, Inc.

  2. Heat stress during in vitro fertilization decreases fertilization success by disrupting anti-polyspermy systems of the oocytes.

    PubMed

    Sakatani, Miki; Yamanaka, Kenichi; Balboula, Ahmed Z; Takenouchi, Naoki; Takahashi, Masashi

    2015-01-01

    Low pregnancy rates during the summer are due, in part, to reduced fertilization. Given that elevated temperature is associated with this season, we investigated the effect of heat stress during fertilization using an in vitro model. Three experiments were performed to determine the mechanism by which exposure to elevated temperature disrupts fertilization. Oocytes were fertilized for 6 hr at 38.5°C or 41.0°C or 40.0°C with non-pre-incubated sperm, or for 6 hr at 38.5°C with sperm that had been pre-incubated at 38.5°C or 41.0°C for 4 hr. In each experiment, zygotes were cultured at 38.5°C in 5% CO(2) and 5% O(2). Rates of cleavage and blasocyst formation were reduced when fertilization occurs at elevated temperatures. The percent of sperm classified as alive, using fluorescein diacetate labeling, was decreased by pre-incubation and fertilization at 40.0°C. Although no difference was observed in sperm penetration rate, polyspermy tended to be increased by heat stress during fertilization. The zona pellucidae of zygotes formed following fertilization at 40.0°C for 6 hr were more sensitive to digestion with pronase. Furthermore, these zygotes exhibited higher hydrogen peroxide levels, measured by 2,7-dihydrodichlorofluorescein diacetate staining, and showed increased transcript abundance for HSPA1A, a gene involved in the heat-shock response, but decreased transcript abundance for UCHL1, a gene involved in preventing polyspermy. Results indicate that heat stress during fertilization is lethal to sperm, and causes oxidative stress, altered transcript abundance, and a defective block to polyspermy in the zygote. Thus, an increase in polyspermy is likely one cause of the reduced competency of zygotes fertilized under elevated temperatures to develop to the blastocyst stage. © 2014 Wiley Periodicals, Inc.

  3. Kidney Diseases in Agricultural Communities: A Case Against Heat-Stress Nephropathy.

    PubMed

    Herath, Chula; Jayasumana, Channa; De Silva, P Mangala C S; De Silva, P H Chaminda; Siribaddana, Sisira; De Broe, Marc E

    2018-03-01

    The beginning of the 21st century has seen the emergence of a new chronic tubulo-interstitial kidney disease of uncertain cause among agricultural communities in Central America and Sri Lanka. Despite many similarities in demography, presentation, clinical features, and renal histopathology in affected individuals in these regions, a toxic etiology has been considered mainly in Sri Lanka, whereas the predominant hypothesis in Central America has been that recurrent acute kidney injury (AKI) caused by heat stress leads to chronic kidney disease (CKD). This is termed the heat stress/dehydration hypothesis . This review attempts to demonstrate that there is sparse evidence for the occurrence of significant AKI among manual workers who are at high risk, and that there is little substantial evidence that an elevation of serum creatinine < 0.3 mg/dl in previously healthy people will lead to CKD even with recurrent episodes. It is also proposed that the extent of global warming over the last half-century was not sufficient to have caused a drastic change in the effects of heat stress on renal function in manual workers. Comparable chronic tubulo-interstitial kidney disease is not seen in workers exposed to heat in most tropical regions, although the disease is seen in individuals not exposed to heat stress in the affected regions. The proposed pathogenic mechanisms of heat stress causing CKD have not yet been proved in humans or demonstrated in workers at risk. It is believed that claims of a global warming nephropathy in relation to this disease may be premature and without convincing evidence.

  4. Deteriorated Stress Response in Stationary-Phase Yeast: Sir2 and Yap1 Are Essential for Hsf1 Activation by Heat Shock and Oxidative Stress, Respectively

    PubMed Central

    Cohen, Aviv; Bar-Nun, Shoshana

    2014-01-01

    Stationary-phase cultures have been used as an important model of aging, a complex process involving multiple pathways and signaling networks. However, the molecular processes underlying stress response of non-dividing cells are poorly understood, although deteriorated stress response is one of the hallmarks of aging. The budding yeast Saccharomyces cerevisiae is a valuable model organism to study the genetics of aging, because yeast ages within days and are amenable to genetic manipulations. As a unicellular organism, yeast has evolved robust systems to respond to environmental challenges. This response is orchestrated largely by the conserved transcription factor Hsf1, which in S. cerevisiae regulates expression of multiple genes in response to diverse stresses. Here we demonstrate that Hsf1 response to heat shock and oxidative stress deteriorates during yeast transition from exponential growth to stationary-phase, whereas Hsf1 activation by glucose starvation is maintained. Overexpressing Hsf1 does not significantly improve heat shock response, indicating that Hsf1 dwindling is not the major cause for Hsf1 attenuated response in stationary-phase yeast. Rather, factors that participate in Hsf1 activation appear to be compromised. We uncover two factors, Yap1 and Sir2, which discretely function in Hsf1 activation by oxidative stress and heat shock. In Δyap1 mutant, Hsf1 does not respond to oxidative stress, while in Δsir2 mutant, Hsf1 does not respond to heat shock. Moreover, excess Sir2 mimics the heat shock response. This role of the NAD+-dependent Sir2 is supported by our finding that supplementing NAD+ precursors improves Hsf1 heat shock response in stationary-phase yeast, especially when combined with expression of excess Sir2. Finally, the combination of excess Hsf1, excess Sir2 and NAD+ precursors rejuvenates the heat shock response. PMID:25356557

  5. Deteriorated stress response in stationary-phase yeast: Sir2 and Yap1 are essential for Hsf1 activation by heat shock and oxidative stress, respectively.

    PubMed

    Nussbaum, Inbal; Weindling, Esther; Jubran, Ritta; Cohen, Aviv; Bar-Nun, Shoshana

    2014-01-01

    Stationary-phase cultures have been used as an important model of aging, a complex process involving multiple pathways and signaling networks. However, the molecular processes underlying stress response of non-dividing cells are poorly understood, although deteriorated stress response is one of the hallmarks of aging. The budding yeast Saccharomyces cerevisiae is a valuable model organism to study the genetics of aging, because yeast ages within days and are amenable to genetic manipulations. As a unicellular organism, yeast has evolved robust systems to respond to environmental challenges. This response is orchestrated largely by the conserved transcription factor Hsf1, which in S. cerevisiae regulates expression of multiple genes in response to diverse stresses. Here we demonstrate that Hsf1 response to heat shock and oxidative stress deteriorates during yeast transition from exponential growth to stationary-phase, whereas Hsf1 activation by glucose starvation is maintained. Overexpressing Hsf1 does not significantly improve heat shock response, indicating that Hsf1 dwindling is not the major cause for Hsf1 attenuated response in stationary-phase yeast. Rather, factors that participate in Hsf1 activation appear to be compromised. We uncover two factors, Yap1 and Sir2, which discretely function in Hsf1 activation by oxidative stress and heat shock. In Δyap1 mutant, Hsf1 does not respond to oxidative stress, while in Δsir2 mutant, Hsf1 does not respond to heat shock. Moreover, excess Sir2 mimics the heat shock response. This role of the NAD+-dependent Sir2 is supported by our finding that supplementing NAD+ precursors improves Hsf1 heat shock response in stationary-phase yeast, especially when combined with expression of excess Sir2. Finally, the combination of excess Hsf1, excess Sir2 and NAD+ precursors rejuvenates the heat shock response.

  6. Work-related heat stress concerns in automotive industries: a case study from Chennai, India

    PubMed Central

    Ayyappan, Ramalingam; Sankar, Sambandam; Rajkumar, Paramasivan; Balakrishnan, Kalpana

    2009-01-01

    Background Work-related heat stress assessments, the quantification of thermal loads and their physiological consequences have mostly been performed in non-tropical developed country settings. In many developing countries (many of which are also tropical), limited attempts have been made to create detailed job-exposure profiles for various sectors. We present here a case study from Chennai in southern India that illustrates the prevalence of work-related heat stress in multiple processes of automotive industries and the efficacy of relatively simple controls in reducing prevalence of the risk through longitudinal assessments. Methods We conducted workplace heat stress assessments in automotive and automotive parts manufacturing units according to the protocols recommended by NIOSH, USA. Sites for measurements included indoor locations with process-generated heat exposure, indoor locations without direct process-generated heat exposure and outdoor locations. Nearly 400 measurements of heat stress were made over a four-year period at more than 100 locations within eight units involved with automotive or automotive parts manufacturing in greater Chennai metropolitan area. In addition, cross-sectional measurements were made in select processes of glass manufacturing and textiles to estimate relative prevalence of heat stress. Results Results indicate that many processes even in organised large-scale industries have yet to control heat stress-related hazards adequately. Upwards of 28% of workers employed in multiple processes were at risk of heat stress-related health impairment in the sectors assessed. Implications of longitudinal baseline data for assessing efficacy of interventions as well as modelling potential future impacts from climate change (through contributions from worker health and productivity impairments consequent to increases in ambient temperature) are described. Conclusions The study re-emphasises the need for recognising heat stress as an important

  7. Crop Production under Drought and Heat Stress: Plant Responses and Management Options

    PubMed Central

    Fahad, Shah; Bajwa, Ali A.; Nazir, Usman; Anjum, Shakeel A.; Farooq, Ayesha; Zohaib, Ali; Sadia, Sehrish; Nasim, Wajid; Adkins, Steve; Saud, Shah; Ihsan, Muhammad Z.; Alharby, Hesham; Wu, Chao; Wang, Depeng; Huang, Jianliang

    2017-01-01

    Abiotic stresses are one of the major constraints to crop production and food security worldwide. The situation has aggravated due to the drastic and rapid changes in global climate. Heat and drought are undoubtedly the two most important stresses having huge impact on growth and productivity of the crops. It is very important to understand the physiological, biochemical, and ecological interventions related to these stresses for better management. A wide range of plant responses to these stresses could be generalized into morphological, physiological, and biochemical responses. Interestingly, this review provides a detailed account of plant responses to heat and drought stresses with special focus on highlighting the commonalities and differences. Crop growth and yields are negatively affected by sub-optimal water supply and abnormal temperatures due to physical damages, physiological disruptions, and biochemical changes. Both these stresses have multi-lateral impacts and therefore, complex in mechanistic action. A better understanding of plant responses to these stresses has pragmatic implication for remedies and management. A comprehensive account of conventional as well as modern approaches to deal with heat and drought stresses have also been presented here. A side-by-side critical discussion on salient responses and management strategies for these two important abiotic stresses provides a unique insight into the phenomena. A holistic approach taking into account the different management options to deal with heat and drought stress simultaneously could be a win-win approach in future. PMID:28706531

  8. Effects of betaine on biological functions in meat-type ducks exposed to heat stress.

    PubMed

    Park, S O; Kim, W K

    2017-05-01

    Heat stress in hot seasons is a major problem in poultry production, particularly in humid areas. The aim of this study was to determine the pharmacodynamics of betaine on the blood and cecal short chain fatty acid profile in meat-type ducks exposed to heat stress. Three-hundred-sixty meat-type ducks (Anas platyrhynchos domesticus) were randomly allocated into 4 treatments: C (heat stress control without betaine), T1 (700 ppm betaine), T2 (1,000 ppm betaine), and T3 (1,300 ppm betaine). Each treatment had 6 replicated pens with 15 meat-type ducks per pen. The study was conducted for 42 days. Our findings revealed that the betaine group had higher body weight gain compared to the control group under heat stress (P < 0.05). Betaine supplementation resulted in more significant improvement in hematological indicators such as RBCs and platelet counts than the heat stress control group (P < 0.05). Under the heat-wave environment, supplementation of betaine manifested a significant decrease in blood pH (P < 0.05) but not in electrolytes (Na+, K+ and Cl-) and gas concentration. The concentration of short chain fatty acids (SCFA) in the cecum was higher than the control under heat stress conditions. The total SCFA, acetic acid, and propionic acid production was higher in the betaine supplemented groups compared to the heat stress control group (P < 0.05). Results showed that betaine supplementation has beneficial effects in meat-type ducks under heat stress on short chain fatty acid levels, blood biochemical parameters, and body weight. © 2016 Poultry Science Association Inc.

  9. Unraveling Main Limiting Sites of Photosynthesis under Below- and Above-Ground Heat Stress in Cucumber and the Alleviatory Role of Luffa Rootstock.

    PubMed

    Li, Hao; Ahammed, Golam J; Zhou, Guona; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Yu, Jingquan; Zhou, Yanhong

    2016-01-01

    Photosynthesis is one of the most thermo-sensitive processes in plants. Although the severity of heat stress could be attenuated by grafting approach, the primary damaged site of photosynthesis system under heat stress and the regulatory mechanism of rootstock-mediated heat tolerance are poorly understood. In the current study, cucumber plants grafted onto their own roots and heat-tolerant luffa roots were exposed to root-zone heat (25/40°C) and aerial heat (40/25°C) individually and in combination (40/40°C) to understand the response of photosynthetic process by investigating energy absorption and distribution, electron transport in photosystem (PS) II and I, and CO2 assimilation. According to the results, root-zone heat stress inhibited photosynthesis mainly through decreasing Rubisco activity, while aerial heat stress mainly through inhibiting PSII acceptor side. The imbalance in light absorption and utilization resulted in accumulation of reactive oxygen species that caused damage to photosynthetic apparatus, forming a vicious cycle. On the contrary, grafting cucumber onto heat-tolerant luffa rootstock alleviated heat-induced photosynthetic inhibition and oxidative stress by maintaining higher root vitality, HSP70 accumulation, and antioxidant potential.

  10. Low-level laser effects on bacterial cultures submitted to heat stress

    NASA Astrophysics Data System (ADS)

    Gonçalves, E. M.; Guimarães, O. R.; Geller, M.; Paoli, F.; Fonseca, A. S.

    2016-06-01

    Low-level lasers have been used worldwide to treat a number of diseases, pain relief, and wound healing. Some studies demonstrated that low-level laser radiations induce effects depending on the physiological state and DNA repair mechanisms of cells. In this work we evaluated the effects of low-level red and infrared lasers on Escherichia coli cells deficient in SOS responses submitted to heat stress. Exponential and stationary E. coli cultures of wild type (AB1157), RecA deficient (AB2463) and LexA deficient (AB2494), both SOS response deficient, were exposed to low-level red and infrared lasers at different fluences and submitted to heat stress (42 °C, 20 min). After that, cell survival and morphology were evaluated. Previous exposure to red, but not infrared lasers, increases survival fractions and decreases the area ratios of E. coli AB1157 cells submitted to heat stress. Our research suggests that a low-level red laser increases cell viability and protects cells from morphological alteration in E. coli cultures submitted to heat stress depending on laser wavelength and SOS response.

  11. Invited review: heat stress effects during late gestation on dry cows and their calves.

    PubMed

    Tao, S; Dahl, G E

    2013-07-01

    In dairy cattle, late gestation is a critical period for fetal growth and physiological transition into the next lactation. Environmental factors, such as temperature and light, exert dramatic effects on the production, health, and well-being of animals during this period and after parturition. The aim of this review was to introduce effects of heat stress during late gestation on dairy cattle, and discuss the biological mechanisms that underlie the observed production and health responses in the dam and her fetus. Relative to cooled cows, cows that are heat stressed during late gestation have impaired mammary growth before parturition and decreased milk production in the subsequent lactation. In response to higher milk yield, cows cooled prepartum undergo a series of homeorhetic adaptations in early lactation to meet higher demand for milk synthesis compared with heat-stressed cows, but no direct effect of environmental heat stress on metabolism exists during the dry period. Prepartum cooling improves immune status of transition cows and evidence suggests that altered prolactin signaling in immune cells mediates the effects of heat stress on immune function. Late-gestation heat stress compromises placental development, which results in fetal hypoxia, malnutrition, and eventually fetal growth retardation. Maternal heat stress may also have carryover effects on the postnatal growth of offspring, but direct evidence is still lacking. Emerging evidence suggests that offspring from prepartum heat-stressed cows have compromised passive immunity and impaired cell-mediated immune function compared with those from cooled cows. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Heat stress and dehydration in adapting for performance: Good, bad, both, or neither?

    PubMed

    Akerman, Ashley Paul; Tipton, Michael; Minson, Christopher T; Cotter, James David

    2016-01-01

    Physiological systems respond acutely to stress to minimize homeostatic disturbance, and typically adapt to chronic stress to enhance tolerance to that or a related stressor. It is legitimate to ask whether dehydration is a valuable stressor in stimulating adaptation per se . While hypoxia has had long-standing interest by athletes and researchers as an ergogenic aid, heat and nutritional stressors have had little interest until the past decade. Heat and dehydration are highly interlinked in their causation and the physiological strain they induce, so their individual roles in adaptation are difficult to delineate. The effectiveness of heat acclimation as an ergogenic aid remains unclear for team sport and endurance athletes despite several recent studies on this topic. Very few studies have examined the potential ergogenic (or ergolytic) adaptations to ecologically-valid dehydration as a stressor in its own right, despite longstanding evidence of relevant fluid-regulatory adaptations from short-term hypohydration. Transient and self-limiting dehydration (e.g., as constrained by thirst), as with most forms of stress, might have a time and a place in physiological or behavioral adaptations independently or by exacerbating other stressors (esp. heat); it cannot be dismissed without the appropriate evidence. The present review did not identify such evidence. Future research should identify how the magnitude and timing of dehydration might augment or interfere with the adaptive processes in behaviorally constrained versus unconstrained humans.

  13. Histological, ultrastructural and heat shock protein 70 (HSP70) responses to heat stress in the sea cucumber Apostichopus japonicus.

    PubMed

    Xu, Dongxue; Sun, Lina; Liu, Shilin; Zhang, Libin; Yang, Hongsheng

    2015-08-01

    The aquaculture industry for Apostichopus japonicus has suffered severe economic and resource losses due to high temperature in recent summers. There is increasing concern about the effect of high temperature on this species. Histological, ultrastructural and HSP70 responses to heat stress were investigated in the intestine of A. japonicus. Tissue degradation was observed in muscular, submucosal and mucosal layers, with significant decrease in plicae circulares of the mucosal layer. Ultrastructural damage intensified with increasing stress time, and indicators of cell apoptosis were evident after 192 h heat stress. Immunostaining showed HSP70 mainly in mucosa and serosa, with faint staining in non-stressed individuals (the control group) and denser staining under stress (the 6, 48 and 192 h groups). Western blot detection confirmed ocurrence of HSP70 in all groups and significant up-regulation under stress. The rapid and persistent response of HSP70 implies its critical role in the heat shock response of A. japonicus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A tomato chloroplast-targeted DnaJ protein protects Rubisco activity under heat stress.

    PubMed

    Wang, Guodong; Kong, Fanying; Zhang, Song; Meng, Xia; Wang, Yong; Meng, Qingwei

    2015-06-01

    Photosynthesis is one of the biological processes most sensitive to heat stress in plants. Carbon assimilation, which depends on ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is one of the major sites sensitive to heat stress in photosynthesis. In this study, the roles of a tomato (Solanum lycopersicum) chloroplast-targeted DnaJ protein (SlCDJ2) in resisting heat using sense and antisense transgenic tomatoes were examined. SlCDJ2 was found to be uniformly distributed in the thylakoids and stroma of the chloroplasts. Under heat stress, sense plants exhibited higher chlorophyll contents and fresh weights, and lower accumulation of reactive oxygen species (ROS) and membrane damage. Moreover, Rubisco activity, Rubisco large subunit (RbcL) content, and CO2 assimilation capacity were all higher in sense plants and lower in antisense plants compared with wild-type plants. Thus, SlCDJ2 contributes to maintenance of CO2 assimilation capacity mainly by protecting Rubisco activity under heat stress. SlCDJ2 probably achieves this by keeping the levels of proteolytic enzymes low, which prevents accelerated degradation of Rubisco under heat stress. Furthermore, a chloroplast heat-shock protein 70 was identified as a binding partner of SlCDJ2 in yeast two-hybrid assays. Taken together, these findings establish a role for SlCDJ2 in maintaining Rubisco activity in plants under heat stress. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Expression of HSPs: an adaptive mechanism during long-term heat stress in goats ( Capra hircus)

    NASA Astrophysics Data System (ADS)

    Dangi, Satyaveer Singh; Gupta, Mahesh; Dangi, Saroj K.; Chouhan, Vikrant Singh; Maurya, V. P.; Kumar, Puneet; Singh, Gyanendra; Sarkar, Mihir

    2015-08-01

    Menacing global rise in surface temperature compelled more focus of research over understanding heat stress response mechanism of animals and mitigation of heat stress. Twenty-four goats divided into four groups ( n = 6) such as NHS (non-heat-stressed), HS (heat-stressed), HS + VC (heat-stressed administered with vitamin C), and HS + VE + Se (heat-stressed administered with vitamin E and selenium). Except NHS group, other groups were exposed to repeated heat stress (42 °C) for 6 h on 16 consecutive days. Blood samples were collected at the end of heat exposure on days 1, 6, 11, and 16. When groups compared between days, expression of all heat shock proteins (HSPs) showed a similar pattern as first peak on day 1, reached to basal level on the sixth day, and followed by second peak on day 16. The relative messenger RNA (mRNA) and protein expression of HSP 60, HSP70, and HSP90 was observed highest ( P < 0.05) in HS group, followed by antioxidant-administered group on days 1 and 16, which signifies that antioxidants have dampening effect on HSP expression. HSP105/110 expression was highest ( P < 0.05) on day 16. We conclude that HSP expression pattern is at least two-peak phenomenon, i.e., primary window of HSP protection on the first day followed by second window of protection on day 16. HSP60, HSP70, and HSP90 play an important role during the initial phase of heat stress acclimation whereas HSP105/110 joins this cascade at later phase. Antioxidants may possibly attenuate the HSP expression by reducing the oxidative stress.

  16. The development of the Hong Kong Heat Index for enhancing the heat stress information service of the Hong Kong Observatory.

    PubMed

    Lee, K L; Chan, Y H; Lee, T C; Goggins, William B; Chan, Emily Y Y

    2016-07-01

    This paper presents a study to develop a heat index, for use in hot and humid sub-tropical climate in Hong Kong. The study made use of hospitalization data and heat stress measurement data in Hong Kong from 2007 to 2011. The heat index, which is called Hong Kong Heat Index (HKHI), is calculated from the natural wet bulb temperature, the globe temperature, and the dry bulb temperature together with a set of coefficients applicable to the high humidity condition in the summer of Hong Kong. Analysis of the response of hospitalization rate to variation in HKHI and two other heat indices, namely Wet Bulb Globe Temperature (WBGT) and Net Effective Temperature (NET), revealed that HKHI performed generally better than WBGT and NET in reflecting the heat stress impact on excess hospitalization ratio in Hong Kong. Based on the study results, two reference criteria of HKHI were identified to establish a two-tier approach for the enhancement of the heat stress information service in Hong Kong.

  17. Effects of heat stress on working populations when facing climate change.

    PubMed

    Lundgren, Karin; Kuklane, Kalev; Gao, Chuansi; Holmér, Ingvar

    2013-01-01

    It is accepted that the earth's climate is changing in an accelerating pace, with already documented implications for human health and the environment. This literature review provides an overview of existing research findings about the effects of heat stress on the working population in relation to climate change. In the light of climate change adaptation, the purpose of the literature review was to explore recent and previous research into the impacts of heat stress on humans in an occupational setting. Heat stress in the workplace has been researched extensively in the past however, in the contemporary context of climate change, information is lacking on its extent and implications. The main factors found to exacerbate heat stress in the current and future workplace are the urban 'heat island effect', physical work, individual differences, and the developing country context where technological fixes are often not applicable. There is also a lack of information on the effects on vulnerable groups such as elderly people and pregnant women. As increasing temperatures reduce work productivity, world economic productivity could be condensed, affecting developing countries in the tropical climate zone disproportionately. Future research is needed taking an interdisciplinary approach, including social, economic, environmental and technical aspects.

  18. Acute brief heat stress in late gestation alters neonatal calf innate immune functions

    USDA-ARS?s Scientific Manuscript database

    Heat stress (HS), as one of the environmental stressors affecting the dairy industry, compromises the cow's milk production, immune function, and reproductive system. However, few studies have looked at how prenatal HS affects the offspring. The objective of this study was to evaluate the effect of ...

  19. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling.

    PubMed

    Liu, Bing; Asseng, Senthold; Liu, Leilei; Tang, Liang; Cao, Weixing; Zhu, Yan

    2016-05-01

    Higher temperatures caused by future climate change will bring more frequent heat stress events and pose an increasing risk to global wheat production. Crop models have been widely used to simulate future crop productivity but are rarely tested with observed heat stress experimental datasets. Four wheat models (DSSAT-CERES-Wheat, DSSAT-Nwheat, APSIM-Wheat, and WheatGrow) were evaluated with 4 years of environment-controlled phytotron experimental datasets with two wheat cultivars under heat stress at anthesis and grain filling stages. Heat stress at anthesis reduced observed grain numbers per unit area and individual grain size, while heat stress during grain filling mainly decreased the size of the individual grains. The observed impact of heat stress on grain filling duration, total aboveground biomass, grain yield, and grain protein concentration (GPC) varied depending on cultivar and accumulated heat stress. For every unit increase of heat degree days (HDD, degree days over 30 °C), grain filling duration was reduced by 0.30-0.60%, total aboveground biomass was reduced by 0.37-0.43%, and grain yield was reduced by 1.0-1.6%, but GPC was increased by 0.50% for cv Yangmai16 and 0.80% for cv Xumai30. The tested crop simulation models could reproduce some of the observed reductions in grain filling duration, final total aboveground biomass, and grain yield, as well as the observed increase in GPC due to heat stress. Most of the crop models tended to reproduce heat stress impacts better during grain filling than at anthesis. Some of the tested models require improvements in the response to heat stress during grain filling, but all models need improvements in simulating heat stress effects on grain set during anthesis. The observed significant genetic variability in the response of wheat to heat stress needs to be considered through cultivar parameters in future simulation studies. © 2016 John Wiley & Sons Ltd.

  20. Effects of dietary selenium, vitamin E, and their combination on growth, serum metabolites, and antioxidant defense system in skeletal muscle of broilers under heat stress.

    PubMed

    Ghazi Harsini, Shahab; Habibiyan, Mahmood; Moeini, Mohammad Mehdi; Abdolmohammadi, Ali Reza

    2012-09-01

    This experiment was conducted to evaluate the effects of dietary vitamin E, selenium (Se), and a combination of the two, on the performance, serum metabolites and oxidative stability of skeletal muscle of broilers during heat stress. The broilers raised in either a thermoneutral (23.9°C constant) or heat stress (23.9°C to 37°C cycling) environment were assigned to 6 dietary treatments (0, 0.5, or 1 mg/kg Se; 125 and 250 mg/kg vitamin E; or 0.5 mg/kg Se plus 125 mg/kg vitamin E) from 1 to 49 days of age. At the end of the experiment, blood samples were collected from chicks, the chicks sacrificed, and pectoralis superficialis muscle was used for measurement of malondialdehyde (MDA) concentration and enzyme activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD). The heat-stressed chicks consumed less feed, gained less weight, and had higher feed conversion ratio when compared to thermoneutral chicks (P<0.05). Serum concentrations of iron (Fe) and zinc (Zn) were decreased by heat stress (P<0.05), whereas the serum concentrations of copper (Cu), glucose, and uric acid were significantly increased under heat stress (P<0.05). The chicks that received supplemental of vitamin E exhibited significantly higher serum concentrations of Zn (P<0.05) and significantly lower concentrations of Cu, glucose, and uric acid (P<0.05) when exposed to heat stress. Dietary Se also caused a significant decrease in serum glucose, uric acid, and Cu concentrations of heat-stressed broilers (P<0.05), but had no significant effect on Zn concentration (P>0.05). The GPx activity remained relatively constant (P>0.05), though SOD activity and MDA levels in skeletal muscle were enhanced on exposure to heat stress (P<0.05). The heat-stressed chicks that received the combined supplementary level of vitamin E and Se had the lowest concentration of MDA and the highest activity of SOD in the skeletal muscle (P<0.05). Dietary Se also caused a significant increase in enzyme activity of

  1. Thermoregulatory disorders and illness related to heat and cold stress.

    PubMed

    Cheshire, William P

    2016-04-01

    Thermoregulation is a vital function of the autonomic nervous system in response to cold and heat stress. Thermoregulatory physiology sustains health by keeping body core temperature within a degree or two of 37°C, which enables normal cellular function. Heat production and dissipation are dependent on a coordinated set of autonomic responses. The clinical detection of thermoregulatory impairment provides important diagnostic and localizing information in the evaluation of disorders that impair thermoregulatory pathways, including autonomic neuropathies and ganglionopathies. Failure of neural thermoregulatory mechanisms or exposure to extreme or sustained temperatures that overwhelm the body's thermoregulatory capacity can also result in potentially life-threatening departures from normothermia. Hypothermia, defined as a core temperature of <35.0°C, may present with shivering, respiratory depression, cardiac dysrhythmias, impaired mental function, mydriasis, hypotension, and muscle dysfunction, which can progress to cardiac arrest or coma. Management includes warming measures, hydration, and cardiovascular support. Deaths from hypothermia are twice as frequent as deaths from hyperthermia. Hyperthermia, defined as a core temperature of >40.5°C, may present with sweating, flushing, tachycardia, fatigue, lightheadedness, headache, and paresthesia, progressing to weakness, muscle cramps, oliguria, nausea, agitation, hypotension, syncope, confusion, delirium, seizures, and coma. Mental status changes and core temperature distinguish potentially fatal heat stroke from heat exhaustion. Management requires the immediate reduction of core temperature. Ice water immersion has been shown to be superior to alternative cooling measures. Avoidance of thermal risk and early recognition of cold or heat stress are the cornerstones of preventive therapy. Copyright © 2016 The Author. Published by Elsevier B.V. All rights reserved.

  2. Effects of City Expansion on Heat Stress under Climate Change Conditions

    PubMed Central

    Argüeso, Daniel; Evans, Jason P.; Pitman, Andrew J.; Di Luca, Alejandro

    2015-01-01

    We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990–2009) and future (2040–2059) simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort. PMID:25668390

  3. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress.

    PubMed

    Suzuki, Nobuhiro; Bassil, Elias; Hamilton, Jason S; Inupakutika, Madhuri A; Zandalinas, Sara Izquierdo; Tripathy, Deesha; Luo, Yuting; Dion, Erin; Fukui, Ginga; Kumazaki, Ayana; Nakano, Ruka; Rivero, Rosa M; Verbeck, Guido F; Azad, Rajeev K; Blumwald, Eduardo; Mittler, Ron

    2016-01-01

    Abiotic stresses such as drought, heat or salinity are a major cause of yield loss worldwide. Recent studies revealed that the acclimation of plants to a combination of different environmental stresses is unique and cannot be directly deduced from studying the response of plants to each of the different stresses applied individually. Here we report on the response of Arabidopsis thaliana to a combination of salt and heat stress using transcriptome analysis, physiological measurements and mutants deficient in abscisic acid, salicylic acid, jasmonic acid or ethylene signaling. Arabidopsis plants were found to be more susceptible to a combination of salt and heat stress compared to each of the different stresses applied individually. The stress combination resulted in a higher ratio of Na+/K+ in leaves and caused the enhanced expression of 699 transcripts unique to the stress combination. Interestingly, many of the transcripts that specifically accumulated in plants in response to the salt and heat stress combination were associated with the plant hormone abscisic acid. In accordance with this finding, mutants deficient in abscisic acid metabolism and signaling were found to be more susceptible to a combination of salt and heat stress than wild type plants. Our study highlights the important role abscisic acid plays in the acclimation of plants to a combination of two different abiotic stresses.

  4. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress

    PubMed Central

    Suzuki, Nobuhiro; Bassil, Elias; Hamilton, Jason S.; Inupakutika, Madhuri A.; Zandalinas, Sara Izquierdo; Tripathy, Deesha; Luo, Yuting; Dion, Erin; Fukui, Ginga; Kumazaki, Ayana; Nakano, Ruka; Rivero, Rosa M.; Verbeck, Guido F.; Azad, Rajeev K.; Blumwald, Eduardo; Mittler, Ron

    2016-01-01

    Abiotic stresses such as drought, heat or salinity are a major cause of yield loss worldwide. Recent studies revealed that the acclimation of plants to a combination of different environmental stresses is unique and cannot be directly deduced from studying the response of plants to each of the different stresses applied individually. Here we report on the response of Arabidopsis thaliana to a combination of salt and heat stress using transcriptome analysis, physiological measurements and mutants deficient in abscisic acid, salicylic acid, jasmonic acid or ethylene signaling. Arabidopsis plants were found to be more susceptible to a combination of salt and heat stress compared to each of the different stresses applied individually. The stress combination resulted in a higher ratio of Na+/K+ in leaves and caused the enhanced expression of 699 transcripts unique to the stress combination. Interestingly, many of the transcripts that specifically accumulated in plants in response to the salt and heat stress combination were associated with the plant hormone abscisic acid. In accordance with this finding, mutants deficient in abscisic acid metabolism and signaling were found to be more susceptible to a combination of salt and heat stress than wild type plants. Our study highlights the important role abscisic acid plays in the acclimation of plants to a combination of two different abiotic stresses. PMID:26824246

  5. Age-related effects of heat stress on protective enzymes for peroxides and microsomal monooxygenase in rat liver.

    PubMed Central

    Ando, M; Katagiri, K; Yamamoto, S; Wakamatsu, K; Kawahara, I; Asanuma, S; Usuda, M; Sasaki, K

    1997-01-01

    To evaluate the age-related response of essential cell functions against peroxidative damage in hyperthermia, we studied the biochemical response to heat stress in both young and aged rats. Passive hyperthermia was immediately observed in rats after exposure to hot environments. In aged rats, the rectal temperature maintained thermal homeostasis and increased to the same degree as in young rats. In these aged animals, the damage from heat stress was more serious than in young animals. In aged rats under normal environmental conditions, hepatic cytosolic glutathione peroxidase (GSH peroxidase) activities were markedly higher than those activities in younger rats. Hepatic cytosolic GSH peroxidase activities were induced by heat stress in young rats but were decreased by hot environments in aged rats. Hepatic catalase activities in young rats were not affected by hot environments, whereas in aged rats, hepatic catalase activities were seriously decreased. Catalase activities in the kidney of aged rats were also reduced by hot environments. Lipid peroxidation in the liver was markedly induced in both young and aged rats. Because the protective enzymes for oxygen radicals in aged rats were decreased by hot environments, lipid peroxidation in the liver was highly induced. In aged rats, lipid peroxidation in intracellular structures such as mitochondria and microsomes was also markedly induced by hot environments. In both young and aged rats, hyperthermia greatly increased the development of hypertrophy and vacuolated degeneration in hepatic cells. In aged rats, both mitochondria and endoplasmic reticulum of the hepatic cells showed serious distortion in shape as a result of exposures to hot environments. Microsomal electron transport systems, such as cytochrome P450 monooxygenase activities, were seriously decreased by heat stress in aged rats but not in young rats. Although the mitochondrial electron transport systems were not affected by acute heat stress in young rats

  6. Heat strain and heat stress for workers wearing protective suits at a hazardous waste site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paull, J.M.; Rosenthal, F.S.

    1987-05-01

    In order to evaluate the effects of heat stress when full body protective suits are worn, heart rates, oral temperatures and environmental parameters were measured for five unacclimatized male workers (25-33 years of age) who performed sampling activities during hazardous waste clean-up operations. The protective ensembles included laminated PVC-Tyvec chemical resistant hood suits with rubber boots, gloves, full facepiece dual cartridge respirators and hard hats. For comparison, measurements also were performed when the men worked at a similar level of activity while they wore ordinary work clothes. A comparison of the heart rates for the men working with and withoutmore » suits indicated that wearing the suits imposed a heat stress equivalent to adding 6/sup 0/ to 11/sup 0/C (11/sup 0/ to 20/sup 0/F) to the ambient WBGT index. A similar result was obtained by calculating the WBGT in the microclimate inside the suits and comparing it to the ambient WBGT. These results indicate the following: 1) there exists a significant risk of heat injury during hazardous waste work when full body protective clothing is worn, and 2) threshold limit values for heat stress established by the ACGIH must be lowered substantially before extending them to cover workers under these conditions.« less

  7. Communicating the deadly consequences of global warming for human heat stress

    NASA Astrophysics Data System (ADS)

    Matthews, Tom K. R.; Wilby, Robert L.; Murphy, Conor

    2017-04-01

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  8. Communicating the deadly consequences of global warming for human heat stress

    PubMed Central

    Matthews, Tom K. R.; Wilby, Robert L.; Murphy, Conor

    2017-01-01

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations. PMID:28348220

  9. Communicating the deadly consequences of global warming for human heat stress.

    PubMed

    Matthews, Tom K R; Wilby, Robert L; Murphy, Conor

    2017-04-11

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  10. Intermittent hyperthyreosis -- a heat stress syndrome.

    PubMed

    Sulman, F G; Tal, E; Pfeifer, Y; Superstine

    1975-09-01

    Intermittent hyperthyreosis occurs under various forms of stress, especially heat stress. The clinician may diagnose such cases as masked or apathetic hyperthyroidism or "forme fruste" hyperthyreosis or thyroid autonomy. As most routine and standard tests may here yield inconsistent results, it is the patients' anamnesis which may provide the clue. Our Bioclimatology Unit has now seen over 100 cases in which thyroid hypersensitivity towards heat was the most prominent syndrome: 10-15% of weather-sensitive patients are affected. The patients complain before or during heat spells of such contradictory symptoms as insomnia, irritability, tension, tachycardia, palpitations, precordial pain, dyspnoe, flushes with sweating or chills, tremor, abdominal pain or diarrhea, polyuria or pollakisuria, weight loss in spite of ravenous appetite, fatigue, exhaustion, depression, adynamia, lack of concentration and confusion. Determination of urinary neurohormones allows a differential diagnosis, intermittent hyperthyreosis being characterized by three cardinal symptoms: 1. tachycardia -- every case with more than 80 pulse beats being suspect (not specific); 2. urinary histamine -- every case excreting more than 90 mug/day being suspect. Again the drawback of this test is its lack of specificity, as histamine may also be increased in cases of allergy and spondylitis; 3. urinary thyroxine -- every case excreting more than 20 mug/day T-4 being suspect. This is the only specific test. Therapy should make use of lithium carbonate and beta-blockers. Propyl thiouracil is rarely required.

  11. Effect of acute heat stress on plant nutrient metabolism proteins

    USDA-ARS?s Scientific Manuscript database

    Abrupt heating decreased the levels (per unit total root protein) of all but one of the nutrient metabolism proteins examined, and for most of the proteins, effects were greater for severe vs. moderate heat stress. For many of the nutrient metabolism proteins, initial effects of heat (1 d) were r...

  12. Low, medium and high heat tolerant strains of Listeria monocytogenes and increased heat stress resistance after exposure to sublethal heat

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes exhibits sophisticated adaptive mechanisms to counteract higher levels of lethal acid, heat, salt or oxidative stresses after pre-exposure to sublethal concentrations of homogenous stress. A group of 37 strains representing all 13 serotypes of Listeria monocytogenes with initi...

  13. Role of SIRT1 in heat stress- and lipopolysaccharide-induced immune and defense gene expression in human dental pulp cells.

    PubMed

    Lee, Sang-Im; Min, Kyung-San; Bae, Won-Jung; Lee, Young-Man; Lee, So-Youn; Lee, Eui-Suk; Kim, Eun-Cheol

    2011-11-01

    Although bacterial infection and heat stress are common causes of injury in human dental pulp cells (HDPCs), little is known about the potential defense mechanisms mediating their effects. This study examined the role of SIRT1 in mediating heat stress and lipopolysaccharide (LPS)-induced immune and defense gene expression in HDPCs. HDPCs were exposed to heat stress (42°C) for 30 minutes after stimulation with LPS (1 μg/mL) for 48 hours. The expression of defense genes was evaluated by reverse-transcriptase polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay. LPS and heat stress synergistically increased the expression of SIRT1 and immune and defense genes such as interleukin (IL)-8, hemeoxygenase-1 (HO-1), and human β-defensin 2 (hBD-2). Resveratrol enhanced LPS- and heat stress-induced expression of HO-1 and hBD-2 but reduced IL-8 messenger RNA levels. The stimulation of HO-1 and hBD-2 messenger RNA expression by LPS and heat stress was inhibited by sirtinol; SIRT1 small interfering RNA; and inhibitors of p38, ERK, JNK, and nuclear factor κB. These results show for the first time that SIRT1 mediates the induction of immune and defense gene expression in HDPCs by LPS and heat stress. SIRT1 may play a pivotal role in host immune defense system in HDPCS. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Apoptosis in response to heat stress is positively associated with heat-shock protein 90 expression in chicken myocardial cells in vitro.

    PubMed

    Zhang, Xiao-Hui; Wu, Hong; Tang, Shu; Li, Qiao-Ning; Xu, Jiao; Zhang, Miao; Su, Ya-Nan; Yin, Bin; Zhao, Qi-Ling; Kemper, Nicole; Hartung, Joerg; Bao, En-Dong

    2017-06-30

    To determine heat-shock protein (Hsp)90 expression is connected with cellular apoptotic response to heat stress and its mechanism, chicken ( Gallus gallus ) primary myocardial cells were treated with the Hsp90 promoter, aspirin, and its inhibitor, geldanamycin (GA), before heat stress. Cellular viability, heat-stressed apoptosis and reactive oxygen species level under different treatments were measured, and the expression of key proteins of the signaling pathway related to Hsp90 and their colocalization with Hsp90 were detected. The results showed that aspirin treatment increased the expression of protein kinase B (Akt), the signal transducer and activator of transcription (STAT)-3 and p-IKKα/β and the colocalization of Akt and STAT-3 with Hsp90 during heat stress, which was accompanied by improved viability and low apoptosis. GA significantly inhibited Akt expression and p-IKKα/β level, but not STAT-3 quantity, while the colocalization of Akt and STAT-3 with Hsp90 was weakened, followed by lower cell viability and higher apoptosis. Aspirin after GA treatment partially improved the stress response and apoptosis rate of tested cells caused by the recovery of Akt expression and colocalization, rather than the level of STAT-3 (including its co-localization with Hsp90) and p-IKKα/β. Therefore, Hsp90 expression has a positive effect on cellular capacity to resist heat-stressed injury and apoptosis. Moreover, inhibition of Hsp90 before stress partially attenuated its positive effects.

  15. Transcription of four Rhopalosiphum padi (L.) heat shock protein genes and their responses to heat stress and insecticide exposure.

    PubMed

    Li, Yuting; Zhao, Qi; Duan, Xinle; Song, Chunman; Chen, Maohua

    2017-03-01

    The bird cherry-oat aphid, Rhopalosiphum padi (L.), a worldwide destructive pest, is more heat tolerant than other wheat aphids, and it has developed resistance to different insecticides. Heat shock proteins (HSPs) play an important role in coping with environmental stresses. To investigate Hsp transcriptional responses to heat and insecticide stress, four full-length Hsp genes from R. padi (RpHsp60, RpHsc70, RpHsp70-1, and RpHsp70-2) were cloned. Four RpHsps were expressed during all R. padi developmental stages, but at varying levels. The mRNA levels of RpHsps were increased under thermal stress and reached maximal induction at a lower temperature (36°C) in the alate morph than in the apterous morph (37°C or 38°C). RpHsp expressions under heat stress suggest that RpHsp70-1 and RpHsp70-2 are inducible in both apterous and alate morphs, RpHsc70 is only heat-inducible in apterous morph, and RpHsp60 exhibits poor sensitivity to heat stress. The pretreatment at 37°C significantly increase both the survival rate and the RpHsps expression level of R. padi at subsequent lethal temperature. Under exposure to two sublethal concentrations (LC 10 and LC 30 ) of beta-cypermethrin, both RpHsp70-1 and RpHsp70-2 expressions were induced and reached a maximum 24h after exposure. In contrast, expression of RpHsp60 was not induced by either sublethal concentration of beta-cypermethrin. Moreover, the responses of RpHsp70-1 and RpHsp70-2 to heat shock were more sensitive than those to beta-cypermethrin. These results suggest that induction of RpHsp expression is related to thermal tolerance, and that RpHsp70-1 and RpHsp70-2 are the primary genes involved in the response to both heat and pesticide stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5

    NASA Astrophysics Data System (ADS)

    Buzan, J. R.; Oleson, K.; Huber, M.

    2014-08-01

    We implement and analyze 13 different metrics (4 moist thermodynamic quantities and 9 heat stress metrics) in the Community Land Model (CLM4.5), the land surface component of the Community Earth System Model (CESM). We call these routines the HumanIndexMod. These heat stress metrics embody three philosophical approaches: comfort, physiology, and empirically based algorithms. The metrics are directly connected to CLM4.5 BareGroundFuxesMod, CanopyFluxesMod, SlakeFluxesMod, and UrbanMod modules in order to differentiate between the distinct regimes even within one gridcell. This allows CLM4.5 to calculate the instantaneous heat stress at every model time step, for every land surface type, capturing all aspects of non-linearity in moisture-temperature covariance. Secondary modules for initialization and archiving are modified to generate the metrics as standard output. All of the metrics implemented depend on the covariance of near surface atmospheric variables: temperature, pressure, and humidity. Accurate wet bulb temperatures are critical for quantifying heat stress (used by 5 of the 9 heat stress metrics). Unfortunately, moist thermodynamic calculations for calculating accurate wet bulb temperatures are not in CLM4.5. To remedy this, we incorporated comprehensive water vapor calculations into CLM4.5. The three advantages of adding these metrics to CLM4.5 are (1) improved thermodynamic calculations within climate models, (2) quantifying human heat stress, and (3) that these metrics may be applied to other animals as well as industrial applications. Additionally, an offline version of the HumanIndexMod is available for applications with weather and climate datasets. Examples of such applications are the high temporal resolution CMIP5 archived data, weather and research forecasting models, CLM4.5 flux tower simulations (or other land surface model validation studies), and local weather station data analysis. To demonstrate the capabilities of the HumanIndexMod, we

  17. Heating systems for heating subsurface formations

    DOEpatents

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  18. Climate change projections of heat stress in Europe: From meteorological variables to impacts on productivity

    NASA Astrophysics Data System (ADS)

    Casanueva, Ana; Kotlarski, Sven; Liniger, Mark A.

    2017-04-01

    Future climate change is likely to have important impacts in many socio-economic sectors. In particular, higher summer temperatures or more prolonged heat waves may be responsible for health problems and productivity losses related to heat stress, especially affecting people exposed to such situations (e.g. working under outside settings or in non-acclimatized workplaces). Heat stress on the body under work load and consequently their productivity loss can be described through heat stress indices that are based on multiple meteorological parameters such as temperature, humidity, wind and radiation. Exploring the changes of these variables under a warmer climate is of prime importance for the Impacts, Adaptation and Vulnerability communities. In particular, the H2020 project HEAT-SHIELD aims at analyzing the impact of climate change on heat stress in strategic industries in Europe (manufacturing, construction, transportation, tourism and agriculture) within an inter-sectoral framework (climate scientists, biometeorologists, physiologists and stakeholders). In the present work we explore present and future heat stress over Europe using an ensemble of the state-of-the-art RCMs from the EURO-CORDEX initiative. Since RCMs cannot be directly used in impact studies due to their partly substantial biases, a standard bias correction method (empirical quantile mapping) is applied to correct the individual variables that are then used to derive heat stress indices. The objectives of this study are twofold, 1) to test the ability of the separately bias corrected variables to reproduce the main characteristics of heat stress indices in present climate conditions and 2) to explore climate change projections of heat stress indices. We use the wet bulb globe temperature (WBGT) as primary heat stress index, considering two different versions for indoor (or in the shade, based on temperature and humidity conditions) and outdoor settings (including also wind and radiation). The WBGT

  19. Inorganic zinc supplementation modulates heat shock and immune response in heat stressed peripheral blood mononuclear cells of periparturient dairy cows.

    PubMed

    Sheikh, Aasif Ahmad; Aggarwal, Anjali; B, Indu; Aarif, Ovais

    2017-06-01

    Thermal stress in India is one of the major constraints affecting dairy cattle productivity. Every attempt should be made to ameliorate the heat and calving related stress in high producing dairy cows for higher economic returns. In the current study, inorganic zinc was tried to alleviate the adverse effects of thermal stress in periparturient cows. Twelve cows, six each of Sahiwal and Karan Fries (KF) in their second parity with confirmed pregnancy were chosen for the experiment. The blood samples were collected periparturiently on three occasions viz. -21, 0 and +21 days relative to calving. The in vitro study was conducted after isolating peripheral blood mononuclear cells (PBMC) from whole blood. The cultured PBMC were subjected to three different levels of exposures viz. 37°C as control, 42°C to induce thermal stress and 42°C + zinc to ameliorate the adverse effects of high temperature. Heat shock lead to a significant (P<0.05) rise in the level of heat shock proteins (HSP). HSP was more on the day of calving as well. KF showed more HSP concentration than Sahiwal breed indicating the heat bearing capacity of later. Zinc treatment to thermally stressed PBMC caused a fall in the HSP concentration in both the breeds during periparturient period. Moreover, heat stress increased significantly (P<0.05) the Interleukin 6 (IL-6) concentration which declined upon zinc supplementation to PBMC. IL-6 levels decreased periparturiently. Heat and calving related stress caused a fall in the IL-12 levels which increased significantly (P<0.05) with zinc supplementation. These findings suggest that zinc supplementation attenuates the HSP response and augments immunity in PBMC of periparturient dairy cows. The study could help to alleviate the heat stress and potentiate immunity by providing mineral supplements in periparturient dairy cattle habituating tropics. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Residual stresses in AM fabricated ball during a heating process

    NASA Astrophysics Data System (ADS)

    Burenin, A. A.; Murashkin, E. V.; Dats, E. P.

    2018-05-01

    The present study is devoted to the problem of residual stresses calculation in AM fabricated ball during heating. Strains of the ball are assumed to be small, which allows to use the apparatus of the theory of thermoelastoplastic akin to Prandtl and Reuss. The problem of the evolution of the field of residual stresses in the ball at a given temperature on its external border is solved. The heat conduction equation and the equilibrium equations may be independently integrated when the hypothesis of the insignificance of the coupled effects of thermal and mechanical processes is adopted. The fields of residual stresses and displacements are computed.

  1. Alpha adrenergic regulation of celiac blood flow and plasma catecholamine response during acute heat stress in fed cockerels.

    PubMed

    Bottje, W G; Harrison, P C

    1986-08-01

    Hubbard cockerels with chronically implanted electromagnetic blood flow probes on the celiac artery were used to establish a relationship between changes in postprandial celiac mean blood flow (MBF) and plasma catecholamines during a acute heat exposure. Five min after the elevation of ambient temperature from 25 to 37 C, there were concomitant reductions (P less than .05) in celiac MBF, norepinephrine (NE), and heart rate (HR). After 50 min of heat stress, rectal temperature (Tr), respiratory rate (RR), plasma epinephrine (E), and celiac vascular resistance (CVR) were significantly greater (P less than .05) than preheat stress thermoneutral control values. During the thermoneutral recovery period, all parameters returned to values comparable to preheat exposure control with the exception of NE, which tended (P less than .1) to remain lower. To determine the role of the sympathetic nervous system in regulating postprandial celiac MBF during acute heat exposure, chronically instrumented cockerels were infused with phenoxybenzamine, an alpha-adrenergic receptor-blocking agent. Alpha-receptor blockade attenuated both postprandial intestinal hyperemia under thermoneutral conditions as well as the heat-induced reduction of postprandial celiac MBF. The results of these studies implicate the sympathetic nervous system in the regulation of postprandial celiac MBF in heat-stressed cockerels and indicate a possible alpha-adrenergic-mediated mechanism involved in postprandial intestinal hyperemia.

  2. Impact of heat stress on health and performance of dairy animals: A review

    PubMed Central

    Das, Ramendra; Sailo, Lalrengpuii; Verma, Nishant; Bharti, Pranay; Saikia, Jnyanashree; Imtiwati; Kumar, Rakesh

    2016-01-01

    Sustainability in livestock production system is largely affected by climate change. An imbalance between metabolic heat production inside the animal body and its dissipation to the surroundings results to heat stress (HS) under high air temperature and humid climates. The foremost reaction of animals under thermal weather is increases in respiration rate, rectal temperature and heart rate. It directly affect feed intake thereby, reduces growth rate, milk yield, reproductive performance, and even death in extreme cases. Dairy breeds are typically more sensitive to HS than meat breeds, and higher producing animals are, furthermore, susceptible since they generates more metabolic heat. HS suppresses the immune and endocrine system thereby enhances susceptibility of an animal to various diseases. Hence, sustainable dairy farming remains a vast challenge in these changing climatic conditions globally. PMID:27057109

  3. Effects of heat shock protein 90 expression on pectoralis major oxidation in broilers exposed to acute heat stress.

    PubMed

    Hao, Y; Gu, X H

    2014-11-01

    This study was conducted to determine the effects of heat shock protein 90 (HSP90) expression on pH, lipid peroxidation, heat shock protein 70 (HSP70), and glucocorticoid receptor (GR) expression of pectoralis major in broilers exposed to acute heat stress. In total, 90 male broilers were randomly allocated to 3 groups: control (CON), heat stress (HS), or geldanamycin treatment (GA). On d 41, the broilers in the GA group were injected intraperitoneally with GA (5 μg/kg of BW), and the broilers in the CON and HS groups were injected intraperitoneally with saline. Twenty-four hours later, the broilers in the CON group were moved to environmental chambers controlled at 22°C for 2 h, and the broilers in the HS and GA groups were moved to environmental chambers controlled at 40°C for 2 h. The pH values of the pectoralis major after 30 min and 24 h of chilling after slaughter of HS and GA broilers were significantly lower (P < 0.01) than those of the CON broilers. Heat stress caused significant increases in sera corticosterone and lactic dehydrogenase, the activity of malondialdehyde and superoxide dismutase, the expression of HSP90 and HSP70, and nuclear expression of GR protein in the pectoralis major (P < 0.05). Heat stress induced a significant decrease in GR protein expression in the cytoplasm and GR mRNA expression. Furthermore, the low expression of HSP90 significantly increased levels of lactic dehydrogenase and malondialdehyde and GR protein expression in the cytoplasm under heat stress (P < 0.01), and significantly decreased nuclear GR protein expression (P < 0.01). Heat shock protein 90 was positively correlated with corticosterone and superoxide dismutase activities (P < 0.01), and HSP90 mRNA was negatively correlated with pH after chilling for 24 h. The results demonstrated that HSP90 plays a pivotal role in protecting cells from oxidation. ©2014 Poultry Science Association Inc.

  4. Cutaneous interstitial nitric oxide concentration does not increase during heat stress in humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.; MacLean, D. A.

    2001-01-01

    Inhibition of cutaneous nitric oxide (NO) synthase reduces the magnitude of cutaneous vasodilation during whole body heating in humans. However, this observation is insufficient to conclude that NO concentration increases in the skin during a heat stress. This study was designed to test the hypothesis that whole body heating increases cutaneous interstitial NO concentration. This was accomplished by placing 2 microdialysis membranes in the forearm dermal space of 12 subjects. Both membranes were perfused with lactated Ringer solutions at a rate of 2 microl/min. In both normothermia and during whole body heating via a water perfused suit, dialysate from these membranes were obtained and analyzed for NO using the chemiluminescence technique. In six of these subjects, after the heat stress, the membranes were perfused with a 1 M solution of acetylcholine to stimulate NO release. Dialysate from these trials was also assayed to quantify cutaneous interstitial NO concentration. Whole body heating increased skin temperature from 34.6 +/- 0.2 to 38.8 +/- 0.2 degrees C (P < 0.05), which increased sublingual temperature (36.4 +/- 0.1 to 37.6 +/- 0.1 degrees C; P < 0.05), heart rate (63 +/- 5 to 93 +/- 5 beats/min; P < 0.05), and skin blood flow over the membranes (21 +/- 4 to 88 +/- 10 perfusion units; P < 0.05). NO concentration in the dialysate did not increase significantly during of the heat stress (7.6 +/- 0.7 to 8.6 +/- 0.8 microM; P > 0.05). After the heat stress, administration of acetylcholine in the perfusate significantly increased skin blood flow (128 +/- 6 perfusion units) relative to both normothermic and heat stress values and significantly increased NO concentration in the dialysate (15.8 +/- 2.4 microM). These data suggest that whole body heating does not increase cutaneous interstitial NO concentration in forearm skin. Rather, NO may serve in a permissive role in facilitating the effects of an unknown neurotransmitter, leading to cutaneous vasodilation

  5. How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigra.

    PubMed

    Kask, Kaia; Kännaste, Astrid; Talts, Eero; Copolovici, Lucian; Niinemets, Ülo

    2016-09-01

    Brassicales release volatile glucosinolate breakdown products upon tissue mechanical damage, but it is unclear how the release of glucosinolate volatiles responds to abiotic stresses such as heat stress. We used three different heat treatments, simulating different dynamic temperature conditions in the field to gain insight into stress-dependent changes in volatile blends and photosynthetic characteristics in the annual herb Brassica nigra (L.) Koch. Heat stress was applied by either heating leaves through temperature response curve measurements from 20 to 40 °C (mild stress), exposing plants for 4 h to temperatures 25-44 °C (long-term stress) or shock-heating leaves to 45-50 °C. Photosynthetic reduction through temperature response curves was associated with decreased stomatal conductance, while the reduction due to long-term stress and collapse of photosynthetic activity after heat shock stress were associated with non-stomatal processes. Mild stress decreased constitutive monoterpene emissions, while long-term stress and shock stress resulted in emissions of the lipoxygenase pathway and glucosinolate volatiles. Glucosinolate volatile release was more strongly elicited by long-term stress and lipoxygenase product released by heat shock. These results demonstrate that glucosinolate volatiles constitute a major part of emission blend in heat-stressed B. nigra plants, especially upon chronic stress that leads to induction responses. © 2016 John Wiley & Sons Ltd.

  6. Whole body heat stress attenuates the pressure response to muscle metaboreceptor stimulation in humans.

    PubMed

    Cui, Jian; Blaha, Cheryl; Sinoway, Lawrence I

    2016-11-01

    The effects of whole body heat stress on sympathetic and cardiovascular responses to stimulation of muscle metaboreceptors and mechanoreceptors remains unclear. We examined the muscle sympathetic nerve activity (MSNA), blood pressure, and heart rate in 14 young healthy subjects during fatiguing isometric handgrip exercise, postexercise circulatory occlusion (PECO), and passive muscle stretch during PECO. The protocol was performed under normothermic and whole body heat stress (increase internal temperature ~0.6°C via a heating suit) conditions. Heat stress increased the resting MSNA and heart rate. Heat stress did not alter the mean blood pressure (MAP), heart rate, and MSNA responses (i.e., changes) to fatiguing exercise. During PECO, whole body heat stress accentuated the heart rate response [change (Δ) of 5.8 ± 1.5 to Δ10.0 ± 2.1 beats/min, P = 0.03], did not alter the MSNA response (Δ16.4 ± 2.8 to Δ17.3 ± 3.8 bursts/min, P = 0.74), and lowered the MAP response (Δ20 ± 2 to Δ12 ± 1 mmHg, P < 0.001). Under normothermic conditions, passive stretch during PECO evoked significant increases in MAP and MSNA (both P < 0.001). Of note, heat stress prevented the MAP and MSNA responses to stretch during PECO (both P > 0.05). These data suggest that whole body heat stress attenuates the pressor response due to metaboreceptor stimulation, and the sympathetic nerve response due to mechanoreceptor stimulation. Copyright © 2016 the American Physiological Society.

  7. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches.

    PubMed

    Jin, Zhenong; Zhuang, Qianlai; Tan, Zeli; Dukes, Jeffrey S; Zheng, Bangyou; Melillo, Jerry M

    2016-09-01

    Stresses from heat and drought are expected to increasingly suppress crop yields, but the degree to which current models can represent these effects is uncertain. Here we evaluate the algorithms that determine impacts of heat and drought stress on maize in 16 major maize models by incorporating these algorithms into a standard model, the Agricultural Production Systems sIMulator (APSIM), and running an ensemble of simulations. Although both daily mean temperature and daylight temperature are common choice of forcing heat stress algorithms, current parameterizations in most models favor the use of daylight temperature even though the algorithm was designed for daily mean temperature. Different drought algorithms (i.e., a function of soil water content, of soil water supply to demand ratio, and of actual to potential transpiration ratio) simulated considerably different patterns of water shortage over the growing season, but nonetheless predicted similar decreases in annual yield. Using the selected combination of algorithms, our simulations show that maize yield reduction was more sensitive to drought stress than to heat stress for the US Midwest since the 1980s, and this pattern will continue under future scenarios; the influence of excessive heat will become increasingly prominent by the late 21st century. Our review of algorithms in 16 crop models suggests that the impacts of heat and drought stress on plant yield can be best described by crop models that: (i) incorporate event-based descriptions of heat and drought stress, (ii) consider the effects of nighttime warming, and (iii) coordinate the interactions among multiple stresses. Our study identifies the proficiency with which different model formulations capture the impacts of heat and drought stress on maize biomass and yield production. The framework presented here can be applied to other modeled processes and used to improve yield predictions of other crops with a wide variety of crop models. © 2016 John

  8. Robust scaling with global mean temperature of future heat stress projections within CMIP5 and CESM LENS

    NASA Astrophysics Data System (ADS)

    Buzan, J. R.; Huber, M.

    2016-12-01

    Heat stress is of global concern because it threatens human and animal health and productivity. Here we use the HumanIndexMod to calculate 3 moist thermodynamic quantities and 9 commonly and operationally used heat stress metrics (Buzan et al., 2015). We drive the HumanIndexMod with output from CMIP5 and the Community Earth System Model Large Ensemble (LENS) using the greenhouse gasses forcing, representative concentration pathway 8.5 (RCP8.5). We limit our analysis to models that provide 4x daily output of surface pressure, reference height temperature and moisture, and use lowest model level winds where available, 18 CMIP5 and 40 LENS simulations. We show three novel results: Comparing time slices (2081-2100 and 2026-2045 for CMIP5, and 2071-2080 and 2026-2035 for LENS), we note that each individual heat stress metric extreme, within the multi-model mean, has spatial patterns that are highly correlated (>0.99). Moist thermodynamics and heat stress extremes are intrinsically linked to the thermodynamics of the climate, and scales simply with global mean surface temperature (GMT) changes. For example, large swaths of land surface area from 30°N to 30°S, excluding the Sahel, the Arabian Peninsula, and Himalayan Plateau, show the response of wet bulb temperature to be 0.85°C/°C GMT (standard deviation <0.25) for CMIP5 and 0.85°C/°C GMT (standard deviation <0.2) for LENS in agreement with prior work by Sherwood and Huber (2010). Many heat stress metrics, after being normalized by global mean surface temperature changes, are highly spatially correlated with each other, and may reduce the necessity of numerous metrics to properly quantify total heat stress. The three results establish that different climate models, with various underlying assumptions (CMIP5) and ranges of internal variability (LENS), show similar responses in heat stress with respect to global mean temperature changes. Thus, we find the uncertainty of heat stress extremes, even changes at the fine

  9. Mitochondrial efficiency and exercise economy following heat stress: a potential role of uncoupling protein 3.

    PubMed

    Salgado, Roy M; Sheard, Ailish C; Vaughan, Roger A; Parker, Daryl L; Schneider, Suzanne M; Kenefick, Robert W; McCormick, James J; Gannon, Nicholas P; Van Dusseldorp, Trisha A; Kravitz, Len R; Mermier, Christine M

    2017-02-01

    Heat stress has been reported to reduce uncoupling proteins (UCP) expression, which in turn should improve mitochondrial efficiency. Such an improvement in efficiency may translate to the systemic level as greater exercise economy. However, neither the heat-induced improvement in mitochondrial efficiency (due to decrease in UCP), nor its potential to improve economy has been studied. Determine: (i) if heat stress in vitro lowers UCP3 thereby improving mitochondrial efficiency in C2C12 myocytes; (ii) whether heat acclimation (HA) in vivo improves exercise economy in trained individuals; and (iii) the potential improved economy during exercise at altitude. In vitro, myocytes were heat stressed for 24 h (40°C), followed by measurements of UCP3, mitochondrial uncoupling, and efficiency. In vivo, eight trained males completed: (i) pre-HA testing; (ii) 10 days of HA (40°C, 20% RH); and (iii) post-HA testing. Pre- and posttesting consisted of maximal exercise test and submaximal exercise at two intensities to assess exercise economy at 1600 m (Albuquerque, NM) and 4350 m. Heat-stressed myocytes displayed significantly reduced UCP3 mRNA expression and, mitochondrial uncoupling (77.1 ± 1.2%, P < 0.0001) and improved mitochondrial efficiency (62.9 ± 4.1%, P < 0.0001) compared to control. In humans, at both 1600 m and 4350 m, following HA, submaximal exercise economy did not change at low and moderate exercise intensities. Our findings indicate that while heat-induced reduction in UCP3 improves mitochondrial efficiency in vitro, this is not translated to in vivo improvement of exercise economy at 1600 m or 4350 m. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  10. Identification of Reference Genes and Analysis of Heat Shock Protein Gene Expression in Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum, after Exposure to Heat Stress.

    PubMed

    Liu, Yong-Nan; Lu, Xiao-Xiao; Ren, Ang; Shi, Liang; Jiang, Ai-Liang; Yu, Han-Shou; Zhao, Ming-Wen

    2017-01-01

    Ganoderma lucidum has been considered an emerging model species for studying how environmental factors regulate the growth, development, and secondary metabolism of Basidiomycetes. Heat stress, which is one of the most important environmental abiotic stresses, seriously affects the growth, development, and yield of microorganisms. Understanding the response to heat stress has gradually become a hotspot in microorganism research. But suitable reference genes for expression analysis under heat stress have not been reported in G. lucidum. In this study, we systematically identified 11 candidate reference genes that were measured using reverse transcriptase quantitative polymerase chain reaction, and the gene expression stability was analyzed under heat stress conditions using geNorm and NormFinder. The results show that 5 reference genes-CYP and TIF, followed by UCE2, ACTIN, and UBQ1-are the most stable genes under our experimental conditions. Moreover, the relative expression levels of 3 heat stress response genes (hsp17.4, hsp70, and hsp90) were analyzed under heat stress conditions with different normalization strategies. The results show that use of a gene with unstable expression (SAND) as the reference gene leads to biased data and misinterpretations of the target gene expression level under heat stress.

  11. Corrosion and scaling in solar heating systems

    NASA Astrophysics Data System (ADS)

    Foresti, R. J., Jr.

    1981-12-01

    Corrosion, as experienced in solar heating systems, is described in simplistic terms to familiarize designers and installers with potential problems and their solutions. The role of a heat transfer fluid in a solar system is briefly discussed, and the choice of an aqueous solution is justified. The complexities of the multiple chemical and physical reactions are discussed in order that uncertainties of corrosion behavior can be anticipated. Some basic theories of corrosion are described, aggressive environments for some common metals are identified, and the role of corrosion inhibitors is delineated. The similarities of thermal and material characteristics of a solor system and an automotive cooling system are discussed. Based on the many years of experience with corrosion in automotive systems, it is recommended that similar antifreezes and corrosion inhibitors should be used in solar systems. The importance of good solar system design and fabrication is stressed and specific characteristics that affect corrosion are identified.

  12. Heat stress responses in spermatozoa: Mechanisms and consequences for cattle fertility.

    PubMed

    Rahman, Mohammad Bozlur; Schellander, Karl; Luceño, Núria Llamas; Van Soom, Ann

    2018-06-01

    Currently, the world is facing the negative impact of global warming on all living beings. Adverse effects of global warming are also becoming obvious in dairy cattle breeding. In dairy bulls, low fertility has frequently been reported during summer season especially in tropical or subtropical conditions. Typically, spermatozoa at post-meiotic stages of development are more susceptible to heat stress. During this period extensive incorporation of histone modifications and hyperacetylation turns the chromatin into an unstable conformation. These unstable forms of chromatin are thought to be more vulnerable to heat stress, which may have an effect on chromatin condensation of spermatozoa. Spermatozoa with altered chromatin condensation perturb the dynamics of DNA methylation reprogramming in the paternal pronucleus resulting in disordered active DNA demethylation followed by de novo methylation patterns. In addition, there was a tendency of decreased size in both paternal and maternal pronuclei after fertilization of oocytes with heat-stressed spermatozoa, leading to lower fertilization rates. In this review, we will focus on the mechanisms of heat stress-induced sperm defects and provide more detailed insights into sperm-borne epigenetic regulations. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Do Mitochondria Limit Hot Fish Hearts? Understanding the Role of Mitochondrial Function with Heat Stress in Notolabrus celidotus

    PubMed Central

    Iftikar, Fathima I.; Hickey, Anthony J. R.

    2013-01-01

    Hearts are the first organs to fail in animals exposed to heat stress. Predictions of climate change mediated increases in ocean temperatures suggest that the ectothermic heart may place tight constraints on the diversity and distribution of marine species with cardiovascular systems. For many such species, their upper temperature limits (Tmax) and respective heart failure (HF) temperature (THF) are only a few degrees from current environmental temperatures. While the ectothermic cardiovascular system acts as an “ecological thermometer,” the exact mechanism that mediates HF remains unresolved. We propose that heat-stressed cardiac mitochondria drive HF. Using a common New Zealand fish, Notolabrus celidotus, we determined the THF (27.5°C). Haemoglobin oxygen saturation appeared to be unaltered in the blood surrounding and within heat stressed hearts. Using high resolution respirometry coupled to fluorimeters, we explored temperature-mediated changes in respiration, ROS and ATP production, and overlaid these changes with THF. Even at saturating oxygen levels several mitochondrial components were compromised before THF. Importantly, the capacity to efficiently produce ATP in the heart is limited at 25°C, and this is prior to the acute THF for N. celidotus. Membrane leakiness increased significantly at 25°C, as did cytochrome c release and permeability to NADH. Maximal flux rates and the capacity for the electron transport system to uncouple were also altered at 25°C. These data indicate that mitochondrial membrane integrity is lost, depressing ATP synthesis capacity and promoting cytochrome c release, prior to THF. Mitochondria can mediate HF in heat stressed hearts in fish and play a significant role in thermal stress tolerance, and perhaps limit species distributions by contributing to HF. PMID:23724026

  14. A short-term supranutritional vitamin E supplementation alleviated respiratory alkalosis but did not reduce oxidative stress in heat stressed pigs.

    PubMed

    Liu, Fan; Celi, Pietro; Chauhan, Surinder Singh; Cottrell, Jeremy James; Leury, Brian Joseph; Dunshea, Frank Rowland

    2018-02-01

    Heat stress (HS) triggers oxidative stress and respiratory alkalosis in pigs. The objective of this experiment was to study whether a short-term supranutritional amount of dietary vitamin E (VE) can mitigate oxidative stress and respiratory alkalosis in heat-stressed pigs. A total of 24 pigs were given either a control diet (17 IU/kg VE) or a high VE (200 IU/kg VE; HiVE) diet for 14 d, then exposed to thermoneutral (TN; 20°C, 45% humidity) or HS (35°C, 35% to 45% humidity, 8 h daily) conditions for 7 d. Respiration rate and rectal temperature were measured three times daily during the thermal exposure. Blood gas variables and oxidative stress markers were studied in blood samples collected on d 7. Although HiVE diet did not affect the elevated rectal temperature or respiration rate observed during HS, it alleviated (all p<0.05 for diet×temperature) the loss of blood CO 2 partial pressure and bicarbonate, as well as the increase in blood pH in the heat-stressed pigs. The HS reduced (p = 0.003) plasma biological antioxidant potential (BAP) and tended to increase (p = 0.067) advanced oxidized protein products (AOPP) in the heat-stressed pigs, suggesting HS triggers oxidative stress. The HiVE diet did not affect plasma BAP or AOPP. Only under TN conditions the HiVE diet reduced the plasma reactive oxygen metabolites (p<0.05 for diet× temperature). A short-term supplementation with 200 IU/kg VE partially alleviated respiratory alkalosis but did not reduce oxidative stress in heat-stressed pigs.

  15. Class I and II Small Heat Shock Proteins Together with HSP101 Protect Protein Translation Factors during Heat Stress1[OPEN

    PubMed Central

    Basha, Eman; Fowler, Mary E.; Kim, Minsoo; Bordowitz, Juliana; Katiyar-Agarwal, Surekha

    2016-01-01

    The ubiquitous small heat shock proteins (sHSPs) are well documented to act in vitro as molecular chaperones to prevent the irreversible aggregation of heat-sensitive proteins. However, the in vivo activities of sHSPs remain unclear. To investigate the two most abundant classes of plant cytosolic sHSPs (class I [CI] and class II [CII]), RNA interference (RNAi) and overexpression lines were created in Arabidopsis (Arabidopsis thaliana) and shown to have reduced and enhanced tolerance, respectively, to extreme heat stress. Affinity purification of CI and CII sHSPs from heat-stressed seedlings recovered eukaryotic translation elongation factor (eEF) 1B (α-, β-, and γ-subunits) and eukaryotic translation initiation factor 4A (three isoforms), although the association with CI sHSPs was stronger and additional proteins involved in translation were recovered with CI sHSPs. eEF1B subunits became partially insoluble during heat stress and, in the CI and CII RNAi lines, showed reduced recovery to the soluble cell fraction after heat stress, which was also dependent on HSP101. Furthermore, after heat stress, CI sHSPs showed increased retention in the insoluble fraction in the CII RNAi line and vice versa. Immunolocalization revealed that both CI and CII sHSPs were present in cytosolic foci, some of which colocalized with HSP101 and with eEF1Bγ and eEF1Bβ. Thus, CI and CII sHSPs have both unique and overlapping functions and act either directly or indirectly to protect specific translation factors in cytosolic stress granules. PMID:27474115

  16. Response of Urban Systems to Climate Change in Europe: Heat Stress Exposure and the Effect on Human Health

    NASA Astrophysics Data System (ADS)

    Stevens, Catherine; Thomas, Bart; Grommen, Mart

    2015-04-01

    Climate change is driven by global processes such as the global ocean circulation and its variability over time leading to changing weather patterns on regional scales as well as changes in the severity and occurrence of extreme events such as heavy rain- and windstorms, floods, drought, heat waves, etc. The summer 2003 European heat wave was the hottest summer on record in Europe over the past centuries leading to health crises in several countries like France and caused up to 70.000 excess deaths over four months in Central and Western Europe. The main risks induced by global climate change in urbanised areas are considered to be overheating and resulting health effects, increased exposure to flood events, increased damage losses from extreme weather conditions but also shortages in the provision of life-sustaining services. Moreover, the cities themselves create specific or inherent risks and urban adaptation is often very demanding. As most of Europe's inhabitants live in cities, it is of particular relevance to examine the impact of climate variability on urban areas and their populations. The present study focusses on the identification of heat stress variables related to human health and the extraction of this information by processing daily temperature statistics of local urban climate simulations over multiple timeframes of 20 years and three different European cities based on recent, near future and far future global climate predictions. The analyses have been conducted in the framework of the NACLIM FP7 project funded by the European Commission involving local stakeholders such as the cities of Antwerp (Belgium), Berlin (Germany) and Almada (Portugal) represented by different climate and urban characteristics. Apart from the urban-rural temperature increment (urban heat island effect), additional heat stress parameters such as the average number of heat wave days together with their duration and intensities have been covered during this research. In a

  17. Forkhead Box M1 Is Regulated by Heat Shock Factor 1 and Promotes Glioma Cells Survival under Heat Shock Stress*

    PubMed Central

    Dai, Bingbing; Gong, Aihua; Jing, Zhitao; Aldape, Kenneth D.; Kang, Shin-Hyuk; Sawaya, Raymond; Huang, Suyun

    2013-01-01

    The forkhead box M1 (FoxM1) is a key transcription factor regulating multiple aspects of cell biology. Prior studies have shown that FoxM1 is overexpressed in a variety of human tumors, including brain tumor, and plays a critical role in cancer development and progression. In this study we found that FoxM1 was up-regulated by heat shock factor 1 (HSF1) under heat shock stress condition in multiple cell lines. Knockdown of HSF1 with HSF1 siRNA or inhibition of HSF1 with a HSF1 inhibitor abrogated heat shock-induced expression of FoxM1. Genetic deletion of HSF1 in mouse embryo fibroblast cells also abolished heat shock stress-induced FoxM1 expression. Moreover, we showed that HSF1 directly bound to FoxM1 promoter and increased FoxM1 promoter activity. Furthermore, we demonstrated that FoxM1 was required for the G2-M phase progression through regulating Cdc2, Cdc20, and Cdc25B under a mild heat shock stress but enhanced cell survival under lethal heat shock stress condition. Finally, in human glioblastoma specimens, FoxM1 overexpression correlated with elevated HSF1 expression. Our results indicate that FoxM1 is regulated by HSF1 and is critical for HSF1-mediated heat shock response. We demonstrated a novel mechanism of stress resistance controlled by HSF1 and a new HSF-FoxM1 connection that mediates cellular thermotolerance. PMID:23192351

  18. Boechera Species Exhibit Species-Specific Responses to Combined Heat and High Light Stress

    PubMed Central

    Gallas, Genna; Waters, Elizabeth R.

    2015-01-01

    As sessile organisms, plants must be able to complete their life cycle in place and therefore tolerance to abiotic stress has had a major role in shaping biogeographical patterns. However, much of what we know about plant tolerance to abiotic stresses is based on studies of just a few plant species, most notably the model species Arabidopsis thaliana. In this study we examine natural variation in the stress responses of five diverse Boechera (Brassicaceae) species. Boechera plants were exposed to basal and acquired combined heat and high light stress. Plant response to these stresses was evaluated based on chlorophyll fluorescence measurements, induction of leaf chlorosis, and gene expression. Many of the Boechera species were more tolerant to heat and high light stress than A. thaliana. Gene expression data indicates that two important marker genes for stress responses: APX2 (Ascorbate peroxidase 2) and HsfA2 (Heat shock transcription factor A2) have distinct species-specific expression patterns. The findings of species-specific responses and tolerance to stress indicate that stress pathways are evolutionarily labile even among closely related species. PMID:26030823

  19. Heat stress and dehydration in adapting for performance: Good, bad, both, or neither?

    PubMed Central

    Akerman, Ashley Paul; Tipton, Michael; Minson, Christopher T.; Cotter, James David

    2016-01-01

    ABSTRACT Physiological systems respond acutely to stress to minimize homeostatic disturbance, and typically adapt to chronic stress to enhance tolerance to that or a related stressor. It is legitimate to ask whether dehydration is a valuable stressor in stimulating adaptation per se. While hypoxia has had long-standing interest by athletes and researchers as an ergogenic aid, heat and nutritional stressors have had little interest until the past decade. Heat and dehydration are highly interlinked in their causation and the physiological strain they induce, so their individual roles in adaptation are difficult to delineate. The effectiveness of heat acclimation as an ergogenic aid remains unclear for team sport and endurance athletes despite several recent studies on this topic. Very few studies have examined the potential ergogenic (or ergolytic) adaptations to ecologically-valid dehydration as a stressor in its own right, despite longstanding evidence of relevant fluid-regulatory adaptations from short-term hypohydration. Transient and self-limiting dehydration (e.g., as constrained by thirst), as with most forms of stress, might have a time and a place in physiological or behavioral adaptations independently or by exacerbating other stressors (esp. heat); it cannot be dismissed without the appropriate evidence. The present review did not identify such evidence. Future research should identify how the magnitude and timing of dehydration might augment or interfere with the adaptive processes in behaviorally constrained versus unconstrained humans. PMID:28349082

  20. Chinese Herbal Medicines as Potential Agents for Alleviation of Heat Stress in Poultry

    PubMed Central

    MD Saadand, Salwani; Idrus, Zulkifli; Diao, Xiao Ping

    2017-01-01

    Heat stress negatively affects the productivity of chickens in commercial poultry farms in humid tropics. In this study, the concentrations and types of the antioxidant compounds of eight Chinese herbal medicines, which have previously demonstrated promising effects on suppressing heat stress as a mixture, were investigated using reversed-phase High Performance Liquid Chromatography, spectrophotometry, Liquid Chromatography Mass Spectrometry, and Gas-Liquid Chromatography. Our results provided the levels of phenolic compounds, total amounts of sugars, and total unsaturated fatty acids in the herbal extracts. Apart from the detection and quantification of the active ingredients of herbs that have the potential to mitigate heat stress in poultry, results of this study also provide useful data for developing an efficient and accurate formulation of the herbs' mixtures in order to induce positive effects against heat stress in in vivo studies. PMID:29209556

  1. Differential Response to Heat Stress in Outer and Inner Onion Bulb Scales.

    PubMed

    Galsurker, Ortal; Doron-Faigenboim, Adi; Teper-Bamnolker, Paula; Daus, Avinoam; Lers, Amnon; Eshel, Dani

    2018-05-18

    Brown protective skin formation in onion bulbs can be induced by rapid postharvest heat treatment. Onions that were peeled to different depths and were exposed to heat stress showed that only the outer scale formed dry brown skin, whereas the inner scales maintained high water content and did not change color. Our results reveal that browning of the outer scale during heat treatment is due to an enzymatic process that is associated with high levels of oxidation components, such as peroxidase and quercetin glucoside. De-novo transcriptome analysis revealed differential molecular responses of the outer and inner scales to the heat stress. Genes involved in lipid metabolism, oxidation pathways and cell-wall modification were highly expressed in the outer scale during heating. Defense-response-related genes such as those encoding heat-shock proteins, antioxidative stress defense or production of osmoprotectant metabolites were mostly induced in the inner scale in response to the heat exposure. These transcriptomic data led to a conceptual model that suggests sequential processes for browning development and desiccation of the outer scales versus processes associated with defense response and heat tolerance in the inner scale. Thus, the observed physiological differences between the outer and inner scales is supported by the identified molecular differences.

  2. Baroreceptor unloading does not limit forearm sweat rate during severe passive heat stress.

    PubMed

    Schlader, Zachary J; Gagnon, Daniel; Lucas, Rebekah A I; Pearson, James; Crandall, Craig G

    2015-02-15

    This study tested the hypothesis that sweat rate during passive heat stress is limited by baroreceptor unloading associated with heat stress. Two protocols were performed in which healthy subjects underwent passive heat stress that elicited an increase in intestinal temperature of ∼1.8°C. Upon attaining this level of hyperthermia, in protocol 1 (n = 10, 3 females) a bolus (19 ml/kg) of warm (∼38°C) isotonic saline was rapidly (5-10 min) infused intravenously to elevate central venous pressure (CVP), while in protocol 2 (n = 11, 5 females) phenylephrine was infused intravenously (60-120 μg/min) to return mean arterial pressure (MAP) to normothermic levels. In protocol 1, heat stress reduced CVP from 3.9 ± 1.9 mmHg (normothermia) to -0.6 ± 1.4 mmHg (P < 0.001), while saline infusion returned CVP to normothermic levels (5.1 ± 1.7 mmHg; P > 0.999). Sweat rate was elevated by heat stress (1.21 ± 0.44 mg·cm(-2)·min(-1)) but remained unchanged during rapid saline infusion (1.26 ± 0.47 mg·cm(-2)·min(-1), P = 0.5), whereas cutaneous vascular conductance increased from 77 ± 10 to 101 ± 20% of local heating max (P = 0.029). In protocol 2, MAP was reduced with heat stress from 85 ± 7 mmHg to 76 ± 8 mmHg (P = 0.048). Although phenylephrine infusion returned MAP to normothermic levels (88 ± 7 mmHg; P > 0.999), sweat rate remained unchanged during phenylephrine infusion (1.39 ± 0.22 vs. 1.41 ± 0.24 mg·cm(-2)·min(-1); P > 0.999). These data indicate that both cardiopulmonary and arterial baroreceptor unloading do not limit increases in sweat rate during passive heat stress. Copyright © 2015 the American Physiological Society.

  3. The effects of acclimatization on blood clotting parameters in exertional heat stress.

    PubMed

    Vesić, Zoran; Vukasinović-Vesić, Milica; Dincić, Dragan; Surbatović, Maja; Radaković, Sonja S

    2013-07-01

    Exertional heat stress is a common problem in military services. Considering the coagulation abnormalities are of major importance in development of severe heat stroke, we wanted to examine changes in hemostatic parameters in soldiers during exertional heat stress test as well as the effects of a 10-day passive or active acclimatization in a climatic chamber. A total of 40 male soldiers with high aerobic capacity performed exertional heat stress test (EHST) either in cool [20 degrees C, 16 degrees C wet bulb globe temperature (WBGT)], or hot (40 degrees C, 29 degrees C, (WBGT) environment, unacclimatized (U) or after 10 days of passive (P) or active (A) acclimatization. Physiological strain was measured by tympanic temperatures (Tty) and heart rates (HR). Platelet count (PC), antithrombin III (AT), and prothrombin time (PT) were assessed in blood samples collected before and immediately after the EHST. EHST in hot conditions induced physiological heat stress (increase in Tty and HR), with a significant increase in prothrombin time in the groups U and A. Platelet counts were significantly higher after the EHST compared to the basic levels in all the investigated groups, regardless environmental conditions and acclimatization state. Antithrombin levels were not affected by EHST whatsoever. In the trained soldiers, physiological heat stress caused mild changes in some serum parameters of blood clotting such as prothrombin time, while others such as antithrombin levels were not affected. Platelet counts were increased after EHST in all groups. A 10-day passive or active acclimatization in climatic chamber showed no effect on parameters investigated.

  4. Two strategies for the acute response to cold exposure but one strategy for the response to heat stress.

    PubMed

    Brazaitis, Marius; Eimantas, Nerijus; Daniuseviciute, Laura; Vitkauskiene, Astra; Paulauskas, Henrikas; Skurvydas, Albertas

    2015-06-01

    The main aim of this study was to compare physiological and psychological reactions to heat stress between people who exhibited fast cooling (FC, n = 20) or slow cooling (SC; n = 20) responses to 14 °C cold water immersion. Forty healthy young men (19-25 years old) were recruited to this study based on their tolerance to cold exposure (FC versus SC). The heat stress was induced using immersion in bath water at 43-44 °C. Motor and cognitive performance, immune variables, markers of hypothalamic-pituitary-adrenal axis activity (i.e. stress hormone concentrations), and autonomic nervous system activity were monitored. In the FC group, time to warm the body from a resting rectal temperature (Tre) of 37.1 ± 0.2 °C before warming to 39.5 °C was 63.7 ± 22.4 min. In the SC group, the time to warm the body from a Tre 37.1 ± 0.3 °C before warming to 39.5 °C was 67.2 ± 13.8 min (p > 0.05 between groups). The physiological stress index (PSI) after warming was 8.0 ± 0.6 and 8.2 ± 1.0 in the FC and SC groups, respectively (p > 0.05 between groups). During warming, the changes in subjective indicators of heat stress did not differ significantly between the FC (7.4 ± 0.5) and SC (7.1 ± 1.1) groups, respectively. The increase in cortisol, epinephrine, norepinephrine, and corticosterone concentrations after passive body heating did not differ between the FC and SC groups. Heat stress did not change indicators of innate and specific immunity in the FC or the SC group. An interesting finding was that heat stress did not affect motor and cognitive function in either group, although central fatigue during 1-min maximal voluntary contraction increased after heat stress in both groups.

  5. Irradiation with low-dose gamma ray enhances tolerance to heat stress in Arabidopsis seedlings.

    PubMed

    Zhang, Liang; Zheng, Fengxia; Qi, Wencai; Wang, Tianqi; Ma, Lingyu; Qiu, Zongbo; Li, Jingyuan

    2016-06-01

    Gamma irradiation at low doses can stimulate the tolerance to environmental stress in plants. However, the knowledge regarding the mechanisms underlying the enhanced tolerance induced by low-dose gamma irradiation is far from fully understood. In this study, to investigate the physiological and molecular mechanisms of heat stress alleviated by low-dose gamma irradiation, the Arabidopsis seeds were exposed to a range of doses before subjected to heat treatment. Our results showed that 50-Gy gamma irradiation maximally promoted seedling growth in response to heat stress. The production rate of superoxide radical and contents of hydrogen peroxide and malondialdehyde in the seedlings irradiated with 50-Gy dose under heat stress were significantly lower than those of controls. The activities of antioxidant enzymes, glutathione (GSH) content and proline level in the gamma-irradiated seedlings were significantly increased compared with the controls. Furthermore, transcriptional expression analysis of selected genes revealed that some components related to heat tolerance were stimulated by low-dose gamma irradiation under heat shock. Our results suggest that low-dose gamma irradiation can modulate the physiological responses as well as gene expression related to heat tolerance, thus alleviating the stress damage in Arabidopsis seedlings. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Continuous fever-range heat stress induces thermotolerance in odontoblast-lineage cells.

    PubMed

    Morotomi, Takahiko; Kitamura, Chiaki; Okinaga, Toshinori; Nishihara, Tatsuji; Sakagami, Ryuji; Anan, Hisashi

    2014-07-01

    Heat shock during restorative procedures can trigger damage to the pulpodentin complex. While severe heat shock has toxic effects, fever-range heat stress exerts beneficial effects on several cells and tissues. In this study, we examined whether continuous fever-range heat stress (CFHS) has beneficial effects on thermotolerance in the rat clonal dental pulp cell line with odontoblastic properties, KN-3. KN-3 cells were cultured at 41°C for various periods, and the expression level of several proteins was assessed by Western blot analysis. After pre-heat-treatment at 41°C for various periods, KN-3 cells were exposed to lethal severe heat shock (LSHS) at 49°C for 10min, and cell viability was examined using the MTS assay. Additionally, the expression level of odontoblast differentiation makers in surviving cells was examined by Western blot analysis. CFHS increased the expression levels of several heat shock proteins (HSPs) in KN-3 cells, and induced transient cell cycle arrest. KN-3 cells, not pre-heated or exposed to CFHS for 1 or 3h, died after exposure to LSHS. In contrast, KN-3 cells exposed to CFHS for 12h were transiently lower on day 1, but increased on day 3 after LSHS. The surviving cells expressed odontoblast differentiation markers, dentine sialoprotein and dentine matrix protein-1. These results suggest that CFHS for 12h improves tolerance to LSHS by inducing HSPs expression and cell cycle arrest in KN-3 cells. The appropriate pretreatment with continuous fever-range heat stress can provide protection against lethal heat shock in KN-3 cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Application of the predicted heat strain model in development of localized, threshold-based heat stress management guidelines for the construction industry.

    PubMed

    Rowlinson, Steve; Jia, Yunyan Andrea

    2014-04-01

    Existing heat stress risk management guidelines recommended by international standards are not practical for the construction industry which needs site supervision staff to make instant managerial decisions to mitigate heat risks. The ability of the predicted heat strain (PHS) model [ISO 7933 (2004). Ergonomics of the thermal environment analytical determination and interpretation of heat stress using calculation of the predicted heat strain. Geneva: International Standard Organisation] to predict maximum allowable exposure time (D lim) has now enabled development of localized, action-triggering and threshold-based guidelines for implementation by lay frontline staff on construction sites. This article presents a protocol for development of two heat stress management tools by applying the PHS model to its full potential. One of the tools is developed to facilitate managerial decisions on an optimized work-rest regimen for paced work. The other tool is developed to enable workers' self-regulation during self-paced work.

  8. Future Projections from the Effects of Heat Stress on Livestock: for the US and New England Region

    NASA Astrophysics Data System (ADS)

    McCabe, E.; Buzan, J. R.; Huber, M.; Krishnan, S.

    2015-12-01

    Future climate change will result in variations in heat stress experienced by livestock, which will consequently impact health, well-being, and yield. In this study, we estimate future yield changes for livestock due to heat stress in New England. We use the Community Land Model version 4.5 (CLM4.5), a component of the Community Earth System Model (CESM) that is developed by the National Center for Atmospheric Research (NCAR). The simulation uses RCP8.5 boundary conditions, and is driven by CCSM4 atmospheric forcing from the CMIP5 archive, that conducts simulations of the past and next century. Heat stress metrics are calculated using the HumanIndexMod in CLM4.5 for the early and late 21st century. For example, the humidity index for comfort and physiology, wet bulb temperature and swamp cooler efficiency. Results indicate that in the New England Region, temperatures will increase by 4 °C and in New Hampshire specifically by 3 °C. Temperature humidity index for comfort and physiology, swamp cooler efficiency and wet bulb are all projected to rise by the end of the century. While it is obvious that these elevations in temperature will have a negative effect on animals inhibiting their performance and output, our analysis also emphasizes the role of changes in humidity in heat stress. We show that heat stress caused by temperature and humidity increases, will decrease overall production yield for dairy and beef cattle, sows, finishing hogs and poultry, as a result of heat stress and other major climatic factors. We estimate and discuss resulting economic losses for the livestock industries and the impact in the United States and New England Region.

  9. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles

    DOE PAGES

    Valdés-López, Oswaldo; Batek, Josef; Gomez-Hernandez, Nicolas; ...

    2016-04-25

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Heat stress significantly influences the functions of roots, which provide support, water, and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined their response to heat stress. Here in this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to stripped roots. On average, we identifiedmore » 1849 and 3091 genes differentially regulated in root hairs and stripped roots, respectively, in response to heat stress. Our gene regulatory module analysis identified 10 key modules that might control the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from root hairs and compared these responses to stripped roots. These experiments identified a variety of proteins whose expression changed within 3 h of application of heat stress. Most of these proteins were predicted to play a significant role in thermo-tolerance, as well as in chromatin remodeling and post-transcriptional regulation. In conclusion, the data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean.« less

  10. Heat stress attenuates the increase in arterial blood pressure during the cold pressor test.

    PubMed

    Cui, Jian; Shibasaki, Manabu; Low, David A; Keller, David M; Davis, Scott L; Crandall, Craig G

    2010-11-01

    The mechanisms by which heat stress impairs the control of blood pressure leading to compromised orthostatic tolerance are not thoroughly understood. A possible mechanism may be an attenuated blood pressure response to a given increase in sympathetic activity. This study tested the hypothesis that whole body heating attenuates the blood pressure response to a non-baroreflex-mediated sympathoexcitatory stimulus. Ten healthy subjects were instrumented for the measurement of integrated muscle sympathetic nerve activity (MSNA), mean arterial blood pressure (MAP), heart rate, sweat rate, and forearm skin blood flow. Subjects were exposed to a cold pressor test (CPT) by immersing a hand in an ice water slurry for 3 min while otherwise normothermic and while heat stressed (i.e., increase core temperature ~0.7°C via water-perfused suit). Mean responses from the final minute of the CPT were evaluated. In both thermal conditions CPT induced significant increases in MSNA and MAP without altering heart rate. Although the increase in MSNA to the CPT was similar between thermal conditions (normothermia: Δ14.0 ± 2.6; heat stress: Δ19.1 ± 2.6 bursts/min; P = 0.09), the accompanying increase in MAP was attenuated when subjects were heat stressed (normothermia: Δ25.6 ± 2.3, heat stress: Δ13.4 ± 3.0 mmHg; P < 0.001). The results demonstrate that heat stress can attenuate the pressor response to a sympathoexcitatory stimulus.

  11. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    DOE PAGES

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; ...

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects ofmore » both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.« less

  12. Daidzein enhances immune function in late lactation cows under heat stress.

    PubMed

    Liu, De-Yi; He, Shao-Jun; Liu, Shi-Qing; Tang, Yi-Guo; Jin, Er-Hui; Chen, Hui-Liang; Li, Sheng-He; Zhong, Liang-Ting

    2014-01-01

    Heat stress decreases natural immunity making cows more vulnerable to diseases. A previous study reported that daidzein can enhance animal resistance to heat stress and regulate animal immunocompetence. However, it is unclear whether daidzein regulates the immune performance of late lactation cows under heat stress. In this study, late lactation cows in four groups were raised in hot weather and fed with basic diet, basic diet plus 200, 300, 400 mg/day daidzein, respectively, and the experimental period was 60 days. Blood was collected to examine the changes of serum total protein (TP), albumin (ALB), immunoglobulin G (IgG), interferon alpha (IFN-α), and interleukin-2 (IL-2). We found the levels of serum IgG and INF-α were significantly higher in late lactation cows after 300 and 400 mg/day daidzein treatment compared to those in the control group and 200 mg/day daidzein treatment (P < 0.05 or P < 0.01). Moreover, 300 and 400 mg/day daidzein treatment markedly increased serum IL-2 (P < 0.01), while the levels of serum TP and ALB were not changed by any concentration of daidzein treatment (P > 0.05). Daidzein can enhance the immunocompetence of late lactation cows and strengthen cow resistance to heat stress. © 2013 Japanese Society of Animal Science.

  13. Heat Stress-Induced PI3K/mTORC2-Dependent AKT Signaling Is a Central Mediator of Hepatocellular Carcinoma Survival to Thermal Ablation Induced Heat Stress

    PubMed Central

    Thompson, Scott M.; Callstrom, Matthew R.; Jondal, Danielle E.; Butters, Kim A.; Knudsen, Bruce E.; Anderson, Jill L.; Lien, Karen R.; Sutor, Shari L.; Lee, Ju-Seog; Thorgeirsson, Snorri S.; Grande, Joseph P.; Roberts, Lewis R.; Woodrum, David A.

    2016-01-01

    Thermal ablative therapies are important treatment options in the multidisciplinary care of patients with hepatocellular carcinoma (HCC), but lesions larger than 2–3 cm are plagued with high local recurrence rates and overall survival of these patients remains poor. Currently no adjuvant therapies exist to prevent local HCC recurrence in patients undergoing thermal ablation. The molecular mechanisms mediating HCC resistance to thermal ablation induced heat stress and local recurrence remain unclear. Here we demonstrate that the HCC cells with a poor prognostic hepatic stem cell subtype (Subtype HS) are more resistant to heat stress than HCC cells with a better prognostic hepatocyte subtype (Subtype HC). Moreover, sublethal heat stress rapidly induces phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dependent-protein kinase B (AKT) survival signaling in HCC cells in vitro and at the tumor ablation margin in vivo. Conversely, inhibition of PI3K/mTOR complex 2 (mTORC2)-dependent AKT phosphorylation or direct inhibition of AKT function both enhance HCC cell killing and decrease HCC cell survival to sublethal heat stress in both poor and better prognostic HCC subtypes while mTOR complex 1 (mTORC1)-inhibition has no impact. Finally, we showed that AKT isoforms 1, 2 and 3 are differentially upregulated in primary human HCCs and that overexpression of AKT correlates with worse tumor biology and pathologic features (AKT3) and prognosis (AKT1). Together these findings define a novel molecular mechanism whereby heat stress induces PI3K/mTORC2-dependent AKT survival signaling in HCC cells and provide a mechanistic rationale for adjuvant AKT inhibition in combination with thermal ablation as a strategy to enhance HCC cell killing and prevent local recurrence, particularly at the ablation margin. PMID:27611696

  14. Do mitochondria limit hot fish hearts? Understanding the role of mitochondrial function with heat stress in Notolabrus celidotus.

    PubMed

    Iftikar, Fathima I; Hickey, Anthony J R

    2013-01-01

    Hearts are the first organs to fail in animals exposed to heat stress. Predictions of climate change mediated increases in ocean temperatures suggest that the ectothermic heart may place tight constraints on the diversity and distribution of marine species with cardiovascular systems. For many such species, their upper temperature limits (Tmax) and respective heart failure (HF) temperature (T(HF)) are only a few degrees from current environmental temperatures. While the ectothermic cardiovascular system acts as an "ecological thermometer," the exact mechanism that mediates HF remains unresolved. We propose that heat-stressed cardiac mitochondria drive HF. Using a common New Zealand fish, Notolabrus celidotus, we determined the THF (27.5°C). Haemoglobin oxygen saturation appeared to be unaltered in the blood surrounding and within heat stressed hearts. Using high resolution respirometry coupled to fluorimeters, we explored temperature-mediated changes in respiration, ROS and ATP production, and overlaid these changes with T(HF). Even at saturating oxygen levels several mitochondrial components were compromised before T(HF). Importantly, the capacity to efficiently produce ATP in the heart is limited at 25°C, and this is prior to the acute T(HF) for N. celidotus. Membrane leakiness increased significantly at 25°C, as did cytochrome c release and permeability to NADH. Maximal flux rates and the capacity for the electron transport system to uncouple were also altered at 25°C. These data indicate that mitochondrial membrane integrity is lost, depressing ATP synthesis capacity and promoting cytochrome c release, prior to T(HF). Mitochondria can mediate HF in heat stressed hearts in fish and play a significant role in thermal stress tolerance, and perhaps limit species distributions by contributing to HF.

  15. Heat stress differentially modifies ethylene biosynthesis and signaling in pea floral and fruit tissues.

    PubMed

    Savada, Raghavendra P; Ozga, Jocelyn A; Jayasinghege, Charitha P A; Waduthanthri, Kosala D; Reinecke, Dennis M

    2017-10-01

    Ethylene biosynthesis is regulated in reproductive tissues in response to heat stress in a manner to optimize resource allocation to pollinated fruits with developing seeds. High temperatures during reproductive development are particularly detrimental to crop fruit/seed production. Ethylene plays vital roles in plant development and abiotic stress responses; however, little is known about ethylene's role in reproductive tissues during development under heat stress. We assessed ethylene biosynthesis and signaling regulation within the reproductive and associated tissues of pea during the developmental phase that sets the stage for fruit-set and seed development under normal and heat-stress conditions. The transcript abundance profiles of PsACS [encode enzymes that convert S-adenosyl-L-methionine to 1-aminocyclopropane-1-carboxylic acid (ACC)] and PsACO (encode enzymes that convert ACC to ethylene), and ethylene evolution were developmentally, environmentally, and tissue-specifically regulated in the floral/fruit/pedicel tissues of pea. Higher transcript abundance of PsACS and PsACO in the ovaries, and PsACO in the pedicels was correlated with higher ethylene evolution and ovary senescence and pedicel abscission in fruits that were not pollinated under control temperature conditions. Under heat-stress conditions, up-regulation of ethylene biosynthesis gene expression in pre-pollinated ovaries was also associated with higher ethylene evolution and lower retention of these fruits. Following successful pollination and ovule fertilization, heat-stress modified PsACS and PsACO transcript profiles in a manner that suppressed ovary ethylene evolution. The normal ethylene burst in the stigma/style and petals following pollination was also suppressed by heat-stress. Transcript abundance profiles of ethylene receptor and signaling-related genes acted as qualitative markers of tissue ethylene signaling events. These data support the hypothesis that ethylene biosynthesis is

  16. Phenotypic Effects of Salt and Heat Stress over Three Generations in Arabidopsis thaliana

    PubMed Central

    Suter, Léonie; Widmer, Alex

    2013-01-01

    Current and predicted environmental change will force many organisms to adapt to novel conditions, especially sessile organisms such as plants. It is therefore important to better understand how plants react to environmental stress and to what extent genotypes differ in such responses. It has been proposed that adaptation to novel conditions could be facilitated by heritable epigenetic changes induced by environmental stress, independent of genetic variation. Here we assessed phenotypic effects of heat and salt stress within and across three generations using four highly inbred Arabidopsis thaliana genotypes (Col, Cvi, Ler and Sha). Salt stress generally decreased fitness, but genotypes were differently affected, suggesting that susceptibility of A. thaliana to salt stress varies among genotypes. Heat stress at an early rosette stage had less detrimental effects but accelerated flowering in three out of four accessions. Additionally, we found three different modes of transgenerational effects on phenotypes, all harboring the potential of being adaptive: heat stress in previous generations induced faster rosette growth in Sha, both under heat and control conditions, resembling a tracking response, while in Cvi, the phenotypic variance of several traits increased, resembling diversified bet-hedging. Salt stress experienced in earlier generations altered plant architecture of Sha under salt but not control conditions, similar to transgenerational phenotypic plasticity. However, transgenerational phenotypic effects depended on the type of stress as well as on genotype, suggesting that such effects may not be a general response leading to adaptation to novel environmental conditions in A. thaliana. PMID:24244719

  17. Heat stress regimes for the investigation of pollen thermotolerance in crop plants.

    PubMed

    Mesihovic, Anida; Iannacone, Rina; Firon, Nurit; Fragkostefanakis, Sotirios

    2016-06-01

    Pollen thermotolerance. Global warming is predicted to increase the frequency and severity of extreme weather phenomena such as heat waves thereby posing a major threat for crop productivity and food security. The yield in case of most crop species is dependent on the success of reproductive development. Pollen development has been shown to be highly sensitive to elevated temperatures while the development of the female gametophyte as well as sporophytic tissues might also be disturbed under mild or severe heat stress conditions. Therefore, assessing pollen thermotolerance is currently of high interest for geneticists, plant biologists and breeders. A key aspect in pollen thermotolerance studies is the selection of the appropriate heat stress regime, the developmental stage that the stress is applied to, as well as the method of application. Literature search reveals a rather high variability in heat stress treatments mainly due to the lack of standardized protocols for different plant species. In this review, we summarize and discuss experimental approaches that have been used in various crops, with special focus on tomato, rice and wheat, as the best studied crops regarding pollen thermotolerance. The overview of stress treatments and the major outcomes of each study aim to provide guidelines for similar research in other crops.

  18. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster.

    PubMed

    Landis, Gary; Shen, Jie; Tower, John

    2012-11-01

    Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging.

  19. Effects of short-term heat stress at the grain formation stage on physicochemical properties of waxy maize starch.

    PubMed

    Gu, Xiaotian; Huang, Tianqi; Ding, Mengqiu; Lu, Weiping; Lu, Dalei

    2018-02-01

    Waxy maize (Zea mays L. sinensis Kulesh) suffers short-term exposure to high temperature during grain filling in southern China. The effects of such exposure are poorly understood. Starch granule size was increased by 5 days' short-term heat stress (35.0 °C) and the increase was higher when the stress was introduced early. Heat stress increased the iodine binding capacity of starches and no difference was observed among the three stages. Starch relative crystallinity was increased and swelling power was decreased only when heat stress was introduced early. Heat stress also increased the pasting viscosity, and this effect became more pronounced with later applications of stress. Heat stress reduced starch gelatinization enthalpy, and the reduction gradually increased with later exposures. Heat stress increased the gelatinization temperature and retrogradation enthalpy and percentage of the samples, with the increases being largest with earlier introduction of high temperature. Heat stress increased the pasting viscosities and retrogradation percentage of starch by causing change in granule size, amylopectin chain length distribution and crystallinity, and the effects observed were more severe with earlier introduction of heat stress after pollination. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. The Impact of Urban Growth and Climate Change on Heat Stress in an Australian City

    NASA Astrophysics Data System (ADS)

    Chapman, S.; Mcalpine, C. A.; Thatcher, M. J.; Salazar, A.; Watson, J. R.

    2017-12-01

    Over half of the world's population lives in urban areas. Most people will therefore be exposed to climate change in an urban environment. One of the climate risks facing urban residents is heat stress, which can lead to illness and death. Urban residents are at increased risk of heat stress due to the urban heat island effect. The urban heat island is a modification of the urban environment and increases temperatures on average by 2°C, though the increase can be much higher, up to 8°C when wind speeds and cloud cover are low. The urban heat island is also expected to increase in the future due to urban growth and intensification, further exacerbating urban heat stress. Climate change alters the urban heat island due to changes in weather (wind speed and cloudiness) and evapotranspiration. Future urban heat stress will therefore be affected by urban growth and climate change. The aim of this study was to examine the impact of urban growth and climate change on the urban heat island and heat stress in Brisbane, Australia. We used CCAM, the conformal cubic atmospheric model developed by the CSIRO, to examine temperatures in Brisbane using scenarios of urban growth and climate change. We downscaled the urban climate using CCAM, based on bias corrected Sea Surface Temperatures from the ACCESS1.0 projection of future climate. We used Representative Concentration Pathway (RCP) 8.5 for the periods 1990 - 2000, 2049 - 2060 and 2089 - 2090 with current land use and an urban growth scenario. The present day climatology was verified using weather station data from the Australian Bureau of Meteorology. We compared the urban heat island of the present day with the urban heat island with climate change to determine if climate change altered the heat island. We also calculated heat stress using wet-bulb globe temperature and apparent temperature for the climate change and base case scenarios. We found the urban growth scenario increased present day temperatures by 0.5°C in the

  1. Fuel savings with conventional hot water space heating systems by incorporating a natural gas powered heat pump. Preliminary project: Development of heat pump technology

    NASA Astrophysics Data System (ADS)

    Vanheyden, L.; Evertz, E.

    1980-12-01

    Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.

  2. Heat stress risk in India under the observed and projected 1.5 and 2.0ºC warming

    NASA Astrophysics Data System (ADS)

    Mishra, V.; Kumar, R.; Mukherjee, S.; AghaKouchak, A.; Stone, D. A.; Huber, M.

    2017-12-01

    India has witnessed some of the unprecedented heat waves that caused substantial mortality. Despite the implications of heat stress on labor efficiency, human health, and mortality, the risk of heat stress under the warming climate is largely unexplored in India. Here, using the observations, reanalysis products, and data from the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs), we show that the risk of heatwaves and heat stress has increased in India during the period of 1979-2017. Both heat waves and heat stress events have become more frequent in the majority of India except the Indo-Gangetic Plain region. In the Indo-Gangetic Plain region, the heat stress has increased while the frequency of heat waves has declined during the observed record of 1979-2017. This contrasting response of heat waves and heat stress in the Gangetic Plain region can be attributed to irrigation and atmospheric aerosols. The risk of heat stress is projected to increase manifold in the majority of India and in the Indo-Gangetic Plain under the 1.5 and 2.0ºC warming scenarios.

  3. Insight into the heat resistance of fish via blood: Effects of heat stress on metabolism, oxidative stress and antioxidant response of olive flounder Paralichthys olivaceus and turbot Scophthalmus maximus.

    PubMed

    Lu, Yunliang; Wu, Zhihao; Song, Zongcheng; Xiao, Peng; Liu, Ying; Zhang, Peijun; You, Feng

    2016-11-01

    High temperature has direct confinement on fish survival and growth, especially under the background of global warming. Selection of fish line with heat resistance is an important means to address this problem. In the present study, we analyzed the difference in heat resistance between families of olive flounder Paralichthys olivaceus and turbot Scophthalmus maximus, two flatfish species occupying slightly different thermal niches. Then the chosen families were tested to determine their differential response to heat stress (ΔT = +8 °C and +12 °C) in blood, including anaerobic metabolism (lactate), oxidative stress (lipid peroxidation and protein carbonylation) and antioxidant enzymes. Results showed a difference in heat resistance between families of the two species. Among the chosen parameters, growth traits had a significant effect on contents of lactate and malondialdehyd (MDA), and activities of catalase (CAT) and glutathione S-transferase in flounder (P < 0.05), and on MDA content and CAT activity in turbot (P < 0.05). In comparison with heat-sensitive family of each species, levels of all studied parameters were lower and more stable in heat-resistant families after heat stress. What's more, heat resistance of fish significantly influenced contents of lactate and MDA and activity of CAT in flounder (P < 0.05), as well as contents of lactate, MDA and carbonyl and activity of superoxide dismutate (SOD) in turbot (P < 0.05). These results demonstrated that such physiological phenotypes as anaerobic metabolism, oxidative stress and antioxidant enzymes are good biomarkers of fish heat-resistance, being potentially valuable in fish breeding. However, these markers should be applied with more caution when there is a growth discrepancy between fish families. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Aspergillus oryzae AoSO is a novel component of stress granules upon heat stress in filamentous fungi.

    PubMed

    Huang, Hsiang-Ting; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2013-01-01

    Stress granules are a type of cytoplasmic messenger ribonucleoprotein (mRNP) granule formed in response to the inhibition of translation initiation, which typically occurs when cells are exposed to stress. Stress granules are conserved in eukaryotes; however, in filamentous fungi, including Aspergillus oryzae, stress granules have not yet been defined. For this reason, here we investigated the formation and localization of stress granules in A. oryzae cells exposed to various stresses using an EGFP fusion protein of AoPab1, a homolog of Saccharomyces cerevisiae Pab1p, as a stress granule marker. Localization analysis showed that AoPab1 was evenly distributed throughout the cytoplasm under normal growth conditions, and accumulated as cytoplasmic foci mainly at the hyphal tip in response to stress. AoSO, a homolog of Neurospora crassa SO, which is necessary for hyphal fusion, colocalized with stress granules in cells exposed to heat stress. The formation of cytoplasmic foci of AoSO was blocked by treatment with cycloheximide, a known inhibitor of stress granule formation. Deletion of the Aoso gene had effects on the formation and localization of stress granules in response to heat stress. Our results suggest that AoSO is a novel component of stress granules specific to filamentous fungi. The authors would specially like to thank Hiroyuki Nakano and Kei Saeki for generously providing experimental and insightful opinions.

  5. Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures

    PubMed Central

    Ghandi, Anfoka; Adi, Moshe; Lilia, Fridman; Linoy, Amrani; Or, Rotem; Mikhail, Kolot; Mouhammad, Zeidan; Henryk, Czosnek; Rena, Gorovits

    2016-01-01

    Cultured tomatoes are often exposed to a combination of extreme heat and infection with Tomato yellow leaf curl virus (TYLCV). This stress combination leads to intense disease symptoms and yield losses. The response of TYLCV-susceptible and resistant tomatoes to heat stress together with viral infection was compared. The plant heat-stress response was undermined in TYLCV infected plants. The decline correlated with the down-regulation of heat shock transcription factors (HSFs) HSFA2 and HSFB1, and consequently, of HSF-regulated genes Hsp17, Apx1, Apx2 and Hsp90. We proposed that the weakened heat stress response was due to the decreased capacity of HSFA2 to translocate into the nuclei of infected cells. All the six TYLCV proteins were able to interact with tomato HSFA2 in vitro, moreover, coat protein developed complexes with HSFA2 in nuclei. Capturing of HSFA2 by viral proteins could suppress the transcriptional activation of heat stress response genes. Application of both heat and TYLCV stresses was accompanied by the development of intracellular large protein aggregates containing TYLCV proteins and DNA. The maintenance of cellular chaperones in the aggregated state, even after recovery from heat stress, prevents the circulation of free soluble chaperones, causing an additional decrease in stress response efficiency. PMID:26792235

  6. Sex Pheromones of C. elegans Males Prime the Female Reproductive System and Ameliorate the Effects of Heat Stress

    PubMed Central

    Aprison, Erin Z.; Ruvinsky, Ilya

    2015-01-01

    Pheromones are secreted molecules that mediate animal communications. These olfactory signals can have substantial effects on physiology and likely play important roles in organismal survival in natural habitats. Here we show that a blend of two ascaroside pheromones produced by C. elegans males primes the female reproductive system in part by improving sperm guidance toward oocytes. Worms have different physiological responses to different ratios of the same two molecules, revealing an efficient mechanism for increasing coding potential of a limited repertoire of molecular signals. The endogenous function of the male sex pheromones has an important side benefit. It substantially ameliorates the detrimental effects of prolonged heat stress on hermaphrodite reproduction because it increases the effectiveness with which surviving gametes are used following stress. Hermaphroditic species are expected to lose female-specific traits in the course of evolution. Our results suggest that some of these traits could have serendipitous utility due to their ability to counter the effects of stress. We propose that this is a general mechanism by which some mating-related functions could be retained in hermaphroditic species, despite their expected decay. PMID:26645097

  7. Comparative evaluation of human heat stress indices on selected hospital admissions in Sydney, Australia.

    PubMed

    Goldie, James; Alexander, Lisa; Lewis, Sophie C; Sherwood, Steven

    2017-08-01

    To find appropriate regression model specifications for counts of the daily hospital admissions of a Sydney cohort and determine which human heat stress indices best improve the models' fit. We built parent models of eight daily counts of admission records using weather station observations, census population estimates and public holiday data. We added heat stress indices; models with lower Akaike Information Criterion scores were judged a better fit. Five of the eight parent models demonstrated adequate fit. Daily maximum Simplified Wet Bulb Globe Temperature (sWBGT) consistently improved fit more than most other indices; temperature and heatwave indices also modelled some health outcomes well. Humidity and heat-humidity indices better fit counts of patients who died following admission. Maximum sWBGT is an ideal measure of heat stress for these types of Sydney hospital admissions. Simple temperature indices are a good fallback where a narrower range of conditions is investigated. Implications for public health: This study confirms the importance of selecting appropriate heat stress indices for modelling. Epidemiologists projecting Sydney hospital admissions should use maximum sWBGT as a common measure of heat stress. Health organisations interested in short-range forecasting may prefer simple temperature indices. © 2017 The Authors.

  8. Relief of Residual Stress in Streamline Tie Rods by Heat Treatment

    NASA Technical Reports Server (NTRS)

    Pollard, R E; Reinhart, Fred M

    1941-01-01

    About two-thirds of the residual stress in cold-worked SAE 1050 steel tie rods was relieved by heating 30 minutes at 600 degrees Fahrenheit. Cold-worked austenitic stainless-steel tie rods could be heated at temperatures up to 1000 degrees Fahrenheit without lowering the important physical properties. The corrosion resistance, in laboratory corrosion test, of straight 18:8 and titanium-treated 18:8 materials appeared to be impaired after heating at temperatures above 800 degrees or 900 degrees fahrenheit. Columbium-treated and molybdenum-treated 18:8 steel exhibited improved stability over a wide range of temperatures. Tie rods of either material could be heated 30 minutes with safety at any temperature up to 1000 degrees Fahrenheit. At this temperature most of the residual stress would be relieved.

  9. Proteomic analysis to unravel the effect of heat stress on gene expression and milk synthesis in bovine mammary epithelial cells.

    PubMed

    Li, Lian; Wang, Yiru; Li, Chengmin; Wang, Genlin

    2017-12-01

    Heat stress can play a negative effect on milk yield and composition of dairy cattle, leading to immeasurable economic loss. The basic components of the mammary gland are the alveoli; these alveolar mammary epithelial cells reflect the milk producing ability of dairy cows. In this study, we exposed bovine mammary epithelial cells to heat stress and compared them to a control group using isobaric tags for relative and absolute quantitation combined with liquid chromatography coupled with tandem mass spectrometry. Compared with a control group, 104 differentially elevated proteins (>1.3-fold) and 167 decreased proteins (<0.77-fold) were identified in the heat treatment group. Gene Ontology analysis identified a majority of the differentially expressed proteins are associated in cell-substrate junction assembly, catabolic processes and metabolic processes. Some of these significantly regulated proteins were related to the synthesis and secretion of milk, such as milk protein and fat. This finding was further supported by the results obtained from the reduced β-casein expression through the system of plasminogen activator - plasminogen - plasmin and decreased fatty acid synthase could partly explain why milk fat synthesis ability of dairy cows decreased under heat stress. Our results highlight the effects of heat stress on synthesis of milk protein and fat, thus providing additional clues for further studies of heat stress on dairy milk production. © 2017 Japanese Society of Animal Science.

  10. Profiling of differential gene expression in the hypothalamus of broiler-type Taiwan country chickens in response to acute heat stress.

    PubMed

    Tu, Wei-Lin; Cheng, Chuen-Yu; Wang, Shih-Han; Tang, Pin-Chi; Chen, Chih-Feng; Chen, Hsin-Hsin; Lee, Yen-Pai; Chen, Shuen-Ei; Huang, San-Yuan

    2016-02-01

    Acute heat stress severely impacts poultry production. The hypothalamus acts as a crucial center to regulate body temperature, detect temperature changes, and modulate the autonomic nervous system and endocrine loop for heat retention and dissipation. The purpose of this study was to investigate global gene expression in the hypothalamus of broiler-type B strain Taiwan country chickens after acute heat stress. Twelve 30-week-old hens were allocated to four groups. Three heat-stressed groups were subjected to acute heat stress at 38 °C for 2 hours without recovery (H2R0), with 2 hours of recovery (H2R2), and with 6 hours of recovery (H2R6). The control hens were maintained at 25 °C. At the end, hypothalamus samples were collected for gene expression analysis. The results showed that 24, 11, and 25 genes were upregulated and 41, 15, and 42 genes were downregulated in H2R0, H2R2, and H2R6 treatments, respectively. The expressions of gonadotropin-releasing hormone 1 (GNRH1), heat shock 27-kDa protein 1 (HSPB1), neuropeptide Y (NPY), and heat shock protein 25 (HSP25) were upregulated at all recovery times after heat exposure. Conversely, the expression of TPH2 was downregulated at all recovery times. A gene ontology analysis showed that most of the differentially expressed genes were involved in biological processes including cellular processes, metabolic processes, localization, multicellular organismal processes, developmental processes, and biological regulation. A functional annotation analysis showed that the differentially expressed genes were related to the gene networks of responses to stress and reproductive functions. These differentially expressed genes might be essential and unique key factors in the heat stress response of the hypothalamus in chickens. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Assessment of indoor heat stress variability in summer and during heat warnings: a case study using the UTCI in Berlin, Germany

    NASA Astrophysics Data System (ADS)

    Walikewitz, Nadine; Jänicke, Britta; Langner, Marcel; Endlicher, Wilfried

    2018-01-01

    Humans spend most of their time in confined spaces and are hence primarily exposed to the direct influence of indoor climate. The Universal Thermal Climate Index (UTCI) was obtained in 31 rooms (eight buildings) in Berlin, Germany, during summer 2013 and 2014. The indoor UTCI was determined from measurements of both air temperature and relative humidity and from data of mean radiant temperature and air velocity, which were either measured or modeled. The associated outdoor UTCI was obtained through facade measurements of air temperature and relative humidity, simulation of mean radiant temperature, and wind data from a central weather station. The results show that all rooms experienced heat stress according to UTCI levels, especially during heat waves. Indoor UTCI varied up to 6.6 K within the city and up to 7 K within building. Heat stress either during day or at night occurred on 35 % of all days. By comparing the day and night thermal loads, we identified maximum values above the 32 °C threshold for strong heat stress during the nighttime. Outdoor UTCI based on facade measurements provided no better explanation of indoor UTCI variability than the central weather station. In contrast, we found a stronger relationship of outdoor air temperature and indoor air temperature. Building characteristics, such as the floor level or window area, influenced indoor heat stress ambiguously. We conclude that indoor heat stress is a major hazard, and more effort toward understanding the causes and creating effective countermeasures is needed.

  12. Are adult life history traits in oriental fruit moth affected by a mild pupal heat stress?

    PubMed

    Zheng, Jincheng; Cheng, Xiongbin; Hoffmann, Ary A; Zhang, Bo; Ma, Chun-Sen

    2017-10-01

    Thermal stress at one life stage can affect fitness at a later stage in ectotherms with complex life cycles. Most relevant studies have focused on extreme stress levels, but here we also show substantial fitness effects in a moth when pupae are exposed to a relatively mild and sublethal heat stress. We consider the impact of a 35°C heat stress of 2h in three geographically separate populations of the oriental fruit moth (OFM, Grapholita molesta) from northern, middle and southern China. Heat stress negatively affected fecundity but increased adult heat resistance and adult longevity. Fitness effects were mostly consistent across populations but there were also some population differences. In the Shenyang population from northern China, there was a hormetic effect of heat on female longevity not evident in the other populations. Adults from all populations had higher LT 50 s due to heat stress after pupal exposure to the sublethal stress. These results highlight that the pupal stage is a particularly sensitive window for development and they have implications for seasonal adaptation in uncertain environments as well as changes in pest dynamics under climate warming. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of passive heat stress on arterial stiffness in smokers versus non-smokers

    NASA Astrophysics Data System (ADS)

    Moyen, N. E.; Ganio, M. S.; Burchfield, J. M.; Tucker, M. A.; Gonzalez, M. A.; Dougherty, E. K.; Robinson, F. B.; Ridings, C. B.; Veilleux, J. C.

    2016-04-01

    In non-smokers, passive heat stress increases shear stress and vasodilation, decreasing arterial stiffness. Smokers, who reportedly have arterial dysfunction, may have similar improvements in arterial stiffness with passive heat stress. Therefore, we examined the effects of an acute bout of whole-body passive heat stress on arterial stiffness in smokers vs. non-smokers. Thirteen smokers (8.8 ± 5.5 [median = 6] cigarettes per day for >4 years) and 13 non-smokers matched for age, mass, height, and exercise habits (27 ± 8 years; 78.8 ± 15.4 kg; 177.6 ± 6.7 cm) were passively heated to 1.5 °C core temperature ( T C) increase. At baseline and each 0.5 °C T C increase, peripheral (pPWV) and central pulse wave velocity (cPWV) were measured via Doppler ultrasound. No differences existed between smokers and non-smokers for any variables (all p > 0.05), except cPWV slightly increased from baseline (526.7 ± 81.7 cm · s-1) to 1.5 °C Δ T C (579.7 ± 69.8 cm · s-1; p < 0.005), suggesting heat stress acutely increased central arterial stiffness. pPWV did not change with heating (grand mean: baseline = 691.9 ± 92.9 cm · s-1; 1.5 °C Δ T C = 691.9 ± 79.5 cm · s-1; p > 0.05). Changes in cPWV and pPWV during heating correlated ( p < 0.05) with baseline PWV in smokers (cPWV: r = -0.59; pPWV: r = -0.62) and non-smokers (cPWV: r = -0.45; pPWV: r = -0.77). Independent of smoking status, baseline stiffness appears to mediate the magnitude of heating-induced changes in arterial stiffness.

  14. Effect of passive heat stress on arterial stiffness in smokers versus non-smokers.

    PubMed

    Moyen, N E; Ganio, M S; Burchfield, J M; Tucker, M A; Gonzalez, M A; Dougherty, E K; Robinson, F B; Ridings, C B; Veilleux, J C

    2016-04-01

    In non-smokers, passive heat stress increases shear stress and vasodilation, decreasing arterial stiffness. Smokers, who reportedly have arterial dysfunction, may have similar improvements in arterial stiffness with passive heat stress. Therefore, we examined the effects of an acute bout of whole-body passive heat stress on arterial stiffness in smokers vs. non-smokers. Thirteen smokers (8.8 ± 5.5 [median = 6] cigarettes per day for > 4 years) and 13 non-smokers matched for age, mass, height, and exercise habits (27 ± 8 years; 78.8 ± 15.4 kg; 177.6 ± 6.7 cm) were passively heated to 1.5 °C core temperature (T C) increase. At baseline and each 0.5 °C T C increase, peripheral (pPWV) and central pulse wave velocity (cPWV) were measured via Doppler ultrasound. No differences existed between smokers and non-smokers for any variables (all p >  .05), except cPWV slightly increased from baseline (526.7 ± 81.7 cm · s(-1)) to 1.5 °C ΔT C (579.7 ± 69.8 cm · s(-1); p < 0.005), suggesting heat stress acutely increased central arterial stiffness. pPWV did not change with heating (grand mean: baseline = 691.9 ± 92.9 cm · s(-1); 1.5 °C ΔT C = 691.9 ± 79.5 cm · s(-1); p > 0.05). Changes in cPWV and pPWV during heating correlated (p < 0.05) with baseline PWV in smokers (cPWV: r = -0.59; pPWV: r = -0.62) and non-smokers (cPWV: r = -0.45; pPWV: r = -0.77). Independent of smoking status, baseline stiffness appears to mediate the magnitude of heating-induced changes in arterial stiffness.

  15. Ability to Discriminate Between Sustainable and Unsustainable Heat Stress Exposures-Part 2: Physiological Indicators.

    PubMed

    Garzón-Villalba, Ximena P; Wu, Yougui; Ashley, Candi D; Bernard, Thomas E

    2017-07-01

    There are times when it is not practical to assess heat stress using environmental metrics and metabolic rate, and heat strain may provide an alternative approach. Heat strain indicators have been used for decades as tools for monitoring physiological responses to work in hot environments. Common indicators of heat strain are body core temperature (assessed here as rectal temperature Tre), heart rate (HR), and average skin temperature (Tsk). Data collected from progressive heat stress trials were used to (1) demonstrate if physiological heat strain indicators (PHSIs) at the upper limit of Sustainable heat stress were below generally accepted limits; (2) suggest values for PHSIs that demonstrate a Sustainable level of heat stress; (3) suggest alternative PHSIs; and (4) determine if metabolic rate was an effect modifier. Two previous progressive heat stress studies included 176 trials with 352 pairs of Sustainable and Unsustainable exposures over a range of relative humidities and metabolic rates using 29 participants. To assess the discrimination ability of PHSIs, conditional logistic regression and stepwise logistic regression were used to find the best combinations of predictors of Unsustainable exposures. The accuracy of the models was assessed using receiver operating characteristic curves. Current recommendations for physiological heat strain limits were associated with probabilities of Unsustainable greater than 0.5. Screening limits for Sustainable heat stress were Tre of 37.5°C, HR of 105 bpm, and Tsk of 35.8°C. Tsk alone resulted in an area under the curve of 0.85 and the combination of Tsk and HR (area under the curve = 0.88) performed the best. The adjustment for metabolic rate was statistically significant for physiological strain index or ∆Tre-sk as main predictors, but its effect modification was negligible and could be ignored. Based on the receiver operating characteristic curve, PHSIs (Tre, HR, and Tsk) can accurately predict Unsustainable heat

  16. Environmental harshness, heat stress, and Marmota flaviventris.

    PubMed

    Webb, D R

    1979-01-01

    Yellow-bellied marmots (Marmota flaviventris) were studied at three sites in central Oregon. Juveniles substantially reduced their foraging activity when equivalent black-body temperatures exceeded their upper critical temperature. Inclusion of heat stress into estimates of environmental harshness drastically reduced the differences in available foraging time between high elevation and low elevation sites.

  17. Single nucleotide polymorphisms associated with thermoregulation in lactating dairy cows exposed to heat stress.

    PubMed

    Dikmen, S; Wang, X-z; Ortega, M S; Cole, J B; Null, D J; Hansen, P J

    2015-12-01

    Dairy cows with increased rectal temperature experience lower milk yield and fertility. Rectal temperature during heat stress is heritable, so genetic selection for body temperature regulation could reduce effects of heat stress on production. One aim of the study was to validate the relationship between genotype and heat tolerance for single nucleotide polymorphisms (SNPs) previously associated with resistance to heat stress. A second aim was to identify new SNPs associated with heat stress resistance. Thermotolerance was assessed in lactating Holsteins during the summer by measuring rectal temperature (a direct measurement of body temperature regulation; n = 435), respiration rate (an indirect measurement of body temperature regulation, n = 450) and sweating rate (the major evaporative cooling mechanism in cattle, n = 455). The association between genotype and thermotolerance was evaluated for 19 SNPs previously associated with rectal temperature from a genomewide analysis study (GWAS), four SNPs previously associated with change in milk yield during heat stress from GWAS, 2 candidate gene SNPs previously associated with rectal temperature and respiration rate during heat stress (ATPA1A and HSP70A) and 66 SNPs in genes previously shown to be associated with reproduction, production or health traits in Holsteins. For SNPs previously associated with heat tolerance, regions of BTA4, BTA6 and BTA24 were associated with rectal temperature; regions of BTA6 and BTA24 were associated with respiration rate; and regions of BTA5, BTA26 and BTA29 were associated with sweating rate. New SNPs were identified for rectal temperature (n = 12), respiration rate (n = 8) and sweating rate (n = 3) from among those previously associated with production, reproduction or health traits. The SNP that explained the most variation were PGR and ASL for rectal temperature, ACAT2 and HSD17B7 for respiration rate, and ARL6IP1 and SERPINE2 for sweating rate. ARL6IP1 was associated with all three

  18. The Arabidopsis endoplasmic reticulum associated degradation pathways are involved in the regulation of heat stress response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lin-Mao; University of Chinese Academy of Sciences, Beijing; Lü, Shi-You

    Abstracts: The Cytosolic Protein Response (CPR) in the cytosol and the Unfolded Protein Response (UPR) and ER-associated degradation (ERAD) in the endoplasmic reticulum are major pathways of the cellular proteostasis network. However, despite years of effort, how these protein quality control systems coordinated in vivo remains largely unknown, particularly in plants. In this study, the roles of two evolutionarily conserved ERAD pathways (DOA10 and HRD1) in heat stress response were investigated through reverse genetic approaches in Arabidopsis. Phenotypic analysis of the mutants showed that the two ERAD pathways additively play negative roles in heat tolerance, which was demonstrated by higher survivalmore » rate and lower electrolyte leakage in the loss of function mutants compared to the wild type plants. Importantly, gene expression analysis revealed that the mutant plants showed elevated transcriptional regulation of several downstream genes, including those encoding CPR and UPR marker genes, under both basal and heat stress conditions. Finally, multiple components of ERAD genes exhibited rapid response to increasing temperature. Taken together, our data not only unravels key insights into the crosstalk between different protein quality control processes, but also provides candidate genes to genetically improve plant heat tolerance in the future. - Highlights: • ERAD pathways cooperatively regulate plant thermotolerance. • ERAD pathways cooperatively regulate UPR and CPR. • ERAD components gene expression are upregulated by heat stress.« less

  19. Heat index and adjusted temperature as surrogates for wet bulb globe temperature to screen for occupational heat stress.

    PubMed

    Bernard, Thomas E; Iheanacho, Ivory

    2015-01-01

    Ambient temperature and relative humidity are readily ava-ilable and thus tempting metrics for heat stress assessment. Two methods of using air temperature and relative humidity to create an index are Heat Index and Adjusted Temperature. The purposes of this article are: (1) to examine how well Heat Index and Adjusted Temperature estimated the wet bulb globe temperature (WBGT) index, and (2) to suggest how Heat Index and Adjusted Temperature can be used to screen for heat stress level. Psychrometric relationships were used to estimate values of actual WBGT for conditions of air temperature, relative humidity, and radiant heat at an air speed of 0.5 m/s. A relationship between Heat Index [°F] and WBGT [°C] was described by WBGT = -0.0034 HI(2) + 0.96 HI - 34. At lower Heat Index values, the equation estimated WBGTs that were ± 2 °C-WBGT around the actual value, and to about ± 0.5 °C-WBGT for Heat Index values > 100 °F. A relationship between Adjusted Temperature [°F] and WBGT [°C] was described by WBGT = 0.45 Tadj - 16. The actual WBGT was between 1 °C-WBGT below the estimated value and 1.4 °C-WBGT above. That is, there was a slight bias toward overestimating WBGT from Adjusted Temperature. Heat stress screening tables were constructed for metabolic rates of 180, 300, and 450 W. The screening decisions were divided into four categories: (1) < alert limit, (2) < exposure limit, (3) hourly time-weighted averages (TWAs) of work and recovery, and (4) a caution zone for an exposure > exposure limit at rest. The authors do not recommend using Heat Index or Adjusted Temperature instead of WBGT, but they may be used to screen for circumstances when a more detailed analysis using WBGT is appropriate. A particular weakness is accounting for radiant heat; and neither air speed nor clothing was considered.

  20. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdés-López, Oswaldo; Batek, Josef; Gomez-Hernandez, Nicolas

    2016-04-25

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Roots provide support, water and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined the response of these plant organs to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to whole roots. We identified 2,013 genes differentially regulated in root hairsmore » in response to heat stress. Our gene regulatory module analysis identified ten, key modules that controlled the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from roots and root hairs. These experiments identified a variety of proteins whose expression changed within 3 hours of application of heat stress. Most of these proteins were predicted to play a role in thermotolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean.« less

  1. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster

    PubMed Central

    Landis, Gary; Shen, Jie; Tower, John

    2012-01-01

    Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging. PMID:23211361

  2. Brown seaweed- (Tasco) treated conserved forage enhances antioxidant status and immune function in heat-stressed wether lambs.

    PubMed

    Saker, K E; Fike, J H; Veit, H; Ward, D L

    2004-04-01

    Twenty-seven wether lambs were utilized to evaluate select innate immunity and oxidative stress in response to diet and heat stress. Dietary treatments were: (i) control (tall fescue) hay = no Tasco (tradename for the extract of the brown seaweed, Ascophyllum nodosum, Acadian Sealants Ltd, Nova Scotia, Canada); (ii) pre-harvest Tasco-Forage-treated hay and (iii) control hay + post-harvest Tasco-EX. Tasco-Forage and Tasco-EX are two forms of the Tasco extract that are either applied to foliage or used for direct feeding, respectively. All lambs were supplemented with soyabean meal and trace mineralized salt. Heat stress was applied for 10 days with measurements obtained at days 0, 4 and 10. A heat x treatment interaction indicated hay with Tasco enhanced monocyte oxidative burst through short duration (p < 0.05) and long duration (p < 0.10) heat stress. Phagocytic activity was influenced by days of heat stress (p < 0.001) and treatment (p = 0.02) with post-harvest Tasco lambs exhibiting the greatest immune enhancement (p < 0.05). Red and white blood cell glutathione peroxidase increased by heat stress day 10 in Tasco lambs. Superoxide dismutase activity was increased and lipid hydroperoxide metabolites minimized (p < 0.01) through long duration heat stress in the pre-harvest Tasco group. Tasco treatment of tall fescue hay prior to harvest appears to provide residual effects on animal antioxidant availability in short-duration heat stress. Tasco supplementation to post-harvest fescue hay enhances immune function and protects against prolonged heat-induced oxidative stress.

  3. Heat stress disorders and headache: a case of new daily persistent headache secondary to heat stroke.

    PubMed

    Di Lorenzo, C; Ambrosini, A; Coppola, G; Pierelli, F

    2009-01-01

    Headache is considered as a common symptom of heat stress disorders (HSD), but no forms of secondary headache from heat exposure are reported in the International Classification of Headache Disorders-2 Edition (ICHD-II). Heat-stroke (HS) is the HSD most severe condition, it may be divided into two forms: classic (due to a long period environmental heat exposure) and exertional (a severe condition caused by strenuous physical exercises in heat environmental conditions). Here we report the case of a patient who developed a headache clinical picture fulfilling the diagnostic criteria for new daily persistent headache (NDPH), after an exertional HS, and discuss about possible pathophysiological mechanisms and classification aspects of headache induced by heat conditions.

  4. Heat stress disorders and headache: a case of new daily persistent headache secondary to heat stroke

    PubMed Central

    Di Lorenzo, C; Ambrosini, A; Coppola, G; Pierelli, F

    2009-01-01

    Headache is considered as a common symptom of heat stress disorders (HSD), but no forms of secondary headache from heat exposure are reported in the International Classification of Headache Disorders-2 Edition (ICHD-II). Heat-stroke (HS) is the HSD most severe condition, it may be divided into two forms: classic (due to a long period environmental heat exposure) and exertional (a severe condition caused by strenuous physical exercises in heat environmental conditions). Here we report the case of a patient who developed a headache clinical picture fulfilling the diagnostic criteria for new daily persistent headache (NDPH), after an exertional HS, and discuss about possible pathophysiological mechanisms and classification aspects of headache induced by heat conditions. PMID:21686677

  5. Solar heating system

    DOEpatents

    Schreyer, James M.; Dorsey, George F.

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  6. Baroreflex modulation of sympathetic nerve activity to muscle in heat-stressed humans

    NASA Technical Reports Server (NTRS)

    Cui, Jian; Wilson, Thad E.; Crandall, Craig G.

    2002-01-01

    To identify whether whole body heating alters arterial baroreflex control of muscle sympathetic nerve activity (MSNA), MSNA and beat-by-beat arterial blood pressure were recorded in seven healthy subjects during acute hypotensive and hypertensive stimuli in both normothermic and heat stress conditions. Whole body heating significantly increased sublingual temperature (P < 0.01), MSNA (P < 0.01), heart rate (P < 0.01), and skin blood flow (P < 0.001), whereas mean arterial blood pressure did not change significantly (P > 0.05). During both normothermic and heat stress conditions, MSNA increased and then decreased significantly when blood pressure was lowered and then raised via intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure during heat stress (-128.3 +/- 13.9 U x beats(-1) x mmHg(-1)) was similar (P = 0.31) with normothermia (-140.6 +/- 21.1 U x beats(-1) x mmHg(-1)). Moreover, no significant change in the slope of the relationship between heart rate and systolic blood pressure was observed. These data suggest that arterial baroreflex modulation of MSNA and heart rate are not altered by whole body heating, with the exception of an upward shift of these baroreflex curves to accommodate changes in these variables that occur with whole body heating.

  7. Heat stress increases myonuclear number and fiber size via satellite cell activation in rat regenerating soleus fibers.

    PubMed

    Oishi, Yasuharu; Hayashida, Mari; Tsukiashi, Shinsuke; Taniguchi, Kohachi; Kami, Katsuya; Roy, Roland R; Ohira, Yoshinobu

    2009-11-01

    To investigate the effects of heat stress (hyperthermia) on muscle degeneration-regeneration, the soleus muscles of adult male Wistar rats were injected bilaterally with a single injection of bupivacaine. The rats were assigned to a sedentary control (Con), heat stress (Heat), bupivacaine-injected (BPVC), or bupivacaine-injected plus heat stress (BPVC+Heat) group. Heat stress was induced in the Heat and BPVC+Heat groups by immersion of the lower half of the body into water maintained at 42 +/- 1 degrees C for 30 min 48 h after the injection of bupivacaine and every other day during the following 1 or 2 wk. The soleus muscles in all groups were excised 24 h after the final bout of heat stress. Mean muscle weight, fiber cross-sectional area, myonuclear number, and heat shock protein 72 (Hsp72) and calcineurin protein levels were lower in the BPVC than in the Con or Heat groups at both time points. In contrast, several of these parameters in the BPVC+Heat group were not different or higher than in the Con or Heat groups at the 1- and/or 2-wk time points. The number of total and activated satellite cells, estimated by analyses of Pax7-negative, M-cadherin-negative, and MyoD-positive nuclei, was greater in BPVC+Heat than in all other groups. Combined, the results indicate that heat stress-related activation of satellite cells and upregulation of Hsp72 and calcineurin expression played important roles in the regeneration of the soleus fibers after bupivacaine injection.

  8. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance.

    PubMed

    Casaretto, José A; El-Kereamy, Ashraf; Zeng, Bin; Stiegelmeyer, Suzy M; Chen, Xi; Bi, Yong-Mei; Rothstein, Steven J

    2016-04-29

    Plant response mechanisms to heat and drought stresses have been considered in strategies for generating stress tolerant genotypes, but with limited success. Here, we analyzed the transcriptome and improved tolerance to heat stress and drought of maize plants over-expressing the OsMYB55 gene. Over-expression of OsMYB55 in maize decreased the negative effects of high temperature and drought resulting in improved plant growth and performance under these conditions. This was evidenced by the higher plant biomass and reduced leaf damage exhibited by the transgenic lines compared to wild type when plants were subjected to individual or combined stresses and during or after recovery from stress. A global transcriptomic analysis using RNA sequencing revealed that several genes induced by heat stress in wild type plants are constitutively up-regulated in OsMYB55 transgenic maize. In addition, a significant number of genes up-regulated in OsMYB55 transgenic maize under control or heat treatments have been associated with responses to abiotic stresses including high temperature, dehydration and oxidative stress. The latter is a common and major consequence of imposed heat and drought conditions, suggesting that this altered gene expression may be associated with the improved stress tolerance in these transgenic lines. Functional annotation and enrichment analysis of the transcriptome also pinpoint the relevance of specific biological processes for stress responses. Our results show that expression of OsMYB55 can improve tolerance to heat stress and drought in maize plants. Enhanced expression of stress-associated genes may be involved in OsMYB55-mediated stress tolerance. Possible implications for the improved tolerance to heat stress and drought of OsMYB55 transgenic maize are discussed.

  9. Environmental heat stress enhances crystallization in urine

    NASA Astrophysics Data System (ADS)

    Setyawan, H.; Pratiwi, Q. C.; Sjarifah, I.; Atmojo, T. B.; Khotijah

    2018-03-01

    Over the past several decades, agriculture and plantations have been used as the main livelihood of most of the Karanganyar residents. However, these two sources of living are now replaced by industrial areas that employ thousands of people in that district. The development of this industry triggers multiple environmental impacts, including ecosystem and temperature changes. In consequence, there is an increase in air temperature that can cause a variety of diseases, especially in the workplace. According to the International Labour Organization (ILO) data in 2013, one worker dies every 15 second due to a work accident and 160 workers are suffering from the occupational disease. In Indonesia, the incidence of crystallization in urine is actually still unknown, but it is estimated that there are 170,000 cases annually. A high temperature or called heat stress is one among many factors causing this disease to appear. The workers in the textile industry, especially in the Finishing Department Kusumahadi Co. Ltd that exposed heat stress from the finishing machines and inadequate ventilation. This hot working climate causes the human body to adapt in the form of body cooling mechanism or called sweating This adaptation can cause an increase in sweat production and decrease the production of urine. If it is not followed by consuming the recommended amount of water intake, it can result in the precipitation of body salts that, in a long time, will cause crystallization in urine. The research used the analytic observational designs for a cross-sectional study. There were 34 samples collected from 57 finishing workers. The data were analyzed using Spearman correlation test. The results showed that heat stress (p=0,015) and water intake (p=0,034) has a significant correlation with crystallization in urine.

  10. Heat Stress Modulates Mycelium Growth, Heat Shock Protein Expression, Ganoderic Acid Biosynthesis, and Hyphal Branching of Ganoderma lucidum via Cytosolic Ca2+

    PubMed Central

    Zhang, Xue; Ren, Ang; Li, Meng-Jiao; Cao, Peng-Fei; Chen, Tian-Xi; Zhang, Guang; Shi, Liang; Jiang, Ai-Liang

    2016-01-01

    ABSTRACT Heat stress (HS) influences the growth and development of organisms. Thus, a comprehensive understanding of how organisms sense HS and respond to it is required. Ganoderma lucidum, a higher basidiomycete with bioactive secondary metabolites, has become a potential model system due to the complete sequencing of its genome, transgenic systems, and reliable reverse genetic tools. In this study, we found that HS inhibited mycelium growth, reduced hyphal branching, and induced the accumulation of ganoderic acid biosynthesis and heat shock proteins (HSPs) in G. lucidum. Our data showed that HS induced a significant increase in cytosolic Ca2+ concentration. Further evidence showed that Ca2+ might be a factor in the HS-mediated regulation of hyphal branching, ganoderic acid (GA) biosynthesis, and the accumulation of HSPs. Our results further showed that the calcium-permeable channel gene (cch)-silenced and phosphoinositide-specific phospholipase gene (plc)-silenced strains reduced the HS-induced increase in HSP expression compared with that observed for the wild type (WT). This study demonstrates that cytosolic Ca2+ participates in heat shock signal transduction and regulates downstream events in filamentous fungi. IMPORTANCE Ganoderma lucidum, a higher basidiomycete with bioactive secondary metabolites, has become a potential model system for evaluating how environmental factors regulate the development and secondary metabolism of basidiomycetes. Heat stress (HS) is an important environmental challenge. In this study, we found that HS inhibited mycelium growth, reduced hyphal branching, and induced HSP expression and ganoderic acid biosynthesis in G. lucidum. Further evidence showed that Ca2+ might be a factor in the HS-mediated regulation of hyphal branching, GA biosynthesis, and the accumulation of HSPs. This study demonstrates that cytosolic Ca2+ participates in heat shock signal transduction and regulates downstream events in filamentous fungi. Our research

  11. Heat Stress Modulates Mycelium Growth, Heat Shock Protein Expression, Ganoderic Acid Biosynthesis, and Hyphal Branching of Ganoderma lucidum via Cytosolic Ca2.

    PubMed

    Zhang, Xue; Ren, Ang; Li, Meng-Jiao; Cao, Peng-Fei; Chen, Tian-Xi; Zhang, Guang; Shi, Liang; Jiang, Ai-Liang; Zhao, Ming-Wen

    2016-07-15

    Heat stress (HS) influences the growth and development of organisms. Thus, a comprehensive understanding of how organisms sense HS and respond to it is required. Ganoderma lucidum, a higher basidiomycete with bioactive secondary metabolites, has become a potential model system due to the complete sequencing of its genome, transgenic systems, and reliable reverse genetic tools. In this study, we found that HS inhibited mycelium growth, reduced hyphal branching, and induced the accumulation of ganoderic acid biosynthesis and heat shock proteins (HSPs) in G. lucidum Our data showed that HS induced a significant increase in cytosolic Ca(2+) concentration. Further evidence showed that Ca(2+) might be a factor in the HS-mediated regulation of hyphal branching, ganoderic acid (GA) biosynthesis, and the accumulation of HSPs. Our results further showed that the calcium-permeable channel gene (cch)-silenced and phosphoinositide-specific phospholipase gene (plc)-silenced strains reduced the HS-induced increase in HSP expression compared with that observed for the wild type (WT). This study demonstrates that cytosolic Ca(2+) participates in heat shock signal transduction and regulates downstream events in filamentous fungi. Ganoderma lucidum, a higher basidiomycete with bioactive secondary metabolites, has become a potential model system for evaluating how environmental factors regulate the development and secondary metabolism of basidiomycetes. Heat stress (HS) is an important environmental challenge. In this study, we found that HS inhibited mycelium growth, reduced hyphal branching, and induced HSP expression and ganoderic acid biosynthesis in G. lucidum Further evidence showed that Ca(2+) might be a factor in the HS-mediated regulation of hyphal branching, GA biosynthesis, and the accumulation of HSPs. This study demonstrates that cytosolic Ca(2+) participates in heat shock signal transduction and regulates downstream events in filamentous fungi. Our research offers a new

  12. Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging.

    PubMed

    Zang, Xinshan; Geng, Xiaoli; Wang, Fei; Liu, Zhenshan; Zhang, Liyuan; Zhao, Yue; Tian, Xuejun; Ni, Zhongfu; Yao, Yingyin; Xin, Mingming; Hu, Zhaorong; Sun, Qixin; Peng, Huiru

    2017-01-14

    The yield of wheat (Triticum aestivum L.), an important crop, is adversely affected by heat stress in many regions of the world. However, the molecular mechanisms underlying thermotolerance are largely unknown. A novel ferritin gene, TaFER, was identified from our previous heat stress-responsive transcriptome analysis of a heat-tolerant wheat cultivar (TAM107). TaFER was mapped to chromosome 5B and named TaFER-5B. Expression pattern analysis revealed that TaFER-5B was induced by heat, polyethylene glycol (PEG), H 2 O 2 and Fe-ethylenediaminedi(o-hydroxyphenylacetic) acid (Fe-EDDHA). To confirm the function of TaFER-5B in wheat, TaFER-5B was transformed into the wheat cultivar Jimai5265 (JM5265), and the transgenic plants exhibited enhanced thermotolerance. To examine whether the function of ferritin from mono- and dico-species is conserved, TaFER-5B was transformed into Arabidopsis, and overexpression of TaFER-5B functionally complemented the heat stress-sensitive phenotype of a ferritin-lacking mutant of Arabidopsis. Moreover, TaFER-5B is essential for protecting cells against heat stress associated with protecting cells against ROS. In addition, TaFER-5B overexpression also enhanced drought, oxidative and excess iron stress tolerance associated with the ROS scavenging. Finally, TaFER-5B transgenic Arabidopsis and wheat plants exhibited improved leaf iron content. Our results suggest that TaFER-5B plays an important role in enhancing tolerance to heat stress and other abiotic stresses associated with the ROS scavenging.

  13. Antioxidant defence and stress protein induction following heat stress in the Mediterranean snail Xeropicta derbentina.

    PubMed

    Troschinski, Sandra; Dieterich, Andreas; Krais, Stefanie; Triebskorn, Rita; Köhler, Heinz-R

    2014-12-15

    The Mediterranean snail Xeropicta derbentina (Pulmonata, Hygromiidae), being highly abundant in Southern France, has the need for efficient physiological adaptations to desiccation and over-heating posed by dry and hot environmental conditions. As a consequence of heat, oxidative stress manifests in these organisms, which, in turn, leads to the formation of reactive oxygen species (ROS). In this study, we focused on adaptations at the biochemical level by investigation of antioxidant defences and heat shock protein 70 (Hsp70) induction, both essential mechanisms of the heat stress response. We exposed snails to elevated temperature (25, 38, 40, 43 and 45°C) in the laboratory and measured the activity of the antioxidant enzymes catalase (CAT) and glutathione peroxidase (GPx), determined the Hsp70 level and quantified lipid peroxidation. In general, we found a high constitutive level of CAT activity in all treatments, which may be interpreted as a permanent protection against ROS, i.e. hydrogen peroxide. CAT and GPx showed temperature-dependent activity: CAT activity was significantly increased in response to high temperatures (43 and 45°C), whereas GPx exhibited a significantly increased activity at 40°C, probably in response to high levels of lipid peroxides that occurred in the 38°C treatment. Hsp70 showed a maximum induction at 40°C, followed by a decrease at higher temperatures. Our results reveal that X. derbentina possesses a set of efficient mechanisms to cope with the damaging effects of heat. Furthermore, we demonstrated that, besides the well-documented Hsp70 stress response, antioxidant defence plays a crucial role in the snails' competence to survive extreme temperatures. © 2014. Published by The Company of Biologists Ltd.

  14. Transient heat stress compromises the resistance of wheat (Poales: Poaceae) seedlings to Hessian fly (Diptera: Cecidomyiidae) infestation.

    PubMed

    Currie, Yaleaka; Moch, John; Underwood, Joshua; Kharabsheh, Hamzah; Quesenberry, Amy; Miyagi, Risa; Thomas, Carolyn; Boney, Melanie; Woods, Samantha; Chen, Ming-Shun; Zhu, Lieceng

    2014-02-01

    Heat stress exerts a profound impact on the resistance of plants to parasites. In this research, we investigated the impact of an acute transient heat stress on the resistance of the wheat line 'Molly,' which contains the R gene H13, to an avirulent Hessian fly (Mayetiola destructor (Say)) population. We found that a significant portion of Molly seedlings stressed at 40 degrees C for 6 h during or after the initial Hessian fly larval attack became susceptible to otherwise avirulent insects, whereas unstressed control plants remained 100% resistant. Specifically, 77.8, 73.3, 83.3, and 46.7% of plants heat stressed at 0, 6,12, and 24 h, respectively, after the initial larval attack became susceptible. Biochemical analysis revealed that heat stress caused a transient decrease in 12-oxo-phytodienoic acid, but an increase in salicylic acid accumulation in Molly plants. The change in phytohormones after heat stress and Hessian fly infestation was not observed in 'Newton,' a near-isogenic but Hessian fly susceptible wheat line. Instead, heat stress caused a relatively prolonged reduction in palmitoleic acid. The role of phytohormones in heat-induced loss of wheat resistance was discussed.

  15. Comparison of ground-coupled solar-heat-pump systems to conventional systems for residential heating, cooling and water heating

    NASA Astrophysics Data System (ADS)

    Choi, M. K.; Morehouse, J. H.; Hughes, P. J.

    1981-07-01

    An analysis is performed of ground-coupled stand-alone and series configured solar-assisted liquid-to-air heat pump systems for residences. The year-round thermal performance of these systems for space heating, space cooling, and water heating is determined by simulation and compared against non-ground-coupled solar heat pump systems as well as conventional heating and cooling systems in three geographic locations: Washington, DC; Fort Worth, Texas; and Madison, Wisconsin. The results indicate that without tax credits a combined solar/ground-coupled heat pump system for space heating and cooling is not cost competitive with conventional systems. Its thermal performance is considerably better than non-ground-coupled solar heat pumps in Fort Worth. Though the ground-coupled stand-alone heat pump provides 51 percent of the heating and cooling load with non-purchased energy in Fort Worth, its thermal performance in Washington and Madison is poor.

  16. [Reduction of the immunological rejection in composite tissue allotransplantation by heat stress preconditioning].

    PubMed

    Schorr, N; Sauerbier, M; Germann, G; Gebhard, M M; Ofer, N

    2011-12-01

    In spite of great advances in the field of composite tissue allotransplantations (CTA), there is still a major need for optimisation in terms of immunosuppression. Heat shock proteins are produced as a reaction of the body during a stress situation. Once elevated, they protect against a second stress and reduce ischaemia-reperfusion injury within transplantations. In the literature the effect of heat shock and HSP70 on rejection after CTA has not been described. The purpose of this experimental study was to examine the effect of heat shock proteins on rejection in a rat model of CTA. Evaluated was the effect of preconditioning by prior heat stress. Brown Norway rats were systemically heated to a core temperature of 42 °C in order to up-regulate HSP70. The expression of HSP70 in muscle was measured by Western blot analysis and showed a peak 24 h after heat shock. Allogeneic hindlimb transplantations were performed between Brown Norway rats (donor) and Lewis rats (recipients). Group 1 (n=12) was preheated 24 h prior to transplantation. In group 2 (n=12) the transplantation was performed without prior heat shock. Group 3 (n=6) was used as a control group with syngeneic hindlimb transplantations between Lewis rats. Postoperatively the appearance of the transplanted hindlimb was evaluated every 12 h. The beginning of rejection was defined when plantar erythema and foot oedema could be observed at the same time. To verify these discrete signs of rejection, the observation was continued for a further 24 h. In this time erythema and oedema spread over the whole transplanted hindlimb. The rat was sacrificed after specimens of skin and muscle had been taken for histological assessment. The rejection in group 1 (with preconditioning heat shock) began after 4.83±0.44 days, in group 2 (without heat shock) already after 3.88±0.53 days. The difference between these groups was significant because of the small standard deviation (Whitney-Mann U test: p<0.01). In our

  17. Lycopene activates antioxidant enzymes and nuclear transcription factor systems in heat-stressed broilers.

    PubMed

    Sahin, K; Orhan, C; Tuzcu, M; Sahin, N; Hayirli, A; Bilgili, S; Kucuk, O

    2016-05-01

    This study was conducted to evaluate the effects of dietary lycopene supplementation on growth performance, antioxidant status, and muscle nuclear transcription factor [Kelch like-ECH-associated protein 1 (Keap1) and (erythroid-derived 2)-like 2 (Nrf2)] expressions in broiler chickens exposed to heat stress (HS). A total of 180 one-day-old male broiler chicks (Ross 308) were assigned randomly to one of 2×3 factorially arranged treatments: two housing temperatures (22°C for 24 h/d; thermoneutral, TN or 34°C for 8 h/d HS) and three dietary lycopene levels (0, 200, or 400 mg/kg). Each treatment consisted of three replicates of 10 birds. Birds were reared to 42 d of age. Heat stress caused reductions in feed intake and weight gain by 12.2 and 20.7% and increased feed efficiency by 10.8% (P<0.0001 for all). Increasing dietary lycopene level improved performance in both environments. Birds reared under the HS environment had lower serum and muscle lycopene concentration (0.34 vs. 0.50 μg/mL and 2.80 vs. 2.13 μg/g), activities of superoxide dismutase (151 vs. 126 U/mL and 131 vs. 155 U/mg protein), glutathione peroxidase (184 vs. 154 U/mL and 1.39 vs. 1.74 U/mg protein), and higher malondialdehyde (MDA) concentration (0.53 vs. 0.83 μg/mL and 0.78 vs. 0.45 μg/ mg protein) than birds reared under the TN environment. Changes in levels of lycopene and MDA and activities of enzymes in serum and muscle varied by the environmental temperature as dietary lycopene level increased. Moreover, increasing dietary lycopene level suppressed muscle Keap1 expression and enhanced muscle Nrf2 expression, which had increased by 150% and decreased by 40%, respectively in response to HS. In conclusion, lycopene supplementation alleviates adverse effects of HS on performance through modulating expressions of stress-related nuclear transcription factors. © 2016 Poultry Science Association Inc.

  18. Urban heat stress: novel survey suggests health and fitness as future avenue for research and adaptation strategies

    NASA Astrophysics Data System (ADS)

    Schuster, Christian; Honold, Jasmin; Lauf, Steffen; Lakes, Tobia

    2017-04-01

    Extreme heat has tremendous adverse effects on human health. Heat stress is expected to further increase due to urbanization, an aging population, and global warming. Previous research has identified correlations between extreme heat and mortality. However, the underlying physical, behavioral, environmental, and social risk factors remain largely unknown and comprehensive quantitative investigation on an individual level is lacking. We conducted a new cross-sectional household questionnaire survey to analyze individual heat impairment (self-assessed and reported symptoms) and a large set of potential risk factors in the city of Berlin, Germany. This unique dataset (n = 474) allows for the investigation of new relationships, especially between health/fitness and urban heat stress. Our analysis found previously undocumented associations, leading us to generate new hypotheses for future research: various health/fitness variables returned the strongest associations with individual heat stress. Our primary hypothesis is that age, the most commonly used risk factor, is outperformed by health/fitness as a dominant risk factor. Related variables seem to more accurately represent humans’ cardiovascular capacity to handle elevated temperature. Among them, active travel was associated with reduced heat stress. We observed statistical associations for heat exposure regarding the individual living space but not for the neighborhood environment. Heat stress research should further investigate individual risk factors of heat stress using quantitative methodologies. It should focus more on health and fitness and systematically explore their role in adaptation strategies. The potential of health and fitness to reduce urban heat stress risk means that encouraging active travel could be an effective adaptation strategy. Through reduced CO2 emissions from urban transport, societies could reap double rewards by addressing two root causes of urban heat stress: population health and

  19. Acetylcholine released from cholinergic nerves contributes to cutaneous vasodilation during heat stress

    NASA Technical Reports Server (NTRS)

    Shibasaki, Manabu; Wilson, Thad E.; Cui, Jian; Crandall, Craig G.

    2002-01-01

    Nitric oxide (NO) contributes to active cutaneous vasodilation during a heat stress in humans. Given that acetylcholine is released from cholinergic nerves during whole body heating, coupled with evidence that acetylcholine causes vasodilation via NO mechanisms, it is possible that release of acetylcholine in the dermal space contributes to cutaneous vasodilation during a heat stress. To test this hypothesis, in seven subjects skin blood flow (SkBF) and sweat rate were simultaneously monitored over three microdialysis membranes placed in the dermal space of dorsal forearm skin. One membrane was perfused with the acetylcholinesterase inhibitor neostigmine (10 microM), the second membrane was perfused with the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME; 10 mM) dissolved in the aforementioned neostigmine solution (l-NAME(Neo)), and the third membrane was perfused with Ringer solution as a control site. Each subject was exposed to approximately 20 min of whole body heating via a water-perfused suit, which increased mean body temperature from 36.4 +/- 0.1 to 37.5 +/- 0.1 degrees C (P < 0.05). After the heat stress, SkBF at each site was normalized to its maximum value, identified by administration of 28 mM sodium nitroprusside. Mean body temperature threshold for cutaneous vasodilation was significantly lower at the neostigmine-treated site relative to the other sites (neostigmine: 36.6 +/- 0.1 degrees C, l-NAME(Neo): 37.1 +/- 0.1 degrees C, control: 36.9 +/- 0.1 degrees C), whereas no significant threshold difference was observed between the l-NAME(Neo)-treated and control sites. At the end of the heat stress, SkBF was not different between the neostigmine-treated and control sites, whereas SkBF at the l-NAME(Neo)-treated site was significantly lower than the other sites. These results suggest that acetylcholine released from cholinergic nerves is capable of modulating cutaneous vasodilation via NO synthase mechanisms early in the heat stress but

  20. Heat stress causes alterations in the cell-wall polymers and anatomy of coffee leaves (Coffea arabica L.).

    PubMed

    Lima, Rogério Barbosa; dos Santos, Tiago Benedito; Vieira, Luiz Gonzaga Esteves; Ferrarese, Maria de Lourdes Lúcio; Ferrarese-Filho, Osvaldo; Donatti, Lucélia; Boeger, Maria Regina Torres; Petkowicz, Carmen Lúcia de Oliveira

    2013-03-01

    Coffee plants were subjected to heat stress (37 °C) and compared with control plants (24 °C). Cell wall polysaccharides were extracted using water (W), EDTA (E) and 4M NaOH (H30 and H70). In addition, monolignols were analyzed, and the leaves were observed by microscopy. Plants under heat stress accumulated higher contents of arabinose and galactose in fraction W. Xylose contents were observed to decrease in H30 fractions after the heat stress, whereas galactose and uronic acid increased. H70 fractions from plants exposed to heat stress showed increased xylose contents, whereas the contents of arabinose and glucose decreased. Differences in the molar-mass profiles of polysaccharides were also observed. The primary monolignol contents increased after the heat stress. Structural alterations in palisade cells and ultrastructural damage in chloroplasts were also observed. Our results demonstrate that the chemical profile of coffee cell-wall polymers and structural cell anatomy change under heat stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Reactive oxygen species (ROS) and the heat stress response of Daphnia pulex: ROS-mediated activation of hypoxia-inducible factor 1 (HIF-1) and heat shock factor 1 (HSF-1) and the clustered expression of stress genes.

    PubMed

    Klumpen, Eva; Hoffschröer, Nadine; Zeis, Bettina; Gigengack, Ulrike; Dohmen, Elias; Paul, Rüdiger J

    2017-01-01

    Heat stress in ectotherms involves direct (e.g. protein damage) and/or indirect effects (temperature-induced hypoxia and ROS formation), which cause activation of the transcription factors (TF) heat shock factor 1 (HSF-1) and/or hypoxia-inducible factor 1 (HIF-1). The present study focused on the links between stress (ROS) signals, nuclear (n) and cytoplasmic (c) HSF-1/HIF-1 levels, and stress gene expression on mRNA and protein levels (e.g. heat-shock protein 90, HSP90) upon acute heat and ROS (H 2 O 2 ) stress. Acute heat stress (30°C) evoked fluctuations in ROS level. Different feeding regimens, which affected the glutathione (GSH) level, allowed altering the frequency of ROS fluctuations. Other data showed fluctuation frequency to depend also on ROS production rate. The heat-induced slow or fast ROS fluctuations (at high or low GSH levels) evoked slow or fast fluctuations in the levels of nHIF-1α, nHSF-1 and gene products (mRNAs and protein), albeit after different time delays. Time delays to ROS fluctuations were, for example,shorter for nHIF-1α than for nHSF-1 fluctuations, and nHIF-1α fluctuations preceded and nHSF-1 fluctuations followed fluctuations in HSP90 mRNA level. Cytoplasmic TF levels either changed little (cHIF-1α) or showed a steady increase (cHSF-1). Applying acute H 2 O 2 stress (at 20°C) revealed effects on nHIF-1α and mRNA levels, but no significant effects on nHSF-1 level. Transcriptome data additionally showed coordinated fluctuations of mRNA levels upon acute heat stress, involving mRNAs for HSPs and other stress proteins, with all corresponding genes carrying DNA binding motifs for HIF-1 and HSF-1. This study provided evidence for promoting effects of ROS and HIF-1 on early haemoglobin, HIF-1α and HSP90 mRNA expressions upon heat or ROS stress. The increasing cHSF-1 level likely affected nHSF-1 level and later HSP90 mRNA expression. Heat stress evoked ROS fluctuations, with this stress signal forwarded via nHIF-1 and nHSF-1

  2. Differences in response to heat stress due to production level and breed of dairy cows

    NASA Astrophysics Data System (ADS)

    Gantner, Vesna; Bobic, Tina; Gantner, Ranko; Gregic, Maja; Kuterovac, Kresimir; Novakovic, Jurica; Potocnik, Klemen

    2017-09-01

    The climatic conditions in Croatia are deteriorating which significantly increases the frequency of heat stress. This creates a need for an adequate dairy farming strategy. The impact of heat stress can be reduced in many ways, but the best long-term solution includes the genetic evaluation and selection for heat stress resistance. In order to create the basis for genetic evaluation, this research determined the variation in daily milk yield (DMY) and somatic cell count (SCC) as well as the differences in resistance to heat stress due to production level (high, low) and breed (Holstein, Simmental) of dairy cattle breed in Croatia. For statistical analysis, 1,070,554 test-day records from 70,135 Holsteins reared on 5679 farms and 1,300,683 test-day records from 86,013 Simmentals reared on 8827 farms in Croatia provided by the Croatian Agricultural Agency were used. The results of this research indicate that the high-producing cows are much more susceptible to heat stress than low-producing especially Holsteins. Also, the results of this research indicate that Simmental breed, in terms of daily milk production and somatic cell count, could be more resistant to heat stress than Holstein. The following research should determine whether Simmentals are genetically more appropriate for the challenges that are in store for the future milk production in this region. Furthermore, could an adequate production level be achieved with Simmentals by maintaining the heat resistance?

  3. Differences in response to heat stress due to production level and breed of dairy cows.

    PubMed

    Gantner, Vesna; Bobic, Tina; Gantner, Ranko; Gregic, Maja; Kuterovac, Kresimir; Novakovic, Jurica; Potocnik, Klemen

    2017-09-01

    The climatic conditions in Croatia are deteriorating which significantly increases the frequency of heat stress. This creates a need for an adequate dairy farming strategy. The impact of heat stress can be reduced in many ways, but the best long-term solution includes the genetic evaluation and selection for heat stress resistance. In order to create the basis for genetic evaluation, this research determined the variation in daily milk yield (DMY) and somatic cell count (SCC) as well as the differences in resistance to heat stress due to production level (high, low) and breed (Holstein, Simmental) of dairy cattle breed in Croatia. For statistical analysis, 1,070,554 test-day records from 70,135 Holsteins reared on 5679 farms and 1,300,683 test-day records from 86,013 Simmentals reared on 8827 farms in Croatia provided by the Croatian Agricultural Agency were used. The results of this research indicate that the high-producing cows are much more susceptible to heat stress than low-producing especially Holsteins. Also, the results of this research indicate that Simmental breed, in terms of daily milk production and somatic cell count, could be more resistant to heat stress than Holstein. The following research should determine whether Simmentals are genetically more appropriate for the challenges that are in store for the future milk production in this region. Furthermore, could an adequate production level be achieved with Simmentals by maintaining the heat resistance?

  4. Practices for Alleviating Heat Stress of Dairy Cows in Humid Continental Climates: A Literature Review.

    PubMed

    Fournel, Sébastien; Ouellet, Véronique; Charbonneau, Édith

    2017-05-02

    Heat stress negatively affects the health and performance of dairy cows, resulting in considerable economic losses for the industry. In future years, climate change will exacerbate these losses by making the climate warmer. Physical modification of the environment is considered to be the primary means of reducing adverse effects of hot weather conditions. At present, to reduce stressful heat exposure and to cool cows, dairy farms rely on shade screens and various forms of forced convection and evaporative cooling that may include fans and misters, feed-line sprinklers, and tunnel- or cross-ventilated buildings. However, these systems have been mainly tested in subtropical areas and thus their efficiency in humid continental climates, such as in the province of Québec, Canada, is unclear. Therefore, this study reviewed the available cooling applications and assessed their potential for northern regions. Thermal stress indices such as the temperature-humidity index (THI) were used to evaluate the different cooling strategies.

  5. HSF-1 is involved in regulation of ascaroside pheromone biosynthesis by heat stress in Caenorhabditis elegans.

    PubMed

    Joo, Hyoe-Jin; Park, Saeram; Kim, Kwang-Youl; Kim, Mun-Young; Kim, Heekyeong; Park, Donha; Paik, Young-Ki

    2016-03-15

    The nematode worm Caenorhabditis elegans survives by adapting to environmental stresses such as temperature extremes by increasing the concentrations of ascaroside pheromones, termed ascarosides or daumones, which signal early C. elegans larvae to enter a non-aging dauer state for long-term survival. It is well known that production of ascarosides is stimulated by heat stress, resulting in enhanced dauer formation by which worms can adapt to environmental insults. However, the molecular mechanism by which ascaroside pheromone biosynthesis is stimulated by heat stress remains largely unknown. In the present study, we show that the heat-shock transcription factor HSF-1 can mediate enhanced ascaroside pheromone biosynthesis in response to heat stress by activating the peroxisomal fatty acid β-oxidation genes in C. elegans. To explore the potential molecular mechanisms, we examined the four major genes involved in the ascaroside biosynthesis pathway and then quantified the changes in both the expression of these genes and ascaroside production under heat-stress conditions. The transcriptional activation of ascaroside pheromone biosynthesis genes by HSF-1 was quite notable, which is not only supported by chromatin immunoprecipitation assays, but also accompanied by the enhanced production of chemically detectable major ascarosides (e.g. daumones 1 and 3). Consequently, the dauer formation rate was significantly increased by the ascaroside pheromone extracts from N2 wild-type but not from hsf-1(sy441) mutant animals grown under heat-stress conditions. Hence heat-stress-enhanced ascaroside production appears to be mediated at least in part by HSF-1, which seems to be important in adaptation strategies for coping with heat stress in this nematode. © 2016 Authors; published by Portland Press Limited.

  6. Spatio-temporal modelling of heat stress and climate change implications for the Murray dairy region, Australia.

    PubMed

    Nidumolu, Uday; Crimp, Steven; Gobbett, David; Laing, Alison; Howden, Mark; Little, Stephen

    2014-08-01

    The Murray dairy region produces approximately 1.85 billion litres of milk each year, representing about 20 % of Australia's total annual milk production. An ongoing production challenge in this region is the management of the impacts of heat stress during spring and summer. An increase in the frequency and severity of extreme temperature events due to climate change may result in additional heat stress and production losses. This paper assesses the changing nature of heat stress now, and into the future, using historical data and climate change projections for the region using the temperature humidity index (THI). Projected temperature and relative humidity changes from two global climate models (GCMs), CSIRO MK3.5 and CCR-MIROC-H, have been used to calculate THI values for 2025 and 2050, and summarized as mean occurrence of, and mean length of consecutive high heat stress periods. The future climate scenarios explored show that by 2025 an additional 12-15 days (compared to 1971 to 2000 baseline data) of moderate to severe heat stress are likely across much of the study region. By 2050, larger increases in severity and occurrence of heat stress are likely (i.e. an additional 31-42 moderate to severe heat stress days compared with baseline data). This increasing trend will have a negative impact on milk production among dairy cattle in the region. The results from this study provide useful insights on the trends in THI in the region. Dairy farmers and the dairy industry could use these results to devise and prioritise adaptation options to deal with projected increases in heat stress frequency and severity.

  7. Spatio-temporal modelling of heat stress and climate change implications for the Murray dairy region, Australia

    NASA Astrophysics Data System (ADS)

    Nidumolu, Uday; Crimp, Steven; Gobbett, David; Laing, Alison; Howden, Mark; Little, Stephen

    2014-08-01

    The Murray dairy region produces approximately 1.85 billion litres of milk each year, representing about 20 % of Australia's total annual milk production. An ongoing production challenge in this region is the management of the impacts of heat stress during spring and summer. An increase in the frequency and severity of extreme temperature events due to climate change may result in additional heat stress and production losses. This paper assesses the changing nature of heat stress now, and into the future, using historical data and climate change projections for the region using the temperature humidity index (THI). Projected temperature and relative humidity changes from two global climate models (GCMs), CSIRO MK3.5 and CCR-MIROC-H, have been used to calculate THI values for 2025 and 2050, and summarized as mean occurrence of, and mean length of consecutive high heat stress periods. The future climate scenarios explored show that by 2025 an additional 12-15 days (compared to 1971 to 2000 baseline data) of moderate to severe heat stress are likely across much of the study region. By 2050, larger increases in severity and occurrence of heat stress are likely (i.e. an additional 31-42 moderate to severe heat stress days compared with baseline data). This increasing trend will have a negative impact on milk production among dairy cattle in the region. The results from this study provide useful insights on the trends in THI in the region. Dairy farmers and the dairy industry could use these results to devise and prioritise adaptation options to deal with projected increases in heat stress frequency and severity.

  8. Nanoscale Probing of Thermal, Stress, and Optical Fields under Near-Field Laser Heating

    PubMed Central

    Tang, Xiaoduan; Xu, Shen; Wang, Xinwei

    2013-01-01

    Micro/nanoparticle induced near-field laser ultra-focusing and heating has been widely used in laser-assisted nanopatterning and nanolithography to pattern nanoscale features on a large-area substrate. Knowledge of the temperature and stress in the nanoscale near-field heating region is critical for process control and optimization. At present, probing of the nanoscale temperature, stress, and optical fields remains a great challenge since the heating area is very small (∼100 nm or less) and not immediately accessible for sensing. In this work, we report the first experimental study on nanoscale mapping of particle-induced thermal, stress, and optical fields by using a single laser for both near-field excitation and Raman probing. The mapping results based on Raman intensity variation, wavenumber shift, and linewidth broadening all give consistent conjugated thermal, stress, and near-field focusing effects at a 20 nm resolution (<λ/26, λ = 32 nm). Nanoscale mapping of near-field effects of particles from 1210 down to 160 nm demonstrates the strong capacity of such a technique. By developing a new strategy for physical analysis, we have de-conjugated the effects of temperature, stress, and near-field focusing from the Raman mapping. The temperature rise and stress in the nanoscale heating region is evaluated at different energy levels. High-fidelity electromagnetic and temperature field simulation is conducted to accurately interpret the experimental results. PMID:23555566

  9. Mechanisms of aerobic performance impairment with heat stress and dehydration.

    PubMed

    Cheuvront, Samuel N; Kenefick, Robert W; Montain, Scott J; Sawka, Michael N

    2010-12-01

    Environmental heat stress can challenge the limits of human cardiovascular and temperature regulation, body fluid balance, and thus aerobic performance. This minireview proposes that the cardiovascular adjustments accompanying high skin temperatures (T(sk)), alone or in combination with high core body temperatures (T(c)), provide a primary explanation for impaired aerobic exercise performance in warm-hot environments. The independent (T(sk)) and combined (T(sk) + T(c)) effects of hyperthermia reduce maximal oxygen uptake (Vo(2max)), which leads to higher relative exercise intensity and an exponential decline in aerobic performance at any given exercise workload. Greater relative exercise intensity increases cardiovascular strain, which is a prominent mediator of rated perceived exertion. As a consequence, incremental or constant-rate exercise is more difficult to sustain (earlier fatigue) or requires a slowing of self-paced exercise to achieve a similar sensation of effort. It is proposed that high T(sk) and T(c) impair aerobic performance in tandem primarily through elevated cardiovascular strain, rather than a deterioration in central nervous system (CNS) function or skeletal muscle metabolism. Evaporative sweating is the principal means of heat loss in warm-hot environments where sweat losses frequently exceed fluid intakes. When dehydration exceeds 3% of total body water (2% of body mass) then aerobic performance is consistently impaired independent and additive to heat stress. Dehydration augments hyperthermia and plasma volume reductions, which combine to accentuate cardiovascular strain and reduce Vo(2max). Importantly, the negative performance consequences of dehydration worsen as T(sk) increases.

  10. Leveraging knowledge from physiological data: on-body heat stress risk prediction with sensor networks.

    PubMed

    Gaura, Elena; Kemp, John; Brusey, James

    2013-12-01

    The paper demonstrates that wearable sensor systems, coupled with real-time on-body processing and actuation, can enhance safety for wearers of heavy protective equipment who are subjected to harsh thermal environments by reducing risk of Uncompensable Heat Stress (UHS). The work focuses on Explosive Ordnance Disposal operatives and shows that predictions of UHS risk can be performed in real-time with sufficient accuracy for real-world use. Furthermore, it is shown that the required sensory input for such algorithms can be obtained with wearable, non-intrusive sensors. Two algorithms, one based on Bayesian nets and another on decision trees, are presented for determining the heat stress risk, considering the mean skin temperature prediction as a proxy. The algorithms are trained on empirical data and have accuracies of 92.1±2.9% and 94.4±2.1%, respectively when tested using leave-one-subject-out cross-validation. In applications such as Explosive Ordnance Disposal operative monitoring, such prediction algorithms can enable autonomous actuation of cooling systems and haptic alerts to minimize casualties.

  11. Genome wide association of changes in feeding behavior due to heat stress in pigs

    USDA-ARS?s Scientific Manuscript database

    Heat stress negatively impacts pork production, losses include decreased growth, reduced feed intake, and mortality. Therefore, the objective of this study was to identify genetic markers associated with changes in feeding behavior due to heat stress in grow-finish pigs. Data were collected on grow-...

  12. Transcriptome responses to heat- and cold-stress in ladybirds (Cryptolaemus montrouzieri Mulasnt) analyzed by deep-sequencing.

    PubMed

    Zhang, Yuhong; Wu, Hongsheng; Xie, Jiaqin; Jiang, Ruixin; Deng, Congshuang; Pang, Hong

    2015-11-19

    Changed temperature not only threaten agricultural production, but they also affect individual biological behavior, population and community of many insects, and consequently reduce the stability of our ecosystem. Insect's ability to respond to temperature stress evolved through a complex adaptive process, thus resulting in varied temperature tolerance among different insects. Both high and low extreme temperatures are detrimental to insect development since they constitute an important abiotic stress capable of inducing abnormal biological responses. Many studies on heat or cold tolerance of ladybirds have focused on measurements of physiological and biochemical indexes such as supercooling point, higher/lower lethal temperatures, survival rate, dry body weight, water content, and developmental duration. And studies of the molecular mechanisms of ladybird responses to heat or cold stress have focused on single genes, such as those encoding heat shock proteins, but has not been analyzed by transcriptome profiling. In this study, we report the use of Digital Gene Expression (DGE) tag profiling to gain insight into transcriptional events associated with heat- and cold-stress in C. montrouzieri. About 6 million tags (49 bp in length) were sequenced in a heat stress group, a cold stress group and a negative control group. We obtained 687 and 573 genes that showed significantly altered expression levels following heat and cold shock treatments, respectively. Analysis of the global gene expression pattern suggested that 42 enzyme-encoding genes mapped to many Gene Ontology terms are associated with insect's response to heat- and cold-stress. These results provide a global assessment of genes and molecular mechanisms involved in heat and cold tolerance.

  13. The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae

    PubMed Central

    Morano, Kevin A.; Grant, Chris M.; Moye-Rowley, W. Scott

    2012-01-01

    A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters. PMID:22209905

  14. Mapping rural community and dairy cow heat stress in Southern Ontario: A common geographic pattern from 2010 to 2012.

    PubMed

    Bishop-Williams, Katherine E; Berke, Olaf; Pearl, David L; Kelton, David F

    2016-07-03

    Climate change has increased the occurrence of heat waves, causing heat stress among humans and livestock, with potentially fatal consequences. Heat stress maps provide information about related health risks and insight for control strategies. Weather data were collected throughout Southern Ontario, and the heat stress index (HSI) was estimated for 2010-2012. Geostatistical kriging was applied to map heat stress, heat waves, and control periods. Average HSI for each period ranged from 55 to 78 during control periods, and from 65 to 84 during heat waves, surpassing levels where morbidity is known to increase substantially. Heat stress followed a temporally consistent geographic pattern. HSI maps indicate high-risk areas for heat-related illness and indicate areas where agriculture and human health may be at increased risk in future.

  15. Does biological sex impact intestinal epithelial injury, small intestine permeability, gastrointestinal symptoms and systemic cytokine profile in response to exertional-heat stress?

    PubMed

    Snipe, Rhiannon M J; Costa, Ricardo J S

    2018-05-23

    This study aimed to determine the influence of biological sex on intestinal injury, permeability, gastrointestinal symptoms, and systemic cytokine profile in response to exertional-heat stress. Male (n= 13) and eumenorrheic female (n= 11) endurance runners completed 2 h running at 60% V̇O 2max in 35°C. Blood samples were collected pre- and post-exercise and during recovery to determine plasma intestinal fatty-acid binding protein (I-FABP) and systemic cytokine profile. Urinary lactulose:L-rhamnose ratio was used to determine small intestine permeability. I-FABP increased 479% pre- to post-exercise (p< 0.001), with no difference between sexes (p= 0.432). No differences between sexes were observed for small intestine permeability (p= 0.808), gut discomfort, total, upper- and lower-gastrointestinal symptoms. However, males reported significantly higher flatulence (p= 0.049) and abdominal stitch (p= 0.025) compared to females. IL-6, IL-8, IL-10 and IL-1ra increased pre- to post-exercise (p< 0.05), with no difference between sexes. However, IL-1β increased post-exercise in males only, and was higher in males compared to females (p= 0.044). Findings suggest that when females are in the follicular phase of the menstrual cycle, biological sex has no effect on intestinal epithelial injury and permeability, and minimal effect on gastrointestinal symptoms and systemic cytokine profile in response to exertional-heat stress.

  16. Multi-model ensemble projections of future extreme heat stress on rice across southern China

    NASA Astrophysics Data System (ADS)

    He, Liang; Cleverly, James; Wang, Bin; Jin, Ning; Mi, Chunrong; Liu, De Li; Yu, Qiang

    2017-08-01

    Extreme heat events have become more frequent and intense with climate warming, and these heatwaves are a threat to rice production in southern China. Projected changes in heat stress in rice provide an assessment of the potential impact on crop production and can direct measures for adaptation to climate change. In this study, we calculated heat stress indices using statistical scaling techniques, which can efficiently downscale output from general circulation models (GCMs). Data across the rice belt in southern China were obtained from 28 GCMs in the Coupled Model Intercomparison Project phase 5 (CMIP5) with two emissions scenarios (RCP4.5 for current emissions and RCP8.5 for increasing emissions). Multi-model ensemble projections over the historical period (1960-2010) reproduced the trend of observations in heat stress indices (root-mean-square error RMSE = 6.5 days) better than multi-model arithmetic mean (RMSE 8.9 days) and any individual GCM (RMSE 11.4 days). The frequency of heat stress events was projected to increase by 2061-2100 in both scenarios (up to 185 and 319% for RCP4.5 and RCP8.5, respectively), especially in the middle and lower reaches of the Yangtze River. This increasing risk of exposure to heat stress above 30 °C during flowering and grain filling is predicted to impact rice production. The results of our study suggest the importance of specific adaption or mitigation strategies, such as selection of heat-tolerant cultivars and adjustment of planting date in a warmer future world.

  17. Enhanced seed production under prolonged heat stress conditions in Arabidopsis thaliana plants deficient in cytosolic ascorbate peroxidase 2

    PubMed Central

    Mittler, Ron

    2013-01-01

    Reactive oxygen species play a key role in the response of plants to abiotic stress conditions. Their level is controlled in Arabidopsis thaliana by a large network of genes that includes the H2O2-scavenging enzymes cytosolic ascorbate peroxidase (APX) 1 and 2. Although the function of APX1 has been established under different growth conditions, genetic evidence for APX2 function, as well as for the mode of cooperation between APX1 and APX2, is very limited. This study characterized the response of Arabidopsis mutants deficient in APX1, APX2, and APX1/APX2 to heat, salinity, light, and oxidative stresses. The findings reveal that deficiency in APX2 resulted in a decreased tolerance to light stress, as well as an enhanced tolerance to salinity and oxidative stresses. Interestingly, plants lacking APX2 were more sensitive to heat stress at the seedling stage, but more tolerant to heat stress at the reproductive stage. Cooperation between APX1 and APX2 was evident during oxidative stress, but not during light, salinity, or heat stress. The findings demonstrate a role for APX2 in the response of plants to light, heat, salinity, and oxidative stresses. The finding that plants lacking APX2 produced more seeds under prolonged heat stress conditions suggests that redundant mechanisms activated in APX2-deficient plants during heat stress play a key role in the protection of reproductive tissues from heat-related damage. This finding is very important because heat-associated damage to reproductive tissues in different crops is a major cause for yield loss in agriculture production worldwide. PMID:23183257

  18. Acute Heat Stress Changes Protein Expression in the Testes of a Broiler-Type Strain of Taiwan Country Chickens.

    PubMed

    Wang, Shih-Han; Cheng, Chuen-Yu; Chen, Chao-Jung; Chan, Hong-Lin; Chen, Hsin-Hsin; Tang, Pin-Chi; Chen, Chih-Feng; Lee, Yen-Pai; Huang, San-Yuan

    2018-03-19

    Heat stress leads to decreased fertility in roosters. This study investigated the global protein expression in response to acute heat stress in the testes of a broiler-type strain of Taiwan country chickens (TCCs). Twelve 45-week-old roosters were randomly allocated to the control group maintained at 25°C, and three groups subjected to acute heat stress at 38°C for 4 h, with 0, 2, and 6 h of recovery, respectively. Testis samples were collected for hematoxylin and eosin staining, apoptosis assay, and protein analysis. The results revealed 101 protein spots that differed significantly from the control following exposure to acute heat stress. The proteins that were differentially expressed participated mainly in protein metabolism and other metabolic processes, responses to stimuli, apoptosis, cellular organization, and spermatogenesis. Proteins that negatively regulate apoptosis were downregulated and proteins involved in autophagy and major heat shock proteins (HSP90α, HSPA5, and HSPA8) were upregulated in the testes of heat-stressed chickens. In conclusion, acute heat stress causes a change in protein expression in the testes of broiler-type B strain TCCs and may thus impair cell morphology, spermatogenesis, and apoptosis. The expression of heat shock proteins increased to attenuate the testicular injury induced by acute heat stress.

  19. Heat pipe cooling system with sensible heat sink

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1988-01-01

    A heat pipe cooling system which employs a sensible heat sink is discussed. With this type of system, incident aerodynamic heat is transported via a heat pipe from the stagnation region to the heat sink and absorbed by raising the temperature of the heat sink material. The use of a sensible heat sink can be advantageous for situations where the total mission heat load is limited, as it is during re-entry, and a suitable radiation sink is not available.

  20. A 100-Year Review: Stress physiology including heat stress.

    PubMed

    Collier, R J; Renquist, B J; Xiao, Y

    2017-12-01

    Stress is an external event or condition that places a strain on a biological system. The animal response to a stress involves the expenditure of energy to remove or reduce the impact of the stress. This increases maintenance requirements of the animal and results in loss of production. The biological response to stress is divided into acute and chronic phases, with the acute phase lasting hours to a few days and the chronic phase lasting several days to weeks. The acute response is driven by homeostatic regulators of the nervous and endocrine systems and the chronic phase by homeorhetic regulators of the endocrine system. Both responses involve alterations in energy balance and metabolism. Thermal environment affects all animals and therefore represents the largest single stressor in animal production. Other types of stressors include housing conditions, overcrowding, social rank, disease, and toxic compounds. "Acclimation" to a stress is a phenotypic response developed by the animal to an individual stressor within the environment. However, under natural conditions, it is rare for only one environmental variable to change over time. "Acclimatization" is the process by which an animal adapts to several stressors within its natural environment. Acclimation is a homeorhetic process that takes several weeks to occur and occurs via homeorhetic, not homeostatic, mechanisms. It is a phenotypic change that disappears when the stress is removed. When the stress is severe and not relieved by acclimatization or management changes, the animal is considered chronically stressed and is susceptible to increased incidence of disease and poor health. Milk yield and reproduction are extremely sensitive to stress because of the high energy and protein demands of lactation and the complexity of the reproductive process and multiple organs that are involved. Improvements in protection of animals against stress require improved education of producers to recognize stress and methods

  1. Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat

    PubMed Central

    Wang, Xiao; Xin, Caiyun; Cai, Jian; Zhou, Qin; Dai, Tingbo; Cao, Weixing; Jiang, Dong

    2016-01-01

    Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH), the progeny of heat-primed plants (PH) possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1) which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production. PMID:27148324

  2. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves.

    PubMed

    Wang, Li-Jun; Fan, Ling; Loescher, Wayne; Duan, Wei; Liu, Guo-Jie; Cheng, Jian-Shan; Luo, Hai-Bo; Li, Shao-Hua

    2010-02-23

    Although the effect of salicylic acid (SA) on photosynthesis of plants including grapevines has been investigated, very little is yet known about the effects of SA on carbon assimilation and several components of PSII electron transport (donor side, reaction center and acceptor side). In this study, the impact of SA pretreatment on photosynthesis was evaluated in the leaves of young grapevines before heat stress (25 degrees C), during heat stress (43 degrees C for 5 h), and through the following recovery period (25 degrees C). Photosynthetic measures included gas exchange parameters, PSII electron transport, energy dissipation, and Rubisco activation state. The levels of heat shock proteins (HSPs) in the chloroplast were also investigated. SA did not significantly (P < 0.05) influence the net photosynthesis rate (Pn) of leaves before heat stress. But, SA did alleviate declines in Pn and Rubisco activation state, and did not alter negative changes in PSII parameters (donor side, acceptor side and reaction center QA) under heat stress. Following heat treatment, the recovery of Pn in SA-treated leaves was accelerated compared with the control (H2O-treated) leaves, and, donor and acceptor parameters of PSII in SA-treated leaves recovered to normal levels more rapidly than in the controls. Rubisco, however, was not significantly (P < 0.05) influenced by SA. Before heat stress, SA did not affect level of HSP 21, but the HSP21 immune signal increased in both SA-treated and control leaves during heat stress. During the recovery period, HSP21 levels remained high through the end of the experiment in the SA-treated leaves, but decreased in controls. SA pretreatment alleviated the heat stress induced decrease in Pn mainly through maintaining higher Rubisco activation state, and it accelerated the recovery of Pn mainly through effects on PSII function. These effects of SA may be related in part to enhanced levels of HSP21.

  3. Analysis of Heat Stress and the Indoor Climate Control Requirements for Movable Refuge Chambers.

    PubMed

    Hao, Xiaoli; Guo, Chenxin; Lin, Yaolin; Wang, Haiqiao; Liu, Heqing

    2016-05-20

    Movable refuge chambers are a new kind of rescue device for underground mining, which is believed to have a potential positive impact on reducing the rate of fatalities. It is likely to be hot and humid inside a movable refuge chamber due to the metabolism of trapped miners, heat generated by equipment and heat transferred from outside. To investigate the heat stress experienced by miners trapped in a movable refuge chamber, the predicted heat strain (PHS) model was used to simulate the heat transfer process between the person and the thermal environment. The variations of heat stress with the temperature and humidity inside the refuge chamber were analyzed. The effects of air temperature outside the refuge chamber and the overall heat transfer coefficient of the refuge chamber shell on the heat stress inside the refuge chamber was also investigated. The relationship between the limit of exposure duration and the air temperature and humidity was numerically analyzed to determine the upper limits of temperature and humidity inside a refuge chamber. Air temperature of 32 °C and relative humidity of 70% are recommended as the design standard for internal thermal environment control of movable refuge chambers.

  4. Analysis of Heat Stress and the Indoor Climate Control Requirements for Movable Refuge Chambers

    PubMed Central

    Hao, Xiaoli; Guo, Chenxin; Lin, Yaolin; Wang, Haiqiao; Liu, Heqing

    2016-01-01

    Movable refuge chambers are a new kind of rescue device for underground mining, which is believed to have a potential positive impact on reducing the rate of fatalities. It is likely to be hot and humid inside a movable refuge chamber due to the metabolism of trapped miners, heat generated by equipment and heat transferred from outside. To investigate the heat stress experienced by miners trapped in a movable refuge chamber, the predicted heat strain (PHS) model was used to simulate the heat transfer process between the person and the thermal environment. The variations of heat stress with the temperature and humidity inside the refuge chamber were analyzed. The effects of air temperature outside the refuge chamber and the overall heat transfer coefficient of the refuge chamber shell on the heat stress inside the refuge chamber was also investigated. The relationship between the limit of exposure duration and the air temperature and humidity was numerically analyzed to determine the upper limits of temperature and humidity inside a refuge chamber. Air temperature of 32 °C and relative humidity of 70% are recommended as the design standard for internal thermal environment control of movable refuge chambers. PMID:27213422

  5. Heat stress in front and rear cockpits of F-4 aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunneley, S.A.; Stribley, R.F.; Allan, J.R.

    The thermal stresses encountered in the front and rear cockpits of F-4 aircraft flying low-level missions in warm, moderately humid weather and physiological responses to these stresses are investigated. Measurements of ground and cockpit environmental temperatures and subject skin and core temperatures were acquired for the preflight taxi, low-level flight, ordnance delivery and postflight taxi phases of 36 flights of F-4E aircraft performed to simulate low-level ground attack missions. Cockpit dry-bulb temperatures are found to exceed those on the ground during ground operations, and to decrease in flight in the front, but not the rear, cockpit. A linear relationship betweenmore » cockpit dry bulb and temperatures is also found in each of the mission phases, along with increases in skin and core temperatures with cockpit temperatures and sweat rates depending both on cockpit temperatures and the amount of clothing worn. Adverse physiological effects related to nausea and acceleration tolerances are also noted. It is concluded that the cockpit cooling system of the F-4 allows the development of operationally significant heat stress, which may be corrected by better design and testing of the cooling system.« less

  6. Heat Stress Alters Ruminal Fermentation and Digesta Characteristics, and Behavior in Lactating Dairy Cattle

    USDA-ARS?s Scientific Manuscript database

    In a study designed to assess the impact and interaction of nonfiber carbohydrates (NFC) and ruminally degradable protein (RDP) on ruminal characteristics and animal behavior, animals experienced heat stress in the first period (HS), and no/greatly reduced heat stress (NHS) in the second period, all...

  7. Periconceptional Heat Stress of Holstein Dams Is Associated with Differences in Daughter Milk Production during Their First Lactation.

    PubMed

    Brown, Britni M; Stallings, Jon W; Clay, John S; Rhoads, Michelle L

    2016-01-01

    The fertility of lactating Holstein cows is severely reduced during periods of heat stress. Despite this reduction in fertility, however, some inseminations conducted during heat stress result in successful pregnancies from which heifer calves are born. Many of these heifer calves are retained and raised to enter the milking herd as replacement animals. Heat stress experienced by these females around the time they were conceived may confer long-lasting effects that alter subsequent milk production capacity. The objective of this study was to examine the relationship between periconceptional heat stress and subsequent milk production of primiparous cows. National Dairy Herd Improvement Association data was obtained from Dairy Records Management Systems. Records included Holstein cows that had completed at least one lactation in one of three states with large populations of dairy cattle and which are known for having hot, humid summers: Georgia, Florida or Texas. Dates of conception were calculated by subtracting 276 d from the recorded birth date of each individual cow. Records for cows conceived within the months of June, July, and August were retained as heat stress-conceived (HSC) cows (n = 94,440); cows conceived within the months of December, January, and February were retained as thermoneutral-conceived (TNC) contemporaries (n = 141,365). In order to account for the effects of environmental conditions on total milk production for a given lactation, cows were blocked by season of calving (winter, spring, summer or fall). Adjusted 305-day mature-equivalent milk production was evaluated with a mixed model ANOVA using SAS, in which random effects were used to account for variability between herds. Of the cows that calved in the summer, fall and winter, TNC cows had higher milk yield than the HSC cows in all states. Interestingly, the cows that calved in the spring presented a unique relationship, with HSC cows producing more milk. Overall however, heat stress at

  8. Periconceptional Heat Stress of Holstein Dams Is Associated with Differences in Daughter Milk Production during Their First Lactation

    PubMed Central

    Brown, Britni M.; Stallings, Jon W.; Clay, John S.; Rhoads, Michelle L.

    2016-01-01

    The fertility of lactating Holstein cows is severely reduced during periods of heat stress. Despite this reduction in fertility, however, some inseminations conducted during heat stress result in successful pregnancies from which heifer calves are born. Many of these heifer calves are retained and raised to enter the milking herd as replacement animals. Heat stress experienced by these females around the time they were conceived may confer long-lasting effects that alter subsequent milk production capacity. The objective of this study was to examine the relationship between periconceptional heat stress and subsequent milk production of primiparous cows. National Dairy Herd Improvement Association data was obtained from Dairy Records Management Systems. Records included Holstein cows that had completed at least one lactation in one of three states with large populations of dairy cattle and which are known for having hot, humid summers: Georgia, Florida or Texas. Dates of conception were calculated by subtracting 276 d from the recorded birth date of each individual cow. Records for cows conceived within the months of June, July, and August were retained as heat stress-conceived (HSC) cows (n = 94,440); cows conceived within the months of December, January, and February were retained as thermoneutral-conceived (TNC) contemporaries (n = 141,365). In order to account for the effects of environmental conditions on total milk production for a given lactation, cows were blocked by season of calving (winter, spring, summer or fall). Adjusted 305-day mature-equivalent milk production was evaluated with a mixed model ANOVA using SAS, in which random effects were used to account for variability between herds. Of the cows that calved in the summer, fall and winter, TNC cows had higher milk yield than the HSC cows in all states. Interestingly, the cows that calved in the spring presented a unique relationship, with HSC cows producing more milk. Overall however, heat stress at

  9. Heat Acclimation by Post-Exercise Hot Water Immersion in the Morning Reduces Thermal Strain During Morning and Afternoon Exercise-Heat-Stress.

    PubMed

    Zurawlew, Michael J; Mee, Jessica A; Walsh, Neil P

    2018-05-10

    Recommendations state that to acquire the greatest benefit from heat acclimation the clock-time of heat acclimation sessions should match the clock-time of expected exercise-heat stress. It remains unknown if adaptations by post-exercise hot water immersion (HWI) demonstrate time of day dependent adaptations. Thus, we examined whether adaptations following post-exercise HWI completed in the morning were present during morning and afternoon exercise-heat stress. Ten males completed an exercise-heat stress test commencing in the morning (0945-h: AM) and afternoon (1445-h: PM; 40 min; 65% V̇O 2max treadmill run) before (PRE) and after (POST) heat acclimation. The 6-day heat acclimation intervention involved a daily, 40 min treadmill-run (65% V̇O 2max ) in temperate conditions followed by ≤ 40 min HWI (40°C; 0630-1100-h). Adaptations by 6-day post-exercise HWI in the morning were similar in the morning and afternoon. Reductions in resting rectal temperature (T re ; AM; -0.34 ± 0.24°C, PM; -0.27 ± 0.23°C; P = 0.002), T re at sweating onset (AM; -0.34 ± 0.24°C, PM; -0.31 ± 0.25°C; P = 0.001), and end-exercise T re (AM; -0.47 ± 0.33°C, PM; -0.43 ± 0.29°C; P = 0.001), heart rate (AM; -14 ± 7 beats∙min -1 , PM; -13 ± 6 beats∙min -1 ; P < 0.01), rating of perceived exertion (P = 0.01), and thermal sensation (P = 0.005) were not different in the morning compared to the afternoon. Morning heat acclimation by post-exercise hot water immersion induced adaptions at rest and during exercise-heat stress in the morning and mid-afternoon.

  10. Acute Heat Stress Induces Differential Gene Expressions in the Testes of a Broiler-Type Strain of Taiwan Country Chickens

    PubMed Central

    Wang, Shih-Han; Cheng, Chuen-Yu; Tang, Pin-Chi; Chen, Chih-Feng; Chen, Hsin-Hsin; Lee, Yen-Pai; Huang, San-Yuan

    2015-01-01

    The expression of testicular genes following acute heat stress has been reported in layer-type roosters, but few similar studies have been conducted on broilers. This study investigated the effect of acute heat stress on the gene expression in the testes of a broiler-type strain of Taiwan country chickens. Roosters were subjected to acute heat stress (38°C) for 4 h, and then exposed to 25°C, with testes collected 0, 2, and 6 h after the cessation of heat stress, using non-heat-stressed roosters as controls (n = 3 roosters per group). The body temperature and respiratory rate increased significantly (p<0.05) during the heat stress. The numbers of apoptotic cells increased 2 h after the acute heat stress (79 ± 7 vs. 322 ± 192, control vs. heat stress; p<0.05), which was earlier than the time of increase in layer-type roosters. Based on a chicken 44 K oligo microarray, 163 genes were found to be expressed significantly different in the testes of the heat-stressed chickens from those of the controls, including genes involved in the response to stimulus, protein metabolism, signal transduction, cell adhesion, transcription, and apoptosis. The mRNA expressions of upregulated genes, including HSP25, HSP90AA1, HSPA2, and LPAR2, and of downregulated genes, including CDH5, CTNNA3, EHF, CIRBP, SLA, and NTF3, were confirmed through quantitative real-time polymerase chain reaction (qRT-PCR). Moreover, numerous transcripts in the testes exhibited distinct expressions between the heat-stressed broiler-type and layer-type chickens. We concluded that the transcriptional responses of testes to acute heat stress may differ between the broiler-type and layer-type roosters. Whether the differential expression patterns associate with the heat-tolerance in the strains require a further exploration. PMID:25932638

  11. Acute heat stress induces differential gene expressions in the testes of a broiler-type strain of Taiwan country chickens.

    PubMed

    Wang, Shih-Han; Cheng, Chuen-Yu; Tang, Pin-Chi; Chen, Chih-Feng; Chen, Hsin-Hsin; Lee, Yen-Pai; Huang, San-Yuan

    2015-01-01

    The expression of testicular genes following acute heat stress has been reported in layer-type roosters, but few similar studies have been conducted on broilers. This study investigated the effect of acute heat stress on the gene expression in the testes of a broiler-type strain of Taiwan country chickens. Roosters were subjected to acute heat stress (38°C) for 4 h, and then exposed to 25°C, with testes collected 0, 2, and 6 h after the cessation of heat stress, using non-heat-stressed roosters as controls (n = 3 roosters per group). The body temperature and respiratory rate increased significantly (p<0.05) during the heat stress. The numbers of apoptotic cells increased 2 h after the acute heat stress (79 ± 7 vs. 322 ± 192, control vs. heat stress; p<0.05), which was earlier than the time of increase in layer-type roosters. Based on a chicken 44 K oligo microarray, 163 genes were found to be expressed significantly different in the testes of the heat-stressed chickens from those of the controls, including genes involved in the response to stimulus, protein metabolism, signal transduction, cell adhesion, transcription, and apoptosis. The mRNA expressions of upregulated genes, including HSP25, HSP90AA1, HSPA2, and LPAR2, and of downregulated genes, including CDH5, CTNNA3, EHF, CIRBP, SLA, and NTF3, were confirmed through quantitative real-time polymerase chain reaction (qRT-PCR). Moreover, numerous transcripts in the testes exhibited distinct expressions between the heat-stressed broiler-type and layer-type chickens. We concluded that the transcriptional responses of testes to acute heat stress may differ between the broiler-type and layer-type roosters. Whether the differential expression patterns associate with the heat-tolerance in the strains require a further exploration.

  12. Characterizing the intra-urban spatiotemporal dynamics of High Heat Stress Zones (Hotspots)

    NASA Astrophysics Data System (ADS)

    Shreevastava, A.; Rao, P. S.; McGrath, G. S.

    2017-12-01

    In this study, we present an innovative framework to characterize the spatio-temporal dynamics of High Heat Stress Zones (Hot spots) created within an Urban area in the event of a Heat Wave. Heat waves are one of the leading causes of weather-related human mortality in many countries, and cities receive its worst brunt. The extreme heat stress within urban areas is often a synergistic combination of large-scale meteorological events, and the locally exacerbated impacts due to Urban Heat Islands (UHI). UHI is typically characterized as the difference between mean temperature of the urban and rural area. As a result, it fails to capture the significant variability that exists within the city itself. This variability arises from the diverse and complex spatial geometries of cities. Previous studies that have attempted to quantify the heat stress at an intra-urban scale are labor intensive, expensive, and difficult to emulate globally as they rely on availability of extensive data and their assimilation. The proposed study takes advantage of the well-established notion of fractal properties of cities to make the methods scalable to other cities where in-situ observational data might not be available. As an input, land surface temperatures are estimated using Landsat data. Using clustering analysis, we probe the emergence of thermal hotspots. The probability distributions (PD) of these hotspots are found to follow a power-law distribution in agreement with fractal characteristics of the city. PDs of several archetypical cities are then investigated to compare the effect of different spatial structures (e.g. monocentric v/s polycentric, sprawl v/s compact). Further, the temporal variability of the distributions on a diurnal as well as a seasonal scale is discussed. Finally, the spatiotemporal dynamics of the urban hotspots under a heat-wave (E.g. Delhi Heat wave, 2015) are compared against the non-heat wave scenarios. In summary, a technique that is globally adaptive and

  13. Daily heat stress treatment rescues denervation-activated mitochondrial clearance and atrophy in skeletal muscle

    PubMed Central

    Tamura, Yuki; Kitaoka, Yu; Matsunaga, Yutaka; Hoshino, Daisuke; Hatta, Hideo

    2015-01-01

    Traumatic nerve injury or motor neuron disease leads to denervation and severe muscle atrophy. Recent evidence indicates that loss of mitochondria and the related reduction in oxidative capacity could be key mediators of skeletal muscle atrophy. As our previous study showed that heat stress increased the numbers of mitochondria in skeletal muscle, we evaluated whether heat stress treatment could have a beneficial impact on denervation-induced loss of mitochondria and subsequent muscle atrophy. Here, we report that daily heat stress treatment (mice placed in a chamber with a hot environment; 40°C, 30 min day−1, for 7 days) rescues the following parameters: (i) muscle atrophy (decreased gastrocnemius muscle mass); (ii) loss of mitochondrial content (decreased levels of ubiquinol–cytochrome c reductase core protein II, cytochrome c oxidase subunits I and IV and voltage-dependent anion channel protein); and (iii) reduction in oxidative capacity (reduced maximal activities of citrate synthase and 3-hydroxyacyl-CoA dehydrogenase) in denervated muscle (produced by unilateral sciatic nerve transection). In order to gain a better understanding of the above mitochondrial adaptations, we also examined the effects of heat stress on autophagy-dependent mitochondrial clearance (mitophagy). Daily heat stress normalized denervation-activated induction of mitophagy (increased mitochondrial microtubule-associated protein 1A/1B-light chain3-II (LC3-II) with and without blocker of autophagosome clearance). The molecular basis of this observation was explained by the results that heat stress attenuated the denervation-induced increase in key proteins that regulate the following steps: (i) the tagging step of mitochondrial clearance (increased mitochondrial Parkin, ubiquitin-conjugated, P62/sequestosome 1 (P62/SQSTM1)); and (ii) the elongation step of autophagosome formation (increased Atg5–Atg12 conjugate and Atg16L). Overall, our results contribute to the better

  14. Pathway to a Phenocopy: Heat Stress Effects in Early Embryogenesis

    PubMed Central

    Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane

    2015-01-01

    Background Heat shocks applied at the onset of gastrulation in early Drosophila embryos frequently lead to phenocopies of U-shaped mutants – having characteristic failures in the late morphogenetic processes of germband retraction and dorsal closure. The pathway from non-specific heat stress to phenocopied abnormalities is unknown. Results Drosophila embryos subjected to 30-min, 38-°C heat shocks at gastrulation appear to recover and restart morphogenesis. Post-heat-shock development appears normal, albeit slower, until a large fraction of embryos develop amnioserosa holes (diameters > 100 μm). These holes are positively correlated with terminal U-shaped phenocopies. They initiate between amnioserosa cells and open over tens of minutes by evading normal wound healing responses. They are not caused by tissue-wide increases in mechanical stress or decreases in cell-cell adhesion, but instead appear to initiate from isolated apoptosis of amnioserosa cells. Conclusions The pathway from heat shock to U-shaped phenocopies involves the opening of one or more large holes in the amnioserosa that compromise its structural integrity and lead to failures in morphogenetic processes that rely on amnioserosa-generated tensile forces. The proposed mechanism by which heat shock leads to hole initiation and expansion is heterochonicity – i.e., disruption of morphogenetic coordination between embryonic and extra-embryonic cell types. PMID:26498920

  15. Radial Pressure Pulse and Heart Rate Variability in Heat- and Cold-Stressed Humans

    PubMed Central

    Huang, Chin-Ming; Chang, Hsien-Cheh; Kao, Shung-Te; Li, Tsai-Chung; Wei, Ching-Chuan; Chen, Chiachung; Liao, Yin-Tzu; Chen, Fun-Jou

    2011-01-01

    This study aims to explore the effects of heat and cold stress on the radial pressure pulse (RPP) and heart rate variability (HRV). The subjects immersed their left hand into 45°C and 7°C water for 2 minutes. Sixty healthy subjects (age 25 ± 4 yr; 29 men and 31 women) were enrolled in this study. All subjects underwent the supine temperature measurements of the bilateral forearms, brachial arterial blood pressure, HRV and RPP with a pulse analyzer in normothermic conditions, and thermal stresses. The power spectral low-frequency (LF) and high-frequency (HF) components of HRV decreased in the heat test and increased in the cold test. The heat stress significantly reduced radial augmentation index (AIr) (P < .05), but the cold stress significantly increased AIr (P < .01). The spectral energy of RPP did not show any statistical difference in 0 ~ 10 Hz region under both conditions, but in the region of 10 ~ 50 Hz, there was a significant increase (P < .01) in the heat test and a significant decrease in the cold test (P < .01). The changes in AIr induced by heat and cold stress were significantly negatively correlated with the spectral energy in the region of 10 ~ 50 Hz (SE10−50 Hz) but not in the region of 0 ~ 10 Hz (SE0−10 Hz). The results demonstrated that the SE10−50 Hz, which only possessed a small percentage in total pulse energy, presented more physiological characteristics than the SE0−10 Hz under the thermal stresses. PMID:21113292

  16. Effect of drought and heat stresses on plant growth and yield: a review

    NASA Astrophysics Data System (ADS)

    Lipiec, J.; Doussan, C.; Nosalewicz, A.; Kondracka, K.

    2013-12-01

    Drought and heat stresses are important threat limitations to plant growth and sustainable agriculture worldwide. Our objective is to provide a review of plant responses and adaptations to drought and elevated temperature including roots, shoots, and final yield and management approaches for alleviating adverse effects of the stresses based mostly on recent literature. The sections of the paper deal with plant responses including root growth, transpiration, photosynthesis, water use efficiency, phenotypic flexibility, accumulation of compounds of low molecular mass (eg proline and gibberellins), and expression of some genes and proteins for increasing the tolerance to the abiotic stresses. Soil and crop management practices to alleviate negative effects of drought and heat stresses are also discussed. Investigations involving determination of plant assimilate partitioning, phenotypic plasticity, and identification of most stress-tolerant plant genotypes are essential for understanding the complexity of the responses and for future plant breeding. The adverse effects of drought and heat stress can be mitigated by soil management practices, crop establishment, and foliar application of growth regulators by maintaining an appropriate level of water in the leaves due to osmotic adjustment and stomatal performance.

  17. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants

    PubMed Central

    Buchner, Othmar; STOLL, Magdalena; Karadar, Matthias; Kranner, Ilse; Neuner, Gilbert

    2015-01-01

    The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, Rhododendron ferrugineum, Senecio incanus and Ranunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv/Fm), which remained impeded for several days when plants were exposed to natural light conditions subsequently to the heat treatment. In contrast, plants exposed to heat stress under natural irradiation were able to tolerate and recover from heat stress more readily. The critical temperature threshold for chlorophyll fluorescence was higher under illumination (Tc′) than in the dark (Tc). Heat stress caused a significant de-epoxidation of the xanthophyll cycle pigments both in the light and in the dark conditions. Total free radical scavenging activity was highest when heat stress was applied in the dark. This study demonstrates that, in the European Alps, heat waves can temporarily have a negative impact on photosynthesis and, importantly, that results obtained from experiments performed in darkness and/or on detached plant material may not reliably predict the impact of heat stress under field conditions. PMID:25256247

  18. Association between occupational heat stress and kidney disease among 37,816 workers in the Thai Cohort Study (TCS).

    PubMed

    Tawatsupa, Benjawan; Lim, Lynette L-Y; Kjellstrom, Tord; Seubsman, Sam-ang; Sleigh, Adrian

    2012-01-01

    We examined the relationship between self-reported occupational heat stress and incidence of self-reported doctor-diagnosed kidney disease in Thai workers. Data were derived from baseline (2005) and follow-up (2009) self-report questionnaires from a large national Thai Cohort Study (TCS). Analysis was restricted to full-time workers (n = 17 402 men and 20 414 women) without known kidney disease at baseline. We used logistic regression models to examine the association of incident kidney disease with heat stress at work, after adjustment for smoking, alcohol drinking, body mass index, and a large number of socioeconomic and demographic characteristics. Exposure to heat stress was more common in men than in women (22% vs 15%). A significant association between heat stress and incident kidney disease was observed in men (adjusted odds ratio [OR] = 1.48, 95% CI: 1.01-2.16). The risk of kidney disease was higher among workers reporting workplace heat stress in both 2005 and 2009. Among men exposed to prolonged heat stress, the odds of developing kidney disease was 2.22 times that of men without such exposure (95% CI 1.48-3.35, P-trend <0.001). The incidence of kidney disease was even higher among men aged 35 years or older in a physical job: 2.2% exposed to prolonged heat stress developed kidney disease compared with 0.4% with no heat exposure (adjusted OR = 5.30, 95% CI 1.17-24.13). There is an association between self-reported occupational heat stress and self-reported doctor-diagnosed kidney disease in Thailand. The results indicate a need for occupational health interventions for heat stress among workers in tropical climates.

  19. Exogenous Salicylic Acid Enhances the Resistance of Wheat Seedlings to Hessian Fly (Diptera: Cecidomyiidae) Infestation Under Heat Stress.

    PubMed

    Underwood, Joshua; Moch, John; Chen, Ming-Shun; Zhu, Lieceng

    2014-10-01

    Heat stress exerts significant impact on plant-parasite interactions. Phytohormones, such as salicylic acid (SA), play important roles in plant defense against parasite attacks. Here, we studied the impact of a combination of heat stress and exogenous SA on the resistance of wheat (Triticum aestivum L.) plants to the Hessian fly [Mayetiola destructor (Say)]. We found that the wheat cultivar 'Molly', which contains the resistance gene H13, lost resistance to Hessian fly under heat stress (40°C for 3 and 6 h), and that exogenous application of SA on Molly seedlings right before heat stress can partially prevent the loss of resistance of Molly plants under heat conditions. Our findings have significant implications for understanding the dynamics of plant-insect interactions in the context of heat stress. © 2014 Entomological Society of America.

  20. Responses of tree species to heat waves and extreme heat events.

    PubMed

    Teskey, Robert; Wertin, Timothy; Bauweraerts, Ingvar; Ameye, Maarten; McGuire, Mary Anne; Steppe, Kathy

    2015-09-01

    The number and intensity of heat waves has increased, and this trend is likely to continue throughout the 21st century. Often, heat waves are accompanied by drought conditions. It is projected that the global land area experiencing heat waves will double by 2020, and quadruple by 2040. Extreme heat events can impact a wide variety of tree functions. At the leaf level, photosynthesis is reduced, photooxidative stress increases, leaves abscise and the growth rate of remaining leaves decreases. In some species, stomatal conductance increases at high temperatures, which may be a mechanism for leaf cooling. At the whole plant level, heat stress can decrease growth and shift biomass allocation. When drought stress accompanies heat waves, the negative effects of heat stress are exacerbated and can lead to tree mortality. However, some species exhibit remarkable tolerance to thermal stress. Responses include changes that minimize stress on photosynthesis and reductions in dark respiration. Although there have been few studies to date, there is evidence of within-species genetic variation in thermal tolerance, which could be important to exploit in production forestry systems. Understanding the mechanisms of differing tree responses to extreme temperature events may be critically important for understanding how tree species will be affected by climate change. © 2014 John Wiley & Sons Ltd.

  1. Five pectinase gene expressions highly responding to heat stress in rice floral organs revealed by RNA-seq analysis.

    PubMed

    Wu, Liquan; Taohua, Zhou; Gui, Wenbin; Xu, Lisen; Li, Juan; Ding, YanFeng

    2015-07-31

    Heat stress hurts rice, and floral organs are mostly sensitive to heat stress. We aimed to unravel molecular responses to heat stress in rice floral organs using Illumina/Solexa sequencing technology for addressing the increasing concern of globle warming. At meiophase of the pollen mother cell (pulvinus flat), the plants were stressed for 3 d at 38 C, and RNA was extracted from the stressed pistil and stamen for RNA-Seq sequencing to build the heat stress transcriptom library. A total of 7178 defferentially expressed genes (DEGs) between the normal and heat stress libraries were significant, 61% up-regulated and 39% down-regulated. The 7178 DEGs were significantly classified to 34 gene ontology (GO) categories, and 11 of the GO categories were significantly enriched. The GO:0016787 for hydrolase activity of molecular function was mostly enriched with the least probability, and included 11 DEGs named Hy1 - Hy11. Expression levels of five DEGs, Hy4 - Hy6 and Hy9 - Hy10 for starch and sucrose metablism via pectinase, increased 12 - 14 times in response to the heat stress. Further investigation of the five DEGs for pectin metabolism and association with reported heat responsive genes may help develop a molecular strategy to remedy heat damage in rice. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Untargeted metabolomic analysis of tomato pollen development and heat stress response.

    PubMed

    Paupière, Marine J; Müller, Florian; Li, Hanjing; Rieu, Ivo; Tikunov, Yury M; Visser, Richard G F; Bovy, Arnaud G

    2017-06-01

    Pollen development metabolomics. Developing pollen is among the plant structures most sensitive to high temperatures, and a decrease in pollen viability is often associated with an alteration of metabolite content. Most of the metabolic studies of pollen have focused on a specific group of compounds, which limits the identification of physiologically important metabolites. To get a better insight into pollen development and the pollen heat stress response, we used a liquid chromatography-mass spectrometry platform to detect secondary metabolites in pollen of tomato (Solanum lycopersicum L.) at three developmental stages under control conditions and after a short heat stress at 38 °C. Under control conditions, the young microspores accumulated a large amount of alkaloids and polyamines, whereas the mature pollen strongly accumulated flavonoids. The heat stress treatment led to accumulation of flavonoids in the microspore. The biological role of the detected metabolites is discussed. This study provides the first untargeted metabolomic analysis of developing pollen under a changing environment that can serve as reference for further studies.

  3. Screening of the two-component-system histidine kinases of Listeria monocytogenes EGD-e. LiaS is needed for growth under heat, acid, alkali, osmotic, ethanol and oxidative stresses.

    PubMed

    Pöntinen, Anna; Lindström, Miia; Skurnik, Mikael; Korkeala, Hannu

    2017-08-01

    To study the role of each two-component system (TCS) histidine kinase (HK) in stress tolerance of Listeria monocytogenes EGD-e, we monitored the growth of individual HK deletion mutant strains under heat (42.5 °C), acid (pH 5.6), alkali (pH 9.4), osmotic (6% NaCl), ethanol (3.5 vol%), and oxidative (5 mM H 2 O 2 ) stresses. The growth of ΔliaS (Δlmo1021) strain was impaired under each stress, with the most notable decrease under heat and osmotic stresses. The ΔvirS (Δlmo1741) strain showed nearly completely restricted growth at high temperature and impaired growth in ethanol. The growth of ΔagrC (Δlmo0050) strain was impaired under osmotic stress and slightly under oxidative stress. We successfully complemented the HK mutations using a novel allelic exchange based approach. This approach avoided the copy-number problems associated with in trans complementation from a plasmid. The mutant phenotypes were restored to the wild-type level in the complemented strains. This study reveals novel knowledge on the HKs needed for growth of L. monocytogenes EGD-e under abovementioned stress conditions, with LiaS playing multiple roles in stress tolerance of L. monocytogenes EGD-e. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Transcriptional profile of breast muscle in heat stressed layers is similar to that of broiler chickens at control temperature.

    PubMed

    Zahoor, Imran; de Koning, Dirk-Jan; Hocking, Paul M

    2017-09-20

    In recent years, the commercial importance of changes in muscle function of broiler chickens and of the corresponding effects on meat quality has increased. Furthermore, broilers are more sensitive to heat stress during transport and at high ambient temperatures than smaller egg-laying chickens. We hypothesised that heat stress would amplify muscle damage and expression of genes that are involved in such changes and, thus, lead to the identification of pathways and networks associated with broiler muscle and meat quality traits. Broiler and layer chickens were exposed to control or high ambient temperatures to characterise differences in gene expression between the two genotypes and the two environments. Whole-genome expression studies in breast muscles of broiler and layer chickens were conducted before and after heat stress; 2213 differentially-expressed genes were detected based on a significant (P < 0.05) genotype × treatment interaction. This gene set was analysed with the BioLayout Express 3D and Ingenuity Pathway Analysis software and relevant biological pathways and networks were identified. Genes involved in functions related to inflammatory reactions, cell death, oxidative stress and tissue damage were upregulated in control broilers compared with control and heat-stressed layers. Expression of these genes was further increased in heat-stressed broilers. Differences in gene expression between broiler and layer chickens under control and heat stress conditions suggest that damage of breast muscles in broilers at normal ambient temperatures is similar to that in heat-stressed layers and is amplified when broilers are exposed to heat stress. The patterns of gene expression of the two genotypes under heat stress were almost the polar opposite of each other, which is consistent with the conclusion that broiler chickens were not able to cope with heat stress by dissipating their body heat. The differentially expressed gene networks and pathways were

  5. Management of lactating sows during heat stress: effects of water drip, snout coolers, floor type and a high energy-density diet.

    PubMed

    McGlone, J J; Stansbury, W F; Tribble, L F

    1988-04-01

    Two experiments using 120 sows were conducted to determine the effects during heat stress of two floor types, snout coolers or a water drip system, and a high energy-density diet. During both studies, air temperature was maintained at or above 29 degrees C. Floor types included partially slotted concrete and plastic-coated, expanded metal. In Exp. 1, in addition to floor-type treatments, snout coolers were on or off and the water drip was on for 3 min each 10 min or off. Snout coolers increased (P less than .05) sow feed intake and decreased (P less than .05) sow lactation weight loss. Water drip increased (P less than .002) sow feed intake and reduced lactation weight loss. The drip X floor-type interaction was significant for most measures of piglet performance. Drip was beneficial for piglet weights when piglets were on plastic, whereas drip was detrimental to piglet performance while they were housed on concrete. In Exp. 2, two floor types, drip or no-drip and a high energy-density diet or control diet were examined during heat stress. The high energy-density diet reduced (P less than .01) sow feed intake but provided no measurable increase in piglet performance during heat stress. We conclude that water drip is an effective cooling technique for heat-stressed sows, especially when floors are plastic. Snout coolers, partial concrete slots and high energy-density diets provided only minor benefits to heat-stressed sows and were not of benefit to piglets nursing heat-stressed sows.

  6. Olive oil-supplemented diet alleviates acute heat stress-induced mitochondrial ROS production in chicken skeletal muscle.

    PubMed

    Mujahid, Ahmad; Akiba, Yukio; Toyomizu, Masaaki

    2009-09-01

    We have previously shown that avian uncoupling protein (avUCP) is downregulated on exposure to acute heat stress, stimulating mitochondrial reactive oxygen species (ROS) production and oxidative damage. In this study, we investigated whether upregulation of avUCP could attenuate oxidative damage caused by acute heat stress. Broiler chickens (Gallus gallus) were fed either a control diet or an olive oil-supplemented diet (6.7%), which has been shown to increase the expression of UCP3 in mammals, for 8 days and then exposed either to heat stress (34 degrees C, 12 h) or kept at a thermoneutral temperature (25 degrees C). Skeletal muscle mitochondrial ROS (measured as H(2)O(2)) production, avUCP expression, oxidative damage, mitochondrial membrane potential, and oxygen consumption were studied. We confirmed that heat stress increased mitochondrial ROS production and malondialdehyde levels and decreased the amount of avUCP. As expected, feeding birds an olive oil-supplemented diet increased the expression of avUCP in skeletal muscle mitochondria and decreased ROS production and oxidative damage. Studies on mitochondrial function showed that heat stress increased membrane potential in state 4, which was reversed by feeding birds an olive oil-supplemented diet, although no differences in basal proton leak were observed between control and heat-stressed groups. These results show that under heat stress, mitochondrial ROS production and olive oil-induced reduction of ROS production may occur due to changes in respiratory chain activity as well as avUCP expression in skeletal muscle mitochondria.

  7. An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice.

    PubMed

    Cheng, Q; Zhou, Y; Liu, Z; Zhang, L; Song, G; Guo, Z; Wang, W; Qu, X; Zhu, Y; Yang, D

    2015-03-01

    As sessile organisms, plants have evolved a wide range of defence pathways to cope with environmental stress such as heat shock. However, the molecular mechanism of these defence pathways remains unclear in rice. In this study, we found that OsHSFA2d, a heat shock transcriptional factor, encodes two main splice variant proteins, OsHSFA2dI and OsHSFA2dII in rice. Under normal conditions, OsHSFA2dII is the dominant but transcriptionally inactive spliced form. However, when the plant suffers heat stress, OsHSFA2d is alternatively spliced into a transcriptionally active form, OsHSFA2dI, which participates in the heat stress response (HSR). Further study found that this alternative splicing was induced by heat shock rather than photoperiod. We found that OsHSFA2dI is localised to the nucleus, whereas OsHSFA2dII is localised to the nucleus and cytoplasm. Moreover, expression of the unfolded protein response (UNFOLDED PROTEIN RESPONSE) sensors, OsIRE1, OsbZIP39/OsbZIP60 and the UNFOLDED PROTEIN RESPONSE marker OsBiP1, was up-regulated. Interestingly, OsbZIP50 was also alternatively spliced under heat stress, indicating that UNFOLDED PROTEIN RESPONSE signalling pathways were activated by heat stress to re-establish cellular protein homeostasis. We further demonstrated that OsHSFA2dI participated in the unfolded protein response by regulating expression of OsBiP1. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. Differential proteomic analysis of grapevine leaves by iTRAQ reveals responses to heat stress and subsequent recovery

    PubMed Central

    2014-01-01

    Background High temperature is a major environmental factor limiting grape yield and affecting berry quality. Thermotolerance includes the direct response to heat stress and the ability to recover from heat stress. To better understand the mechanism of the thermotolerance of Vitis, we combined a physiological analysis with iTRAQ-based proteomics of Vitis vinifera cv Cabernet Sauvignon, subjected to 43°C for 6 h, and then followed by recovery at 25/18°C. Results High temperature increased the concentrations of TBARS and inhibited electronic transport in photosynthesis apparatus, indicating that grape leaves were damaged by heat stress. However, these physiological changes rapidly returned to control levels during the subsequent recovery phase from heat stress. One hundred and seventy-four proteins were differentially expressed under heat stress and/or during the recovery phase, in comparison to unstressed controls, respectively. Stress and recovery conditions shared 42 proteins, while 113 and 103 proteins were respectively identified under heat stress and recovery conditions alone. Based on MapMan ontology, functional categories for these dysregulated proteins included mainly photosynthesis (about 20%), proteins (13%), and stress (8%). The subcellular localization using TargetP showed most proteins were located in the chloroplasts (34%), secretory pathways (8%) and mitochondrion (3%). Conclusion On the basis of these findings, we proposed that some proteins related to electron transport chain of photosynthesis, antioxidant enzymes, HSPs and other stress response proteins, and glycolysis may play key roles in enhancing grapevine adaptation to and recovery capacity from heat stress. These results provide a better understanding of the proteins involved in, and mechanisms of thermotolerance in grapevines. PMID:24774513

  9. Genetic component of sensitivity to heat stress for nonreturn rate of Brazilian Holstein cattle.

    PubMed

    Santana, M L; Bignardi, A B; Stefani, G; El Faro, L

    2017-08-01

    The objectives of the present study were: 1) to investigate variation in the genetic component of heat stress for nonreturn rate at 56 days after first artificial insemination (NR56); 2) to identify and characterize the genotype by environment interaction (G × E) due to heat stress for NR56 of Brazilian Holstein cattle. A linear random regression model (reaction norm model) was applied to 51,748 NR56 records of 28,595 heifers and multiparous cows. The decline in NR56 due to heat stress was more pronounced in milking cows compared to heifers. The age of females at first artificial insemination and temperature-humidity index (THI) exerted an important influence on the genetic parameters of NR56. Several evidence of G × E on NR56 were found as the high slope/intercept ratio and frequent intersection of reaction norms. Additionally, the genetic correlation between NR56 at opposite extremes of the THI scale reached estimates below zero, indicating that few of the same genes are responsible for NR56 under conditions of thermoneutrality and heat stress. The genetic evaluation and selection for NR56 in Holstein cattle reared under (sub)tropical conditions should therefore take into consideration the genetic variation on age at insemination and G × E due to heat stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Response of heat shock protein genes of the oriental fruit moth under diapause and thermal stress reveals multiple patterns dependent on the nature of stress exposure.

    PubMed

    Zhang, Bo; Peng, Yu; Zheng, Jincheng; Liang, Lina; Hoffmann, Ary A; Ma, Chun-Sen

    2016-07-01

    Heat shock protein gene (Hsp) families are thought to be important in thermal adaptation, but their expression patterns under various thermal stresses have still been poorly characterized outside of model systems. We have therefore characterized Hsp genes and their stress responses in the oriental fruit moth (OFM), Grapholita molesta, a widespread global orchard pest, and compared patterns of expression in this species to that of other insects. Genes from four Hsp families showed variable expression levels among tissues and developmental stages. Members of the Hsp40, 70, and 90 families were highly expressed under short exposures to heat and cold. Expression of Hsp40, 70, and Hsc70 family members increased in OFM undergoing diapause, while Hsp90 was downregulated. We found that there was strong sequence conservation of members of large Hsp families (Hsp40, Hsp60, Hsp70, Hsc70) across taxa, but this was not always matched by conservation of expression patterns. When the large Hsps as well as small Hsps from OFM were compared under acute and ramping heat stress, two groups of sHsps expression patterns were apparent, depending on whether expression increased or decreased immediately after stress exposure. These results highlight potential differences in conservation of function as opposed to sequence in this gene family and also point to Hsp genes potentially useful as bioindicators of diapause and thermal stress in OFM.

  11. Phenylephrine-induced elevations in arterial blood pressure are attenuated in heat-stressed humans

    NASA Technical Reports Server (NTRS)

    Cui, Jian; Wilson, Thad E.; Crandall, Craig G.

    2002-01-01

    To test the hypothesis that phenylephrine-induced elevations in blood pressure are attenuated in heat-stressed humans, blood pressure was elevated via steady-state infusion of three doses of phenylephrine HCl in 10 healthy subjects in both normothermic and heat stress conditions. Whole body heating significantly increased sublingual temperature by 0.5 degrees C, muscle sympathetic nerve activity (MSNA), heart rate, and cardiac output and decreased total peripheral vascular resistance (TPR; all P < 0.005) but did not change mean arterial blood pressure (MAP; P > 0.05). At the highest dose of phenylephrine, the increase in MAP and TPR from predrug baselines was significantly attenuated during the heat stress [DeltaMAP 8.4 +/- 1.2 mmHg; DeltaTPR 0.96 +/- 0.85 peripheral resistance units (PRU)] compared with normothermia (DeltaMAP 15.4 +/- 1.4 mmHg, DeltaTPR 7.13 +/- 1.18 PRU; all P < 0.001). The sensitivity of baroreflex control of MSNA and heart rate, expressed as the slope of the relationship between MSNA and diastolic blood pressure, as well as the slope of the relationship between heart rate and systolic blood pressure, respectively, was similar between thermal conditions (each P > 0.05). These data suggest that phenylephrine-induced elevations in MAP are attenuated in heat-stressed humans without affecting baroreflex control of MSNA or heart rate.

  12. Short Communication: Effect of heat stress on heat-shock protein (Hsp60) mRNA expression in rainbow trout Oncorhynchus mykiss.

    PubMed

    Shi, H N; Liu, Z; Zhang, J P; Kang, Y J; Wang, J F; Huang, J Q; Wang, W M

    2015-05-18

    The enhanced expression of heat shock proteins (hsps) in organisms can be detected in response to many kinds of stressor. For fish, high temperature is an important stressor, and hsp expression is associated with differences in environmental temperature. In this study, rainbow trout (Oncorhynchus mykiss) that were accustomed to an aquatic temperature of 18°C were exposed to an elevated temperature (25°C), and hsp60 expression in the gill, liver, spleen, heart, and head kidney was quantified using real-time polymerase chain reaction in unstressed and heat-stressed animals. The fish responded to heat stress in a time- and tissue-specific manner. Cardiac hsp60 mRNA levels were largely unchanged, and the greatest induction of hsp60 in heat-stressed animals was recorded in the liver, suggesting that protein damage and the consequent requirement for the Hsp60 protein are probably greater in hepatic tissue. Therefore, fish must be provided with optimal temperature conditions in order to realize their potential growth and maximize fish farm profits.

  13. Palm kernel cake extract exerts hepatoprotective activity in heat-induced oxidative stress in chicken hepatocytes.

    PubMed

    Oskoueian, Ehsan; Abdullah, Norhani; Idrus, Zulkifli; Ebrahimi, Mahdi; Goh, Yong Meng; Shakeri, Majid; Oskoueian, Armin

    2014-10-02

    Palm kernel cake (PKC), the most abundant by-product of oil palm industry is believed to contain bioactive compounds with hepatoprotective potential. These compounds may serve as hepatoprotective agents which could help the poultry industry to alleviate adverse effects of heat stress on liver function in chickens. This study was performed to evaluate the hepatoprotective potential of PKC extract in heat-induced oxidative stress in chicken hepatocytes. The nature of the active metabolites and elucidation of the possible mechanism involved were also investigated. The PKC extract possessed free radical scavenging activity with values significantly (p < 0.05) lower than silymarin as the reference antioxidant. Heat-induced oxidative stress in chicken hepatocyte impaired the total protein, lipid peroxidation and antioxidant enzymes activity significantly (p < 0.05). Treatment of heat-induced hepatocytes with PKC extract (125 μg/ml) and silymarin as positive control increased these values significantly (p < 0.05). The real time PCR and western blot analyses revealed the significant (p < 0.05) up-regulation of oxidative stress biomarkers including TNF-like, IFN-γ and IL-1β genes; NF-κB, COX-2, iNOS and Hsp70 proteins expression upon heat stress in chicken hepatocytes. The PKC extract and silymarin were able to alleviate the expression of all of these biomarkers in heat-induced chicken hepatocytes. The gas chromatography-mass spectrometry analysis of PKC extract showed the presence of fatty acids, phenolic compounds, sugar derivatives and other organic compounds such as furfural which could be responsible for the observed hepatoprotective activity. Palm kernel cake extract could be a potential agent to protect hepatocytes function under heat induced oxidative stress.

  14. Impact of heat stress during seed development on soybean seed metabolome

    USDA-ARS?s Scientific Manuscript database

    Seed development is a temperature-sensitive process that is much more vulnerable than vegetative tissues to abiotic stresses. Climate change is expected to increase the incidence and severity of summer heatwaves, and the impact of heat stress on seed development is expected to become more widespread...

  15. Phosphorus limitation and heat stress decrease calcification in Emiliania huxleyi

    NASA Astrophysics Data System (ADS)

    Gerecht, Andrea C.; Šupraha, Luka; Langer, Gerald; Henderiks, Jorijntje

    2018-02-01

    Calcifying haptophytes (coccolithophores) sequester carbon in the form of organic and inorganic cellular components (coccoliths). We examined the effect of phosphorus (P) limitation and heat stress on particulate organic and inorganic carbon (calcite) production in the coccolithophore Emiliania huxleyi. Both environmental stressors are related to rising CO2 levels and affect carbon production in marine microalgae, which in turn impacts biogeochemical cycling. Using semi-continuous cultures, we show that P limitation and heat stress decrease the calcification rate in E. huxleyi. However, using batch cultures, we show that different culturing approaches (batch versus semi-continuous) induce different physiologies. This affects the ratio of particulate inorganic (PIC) to organic carbon (POC) and complicates general predictions on the effect of P limitation on the PIC  /  POC ratio. We found heat stress to increase P requirements in E. huxleyi, possibly leading to lower standing stocks in a warmer ocean, especially if this is linked to lower nutrient input. In summary, the predicted rise in global temperature and resulting decrease in nutrient availability may decrease CO2 sequestration by E. huxleyi through lower overall carbon production. Additionally, the export of carbon may be diminished by a decrease in calcification and a weaker coccolith ballasting effect.

  16. Association Between Occupational Heat Stress and Kidney Disease Among 37 816 Workers in the Thai Cohort Study (TCS)

    PubMed Central

    Tawatsupa, Benjawan; Lim, Lynette L-Y; Kjellstrom, Tord; Seubsman, Sam-ang; Sleigh, Adrian

    2012-01-01

    Background We examined the relationship between self-reported occupational heat stress and incidence of self-reported doctor-diagnosed kidney disease in Thai workers. Methods Data were derived from baseline (2005) and follow-up (2009) self-report questionnaires from a large national Thai Cohort Study (TCS). Analysis was restricted to full-time workers (n = 17 402 men and 20 414 women) without known kidney disease at baseline. We used logistic regression models to examine the association of incident kidney disease with heat stress at work, after adjustment for smoking, alcohol drinking, body mass index, and a large number of socioeconomic and demographic characteristics. Results Exposure to heat stress was more common in men than in women (22% vs 15%). A significant association between heat stress and incident kidney disease was observed in men (adjusted odds ratio [OR] = 1.48, 95% CI: 1.01–2.16). The risk of kidney disease was higher among workers reporting workplace heat stress in both 2005 and 2009. Among men exposed to prolonged heat stress, the odds of developing kidney disease was 2.22 times that of men without such exposure (95% CI 1.48–3.35, P-trend <0.001). The incidence of kidney disease was even higher among men aged 35 years or older in a physical job: 2.2% exposed to prolonged heat stress developed kidney disease compared with 0.4% with no heat exposure (adjusted OR = 5.30, 95% CI 1.17–24.13). Conclusions There is an association between self-reported occupational heat stress and self-reported doctor-diagnosed kidney disease in Thailand. The results indicate a need for occupational health interventions for heat stress among workers in tropical climates. PMID:22343327

  17. Extending the potential of evaporative cooling for heat-stress relief.

    PubMed

    Berman, A

    2006-10-01

    Factors were analyzed that limit the range of environmental conditions in which stress from heat may be relieved by evaporative cooling in shaded animals. Evaporative cooling reduces air temperature (Ta), but increases humidity. Equations were developed to predict Ta reduction as a function of ambient temperature and humidity and of humidity in cooled air. Predictions indicated that a reduction of Ta becomes marginal at humidities beyond 45%. A reduction of Ta lessens with rising ambient Ta. The impact of increasing humidity on respiratory heat loss (Hre) was estimated from existing data published on Holstein cattle. Respiratory heat loss is reduced by increased humidity up to 45%, but is not affected by higher humidity. Skin evaporative and sensible heat losses are determined not only by the humidity and temperature gradient, but also by air velocity close to the body surface. At higher Ta, the reduction in sensible heat loss is compensated for by an increased demand for Hre. High Hre may become a stressor when panting interferes with resting and rumination. Effects of temperature, humidity, air velocity, and body surface exposure to free air on Hre were estimated by a thermal balance model for lactating Holstein cows yielding 35 kg/d. The predictions of the simulations were supported by respiratory rate observations. The Hre was assumed to act as a stressor when exceeding 50% of the maximal capacity. When the full body surface was exposed to a 1.5 m/s air velocity, humidity (15 to 75%) had no significant predicted effect on Hre. For an air velocity of 0.3 m/s, Hre at 50% of the maximum rate was predicted at 34, 32.5, and 31.5 degrees C for relative humidities of 55, 65, and 75%, respectively. Similar results were predicted for an animal with two-thirds of its body surface exposed to 1.5 m/s air velocity. If air velocity was reduced for such animals to 0.3 m/s, the rise in Hre was expected to occur at approximately 25 degrees C and 50% relative humidity. Maximal

  18. Reconsidering betaine as a natural anti-heat stress agent in poultry industry: a review.

    PubMed

    Saeed, Muhammad; Babazadeh, Daryoush; Naveed, Muhammad; Arain, Muhammad Asif; Hassan, Faiz Ul; Chao, Sun

    2017-10-01

    Betaine is found ubiquitously in plants, animals, microorganisms, and rich dietary sources including seafood, spinach, and wheat bran. The chief physiological role of betaine is to function as a methyl donor and an osmolyte. Betaine also acts as an osmolyte, to maintain the avian's cellular water and ion balance to improve the avian's capacity against heat stress via preventing dehydration and osmotic inactivation. It helps in maintaining the protective osmolytic activity, especially in heat-stressed birds. Betaine may promote various intestinal microbes against osmotic variations and thus improve microbial fermentation activity. Previous studies showed that dietary supplementation of betaine in poultry diets could positively affect nutrients' digestibility, reduce abdominal fat weight, and increase breast meat yield. In addition, betaine has been reported to protect internal organs and boost their performance. Its inclusion in poultry diet is sparing essential amino acids like choline and methionine. In addition, it may play an important role in lean meat production by positively affecting the lipid metabolism with increased fatty acids catabolism and thus reducing carcass fat deposition. The aim of this review article was to broaden the knowledge regarding betaine and its importance in the poultry industry to cope with the heat stress problem. Moreover, it should be added to the diet as a natural anti-stressor through different routes (water/feed) to overcome the heat stress problem. However, further studies need to be conducted at the genetic and molecular basis to elucidate the mechanism behind the betaine as a natural anti-heat agent to decrease the heat stress problem in the poultry industry.

  19. Effect of heat stress on reproductive performances of dairy cattle and buffaloes: A review

    PubMed Central

    Dash, Soumya; Chakravarty, A. K.; Singh, Avtar; Upadhyay, Arpan; Singh, Manvendra; Yousuf, Saleem

    2016-01-01

    Heat stress has adverse effects on the reproductive performances of dairy cattle and buffaloes. The dairy sector is a more vulnerable to global warming and climate change. The temperature humidity index (THI) is the widely used index to measure the magnitude of heat stress in animals. The objective of this paper was to assess the decline in performances of reproductive traits such as service period, conception rate and pregnancy rate of dairy cattle and buffaloes with respect to increase in THI. The review stated that service period in cattle is affected by season of calving for which cows calved in summer had the longest service period. The conception rate and pregnancy rate in dairy cattle were found decreased above THI 72 while a significant decline in reproductive performances of buffaloes was observed above threshold THI 75. The non-heat stress zone (HSZ) (October to March) is favorable for optimum reproductive performance, while fertility is depressed in HSZ (April to September) and critical HSZ (CHSZ) (May and June). Heat stress in animals has been associated with reduced fertility through its deleterious impact on oocyte maturation and early embryo development. The management strategies viz., nutrition modification, environment modification and timed artificial insemination protocol are to be strictly operated to ameliorate the adverse effects of heat stress in cattle and buffaloes during CHSZ to improve their fertility. The identification of genes associated with heat tolerance, its incorporation into breeding program and the inclusion of THI covariate effects in selection index should be targeted for genetic evaluation of dairy animals in the hot climate. PMID:27057105

  20. Effect of heat stress on reproductive performances of dairy cattle and buffaloes: A review.

    PubMed

    Dash, Soumya; Chakravarty, A K; Singh, Avtar; Upadhyay, Arpan; Singh, Manvendra; Yousuf, Saleem

    2016-03-01

    Heat stress has adverse effects on the reproductive performances of dairy cattle and buffaloes. The dairy sector is a more vulnerable to global warming and climate change. The temperature humidity index (THI) is the widely used index to measure the magnitude of heat stress in animals. The objective of this paper was to assess the decline in performances of reproductive traits such as service period, conception rate and pregnancy rate of dairy cattle and buffaloes with respect to increase in THI. The review stated that service period in cattle is affected by season of calving for which cows calved in summer had the longest service period. The conception rate and pregnancy rate in dairy cattle were found decreased above THI 72 while a significant decline in reproductive performances of buffaloes was observed above threshold THI 75. The non-heat stress zone (HSZ) (October to March) is favorable for optimum reproductive performance, while fertility is depressed in HSZ (April to September) and critical HSZ (CHSZ) (May and June). Heat stress in animals has been associated with reduced fertility through its deleterious impact on oocyte maturation and early embryo development. The management strategies viz., nutrition modification, environment modification and timed artificial insemination protocol are to be strictly operated to ameliorate the adverse effects of heat stress in cattle and buffaloes during CHSZ to improve their fertility. The identification of genes associated with heat tolerance, its incorporation into breeding program and the inclusion of THI covariate effects in selection index should be targeted for genetic evaluation of dairy animals in the hot climate.

  1. Simple and rapid LC-MS method for the determination of circulating albumin microheterogeneity in veal calves exposed to heat stress.

    PubMed

    Baldassarre, Maurizio; Naldi, Marina; Domenicali, Marco; Volo, Sabrina; Pietra, Marco; Dondi, Francesco; Caraceni, Paolo; Peli, Angelo

    2017-09-10

    Heat stress has a major impact on veal calves welfare and productivity. Prolonged exposure to warm temperature is associated with several alterations of physiologic processes and increased systemic inflammation and oxidative stress. Bovine serum albumin (BSA) is the most abundant plasma protein and, besides the regulation of osmotic pressure, carries several additional functions, including antioxidant, immunomodulatory, binding and transport activities. Such non-oncotic properties are closely related to structural integrity of the circulating molecule and may be compromised in stressful microenvironments as it occurs in heat stressed animals. Thus, in the present study we developed and validated an LC-MS analytical technique for the characterization of circulating BSA microheterogeneity in veal calves exposed to heat stress. The method was specifically tailored to the structural characteristics of the BSA molecule as well as to the complexity of the biological samples, allowing the identification of several BSA isoforms, each characterized by a specific structural defect. The mass spectrometry based approach enabled the identification of BSA isoforms with reversible and irreversible oxidation and/or glycation and the native BSA, the only isoform endowed with structural and functional integrity. We found that, in veal calves, heat stress is associated to a significant reduction of the native BSA and to a significant increment of the reversibly and irreversibly oxidized BSA. Then, by monitoring the BSA microheterogeneity over a period of moderate heat stress, we found that the native BSA as well as the glycated BSA increased significantly during the recovery period. Based on our results the analysis of the BSA microheterogeneity could represent a novel biomarker for the assessment of animal welfare during environmental stressful conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants.

    PubMed

    Buchner, Othmar; Stoll, Magdalena; Karadar, Matthias; Kranner, Ilse; Neuner, Gilbert

    2015-04-01

    The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, Rhododendron ferrugineum, Senecio incanus and Ranunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv /Fm), which remained impeded for several days when plants were exposed to natural light conditions subsequently to the heat treatment. In contrast, plants exposed to heat stress under natural irradiation were able to tolerate and recover from heat stress more readily. The critical temperature threshold for chlorophyll fluorescence was higher under illumination (Tc (')) than in the dark (Tc). Heat stress caused a significant de-epoxidation of the xanthophyll cycle pigments both in the light and in the dark conditions. Total free radical scavenging activity was highest when heat stress was applied in the dark. This study demonstrates that, in the European Alps, heat waves can temporarily have a negative impact on photosynthesis and, importantly, that results obtained from experiments performed in darkness and/or on detached plant material may not reliably predict the impact of heat stress under field conditions. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  3. Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression

    PubMed Central

    Macková, Hana; Hronková, Marie; Dobrá, Jana; Turečková, Veronika; Novák, Ondřej; Lubovská, Zuzana; Motyka, Václav; Haisel, Daniel; Hájek, Tomáš; Prášil, Ilja Tom; Gaudinová, Alena; Štorchová, Helena; Ge, Eva; Werner, Tomáš; Schmülling, Thomas; Vanková, Radomíra

    2013-01-01

    Responses to drought, heat, and combined stress were compared in tobacco (Nicotiana tabacum L.) plants ectopically expressing the cytokinin oxidase/dehydrogenase CKX1 gene of Arabidopsis thaliana L. under the control of either the predominantly root-expressed WRKY6 promoter or the constitutive 35S promoter, and in the wild type. WRKY6:CKX1 plants exhibited high CKX activity in the roots under control conditions. Under stress, the activity of the WRKY6 promoter was down-regulated and the concomitantly reduced cytokinin degradation coincided with raised bioactive cytokinin levels during the early phase of the stress response, which might contribute to enhanced stress tolerance of this genotype. Constitutive expression of CKX1 resulted in an enlarged root system, a stunted, dwarf shoot phenotype, and a low basal level of expression of the dehydration marker gene ERD10B. The high drought tolerance of this genotype was associated with a relatively moderate drop in leaf water potential and a significant decrease in leaf osmotic potential. Basal expression of the proline biosynthetic gene P5CSA was raised. Both wild-type and WRKY6:CKX1 plants responded to heat stress by transient elevation of stomatal conductance, which correlated with an enhanced abscisic acid catabolism. 35S:CKX1 transgenic plants exhibited a small and delayed stomatal response. Nevertheless, they maintained a lower leaf temperature than the other genotypes. Heat shock applied to drought-stressed plants exaggerated the negative stress effects, probably due to the additional water loss caused by a transient stimulation of transpiration. The results indicate that modulation of cytokinin levels may positively affect plant responses to abiotic stress through a variety of physiological mechanisms. PMID:23669573

  4. Effects of heat acclimation on photosynthesis, antioxidant enzyme activities, and gene expression in orchardgrass under heat stress.

    PubMed

    Zhao, Xin Xin; Huang, Lin Kai; Zhang, Xin Quan; Li, Zhou; Peng, Yan

    2014-09-01

    The present study was designed to examine the effects of heat acclimation on enzymatic activity, transcription levels, the photosynthesis processes associated with thermostability in orchardgrass (Dactylis glomerata L.).The stomatal conductance (Gs), net photosynthetic rate (Pn), and transpiration rates (Tr) of both heat-acclimated (HA) and non-acclimated (NA) plants were drastically reduced during heat treatment [using a 5-day heat stress treatment (38/30 °C ‒ day/night) followed by a 3-day recovery under control conditions (25/20 °C ‒ day/night), in order to consolidate the second cycle was permitted]. Water use efficiency increased more steeply in the HA (4.9 times) versus the NA (1.8 times) plants, and the intercellular CO2 concentration decreased gently in NA (10.9%) and HA (25.3%) plants after 20 d of treatments compared to 0 days'. Furthermore, heat-acclimated plants were able to maintain significant activity levels of superoxide disumutase (SOD), catalase (CAT), guaiacol peroxidase (POD), and transcription levels of genes encoding these enzymes; in addition, HA plants displayed lower malondialdehyde content and lower electrolyte leakage than NA plants. These results suggest that maintenance of activity and transcription levels of antioxidant enzymes as well as photosynthesis are associated with variable thermostability in HA and NA plants. This likely occurs through cellular membrane stabilization and improvements in water use efficiency in the photosynthetic process during heat stress. The association between antioxidant enzyme activity and gene expression, both of which may vary with genetic variation in heat tolerance, is important to further understand the molecular mechanisms that contribute to heat tolerance.

  5. The welfare risks and impacts of heat stress on sheep shipped from Australia to the Middle East.

    PubMed

    Phillips, Clive

    2016-12-01

    This review considers the welfare issues confronting sheep due to heat stress on board ships undertaking long distance voyages. Sheep engage in behavioural and physiologic mechanisms to attempt to mitigate heat stress, but the evidence from Australian shipments from 2005 to 2014 is that mortality approximately doubles when sheep are transported from Australia in winter to the Middle East in summer. Much of this increase has been attributed to salmonellosis and inanition, but this may have been mistaken for, or exacerbated by, heat stress. The Australian government's estimate of the heat stress threshold of sheep is substantially higher than that observed under simulated live export conditions, which leads to an underestimate of the importance of heat stress in sheep on voyages where mortality is high. Improved temperature monitoring on ships and the creation of both a robust model of the impact of increased temperatures on sheep morbidity and mortality, and a heat stress scale for sheep would assist in understanding and addressing this welfare concern. The high risk to sheep exported from Australia during summer in the Middle East is sufficient to warrant consideration of restriction of trade during this period. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Comparative physiological and metabolomics analysis of wheat (Triticum aestivum L.) following post-anthesis heat stress

    PubMed Central

    Beecher, Chris; MacDonald, Greg

    2018-01-01

    Genetic improvement for stress tolerance requires a solid understanding of biochemical processes involved with different physiological mechanisms and their relationships with different traits. The objective of this study was to demonstrate genetic variability in altered metabolic levels in a panel of six wheat genotypes in contrasting temperature regimes, and to quantify the correlation between those metabolites with different traits. In a controlled environment experiment, heat stress (35:28 ± 0.08°C) was initiated 10 days after anthesis. Flag leaves were collected 10 days after heat treatment to employ an untargeted metabolomics profiling using LC-HRMS based technique called IROA. High temperature stress produced significant genetic variations for cell and thylakoid membrane damage, and yield related traits. 64 known metabolites accumulated 1.5 fold of higher or lower due to high temperature stress. In general, metabolites that increased the most under heat stress (L-tryptophan, pipecolate) showed negative correlation with different traits. Contrary, the metabolites that decreased the most under heat stress (drummondol, anthranilate) showed positive correlation with the traits. Aminoacyl-tRNA biosysnthesis and plant secondary metabolite biosynthesis pathways were most impacted by high temperature stress. The robustness of metabolic change and their relationship with phenotypes renders those metabolites as potential bio-markers for genetic improvement. PMID:29897945

  7. Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress.

    PubMed

    Tremblay, Pascale; Gori, Andrea; Maguer, Jean François; Hoogenboom, Mia; Ferrier-Pagès, Christine

    2016-12-05

    Symbiotic scleractinian corals are particularly affected by climate change stress and respond by bleaching (losing their symbiotic dinoflagellate partners). Recently, the energetic status of corals is emerging as a particularly important factor that determines the corals' vulnerability to heat stress. However, detailed studies of coral energetic that trace the flow of carbon from symbionts to host are still sparse. The present study thus investigates the impact of heat stress on the nutritional interactions between dinoflagellates and coral Stylophora pistillata maintained under auto- and heterotrophy. First, we demonstrated that the percentage of autotrophic carbon retained in the symbionts was significantly higher during heat stress than under non-stressful conditions, in both fed and unfed colonies. This higher photosynthate retention in symbionts translated into lower rates of carbon translocation, which required the coral host to use tissue energy reserves to sustain its respiratory needs. As calcification rates were positively correlated to carbon translocation, a significant decrease in skeletal growth was observed during heat stress. This study also provides evidence that heterotrophic nutrient supply enhances the re-establishment of normal nutritional exchanges between the two symbiotic partners in the coral S. pistillata, but it did not mitigate the effects of temperature stress on coral calcification.

  8. Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress

    NASA Astrophysics Data System (ADS)

    Tremblay, Pascale; Gori, Andrea; Maguer, Jean François; Hoogenboom, Mia; Ferrier-Pagès, Christine

    2016-12-01

    Symbiotic scleractinian corals are particularly affected by climate change stress and respond by bleaching (losing their symbiotic dinoflagellate partners). Recently, the energetic status of corals is emerging as a particularly important factor that determines the corals’ vulnerability to heat stress. However, detailed studies of coral energetic that trace the flow of carbon from symbionts to host are still sparse. The present study thus investigates the impact of heat stress on the nutritional interactions between dinoflagellates and coral Stylophora pistillata maintained under auto- and heterotrophy. First, we demonstrated that the percentage of autotrophic carbon retained in the symbionts was significantly higher during heat stress than under non-stressful conditions, in both fed and unfed colonies. This higher photosynthate retention in symbionts translated into lower rates of carbon translocation, which required the coral host to use tissue energy reserves to sustain its respiratory needs. As calcification rates were positively correlated to carbon translocation, a significant decrease in skeletal growth was observed during heat stress. This study also provides evidence that heterotrophic nutrient supply enhances the re-establishment of normal nutritional exchanges between the two symbiotic partners in the coral S. pistillata, but it did not mitigate the effects of temperature stress on coral calcification.

  9. [The effect of heat stress on the cytoskeleton and cell cycle of human umbilical vein endothelial cell in vitro].

    PubMed

    Pan, Zhiguo; Shao, Yu; Geng, Yan; Chen, Jinghe; Su, Lei

    2015-08-01

    To study the effect of heat stress on the cytoskeleton and cell cycle of human umbilical vein endothelial cell ( HUVEC ) in vitro. HUVEC was cultured in vitro in 5%CO(2) medium at 37 centigrade ( control group ) or 43 centigrade ( heat stress group ) for 1 hour. Coomassie brilliant blue R-250 staining was used to determine the effect of heat stress on the cytoskeleton. The cells in heat stress group were subsequently cultured at 37 centigradein 5%CO(2) medium after heat stress for 1 hour, and cell cycle of HUVEC was determined at 0, 6, 12, 18 and 24 hours with flow cytometry. Under light microscopy normal cytoskeleton was observed in control group, but thicker and shorter cytoskeleton was found after a rise of temperature, and stress fibers were found in heat stress group. The DNA content of HUVEC at all time points in G0/G1 stage was 38.07%-55.19% after heat stress. The DNA content in control group was 48.57%, and it was 54.06%, 55.19%, 48.23%, 38.07%, and 41.03% at 0, 6, 12, 18, 24 hours in G0/G1 stage in heat stress group. DNA content in S phase was 35.33%-48.18%. The DNA content in control group was 44.62%, and it was 35.33%, 39.50%, 42.50%, 48.18%, and 47.99% at 0, 6, 12, 18, 24 hours in S stage in heat stress group. DNA content in G2/M phase was 5.31%-13.75%. The DNA content in control group was 6.81, and it was 10.61%, 5.31%, 9.27%,13.75%, and 10.98% at 0, 6, 12, 18, 24 hours in G2/M stage in heat stress group. It was demonstrated that compared with control group, the DNA content in G0/G1 stage was significantly increased when the HUVEC were separated from heat stress within 6 hours, and it recovered at a similar level as control group at 12 hours. Heat stress can change the cytoskeleton of HUVEC, and cause stagnation at G0/G1 stage in cell cycle.

  10. Ascorbic Acid Alleviates Damage from Heat Stress in the Photosystem II of Tall Fescue in Both the Photochemical and Thermal Phases

    PubMed Central

    Chen, Ke; Zhang, Minna; Zhu, Huihui; Huang, Meiyu; Zhu, Qing; Tang, Diyong; Han, Xiaole; Li, Jinlin; Sun, Jie; Fu, Jinmin

    2017-01-01

    L-Ascorbate (Asc) plays important roles in plant development, hormone signaling, the cell cycle and cellular redox system, etc. The higher content of Asc in plant chloroplasts indicates its important role in the photosystem. The objective of this study was to study the roles of Asc in tall fescue leaves against heat stress. After a heat stress treatment, we observed a lower value of the maximum quantum yield for primary photochemistry (φPo), which reflects the inhibited activity of the photochemical phase of photosystem II (PSII). Moreover, we observed a higher value of efficiency of electron transfer from QB to photosystem I acceptors (δR0), which reflects elevated activity of the thermal phase of the photosystem of the tall fescue. The addition of Asc facilitate the behavior of the photochemical phase of the PSII by lowering the ROS content as well as that of the alternative electron donor to provide electron to the tyrosine residue of the D1 protein. Additionally, exogenous Asc reduces the activity of the thermal phase of the photosystem, which could contribute to the limitation of energy input into the photosystem in tall fescue against heat stress. Synthesis of the Asc increased under heat stress treatment. However, under heat stress this regulation does not occur at the transcription level and requires further study. PMID:28848577

  11. Thermometry, calorimetry, and mean body temperature during heat stress.

    PubMed

    Kenny, Glen P; Jay, Ollie

    2013-10-01

    Heat balance in humans is maintained at near constant levels through the adjustment of physiological mechanisms that attain a balance between the heat produced within the body and the heat lost to the environment. Heat balance is easily disturbed during changes in metabolic heat production due to physical activity and/or exposure to a warmer environment. Under such conditions, elevations of skin blood flow and sweating occur via a hypothalamic negative feedback loop to maintain an enhanced rate of dry and evaporative heat loss. Body heat storage and changes in core temperature are a direct result of a thermal imbalance between the rate of heat production and the rate of total heat dissipation to the surrounding environment. The derivation of the change in body heat content is of fundamental importance to the physiologist assessing the exposure of the human body to environmental conditions that result in thermal imbalance. It is generally accepted that the concurrent measurement of the total heat generated by the body and the total heat dissipated to the ambient environment is the most accurate means whereby the change in body heat content can be attained. However, in the absence of calorimetric methods, thermometry is often used to estimate the change in body heat content. This review examines heat exchange during challenges to heat balance associated with progressive elevations in environmental heat load and metabolic rate during exercise. Further, we evaluate the physiological responses associated with heat stress and discuss the thermal and nonthermal influences on the body's ability to dissipate heat from a heat balance perspective.

  12. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1983-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  13. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1977-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  14. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  15. Heat Stress Equation Development and Usage for Dryden Flight Research Center (DFRC)

    NASA Technical Reports Server (NTRS)

    Houtas, Franzeska; Teets, Edward H., Jr.

    2012-01-01

    Heat Stress Indices are equations that integrate some or all variables (e.g. temperature, relative humidity, wind speed), directly or indirectly, to produce a number for thermal stress on humans for a particular environment. There are a large number of equations that have been developed which range from simple equations that may ignore basic factors (e.g. wind effects on thermal loading, fixed contribution from solar heating) to complex equations that attempt to incorporate all variables. Each equation is evaluated for a particular use, as well as considering the ease of use and reliability of the results. The meteorology group at the Dryden Flight Research Center has utilized and enhanced the American College of Sports Medicine equation to represent the specific environment of the Mojave Desert. The Dryden WBGT Heat Stress equation has been vetted and implemented as an automated notification to the entire facility for the safety of all personnel and visitors.

  16. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum)

    PubMed Central

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress. PMID:26925085

  17. Effects of Heat Stress on Metabolite Accumulation and Composition, and Nutritional Properties of Durum Wheat Grain.

    PubMed

    de Leonardis, Anna Maria; Fragasso, Mariagiovanna; Beleggia, Romina; Ficco, Donatella Bianca Maria; de Vita, Pasquale; Mastrangelo, Anna Maria

    2015-12-19

    Durum wheat (Triticum turgidum (L.) subsp. turgidum (L.) convar. durum (Desf.)) is momentous for human nutrition, and environmental stresses can strongly limit the expression of yield potential and affect the qualitative characteristics of the grain. The aim of this study was to determine how heat stress (five days at 37 °C) applied five days after flowering affects the nutritional composition, antioxidant capacity and metabolic profile of the grain of two durum wheat genotypes: "Primadur", an elite cultivar with high yellow index, and "T1303", an anthocyanin-rich purple cultivar. Qualitative traits and metabolite evaluation (by gas chromatography linked to mass spectrometry) were carried out on immature (14 days after flowering) and mature seeds. The effects of heat stress were genotype-dependent. Although some metabolites (e.g., sucrose, glycerol) increased in response to heat stress in both genotypes, clear differences were observed. Following the heat stress, there was a general increase in most of the analyzed metabolites in "Primadur", with a general decrease in "T1303". Heat shock applied early during seed development produced changes that were observed in immature seeds and also long-term effects that changed the qualitative and quantitative parameters of the mature grain. Therefore, short heat-stress treatments can affect the nutritional value of grain of different genotypes of durum wheat in different ways.

  18. Effects of Heat Stress on Metabolite Accumulation and Composition, and Nutritional Properties of Durum Wheat Grain

    PubMed Central

    de Leonardis, Anna Maria; Fragasso, Mariagiovanna; Beleggia, Romina; Ficco, Donatella Bianca Maria; de Vita, Pasquale; Mastrangelo, Anna Maria

    2015-01-01

    Durum wheat (Triticum turgidum (L.) subsp. turgidum (L.) convar. durum (Desf.)) is momentous for human nutrition, and environmental stresses can strongly limit the expression of yield potential and affect the qualitative characteristics of the grain. The aim of this study was to determine how heat stress (five days at 37 °C) applied five days after flowering affects the nutritional composition, antioxidant capacity and metabolic profile of the grain of two durum wheat genotypes: “Primadur”, an elite cultivar with high yellow index, and “T1303”, an anthocyanin-rich purple cultivar. Qualitative traits and metabolite evaluation (by gas chromatography linked to mass spectrometry) were carried out on immature (14 days after flowering) and mature seeds. The effects of heat stress were genotype-dependent. Although some metabolites (e.g., sucrose, glycerol) increased in response to heat stress in both genotypes, clear differences were observed. Following the heat stress, there was a general increase in most of the analyzed metabolites in “Primadur”, with a general decrease in “T1303”. Heat shock applied early during seed development produced changes that were observed in immature seeds and also long-term effects that changed the qualitative and quantitative parameters of the mature grain. Therefore, short heat-stress treatments can affect the nutritional value of grain of different genotypes of durum wheat in different ways. PMID:26703576

  19. Early life thermal stress: Impact on future thermotolerance, stress response, behavior, and intestinal morphology in piglets exposed to a heat stress challenge during simulated transport

    USDA-ARS?s Scientific Manuscript database

    Study objectives were to evaluate the impact of early life thermal stress (ELTS) on thermoregulation, stress, and intestinal health of piglets subjected to a future heat stress (HS) challenge during simulated transport. Approximately 7 d after farrowing, 12 first parity gilts and their litters were ...

  20. Does the hair influence heat extraction from the head during head cooling under heat stress?

    PubMed Central

    SHIN, Sora; PARK, Joonhee; LEE, Joo-Young

    2015-01-01

    The purpose of this study was to investigate the effects of head hair on thermoregulatory responses when cooling the head under heat stress. Eight young males participated in six experimental conditions: normal hair (100–130 mm length) and cropped hair (5 mm length) with three water inlet temperatures of 10, 15, and 20°C. The head and neck of subjects were cooled by a liquid perfused hood while immersing legs at 42°C water for 60 min in a sitting position at the air temperature of 28°C with 30% RH. The results showed that heat removal from the normal hair condition was not significantly different from the cropped hair condition. Rectal and mean skin temperatures, and sweat rate showed no significant differences between the normal and cropped hair conditions. Heat extraction from the head was significantly greater in 10°C than in 15 or 20°C cooling (p<0.05) for both normal and cropped hair, whereas subjects preferred the 15°C more than the 10 or 20°C cooling regimen. These results indicate that the selection of effective cooling temperature is more crucial than the length of workers’ hair during head cooling under heat stress, and such selection should be under the consideration of subjective perceptions with physiological responses. PMID:26165361

  1. Genetic solutions to infertility caused by heat stress

    USDA-ARS?s Scientific Manuscript database

    Reproductive function in mammals is very susceptible to disruption by heat stress. In lactating dairy cows, for example, pregnancy rates per insemination can be as low as 10-15% in the summer vs. 25-40% in cool weather. Reduced fertility in females is caused by a combination of 1) the negative cons...

  2. ATF1 Modulates the Heat Shock Response by Regulating the Stress-Inducible Heat Shock Factor 1 Transcription Complex

    PubMed Central

    Takii, Ryosuke; Fujimoto, Mitsuaki; Tan, Ke; Takaki, Eiichi; Hayashida, Naoki; Nakato, Ryuichiro; Shirahige, Katsuhiko

    2014-01-01

    The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation. PMID:25312646

  3. Regulation of photochemical energy transfer accompanied by structural changes in thylakoid membranes of heat-stressed wheat.

    PubMed

    Marutani, Yoko; Yamauchi, Yasuo; Miyoshi, Akihito; Inoue, Kanako; Ikeda, Ken-ichi; Mizutani, Masaharu; Sugimoto, Yukihiro

    2014-12-11

    Photosystems of higher plants alleviate heat-induced damage in the presence of light under moderate stressed conditions; however, in the absence of light (i.e., in the dark), the same plants are damaged more easily. (Yamauchi and Kimura, 2011) We demonstrate that regulating photochemical energy transfer in heat-treated wheat at 40 °C with light contributed to heat tolerance of the photosystem. Chlorophyll fluorescence analysis using heat-stressed wheat seedlings in light showed increased non-photochemical quenching (NPQ) of chlorophyll fluorescence, which was due to thermal dissipation that was increased by state 1 to state 2 transition. Transmission electron microscopy revealed structural changes in thylakoid membranes, including unstacking of grana regions under heat stress in light. It was accompanied by the phosphorylation of thylakoid proteins such as D1 and D2 proteins and the light harvesting complex II proteins Lhcb1 and Lhcb2. These results suggest that heat stress at 40 °C in light induces state 1 to state 2 transition for the preferential excitation of photosystem I (PSI) by phosphorylating thylakoid proteins more strongly. Structural changes of thylakoid membrane also assist the remodeling of photosystems and regulation of energy distribution by transition toward state 2 probably contributes to plastoquione oxidation; thus, light-driven electrons flowing through PSI play a protective role against PSII damage under heat stress.

  4. Heart rate variability during exertional heat stress: effects of heat production and treatment.

    PubMed

    Flouris, Andreas D; Bravi, Andrea; Wright-Beatty, Heather E; Green, Geoffrey; Seely, Andrew J; Kenny, Glen P

    2014-04-01

    We assessed the efficacy of different treatments (i.e., treatment with ice water immersion vs. natural recovery) and the effect of exercise intensities (i.e., low vs. high) for restoring heart rate variability (HRV) indices during recovery from exertional heat stress (EHS). Nine healthy adults (26 ± 3 years, 174.2 ± 3.8 cm, 74.6 ± 4.3 kg, 17.9 ± 2.8 % body fat, 57 ± 2 mL·kg·(-1) min(-1) peak oxygen uptake) completed four EHS sessions incorporating either walking (4.0-4.5 km·h(-1), 2 % incline) or jogging (~7.0 km·h(-1), 2 % incline) on a treadmill in a hot-dry environment (40 °C, 20-30 % relative humidity) while wearing a non-permeable rain poncho for a slow or fast rate of rectal temperature (T re) increase, respectively. Upon reaching a T re of 39.5 °C, participants recovered until T re returned to 38 °C either passively or with whole-body immersion in 2 °C water. A comprehensive panel of 93 HRV measures were computed from the time, frequency, time-frequency, scale-invariant, entropy and non-linear domains. Exertional heat stress significantly affected 60/93 HRV measures analysed. Analyses during recovery demonstrated that there were no significant differences between HRV measures that had been influenced by EHS at the end of passive recovery vs. whole-body cooling treatment (p > 0.05). Nevertheless, the cooling treatment required statistically significantly less time to reduce T re (p < 0.001). While EHS has a marked effect on autonomic nervous system modulation and whole-body immersion in 2 °C water results in faster cooling, there were no observed differences in restoration of autonomic heart rate modulation as measured by HRV indices with whole-body cold-water immersion compared to passive recovery in thermoneutral conditions.

  5. Differential gene expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress.

    PubMed

    Wang, Shih-Han; Cheng, Chuen-Yu; Tang, Pin-Chi; Chen, Chih-Feng; Chen, Hsin-Hsin; Lee, Yen-Pai; Huang, San-Yuan

    2013-01-15

    Acute heat stress affects genes involved in spermatogenesis in mammals. However, there is apparently no elaborate research on the effects of acute heat stress on gene expression in avian testes. The purpose of this study was to investigate global gene expression in testes of the L2 strain of Taiwan country chicken after acute heat stress. Twelve roosters, 45 weeks old, were allocated into four groups, including control roosters kept at 25 °C, roosters subjected to 38 °C acute heat stress for 4 hours without recovery, with 2-hour recovery, and with 6-hour recovery, respectively. Testis samples were collected for RNA isolation and microarray analysis. Based on gene expression profiles, 169 genes were upregulated and 140 genes were downregulated after heat stress using a cutoff value of twofold or greater change. Based on gene ontology analysis, differentially expressed genes were mainly related to response to stress, transport, signal transduction, and metabolism. A functional network analysis displayed that heat shock protein genes and related chaperones were the major upregulated groups in chicken testes after acute heat stress. A quantitative real-time polymerase chain reaction analysis of mRNA expressions of HSP70, HSP90AA1, BAG3, SERPINB2, HSP25, DNAJA4, CYP3A80, CIRBP, and TAGLN confirmed the results of the microarray analysis. Because the HSP genes (HSP25, HSP70, and HSP90AA1) and the antiapoptotic BAG3 gene were dramatically altered in heat-stressed chicken testes, we concluded that these genes were important factors in the avian testes under acute heat stress. Whether these genes could be candidate genes for thermotolerance in roosters requires further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Differential proteomic analysis reveals sequential heat stress-responsive regulatory network in radish (Raphanus sativus L.) taproot.

    PubMed

    Wang, Ronghua; Mei, Yi; Xu, Liang; Zhu, Xianwen; Wang, Yan; Guo, Jun; Liu, Liwang

    2018-05-01

    Differential abundance protein species (DAPS) involved in reducing damage and enhancing thermotolerance in radish were firstly identified. Proteomic analysis and omics association analysis revealed a HS-responsive regulatory network in radish. Heat stress (HS) is a major destructive factor influencing radish production and supply in summer, for radish is a cool season vegetable crop being susceptible to high temperature. In this study, the proteome changes of radish taproots under 40 °C treatment at 0 h (Control), 12 h (Heat12) and 24 h (Heat24) were analyzed using iTRAQ (Isobaric Tag for Relative and Absolute Quantification) approach. In total, 2258 DAPS representing 1542 differentially accumulated uniprotein species which respond to HS were identified. A total of 604, 910 and 744 DAPS was detected in comparison of Control vs. Heat12, Control vs. Heat24, and Heat12 vs. Heat24, respectively. Gene ontology and pathway analysis showed that annexin, ubiquitin-conjugating enzyme, ATP synthase, heat shock protein (HSP) and other stress-related proteins were predominately enriched in signal transduction, stress and defense pathways, photosynthesis and energy metabolic pathways, working cooperatively to reduce stress-induced damage in radish. Based on iTRAQ combined with the transcriptomics analysis, a schematic model of a sequential HS-responsive regulatory network was proposed. The initial sensing of HS occurred at the plasma membrane, and then key components of stress signal transduction triggered heat-responsive genes in the plant protective metabolism to re-establish homeostasis and enhance thermotolerance. These results provide new insights into characteristics of HS-responsive DAPS and facilitate dissecting the molecular mechanisms underlying heat tolerance in radish and other root crops.

  7. Whole-body heating decreases skin vascular response to low orthostatic stress in the lower extremities.

    PubMed

    Yamazaki, Fumio; Nakayama, Yoshiro; Sone, Ryoko

    2006-04-01

    To elucidate the influence of heat stress on cutaneous vascular response in the lower extremities during orthostatic stress, a head-up tilt (HUT) test at angles of 15 degrees, 30 degrees, 45 degrees, and 60 degrees for 4 min each was conducted under normothermic control conditions followed by whole-body heat stress produced by a hot water-perfused suit in healthy volunteers. Skin blood flows (SkBF) in the forearm, thigh, and calf were monitored using laser-Doppler flowmetry throughout the experiment. Furthermore, to elucidate the effects of increased core and local skin temperatures on the local vascular response in calf skin under increasing orthostatic stress, the thigh was occluded at 20, 30, 50, 70, and 80 mmHg with a cuff in both the normothermic condition and the whole-body or local heating condition. Significant decreases in forearm SkBF during HUT were observed at an angle of 60 degrees during normothermia and at 30 degrees or more during heating. SkBF in the thigh and calf was decreased significantly by HUT at 15 degrees and above during normothermia, and there was no significant reduction of SkBF in these sites during HUT at the lower angles (15 degrees -45 degrees ) during whole-body heating. Significant decreases of calf SkBF were observed at cuff pressures of 20 mmHg and above during normothermia and of 30 mmHg and above during whole-body and local heating, respectively. These results suggest that SkBF in the lower extremities shows a marked reduction compared with the upper extremities during low orthostatic stress in normothermia, and the enhanced skin vasoconstrictor response in the lower extremities is diminished by both whole-body and local heat stress.

  8. Astragaloside-IV Alleviates Heat-Induced Inflammation by Inhibiting Endoplasmic Reticulum Stress and Autophagy.

    PubMed

    Dong, Zhiwei; Zhou, Jian; Zhang, Ying; Chen, Yajie; Yang, Zichen; Huang, Guangtao; Chen, Yu; Yuan, Zhiqiang; Peng, Yizhi; Cao, Tongtong

    2017-01-01

    Thermal injury is the main cause of pulmonary disease in stroke after burn and can be life threatening. Heat-induced inflammation is an important factor that triggers a series of induces pathological changes. However, this mechanism underlying heat-induced inflammation in thermal inhalation injury remains unclear. Studies have revealed that astragaloside-IV (AS-IV), a natural compound extracted from Astragalus membranaceus, has protective effects in inflammatory diseases. Here, we investigated whether the protective effects of AS-IV occur because of the suppression of heat-induced endoplasmic reticulum (ER) stress and excessive autophagy Methods: AS-IV was administered to Wistar rats after thermal inhalation injury and 16HBE140-cells were treated with AS-IV. TNF-α, IL-6, and IL-8 levels were determined by ELISA and real-time PCR. ER stress and autophagy were determined by western blot. Autophagic flux was measured by recording the fluorescence emission of the fusion protein mRFP-GFP-LC3 by dynamic live-cell imaging. AS-IV had protective effects against heat-induced reactive oxygen species production and attenuated ER stress. AS IV alleviated heat-induced excessive autophagy in vitro and in vivo. Excessive autophagy was attenuated by the PERK inhibitor GSK2656157 and eIF2α siRNA, suggesting that heat stress-induced autophagy can activate the PERK-eIF2α pathway. Beclin 1 and Atg5 siRNAs inhibited the upregulation of the inflammatory cytokines TNF-α, IL-6, and IL-8 after heat exposure. Thus, AS-IV may attenuate inflammatory responses by disrupting the crosstalk between autophagy and the PERK-eIF2α pathway and may be an ideal agent for treating inflammatory pulmonary diseases. © 2017 The Author(s). Published by S. Karger AG, Basel.

  9. Extracellular cell stress (heat shock) proteins-immune responses and disease: an overview.

    PubMed

    Pockley, A Graham; Henderson, Brian

    2018-01-19

    Extracellular cell stress proteins are highly conserved phylogenetically and have been shown to act as powerful signalling agonists and receptors for selected ligands in several different settings. They also act as immunostimulatory 'danger signals' for the innate and adaptive immune systems. Other studies have shown that cell stress proteins and the induction of immune reactivity to self-cell stress proteins can attenuate disease processes. Some proteins (e.g. Hsp60, Hsp70, gp96) exhibit both inflammatory and anti-inflammatory properties, depending on the context in which they encounter responding immune cells. The burgeoning literature reporting the presence of stress proteins in a range of biological fluids in healthy individuals/non-diseased settings, the association of extracellular stress protein levels with a plethora of clinical and pathological conditions and the selective expression of a membrane form of Hsp70 on cancer cells now supports the concept that extracellular cell stress proteins are involved in maintaining/regulating organismal homeostasis and in disease processes and phenotype. Cell stress proteins, therefore, form a biologically complex extracellular cell stress protein network having diverse biological, homeostatic and immunomodulatory properties, the understanding of which offers exciting opportunities for delivering novel approaches to predict, identify, diagnose, manage and treat disease.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'. © 2017 The Author(s).

  10. Effects of hydration level and heat stress on thermoregulatory responses, hematological and blood rheological properties in growing pigs.

    PubMed

    Waltz, Xavier; Baillot, Michelle; Connes, Philippe; Bocage, Bruno; Renaudeau, David

    2014-01-01

    Heat stress is one of the major limiting factors of production efficiency in the swine industry. The aims of the present study were 1) to observe if hemorheological and hematological parameters could be associated to physiological acclimation during the first days of heat stress exposure and 2) to determine if water restriction could modulate the effect of thermal heat stress on physiological, hematological and hemorheological parameters. Twelve Large White male pigs were divided into an ad libitum and a water restricted group. All pigs were submitted to one week at 24 °C (D-7 to D-1). Then, at D0, temperature was progressively increased until 32 °C and maintained during one week (D1 to D7). We performed daily measurements of water and feed intake. Physiological (i.e., skin temperature, rectal temperature, respiratory rate), hematological and hemorheological parameters were measured on D-6, D-5, D0, D1, D2 and D7. Water restriction had no effect on physiological, hematological and hemorheological parameters. The first days of heat stress caused an increase in the three physiological parameters followed by a reduction of these parameters suggesting a successful acclimation of pigs to heat stress. We showed an increase in hematocrit, red blood cell aggregation and red blood cell aggregation strength during heat stress. Further, we observed an important release of reticulocytes, an increase of red blood cell deformability and a reduction of feed intake and blood viscosity under heat stress. This study suggests that physiological acute adaptation to heat stress is accompanied by large hematological and hemorheological changes.

  11. Changes in protein expression in testes of L2 strain Taiwan country chickens in response to acute heat stress.

    PubMed

    Wang, Shih-Han; Cheng, Chuen-Yu; Chen, Chao-Jung; Chen, Hsin-Hsin; Tang, Pin-Chi; Chen, Chih-Feng; Lee, Yen-Pai; Huang, San-Yuan

    2014-07-01

    Heat stress causes a decrease of fertility in roosters. Yet, the way acute heat stress affects protein expression remains poorly understood. This study investigated differential protein expression in testes of the L2 strain of Taiwan country chickens following acute heat stress. Twelve 45-week-old roosters were allocated into four groups, including control roosters kept at 25 °C, roosters subjected to 38 °C acute heat stress for 4 hours without recovery, with 2 hours of recovery, and with 6 hours of recovery. Testis samples were collected for morphologic assay and protein analysis. Some of the differentially expressed proteins were validated by Western blot and immunohistochemistry. Abnormal and apoptotic spermatogenic cells were observed at 2 hours of recovery after acute heat stress, especially among the spermatocytes. Two-dimensional difference gel electrophoresis revealed that 119 protein spots were differentially expressed in chicken testes following heat stress, and peptide mass fingerprinting revealed that these spots contained 92 distinct proteins. In the heat-stressed samples, the heat shock proteins, chaperonin containing t-complex, and proteasome subunits were downregulated, and glutathione S-transferase, transgelin, and DJ-1 were upregulated. Our results demonstrate that acute heat stress impairs the processes of translation, protein folding, and protein degradation, and thus results in apoptosis and interferes with spermatogenesis. On the other hand, the increased expression of antioxidant enzymes, including glutathione S-transferase and DJ-1, may attenuate heat-induced damage. These findings may have implications for breeding chickens that can tolerate more extreme conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Temporal patterns of cardiac performance and genes encoding heat shock proteins and metabolic sensors of an intertidal limpet Cellana toreuma during sublethal heat stress.

    PubMed

    Zhang, Shu; Han, Guo-dong; Dong, Yun-wei

    2014-04-01

    Intertidal invertebrates develop effective physiological adaptations to cope with the rapidly changing thermal environment in the intertidal zone. In the present study, the temporal patterns of heart rate, protein carbonyl groups, and genes encoding heat shock proteins (hsp70 and hsp90) and metabolic sensors (ampkα, ampkβ and sirt1) were measured to study the effect of sublethal heat stress on the cardiac function, oxidative stress, heat shock response and cellular metabolism of an intertidal limpet Cellana toreuma. All the physiological parameters are sensitive to temperature and duration of heat stress. Spearman correlation analysis revealed that the correlations between heart rate and levels of heat shock proteins mRNA and metabolic sensors mRNA were statistically significant. These results further suggest that cardiac function plays crucial roles in cellular energy metabolism and heat shock responses. The significant increase of protein carbonyl groups at 34°C after 4h exposure indicated that the failure of cardiac function and the increase of anaerobic metabolism partly leads to the increase of protein carbonyl groups. Generally, the physiological responses to heat stress are sensitive to temperature and are energy-consumptive, as indicated by the upregulation of metabolic sensors mRNA. However, the upregulation of heat shock proteins and metabolic sensors at the post-transcriptional level and related functions need to be confirmed in further experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Immiscible fluid: Heat of fusion heat storage system

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Melsheimer, S. S.; Mullins, J. C.

    1980-01-01

    Both heat and mass transfer in direct contact aqueous crystallizing systems were studied as part of a program desig- ned to evaluate the feasibility of direct contact heat transfer in phase change storage using aqueous salt system. Major research areas, discussed include (1) crystal growth velocity study on selected salts; (2) selection of salt solutions; (3) selection of immiscible fluids; (4) studies of heat transfer and system geometry; and (5) system demonstration.

  14. Transient heat-stress compromises the resistance of wheat seedlings to Hessian fly (Diptera: Cecidomyiidae) infestation

    USDA-ARS?s Scientific Manuscript database

    Heat-stress exerts profound impact on resistance of plants to parasites. In this research, we investigated the impact of an acute, transient heat-stress on the resistance of the wheat line 'Molly', which contains the resistance gene H13, to an avirulent Hessian fly [Mayetiola destructor (Say)] popu...

  15. Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress.

    PubMed

    Singh, Roshan Kumar; Jaishankar, Jananee; Muthamilarasan, Mehanathan; Shweta, Shweta; Dangi, Anand; Prasad, Manoj

    2016-09-02

    Heat shock proteins (HSPs) perform significant roles in conferring abiotic stress tolerance to crop plants. In view of this, HSPs and their encoding genes were extensively characterized in several plant species; however, understanding their structure, organization, evolution and expression profiling in a naturally stress tolerant crop is necessary to delineate their precise roles in stress-responsive molecular machinery. In this context, the present study has been performed in C4 panicoid model, foxtail millet, which resulted in identification of 20, 9, 27, 20 and 37 genes belonging to SiHSP100, SiHSP90, SiHSP70, SiHSP60 and SisHSP families, respectively. Comprehensive in silico characterization of these genes followed by their expression profiling in response to dehydration, heat, salinity and cold stresses in foxtail millet cultivars contrastingly differing in stress tolerance revealed significant upregulation of several genes in tolerant cultivar. SisHSP-27 showed substantial higher expression in response to heat stress in tolerant cultivar, and its over-expression in yeast system conferred tolerance to several abiotic stresses. Methylation analysis of SiHSP genes suggested that, in susceptible cultivar, higher levels of methylation might be the reason for reduced expression of these genes during stress. Altogether, the study provides novel clues on the role of HSPs in conferring stress tolerance.

  16. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  17. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  18. Heat stress-induced neuroinflammation and aberration in monoamine levels in hypothalamus are associated with temperature dysregulation.

    PubMed

    Chauhan, Nishant Ranjan; Kapoor, Medha; Prabha Singh, Laxmi; Gupta, Rajinder Kumar; Chand Meena, Ramesh; Tulsawani, Rajkumar; Nanda, Sarita; Bala Singh, Shashi

    2017-09-01

    Heat Stress (HS) induces diverse pathophysiological changes, which include brain ischemia, oxidative stress and neuronal damage. The present study was undertaken with the objective to ascertain whether neuroinflammation in Hypothalamus (HTH) caused under HS affects monoamine levels and hence, its physiological role in thermoregulation. Rats were exposed to HS in a heat simulation environmental chamber (Ambient temperature, Ta=45±0.5°C and Relative Humidity, RH=30±10%) with real-time measurement of core temperature (Tc) and skin temperature (Ts). Animals were divided into two subgroups: Moderate HS (MHS) (Tc=40°C) and Severe HS (SHS)/Heat stroke (Tc=42°C). Rats with MHS showed an increase in Mean Arterial Pressure (MAP) and Heart Rate (HR) while fall in MAP and rise in HR was observed in rats with SHS. In addition, oxidative stress and an increase in pyknotic neurons were observed in HTH. High levels of Adrenocorticotropic-hormone (ACTH), Epinephrine (EPI), Norepinephrine (NE) and Dopamine (DA) in the systemic circulation and progressive increase in EPI and DA levels in HTH were recorded after the thermal insult. Moreover, a substantial increase in Glutamate (Glu) level was observed in HTH as well as in systemic circulation of heat stroke rats. We found a rise in NE whereas a fall in Serotonin (5-HT) level in HTH at MHS, without perturbing inflammatory mediators. However, rats with SHS exhibited significant elevations in NF-kB, IL-1β, COX2, GFAP and Iba1 protein expression in HTH. In conclusion, the data suggest that SHS induces neuroinflammation in HTH, which is associated with monoamines and Glu imbalances, leading to thermoregulatory disruption. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Heat stress redistributes blood flow in arteries of the brain during dynamic exercise.

    PubMed

    Sato, Kohei; Oue, Anna; Yoneya, Marina; Sadamoto, Tomoko; Ogoh, Shigehiko

    2016-04-01

    We hypothesized that heat stress would decrease anterior and posterior cerebral blood flow (CBF) during exercise, and the reduction in anterior CBF would be partly associated with large increase in extracranial blood flow (BF). Nine subjects performed 40 min of semirecumbent cycling at 60% of the peak oxygen uptake in hot (35°C; Heat) and thermoneutral environments (25°C; Control). We evaluated BF and conductance (COND) in the external carotid artery (ECA), internal carotid artery (ICA), and vertebral artery (VA) using ultrasonography. During the Heat condition, ICA and VA BF were significantly increased 10 min after the start of exercise (P < 0.05) and thereafter gradually decreased. ICA COND was significantly decreased (P < 0.05), whereas VA COND remained unchanged throughout Heat. Compared with the Control, either BF or COND of ICA and VA at the end of Heat tended to be lower, but not significantly. In contrast, ECA BF and COND at the end of Heat were both higher than levels in the Control condition (P < 0.01). During Heat, a reduction in ICA BF appears to be associated with a decline in end-tidal CO2 tension (r = 0.84), whereas VA BF appears to be affected by a change in cardiac output (r = 0.87). In addition, a change in ECA BF during Heat was negatively correlated with a change in ICA BF (r = -0.75). Heat stress resulted in modification of the vascular response of head and brain arteries to exercise, which resulted in an alteration in the distribution of cardiac output. Moreover, a hyperthermia-induced increase in extracranial BF might compromise anterior CBF during exercise with heat stress. Copyright © 2016 the American Physiological Society.

  20. Heat-Stress effects on the myosin heavy chain phenotype of rat soleus fibers during the early stages of regeneration.

    PubMed

    Oishi, Yasuharu; Roy, Roland R; Ogata, Tomonori; Ohira, Yoshinobu

    2015-12-01

    We investigated heat-stress effects on the adult myosin heavy chain (MyHC) profile of soleus muscle fibers at an early stage of regeneration. Regenerating fibers in adult rats were analyzed 2, 4, or 6 days after bupivacaine injection. Rats were heat stressed by immersion in water (42 ± 1°C) for 30 minutes 24 hours after bupivacaine injection and every other day thereafter. No adult MyHC isoforms were observed after 2 days, whereas some fibers expressed only fast MyHC after 4 days. Heat stress increased fast and slow MyHC in regenerating fibers after 6 days. Regenerating fibers expressing only slow MyHC were observed only in heat-stressed muscles. Bupivacaine injection increased the number of Pax7(+) and MyoD(+) satellite cells in regenerating fibers, more so in heat-stressed rats. The results indicate that heat stress accelerates fast-to-slow MyHC phenotype conversion in regenerating fibers via activation of satellite cells. © 2015 Wiley Periodicals, Inc.

  1. Prototype solar heating and combined heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    System analysis activities were directed toward refining the heating system parameters. Trade studies were performed to support hardware selections for all systems and for the heating only operational test sites in particular. The heating system qualification tests were supported by predicting qualification test component performance prior to conducting the test.

  2. Deubiquitylases USP5 and USP13 are recruited to and regulate heat-induced stress granules through their deubiquitylating activities.

    PubMed

    Xie, Xuan; Matsumoto, Shunsuke; Endo, Akinori; Fukushima, Toshiaki; Kawahara, Hiroyuki; Saeki, Yasushi; Komada, Masayuki

    2018-04-12

    Stress granules are transient cytoplasmic foci induced by various stresses that contain translation-stalled mRNAs and RNA-binding proteins. They are proposed to modulate mRNA translation and stress responses. Here, we show that the deubiquitylases USP5 and USP13 are recruited to heat-induced stress granules. Heat-induced stress granules also contained K48- and K63-linked ubiquitin chains. Depletion of USP5 or USP13 resulted in elevated ubiquitin chain levels and accelerated assembly of heat-induced stress granules, suggesting that these enzymes regulate the stability of the stress granules through their ubiquitin isopeptidase activity. Moreover, disassembly of heat-induced stress granules after returning the cells to normal temperatures was markedly repressed by individual depletion of USP5 or USP13. Finally, overexpression of a ubiquitin mutant lacking the C-terminal diglycine motif caused the accumulation of unanchored ubiquitin chains and the repression of the disassembly of heat-induced stress granules. As unanchored ubiquitin chains are preferred substrates for USP5, we suggest that USP5 regulates the assembly and disassembly of heat-induced stress granules by mediating the hydrolysis of unanchored ubiquitin chains while USP13 regulates stress granules through deubiquitylating protein-conjugated ubiquitin chains.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  3. RNA-Seq Reveals Extensive Transcriptional Response to Heat Stress in the Stony Coral Galaxea fascicularis

    PubMed Central

    Hou, Jing; Xu, Tao; Su, Dingjia; Wu, Ying; Cheng, Li; Wang, Jun; Zhou, Zhi; Wang, Yan

    2018-01-01

    Galaxea fascicularis, a stony coral belonging to family Oculinidae, is widely distributed in Red Sea, the Gulf of Aden and large areas of the Indo-Pacific oceans. So far there is a lack of gene expression knowledge concerning this massive coral. In the present study, G. fascicularis was subjected to heat stress at 32.0 ± 0.5°C in the lab, we found that the density of symbiotic zooxanthellae decreased significantly; meanwhile apparent bleaching and tissue lysing were observed at 10 h and 18 h after heat stress. The transcriptome responses were investigated in the stony coral G. fascicularis during heat bleaching using RNA-seq. A total of 42,028 coral genes were assembled from over 439 million reads. Gene expressions were compared at 10 and 18 h after heat stress. The significantly upregulated genes found in the Control_10h vs. Heat_10h comparison, presented mainly in GO terms related with DNA integration and unfolded protein response; and for the Control_18h vs. Heat_18h comparison, the GO terms include DNA integration. In addition, comparison between groups of Control_10h vs. Heat_10h and Control_18h vs. Heat_18h revealed that 125 genes were significantly upregulated in common between the two groups, whereas 21 genes were significantly downregulated in common, all these differentially expressed genes were found to be involved in stress response, DNA integration and unfolded protein response. Taken together, our results suggest that high temperature could activate the stress response at the early stage, and subsequently induce the bleaching and lysing through DNA integration and unfolded protein response, which are able to disrupt the balance of coral-zooxanthella symbiosis in the stony coral G. fascicularis. PMID:29487614

  4. Systemic Analysis of Heat Shock Response Induced by Heat Shock and a Proteasome Inhibitor MG132

    PubMed Central

    Kim, Hee-Jung; Joo, Hye Joon; Kim, Yung Hee; Ahn, Soyeon; Chang, Jun; Hwang, Kyu-Baek; Lee, Dong-Hee; Lee, Kong-Joo

    2011-01-01

    The molecular basis of heat shock response (HSR), a cellular defense mechanism against various stresses, is not well understood. In this, the first comprehensive analysis of gene expression changes in response to heat shock and MG132 (a proteasome inhibitor), both of which are known to induce heat shock proteins (Hsps), we compared the responses of normal mouse fibrosarcoma cell line, RIF- 1, and its thermotolerant variant cell line, TR-RIF-1 (TR), to the two stresses. The cellular responses we examined included Hsp expressions, cell viability, total protein synthesis patterns, and accumulation of poly-ubiquitinated proteins. We also compared the mRNA expression profiles and kinetics, in the two cell lines exposed to the two stresses, using microarray analysis. In contrast to RIF-1 cells, TR cells resist heat shock caused changes in cell viability and whole-cell protein synthesis. The patterns of total cellular protein synthesis and accumulation of poly-ubiquitinated proteins in the two cell lines were distinct, depending on the stress and the cell line. Microarray analysis revealed that the gene expression pattern of TR cells was faster and more transient than that of RIF-1 cells, in response to heat shock, while both RIF-1 and TR cells showed similar kinetics of mRNA expression in response to MG132. We also found that 2,208 genes were up-regulated more than 2 fold and could sort them into three groups: 1) genes regulated by both heat shock and MG132, (e.g. chaperones); 2) those regulated only by heat shock (e.g. DNA binding proteins including histones); and 3) those regulated only by MG132 (e.g. innate immunity and defense related molecules). This study shows that heat shock and MG132 share some aspects of HSR signaling pathway, at the same time, inducing distinct stress response signaling pathways, triggered by distinct abnormal proteins. PMID:21738571

  5. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  6. Absorption-heat-pump system

    DOEpatents

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  7. Expression profile of six stress-related genes and productive performances of fast and slow growing broiler strains reared under heat stress conditions

    PubMed Central

    Rimoldi, Simona; Lasagna, Emiliano; Sarti, Francesca Maria; Marelli, Stefano Paolo; Cozzi, Maria Cristina; Bernardini, Giovanni; Terova, Genciana

    2015-01-01

    High temperature is one of the prominent environmental factors causing economic losses to the poultry industry as it negatively affects growth and production performance in broiler chickens. We used One Step TaqMan real time RT-PCR (reverse transcription polymerase chain reaction) technology to study the effects of chronic heat stress on the expression of genes codifying for the antioxidative enzymes superoxide dismutase (SOD), and catalase (CAT), as well as for heat shock protein (HSP) 70, HSP90, glucocorticoid receptor (NR3C1), and caspase 6 (CASP6) in the liver of two different broiler genetic strains: Red JA Cou Nu Hubbard (CN) and Ross 508 Aviagen (RO). CN is a naked neck slow growing broiler intended for the free range and/or organic markets, whereas RO is selected for fast growing. We also analysed the effect of chronic heat stress on productive performances, and plasma corticosterone levels as well as the association between transcriptomic response and specific SNPs (single nucleotide polymorphisms) in each genetic strain of broiler chickens. RO and CN broilers, 4 weeks of age, were maintained for 4 weeks at either 34 °C or 22 °C. The results demonstrated that there was a genotype and a temperature main effect on the broilers' growth from the 4th to the 8th week of age, but the interaction effect between genotype and temperature resulted not statistically significant. By considering the genotype effect, fast growing broilers (RO) grew more than the slow growing ones (CN), whereas by considering the temperature effect, broilers in unheated conditions grew more than the heat stressed ones. Corticosterone levels increased significantly in the blood of heat stressed broilers, due to the activation of the HPA (hypothalamic–pituitary–adrenocortical axis). Carcass yield at slaughter was of similar values in the 4 cohorts (genotype/temperature combinations or treatment groups), ranging from 86.5 to 88.6%, whereas carcass weight was negatively influenced

  8. Predicting heat stress index in Sasso hens using automatic linear modeling and artificial neural network

    NASA Astrophysics Data System (ADS)

    Yakubu, A.; Oluremi, O. I. A.; Ekpo, E. I.

    2018-03-01

    There is an increasing use of robust analytical algorithms in the prediction of heat stress. The present investigation therefore, was carried out to forecast heat stress index (HSI) in Sasso laying hens. One hundred and sixty seven records on the thermo-physiological parameters of the birds were utilized. They were reared on deep litter and battery cage systems. Data were collected when the birds were 42- and 52-week of age. The independent variables fitted were housing system, age of birds, rectal temperature (RT), pulse rate (PR), and respiratory rate (RR). The response variable was HSI. Data were analyzed using automatic linear modeling (ALM) and artificial neural network (ANN) procedures. The ALM model building method involved Forward Stepwise using the F Statistic criterion. As regards ANN, multilayer perceptron (MLP) with back-propagation network was used. The ANN network was trained with 90% of the data set while 10% were dedicated to testing for model validation. RR and PR were the two parameters of utmost importance in the prediction of HSI. However, the fractional importance of RR was higher than that of PR in both ALM (0.947 versus 0.053) and ANN (0.677 versus 0.274) models. The two models also predicted HSI effectively with high degree of accuracy [r = 0.980, R 2 = 0.961, adjusted R 2 = 0.961, and RMSE = 0.05168 (ALM); r = 0.983, R 2 = 0.966; adjusted R 2 = 0.966, and RMSE = 0.04806 (ANN)]. The present information may be exploited in the development of a heat stress chart based largely on RR. This may aid detection of thermal discomfort in a poultry house under tropical and subtropical conditions.

  9. The effects of heat stress on morphological properties and intracellular signaling of denervated and intact soleus muscles in rats.

    PubMed

    Ohira, Takashi; Higashibata, Akira; Seki, Masaya; Kurata, Yoichi; Kimura, Yayoi; Hirano, Hisashi; Kusakari, Yoichiro; Minamisawa, Susumu; Kudo, Takashi; Takahashi, Satoru; Ohira, Yoshinobu; Furukawa, Satoshi

    2017-08-01

    The effects of heat stress on the morphological properties and intracellular signaling of innervated and denervated soleus muscles were investigated. Heat stress was applied to rats by immersing their hindlimbs in a warm water bath (42°C, 30 min/day, every other day following unilateral denervation) under anesthesia. During 14 days of experimental period, heat stress for a total of seven times promoted growth-related hypertrophy in sham-operated muscles and attenuated atrophy in denervated muscles. In denervated muscles, the transcription of ubiquitin ligase, atrogin-1/muscle atrophy F-box ( Atrogin-1 ), and muscle RING-finger protein-1 ( MuRF-1 ), genes was upregulated and ubiquitination of proteins was also increased. Intermittent heat stress inhibited the upregulation of Atrogin-1 , but not MuRF-1 transcription. And the denervation-caused reduction in phosphorylated protein kinase B (Akt), 70-kDa heat-shock protein (HSP70), and peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1 α ), which are negative regulators of Atrogin-1 and MuRF-1 transcription, was mitigated. In sham-operated muscles, repeated application of heat stress did not affect Atrogin-1 and MuRF-1 transcription, but increased the level of phosphorylated Akt and HSP70, but not PGC-1 α Furthermore, the phosphorylation of Akt and ribosomal protein S6, which is known to stimulate protein synthesis, was increased immediately after a single heat stress particularly in the sham-operated muscles. The effect of a heat stress was suppressed in denervated muscles. These results indicated that the beneficial effects of heat stress on the morphological properties of muscles were brought regardless of innervation. However, the responses of intracellular signaling to heat stress were distinct between the innervated and denervated muscles. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological

  10. Independent and interactive effects of incremental heat strain, orthostatic stress, and mild hypohydration on cerebral perfusion.

    PubMed

    Lucas, R A I; Wilson, L C; Ainslie, P N; Fan, J L; Thomas, K N; Cotter, J D

    2018-03-01

    The purpose of this study was to identify the dose-dependent effects of heat strain and orthostasis [via lower body negative pressure (LBNP)], with and without mild hypohydration, on systemic function and cerebral perfusion. Eleven men (means ± SD: 27 ± 7 y; body mass 77 ± 6 kg), resting supine in a water-perfused suit, underwent progressive passive heating [0.5°C increments in core temperature (T c ; esophageal to +2.0°C)] while euhydrated (EUH) or hypohydrated (HYPO; 1.5-2% body mass deficit). At each thermal state, mean cerebral artery blood velocity (MCAv mean ; transcranial Doppler), partial pressure of end-tidal carbon dioxide ([Formula: see text]), heart rate (HR) and mean arterial blood pressure (MAP; photoplethysmography) were measured continuously during LBNP (0, -15, -30, and -45 mmHg). Four subjects became intolerant before +2.0°C T c , unrelated to hydration status. Without LBNP, decreases in [Formula: see text] accounted fully for reductions in MCAv mean across all T c . With LBNP at heat tolerance (+1.5 or +2.0°C), [Formula: see text] accounted for 69 ± 25% of the change in MCAv mean . The HYPO condition did not affect MCAv mean or any cardiovascular variables during combined LBNP and passive heat stress (all P > 0.13). These findings indicate that hypocapnia accounted fully for the reduction in MCAv mean when passively heat stressed in the absence of LBNP and for two- thirds of the reduction when at heat tolerance combined with LBNP. Furthermore, when elevations in T c are matched, mild hypohydration does not influence cerebrovascular or cardiovascular responses to LBNP, even when stressed by a combination of hyperthermia and LBNP.

  11. Fluidized bed heat treating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ripley, Edward B; Pfennigwerth, Glenn L

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulatedmore » through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.« less

  12. Application of a Novel Liquid Nitrogen Control Technique for Heat Stress and Fire Prevention in Underground Mines.

    PubMed

    Shi, Bobo; Ma, Lingjun; Dong, Wei; Zhou, Fubao

    2015-01-01

    With the continually increasing mining depths, heat stress and spontaneous combustion hazards in high-temperature mines are becoming increasingly severe. Mining production risks from natural hazards and exposures to hot and humid environments can cause occupational diseases and other work-related injuries. Liquid nitrogen injection, an engineering control developed to reduce heat stress and spontaneous combustion hazards in mines, was successfully utilized for environmental cooling and combustion prevention in an underground mining site named "Y120205 Working Face" (Y120205 mine) of Yangchangwan colliery. Both localized humidities and temperatures within the Y120205 mine decreased significantly with liquid nitrogen injection. The maximum percentage drop in temperature and humidity of the Y120205 mine were 21.9% and 10.8%, respectively. The liquid nitrogen injection system has the advantages of economical price, process simplicity, energy savings and emission reduction. The optimized heat exchanger used in the liquid nitrogen injection process achieved superior air-cooling results, resulting in considerable economic benefits.

  13. Improved solar heating systems

    DOEpatents

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  14. Numerical Simulation for the Unsteady MHD Flow and Heat Transfer of Couple Stress Fluid over a Rotating Disk

    PubMed Central

    2014-01-01

    The present work is devoted to study the numerical simulation for unsteady MHD flow and heat transfer of a couple stress fluid over a rotating disk. A similarity transformation is employed to reduce the time dependent system of nonlinear partial differential equations (PDEs) to ordinary differential equations (ODEs). The Runge-Kutta method and shooting technique are employed for finding the numerical solution of the governing system. The influences of governing parameters viz. unsteadiness parameter, couple stress and various physical parameters on velocity, temperature and pressure profiles are analyzed graphically and discussed in detail. PMID:24835274

  15. Seasonal heat stress: Clinical implications and hormone treatments for the fertility of dairy cows.

    PubMed

    De Rensis, F; Garcia-Ispierto, I; López-Gatius, F

    2015-09-15

    Heat stress has consequences on both the physiology and reproductive performance of cows, but the most dramatic effect for dairy producers is the decrease produced in fertility. The effects of heat stress on fertility include an increased number of days open, reduced conception rate, and larger number of cows suffering different types of anestrus. Once becomes pregnant, heat stress affects also the reproductive success of the cow through its direct effects on the ovary, uterus, gametes, embryo, and early fetus. This article reviews current knowledge of the effects of heat stress on fertility in dairy cows and the hormonal strategies used to mitigate these effects at the farm level. Administration of GnRH at the moment of artificial insemination can improve the conception rate. Breeding synchronization protocols for fixed-time insemination may reduce the calving conception interval and the number of services per conception. Progesterone-based protocols seem resolve better the reproductive disorders related to a hot environment (anestrus) than GnRH-based protocols. The use of combinations of GnRH, eCG, and hCG in progesterone-based protocols can improve results. Progesterone supplementation during the late embryonic and/or early fetal period would be useful in curtailing pregnancy losses, mainly in single pregnancies, whereas a more positive effect of treatment with GnRH than progesterone has been found in twin pregnancies. Melatonin therapy is emerging as a promising strategy to improve the natural reproductive performance of cows suffering conditions of heat stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Internal stress-induced melting below melting temperature at high-rate laser heating

    NASA Astrophysics Data System (ADS)

    Hwang, Yong Seok; Levitas, Valery I.

    2014-06-01

    In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamic equilibrium temperatures for the heating rate Q ≤1.51×1010K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 1011 K/s and 936.9 K for Q = 1.46 × 1012 K/s.

  17. A Systems Biology Approach to Heat Stress, Heat Injury and Heat Stroke

    DTIC Science & Technology

    2015-01-01

    Winkler et al., “Computational lipidology: predicting lipoprotein density profiles in human blood plasma,” PLoS Comput Biol, 4(5), e1000079 (2008). [74...other organs at high risk for injury, such as liver and kidney [24, 25]. 2.1 Utility of the computational model Molecular indicators of heat...induced heart injury had a large shift in relative abundance of proteins with high supersaturation scores, suggesting increased abundance of

  18. Simulating canopy temperature for modelling heat stress in cereals

    USDA-ARS?s Scientific Manuscript database

    Crop models must be improved to account for the large effects of heat stress effects on crop yields. To date, most approaches in crop models use air temperature despite evidence that crop canopy temperature better explains yield reductions associated with high temperature events. This study presents...

  19. Evaluating Effects of Heat Stress on Cognitive Function among Workers in a Hot Industry.

    PubMed

    Mazloumi, Adel; Golbabaei, Farideh; Mahmood Khani, Somayeh; Kazemi, Zeinab; Hosseini, Mostafa; Abbasinia, Marzieh; Farhang Dehghan, Somayeh

    2014-01-01

    Heat stress, as one of the most common occupational health problems, can impair operators' cognitive processes. The aim of this study was to evaluate the impact of thermal stress on cognitive function among workers in a hot industry. In this cross-sectional study conducted in Malibel Saipa Company in 2013, workers were assigned into two groups: one group were exposed to heat stress (n=35), working in casting unit and the other group working in machining unit (n=35) with a normal air conditioning. Wet Bulb Globe Temperature was measured at three heights of ankle, abdomen, and head. In order to evaluate the effects of heat stress on attention and reaction time, Stroop tests 1, 2, and 3 were conducted before starting the work and during the work. A significant positive correlation was observed between WBGT and test duration (P=0.01) and reaction time of Stroop test 3 (P=0.047), and between number of errors in Stroop tests 1, 2, and 3, during the work (P= 0.001). Moreover, Stroop test 3 showed a significant higher score for both test duration and reaction time of workers in case group. RESULTS of the present study, conducted in a real work environment, confirmed the impairment of cognitive functions, including selective attention and reaction time, under heat stress conditions.

  20. Radiant heat loss, an unexploited path for heat stress reduction in shaded cattle.

    PubMed

    Berman, A; Horovitz, T

    2012-06-01

    Reducing thermal radiation on shaded animals reduces heat stress independently of other means of stress relief. Radiant heat exchange was estimated as a function of climate, shade structure, and animal density. Body surface portion exposed to radiant sources in shaded environments was determined by geometrical relations to determine angles of view of radiation sources (roof underside, sky, sun-exposed ground, shaded ground) on the animal's surface. The relative representation of environment radiation sources on the body surface was determined. Animal thermal radiation balance was derived from radiant heat gained from radiation sources (including surrounding animals) and that lost from the animal surface. The animal environment was assumed to have different shade dimensions and temperatures. These were summed to the radiant heat balance of the cow. The data formed served to estimate the effect of changes in intensity of radiation sources, roof and shaded surface dimensions, and animal density on radiant heat balance (Rbal) of cattle. Roof height effect was expressed by effect of roof temperature on Rbal. Roof underside temperature (35 to 75°C) effect on Rbal was reduced by roof height. If roof height were 4m, an increase in its underside temperature from 35 to 75°C would increase mean Rbal from -63 to -2 W·m⁻², whereas if roof height were 10 m, Rbal would only increase from -99 to -88 W·m⁻². A hot ground temperature increase from 35 to 65°C reduced mean Rbal heat loss from -45 to 3 W·m⁻². Increasing the surface of the shaded area had only a minor effect on Rbal and on the effect of hot ground on Rbal. Increasing shade roof height reduced the effect of roof temperature on Rbal to minor levels when height was > 8m. Increasing the roof height from 4 to 10 m decreased Rbal from -32 to -94 W·m⁻². Increasing indirect radiation from 100 to 500 W·m⁻² was associated with an increase in Rbal from -135 to +23 W·m⁻². Their combined effects were lower

  1. Effects of chestnut tannins on the meat quality, welfare, and antioxidant status of heat-stressed lambs.

    PubMed

    Liu, Huawei; Li, Ke; Mingbin, Lv; Zhao, Jinshan; Xiong, Benhai

    2016-06-01

    A study was conducted to evaluate the effects of chestnut tannins (CT) on the meat quality, welfare and antioxidant status of heat-stressed lambs. Lambs in one group were raised at 20°C and fed a basal diet (N), and three other groups (32°C) were fed a basal diet with 0 (CT0), 5 (CT5), and 10 g (CT10) of CT/kg. Addition of CT increased the b* and L* values of meat and superoxide dismutase and glutathione peroxidase activity in the serum and liver of heat-stressed lambs. The malondialdehyde concentration in meat, serum, and liver of heat-stressed lambs was decreased by dietary CT supplementation. Lambs in the CT0 group had higher cortisol, T3, and T4 levels, creatine kinase activity, white blood cell count, neutrophil count, neutrophil:lymphocyte ratio and a lower lymphocyte count than that in the N and CT10 groups. In conclusion, the addition of CT improved meat quality, certain stress parameters, and the antioxidant status of heat-stressed lambs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Cold and Heat Stress Diversely Alter Both Cauliflower Respiration and Distinct Mitochondrial Proteins Including OXPHOS Components and Matrix Enzymes

    PubMed Central

    Rurek, Michał; Czołpińska, Magdalena; Pawłowski, Tomasz Andrzej; Krzesiński, Włodzimierz; Spiżewski, Tomasz

    2018-01-01

    Complex proteomic and physiological approaches for studying cold and heat stress responses in plant mitochondria are still limited. Variations in the mitochondrial proteome of cauliflower (Brassica oleracea var. botrytis) curds after cold and heat and after stress recovery were assayed by two-dimensional polyacrylamide gel electrophoresis (2D PAGE) in relation to mRNA abundance and respiratory parameters. Quantitative analysis of the mitochondrial proteome revealed numerous stress-affected protein spots. In cold, major downregulations in the level of photorespiratory enzymes, porine isoforms, oxidative phosphorylation (OXPHOS) and some low-abundant proteins were observed. In contrast, carbohydrate metabolism enzymes, heat-shock proteins, translation, protein import, and OXPHOS components were involved in heat response and recovery. Several transcriptomic and metabolic regulation mechanisms are also suggested. Cauliflower plants appeared less susceptible to heat; closed stomata in heat stress resulted in moderate photosynthetic, but only minor respiratory impairments, however, photosystem II performance was unaffected. Decreased photorespiration corresponded with proteomic alterations in cold. Our results show that cold and heat stress not only operate in diverse modes (exemplified by cold-specific accumulation of some heat shock proteins), but exert some associations at molecular and physiological levels. This implies a more complex model of action of investigated stresses on plant mitochondria. PMID:29547512

  3. Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin

    PubMed Central

    2014-01-01

    Background Temperature extremes represent an important limiting factor to plant growth and productivity. The present study evaluated the effect of hydroponic pretreatment of strawberry (Fragaria x ananassa cv. ‘Camarosa’) roots with an H2S donor, sodium hydrosulfide (NaHS; 100 μM for 48 h), on the response of plants to acute heat shock treatment (42°C, 8 h). Results Heat stress-induced phenotypic damage was ameliorated in NaHS-pretreated plants, which managed to preserve higher maximum photochemical PSII quantum yields than stressed plants. Apparent mitigating effects of H2S pretreatment were registered regarding oxidative and nitrosative secondary stress, since malondialdehyde (MDA), H2O2 and nitric oxide (NO) were quantified in lower amounts than in heat-stressed plants. In addition, NaHS pretreatment preserved ascorbate/glutathione homeostasis, as evidenced by lower ASC and GSH pool redox disturbances and enhanced transcription of ASC (GDH) and GSH biosynthetic enzymes (GS, GCS), 8 h after heat stress imposition. Furthermore, NaHS root pretreatment resulted in induction of gene expression levels of an array of protective molecules, such as enzymatic antioxidants (cAPX, CAT, MnSOD, GR), heat shock proteins (HSP70, HSP80, HSP90) and aquaporins (PIP). Conclusion Overall, we propose that H2S root pretreatment activates a coordinated network of heat shock defense-related pathways at a transcriptional level and systemically protects strawberry plants from heat shock-induced damage. PMID:24499299

  4. Heat stress decreases expression of the cytokines, avian β-defensins 4 and 6 and Toll-like receptor 2 in broiler chickens infected with Salmonella Enteritidis.

    PubMed

    Quinteiro-Filho, W M; Calefi, A S; Cruz, D S G; Aloia, T P A; Zager, A; Astolfi-Ferreira, C S; Piantino Ferreira, J A; Sharif, S; Palermo-Neto, J

    2017-04-01

    A high ambient temperature is a highly relevant stressor in poultry production. Heat stress (HS) has been reported to reduce animal welfare, performance indices and increase Salmonella susceptibility. Salmonella spp. are major zoonotic pathogen that cause over 1 billion of human infections worldwide annually. Therefore, the current study was designed to analyze the effect of heat stress on Salmonella infection in chickens through modulation of the immune responses. Salmonella Enteritidis was inoculated via gavage at one day of age (10 6 cfu/mL). Heat stress 31±1°C was applied from 35 to 41 days of age. Broiler chickens were divided into the following groups of 12 chickens: control (C); heat stress (HS31°C); S. Enteritidis positive control (PC); and S. Enteritidis+heat stress (PHS31°C). We observed that heat stress increased corticosterone serum levels. Concomitantly heat stress decreased (1) the IgA and IFN-γ plasmatic levels; (2) the mRNA expression of IL-6, IL-12 in spleen and IL-1β, IL-10, TGF-β in cecal tonsils; (3) the mRNA expression of AvBD4 and AvBD6 in cecal tonsils; and (4) the mRNA expression of TLR2 in spleen and cecal tonsils of chickens infected with S. Enteritidis (PHS31°C group). Heat stress also increased Salmonella colonization in the crop and caecum as well as Salmonella invasion to the spleen, liver and bone marrow, showing a deficiency in the control of S. Enteritidis induced infection. Together, the present data suggested that heat stress activated hypothalamus-pituitary-adrenal (HPA) axis, as observed by the increase in the corticosterone levels, which in turn presumably decreases the immune system activity, leading to an impairment of the intestinal mucosal barrier and increasing chicken susceptibility to the invasion of different organs by S. Enteritidis . Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Induction Heating Systems

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Induction heating technology, a magnetic non-deforming process, was developed by Langley researchers to join plastic and composite components in space. Under NASA license, Inductron Corporation uses the process to produce induction heating systems and equipment for numerous applications. The Torobonder, a portable system, comes with a number of interchangeable heads for aircraft repair. Other developments are the E Heating Head, the Toroid Joining Gun, and the Torobrazer. These products perform bonding applications more quickly, safely and efficiently than previous methods.

  6. Heat transfer system

    DOEpatents

    McGuire, Joseph C.

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  7. Heterologous expression of three Camellia sinensis small heat shock protein genes confers temperature stress tolerance in yeast and Arabidopsis thaliana.

    PubMed

    Wang, Mingle; Zou, Zhongwei; Li, Qinghui; Xin, Huahong; Zhu, Xujun; Chen, Xuan; Li, Xinghui

    2017-07-01

    CsHSP17.7, CsHSP18.1, and CsHSP21.8 expressions are induced by heat and cold stresses, and CsHSP overexpression confers tolerance to heat and cold stresses in transgenic Pichia pastoris and Arabidopsis thaliana. Small heat shock proteins (sHSPs) are crucial for protecting plants against biotic and abiotic stresses, especially heat stress. However, knowledge concerning the functions of Camellia sinensis sHSP in heat and cold stresses remains poorly understood. In this study, three C. sinensis sHSP genes (i.e., CsHSP17.7, CsHSP18.1, and CsHSP21.8) were isolated and characterized using suppression subtractive hybridization (SSH) technology. The CsHSPs expression levels in C. sinensis leaves were significantly up-regulated by heat and cold stresses. Phylogenetic analyses revealed that CsHSP17.7, CsHSP18.1, and CsHSP21.8 belong to sHSP Classes I, II, and IV, respectively. Heterologous expression of the three CsHSP genes in Pichia pastoris cells enhanced heat and cold stress tolerance. When exposed to heat and cold treatments, transgenic Arabidopsis thaliana plants overexpressing CsHSP17.7, CsHSP18.1, and CsHSP21.8 had lower malondialdehyde contents, ion leakage, higher proline contents, and transcript levels of stress-related genes (e.g., AtPOD, AtAPX1, AtP5CS2, and AtProT1) compared with the control line. In addition, improved seed germination vigor was also observed in the CsHSP-overexpressing seeds under heat stress. Taken together, our results suggest that the three identified CsHSP genes play key roles in heat and cold tolerance.

  8. Local thermodynamic equilibrium for globally disequilibrium open systems under stress

    NASA Astrophysics Data System (ADS)

    Podladchikov, Yury

    2016-04-01

    Predictive modeling of far and near equilibrium processes is essential for understanding of patterns formation and for quantifying of natural processes that are never in global equilibrium. Methods of both equilibrium and non-equilibrium thermodynamics are needed and have to be combined. For example, predicting temperature evolution due to heat conduction requires simultaneous use of equilibrium relationship between internal energy and temperature via heat capacity (the caloric equation of state) and disequilibrium relationship between heat flux and temperature gradient. Similarly, modeling of rocks deforming under stress, reactions in system open for the porous fluid flow, or kinetic overstepping of the equilibrium reaction boundary necessarily needs both equilibrium and disequilibrium material properties measured under fundamentally different laboratory conditions. Classical irreversible thermodynamics (CIT) is the well-developed discipline providing the working recipes for the combined application of mutually exclusive experimental data such as density and chemical potential at rest under constant pressure and temperature and viscosity of the flow under stress. Several examples will be presented.

  9. Historical Temperature Variability Affects Coral Response to Heat Stress

    PubMed Central

    Carilli, Jessica; Donner, Simon D.; Hartmann, Aaron C.

    2012-01-01

    Coral bleaching is the breakdown of symbiosis between coral animal hosts and their dinoflagellate algae symbionts in response to environmental stress. On large spatial scales, heat stress is the most common factor causing bleaching, which is predicted to increase in frequency and severity as the climate warms. There is evidence that the temperature threshold at which bleaching occurs varies with local environmental conditions and background climate conditions. We investigated the influence of past temperature variability on coral susceptibility to bleaching, using the natural gradient in peak temperature variability in the Gilbert Islands, Republic of Kiribati. The spatial pattern in skeletal growth rates and partial mortality scars found in massive Porites sp. across the central and northern islands suggests that corals subject to larger year-to-year fluctuations in maximum ocean temperature were more resistant to a 2004 warm-water event. In addition, a subsequent 2009 warm event had a disproportionately larger impact on those corals from the island with lower historical heat stress, as indicated by lower concentrations of triacylglycerol, a lipid utilized for energy, as well as thinner tissue in those corals. This study indicates that coral reefs in locations with more frequent warm events may be more resilient to future warming, and protection measures may be more effective in these regions. PMID:22479626

  10. Impact of heat stress on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    NASA Astrophysics Data System (ADS)

    Kleist, E.; Mentel, T. F.; Andres, S.; Bohne, A.; Folkers, A.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Wildt, J.

    2012-07-01

    Changes in the biogenic volatile organic compound (BVOC) emissions from European beech, Palestine oak, Scots pine, and Norway spruce exposed to heat stress were measured in a laboratory setup. In general, heat stress decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. Decreasing emission strength with heat stress was independent of the tree species and whether the de novo emissions being constitutive or induced by biotic stress. In contrast, heat stress induced emissions of green leaf volatiles. It also amplified the release of monoterpenes stored in resin ducts of conifers probably due to heat-induced damage of these resin ducts. The increased release of monoterpenes could be strong and long lasting. But, despite of such strong monoterpene emission pulses, the net effect of heat stress on BVOC emissions from conifers can be an overall decrease. In particular during insect attack on conifers the plants showed de novo emissions of sesquiterpenes and phenolic BVOC which exceeded constitutive monoterpene emissions from pools. The heat stress induced decrease of these de novo emissions was larger than the increased release caused by damage of resin ducts. We project that global change induced heat waves may cause increased BVOC emissions only in cases where the respective areas are predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOC. Otherwise the overall effect of heat stress will be a decrease in BVOC emissions.

  11. Genomic selection for tolerance to heat stress in Australian dairy cattle.

    PubMed

    Nguyen, Thuy T T; Bowman, Phil J; Haile-Mariam, Mekonnen; Pryce, Jennie E; Hayes, Benjamin J

    2016-04-01

    Temperature and humidity levels above a certain threshold decrease milk production in dairy cattle, and genetic variation is associated with the amount of lost production. To enable selection for improved heat tolerance, the aim of this study was to develop genomic estimated breeding values (GEBV) for heat tolerance in dairy cattle. Heat tolerance was defined as the rate of decline in production under heat stress. We combined herd test-day recording data from 366,835 Holstein and 76,852 Jersey cows with daily temperature and humidity measurements from weather stations closest to the tested herds for test days between 2003 and 2013. We used daily mean values of temperature-humidity index averaged for the day of test and the 4 previous days as the measure of heat stress. Tolerance to heat stress was estimated for each cow using a random regression model with a common threshold of temperature-humidity index=60 for all cows. The slope solutions for cows from this model were used to define the daughter trait deviations of their sires. Genomic best linear unbiased prediction was used to calculate GEBV for heat tolerance for milk, fat, and protein yield. Two reference populations were used, the first consisted of genotyped sires only (2,300 Holstein and 575 Jersey sires), and the other included genotyped sires and cows (2,189 Holstein and 1,188 Jersey cows). The remainder of the genotyped sires were used as a validation set. All animals had genotypes for 632,003 single nucleotide polymorphisms. When using only genotyped sires in the reference set and only the first parity data, the accuracy of GEBV for heat tolerance in relation to changes in milk, fat, and protein yield were 0.48, 0.50, and 0.49 in the Holstein validation sires and 0.44, 0.61, and 0.53 in the Jersey validation sires, respectively. Some slight improvement in the accuracy of prediction was achieved when cows were included in the reference population for Holsteins. No clear improvements in the accuracy of

  12. Association of High Cardiovascular Fitness and the Rate of Adaptation to Heat Stress

    PubMed Central

    Nowak-Zaleska, Alicja; Chruściński, Grzegorz; Zaleski, Ryszard; Tymański, Roman; Kochanowicz, Andrzej

    2018-01-01

    This study aimed to compare changes in genes expression associated with inflammation and apoptosis in response to heat stress caused by sauna between people with varying cardiorespiratory fitness levels. We hypothesis that high cardiorespiratory level caused higher positive changes after four weeks of sauna bathing. Blood samples were taken at rest before and after the first and last sauna sessions and 48 hours after the last sauna session and used to assay HSP70 (HSPA1A), HSP27 (HSPB1), interleukin 6 (IL6), and interleukin 10 (IL10) genes expression in blood with quantitative real-time qRT-PCR. Overall, small decreases in rest values of HSPA1A and IL6 mRNA, increase in HSPB1 mRNA, and a significant increase in IL10 mRNA were observed after four weeks of exposure to heat stress. Our findings suggest that an adaptive response to heat stress (an anti-inflammatory response) occurs faster in people with higher cardiorespiratory fitness. PMID:29682518

  13. Life span effects of Hypericum perforatum extracts on Caenorhabditis elegans under heat stress.

    PubMed

    Kılıçgün, Hasan; Göksen, Gülden

    2012-10-01

    The beneficial effects of antioxidants in plants are mainly extrapolated from in vitro studies or short-term dietary supplementation studies. Due to cost and duration, relatively little is known about whether dietary antioxidants are beneficial in whole animals' life span or not. To address this question, under heat stress (35°C), Hypericum perforatum was extracted with petroleum ether and the nematodes Caenorhabditis elegans exposed to three different extract concentrations (1mg/mL, 0.1mg/mL, 0.01mg/mL) of H. perforatum. We report that Hypericum perforatum extracts did not increase life span and slow aging related increase in C. elegans. Moreover, one fraction (1mg/mL) increased declines of C. elegans life span and thermotolerance. Given this mounting evidence for life span role of H. perforatum in the presence of heat stress in vivo, the question whether H. perforatum acts as a prooxidant or an antioxidant in vivo under heat stress arises.

  14. Life span effects of Hypericum perforatum extracts on Caenorhabditis elegans under heat stress

    PubMed Central

    Kılıçgün, Hasan; Göksen, Gülden

    2012-01-01

    Background: The beneficial effects of antioxidants in plants are mainly extrapolated from in vitro studies or short-term dietary supplementation studies. Due to cost and duration, relatively little is known about whether dietary antioxidants are beneficial in whole animals’ life span or not. Materials and Methods: To address this question, under heat stress (35°C), Hypericum perforatum was extracted with petroleum ether and the nematodes Caenorhabditis elegans exposed to three different extract concentrations (1mg/mL, 0.1mg/mL, 0.01mg/mL) of H. perforatum. Results: We report that Hypericum perforatum extracts did not increase life span and slow aging related increase in C. elegans. Moreover, one fraction (1mg/mL) increased declines of C. elegans life span and thermotolerance. Conclusion: Given this mounting evidence for life span role of H. perforatum in the presence of heat stress in vivo, the question whether H. perforatum acts as a prooxidant or an antioxidant in vivo under heat stress arises. PMID:24082638

  15. Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress.

    PubMed

    Oksala, Niku K J; Ekmekçi, F Güler; Ozsoy, Ergi; Kirankaya, Serife; Kokkola, Tarja; Emecen, Güzin; Lappalainen, Jani; Kaarniranta, Kai; Atalay, Mustafa

    2014-01-01

    Heat shock proteins (HSPs), originally identified as heat-inducible gene products, are a family of highly conserved proteins that respond to a wide variety of stress including oxidative stress. Although both acute and chronic oxidative stress have been well demonstrated to induce HSP responses, little evidence is available whether increased HSP levels provide enhanced protection against oxidative stress under elevated yet sublethal temperatures. We studied relationships between oxidative stress and HSPs in a physiological model by using Garra rufa (doctor fish), a fish species naturally acclimatized to different thermal conditions. We compared fish naturally living in a hot spring with relatively high water temperature (34.4±0.6°C) to those living in normal river water temperature (25.4±4.7°C), and found that levels of all the studied HSPs (HSP70, HSP60, HSP90, HSC70 and GRP75) were higher in fish living in elevated water temperature compared with normal river water temperature. In contrast, indicators of oxidative stress, including protein carbonyls and lipid hydroperoxides, were decreased in fish living in the elevated temperature, indicating that HSP levels are inversely associated with oxidative stress. The present results provide evidence that physiologically increased HSP levels provide protection against oxidative stress and enhance cytoprotection. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Differential Acclimation of Enzymatic Antioxidant Metabolism and Photosystem II Photochemistry in Tall Fescue under Drought and Heat and the Combined Stresses

    PubMed Central

    Bi, Aoyue; Fan, Jibiao; Hu, Zhengrong; Wang, Guangyang; Amombo, Erick; Fu, Jinmin; Hu, Tao

    2016-01-01

    Quality inferiority in cool-season turfgrass due to drought, heat, and a combination of both stresses is predicted to be more prevalent in the future. Understanding the various response to heat and drought stress will assist in the selection and breeding of tolerant grass varieties. The objective of this study was to investigate the behavior of antioxidant metabolism and photosystem II (PSII) photochemistry in two tall fescue genotypes (PI 234881 and PI 578718) with various thermotolerance capacities. Wide variations were found between heat-tolerant PI 578718 and heat-sensitive PI 234881 for leaf relative water content, malondialdehyde and electrolyte leakage under drought, high-temperature or a combination of both stresses. The sensitivity of PI 234881 exposed to combined stresses was associated with lower superoxide dismutase activity and higher H2O2 accumulation than that in PI 578718. Various antioxidant enzymes displayed positive correlation with chlorophyll content, but negative with membrane injury index at most of the stages in both tall fescue genotypes. The JIP-test analysis in PI 578718 indicated a significant improvement in ABS/RC, TR0/RC, RE0/RC, RE0/ABS values as compared to the control regime, which indicated that PI 578718 had a high potential to protect the PSII system under drought and high temperature stress. And the PS II photochemistry in PI 234881 was damaged significantly compared with PI578718. Moreover, quantitative RT-PCR revealed that heat and drought stresses deduced the gene expression of psbB and psbC, but induced the expression of psbA. These findings to some extent confirmed that the various adaptations of physiological traits may contribute to breeding in cold-season turfgrass in response to drought, high-temperature, and a combination of both stresses. PMID:27148288

  17. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1979-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  18. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1982-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  19. Heat Pipe Systems

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Solar Fundamentals, Inc.'s hot water system employs space-derived heat pipe technology. It is used by a meat packing plant to heat water for cleaning processing machinery. Unit is complete system with water heater, hot water storage, electrical controls and auxiliary components. Other than fans and a circulating pump, there are no moving parts. System's unique design eliminates problems of balancing, leaking, corroding, and freezing.

  20. Prototype solar heating and combined heating cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The design and development of eight prototype solar heating and combined heating and cooling systems is discussed. The program management and systems engineering are reported, and operational test sites are identified.

  1. Intensity of heat stress in winter wheat—phenology compensates for the adverse effect of global warming

    NASA Astrophysics Data System (ADS)

    Eyshi Rezaei, Ehsan; Siebert, Stefan; Ewert, Frank

    2015-02-01

    Higher temperatures during the growing season are likely to reduce crop yields with implications for crop production and food security. The negative impact of heat stress has also been predicted to increase even further for cereals such as wheat under climate change. Previous empirical modeling studies have focused on the magnitude and frequency of extreme events during the growth period but did not consider the effect of higher temperature on crop phenology. Based on an extensive set of climate and phenology observations for Germany and period 1951-2009, interpolated to 1 × 1 km resolution and provided as supplementary data to this article (available at stacks.iop.org/ERL/10/024012/mmedia), we demonstrate a strong relationship between the mean temperature in spring and the day of heading (DOH) of winter wheat. We show that the cooling effect due to the 14 days earlier DOH almost fully compensates for the adverse effect of global warming on frequency and magnitude of crop heat stress. Earlier heading caused by the warmer spring period can prevent exposure to extreme heat events around anthesis, which is the most sensitive growth stage to heat stress. Consequently, the intensity of heat stress around anthesis in winter crops cultivated in Germany may not increase under climate change even if the number and duration of extreme heat waves increase. However, this does not mean that global warning would not harm crop production because of other impacts, e.g. shortening of the grain filling period. Based on the trends for the last 34 years in Germany, heat stress (stress thermal time) around anthesis would be 59% higher in year 2009 if the effect of high temperatures on accelerating wheat phenology were ignored. We conclude that climate impact assessments need to consider both the effect of high temperature on grain set at anthesis but also on crop phenology.

  2. Genome-wide identification of heat stress-responsive small RNAs in tall fescue (Festuca arundinacea) by high-throughput sequencing.

    PubMed

    Li, Huiying; Hu, Tao; Amombo, Erick; Fu, Jinmin

    2017-06-01

    MicroRNAs (miRNAs) play vital roles in the adaptive response of plants to various abiotic and biotic stresses. Tall fescue (Festuca arundinacea Schreb.) is a major cool-season forage and turf grass species which is severely influenced by heat stress. To unravel possible heat stress-responsive miRNAs, high-throughput sequencing was employed for heat-tolerant PI578718 and heat-sensitive PI234881 genotypes growing in presence and absence of heat stress (40°C for 36h). By searching against the miRBase database, among 1421 reference monocotyledon miRNAs, more than 850 were identified in all samples. Among these miRNAs, 1.46% and 2.29% were differentially expressed in PI234881 and PI578718 under heat stress, respectively, and most of them were down-regulated. In addition, a total of 170 novel miRNAs belonging to 145 miRNA families were identified. Furthermore, putative targets of differentially expressed miRNAs were predicted. The regulation of selected miRNAs by heat stress was revalidated through quantitative reverse transcription PCR (qRT-PCR) analysis. Most of these miRNAs shared similar expression patterns; however, some showed distinct expression patterns under heat stress, with their putative targets displaying different transcription levels. This is the first genome-wide miRNA identification in tall fescue. miRNAs specific to PI578718, or those that exhibited differential expression profiles between the two genotypes under high temperature, were probably associated with the variation in thermotolerance of tall fescue. The differentially expressed miRNAs between these two tall fescue genotypes and their putative targeted genes will provide essential information for further study on miRNAs mediating heat response and facilitate to improve turf grass breeding. Copyright © 2017. Published by Elsevier GmbH.

  3. Exposure of Lactating Dairy Cows to Acute Pre-Ovulatory Heat Stress Affects Granulosa Cell-Specific Gene Expression Profiles in Dominant Follicles

    PubMed Central

    Vanselow, Jens; Vernunft, Andreas; Koczan, Dirk; Spitschak, Marion; Kuhla, Björn

    2016-01-01

    High environmental temperatures induce detrimental effects on various reproductive processes in cattle. According to the predicted global warming the number of days with unfavorable ambient temperatures will further increase. The objective of this study was to investigate effects of acute heat stress during the late pre-ovulatory phase on morphological, physiological and molecular parameters of dominant follicles in cycling cows during lactation. Eight German Holstein cows in established lactation were exposed to heat stress (28°C) or thermoneutral conditions (15°C) with pair-feeding for four days. After hormonal heat induction growth of the respective dominant follicles was monitored by ultrasonography for two days, then an ovulatory GnRH dose was given and follicular steroid hormones and granulosa cell-specific gene expression profiles were determined 23 hrs thereafter. The data showed that the pre-ovulatory growth of dominant follicles and the estradiol, but not the progesterone concentrations tended to be slightly affected. mRNA microarray and hierarchical cluster analysis revealed distinct expression profiles in granulosa cells derived from heat stressed compared to pair-fed animals. Among the 255 affected genes heatstress-, stress- or apoptosis associated genes were not present. But instead, we found up-regulation of genes essentially involved in G-protein coupled signaling pathways, extracellular matrix composition, and several members of the solute carrier family as well as up-regulation of FST encoding follistatin. In summary, the data of the present study show that acute pre-ovulatory heat stress can specifically alter gene expression profiles in granulosa cells, however without inducing stress related genes and pathways and suggestively can impair follicular growth due to affecting the activin-inhibin-follistatin system. PMID:27532452

  4. Exposure of Lactating Dairy Cows to Acute Pre-Ovulatory Heat Stress Affects Granulosa Cell-Specific Gene Expression Profiles in Dominant Follicles.

    PubMed

    Vanselow, Jens; Vernunft, Andreas; Koczan, Dirk; Spitschak, Marion; Kuhla, Björn

    2016-01-01

    High environmental temperatures induce detrimental effects on various reproductive processes in cattle. According to the predicted global warming the number of days with unfavorable ambient temperatures will further increase. The objective of this study was to investigate effects of acute heat stress during the late pre-ovulatory phase on morphological, physiological and molecular parameters of dominant follicles in cycling cows during lactation. Eight German Holstein cows in established lactation were exposed to heat stress (28°C) or thermoneutral conditions (15°C) with pair-feeding for four days. After hormonal heat induction growth of the respective dominant follicles was monitored by ultrasonography for two days, then an ovulatory GnRH dose was given and follicular steroid hormones and granulosa cell-specific gene expression profiles were determined 23 hrs thereafter. The data showed that the pre-ovulatory growth of dominant follicles and the estradiol, but not the progesterone concentrations tended to be slightly affected. mRNA microarray and hierarchical cluster analysis revealed distinct expression profiles in granulosa cells derived from heat stressed compared to pair-fed animals. Among the 255 affected genes heatstress-, stress- or apoptosis associated genes were not present. But instead, we found up-regulation of genes essentially involved in G-protein coupled signaling pathways, extracellular matrix composition, and several members of the solute carrier family as well as up-regulation of FST encoding follistatin. In summary, the data of the present study show that acute pre-ovulatory heat stress can specifically alter gene expression profiles in granulosa cells, however without inducing stress related genes and pathways and suggestively can impair follicular growth due to affecting the activin-inhibin-follistatin system.

  5. Residential solar-heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  6. Ribosomal genes and heat shock proteins as putative markers for chronic, sublethal heat stress in Arctic charr: applications for aquaculture and wild fish.

    PubMed

    Quinn, Nicole L; McGowan, Colin R; Cooper, Glenn A; Koop, Ben F; Davidson, William S

    2011-09-22

    Arctic charr thrive at high densities and can live in freshwater year round, making this species especially suitable for inland, closed containment aquaculture. However, it is a cold-water salmonid, which both limits where the species can be farmed and places wild populations at particular risk to climate change. Previously, we identified genes associated with tolerance and intolerance to acute, lethal temperature stress in Arctic charr. However, there remained a need to examine the genes involved in the stress response to more realistic temperatures that could be experienced during a summer heat wave in grow-out tanks that are not artificially cooled, or under natural conditions. Here, we exposed Arctic charr to sublethal heat stress of 15-18°C for 72 h, and gill tissues extracted before, during (i.e., at 72 h), immediately after cooling and after 72 h of recovery at ambient temperature (6°C) were used for gene expression profiling by microarray and qPCR analyses. The results revealed an expected pattern for heat shock protein expression, which was highest during heat exposure, with significantly reduced expression (approaching control levels) quickly thereafter. We also found that the expression of numerous ribosomal proteins was significantly elevated immediately and 72 h after cooling, suggesting that the gill tissues were undergoing ribosome biogenesis while recovering from damage caused by heat stress. We suggest that these are candidate gene targets for the future development of genetic markers for broodstock development or for monitoring temperature stress and recovery in wild or cultured conditions.

  7. Heat stress causes substantial labour productivity loss in Australia

    NASA Astrophysics Data System (ADS)

    Zander, Kerstin K.; Botzen, Wouter J. W.; Oppermann, Elspeth; Kjellstrom, Tord; Garnett, Stephen T.

    2015-07-01

    Heat stress at the workplace is an occupational health hazard that reduces labour productivity. Assessment of productivity loss resulting from climate change has so far been based on physiological models of heat exposure. These models suggest productivity may decrease by 11-27% by 2080 in hot regions such as Asia and the Caribbean, and globally by up to 20% in hot months by 2050. Using an approach derived from health economics, we describe self-reported estimates of work absenteeism and reductions in work performance caused by heat in Australia during 2013/2014. We found that the annual costs were US$655 per person across a representative sample of 1,726 employed Australians. This represents an annual economic burden of around US$6.2 billion (95% CI: 5.2-7.3 billion) for the Australian workforce. This amounts to 0.33 to 0.47% of Australia’s GDP. Although this was a period when many Australians experienced what is at present considered exceptional heat, our results suggest that adaptation measures to reduce heat effects should be adopted widely if severe economic impacts from labour productivity loss are to be avoided if heat waves become as frequent as predicted.

  8. Passive heat stress reduces circulating endothelial and platelet microparticles.

    PubMed

    Bain, Anthony R; Ainslie, Philip N; Bammert, Tyler D; Hijmans, Jamie G; Sekhon, Mypinder; Hoiland, Ryan L; Flück, Daniela; Donnelly, Joseph; DeSouza, Christopher A

    2017-06-01

    What is the central question of this study? Does passive heat stress of +2°C oesophageal temperature change concentrations of circulating arterial endothelial- and platelet-derived microparticles in healthy adults? What is the main finding and its importance? Concentrations of circulating endothelial- and platelet-derived microparticles were markedly decreased in heat stress. Reductions in circulating microparticles might indicate favourable vascular changes associated with non-pathological hyperthermia. Interest in circulating endothelial- and platelet-derived microparticles (EMPs and PMPs, respectively) has increased because of their potential pathogenic role in vascular disease and as biomarkers for vascular health. Hyperthermia is commonly associated with a pro-inflammatory stress but might also provide vascular protection when the temperature elevation is non-pathological. Circulating microparticles might contribute to the cellular adjustments and resultant vascular impacts of hyperthermia. Here, we determined whether circulating concentrations of arterial EMPs and PMPs are altered by passive heat stress (+2°C oesophageal temperature). Ten healthy young men (age 23 ± 3 years) completed the study. Hyperthermia was achieved by circulating ∼49°C water through a water-perfused suit that covered the entire body except the hands, feet and head. Arterial (radial) blood samples were obtained immediately before heating (normothermia) and in hyperthermia. The mean ± SD oesophageal temperature in normothermia was 37.2 ± 0.1°C and in hyperthermia 39.1 ± 0.1°C. Concentrations of circulating EMPs and PMPs were markedly decreased in hyperthermia. Activation-derived EMPs were reduced by ∼30% (mean ± SD; from 61 ± 8 to 43 ± 7 microparticles μl -1 ; P < 0.05) and apoptosis-derived EMPs by ∼45% (from 46 ± 7 to 23 ± 3 microparticles μl -1 ; P < 0.05). Likewise, circulating PMPs were reduced by ∼75% in response to hyperthermia

  9. HSP90 gene expression induced by aspirin is associated with damage remission in a chicken myocardial cell culture exposed to heat stress.

    PubMed

    Zhang, X; Qian, Z; Zhu, H; Tang, S; Wu, D; Zhang, M; Kemper, N; Hartung, J; Bao, E

    2016-08-01

    To understand the potential protection of heat shock protein 90 (HSP90) induced by aspirin against heat stress damage in chicken myocardial cells, enzyme activities related to stress damage, cytopathological changes, the expression and distribution of HSP90, and HSP90 mRNA levels in the myocardial cells exposed to heat stress (42°C) for different durations with or without aspirin administration (1 mg/ml, 2 h prior) in vitro were investigated. Significant increase of enzyme levels in the supernatant of heat-stressed myocardial cells and cellular lesions characterised by acute degeneration, karyopyknosis and karyorrhexis were observed, compared to non-treated cells. However, the lesions of cells treated with aspirin were milder, characterised by earlier recovery of enzyme levels to the control levels and no obvious heat stress-related cellular necrosis. Stronger positive signals in the cytoplasm and longer retention of HSP90 signal in nuclei were observed in aspirin-treated myocardial cells than those of only heat-stressed cells. HSP90 level in the aspirin-treated myocardial cells was 11.1-fold higher than that in non-treated cells, and remained at a high level at the early stage of heat stress, whereas it was just 4.1-fold higher in only heat-stressed cells and returned rapidly to a low level. Overexpression of HSP90 mRNA in aspirin-treated cells was observed throughout the experiment, whereas HSP90 mRNA decreased significantly only in heat-stressed cells. The early higher HSP90 expression induced by aspirin during heat stress was accompanied by decreased heat stress damage, suggesting that aspirin might play an important role in preventing myocardial cells from heat stress damage in vitro.

  10. Recovery from heat, salt and osmotic stress in Physcomitrella patens requires a functional small heat shock protein PpHsp16.4

    PubMed Central

    2013-01-01

    Background Plant small heat shock proteins (sHsps) accumulate in response to various environmental stresses, including heat, drought, salt and oxidative stress. Numerous studies suggest a role for these proteins in stress tolerance by preventing stress-induced protein aggregation as well as by facilitating protein refolding by other chaperones. However, in vivo evidence for the involvement of sHsps in tolerance to different stress factors is still missing, mainly due to the lack of appropriate mutants in specific sHsp genes. Results In this study we characterized the function of a sHsp in abiotic stress tolerance in the moss Physcomitrella patens, a model for primitive land plants. Using suppression subtractive hybridization, we isolated an abscisic acid-upregulated gene from P. patens encoding a 16.4 kDa cytosolic class II sHsp. PpHsp16.4 was also induced by salicylic acid, dithiothreitol (DTT) and by exposure to various stimuli, including osmotic and salt stress, but not by oxidative stress-inducing compounds. Expression of the gene was maintained upon stress relief, suggesting a role for this protein in the recovery stage. PpHsp16.4 is encoded by two identical genes arranged in tandem in the genome. Targeted disruption of both genes resulted in the inability of plants to recover from heat, salt and osmotic stress. In vivo localization studies revealed that PpHsp16.4 localized in cytosolic granules in the vicinity of chloroplasts under non stress conditions, suggesting possible distinct roles for this protein under stress and optimal growth. Conclusions We identified a member of the class II sHsp family that showed hormonal and abiotic stress gene regulation. Induction of the gene by DTT treatment suggests that damaged proteins may act as signals for the stress-induction of PpHsp16.4. The product of this gene was shown to localize in cytosolic granules near the chloroplasts, suggesting a role for the protein in association with these organelles. Our study

  11. Recovery from heat, salt and osmotic stress in Physcomitrella patens requires a functional small heat shock protein PpHsp16.4.

    PubMed

    Ruibal, Cecilia; Castro, Alexandra; Carballo, Valentina; Szabados, László; Vidal, Sabina

    2013-11-05

    Plant small heat shock proteins (sHsps) accumulate in response to various environmental stresses, including heat, drought, salt and oxidative stress. Numerous studies suggest a role for these proteins in stress tolerance by preventing stress-induced protein aggregation as well as by facilitating protein refolding by other chaperones. However, in vivo evidence for the involvement of sHsps in tolerance to different stress factors is still missing, mainly due to the lack of appropriate mutants in specific sHsp genes. In this study we characterized the function of a sHsp in abiotic stress tolerance in the moss Physcomitrella patens, a model for primitive land plants. Using suppression subtractive hybridization, we isolated an abscisic acid-upregulated gene from P. patens encoding a 16.4 kDa cytosolic class II sHsp. PpHsp16.4 was also induced by salicylic acid, dithiothreitol (DTT) and by exposure to various stimuli, including osmotic and salt stress, but not by oxidative stress-inducing compounds. Expression of the gene was maintained upon stress relief, suggesting a role for this protein in the recovery stage. PpHsp16.4 is encoded by two identical genes arranged in tandem in the genome. Targeted disruption of both genes resulted in the inability of plants to recover from heat, salt and osmotic stress. In vivo localization studies revealed that PpHsp16.4 localized in cytosolic granules in the vicinity of chloroplasts under non stress conditions, suggesting possible distinct roles for this protein under stress and optimal growth. We identified a member of the class II sHsp family that showed hormonal and abiotic stress gene regulation. Induction of the gene by DTT treatment suggests that damaged proteins may act as signals for the stress-induction of PpHsp16.4. The product of this gene was shown to localize in cytosolic granules near the chloroplasts, suggesting a role for the protein in association with these organelles. Our study provides the first direct genetic

  12. The effects of heat stress in Italian Holstein dairy cattle.

    PubMed

    Bernabucci, U; Biffani, S; Buggiotti, L; Vitali, A; Lacetera, N; Nardone, A

    2014-01-01

    The data set for this study comprised 1,488,474 test-day records for milk, fat, and protein yields and fat and protein percentages from 191,012 first-, second-, and third-parity Holstein cows from 484 farms. Data were collected from 2001 through 2007 and merged with meteorological data from 35 weather stations. A linear model (M1) was used to estimate the effects of the temperature-humidity index (THI) on production traits. Least squares means from M1 were used to detect the THI thresholds for milk production in all parities by using a 2-phase linear regression procedure (M2). A multiple-trait repeatability test-model (M3) was used to estimate variance components for all traits and a dummy regression variable (t) was defined to estimate the production decline caused by heat stress. Additionally, the estimated variance components and M3 were used to estimate traditional and heat-tolerance breeding values (estimated breeding values, EBV) for milk yield and protein percentages at parity 1. An analysis of data (M2) indicated that the daily THI at which milk production started to decline for the 3 parities and traits ranged from 65 to 76. These THI values can be achieved with different temperature/humidity combinations with a range of temperatures from 21 to 36°C and relative humidity values from 5 to 95%. The highest negative effect of THI was observed 4 d before test day over the 3 parities for all traits. The negative effect of THI on production traits indicates that first-parity cows are less sensitive to heat stress than multiparous cows. Over the parities, the general additive genetic variance decreased for protein content and increased for milk yield and fat and protein yield. Additive genetic variance for heat tolerance showed an increase from the first to third parity for milk, protein, and fat yield, and for protein percentage. Genetic correlations between general and heat stress effects were all unfavorable (from -0.24 to -0.56). Three EBV per trait were

  13. Carbon footprints of heating oil and LPG heating systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Eric P., E-mail: ejohnson@ecosite.co.uk

    For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used thatmore » were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.« less

  14. Metabolomic Profiling of Soybeans (Glycine max L.) Reveals the Importance of Sugar and Nitrogen Metabolism under Drought and Heat Stress

    PubMed Central

    Das, Aayudh; Rushton, Paul J.; Rohila, Jai S.

    2017-01-01

    Soybean is an important crop that is continually threatened by abiotic stresses, especially drought and heat stress. At molecular levels, reduced yields due to drought and heat stress can be seen as a result of alterations in metabolic homeostasis of vegetative tissues. At present an incomplete understanding of abiotic stress-associated metabolism and identification of associated metabolites remains a major gap in soybean stress research. A study with a goal to profile leaf metabolites under control conditions (28/24 °C), drought [28/24 °C, 10% volumetric water content (VWC)], and heat stress (43/35 °C) was conducted in a controlled environment. Analyses of non-targeted metabolomic data showed that in response to drought and heat stress, key metabolites (carbohydrates, amino acids, lipids, cofactors, nucleotides, peptides and secondary metabolites) were differentially accumulated in soybean leaves. The metabolites for various cellular processes, such as glycolysis, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway, and starch biosynthesis, that regulate carbohydrate metabolism, amino acid metabolism, peptide metabolism, and purine and pyrimidine biosynthesis, were found to be affected by drought as well as heat stress. Computationally based regulatory networks predicted additional compounds that address the possibility of other metabolites and metabolic pathways that could also be important for soybean under drought and heat stress conditions. Metabolomic profiling demonstrated that in soybeans, keeping up with sugar and nitrogen metabolism is of prime significance, along with phytochemical metabolism under drought and heat stress conditions. PMID:28587097

  15. Impact of heat stress on conception rate of dairy cows in the moderate climate considering different temperature-humidity index thresholds, periods relative to breeding, and heat load indices.

    PubMed

    Schüller, L K; Burfeind, O; Heuwieser, W

    2014-05-01

    The objectives of this retrospective study were to investigate the relationship between temperature-humidity index (THI) and conception rate (CR) of lactating dairy cows, to estimate a threshold for this relationship, and to identify periods of exposure to heat stress relative to breeding in an area of moderate climate. In addition, we compared three different heat load indices related to CR: mean THI, maximum THI, and number of hours above the mean THI threshold. The THI threshold for the influence of heat stress on CR was 73. It was statistically chosen based on the observed relationship between the mean THI at the day of breeding and the resulting CR. Negative effects of heat stress, however, were already apparent at lower levels of THI, and 1 hour of mean THI of 73 or more decreased the CR significantly. The CR of lactating dairy cows was negatively affected by heat stress both before and after the day of breeding. The greatest negative impact of heat stress on CR was observed 21 to 1 day before breeding. When the mean THI was 73 or more in this period, CR decreased from 31% to 12%. Compared with the average maximum THI and the total number of hours above a threshold of more than or 9 hours, the mean THI was the most sensitive heat load index relating to CR. These results indicate that the CR of dairy cows raised in the moderate climates is highly affected by heat stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Heat Recovery System

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Ball Metal's design of ducting and controls for series of roof top heat exchangers was inspired by Tech Briefs. Heat exchangers are installed on eight press and coating lines used to decorate sheet metal. The heat recovery system provides an estimated energy savings of more than $250,000 per year.

  17. Predicting heat stress index in Sasso hens using automatic linear modeling and artificial neural network.

    PubMed

    Yakubu, A; Oluremi, O I A; Ekpo, E I

    2018-03-17

    There is an increasing use of robust analytical algorithms in the prediction of heat stress. The present investigation therefore, was carried out to forecast heat stress index (HSI) in Sasso laying hens. One hundred and sixty seven records on the thermo-physiological parameters of the birds were utilized. They were reared on deep litter and battery cage systems. Data were collected when the birds were 42- and 52-week of age. The independent variables fitted were housing system, age of birds, rectal temperature (RT), pulse rate (PR), and respiratory rate (RR). The response variable was HSI. Data were analyzed using automatic linear modeling (ALM) and artificial neural network (ANN) procedures. The ALM model building method involved Forward Stepwise using the F Statistic criterion. As regards ANN, multilayer perceptron (MLP) with back-propagation network was used. The ANN network was trained with 90% of the data set while 10% were dedicated to testing for model validation. RR and PR were the two parameters of utmost importance in the prediction of HSI. However, the fractional importance of RR was higher than that of PR in both ALM (0.947 versus 0.053) and ANN (0.677 versus 0.274) models. The two models also predicted HSI effectively with high degree of accuracy [r = 0.980, R 2  = 0.961, adjusted R 2  = 0.961, and RMSE = 0.05168 (ALM); r = 0.983, R 2  = 0.966; adjusted R 2  = 0.966, and RMSE = 0.04806 (ANN)]. The present information may be exploited in the development of a heat stress chart based largely on RR. This may aid detection of thermal discomfort in a poultry house under tropical and subtropical conditions.

  18. Heat transfer system

    DOEpatents

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  19. Neurotoxicity induced by arsenic in Gallus Gallus: Regulation of oxidative stress and heat shock protein response.

    PubMed

    Zhao, Panpan; Guo, Ying; Zhang, Wen; Chai, Hongliang; Xing, Houjuan; Xing, Mingwei

    2017-01-01

    Arsenic, a naturally occurring heavy metal pollutant, is one of the functioning risk factors for neurological toxicity in humans. However, little is known about the effects of arsenic on the nervous system of Gallus Gallus. To investigate whether arsenic induce neurotoxicity and influence the oxidative stress and heat shock proteins (Hsps) response in chickens, seventy-two 1-day-old male Hy-line chickens were treated with different doses of arsenic trioxide (As 2 O 3 ). The histological changes, antioxidant enzyme activity, and the expressions of Hsps were detected. Results showed slightly histology changes were obvious in the brain tissues exposure to arsenic. The activities of Glutathione peroxidase (GSH-Px) and catalase (CAT) were decreased compared to the control, whereas the malondialdehyde (MDA) content was increased gradually along with increase in diet-arsenic. The mRNA levels of Hsps and protein expressions of Hsp60 and Hsp70 were up-regulated. These results suggested that sub-chronic exposure to arsenic induced neurotoxicity in chickens. Arsenic exposure disturbed the balance of oxidants and antioxidants. Increased heat shock response tried to protect chicken brain tissues from tissues damage caused by oxidative stress. The mechanisms of neurotoxicity induced by arsenic include oxidative stress and heat shock protein response in chicken brain tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The effect of heat stress on gene expression, synthesis of steroids, and apoptosis in bovine granulosa cells.

    PubMed

    Li, Lian; Wu, Jie; Luo, Man; Sun, Yu; Wang, Genlin

    2016-05-01

    Summer heat stress (HS) is a major contributing factor in low fertility in lactating dairy cows in hot environments. Heat stress inhibits ovarian follicular development leading to diminished reproductive efficiency of dairy cows during summer. Ovarian follicle development is a complex process. During follicle development, granulosa cells (GCs) replicate, secrete hormones, and support the growth of the oocyte. To obtain an overview of the effects of heat stress on GCs, digital gene expression profiling was employed to screen and identify differentially expressed genes (DEGs; false discovery rate (FDR) ≤ 0.001, fold change ≥2) of cultured GCs during heat stress. A total of 1211 DEGs including 175 upregulated and 1036 downregulated ones were identified, of which DEGs can be classified into Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The results suggested that heat stress triggers a dramatic and complex program of altered gene expression in GCs. We hypothesized that heat stress could induce the apoptosis and dysfunction of GCs. Real-time reverse transcription-polymerase chain reaction (RT-PCR) was used to evaluate the expression of steroidogenic genes (steroidogenic acute regulatory protein (Star), cytochrome P-450 (CYP11A1), CYP19A1, and steroidogenic factor 1 (SF-1)) and apoptosis-related genes (caspase-3, BCL-2, and BAX). Radio immunoassay (RIA) was used to analyze the level of 17β-estradiol (E2) and progesterone (P4). We also assessed the apoptosis of GCs by flow cytometry. Our data suggested that heat stress induced GC apoptosis through the BAX/BCL-2 pathway and reduced the steroidogenic gene messenger RNA (mRNA) expression and E2 synthesis. These results suggest that the decreased function of GCs may cause ovarian dysfunction and offer an improved understanding of the molecular mechanism responsible for the low fertility in cattle in summer.

  1. Heat stress prevents lipopolysaccharide-induced apoptosis in pulmonary microvascular endothelial cells by blocking calpain/p38 MAPK signalling.

    PubMed

    Liu, Zhi-Feng; Zheng, Dong; Fan, Guo-Chang; Peng, Tianqing; Su, Lei

    2016-08-01

    Pulmonary microvascular endothelial cells (PMECs) injury including apoptosis plays an important role in the pathogenesis of acute lung injury during sepsis. Our recent study has demonstrated that calpain activation contributes to apoptosis in PMECs under septic conditions. This study investigated how calpain activation mediated apoptosis and whether heat stress regulated calpain activation in lipopolysaccharides (LPS)-stimulated PMECs. In cultured mouse primary PMECs, incubation with LPS (1 μg/ml, 24 h) increased active caspase-3 fragments and DNA fragmentation, indicative of apoptosis. These effects of LPS were abrogated by pre-treatment with heat stress (43 °C for 2 h). LPS also induced calpain activation and increased phosphorylation of p38 MAPK. Inhibition of calpain and p38 MAPK prevented apoptosis induced by LPS. Furthermore, inhibition of calpain blocked p38 MAPK phosphorylation in LPS-stimulated PMECs. Notably, heat stress decreased the protein levels of calpain-1/2 and calpain activities, and blocked p38 MAPK phosphorylation in response to LPS. Additionally, forced up-regulation of calpain-1 or calpain-2 sufficiently induced p38 MAPK phosphorylation and apoptosis in PMECs, both of which were inhibited by heat stress. In conclusion, heat stress prevents LPS-induced apoptosis in PMECs. This effect of heat stress is associated with down-regulation of calpain expression and activation, and subsequent blockage of p38 MAPK activation in response to LPS. Thus, blocking calpain/p38 MAPK pathway may be a novel mechanism underlying heat stress-mediated inhibition of apoptosis in LPS-stimulated endothelial cells.

  2. Heat stress prevents lipopolysaccharide-induced apoptosis in pulmonary microvascular endothelial cells by blocking calpain/p38 MAPK signalling

    PubMed Central

    Liu, Zhi-feng; Zheng, Dong; Fan, Guo-chang; Peng, Tianqing; Su, Lei

    2016-01-01

    Pulmonary microvascular endothelial cells (PMECs) injury including apoptosis plays an important role in the pathogenesis of acute lung injury during sepsis. Our recent study has demonstrated that calpain activation contributes to apoptosis in PMECs under septic conditions. This study investigated how calpain activation mediated apoptosis and whether heat stress regulated calpain activation in lipopolysaccharides (LPS)-stimulated PMECs. In cultured mouse primary PMECs, incubation with LPS (1 µg/ml, 24 h) increased active caspase-3 fragments and DNA fragmentation, indicative of apoptosis. These effects of LPS were abrogated by pre-treatment with heat stress (43 °C for 2 h). LPS also induced calpain activation and increased phosphorylation of p38 MAPK. Inhibition of calpain and p38 MAPK prevented apoptosis induced by LPS. Furthermore, inhibition of calpain blocked p38 MAPK phosphorylation in LPS-stimulated PMECs. Notably, heat stress decreased the protein levels of calpain-1/2 and calpain activities, and blocked p38 MAPK phosphorylation in response to LPS. Additionally, forced up-regulation of calpain-1 or calpain-2 sufficiently induced p38 MAPK phosphorylation and apoptosis in PMECs, both of which were inhibited by heat stress. In conclusion, heat stress prevents LPS-induced apoptosis in PMECs. This effect of heat stress is associated with down-regulation of calpain expression and activation, and subsequent blockage of p38 MAPK activation in response to LPS. Thus, blocking calpain/p38 MAPK pathway may be a novel mechanism underlying heat stress-mediated inhibition of apoptosis in LPS-stimulated endothelial cells. PMID:27325431

  3. Validating the Heat Stress Indices for Using In Heavy Work Activities in Hot and Dry Climates.

    PubMed

    Hajizadeh, Roohalah; Golbabaei, Farideh; Farhang Dehghan, Somayeh; Beheshti, Mohammad Hossein; Jafari, Sayed Mohammad; Taheri, Fereshteh

    2016-01-01

    Necessity of evaluating heat stress in the workplace, require validation of indices and selection optimal index. The present study aimed to assess the precision and validity of some heat stress indices and select the optimum index for using in heavy work activities in hot and dry climates. It carried out on 184 workers from 40 brick kilns workshops in the city of Qom, central Iran (as representative hot and dry climates). After reviewing the working process and evaluation the activity of workers and the type of work, environmental and physiological parameters according to standards recommended by International Organization for Standardization (ISO) including ISO 7243 and ISO 9886 were measured and indices were calculated. Workers engaged in indoor kiln experienced the highest values of natural wet temperature, dry temperature, globe temperature and relative humidity among studied sections (P<0.05). Indoor workplaces had the higher levels of all environmental parameters than outdoors (P=0.0001), except for air velocity. The wet-bulb globe temperature (WBGT) and heat stress index (HSI) indices had the highest correlation with other physiological parameters among the other heat stress indices. Relationship between WBGT index and carotid artery temperature (r=0.49), skin temperature (r=0.319), and oral temperature (r=0.203) was statistically significant (P=0.006). Since WBGT index, as the most applicable index for evaluating heat stress in workplaces is approved by ISO, and due to the positive features of WBGT such as ease of measurement and calculation, and with respect to some limitation in application of HSI; WBGT can be introduced as the most valid empirical index of heat stress in the brick workshops.

  4. Tissue-Specific Transcriptomics Reveals an Important Role of the Unfolded Protein Response in Maintaining Fertility upon Heat Stress in Arabidopsis

    PubMed Central

    Zhang, Shuang-Shuang; Yang, Hongxing; Ding, Lan; Song, Ze-Ting; Ma, Hong; Chang, Fang

    2017-01-01

    High temperatures have a great impact on plant reproductive development and subsequent fruit and seed set, but the underlying molecular mechanisms are not well understood. We used transcriptome profiling to investigate the effect of heat stress on reproductive development of Arabidopsis thaliana plants and observed distinct response patterns in vegetative versus reproductive tissues. Exposure to heat stress affected reproductive developmental programs, including early phases of anther/ovule development and meiosis. Also, genes participating in the unfolded protein response (UPR) were enriched in the reproductive tissue-specific genes that were upregulated by heat. Moreover, we found that the UPR-deficient bzip28 bzip60 double mutant was sensitive to heat stresses and had reduced silique length and fertility. Comparison of heat-responsive wild type versus bzip28 bzip60 plants identified 521 genes that were regulated by bZIP28 and bZIP60 upon heat stress during reproductive stages, most of which were noncanonical UPR genes. Chromatin immunoprecipitation coupled with high-throughput sequencing analyses revealed 133 likely direct targets of bZIP28 in Arabidopsis seedlings subjected to heat stress, including 27 genes that were also upregulated by heat during reproductive development. Our results provide important insights into heat responsiveness in Arabidopsis reproductive tissues and demonstrate the protective roles of the UPR for maintaining fertility upon heat stress. PMID:28442596

  5. Tissue-Specific Transcriptomics Reveals an Important Role of the Unfolded Protein Response in Maintaining Fertility upon Heat Stress in Arabidopsis.

    PubMed

    Zhang, Shuang-Shuang; Yang, Hongxing; Ding, Lan; Song, Ze-Ting; Ma, Hong; Chang, Fang; Liu, Jian-Xiang

    2017-05-01

    High temperatures have a great impact on plant reproductive development and subsequent fruit and seed set, but the underlying molecular mechanisms are not well understood. We used transcriptome profiling to investigate the effect of heat stress on reproductive development of Arabidopsis thaliana plants and observed distinct response patterns in vegetative versus reproductive tissues. Exposure to heat stress affected reproductive developmental programs, including early phases of anther/ovule development and meiosis. Also, genes participating in the unfolded protein response (UPR) were enriched in the reproductive tissue-specific genes that were upregulated by heat. Moreover, we found that the UPR-deficient bzip28 bzip60 double mutant was sensitive to heat stresses and had reduced silique length and fertility. Comparison of heat-responsive wild type versus bzip28 bzip60 plants identified 521 genes that were regulated by bZIP28 and bZIP60 upon heat stress during reproductive stages, most of which were noncanonical UPR genes. Chromatin immunoprecipitation coupled with high-throughput sequencing analyses revealed 133 likely direct targets of bZIP28 in Arabidopsis seedlings subjected to heat stress, including 27 genes that were also upregulated by heat during reproductive development. Our results provide important insights into heat responsiveness in Arabidopsis reproductive tissues and demonstrate the protective roles of the UPR for maintaining fertility upon heat stress. © 2017 American Society of Plant Biologists. All rights reserved.

  6. Expert System For Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Bagby, D. Gordon; Cormier, Reginald A.

    1991-01-01

    Diagnosis simplified for non-engineers. Developmental expert-system computer program assists operator in controlling, monitoring operation, diagnosing malfunctions, and ordering repairs of heat-exchanger system dissipating heat generated by 20-kW radio transmitter. System includes not only heat exchanger but also pumps, fans, sensors, valves, reservoir, and associated plumbing. Program conceived to assist operator while avoiding cost of keeping engineer in full-time attendance. Similar programs developed for heating, ventilating, and air-conditioning systems.

  7. Weighting Criteria and Prioritizing of Heat stress indices in surface mining using a Delphi Technique and Fuzzy AHP-TOPSIS Method.

    PubMed

    Asghari, Mehdi; Nassiri, Parvin; Monazzam, Mohammad Reza; Golbabaei, Farideh; Arabalibeik, Hossein; Shamsipour, Aliakbar; Allahverdy, Armin

    2017-01-01

    Heat stress as a physical harmful agent can increase the risk of health and safety problems in different workplaces such as mining. Although there are different indices to assess the heat stress imposed on workers, choosing the best index for a specific workplace is so important. Since various criteria affect an index applicability, extracting the most effective ones and determining their weights help to prioritize the existing indices and select the optimal index. In order to achieve this aim, present study compared some heat stress indices using effective methods. The viewpoints of occupational health experts and the qualitative Delphi methods were used to extract the most important criteria. Then, the weights of 11 selected criteria were determined by Fuzzy Analytic Hierarchy Process. Finally, fuzzy TOPSIS technique was applied for choosing the most suitable heat stress index. According to result, simplicity, reliability, being low cost, and comprehensiveness were the most determinative criteria for a heat stress index. Based on these criteria and their weights, the existing indices were prioritized. Eventually, wet bulb glob temperature appropriated the first priority and it was proposed as an applicable index for evaluating the heat stress at outdoor hot environments such as surface mines. The use of these strong methods allows introducing the most simple, precise, and applicable tool for evaluation the heat stress in hot environments. It seems that WBGT acts as an appropriate index for assessing the heat stress in mining activities at outdoors.

  8. Internal stress-induced melting below melting temperature at high-rate laser heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Yong Seok, E-mail: yshwang@iastate.edu; Levitas, Valery I., E-mail: vlevitas@iastate.edu

    In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamicmore » equilibrium temperatures for the heating rate Q≤1.51×10{sup 10}K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 10{sup 11 }K/s and 936.9 K for Q = 1.46 × 10{sup 12 }K/s.« less

  9. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans.

    PubMed

    Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S; Greenstein, David; Navarro, Rosa E

    2016-04-07

    In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline-the immortal cell lineage required for sexual reproduction-protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures. Copyright © 2016 Huelgas-Morales et al.

  10. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans

    PubMed Central

    Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S.; Greenstein, David; Navarro, Rosa E.

    2016-01-01

    In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline—the immortal cell lineage required for sexual reproduction—protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures. PMID:26865701

  11. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    PubMed

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  12. Localization and Expression of Hsp27 and αB-Crystallin in Rat Primary Myocardial Cells during Heat Stress In Vitro

    PubMed Central

    Tang, Shu; Buriro, Rehana; Liu, Zhijun; Zhang, Miao; Ali, Islam; Adam, Abdelnasir; Hartung, Jörg; Bao, Endong

    2013-01-01

    Neonatal rat primary myocardial cells were subjected to heat stress in vitro, as a model for investigating the distribution and expression of Hsp27 and αB-crystallin. After exposure to heat stress at 42°C for different durations, the activities of enzymes expressed during cell damage increased in the supernatant of the heat-stressed myocardial cells from 10 min, and the pathological lesions were characterized by karyopyknosis and acute degeneration. Thus, cell damage was induced at the onset of heat stress. Immunofluorescence analysis showed stronger positive signals for both Hsp27 and αB-crystallin from 10 min to 240 min of exposure compared to the control cells. According to the Western blotting results, during the 480 min of heat stress, no significant variation was found in Hsp27 and αB-crystallin expression; however, significant differences were found in the induction of their corresponding mRNAs. The expression of these small heat shock proteins (sHsps) was probably delayed or overtaxed due to the rapid consumption of sHsps in myocardial cells at the onset of heat stress. Our findings indicate that Hsp27 and αB-crystallin do play a role in the response of cardiac cells to heat stress, but the details of their function remain to be investigated. PMID:23894407

  13. Association between human and animal thermal comfort indices and physiological heat stress indicators in dairy calves.

    PubMed

    Kovács, L; Kézér, F L; Ruff, F; Szenci, O; Jurkovich, V

    2018-06-06

    Warm summer episodes have a significant effect on the overall health and well-being of young cattle; however, it is not known which temperature measure should be used for estimating heat stress in dairy calves. In this study, generalized linear mixed-effects models were used to estimate the relationships between thermal comfort indices and animal-based heat stress indicators in sixteen Holstein bull calves that were housed in individual calf hutches. Data were collected under continental weather characteristics over a 5-day period: day 1 (lower-temperature day), days 2 and 3 (heat stress days), and a 2-day post-stress period. Relative humidity, ambient temperature, the heat index, the humidex and five different temperature-humidity indices (THI) were used as thermal indices. Physiological variables monitored included respiratory rate, rectal temperature, ear skin temperature and heart rate. The heat index and the humidex measuring human thermal comfort were more closely associated with physiological measures than were the ambient temperature or the THIs (in case of heat index: R 2 = 0.87 for respiratory rate, R 2 = 0.63 for rectal temperature, R 2 = 0.70 for ear skin temperature, and R 2 = 0.78 for heart rate, respectively; in case of humidex: R 2 = 0.85 for respiratory rate, R 2 = 0.60 for rectal temperature, R 2 = 0.68 for ear skin temperature, and R 2 = 0.75 for heart rate, respectively). Based on our results, parameters of human outdoor comfort seem better to estimate heat stress in dairy calves in a continental region than those of THIs or ambient temperature. Copyright © 2018. Published by Elsevier Inc.

  14. Environmental Heat and Salt Stress Induce Transgenerational Phenotypic Changes in Arabidopsis thaliana

    PubMed Central

    Suter, Léonie; Widmer, Alex

    2013-01-01

    Plants that can adapt their phenotype may be more likely to survive changing environmental conditions. Heritable epigenetic variation could provide a way to rapidly adapt to such changes. Here we tested whether environmental stress induces heritable, potentially adaptive phenotypic changes independent of genetic variation over few generations in Arabidopsis thaliana. We grew two accessions (Col-0, Sha-0) of A. thaliana for three generations under salt, heat and control conditions and tested for induced heritable phenotypic changes in the fourth generation (G4) and in reciprocal F1 hybrids generated in generation three. Using these crosses we further tested whether phenotypic changes were maternally or paternally transmitted. In generation five (G5), we assessed whether phenotypic effects persisted over two generations in the absence of stress. We found that exposure to heat stress in previous generations accelerated flowering under G4 control conditions in Sha-0, but heritable effects disappeared in G5 after two generations without stress exposure. Previous exposure to salt stress increased salt tolerance in one of two reciprocal F1 hybrids. Transgenerational effects were maternally and paternally inherited. Lacking genetic variability, maternal and paternal inheritance and reversibility of transgenerational effects together indicate that stress can induce heritable, potentially adaptive phenotypic changes, probably through epigenetic mechanisms. These effects were strongly dependent on plant genotype and may not be a general response to stress in A. thaliana. PMID:23585834

  15. Effects of heat stress on the gene expression of nutrient transporters in the jejunum of broiler chickens ( Gallus gallus domesticus)

    NASA Astrophysics Data System (ADS)

    Sun, Xiaolei; Zhang, Haichao; Sheikhahmadi, Ardashir; Wang, Yufeng; Jiao, Hongchao; Lin, Hai; Song, Zhigang

    2015-02-01

    In broiler chickens, heat stress disrupts nutrient digestion and absorption. However, the underlying molecular mechanism is not clearly understood. Hence, to investigate the effects of high ambient temperatures on the expression levels of nutrient transporters in the jejunum of broiler chickens, seventy-two 35-day-old male broiler chickens with similar body weights were randomly allocated into two groups: control (24 ± 1 °C) and heat-stressed (32 ± 1 °C). The chickens in the heat-stressed group were exposed to 10 h of heat daily from 08:00 to 18:00 and then raised at 24 ± 1 °C. The rectal temperature and feed intake of the chickens were recorded daily. After 7 days, nine chickens per group were sacrificed by exsanguination, and the jejunum was collected. The results show that heat exposure significantly decreased the feed intake and increased the rectal temperature of the broiler chickens. The plasma concentrations of uric acid and triglyceride significantly increased and decreased, respectively, in the heat-stressed group. No significant differences in the levels of plasma glucose, total amino acids, and very low-density lipoprotein were observed between the heat-stressed and control groups. However, the plasma concentration of glucose tended to be higher ( P = 0.09) in the heat-stressed group than in the control group. Heat exposure did not significantly affect the mRNA levels of Na+-dependent glucose transporter 1 and amino acid transporters y + LAT1, CAT1, r-BAT, and PePT-1. However, the expression levels of GLUT-2, FABP1, and CD36 were significantly decreased by heat exposure. The results of this study provide new insights into the mechanisms by which heat stress affects nutrient absorption in broiler chickens. Our findings suggest that periodic heat exposure might alter the jejunal glucose and lipid transport rather than amino acid transport. However, intestinal epithelial damage and cell loss should be considered when interpreting the effects of heat

  16. Transcriptome analysis reveals potential mechanisms underlying differential heart development in fast- and slow-growing broilers under heat stress.

    PubMed

    Zhang, Jibin; Schmidt, Carl J; Lamont, Susan J

    2017-04-13

    Modern fast-growing broilers are susceptible to heart failure under heat stress because their relatively small hearts cannot meet increased need of blood pumping. To improve the cardiac tolerance to heat stress in modern broilers through breeding, we need to find the important genes and pathways that contribute to imbalanced cardiac development and frequent occurrence of heat-related heart dysfunction. Two broiler lines - Ross 708 and Illinois - were included in this study as a fast-growing model and a slow-growing model respectively. Each broiler line was separated to two groups at 21 days posthatch. One group was subjected to heat stress treatment in the range of 35-37 °C for 8 h per day, and the other was kept in thermoneutral condition. Body and heart weights were measured at 42 days posthatch, and gene expression in left ventricles were compared between treatments and broiler lines through RNA-seq analysis. Body weight and normalized heart weight were significantly reduced by heat stress only in Ross broilers. RNA-seq results of 44 genes were validated using Biomark assay. A total of 325 differentially expressed (DE) genes were detected between heat stress and thermoneutral in Ross 708 birds, but only 3 in Illinois broilers. Ingenuity pathway analysis (IPA) predicted dramatic changes in multiple cellular activities especially downregulation of cell cycle. Comparison between two lines showed that cell cycle activity is higher in Ross than Illinois in thermoneutral condition but is decreased under heat stress. Among the significant pathways (P < 0.01) listed for different comparisons, "Mitotic Roles of Polo-like Kinases" is always ranked first. The increased susceptibility of modern broilers to cardiac dysfunction under heat stress compared to slow-growing broilers could be due to diminished heart capacity related to reduction in relative heart size. The smaller relative heart size in Ross heat stress group than in Ross thermoneutral group is suggested

  17. Metabolic Response to Heat Stress in Late-Pregnant and Early Lactation Dairy Cows: Implications to Liver-Muscle Crosstalk.

    PubMed

    Koch, Franziska; Lamp, Ole; Eslamizad, Mehdi; Weitzel, Joachim; Kuhla, Björn

    2016-01-01

    Climate changes lead to rising temperatures during summer periods and dramatic economic losses in dairy production. Modern high-yielding dairy cows experience severe metabolic stress during the transition period between late gestation and early lactation to meet the high energy and nutrient requirements of the fetus or the mammary gland, and additional thermal stress during this time has adverse implications on metabolism and welfare. The mechanisms enabling metabolic adaptation to heat apart from the decline in feed intake and milk yield are not fully elucidated yet. To distinguish between feed intake and heat stress related effects, German Holstein dairy cows were first kept at thermoneutral conditions at 15°C followed by exposure to heat-stressed (HS) at 28°C or pair-feeding (PF) at 15°C for 6 days; in late-pregnancy and again in early lactation. Liver and muscle biopsies and plasma samples were taken to assess major metabolic pathway regulation using real-time PCR and Western Blot. The results indicate that during heat stress, late pregnant cows activate Cahill but reduce Cori cycling, prevent increase in skeletal muscle fatty acid oxidation, and utilize increased amounts of pyruvate for gluconeogenesis, without altering ureagenesis despite reduced plane of nutrition. These homeorhetic adaptations are employed to reduce endogenous heat production while diverting amino acids to the growing fetus. Metabolic adaptation to heat stress in early lactation involves increased long-chain fatty acid degradation in muscle peroxisomes, allowance for muscle glucose utilization but diminished hepatic use of amino acid-derived pyruvate for gluconeogenesis and reduced peroxisomal fatty acid oxidation and ATP production in liver of HS compared to PF cows in early lactation. Consequently, metabolic adaptation to heat stress and reduced feed intake differ between late pregnancy and early lactation of dairy cows to maintain energy supply for fetus development or milk production

  18. Metabolic Response to Heat Stress in Late-Pregnant and Early Lactation Dairy Cows: Implications to Liver-Muscle Crosstalk

    PubMed Central

    Eslamizad, Mehdi; Weitzel, Joachim; Kuhla, Björn

    2016-01-01

    Climate changes lead to rising temperatures during summer periods and dramatic economic losses in dairy production. Modern high-yielding dairy cows experience severe metabolic stress during the transition period between late gestation and early lactation to meet the high energy and nutrient requirements of the fetus or the mammary gland, and additional thermal stress during this time has adverse implications on metabolism and welfare. The mechanisms enabling metabolic adaptation to heat apart from the decline in feed intake and milk yield are not fully elucidated yet. To distinguish between feed intake and heat stress related effects, German Holstein dairy cows were first kept at thermoneutral conditions at 15°C followed by exposure to heat-stressed (HS) at 28°C or pair-feeding (PF) at 15°C for 6 days; in late-pregnancy and again in early lactation. Liver and muscle biopsies and plasma samples were taken to assess major metabolic pathway regulation using real-time PCR and Western Blot. The results indicate that during heat stress, late pregnant cows activate Cahill but reduce Cori cycling, prevent increase in skeletal muscle fatty acid oxidation, and utilize increased amounts of pyruvate for gluconeogenesis, without altering ureagenesis despite reduced plane of nutrition. These homeorhetic adaptations are employed to reduce endogenous heat production while diverting amino acids to the growing fetus. Metabolic adaptation to heat stress in early lactation involves increased long-chain fatty acid degradation in muscle peroxisomes, allowance for muscle glucose utilization but diminished hepatic use of amino acid-derived pyruvate for gluconeogenesis and reduced peroxisomal fatty acid oxidation and ATP production in liver of HS compared to PF cows in early lactation. Consequently, metabolic adaptation to heat stress and reduced feed intake differ between late pregnancy and early lactation of dairy cows to maintain energy supply for fetus development or milk production

  19. Sprint performance under heat stress: A review.

    PubMed

    Girard, O; Brocherie, F; Bishop, D J

    2015-06-01

    Training and competition in major track-and-field events, and for many team or racquet sports, often require the completion of maximal sprints in hot (>30 °C) ambient conditions. Enhanced short-term (<30 s) power output or single-sprint performance, resulting from transient heat exposure (muscle temperature rise), can be attributed to improved muscle contractility. Under heat stress, elevations in skin/core temperatures are associated with increased cardiovascular and metabolic loads in addition to decreasing voluntary muscle activation; there is also compelling evidence to suggest that large performance decrements occur when repeated-sprint exercise (consisting of brief recovery periods between sprints, usually <60 s) is performed in hot compared with cool conditions. Conversely, poorer intermittent-sprint performance (recovery periods long enough to allow near complete recovery, usually 60-300 s) in hotter conditions is solely observed when exercise induces marked hyperthermia (core temperature >39 °C). Here we also discuss strategies (heat acclimatization, precooling, hydration strategies) employed by "sprint" athletes to mitigate the negative influence of higher environmental temperatures. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Genome-wide association of changes in swine feeding behaviour due to heat stress

    USDA-ARS?s Scientific Manuscript database

    Background: Heat stress has a negative impact on pork production, particularly during the grow-finish phase. As temperature increases, feeding behaviour changes in order for pigs to decrease heat production. The objective of this study was to identify genetic markers associated with changes in feedi...